

Flash Advertising

This page intentionally left blank

Flash Advertising
Flash Platform Development
of Microsites, Advergames,
and Branded Applications

Jason Fincanon

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD
PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Focal Press is an imprint of Elsevier

Focal Press is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK

© 2010 Jason Fincanon. Published by Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or any information storage and retrieval system, without permission in writing from
the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our
arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be
found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as
may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any
information, methods, compounds, or experiments described herein. In using such information or methods they should
be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any
injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or
operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Fincanon, Jason.
Flash advertising : flash platform development of microsites, advergames, and branded applications / Jason Fincanon.
p. cm.
ISBN 978-0-240-81345-5
1. Computer animation. 2. Flash (Computer file) 3. Web sites–Design. 4. Internet advertising. I. Title.
TR897.7.F479 2010
006.6'96–dc22 2010025536

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-240-81345-5

For information on all Focal Press publications
visit our website at www.elsevierdirect.com

10 11 12 13 14 5 4 3 2 1

Printed in the United States of America

Typeset by: diacriTech, Chennai, India

Dedication

To my wife and children. You give me focus, direction, passion, and
joy in everything you do. I love you and thank you for making my
life so wonderful and fun.

This page intentionally left blank

CONTENTS
Foreword . xi

Acknowledgments . xiii

About the Author . xv

Introduction . xvii

Chapter 1 Flash Advertising Overview . 1
What This Book Is and Is Not . 3

Supporting Web site . 3

The Flash Platform . 3

Why Use the Flash Platform for Advertising . 6

Types of Ads . 9

Interactive Standards and the Interactive Advertising Bureau 10

Advertising Templates in Flash . 11

Ad Specs . 12

Deadlines . 14

Microsites . 16

Quality Control . 17

Version Control . 19

Conclusion . 24

Chapter 2 Designing Banner Ads . 25
Conception . 26

Campaign Goal . 30

Branding and Selling . 30

Designing to Move . 32

Conclusion . 35

Chapter 3 Preparing and Building Ads . 37
Planning . 38

Setting Up Your File(s) . 39

Cutting Art . 42

clickTags and Links . 46

Creating Time with Code . 48

Conventions and Best Practices . 53

The Bandwidth Profiler . 55

CONTENTS vii

HTML and JavaScript . 58

Default Images . 61

Quality Control . 61

Conclusion . 63

Chapter 4 Forms and Data . 65
Where Are You Going? . 66

File Size Consumption . 67

Collecting and Passing Data . 70

Conclusion . 72

Chapter 5 File Optimization . 75
Image Types . 76

Image Compression . 81

Vectors and Fonts . 85

Optimizing Code . 88

Conclusion . 90

Chapter 6 Third-Party Rich-Media Technologies 93
When to Utilize Rich-Media Technology . 93

Rich-Media Companies . 97

Conclusion . 98

Chapter 7 Trafficking and Tracking Your Ads 99
The Media Buy . 100

Ad-Server Tools . 103

Tracking Your Ads . 104

Rich-Media Ads . 107

Site-Served Ads . 109

Conclusion . 110

Chapter 8 Designing Microsites . 113
Less Constraints . 114

Conception . 117

Know the Brand (and Learn It if You Don’t) . 119

Navigation . 122

Designing to Move . 124

Conclusion . 128

viii CONTENTS

Chapter 9 Preparing and Building Microsites 131
Choosing Your Tools . 132

Planning Your Work . 135

Collecting Assets . 136

Building to Standards . 137

HTML and JavaScript . 139

No-Flash Backup . 140

Deep Linking . 141

Collecting User Data . 145

Quality Control . 148

Conclusion . 150

Chapter 10 Driving Traffic to Your Microsite. 153
Paid Search . 154

Banner Ads . 157

From Main to Micro . 158

Viral Marketing and Social Networking . 160

User Interactions and Referrals . 164

Conclusion . 166

Chapter 11 Advergaming and Applications 169
Advergames . 170

Applications . 185

Conclusion . 188

Chapter 12 Classes . 191
Set Up . 192

Packages . 192

Document Class . 193

The BorderButton Class . 195

The SimpleMenu Class . 200

The SimpleGallery Class . 213

The ReverseClip Class . 226

The ClickTagger Class . 231

Conclusion . 238

Chapter 13 The Memory Game. 241
The DeckArray Class . 241

The MemoryGameEvent Class . 244

The MemoryGame Class (the Game Engine) 245

CONTENTS ix

Sample Use of MemoryGame . 252

Conclusion . 255

Chapter 14 Case Studies . 257
Eyeblaster . 257

Blockdot . 263

Index . 267

x CONTENTS

FOREWORD

You visit a Web site. An ad takes over your screen. This has
happened before, but this time it actually looks like an ad for a
legitimate product, not like the creepy ads you often see at the top
of your favorite social networking site. Not only does this ad look
legit, it has a huge red button that for some strange reason is beck-
oning; no, demanding that you press it. So, you do. This, my
friends, is the power of Flash advertising. In reality, this magic
probably only happens once for every thousand times an ad is
seen. However, the beauty of the Internet is that this ad will be
seen twenty million times.

Advertising is big business and it is no secret that advertising on
the Internet is quickly becoming the mother lode. While you may
not think this has much to do with you, Jason would disagree.
Advertising on the Internet means jobs and this book will teach
you everything you could possibly need to know to get started with
Flash advertising. I know this for a fact. Jason was my mentor
when I first got into the industry. The methods, concepts, and pro-
cedures that Jason details in this book are all things that he taught
me during many an all-nighter at one of the largest interactive
shops in the United States. His approach has been tested and
streamlined in the most demanding of environments. It’s been
years since we have worked together, but I can now proudly say
that my company uses Jason’s experience to our advantage. Not
only do we use his approach in our Flash media development, we
actually hand out his book as training material for new Flash
media developers. At the risk of sounding like an infomercial being
seen in the middle of the night, this is the real deal.

This is the second edition of Flash Advertising. One of the main
changes in the industry since the first edition is the adoption rate
of the Adobe Flash Player. Now that most PC users have Flash
Player version 9 or greater installed, ads developed with Action-
Script 3 are being used with much greater frequency. This is a big
deal to people developing cutting-edge Flash ads and microsites.
This latest edition will show you how to make the step up to
ActionScript 3 from ActionScript 2. If you are new to ActionScript
in general, this edition will provide you with the building blocks
you need to get off to a good start.

Jason is an enthusiast in his family life, in his hobbies, and in
his work. He loves Flash and will show you how much fun it can
be to work with Flash advertising. As an active contributor to the
Flash community, Jason believes in the open exchange of ideas. It’s

FOREWORD xi

with this sense of community that he authors this book. Developing
Flash advertising is a great way to make a living, and Jason shares
this enjoyment in his writing. So, read this book and learn from
one of the first and the best.

—Christopher Long, Partner, Ovrflo Media, Inc.

xii FOREWORD

ACKNOWLEDGMENTS

In addition to the thanks I gave in the first edition of this book, I’d like to add a few names to
the list and reiterate a few from before. So here they are in no particular order (Thanks guys!):

Chris Long

James Wilson

Danh Ta

Jamie Fishler

Danny Dura

Dan Ferguson

Chris Griffith
(check out his book
Real-World Flash Game
Development)

John Keehler

Katie McCracken

James Hering

Elizabeth Basham

Special thanks also goes out to:

Ovrflo Media
(http://www.ovrflomedia.com)

Blockdot
(http://www.blockdot.com)

Eyeblaster
(http://www.eyeblaster.com)

Click Here
(http://www.clickhere.com)

ACKNOWLEDGMENTS xiii

This page intentionally left blank

ABOUT THE AUTHOR

With experience working with the Flash Platform since graduating
from The Art Institute of Dallas in 1998, Jason has spent the major-
ity of his career building Flash-based websites, games and applica-
tions while working for employers ranging from interactive
advertising agencies to branded entertainment and advergaming
companies. During his time in these industries, Jason has had the
opportunity to work on projects for clients such as Patrón Tequila,
GameStop, Hyundai, Fruit of the Loom, National Pork Board,
Travelocity, Florida Department of Citrus, Nokia and many others.
Outside of work, he also stays involved in the Flash Platform com-
munity by co-managing Flash Dallas, an official Adobe Flash User
Group, and maintaining a Flash and Flex related blog that can be
found at http://www.jasonfincanon.com.

ABOUT THE AUTHOR xv

This page intentionally left blank

INTRODUCTION

Advertising online has come to have a not-so-favorable reputation
with Internet users. Combine that reputation with the often unin-
formed opinion that Flash is for creating nothing more than excep-
tionally annoying banners or Web site intros and preloaders that are
so bloated in file size they need their own preloaders and you’ve
got a recipe for disaster. On the other hand, when done correctly,
Flash can be (and is) used to create some of the most eye-catching,
awe-inspiring, mind-blowing, award-winning work on the Web.

A major contributor to the unfortunate misconception of this
combination is the fact that there IS work out there that fits directly
within its own reputation. However, with a little forethought and
planning, those same ads could be very quickly redesigned with
the outcome of much better user reception and interaction. If the
work that is causing the bad reputation for Flash advertising can be
made better, then so can the reputation itself. Just as its predeces-
sor, this book was written in hopes of doing exactly that. It was
written to help educate and inform individuals, teams, depart-
ments, and even companies on the ins and outs of creating adver-
tising with Flash.

INTRODUCTION xvii

This page intentionally left blank

1
FLASH ADVERTISING OVERVIEW

CHAPTER OUTLINE
What This Book Is and Is Not 3
Supporting Web site 3
The Flash Platform 3

Flash Professional 4
Flash Builder 5
AIR 6

Why Use the Flash Platform for Advertising 6
Banners 6
Microsites 7
Branded AIR Applications 7
Mobile Devices 7

Types of Ads 9
Standard Flash 9
Rich Media 9
Cost Can Be an Issue 10

Interactive Standards and the Interactive Advertising Bureau 10
Advertising Templates in Flash 11
Ad Specs 12

Keep It Down (Your File Size That Is) 13
More IAB 13

Deadlines 14
Aim Ahead of Schedule 15
Creeping Scope 15
You’re Not Alone 15
Keep In Touch 16

Microsites 16
Design to the Campaign 17

Quality Control 17
Test Yourself 18
The Reason for Quality Control 18
You’re Still Not Alone 19

Version Control 19
Options 20
A Version Control Story 23
What Happened? 23
How Could It Have Been Avoided? 24

Conclusion 24

Flash Advertising. DOI: 10.1016/B978-0-240-81345-5.00001-3
© 2010 Jason Fincanon. Published by Elsevier, Inc. All rights reserved. 1

The use of the Flash Platform in advertising has been around for
many years now, and it continues to thrive even in the face of the
development of other “Flash killer” technologies. Its use is far from
limited to the stereotypical banner ad that people tend to think of
when the word “advertising” is used in the interactive realm. In
fact, the Flash Platform is used for everything from banners to cor-
porate Web sites, from personal portfolios to client specific online
news channels, and in many cases, it may even be used for desktop
applications that are designed to promote your client’s brand.

The Flash Platform has matured and grown into a powerful set
of tools over the years, but there are still plenty of ads and sites
out there that tend to leave some people with a bad impression,
and it’s up to us to change their minds. So how do we change the
minds of these people and wow them at the same time? We can
start by following a few simple design rules, anticipating interaction
and animation issues, targeting the correct audience, and steering
away from the things we find annoying or wouldn’t want to see
ourselves.

As the platform has grown, so has online advertising. There was
a time when you had to choose between a static .jpg and an ani-
mated .gif for your banners, but that time has long since past. The
option to use the Flash Platform has enabled interactive advertising
agencies, as well as individual developers, to create much more
engaging and entertaining advertising in many different forms. It
has also opened up a channel for more interactivity and the ability
to do things like gather user information from within an ad itself.

So with the lines between the computer desktop, the Internet,
the television, and mobile devices blurring more and more every
day, it has become increasingly important to give users better,
more memorable, more interactive experiences in everything they
do online, including viewing your clients’ brands by way of adver-
tising. After all, if they remember the experience you provided,
they’ll remember the brand and be more likely to buy from your
client in the future. And after they buy from your client, your client
will be happy and will most likely return to you for more projects
(and, of course, more projects mean more income).

So let’s take a quick look at what we’ll be covering in this first
chapter where I’ll first cover a little bit about the book itself and
then why you should use the Flash Platform for advertising, as well
as the options and considerations placed in front of you when
doing so. The sections contained within this chapter are as follows:
• What This Book Is and Is Not
• Supporting Web site
• The Flash Platform
• Why Use the Flash Platform for Advertising
• Types of Ads
• Interactive Standards and the Interactive Advertising Bureau

2 Chapter 1 FLASH ADVERTISING OVERVIEW

• Advertising Templates In Flash
• Ad Specs
• Deadlines
• Microsites
• Quality Control
• Version Control

What This Book Is and Is Not
This book should be thought of and read as a sort of guide into the
world of advertising with the Flash Platform. While its intention is
to prepare you for the flow of projects as they come in your door
and work their way to living online for millions of users to interact
with, you should also understand that different places of employ-
ment will all have their own internal workings and processes
to follow. With that said, there are also several constants and
considerations that are absolutely unchanged from one advertising
agency to the next; items like standard banner specs or file
optimization.

On the flip side, this book should not be thought of as a strictly
code-oriented book that developers might read to learn Flash itself.
While it does contain ActionScript for the developers, it also
contains a lot of information that is not specific to any single
discipline. With that being the case, anyone from Flash Platform
Developers to Media Directors to Account Managers can most
likely find some sort of usable information within these pages.

Supporting Web site
The supporting Web site for this book can be found at http://www
.flashadbook.com. On this Web site, you can find information about
the chapters, share your thoughts and questions, and download
many of the files from the book. Now before we dive in, let’s briefly
talk about the Flash Platform and some of the tools that will be
used in this book.

The Flash Platform
Until recently, when you talked to someone about Flash design
and/or development, you were most likely talking about Flash
itself. Whether you were talking about building a Flash Web site, a
Flash animation or any other “Flash” work, it’s a good bet that the
project in question was to be designed or developed using the
Flash IDE. However, using the word Flash to describe a project
may need a little more clarification now due to the emergence of
what is now known as the Adobe Flash Platform (Fig. 1.1).

Chapter 1 FLASH ADVERTISING OVERVIEW 3

The current short description on Adobe’s Web site states, “The
Adobe Flash Platform is an integrated set of technologies sur-
rounded by an established ecosystem of support programs, busi-
ness partners, and enthusiastic user communities.” The site also
lists the technologies included in the Flash Platform as Flash
Player, Adobe AIR, Flex, Flash Builder, Flash Professional, Flash
Media Server, and LiveCycle Data Services ES. I’ll be touching on
some, but not all of these technologies in this book.

We’re obviously going to be working with Flash, and if you
don’t already have it installed on your computer, you can get a
trial version from the Adobe Web site. I’ll also touch on Flash
Builder 4 a little, though it’s not a part of the Flash Platform, and
I’ll be using Photoshop as well. Each of these can be downloaded
from the following locations:
• Flash – http://www.adobe.com/products/flash/
• Flash Builder – http://www.adobe.com/products/flashbuilder/
• Photoshop – http://www.adobe.com/products/photoshop/

Okay, now that you’ve got your tools, I’d like to continue with
some extremely brief descriptions of each one. If you’re already
familiar with them, please feel free to skip ahead to the next
section.

Flash Professional
Flash (Fig. 1.2) is where this all started many years ago (under a dif-
ferent name) and it has come a long way over all those years. It’s
been around for a while and I believe (or at least hope) that it will
continue to grow for many more years to come. After all, it has an
entire platform named after it, right? Flash, in the sense of this parti-
cular paragraph/section, is an IDE used to develop, animate, and
compile your work to usable files such as .swf files, executable (.exe)
files, Adobe AIR applications, and even more recently, iPhone apps.

Figure 1.1 The Adobe Flash Platform.

4 Chapter 1 FLASH ADVERTISING OVERVIEW

Flash Builder
Flash Builder (Fig. 1.3), which was previously named Flex Builder,
is an IDE built by Adobe for the purpose of working with the Flex
framework. The reason for the recent name change with version 4
was to tie it in more closely with the Flash Platform while also
drawing a clear line of distinction between the IDE and the frame-
work. The Flex framework itself also moved up in version number
(to version 4) and includes new namespaces, components, and
other tools to make your work as a designer or developer a whole
lot easier while helping you complete tasks and projects much
more quickly. Again, Flash Builder is available from the Adobe
Web site: http://www.adobe.com/products/flashbuilder/

Figure 1.2 The Adobe Flash Professional CS5 launch screen.

Figure 1.3 The Adobe Flash Builder 4 Premium launch screen.

Chapter 1 FLASH ADVERTISING OVERVIEW 5

AIR
Adobe AIR is a runtime that not only allows you to build and
deploy branded desktop games and applications with HTML, Ajax,
Flash, and/or Flex, but it also allows you to do so across multiple
operating systems. This means that you can build your game or
application one single time and have one single installer for many
users regardless if they are on Windows, Mac, or Linux. As a develo-
per, you can build your applications with Adobe products like Flash
or Dreamweaver or you may choose to use your favorite text editor
in conjunction with the free AIR SDK to package your applications.
For lots more information about Adobe AIR, check it out on Adobe’s
Web site: http://www.adobe.com/products/air/

Why Use the Flash Platform for Advertising
I’ll be completely honest here and say that the Flash Platform isn’t
going to be the best option to achieve your goals 100% of the time.
As with any technology, you should avoid using it just for the sake
of using it. Instead, you should assess the project at hand to decide
if the Flash Platform is the best option to go with. In some cases,
you may want to use AJAX. In other cases, you may want to use
nothing more than plain ‘ol HTML. The point is that you should
choose what best serves the needs of your client. With all of that
said, this is a book about creating Flash advertising, so we’ll go
ahead and make the assumption your work calls for it.

Banners
So why use Flash for advertising? Why use it to create banner ads
for your client’s service or product? The short answer: Brand inter-
action through features is not available with other options. With a
static .jpg or even an animated .gif banner, you might have a good
enough image to get a user to click and go to the intended destina-
tion, but that’s pretty much all you have – an image. With Flash,
you have the ability to engage your audience with your client’s
brand. You can use smooth animation and interaction to tell a
story. You can build an ad with tabs for different “pages” within
your banner. You can build a banner that gives users even more
interactive elements once they interact with it for the first time.
You can even show a television commercial or other video inside
your ad.

Let’s look at an automobile manufacturer as an example. Your
client, Typical Motors, wants you to build a round of online adver-
tisements that will allow the end user to begin choosing options on
their newest model. They want people to see the ad, make choices
from dropdown menus about what color and trim package they

Inside Advertising

The true purpose of any
online ad unit is to
communicate the biggest
message in the smallest
amount of real estate.

—Randy Bradshaw,
Principal, Click Here, Inc.

6 Chapter 1 FLASH ADVERTISING OVERVIEW

would like on the car, submit the form, and be taken to the “build
your own” section of the manufacturer’s Web site where the selec-
tions made in the banner will carry over. By allowing users to fill
out the form in the banner, you’ve allowed them to complete a
portion of the task before they even get to the site.

So why wouldn’t you just build the banner out with HTML? That
would be a great option if we were only talking about a form and
two, maybe three, frames of images and text. However, your client
wants more than that. They want to see several different images of
the car smoothly cross-fade from one to the next on user interaction.
They also want to see 360° views of that car and offer users an option
to watch their new TV spot directly inside the banners, and the Flash
Platform is the best way to provide them with these features.

Microsites
So what about microsites? In addition to the banners, Typical
Motors wants to launch a site specifically for the new car. They
would like to see an interactive 360° view of the car, an image gal-
lery page, a video page, maybe a driving game featuring the new
car, and several other features. This is, of course, in addition to the
information you would expect to find on a car site like a specs
page or the manufacturer’s suggested retail price of the car. They
would also like to see a nice, fresh, creative approach to page tran-
sitions. Now you could probably accomplish some of those tasks
with anything like Ruby, PHP, .NET, or several others, but in order
to give them the full experience they seem to be looking for, I’d
suggest designing and building them a microsite using the tools
available in the Flash Platform.

Branded AIR Applications
An AIR application gives your client an opportunity to stay with the
potential customer after they have left the microsite and even the
browser itself. You may choose to build something like a branded
game, a video player, an inventory tracker, or even an application
that would enable a customer to configure, order, and buy a new
car. You may even extend the functionality of that application to
remind the customer of things like scheduled maintenance or alert
them to things like safety recalls. By adding in long-term features
like those, you raise the likelihood that each user who has installed
the application will leave it on their machine, continue to use it,
and continue to be exposed to your client’s brand.

Mobile Devices
A lot has changed in the realm of Flash and mobile devices since
the last edition of this book. One of the biggest changes is the fact

Chapter 1 FLASH ADVERTISING OVERVIEW 7

that Flash Player 10.1 is available on several devices such as the
Palm Pre, Motorola Droid, and Google Nexus One phones. That is,
of course, in addition to the millions of devices that already sup-
port Flash Lite. On top of that, you can now build your content in
Flash CS5 and have it compiled to an iPhone application. Don’t
confuse that to mean that the Flash Player is on the iPhone or that
Flash content will play on the iPhone because it won’t (at least not
at the time I’m writing this). And just in case you’re wondering
about this crazy Flash-to-iPhone business, let me give you a quick
and dirty example of how to do it.

The first thing you’ll need to do is to create a new Flash file by
simply choosing “New” from the File menu and then selecting
“iPhone OS” from the resulting menu and choices (Fig. 1.4). Once
you have your new .fla, you simply build out your app almost as if
you were building it for use on the Web. I say almost because
there are definitely some constraints and features that need to be
taken into consideration.

Before I go into detail, let’s get back to the banner ads. While
covering the banner example for Typical Motors I mentioned forms,
videos, animation, and a few other things that need to be consid-
ered. What I haven’t talked about yet is the different ad formats that
are available for you to choose from. Let’s get to that now.

Figure 1.4 Flash CS5’s new iPhone OS document option.

8 Chapter 1 FLASH ADVERTISING OVERVIEW

Types of Ads
When it comes to creating online banner ads, you have options for
the format in which you will build them and the top-level, bird’s
eye view of those options are standard Flash and rich media.

Standard Flash
I’m going to stick with Typical Motors for now and we’re going to
tone down their ads to simple animations with nothing more than
a couple of images and some text. Because we aren’t going to
include any high-profile extras like video, this is a good time to use
what’s generally called a standard Flash ad. Standard ads are the
most basic of all the Flash ads you’ll build. They’re simple, straight-
forward, and get the message across. Your standard Flash ads will
usually consist of a small animation, a couple of lines of copy with
a call to action such as “click here to visit our site,” and one or
more clickable areas. These ads are usually constrained to a file
size limitation of 30–40k and are served by either an ad-serving
company or directly by the site on which the ad is running (see
more on ad-serving companies and site-serving ads in Chapters 6
and 7). Keep in mind that while some sites allow you to utilize
more file size, standard banners are not the place to try to squeeze
in anything like audio or video.

Rich Media
If you’re looking to have audio or video in your ads, or if you feel
you’ll need more than the 30–40k file size allowed by standard
Flash ads, you’ll need to move them over to a third-party rich-
media company (I will discuss several of them in Chapter 6). These
companies have technologies in place that allow you to have much
more file size, interactivity, video, audio, and so forth. They allow
you to build a much richer experience. In addition to the features
I’ve just mentioned, you’ll need the rich-media companies to serve
your banners if you plan on creating anything like expandable or
floating ad units. Again, I’ll discuss more about those later in the
book but as a quick explanation, both of those banners do exactly
what you’d think: Expandable ads expand to a larger size when a
user rolls over or clicks on them and floating ads “float” over the
main content of the page.

ALERT!
When you are planning and working on a banner campaign, always
remember that choosing rich-media banners over standard Flash ads can
cost more. However, also remember that the added benefits of rich-media
banners may very well be worth the extra expense.

Chapter 1 FLASH ADVERTISING OVERVIEW 9

Cost Can Be an Issue
So why wouldn’t I design my ads to run with a rich-media
company every single time? I mean, if I were going to be con-
strained to a file size, I’d rather be constrained to 100k than 30k.
How about the ability to have additional loads in the form of Flash
files, images, XML, or several other options? Why give that up?
What about the video I want to stream into my ads? The answer is
cost, my friend, cost! When you upsize that meal at the drive-thru
or when you buy the car with the larger engine, you expect to pay
more because you get more, right? The same concept applies here.
The difference is that you aren’t spending your own money now;
you’re spending your client’s money. Another concept that fits per-
fectly is the concept of not using a technology just for the sake of
using that technology. Pitch your ideas to your client and let them
know which ones will require them to “upsize their order.” They
will let you know which one they are happy with, as well as which
one they feel comfortable spending their money on.

Interactive Standards and the Interactive
Advertising Bureau
Because we just got finished talking about ad formats and since I
mentioned a usual file size limit of 30–40k, let’s spend a minute on
online advertising standards. The Interactive Advertising Bureau (IAB)
is an association whose goals are not only to campaign for interactive
marketing and advertising, but also to prove its effectiveness. In addi-
tion, they also lead the charge to get the industry organized with a
voluntary set of standards and guidelines for interactive marketing.

The voluntary guidelines you’ll find from the IAB are those
that most sites and agencies currently follow. They include, but
are not limited to, ad units, e-mails, pop-ups, and rich-media. By
familiarizing yourself with their voluntary guidelines and stan-
dards, you’ll know valuable information pertaining to important
topics dealing with your work. Topics include ad formats (width
and height), recommended file sizes, animation lengths, and
audio/video controls.

I’ll go into a little more detail about the IAB in just a bit. You
can also find more information and IAB guidelines on everything
from ad units to rich media to e-mail to pop-ups on their Web site
located at http://www.iab.net (Fig. 1.5).

TIP
The Bandwidth Profiler in Flash is a very useful resource when it comes
to keeping your banners within the file size allowed by your specs. It also
comes in quite handy for seeing how your microsites will download and

10 Chapter 1 FLASH ADVERTISING OVERVIEW

play with various settings, such as a user with a 56k dial-up modem
versus a user with a faster internet connection like DSL or cable. To get to
the Bandwidth Profiler, simply test your Flash movie by pressing both the
Command (Ctrl on PC) button and the Enter button on your keyboard.
Once your test movie is playing, press both the Command (Ctrl on PC)
button and the B button to toggle the Bandwidth Profiler on and off. I’ll
get a little more in depth with the Bandwidth Profiler in Chapter 3.

Advertising Templates in Flash
A quick word on the advertising templates that come packaged
with Flash (Fig. 1.6). While I personally don’t use them, it’s
worth mentioning that they are built at some of the industry
standard sizes as far as height and width. By starting your

Figure 1.5 The IAB Web site.

Chapter 1 FLASH ADVERTISING OVERVIEW 11

project with one of these, you’ll save yourself the step of
resizing the stage. There isn’t a whole lot to them, but you can use
them as a starting point or you can modify them to suit your
needs and save your own custom templates. For example, you
might start a new file from the 300 × 250 advertising template,
change the frame rate from 24 frames per second to 18 frames per
second (the IAB standard), and bump the player version to
whatever your project specs call for. Once you have made the
modifications you need and you are satisfied with the properties
of your new file, select “Save as Template” from the File menu,
name your file, and you’ve got a new custom template made for
you, by you.

Ad Specs
Rules, rules, rules. Everywhere you turn, there are rules telling you
what you can and can’t do and ad banners are no exception.
Almost every major site your ads may run on has a section where
you can get their specs. If you can’t find a link that takes you to
their advertising area, simply contact the site to let them know you

Figure 1.6 The advertising templates available in Flash Professional CS5.

12 Chapter 1 FLASH ADVERTISING OVERVIEW

need their advertising specs and there should be no problem
obtaining them. The information you are after are things like the
maximum file size your ad can be when published to the final .swf,
the amount of time you are allowed to run animation, and the
number of times your banner can loop before finally coming to a
stop. Another thing to watch out for is a maximum frame rate.
Although most sites may not have the maximum frame rate listed
in their specs, some do, and your work can very easily get kicked
back to you if you exceed it.

Keep It Down (Your File Size That Is)
The sites that your ads will run on don’t want to bog down their
readers’ bandwidth with banners that exceed the file size in their
specs and you don’t want the banners to take too long to start
playing. If you built an ad that was 500k, your audience would
have to wait for it to load before they ever got to see the product.
Sure, with that much file size you’d probably have a pretty amazing
banner, but your end goal to intrigue users and get them to inter-
act with your ad could be lost in all of it. As I mentioned earlier,
most sites usually stick with a maximum file size of 30–40k. There
are, of course, exceptions where some sites will accept a higher file
size like 50k. Another fairly consistent spec is timing and looping.
A lot of sites prefer to set a time limit of 15 or 30 s with a maxi-
mum of three loops.

More IAB
Because we’re on the subject of specs, let’s expand on the informa-
tion about the IAB from a little earlier. As I was mentioning before,
the IAB has voluntary guidelines for what they call Interactive
Marketing Units (IMUs). These guidelines are updated as needed
by the IAB’s Reimagining Interactive Advertising Taskforce. The
taskforce is made up of leaders from creative agencies, media agen-
cies, and publishers, and they review the Ad Unit Guidelines each
year. Table 1.1 shows some of the sizes in the guidelines at the
time of writing this book.

Remember that Table 1.1 is only a partial list and the sizes
listed within it may have changed by the time you are reading this.
To make sure you have the most up-to-date guidelines, visit the
IAB’s Ad Unit Guidelines page on their Web site at http://www
.iab.net/. While you are there, be sure to also take a quick look
around at the other guidelines for more advertising options like
Pop-up Guidelines, Rich Media Creative Guidelines, and Digital
Video Ad Format Guidelines & Best Practices. Obviously, the latter
is where you’ll find information on running audio and video in
your banners.

Chapter 1 FLASH ADVERTISING OVERVIEW 13

Deadlines
So let’s jump right in to talking about deadlines and their
importance because they can make or break your client list. When
a project is set up and your client “signs off” on you doing the job
for them, there will be a time associated with having that work fin-
ished and pushed live on the Internet. If you are not the actual
person who agreed to and set this deadline, then that person most
likely has a pretty good idea of how long it will take you to create
the work and you’ll be held to that date. Now I won’t candy coat
this issue by saying that there are never going to be any problems
or stress with tight deadlines. Quite frankly, most deadlines will be
at least a little bit tight, and there will be times when you’ll need to
work some late hours in order to meet those deadlines. So how big
of a deal is it when you start missing your deadlines? Well, on top
of the potential embarrassment of not delivering the work when
you promised the client you would, you could be facing any one of
several levels of consequences from a small warning all the way up
to losing your client. The severity of the consequences may depend
on several factors like the policies of your place of employment or
how many deadlines you’ve missed in a given amount of time. Just
try to remember that deadlines are an extremely important part of
a project and they should be taken as such.

TIP
Your rest and energy levels can play a key role in meeting deadlines.
There comes a point in a long, long workday that your productivity level
actually drops due to fatigue. It may happen after 12 hours or it may hap-
pen after 18 hours, but that drop in productivity can have you working

Table 1.1 Just a Few of the IAB Recommended
Banner Specs

Banner size Recommended maximum
initial download fileweight

Recommended animation
length (s)

300 × 250 (Medium rectangle) 40k 15
180 × 150 (Rectangle) 40k 15
468 × 60 (Full banner) 40k 15
728 × 90 (Leaderboard) 40k 15
160 × 600 (Leaderboard) 40k 15

14 Chapter 1 FLASH ADVERTISING OVERVIEW

even longer into the night without accomplishing anything and possibly
even creating problems in your code. Sometimes, the best thing to do is
walk away, go home to get some rest, and try again the next day.

Aim Ahead of Schedule
One suggestion I would like to make is to aim ahead of your dead-
line. If you have 4 weeks to complete a microsite, try to have it
finished in 3 weeks. If you have 3 days to build a round of banners,
see if you can knock them out in 1 1/2 days. If you are the Flash
developer on the project, your first deadline will most likely be to
get your project handed over to quality control. The quicker you
can get it to them, the less crunched they are on time and the bet-
ter they can do their job. The next deadline you will probably face
is the deadline to have the bugs that are found by quality control
worked out. This deadline usually ties right in with the launch or
campaign start date. Imagine if you turned the project over to qual-
ity control 2 days early, they find a few issues, report them to you,
and you fix them right away. Now you look again at your final
deadline, and yes, you’ve just completed the project 3 full days
ahead of schedule. What client isn’t going to want the reassuring
comfort that you and your team have everything so completely
under control?

ALERT!
Remember that other than quality control, you are usually the last to have
your hands in a project before it goes live to the world. Because that is
the case, your deadlines are extremely important. Don’t miss them.

Creeping Scope
Another good reason to stay ahead of the game when it comes to
your deadlines is scope creep. The best way I can describe this phe-
nomenon is the same as it has been explained to me in the past:
Scope creep is the inevitable process in which the client or
stakeholder, after agreeing to initial deliverables, discovers what
those deliverables truly need to be. This process usually occurs gra-
dually over time and only becomes evident once the project is near-
ing completion. If it’s not managed well, scope creep can very easily
translate into many extra work hours. However, by expecting it to
happen, you can be prepared to watch for the signs ahead of time.

You’re Not Alone
Because we’ve talked about your deadlines as the Flash developer,
let’s talk about another deadline: The deadline to have the layouts

Chapter 1 FLASH ADVERTISING OVERVIEW 15

and artwork delivered to you. After all, how can you start building
a banner or site if you don’t have the needed assets? If someone
other than yourself is doing the creative/art side of the project,
they should be given a date by which they need to have these
assets to you. The probability of you making your deadline is par-
tially dependent on them making theirs. However, you should keep
in mind that some companies may choose to utilize different
approaches to these particular deadlines. For example, your
employer may have a bit of a loose schedule in this area to allow
the timelines of different disciplines to overlap. This would mean
that while layouts are due to you by a certain date, those layouts
may only include select pages of a microsite. This method allows
the creative talent to keep working on the design of the underlying
areas while you start developing the main functionality of the site.
The result is a site that has had more attention given to the details
and more details given to the site. And we all know the old saying
about the details, right?

Keep In Touch
While working with these overlapping work times, it is extremely
important that you stay in close contact with the creative person.
As you’ll quickly learn, this is because parts of the site that have
not yet been designed may be affected by the functionality you are
programming into the main area of the site or vice versa. While
developing the main functionality, let the creative person know
what you are doing as you are doing it. Let them know exactly how
you’re developing the site and ask them to explain the underlying
sections that could be affected. What you are trying to avoid here
is spending a couple of hours coding only to find out that you
need to change it in such a way that you are nearly starting over.

Microsites
What exactly is a microsite? Well, it’s smaller than a full Web site
but bigger than a banner, and it can be anything from pure infor-
mation to a full multimedia experience. With microsites you can
concentrate on that one specific product or idea that your client
wants to push. Because it is being built for that single product, the
site can have its own look and feel that doesn’t necessarily have to
match that of the client’s main Web site. A microsite can be
designed to portray how elegant the product is. It can be built to
give users a feel for how fun the product is. It can have its own
soundtrack so users can hear how exciting the product is. The pos-
sibilities are limited only by your creativity, your client’s approval,
and the end goal of the campaign.

16 Chapter 1 FLASH ADVERTISING OVERVIEW

Design to the Campaign
Remember that it’s a good idea to tie the design of your microsite
in with any other advertising that is going on in the campaign at
the same time. This means that you would want to take a look at
something like the television commercials or print ads and you
would want to use some design elements from them. The new
Typical Motors car is a very nice one. It’s extremely elegant,
refined, and generally top of the line in luxury and comfort, and
it’s being advertised as such offline. So let’s take that slick, expen-
sive-looking background from the magazine ad and incorporate it
into the site. And let’s take the smooth, elegant, classical track
from the television commercial to use as background music on
the site.

A lot of times when you build a microsite, you’ll also build ban-
ners to go with it. You’ve probably guessed that the banners are
intended to drive traffic to the microsite and that’s exactly what
they’ll do. In addition to the banners, there should also be a piece
on the client’s main Web site that promotes and drives even more
traffic to the new microsite.

Microsites are usually highly amusing projects and you generally
have more creative freedom with them than you do with banners.
This is the place where you’ll have more opportunities to code
some new effects or try out that cool new feature that’s only avail-
able in the newest version of the Flash Player.

TIP
If you know that you are going to be working on a microsite for a
client, try to get approval to publish out to the latest version of the
Flash Player. If they won’t agree to that, ask for the next version down.
Being able to publish out to the latest version is beneficial for all parties
involved: Creative departments get to design with new features in mind,
Flash programmers get to work directly with those new features, and
clients get cutting-edge microsites that people talk about and pass
around to their friends. In addition to those benefits, you’ll be helping
the penetration rates of that version of the Flash Player. The quicker
the penetration rates rise, the easier it is to convince a client that it’s
safe to use.

Quality Control
Before I start with this section, I’d like to offer a quick bit of clarifi-
cation: Quality control may go by many other names such as qual-
ity assurance or quality testing. However, for consistency, I will
always refer to it as quality control within this book. And now that
you’re aware of that piece of information, let’s talk about it.

Inside Advertising

It’s very common to use
materials online that were
originally created for
offline production.
Essentially anything that
was created for print,
television, radio, or
outdoors (billboards, and
so on) can be used in one
form or another in your
online campaign efforts.

Chapter 1 FLASH ADVERTISING OVERVIEW 17

Much like version control (which I’ll talk about next in this
chapter), quality control is a step that some developers (and even
companies) choose to skip for some reason. The unfortunate
choice that is sometimes made against quality control is one that
can cost everyone involved and it can cost them dearly. Imagine if
you created a piece of work and didn’t test it even a single time.
You’re probably good enough so that one piece of work would be
fine and so would the next 10. However, what if you hadn’t had
your morning coffee yet? Or what if you were at the end of an
18 hour work day? You might just miss something and end up
sending your work to the client, bugs and all. Now imagine that
you did test your work but because you’re so close to the project,
you missed an error and sent it out anyway. The best solution to
all of this is to check your own work and then have someone else
check it again.

Test Yourself
You should be testing your own work as it progresses and again
after it is complete. Among other things, this testing is another
advantage to aiming ahead of your deadlines. If you finish up with
the animation and coding with time to spare, you can (and always
should) test it out before sending it on to quality control. If you
find a bug at this point, that’s one less you’ll have to fix after you
hand it off (not to mention that you will have helped make the
quality controller’s job a little easier). The fewer bugs you pass to
quality control and the fewer bugs you have to fix at the end of the
project, the earlier it can be approved to go live and the quicker
everyone can either go home or move on to the next piece of work.
I’ll go into more detail on quality control as it pertains to banners
and microsites individually in their respective chapters later on in
the book. For now though, how about a bit of an overview?

TIP
It’s always a good idea to test as you work. Each time you create a new
piece of functionality for a project, don’t just test that one piece. Instead,
do at least a quick run through of the project to make sure that your new
functionality didn’t break other pieces or sections.

The Reason for Quality Control
So what is the focus of quality control? The answer to that ques-
tion is in the first word of the job title itself: quality. The work you
do should be held to the highest standard and quality control is
there to help make sure that it is. By making sure your work stays
within the specifications that have been set and by attempting to

18 Chapter 1 FLASH ADVERTISING OVERVIEW

actually break anything and everything you create, they are
making your work virtually unbreakable while also making sure it
doesn’t get kicked back from the hosting company or sites on
which it will run. You personally benefit from this process as well,
because in the future, you will remember what broke, how it
broke, and what you did to fix it. With this information, you
become better and better as a Flash developer and/or designer
because you have the practice that they say makes perfect and
you have made the mistakes from which you can learn. So while
doing your absolute best to avoid creating bugs, welcome those
that are reported to you as new opportunities to advance your
knowledge even if only a little.

You’re Still Not Alone
I also have a piece of information that may help you sleep a little
easier at night: Not all bugs will rest on your shoulders alone. For
example, there may be issues that come up that involve changing
something in the original layout of the work. When these issues arise,
be sure to get the creative talent involved with the change. It is, after
all, their design you’ll be altering and it probably shouldn’t be altered
without the knowledge of the original creator of the work. Another
example might be if there is someone else working on the database
from which you are pulling information for a microsite. If something
needs to be changed that involves the code that person wrote, they
obviously need to be informed and involved in the change. Speaking
of changes, what happens when you make a change and you later
find out that you need to undo that change? Well, hopefully you’ve
got some kind of version control system in place.

Version Control
Have you ever realized that you hadn’t saved in quite a while just
as the program you’re working in was crashing? Have you ever
worked on a file for several days or even weeks? Have you ever
had one of those files get corrupted or accidentally deleted? How
about a coworker? Have you ever opened a file to find that a cow-
orker had changed almost everything in the file and saved it before
realizing they had the wrong file open? How about you? Have you
ever accidentally messed up any files in any way? Were you able to
get your files back and roll them back to the condition they were
in when they worked oh so well? If you answered no to that last
question and yes to any of the others, then you, my friend, need to
get some sort of version control in place and you need to get it in
place as soon as possible. Once you have it in place, make sure
that your entire team is using it as well.

Chapter 1 FLASH ADVERTISING OVERVIEW 19

ALERT!
If you aren’t using any kind of version control, I highly recommend that
you start using it immediately. The simple practice of using version
control has been known, on several occasions, to actually save a project
that would have otherwise been lost to problems like accidental deletion
and/or miscommunication between developers. Being able to save these
projects can also save you from potentially losing your client as well.

Options
When it comes to version control, you have many proprietary
(such as Microsoft’s SourceSafe) and free solutions (such as Sub-
version or Git; Figs. 1.7 and 1.8). Each of them has their indivi-
dual advantages and disadvantages, but the end goal to all of

Figure 1.7 The Subversion Web site.

20 Chapter 1 FLASH ADVERTISING OVERVIEW

them is the same: to save past versions of your work in case you
lose the current version or you need to revert back to an older
one. A very basic example of simple version control would give a
file a version number of 1 on its initial creation. If that file is
then modified, the version number is bumped up to 2. The next
change would increment the version number again, and so on.

You may work a little differently with version control depending
on the file you’re actually modifying. For example, if you’re work-
ing on an .as file, you won’t need to check out or lock the file in
the versioning system unless you absolutely don’t want anyone
else working on it at the same time. This is because the .as file
is, in essence, a text file in which the versioning system should
be able to read and decipher differences. In other words, you

Figure 1.8 The Git Web site.

Chapter 1 FLASH ADVERTISING OVERVIEW 21

and another team member can make modifications to the same
file at the same time. If the other developer finishes his or hers
and updates the file in version control before you do, you’ll be
notified that there are differences when you attempt to update
the file with your changes. Your versioning system should then
show you the differences and allow you to make any changes
needed before actually updating the file. With that said, it’s good
practice to keep good communication between team members
and to avoid working on the same file at the same time if at all
possible.

Working with .fla files in version control is a little different
because .fla files are binary files (as are .jpg, .png, .psd, and so on).
Because the versioning system can’t read the code written within
.fla files, it can’t detect the actual differences that may be within
them even though it is able to detect that the files are indeed dif-
ferent. Because that is the case, it is best to check out or lock .fla
files so there is no possibility of other team members working on
them at the same time as you. Once you are finished making your
changes to a file, update it in the versioning system and release the
lock to allow other developers access to it in case they need to
make additional modifications.

With that said, starting with Flash Professional CS5, you can
save, open, and work with a new file format called XFL. The
uncompressed XFL format basically breaks your project apart into
several .xml files that contain everything from one .xml file that
describes the entire Flash file to separate .xml files for each indivi-
dual symbol in your library. It also contains more .xml files for
items like your project’s mobile settings and publish settings as
well as folders for external images, and so on. One of the great
things about all of these files is that they can be individually mana-
ged in source control, which actually allows more than one person
to work on a single Flash file at the same time! In addition to that
awesomeness, XFL files support live updates of editable assets.
What does that mean? It means that while one developer is work-
ing in the main Flash file, another developer (or designer) could do
something like edit the .xml file for a button or other library asset.
Once that developer is finished with that asset and saves the .xml,
the changes are reflected in Flash.

ALERT!
Always check in or unlock your files in version control once you’re
finished working on them. Because some version control solutions won’t
let anyone access files except for the person who has them checked out,
it’s important to release the control of those files in case you leave the
office or end up being out sick the following day. If you leave the files
locked, it will make it more difficult for your team to continue working on
them in your absence.

22 Chapter 1 FLASH ADVERTISING OVERVIEW

A Version Control Story
John and Mary work for an interactive advertising agency and they
have been working on a microsite for one of their biggest clients.
Things have gone smoothly throughout the life of the project and
they are almost ready to send it to quality control when John
notices a problem during one of his own quality tests. He isolates
the issue, notes the steps taken to recreate the problem, and opens
the .fla file that he believes actually contains the error. After navi-
gating to the line of code he suspects as the bad line, he makes his
change and publishes the .swf file. Because it’s the end of the day
and John has a flight to catch for an out-of-town vacation, he saves
his work, shuts down his computer, and leaves.

The next morning, Mary passes the project over to quality con-
trol as soon as she gets to work. Within an hour, she starts receiv-
ing numerous notifications of bugs in the site; bugs in areas she
thought she had tested the day before. Mary opens the site in her
Web browser and starts to navigate to the sections that contain the
reported issues, and sure enough, there are a lot of areas that have
mysteriously decided to break. Because the final deadline for this
project is fast approaching, Mary feverishly opens the source .fla
files and starts to search for the cause of each bug. As she digs
through the code in each file, she comes across a couple of possi-
ble culprits and makes changes to those lines. After making each
change, Mary tests the file and finds that the errors still exist. She
goes back to the code and, without undoing her previous changes,
she tries other options that only end up creating more bugs in
areas she isn’t currently testing. By the end of the day not only has
Mary not been able to solve the original problem, but more have
surfaced in her attempts. It has gotten late and Mary is tired and
frustrated so she decides to call it a night and try again tomorrow.

The next morning Mary feels rested and refreshed. As she opens
the files to take another run at fixing the bugs, she realizes there is
one more thing she didn’t think of before. She finds her way to the
line of code she presumes is causing a problem and discovers that her
new suspicion is correct. She makes the change, publishes the .swf
files and tests for the problem, which is now corrected. However,
since Mary made so many changes to the code yesterday that she
failed to remove, the site is now broken in many other areas and she
has to try to remember where each modification is in the site. After
hours of work, Mary finally resolves all of the issues that were reported
to her by quality control and the site is ready to go live … a day late.

What Happened?
When John made his change before leaving town, he misspelled
the name of a variable that was extremely important to the rest of

Chapter 1 FLASH ADVERTISING OVERVIEW 23

the site. Because he was in a rush to catch his plane, he failed to
check his work and ended up creating more issues than previously
existed. Since Mary was unaware that John had made the change,
she went directly to the code that was actually indirectly affected
by the change and accidentally created even more bugs in the site.

How Could It Have Been Avoided?
On top of the lack of communication between the team members
(especially on John’s part), the entire string of events and resulting
errors could have been avoided by simply using version control.
When John made his change, he should have included a note with
the file he updated on the version control server. That note would
have let the team know what change he made and in which file he
made that change. Even if Mary didn’t see the note to the team,
she would have been able to “roll back” her files to the state they
were in before she started making her changes that created so
many more issues. When she rolled them back, the files would
only contain the initial error created by John and she would be
able to make that single change to launch the site on time.

Conclusion
As I mentioned at the beginning of this chapter, there will be
aspects of your work that will remain constant from project to
project and there are considerations to keep in mind as you move
between those projects. Once you start to recognize which aspects
are reoccurring and to which ones you need to give special
attention and thought, you can start fine-tuning your plan each
time you start a new piece of work. One benefit to the constants is
that because you know that every project is going to go through a
quality control process, you’ll start catching your bugs before they
even happen, which can actually improve your coding skills. Also,
as time progresses, you will start to be able to tell if a banner will
fit within the file size limitations set by the project specs just by
looking at the design layout, which brings us to Chapter 2.

24 Chapter 1 FLASH ADVERTISING OVERVIEW

2
DESIGNING BANNER ADS

CHAPTER OUTLINE
Conception 26

Know Your Client 26
It Takes All Types (of Clients) 27
Know the Brand 28
Know the Audience 29
Know the Placements 29

Campaign Goal 30
Branding and Selling 30

Brand It 31
Sell It 31

Designing to Move 32
Visualize While You Work 32
Animation Assets 33
Turn Over a Little Control 33
Know the Strengths and Limitations 34
Back to Step One 35

Conclusion 35

While designing for banner ads and designing for microsites can be
a very similar process, there are still differences between the two.
For example, you have a much larger virtual canvas and file size to
work with in microsites, but you are constrained to specific widths,
heights, and file sizes in banners. Another difference is that your
microsites can (and should, in most cases) be broken up into mul-
tiple files, but you are generally only allowed a single file with stan-
dard Flash banners and a limited amount of additional external
files with rich-media banners.

Because of these differences, I’m going to split the topic of
design into different areas of the book. In this chapter, I’ll be talking
about banners. I’ll go into designing for microsites in Chapter 8,
aptly titled “Designing Microsites,” and I’ll touch on a couple of

Flash Advertising. DOI: 10.1016/B978-0-240-81345-5.00002-5
© 2010 Jason Fincanon. Published by Elsevier, Inc. All rights reserved. 25

design tips for AIR applications later in Chapter 11. Until then, the
sections you’ll find here are as follows:
• Conception
• Campaign Goal
• Branding and Selling
• Designing to Move

Conception
Before you have a final design for a banner, you should create two
or three layouts for the client to choose from. These layouts, also
known as concepts, can generally be viewed as the different direc-
tions in which the final design can go.

Many different techniques can be used to find the best look for
a banner, and each designer will have his or her own individual
ways of coming up with ideas. With that said, one suggestion to try
after reading over the creative brief for the project is to jump right
in and start getting creative. Your first impression and your first
thoughts about the project at this point are oftentimes going to be
very close (if not dead on) to where they need to be for designing
your concepts. Try to use your “off the cuff” emotions to drive the
initial design, or another way to look at it is to follow your first
instincts because they usually work best. Once you get going, you’ll
hopefully find that your work is feeding your ideas as you go.

Now that I’ve offered up the thought of basically flying by the
seat of your pants in your design, I’m going to attempt to bring
you back down to Earth a little because there is some thought that
needs to be put in to your designs. While much of that thought
can be found in the creative brief, some of it will require a little
research and client/brand interaction of your own.

Know Your Client
Knowing your clients on a little bit of a personal level can work
wonders in the design of your work, and you should do your best
to talk directly with them as much as you can without going over-
board. Of course, when you talk to them for the first few times, it
will most likely be all business, but you can usually gauge a per-
son’s personality somewhat quickly (they might be fun and person-
able or they might be more serious and “corporate”). Once you
both get to a point where you start talking about topics that aren’t
related to work, you may begin to gain some perspective into their
personality and very possibly some of their likes and dislikes. With
this information, you can get a better idea of the type of design
they might like to see. But don’t worry if you aren’t a good people
reader because the fact that you’ll concept more than one design

Inside Advertising

Every great design that
achieves its goal has
meaning and planning
behind it and that
planning is usually done
by a planner. Although the
job title may differ from
workplace to workplace,
the job itself is essentially
the same: to research
products, brands, target
audiences, clients, and
client competition. The
research may consist
of many different
approaches, such as focus
groups or even getting
your hands on the actual
product to test it out. Once
the research is complete,
a plan is put in place to
create a “map” for the
campaign. Included in the
map is a creative brief,
and that’s where the
design ideas are
generated. The creative
brief is basically a
rundown of all of the
information that pertains to
the audience, the look and
feel of the brand, and the
goal of the campaign.

26 Chapter 2 DESIGNING BANNER ADS

should relieve any pressure that you might feel about missing the
“personality target” on the first shot.

Another benefit to knowing your client on a somewhat personal
level is trust; the better they know you, the more comfortable they
are with you, and the more comfortable they are with you, the
more they’ll trust you and your decisions. The trust will continue
to build the longer you work with them, but in the beginning
you’re probably going to have to earn it. After all, they are paying
you good money to make sure their products and services sell well,
right?

It Takes All Types (of Clients)
A great art director I know once told me that you can generally
classify clients into three high-level groups and that you should
quickly figure out which one a client falls under when talking to
them about your work. Those three groups (for which I’ve made
up my own names) are as follows, in no particular order.

The first type of client is the “tech-yes” type. These clients know
about technology, they know that online is in the natural progres-
sion of advertising, and they embrace it with open arms. When
talking to a tech-yes client, you can usually speak in industry and
technology terms. If they don’t understand what a certain word (or
acronym) means, they aren’t often shy or embarrassed about
asking. However, you may still want to take the terminology down a
notch by lightly explaining some of the things you feel people out-
side of the advertising and technology fields may not fully under-
stand. They may know a thing or two, but you’re the expert and
there’s a reason they hired you instead of doing it by themselves.

The second type of client is the “tech-maybe” type. Like the
tech-yes type, the tech-maybes know that online advertising is some-
thing they need to do and they are willing to do it. The difference
is that they are not quite as sure in their knowledge of the technolo-
gies. Their instinct is to give you any information you need or ask for
and then trust you to be in charge of their project. Depending on
your team, this can be either a very good thing or a very bad thing.
For example, if you have developers on your team who are overly
enthusiastic and loyal to a particular technology (Flash, HTML5,
whatever), those developers may take the project down the wrong
path with their blindness to other options. In that case, the project
may fail, the campaign may suffer, and the client’s trust will be lost.
On the other side of that coin, if your team is smart and knows the
right tools for the job, then the project, campaign, and client all have
a much better chance of success due to well-placed trust in you, your
team, and your work. When you’re talking to a tech-maybe type,
remember to try to keep the industry terminology down a little and
explain what you are talking about.

Chapter 2 DESIGNING BANNER ADS 27

The third type is the “tech-no” type. Tech-nos are your biggest
challenge simply because they don’t seem interested in the tech-
nology realm at all. Either they are intimidated by it or they just
don’t have the time to learn about it, and they don’t seem to care
too much for it. A tech-no client will actually create reasons to
avoid moving their advertising dollars online and you may hear
something along the lines of, “The results of offline advertising are
always measured the same way, so I think we’ll just stick with that
for now.” Even though this type of client is a challenge, don’t give
up on them right away. Remember, there was a time when even
you didn’t understand advertising or technology.

TIP
Whether you are talking to a tech-savvy client or a client who isn’t sure
how to attach a file to an e-mail, you should always explain everything
and explain it in a step-by-step fashion. Use simple terms that are easy
for anyone to understand while being very careful to avoid sounding
patronizing. The last thing you want is for your client to feel like you’re
talking down to them because you feel like you’re smarter than they are.
Judge their knowledge level of the subject carefully and decide if you
should act like you’re explaining it to your grandmother or a coworker
who is well practiced in technology.

Know the Brand
Knowing your client is not necessarily the same as knowing their
brand because, as I mentioned earlier, you’ll want to know your
client on a bit of a personal level. However, their individual person-
ality may very likely differ from that of the brand itself. Although
your client may be a very relaxed, fun-loving, easygoing person who
likes participating in activities like skydiving and snowboarding, the
brand may be more refined and formal (or vice versa).

Knowing the brand will help you determine how you will design
everything from where the logo will be placed to what will happen
when users roll their mouse over the banner. If you’re dealing with
the refined brand, you’ll probably want to have a nice, clean design
with crisp lines and nice fonts. If you were dealing with an edgy
brand, you would want the design to reflect that as well.

Although the ideas for your banner concepts can come from
many different places, a good place to start is the site that the ban-
ners will drive users to visit. From that destination, you should be
able to get plenty of ideas based on the look and feel, the motion,
and if at all possible, you may even want to use some of the actual
graphic elements from the site itself. The design of the site com-
bined with the brand standards will give you items like colors,
fonts, logo treatments, and so on. And while you need to stay

28 Chapter 2 DESIGNING BANNER ADS

within the confines of the brand standards, you may want to push
the limits when you can. Obviously, some of your clients’ brand
standards will be stricter than others and that could, in turn, affect
just how far you can push the limits. However, some brand stan-
dards are very loose and forgiving. Pushing the limits on these
relaxed standards could lead to more projects (such as microsites),
and who knows, you may even influence your client to come up
with a new look and feel for their entire brand.

Know the Audience
Much like your clients, there are different types of people at whom
you will target your design. These groups of people are called your
target audience and they will be another determining factor in the
look and feel of your design. The specifics of the target audience,
such as age, income, influence, and other demographics, will most
likely be found within the creative brief put together by the plan-
ner. Using those specifics, you can decide the direction your design
will take. For an audience that is regarded as the elite, rich, upper-
class decision makers, you might have a very clean, slick, simple
design that gets straight to the point of the message. However, you
may want to design something more edgy if you will be going after
a younger audience that may be more into things like gaming,
“extreme” sports, and screaming guitars.

Know the Placements
Hand in hand with knowing your audience is to know where your
ads will be running. There’s a lot to be said for knowing your sur-
roundings and coming up with designs for banner ads is no
exception to that. If you are aware of how many sites (and pre-
cisely which sites) your ads will be shown on, you can take some
time to surf around to them for a little inspiration. This is not to
say that you should go to those sites and copy their designs into
your banners, but that you should look them over to better decide
how you can make your ad stand out without doing so in an
obnoxious way.

The number of placements in which your ad will be seen can
greatly affect this approach. If there are a large number of sites that
will be running the ad, it may be harder to find a design that fits
within all of them at the same time. However, you may be dealing
with a small or very specifically targeted account that only has the
banners running on a single site. Either way, you want your ad to
be seen and knowing the look and feel of the surrounding area can
help make that happen. Before leaving this section, I would like to
reiterate one important note: Avoid making your banners stand out
in the wrong way on a site. The last thing you want to do is to

Chapter 2 DESIGNING BANNER ADS 29

annoy and distract people from the content they are actually there
to read or view. The real goal should be to gently attract their eye
to your design and make them want to interact with your client’s
brand. After all, they are your client’s potential customers and you
want them to have a good experience.

Campaign Goal
The goal of the campaign will be another on the list of items that
will dictate how a banner should look and feel. You may have a
different design for a banner that is being created to sell a service
against one being created to sell a tangible product. You may have
another completely separate design for a banner with the purpose
of raising brand awareness against a banner being created solely to
drive traffic to your client’s microsite.

TIP
It’s important to step back during each step of a project and try to view
what you’re working on from a user’s point of view. Try to imagine how a
person is going to experience the work the very first time they see it. Try
to determine if they will be compelled to take the actions you are trying
to get them to take and if the paths to those actions are immediately
apparent. Remember that a user won’t have the benefit of a creative brief
or meetings about the project to fully understand the work in question.
The work has to do that on its own.

The overall goal of a campaign will typically fall into one of two
areas: brand awareness or direct marketing. The purpose of brand
awareness is exactly what you would think it is: to raise awareness
of the brand itself. You aren’t necessarily advertising a particular
product or service, but you are trying to drive customers to at least
consider the brand more closely the next time they see it in the
store. On the other side of that coin is direct marketing. When you
use direct marketing, you want them to actually purchase the
service or product that is being advertised in that ad.

Branding and Selling
As I said previously, your banners will generally be designed to
accomplish one of two main goals: selling goods or raising aware-
ness of the brand. That said, a banner whose purpose is to sell will
still have branding in it, but a banner built for brand awareness
will not necessarily contain any form of sales messaging. To explain
exactly what I mean by that, let’s look just a little deeper at each of
these goals.

30 Chapter 2 DESIGNING BANNER ADS

ALERT!
Because branding is such an extremely large subject that requires much
more in-depth explanation than I could fit into this book, I have only
given a very high overview on the subject.

Brand It
Raising the public’s awareness to your client’s brand makes them
feel comfortable with it. It gives them something to identify with
and at the same time it says, “Hey, I’m here. Remember me.
Remember me when you see these images. Remember me when
you see these fonts and these colors. Remember me when you
think about __________.” In addition to asking people to remember
the brand, raising awareness also means that you’re trying to evoke
or solidify an emotion or feeling within them. As I mentioned
before, that feeling may be comfort. However, the emotion/feeling
that you actually want to call upon could also be something much
different like excitement or curiosity. The simplest explanation of
branding is that it consists of beautiful imagery, your client’s logo,
and some short but sweet message that appeals to the targeted
emotions (possibly your client’s tagline).

Designing for brand awareness can take on different levels of
difficulty depending on the consumers’ current view of the brand
itself. If the public already has good thoughts and feelings about
the brand, then the efforts that are currently in place are doing
their job, and you’ll simply need to stay within those design stan-
dards. However, a client may have sought you out to change the
public’s thoughts of their brand. Although there may be questions
as to what caused the brand to develop an undesired image, the
design process for a new brand direction can be a fun and challeng-
ing one. When a brand needs a new image, it needs to shine. This
means that the brand design standards are usually very loose or
even completely out of the window in favor of the new direction.

For both of these scenarios, there can be challenges. In the case
of continuing successful brand awareness, it can be a challenge for
some to stick within the strict (but again, successful) design stan-
dards. And when it comes to changing the public’s view on a
brand, some may find it difficult to have such an open design field
to play in.

Sell It
Selling your client’s product through online banner ads requires a
different approach than raising brand awareness. For starters, your
viewers are (hopefully) already familiar and comfortable with the
brand. This works in your favor because they may only catch a

Chapter 2 DESIGNING BANNER ADS 31

glimpse of your ad from the corner of their eye as they are reading
an article. Because the brand awareness campaigns for this particu-
lar client were successful, the viewer remembers the brand and
takes a look at the banner. With this banner having the purpose of
selling, users will no doubt see different elements and one of them
is the message. The banner itself will be more offer-oriented, and
the message within will get directly to the point it’s trying to get
across: “Buy this product!” or “Look at this incredible price! Now
buy this product!”

Something to remember is that while sales-driven banners are
definitely harder hitting with less fluff, they should still borrow
some techniques from branding ads. Although they are highlighting
an offer or a price on the surface, they should still have an underly-
ing feeling of comfort and emotion that has come to be associated
with the brand.

Designing to Move
Standard Flash banners are usually constrained to an animation
time of 30–40 seconds. Rich-media banners, however, are most
often only limited on animation time up until a user interacts with
them. Either way, animation is one of the key benefits to using
Flash for online advertising and the design of that animation is just
as important as the design of the ad itself. The wrong movement
can make an otherwise beautiful banner look amateurish and
unplanned while the right movement can actually improve upon
the look and feel. Even the most beautiful car in the world turns a
little less appealing to some people if it doesn’t run well.

Visualize While You Work
A good practice to get into is to go ahead and try to visualize your
animations while you’re creating your design. If you come across
an asset that you feel would make a good moving part of the
design, you should also take care to consider if it will be possible
to make that piece move in the way it should. The only time you
want something to look like it has unnatural, clunky movement is
when the design actually calls for unnatural, clunky movement.
In most designs, however, you’ll want to try to create smooth,
organic-style movement to keep the work from looking like it’s
trying too hard (and just to make it look good, in general).

Some things to keep an eye out for when you’re planning ani-
mation in advance are moving parts, visual angles of photographs,
transparent areas, backgrounds, and several other similar proper-
ties of the piece in question. When you’re dealing with moving
parts of a larger object, are those parts cut in such a way that they

32 Chapter 2 DESIGNING BANNER ADS

can each be animated as needed? In other words, can the object
bend at its joints and rotate its gears? If there’s a background, do
you already have the image cut away from it and do you already
have the background filled back in? It can get quite frustrating for
a Flash developer to get a request to make a car drive across a
background image, when the car is actually a part of that back-
ground image.

Animation Assets
You can plan an animation all day and night, but when it comes
down to it, you can’t actually create that animation if you don’t
have the proper assets. For example, you’re working on a banner
for your client and they want you to build an interactive 360° view
of their product. However, you only have two images of the pro-
duct: one from the front and one from the side. It goes without
saying that you can’t build much of a 360° view with only those
images so you’re left with some options. You can go back to your
client and ask for the extra images of the product (which they may
or may not have available), you can inform your client that extra
money will need to be spent to do a photo shoot of the product, or
you can spend your personal time doing your own photo shoot.
There are other options as well, but you get the point here.

Turn Over a Little Control
If you’re the person who designed the banner, there comes a time
when it’s good to let someone else take a little control and anima-
tions may be one of those times. Bringing an idea of movement to
a Flash developer in the form of words (or even storyboards) may
not always get the message across in exactly the way you wanted it
to. Most times, when you explain something to someone (anyone,
not just Flash developers), they are going to visualize it differently
than you do. Because that’s the case, the end result of the animation
will most likely differ from what you originally intended. Step back,
let go of your thoughts for a minute, and take a look at what the
Flash developer has created. Although there is a chance that you
could shoot down this new idea, there’s also the chance that you
may like it better than your own.

Another approach on this topic is to sit with the Flash developer
while you both work together to get the major mechanics ironed
out. For example, you know that you want object A to move from
point B to point C. What you don’t know quite yet is the detail of
its trip between the two points. Did it bounce to get there? Did it
ease into or out of the animation? Did it bounce after it got to its
final destination? As the designer, try not to let those details bother
you right now and let the Flash developer take care of those

Chapter 2 DESIGNING BANNER ADS 33

questions. There are a couple of advantages to taking this approach
with your designs. First, the Flash developer can actually sit there
trying different animations from directly within the Flash authoring
environment. Once he or she finds the one that suits best, you can
both decide together if it’s the right animation for the project. The
other advantage to this is pride of ownership. Turning over this
control to the Flash developer will make the Flash developer feel
more inspired to do a better job on the project due to the fact that
he will feel more like the project is his instead of feeling like he’s
just another part of an assembly line.

Know the Strengths and Limitations
Because the design of each round of banners will differ, they will each
have different strengths and limitations when it comes time to ani-
mate or program, and you’ll need to be able to recognize them ahead
of time in the design process. For example, moving objects over a
large area at a very slow rate of speed can end up looking choppy if
it’s not done correctly. Another example, which I’ll talk about in
Chapter 5, is the format chosen for images used within a banner.
Sometimes moving an object across the stage will require it to have a
transparent area. This can be both a strength and a limitation at the
same time: a strength because of the ability to support the transparent
area of the image, but a limitation because of the extra amount of file
size that can be taken by that image (as opposed to an image without
transparency). Knowing the strengths and limitations of Flash is
something that comes with time. After some experimenting, some
trial and error, and needing to rework a few projects, more and more
of these strengths and limitations will become apparent.

Just as it’s important for designers to know the strengths and
limitations of the developers and their tools, it’s also important for
the developers to know the same about the designers and their
tools. With that being the case, I would like to make a suggestion
that the two disciplines meet on a regular basis to discuss those
things. You can call it whatever you like, but I call it a capabilities
meeting and I believe it’s good to hold them at least once a month
if not every 2 weeks. Developers can use this time to showcase
new features of Flash or new “tricks” they’ve learned since the last
meeting. Another thing that may take place in these meetings
might be for the designers to show other inspirational Flash sites
that contain certain elements the designer particularly likes or has
questions about. For example, a designer might show a site and
ask if the developers on the team have the skill set to do something
similar to feature X. Each time the designers and developers walk
out of these meetings, both disciplines have a better understanding
of the capabilities of each other … which is why I like to call them
capabilities meetings.

34 Chapter 2 DESIGNING BANNER ADS

Back to Step One
Don’t forget, just because you completed that first concept, you
aren’t actually finished yet. As I stated earlier in this chapter, you’ll
need more choices to offer to the client. In addition to giving the
client more options, you can also take this opportunity to do a little
mix-and-match exercise. After you’ve come up with your two or
three concepts, take a look back over each of them together and
see if you can find pieces to pull out of one design to put into
another. You may be able to find ways to enhance your designs
and you may even find enough from each concept to develop a
fourth piece that could possibly end up outshining all of the others!

Conclusion
Designing banners isn’t as straightforward and simple as some
might think. The amount of thinking and planning that goes on
before, and behind the scenes of, the actual artwork can get very
extensive in some cases. Knowing your client’s brand and knowing
your client’s business is a must when you’re designing their ban-
ners, but knowing your client at a somewhat personal level can
give you an inside track on their likes and dislikes. On top of know-
ing your client, you should also know who your audiences are and
the sites on which they’ll be viewing your work.

The goal of the campaign will also be a determining factor in
your designs. If you’re working on a brand awareness campaign,
you’re going to treat it differently than you will a sales/marketing
campaign. With a brand awareness campaign, you’ll generally want
to make users feel good about the brand and remember it the next
time they see it. With a sales campaign, your overall goal is to
drive users to buy a product by highlighting its price and value. At
the same time you’re asking them to buy, you’ll also want to inject
a little brand awareness into the design; something that says, “Buy
me now, remember me later.”

An important factor to think about in designing banners is how
they will animate and how they will make transitions from one
frame or section to the next. It’s a good idea to think about these
movements beforehand because once in development, it can some-
times be difficult to retrofit an animation of a particular object. In
addition to thinking ahead, you’ll also want to make sure that the
assets you’re working with can actually animate in the fashion you
have pictured in your mind. In Chapter 3, I’ll start getting into the
steps involved in bringing your designs to life, from planning out
how it will be built to using code as a time saver to sending your
work through quality control.

Chapter 2 DESIGNING BANNER ADS 35

This page intentionally left blank

3
PREPARING AND BUILDING ADS

CHAPTER OUTLINE
Planning 38

Specs 39
Setting Up Your File(s) 39
Cutting Art 42

Choices 42
Cut Away 43

clickTags and Links 46
One or Many 46
The Value of a clickTag 48

Creating Time with Code 48
Forms 52

Conventions and Best Practices 53
Naming Objects 53
Naming Banners 54
Code 54

The Bandwidth Profiler 55
What You See 55

HTML and JavaScript 58
SWFObject 58

Default Images 61
Quality Control 61

Sign-off Sheet 62
Prioritize 62

Conclusion 63

So it’s time to start building a round of ads, huh? That’s good
because that’s just what we’ll be discussing in this chapter. But you
shouldn’t just jump right in to animating and coding because
you have to make sure that you have everything prepared and that
you have all the information you need. You’ll need to know who is
involved with the project and what role they each take, so you’ll
know who to turn to for any particular question or needs. Speaking
of questions, think of as many as you can up front. For example,
have you thought ahead to how your ad will work? Is there artwork
created for default images in case a user doesn’t have Flash

Flash Advertising. DOI: 10.1016/B978-0-240-81345-5.00003-7
© 2010 Jason Fincanon. Published by Elsevier, Inc. All rights reserved. 37

(or JavaScript) enabled? Do you have any class files already written
that may work with this project? There are more questions to
come, so let’s get to it by looking at the following topics:
• Planning
• Setting Up Your File(s)
• Cutting Art
• clickTags and Links
• Creating Time with Code
• Conventions and Best Practices
• The Bandwidth Profiler
• HTML and JavaScript
• Default Images
• Quality Control

Planning
Before you start to build your ad, you’ll need to do some planning.
How will your images be cut? Will your animations be tweened on
the timeline, will they be scripted, or will you use a combination of
both? How many landing page URLs will you link to? Which areas
will users click to get to those landing pages? These and several
other questions will need to be answered during the life of the pro-
ject, so you should try to answer as many of them as you can
ahead of time, and you might even consider making a checklist
that you can refer back to on each project.

If you are working with an art department, you will need to
keep in very close communication with the designer who laid out
your ad. He or she will most likely have a vision of the animation
in his or her head, and you want the end product to match that
vision as closely as possible. Since most of us can’t actually read
minds, you should get printouts (or Photoshop layer comps) of the
main frames of the ad and have the designer sit with you to explain
how he or she imagines the art coming to life. Once you have the
designer’s description, you will have a better idea as to the impor-
tant pieces of the puzzle. Pieces like how your images need to be
cut, which parts of the animation can be scripted, and at what
speed they need to animate.

In addition to all the information that pertains to the creative
aspect of your ad, you will want to know the details of the more
technical side. For example, if there is a form in your ad that
submits to a client’s processing page, do you have all the correct
variable names and possible values the processing page will be
expecting? Also, for any ActionScript you may use, don’t forget to
check to see if you have snippets or classes you can pull from
existing libraries that would meet this project’s needs.

38 Chapter 3 PREPARING AND BUILDING ADS

Specs
Another side to consider when planning is the specs that you are
given by the hosting site or third-party ad-serving company.
These specs will include the items that were covered back in
Chapter 1, such as stage dimensions, maximum file sizes, amount
of time and/or loops the animation can play, the highest version
of the Flash Player you can target, and sometimes the highest
frame rate that will be accepted. It is very hard to say which
aspect of the ad is most important, and you would probably get a
different answer from each person you asked. However, if you fail
to stay within all the specs, your ad will most likely get kicked
back to you from the sites, and they probably won’t run it until it
is revised.

A good tool to help plan time spent on your project is a lowest
common denominator (LCD) sheet. An LCD sheet is exactly what it
sounds like – a sheet listing the lowest specs accepted on each
banner size by all sites. Let me explain a little further. You have a
300 × 250 banner that is going to run on five different sites. Of those
five sites, two will accept a maximum file size of 40k, one will
accept a file size of 35k, and the last two will only accept up to 30k.
You obviously wouldn’t want to create the same banner five times
(once for each site), so the next thought might be to create one ban-
ner for each maximum file size giving you a smaller total of three
banners. Well, as we all know, time is money, and you should strive
to spend the time you need to create the banner one time and one
time only. Since the 30k version fits within the specs of all
sites involved, that’s the file size you’ll want to keep your 300 × 250
banner below.

Setting Up Your File(s)
Okay, so you’ve received the layouts from the art department,
you’ve been given direction on the animation and interactivity, and
you have your plan of attack ready to execute. Let’s get started on
the fun stuff by getting a file set up. You can use one of the adver-
tising templates we discussed in Chapter 1, or you can set up your
own. For this exercise, let’s go ahead and set up our own 300 ×
250 banner.
1. Create a folder to hold your Flash files. Let’s name this folder

“myAd.”
2. Create a subfolder within the “myAd” folder and name it

“cut_art” (this folder will hold all the images used in your ad).
3. Create a new Flash Document from the File menu or the Flash

Welcome Screen (Fig. 3.1).

Chapter 3 PREPARING AND BUILDING ADS 39

4. Open the Document Settings window (Fig. 3.2) by clicking
on the Edit button in the Properties section of the Properties
window for the document.

5. Set the width to 300 pixels and the height to 250 pixels.
While we’re in here, let’s go ahead and set the frame rate to

Figure 3.1 The Flash Welcome Screen.

Figure 3.2 The Document Settings window.

40 Chapter 3 PREPARING AND BUILDING ADS

18 frames per second as well (IAB standard). After you’ve done
that, click OK.

6. Open the Publish Settings window (Fig. 3.3) by clicking the Edit
button next to “Profile:” in the Publish section of the Properties
window.

7. Set the version according to the specs you received from the
site.

8. Click OK and save your new file to the “myAd” folder.
When you save your file, you’ll want to be descriptive in your

naming convention. For this banner, we’ll use a name such as

Figure 3.3 The Publish Settings window.

Chapter 3 PREPARING AND BUILDING ADS 41

300x250_30_my_ad.fla. (I’ll cover naming your file in more depth
in the “Conventions and Best Practices” section later in this chapter.)
Once you’ve saved your file, you’re ready to move on to the next
step – cutting images.

ALERT!
Version control is extremely important, but sometimes forgotten or just
not used. There are several options to choose from such as SourceSafe,
Subversion, and Git. I highly recommend you spend a little time doing
some research on which solution best suits your needs and use it on
every single project without fail.

Cutting Art
A raster graphic is a graphic that is made up of a rectangular grid
of pixels. Within that grid, each individual pixel is assigned
its own individual color, and the more colors an image has, the
larger the file size is going to be. There are both pros and cons to
raster graphics. For example, raster graphics can show very nice
imagery, but they cannot scale without degradation in their
quality. In contrast, vector graphics can scale indefinitely without
any change in the quality at all. This is due to the fact that vector
graphics are actually drawn to the screen using mathematics. See
Fig. 3.4 for a comparison of zooming in on both a raster and a
vector graphic.

Choices
In 9.827527 times out of 10, you’ll be using at least one raster
image in your ad. (Okay, I made that stat up, but you get the
point.) Whether it’s a photograph of a product, scene, or person,

Figure 3.4 Zooming in on
raster and vector graphics.

42 Chapter 3 PREPARING AND BUILDING ADS

you’ll need to figure out the best way to cut those images out of
the Photoshop file and get them into your Flash ad. Most of
the time, the choice of image format is extremely obvious. A few
general rules of thumb that I like to follow are (1) if you will
need to use transparency in the image, save it out as png-24;
(2) if it’s a photographic-type image and you do not need trans-
parency, the best option is most likely .jpg; and (3) if it’s a draw-
ing or line art of any kind, try using vector art first, and if you
can’t, go with the .gif format. Whichever format you use, take
care not to overcompress when exporting from Photoshop.
Save the images at a high enough quality that they are very clear
and you don’t see any pixilation or fuzziness, and let Flash do
some of the compression when it has its turn with the images.
Now, for just a moment, let’s step back a few sentences to my
rules of thumb on .pngs and .jpgs. In the past, best practices for
Flash have indicated that the best bitmap format to import into
Flash is .png. However, while .pngs are very crisp and clear
images, the file size for a .png image is typically larger than a
.jpg, and one of your major goals is to fit your banner within a
certain file size. Again, I’ll cover more on image compression
later in Chapter 5.

Cut Away
On to the actual cutting of the images. Since you spent a little time
planning out your ad, you should be well aware of which elements
from your Photoshop file will be static, which ones will be ani-
mated, and which ones will be interactive. When cutting out the
images that will animate, you want to crop the Photoshop file
down to the size of the object you need, hide all the layers you
don’t need, and export the image to the appropriate format. As you
set the size to which you are going to crop, keep in mind that
you should not cut exactly at the edge of the object you are cutting
out. If at all possible, you should give yourself (and the Flash
Player) a bit of room all the way around the image. I usually give
about a three-pixel buffer, and that works out pretty well. The
reason I allow this extra space is because of an old bug in the
Flash Player that would sometimes cut off the edge of an image or
shift the image data over by a few pixels. To the best of my know-
ledge, Adobe has fixed that issue, but I prefer to err on the side of
caution in cases like this.

As for the static elements, try to include as many of them as
you can in one image that can be used as the background of your
banner. A lot of times you can treat interactive elements the same
as static elements and include them in your background image as
well. For example, if you have a logo that will remain in the
top-left corner of the ad and that will link out to the client’s

Chapter 3 PREPARING AND BUILDING ADS 43

home page, why make it its own image? Unless there is another
element that needs to animate behind that logo, include it as part
of the static background image and place an invisible button on
top of it. Just in case you aren’t sure what I mean by “invisible
button,” simply follow these steps to create one:
1. Draw a shape on the stage by using one of the shape drawing

tools (Fig. 3.5).
2. Once the shape is drawn, select it and choose Modify > Convert

to Symbol (or press F8) to convert it to a Button symbol.
3. Give the Button symbol a name, and press OK in the Convert to

Symbol dialog box (Fig. 3.6).
4. After you’ve created the button, double-click it to edit it.
5. Move the shape from the “Up” frame to the “Hit” frame

(Fig. 3.7).
6. Go back to the main timeline of your movie, and there you have

your invisible button.

Figure 3.5 The Tools panel with the drawing tools.

44 Chapter 3 PREPARING AND BUILDING ADS

Figure 3.6 Convert to Symbol dialog box.

Figure 3.7 Move the shape to the “Hit” frame.

Chapter 3 PREPARING AND BUILDING ADS 45

Once you have all your images cut and saved to the cut_art
folder, it’s time to start importing them into Flash for animations
and interactions based on the direction that was determined in the
planning phase of your banner.

clickTags and Links
To know how your banners are performing after you have
released them into the world, you’ll need to track a couple of
things. For instance, you’ll need to know how many people have
clicked them and what site those people were actually on when
they did so. So how do you get this information? Whether your
ads are hosted by the site on which they run or by a third-party
ad-serving company, such as Atlas Solutions or DoubleClick, you
will use a tracking tag. That tracking tag will contain the actual
URL you are attempting to drive users to and a string of see-
mingly random letters and numbers that are generated by the
tracking application. Once users click your ad, they are directed
to the landing page URL while seamlessly passing information to
the tracking application.

One or Many
Unless the site or ad-serving company tells you differently, you
will most likely be using a variant of the variable name “click-
Tag” (ClickTag, clickTAG, and so on) to link out of your units.
Check with your site or ad server on the actual name you should
use if you will be linking to a single landing page URL as some
will ask that you add the number “1” to the end. For example,
ad-serving company A might ask you to use “clickTag1,” whereas
ad-serving company B might ask you to use “clickTag” (without
the “1”). When linking out to multiple URLs, most ad servers
handle it the same way: clickTag1, clickTag2, clickTag3, and
so on.

Prior to ActionScript 3, you didn’t really need to worry about
case sensitivity for the actual name of the clickTag variable. How-
ever, that has changed now, and since the ad-serving companies
haven’t agreed on a standard yet, some of them will use clickTag,
whereas others use clickTAG or ClickTag or even ClickTAG. This
can pose a serious problem when you are creating your ads
because if you test with “clickTag” and then launch only to find
out that the ad-serving company is using “clickTAG,” those ads
aren’t going to work, and they will most definitely be removed
from the sites on which they were running. So how do we handle
this? Do we have to keep track of which variant of clickTag each
ad-serving company is using? I suppose you could do that, but it’s

46 Chapter 3 PREPARING AND BUILDING ADS

just another thing to keep track of, and what if they change it for
some reason?

While I’m sure that there are plenty of solutions out there to
work around this case-sensitive issue, I went ahead and created
a class called ClickTagger to add to that list. You can download
ClickTagger on the Web site for this book, and you can also find
the code and a detailed breakdown in Chapter 12. For now
though, a general description is that upon instantiation, it pulls
in all your clickTags, converts their names to lowercase lettering,
and arranges them in the correct order (clickTag1, clickTag2,
and so on) for your use. After you’ve created a new instance of
ClickTagger, you can assign a value to the targetWindow property,
so the clickTags will launch in the correct window (_blank, _top,
and so on). The targetWindow property has a default value of
“_blank,” the most commonly used target for ads. The last thing
to do with ClickTagger is to use the assignClickTag method to
assign listeners to your clickable objects. This method has three
parameters: element, failSafeUrl, and tagNumber. While tagNumber
is optional and has a default value of 1 (used if you only have one
clickTag), element and failSafeUrl are required as the object to
apply the listener to and the URL to use in the event that the click-
Tag didn’t load for some reason. In addition, the failSafeUrl
not only makes it possible to do local testing from the Flash IDE
where there isn’t any HTML or JavaScript passing your clickTags
in, but also works well as a safety net in case your clickTags
don’t load correctly after your banners are launched. The click
may not get tracked, but at least the user will make it to the
intended landing page, and after all, that is the purpose of the
banner. So with all that said, let’s assume that you have a ban-
ner that has two clickable elements called button1 and button2.
Likewise, you have 2 clickTags being passed in from the ad ser-
ver. Example 3.1 shows all the code needed in your .fla to make
both buttons click out to their respective target URLs regardless
of the variant of clickTag that was used. You’ll also notice the
two fallback URLs (fallBack1 and fallBack2) being passed in to
their respective places as well.

EXAMPLE 3.1
Using the ClickTagger tag to solve for clickTag case sensitivity
import com.flashadbook.utils.ClickTagger;
var fallBack1:String = “http://www.flashadbook.com”;
var fallBack2:String = “http://www.jasonfincanon.com”;
var clickTagger:ClickTagger = new
ClickTagger(stage.loaderInfo);
clickTagger.assignClickTag(button1,fallBack1,1);
clickTagger.assignClickTag(button2,fallBack2,2);

Chapter 3 PREPARING AND BUILDING ADS 47

TIP
The majority of sites and ad-serving companies will ask that you use
“_blank” as the target window. There are a few, however, that require you
to target “_self,” while still others require a target of “_top.” It is best to
check with your site or ad server for individual specifications.

The Value of a clickTag
Now that we have discussed linking out to a target URL via a clickTag,
let’s discuss how to get a value assigned to it. In most cases of
running your units with an ad-serving company, you won’t need to
worry too much about getting the value of your clickTag inside the
unit itself. This is because most of the ad-serving companies have
their own HTML templates that are already set up to pass the value
in. However, you will still need to test your banner before it goes
live. While there are many ways to pass a variable value into Flash,
I’ll just show a quick one here that uses SWFObject to assign the
value of two clickTags and then pass them in to your .swf as a part
of the flashvars object. Keep in mind that I’ve left out a good
amount of the code in Example 3.2, so we could put more focus on
the clickTags. Note the different variants of clickTag. We will discuss
more on SWFObject in the “HTML and JavaScript” section.

EXAMPLE 3.2
Assigning clickTag values with SWFObject

<script type=“text/javascript”>
var flashvars =

{clickTag1:"http://www.flashadbook.com",clickTAG2:“http://
www.jasonfincanon.com”};

swfobject.embedSWF(“300x350_30_my_ad.swf”,
“banner”, “300”, “250”, “10.0.0”,
“expressInstall.swf”,flashvars);

</script>

Creating Time with Code
As you spend more and more time building ad units, you will begin to
find commonalities between them. Some of these will pertain to dif-
ferent ads for a single client, while others will spread across clients.
When you start to notice these reusable pieces of code and assets, set
them aside, so you can pull from them when you need them in
another project. After all, that wheel has already been invented, right?
For example, a large amount of your banners will have a single land-
ing page and therefore will contain a single clickTag. In the typical
case of having the entire banner clickable, why not utilize the graphics

48 Chapter 3 PREPARING AND BUILDING ADS

property of a Sprite to create an invisible button that covers the stage
as in Example 3.3. Note that I also included the ClickTagger class we
discussed earlier and that this is an example of timeline code.

EXAMPLE 3.3
Creating an invisible button
import flash.display.Sprite;
import com.flashadbook.utils.ClickTagger;

var fallBackUrl:String = “http://www.flashadbook.com”;
var clickTagger:ClickTagger = new
ClickTagger(stage.loaderInfo);
var myBtn:Sprite = new Sprite();
var lineThickness:int = 1;

myBtn.graphics.lineStyle(lineThickness, 0x000000);
myBtn.graphics.beginFill(0x000000, 0);
myBtn.graphics.drawRect(0, 0, stage.stageWidth-
lineThickness, stage.stageHeight-lineThickness);
clickTagger.assignClickTag(myBtn,fallBackUrl,1);
addChild(myBtn);

In Example 3.3, the first few things we do are to create a new
instance of ClickTagger, a Sprite named myBtn, and an int called
lineThickness. Next, we use the graphics property of the Sprite to
draw a rectangle that has a black outline and a transparent fill.
This is done with lineStyle, beginFill, and drawRect. When we
use the drawRect method here, the first two parameters represent
the x and y coordinates of the upper-left corner of our button,
whereas the second two parameters represent their width
and height. The reason for subtracting lineThickness from the
stageWidth and stageHeight is because the button will actually be
drawn exactly to the edge of the stage and that ends up putting the
right and bottom of the border outside of the visible area. So that’s
it. There’s not a lot to it, and you can easily move this chunk of
code from banner to banner. You could carry this a little further
and create a BorderButton class as in Example 3.4.

EXAMPLE 3.4
The BorderButton class
package com.flashadbook.display {

import flash.display.DisplayObjectContainer;
import flash.display.Sprite;
import flash.events.MouseEvent;
import flash.net.URLRequest;
import flash.net.navigateToURL;
import flash.external.ExternalInterface;
import flash.system.Capabilities;

Chapter 3 PREPARING AND BUILDING ADS 49

public final class BorderButton extends Sprite{
private var _bbParent:DisplayObjectContainer;

//the parent of the BorderButton
private var _halfThick:Number; //half the

thickness of the border line
private var _w:Number; //the width to draw the

BorderButton
private var _h:Number; //the height to draw

the BorderButton
private var _targetWindow:String; //the window

in which the targetURL will open
private var _destination:String; //the target

url
private var _playerType:String =

Capabilities.playerType.toLowerCase(); //check for local
testing

private var _extInterfaceAvailable:Boolean =
false; //true if in browser AND ExternalInterface.available

public function BorderButton(){
super();

}

public function
draw(parent:DisplayObjectContainer, outline:Boolean =
false, lineColor:uint = 0x000000, lineThickness:int =
1):void {

_bbParent = parent;
_bbParent.addChild(this);
_halfThick = lineThickness / 2;
_w = _bbParent.stage.stageWidth -

_halfThick;
_h = _bbParent.stage.stageHeight -

_halfThick;
graphics.lineStyle(lineThickness,

lineColor);
graphics.beginFill(0, 0);
graphics.drawRect(0, 0, _w, _h);

}
public function activate(targetUrl:String,

targetWindow:String = "_blank"):void {
buttonMode = true;
_destination = targetUrl;
_targetWindow = targetWindow;
if(!hasEventListener(MouseEvent.CLICK)){

addEventListener(MouseEvent.CLICK,
clickOut, false, 0, true);

}
}

public function erase():void{
if(_bbParent != null){

deactivate();

50 Chapter 3 PREPARING AND BUILDING ADS

_bbParent.removeChild(this);
}

}

public function deactivate():void{
if(hasEventListener(MouseEvent.CLICK)){

buttonMode = false;

removeEventListener(MouseEvent.CLICK,clickOut);
}

}
private function clickOut(e:MouseEvent):void {

if(_playerType==“activex” ||
_playerType==“plugin”){

_extInterfaceAvailable =
ExternalInterface.available;

}
if (_extInterfaceAvailable) {

ExternalInterface.call(’window.open’,_destination,_target
Window);

}else{
navigateToURL(new

URLRequest(_destination),_targetWindow);
}

}
}

}

This BorderButton class is covered in detail in Chapter 12, but I
thought it was worth a quick look here as well. Table 3.1 outlines
the BorderButton’s draw method parameters.

Table 3.1 BorderButton Draw Method Parameters

Variable Purpose

_bbParent (DisplayObjectContainer) The parent object of the BorderButton
_halfThick (Number) Half the thickness of the border line
_w (Number) Width to draw the BorderButton
_h (Number) Height to draw the BorderButton
_targetWindow (String) Window where targeted URL will open
_destination (String) The target URL
_playerType (String) The type of Flash Player currently being used (plugIn,

external, and so on)
_extInterfaceAvailable (Boolean) Set to true if content is being played in the browser

AND ExternalInterface is available; default is false

Chapter 3 PREPARING AND BUILDING ADS 51

Now let’s take a very high-level look at what’s actually happening
inside the class. Once an instance of BorderButton is created, you’ll
call the draw method that uses its parameters to draw the button.
The next thing you’ll want to do is call the activate method and
pass in the target URL to make the instance of BorderButton clickable.
Other methods in the BorderButton class include erase and deacti-
vate, which do exactly what their names imply: remove the instance
and make it nonclickable. One implementation of BorderButton
might be as seen in Example 3.5. You could alternatively use Border-
Button in conjunction with the ClickTagger class as in Example 3.6.

EXAMPLE 3.5
Using the ButtonBorder class alone
import com.flashadbook.display.BorderButton;
var borderButton:BorderButton = new BorderButton();
var targetUrl:String = “http://www.flashadbook.com”;
borderButton.draw(this);
borderButton.activate(targetUrl);

EXAMPLE 3.6
Using the ButtonBorder class in conjunction with the ClickTagger class
import com.flashadbook.utils.ClickTagger;
import com.flashadbook.display.BorderButton;
var fallBackUrl:String = “http://www.flashadbook.com”;
var clickTagger:ClickTagger = new
ClickTagger(stage.loaderInfo);
var borderButton:BorderButton = new BorderButton();
borderButton.draw(this);
clickTagger.assignClickTag(borderButton,fallBackUrl,1);

Forms
Another good example of a reusable asset is a form. Forms will be
covered in more depth in Chapter 4, but for now, let’s assume that
we’ve already created one, and let’s simply call it “Our Form.” Our
Form was created to be used from within a banner that we’ve built
for client X, and its purpose is to search client X’s inventory for a
user’s desired product. Once we have Our Form built and function-
ing properly, we should set it aside in its own .fla so that each time
we need to use it in another banner we can just grab it, place it in
a new banner, and resize it or move elements around as needed.

TIP
In addition to reusable code, you should also keep an eye out for reusable
graphics such as logos, products, and backgrounds.

52 Chapter 3 PREPARING AND BUILDING ADS

Conventions and Best Practices
I think it’s pretty obvious that the more everyone on a team is on
the same page thinking as much like one another as they possibly
can when it comes to writing their code, the more time they can
save when they have to work together on individual projects. I also
feel that standardizing that team’s code design, naming conven-
tions, folder structures, and so on is a huge step in the right direc-
tion of getting everyone on that same page. At some point, you
will be sick or on vacation and a coworker will need to open your
files to make some changes. Or maybe, the coworkers are out and
you’re the one who has to make the changes to their files.
Wouldn’t it be nice to open their code and, within a matter of
seconds, know exactly what they were thinking as they wrote
each line?

At the time of writing this, there’s a page on the Adobe Open
Source site titled “Flex SDK coding conventions and best practices.”
The very first thing on that page is a note letting you know that the
page is a work in progress but that there is plenty of information
there to get you started (which there most certainly is). Even if
you’re working in Flash and not with the Flex SDK, these conven-
tions and best practices are still very much worth following since
it’s all ActionScript and it’s all in the Flash Platform. Think about
writing an ActionScript class. Now think about that class being
used in both a Flash project and a Flex project. Wouldn’t it be
great for all the conventions to carry over between the two? (The
correct answer here is, “Why yes, Jason. That would be great!”)

With the topic of conventions and best practices being
somewhat large in its details, I’m going to highly suggest that you
go to the Adobe Open Source site and take an in-depth look at
them there. However, there are a few I would like to cover here
before we move on.

Naming Objects
When naming your objects, you want to be descriptive, so you will
know exactly which item your ActionScript is communicating with
and what kind of object it actually is. Obviously, you can name
them however you and your team like, but Table 3.2 shows a few
example names following the convention of using the object’s type
as the last part of the name.

Along with standardizing the names of your objects, you should
also try to come up with a standard structure of folders for your
library. My personal favorite library setup uses folders named by
type, where the “MovieClips” folder contains MovieClips, the
“bitmaps” folder contains imported images, the “graphics” folder
contains graphic symbols, the “sounds” folder contains audio files,

Chapter 3 PREPARING AND BUILDING ADS 53

and so on. You get the gist of it. Again, all these names are just
suggestions, and if you haven’t already, try to set up a time to talk
about these conventions with your coworkers to make sure you are
all on the same page.

Naming Banners
Another thing that should be consistent throughout your projects is
the naming of your banners. Your banner names should be
descriptive and easy to understand at a glance because you may
need to revisit one of them later. An example of this would be if a
particular ad performed very well and your client wanted to use
the same creative, but to change the message within it. There are
many naming conventions you could choose to go with, but
I would like to recommend one here. If you refer back to the
section “Setting Up Your File(s),” you’ll notice we named that file
300x250_30_my_ad.fla. This is a pretty self-explanatory name
because it contains all the information you need, and each part of
that information is separated by an underscore. The first part of
the name is obviously the size of the banner (300 × 250). After that
is the maximum file size, in kilobytes, allowed for this particular ad
(30). Next in line, we used the word “my”; this is where you would
place either an abbreviation or the full name of the client for
which the banner is being built. Finally, at the end of the file
name, you’ll want to use another abbreviation to describe the crea-
tive being used. For example, if the creative is that of water being
poured into a glass, use the word “pour.” Another good standard
to practice is limiting your file names to a certain number of
characters (including the file extension); somewhere around 30 is
usually a good number to go with.

Code
Another in the many items to be agreed on in this area is code-
related standards. This ranges from frameworks and design pat-
terns to naming your classes, methods, and variables. And as much
as some of you may not like it, there will even be times when you

Table 3.2 Naming Convention Examples

MovieClip containing a form formMovieClip
TextInput for user’s e-mail address emailTextInput
Button to submit a form submitButton
Sound object for background music musicSound

54 Chapter 3 PREPARING AND BUILDING ADS

need to standardize when to put code directly on the timeline and
what that code should look like. Since we’re discussing banners in
this section, we’re not going to spend any time on frameworks
because they are, quite honestly, complete overkill for something
as small as banners. However, something that we can very easily
discuss here is naming conventions and class package structures.

In general, your class packages should be in a reverse domain
format for your company (or your client in some cases). For exam-
ple, the base of your packages might be com.yourcompany and a
package for utility classes might be com.yourcompany.utils. Once
your package structure is in place, the team should discuss and
agree on the criteria to decide which package a given class will go
in. Some will be very obvious, whereas some others may techni-
cally be able to fit okay in more than one package (though they
never should go in more than one). As for naming conventions of
classes, methods, and variables, be as descriptive as possible.
When you saw the name of the ClickTagger class, it was pretty
obvious what its purpose was, and even more obvious was the
assignClickTag method and the targetWindow variable. The point is
to make it as easy as possible for someone else to step in and
use the code with as little ramp-up/learning time as possible. The
quicker standards are agreed upon within your team, and the
quicker other developers can jump in and use the code, the better.

The Bandwidth Profiler
While Flash’s Bandwidth Profiler can be very helpful in the devel-
opment of microsites, it can also be invaluable when you are creat-
ing banners. The most useful part of the Bandwidth Profiler during
banner development is going to the left side, which contains all the
information about the banner (Figs. 3.8 and 3.9).

What You See
A quick rundown on the left side of the Bandwidth Profiler (see
Fig. 3.9) gives us the following information under the “Movie”
heading: “Dim” signifies the dimensions of your stage; “Fr rate”
shows the frames per second at which the banner will play; “Size”
is one of the more important ones here because it shows the file
size of your published banner; “Duration” lets you know how many
frames long your banner’s main timeline is and then goes on to do
the math and show you the actual number of seconds it will take
for your banner’s main timeline to get to the end (this is very use-
ful when you are dealing with time constraints in your specs); and
finally, “Preload” will tell you how long it will take your banner to
download to a user’s computer.

Chapter 3 PREPARING AND BUILDING ADS 55

Figure 3.8 Opening the
Bandwidth Profiler.

Figure 3.9 The Bandwidth
Profiler.

56 Chapter 3 PREPARING AND BUILDING ADS

Next is the “Settings” heading, which has only one item under
it – “Bandwidth.” This is where you see the bandwidth that the
Flash movie is being tested against. You can change this setting by
choosing one of the options in Download Settings under the View
menu of your tested movie (Fig. 3.10).

The last section of information you see on the left side of the
Bandwidth Profiler is “State.” Like the Settings heading, the State
heading only contains a single item – “Frame” – which shows both
the current frame of the movie that the Flash playhead is on at any
given time and the amount that particular frame is contributing to
the overall file size of the banner.

TIP
In previous versions of Flash, if you were using any code that was depen-
dent on the height of the stage and you ran your file in the test player,
the Bandwidth Profiler would cause the player to read the wrong value
for the height of the stage. For example, if you were working on a banner

Figure 3.10 Select an option to change the bandwidth setting.

Chapter 3 PREPARING AND BUILDING ADS 57

that was 300 pixels wide and 250 pixels high, the Profiler would cause the
player to read the height as 150 pixels. In order to force the player to read
the correct information, you would need to hide the Bandwidth Profiler
and then retest your file. This has been fixed, but I felt it was worth
mentioning in case you are working in one of those previous versions.

HTML and JavaScript
Since your banners won’t be running as standalone applications or
even by themselves in the browser, I think the container HTML and
JavaScript is worth discussing. Like I was saying earlier in this chapter,
pretty much all the ad-serving companies will have their own HTML
that you won’t have direct control over. However, what you do have
control over is the HTML that you’ll use for testing your banners before
sending them on to the ad-serving companies, and there’s no reason
you shouldn’t stick with standards-compliant code. Also, let’s not for-
get that we’ll need to have some kind of fallback in case the users
don’t have the required version of the Flash Player or – prepare for
shock – if they have the Flash Player disabled, blocked, or not installed.

Now, if you’ve been working in Flash for more than a couple of
years, you’ll likely remember the days of the object and embed ele-
ments and the “twice-cooked” method (where the embed element
was actually inside the object element). And then one day a certain
little lawsuit came along and played great influence on the way we
had to show .swf files in Internet Explorer if we wanted a smooth
user experience. I have no scientific data to prove it, but I believe
that lawsuit also helped boost the popularity of a couple of excellent
JavaScript solutions by the names of SWFObject and Unobtrusive
Flash Objects (UFO). Since then, the authors of the two solutions –
Geoff Stearns and Bobby van der Sluis – decided to combine their
efforts and eventually released SWFObject 2 as a project on Google
Code. If you’d like to learn more about the history of SWFObject,
check out the project at http://code.google.com/p/swfobject/. Now
let’s discuss what SWFObject is and how to use it.

SWFObject
SWFObject is a nice, clean, simple way to not only get your Flash
content into the page but have plenty of control over it as well. As
I’m writing this, it is at version 2.2, and when you download the
swfobject_2_2 zip file, you’ll find several files including sample
HTML files to show you the two different implementations (static
and dynamic), files for running an express install of the Flash
Player, and the swfobject.js file itself. First, let’s discuss the two pub-
lishing methods and a few words about them from the project site.

58 Chapter 3 PREPARING AND BUILDING ADS

According to the documentation, both methods have their own set
of advantages, and you should choose which one to use based on
the needs of the project at hand. In the following code examples,
I won’t include all the code needed to make SWFObject run. Instead,
I’ll only be showing the one JavaScript tag where SWFObject is
implemented and the div tag where your .swf would be shown. So
let’s take a look at the static method first in Example 3.7.

EXAMPLE 3.7
Using SWFObject’s static method
…
<script type=“text/javascript” src=“swfobject.js”></script>
<script type=“text/javascript”>

swfobject.registerObject(“myBanner”, “10.0.0”,
“expressInstall.swf”);
</script>
…
<div>

<object id=“myBanner” classid=“clsid:D27CDB6E-AE6D-
11cf-96B8-444553540000” width=“300” height=“250”>

<param name=“movie” value=“300x250_30_my_ad.swf” />
<object type=“application/x-shockwave-flash”

data=“300x250_30_my_ad.swf” width=“300” height=“250”>
<p>Alternative content</p>

</object>
</object>

</div>
…

Since the full breakdown of what the code is doing is available
on the Google Code project page, we’ll just cover some of the
basics here. The call to the swfobject.registerObject method
shows three parameters in the example. The first parameter is
required and is expecting a String representing the ID of the
object element further down in the code named “myBanner” in
this instance. The second parameter (also required) expects
another String representing the minimum version of the Flash
Player in which your content can reliably be viewed and inter-
acted with. The version number should be in the form of major.
minor.release such as 9.0.260. However, if you are only testing
for the major version number, you can leave out the other two.
To show this, the number in Example 3.7 could have been input
as just “10” instead of “10.0.0.” The third parameter in this exam-
ple is an optional String in the form of a URL pointing to your
express install .swf file, and the fourth parameter (not shown
here and also optional) expects the name of a JavaScript function

Chapter 3 PREPARING AND BUILDING ADS 59

that will fire off both when your .swf loads and when it fails
to load.

Further down the code is the div tag that contains the object
element in which your .swf content will be seen. Obviously, your
.swf is taken care of in the param tag named “movie,” but what’s
up with the other object inside the object? Simply put, that’s the
fail-safe for your ad. If the users don’t have Flash installed or sim-
ply have it blocked, they’ll end up seeing whatever content you put
in this element, and that’s where the alternate content or default
image comes in. Another cool thing about that particular object
element is that in addition to being able to show a default image
for banners, you can also use it to make your sites more readily
available to search engines. But let’s wait until Chapter 9 to get
into that.

Before we move on, we still need to take a look at the dynamic
method of SWFObject. A quick quote from the documentation
states that “SWFObject’s dynamic embed method follows the prin-
ciple of progressive enhancement and replaces alternative HTML
content for Flash content when enough JavaScript and Flash plug-
in support is available.” Again, there are pros and cons to using
either method, but if you like less HTML, this one’s for you. Just
check out Example 3.8.

EXAMPLE 3.8
Using SWFObject’s dynamic method
…
<script type=“text/javascript” src=“swfobject.js”></script>
<script type=“text/javascript”>

swfobject.embedSWF(“300x250_30_my_ad.swf”, “myBanner”,
“300”, “250”, “10.0.0”);
</script>
…
<div id=“myBanner”>

<p>Alternative content</p>
</div>
…

As you can see, the explanation of this one is going to be much
shorter. For this dynamic method, we don’t use swfobject.register
Object. Instead, we use the swfobject.embedSWF method, which
requires a few more parameters. While there are other optional para-
meters that can be used with the embedSWF method (such as flashvars
and attributes), let’s just look at the five required parameters listed
in the example. All five of them are expecting Strings, and the first
one is the URL of your .swf. The second parameter is the name of
the div in which to show your .swf content, and the third and fourth

60 Chapter 3 PREPARING AND BUILDING ADS

parameters are for the width and height, respectively. Finally, the last
one is the Flash Player version to test for. This one is exactly like the
static method in that it is in the form of major.minor.release or just
major. For a ton more information on SWFObject, please pay a visit
to the Google Code page at http://code.google.com/p/swfobject/.

Default Images
Now, I know this is going to sound really crazy, but what if an end
user doesn’t have Flash installed? Or what if he or she doesn’t
have JavaScript turned on? Or what if he or she is using a Flash
blocker? Sure, you could just say it’s his or her loss, but it’s really
your client’s loss (and thereby your loss). In the interest of driving
all possible users to your client and to keep your client happy with
you, you’ll really want to serve up a default image in place of the
Flash banner to these unfortunate few people. Note the spots that
say “Alternative content” in Example 3.7 and Example 3.8. Basically
your default .gif or .jpg is either a still frame or animation (.gif)
that can get the same branding and messaging across that your
Flash file does. While designing and saving your default images for
the Web, keep file size in mind because the sites that will be show-
ing them generally give you even less than they do for your
Flash files.

Quality Control
Once you have built your ads, it is best to have someone other
than yourself test them. This is simply because you are too close to
the project and you know exactly what to do and when to do it.
Quality control’s job is not only to make sure your work is within
the specs it should be, but also to basically try to break your work
by doing nearly anything it takes to do so. While in this step of the
process, your ads should be hammered as if an end user wants to
prove that he or she can render your ad useless (yes, there are
people out there who will do it just to show that they can). In addi-
tion, your ads should be tested on different operating systems, in
different browsers, with different versions of the Flash Player, with
and without the Flash Player or JavaScript, and with pretty much
anything else that may cause them to either perform in an unex-
pected manner or not perform at all. The end goal of all of this is
obviously to make sure that your ad shows, plays, and is as interac-
tive as it should be to as many end users as possible. As I men-
tioned in Chapter 1, you should expect to receive fixes and revisions
from your quality control person or team. You’ll also remember
from that chapter that I discussed doing the best you can to test and

Chapter 3 PREPARING AND BUILDING ADS 61

catch bugs even before your work is sent to them in order to make
everyone’s job just a little easier.

TIP
Bug/issue tracking software is an invaluable tool when it comes to work-
ing on a team. While I can recommend a couple that I’ve worked with in
the past (OnTime by Axosoft and Mantis Bug Tracker), a quick search
online will produce plenty of results to figure out which one is right for
your team.

Sign-off Sheet
Because it can be a little frustrating for several people if there are
changes to be made after the work has been tested for bugs and
fixed and is ready to ship out, you’ll want to complete another quick
task before sending it to quality control: a sign-off sheet. The
sign-off sheet should contain a checklist with items that are com-
mon to all banners that you create. Some of those items might be
that the final .swf is within the maximum file size, the width and
height of the final .swf match the specs, you have a backup image
for users without the Flash Player, and the banner matches the
original creative layout. Of course, there should be several other
items on the list, but you get the idea. Once you have checked that
all the items in the list are complete, you’ll need to get the sign-off
sheet from the designer and the person in charge of the client
account. By getting these sign-off sheets, you’re minimizing the
chance of things like creative changes after the banners have already
been tested and fixed and are ready to go out the door.

Prioritize
I have found that when I do receive my changes, it is best to read
through them before jumping right into making them. By doing
this, not only can you prioritize but you can also determine which
changes may affect other changes. As I’m sure you’re well aware,
making changes to one piece of code can sometimes cause other
code to react in unanticipated ways. On the other hand, fixing one
problem can also sometimes cascade into correcting other errors at
the same time. When it comes to prioritizing the changes, there are
some things to consider. If the ad is acting differently in a very,
very minor way in a very particular version of a particular browser
on a particular operating system, the change that’s causing that
issue may be put lower on the list. On the other hand, if the ad
opens up and doesn’t play or link out to anywhere, that problem
needs to go closer to the top. Now, to take it a step further, prioritize

62 Chapter 3 PREPARING AND BUILDING ADS

by how long each task will take you to complete or by how involved
it is. To be perfectly honest, I switch this one around depending on
how I’m feeling on a given day. What I mean by that is that some-
times I do the tasks that are more involved and take longer first
and sometimes I knock out the quick ones first. It’s really a perso-
nal preference, and you should figure out which way of prioritizing
works best for you today and then again tomorrow and again the
day after that.

Conclusion
Let’s take a quick look back over this chapter that started off with
planning. With a good plan, your work can move much faster than
it would without one. Think of how you want to build your ads
before you actually start building them. In your head, picture how
you are going to get from a blank white stage to an interactive
work of art in a banner. From there, I discussed setting up your
file, and we started a new file for a 300 × 250 Flash banner ad.
After that, I discussed cutting images to work in just such a file. In
the next section, I went on to explain how to link out of an ad with
clickTags. While clickTags are the industry standard for linking out
of your ads, the ClickTagger class also requires a fallback URL for
both local testing and a failure to load the intended URLs from the
ad servers. Another topic that I discussed was scripting to save
time, which basically means using any class files or code snippets
over and over again as opposed to rewriting them every time.
Don’t reinvent the wheel. Next up, I discussed standardizing your
naming and coding conventions within your team or organization.
Sticking to the standard conventions and best practices can drama-
tically improve production time and make your work easier for you
and others to decipher at a later date. I also discussed HTML and
JavaScript for your ads and covered a bit about SWFObject. After
the HTML and JavaScript came a little information about default
images, and we wrapped it all up by sending our ads through a
round of quality control.

If you remember back in the “Creating Time with Code” section,
I briefly mentioned forms in your banners. In Chapter 4, I’ll be
going more in depth on setting them up, using them, and what
they mean for your ads.

Chapter 3 PREPARING AND BUILDING ADS 63

This page intentionally left blank

4
FORMS AND DATA

CHAPTER OUTLINE
Where Are You Going? 66

Required Variables 66
File Size Consumption 67

The Bulk Is Up Front 69
Custom Components 70

Collecting and Passing Data 70
Sending the Data 70

Conclusion 72

In some ads, you’ll need to gather information from your users to
improve their experience. You may want to give them the opportu-
nity to select options on a new car as in the Typical Motors exam-
ple earlier in this book, or you may want to let them fill out
information for something else altogether. Another good example
of an ad in which to use a form might be one for a travel company.
Again, for the sake of an example, let’s choose a fictional name for
our travel company – how about “Orbitocities.”

Orbitocities comes to you and says that they want to let people
know about discount prices for flights and hotels that people need
to reserve for the upcoming holiday (and there’s always an
upcoming holiday). You or your creative team sit down, design
some layouts, and show them to your new client. After choosing
one of the designs, Orbitocities lets you know that they would like
to include a form to let users choose the city they are leaving from,
the city they are traveling to, their departure date, and their return
date (the length of stay in the hotel can be determined from these
dates). Once the information is filled in, users can press a submit
button to not only go to the Orbitocities site but be taken to a
specific page showing the results of the information they entered in
the form.

So what do users experience with this setup? Well, let’s assume
that they are reading an article about upcoming holiday events in
the city they plan on visiting. While reading, they come across your
Orbitocities banner and decide to go ahead and fill out the form to
see what kind of prices Orbitocities had to offer. Since they are

Flash Advertising. DOI: 10.1016/B978-0-240-81345-5.00004-9
© 2010 Jason Fincanon. Published by Elsevier, Inc. All rights reserved. 65

taken directly to a results page upon submitting their data, they can
choose the flight and hotel they like and book them right away.
There’s no need to search around the Orbitocities site to find what
they are looking for because you seamlessly took them directly
where they wanted to go. So now let’s go back behind the scenes
again and discuss what it took to get them there by going through
the following sections:
• Where Are You Going?
• File Size Consumption
• Collecting and Passing Data

Where Are You Going?
The biggest piece of information you’ll need when using forms in
your banner ads is exactly where you need to send your users. In
some cases, you’ll send them to a page where the information
from the form only partially completes all the information needed
for the results. Our Typical Motors example would be a good exam-
ple of this because there usually isn’t enough room on the stage in
a banner to include a form that would ask for all the information
needed about selecting a new car. There are trim packages, engine
sizes, custom wheels, leather or cloth interior, and so on. So you
use a couple of options such as the trim package and paint color
and then leave the rest for users to fill out on the site. While this
doesn’t instantly return the results a user was looking for on a new
car, it does get him or her one step closer to that end goal. On the
other hand, our travel company, Orbitocities, only needs to know
the dates and cities that a user will travel to and from. With only
four pieces of information to gather, this can easily fit within our
banner dimensions, and the user can be taken to a page with full
results.

Required Variables
You can probably guess that knowing where you need to send your
users is really only a part of the information you need to complete
your task. You’ll also need to know name and value pairs for the
form you’re asking them to complete. You can get this information
in a couple of ways: you can ask your client to get it for you, or
you can get it directly from the forms on their site. I often choose
the latter simply for the sake of speed and efficiency. The reason
I say speed and efficiency is because your contact at your client’s
offices is not very often one of the people who wrote the code on
their site. Knowing that, you may have to ask your contact for the
information and expect some delay. The delay is simply because
your contact may need to get your requested information from their

66 Chapter 4 FORMS AND DATA

site developers before they can relay it back to you. Depending on
how large of a company your client is, it could possibly be a day or
more before you get your answer. So let’s go back to the quicker
option of getting the information directly from the forms on
their site. For that, I’m going to recommend one of two courses of
action. The first is to simply view the source of their forms, and the
second is to use a tool like Firebug or ServiceCapture. Just in case
you are unfamiliar with viewing the source of a Web site, follow
these steps:
1. Open your Web browser and navigate to the Web site from

which you need information.
2. Right-click and choose the option in the menu to view the

source of the page.
3. Search for a word or phrase that you know is next to a field in

the form from which you want to gather information.
4. Once you find the form in the code, you should see the name

and value pairs you need.

TIP
There are several different tools available that will allow you to monitor a
site’s CSS, JavaScript, DOM, and a number of other things. One of the
many things you can use these tools for is to discover the name and
value pairs of a form on a Web site. Just open up your monitoring tool of
choice, fill out and submit the form, and watch the tool report everything
back to you. As I mentioned in the main text, a couple of tools you may
want to check out are Firebug and ServiceCapture. I personally use and
switch back and forth between both.

Now that you have the name and value pairs, you can build out
your form and test it to make sure it works. “But Jason,” you say,
“when I build the forms into my banners, my file size goes way up,
and I have to crunch the quality of my images so much that the
client will never approve them!” Ah yes, the file size consumption
of Flash components.

File Size Consumption
A key factor to keep in mind from the very beginning of a banner
that will contain a form is the amount of the file size that is taken
up by the Flash components you may need to use. Don’t get me
wrong, I think the built-in Flash components are just fine. I just
wish they were less of a strain on file size. As a matter of fact,
unless you’re using the ComboBox from way back in Flash 6 or 7,
you can pretty much plan on it being too much file bloat to fit in a
standard banner. Back in those versions, you could plan on the
ComboBox taking up about 15k, but now you would be looking at

Chapter 4 FORMS AND DATA 67

more than triple that amount and that’s going to automatically
push you over the size limit on most ads. Another component
you may find yourself considering in a form is the TextInput. While
the TextInput component doesn’t add as much to the file size as
the ComboBox, it does still add to it, and you may want to look
into simply using the Text Tool to draw a text field on the stage
instead.

TIP
Rather than a using a TextInput component in a form that requires users
to type in their information, try using the Text Tool to draw a text field on
the stage and set its text type property to “Input Text.” The file size
consumption for the TextInput component is approximately 16k, whereas
the file size consumption of a text field placed on the stage with the Text
Tool is much lower, approximately 2k (Fig. 4.1).

Figure 4.1 A text field drawn on the stage (a) eats up much less file size than a TextInput component (b).

68 Chapter 4 FORMS AND DATA

The Bulk Is Up Front
If you plan on using the TextInput, you’ll also need to plan on it
using about 16k right up front. So if 16k is already taken out of the
30k you’re allowed in your specs, what happens when you need
more than one TextInput? This is where you can relax at least a
little and know that the initial hit was the hardest because each
additional TextInput after the first one adds a minuscule amount of
file size.

The reason for all the bulk up front is because components
are generally made up of several different pieces, which all get
placed in your library and built into your .swf. For example, when
you place one TextInput on the stage and then check your library,
you’ll notice a folder filled with assets for that component. However,
when you add the second TextInput,
those assets are already in the file, and
they don’t need to be added again. Since
the amount of added file size by the sub-
sequent TextInput is so small, it would be
safe to say that one TextInput is equal
to three TextInputs and that’s also equal
to five TextInputs as far as that file size is
concerned.

So now that you know how much of
your file size is going to be used up by
components, you’ll quickly realize that
you don’t have much left to use toward
the design. This leads me back to the
design process of the banner; if you know
ahead of time that you’re going to need
to use any components, you can’t plan
too much animation involving the raster
images of the layout. One way to combat
this issue is to build your banners to be
served by a rich-media company, which
will be discussed in Chapter 6. Since run-
ning your ads from these companies
gives you more file size and the option of
loading child movies, you obviously won’t
have to worry as much about going over
the size listed in your specs. On the other
hand, you may not have the option of
using a rich-media company. In that
case, there’s the option of building your
own custom components, which may
actually be your only option in the case
of the ComboBox (Fig. 4.2).

Figure 4.2 Because of the size it ads to your .swf, Flash’s
ComboBox may not be an option.

Chapter 4 FORMS AND DATA 69

Custom Components
As I mentioned earlier, a Flash component brings its assets into
your file when you place it on the stage and that increases your file
size by a relatively large amount. If you are able to take the time to
build your own component, you can save a large amount of that
file size, and you’ll be able to customize and reuse it elsewhere.

ALERT!
Component creation is a large enough subject that entire books could be
(and have been) written on that subject alone, so I won’t go into the
actual process myself.

The amount of time it takes you to create your own custom com-
ponent will depend on the component itself. Some may take under
an hour to build, and others may take days to perfect. The good news
is that if a component is built correctly, you won’t have to go back to
rebuild it when you need it on another future project. Instead, you
would be able to simply place your component on the stage, assign
values to its parameters (if it requires any), and move on with your
work. Much like a built-in Flash component is heavy with the first use
and less thereafter, the bulk of the amount of time involved in creat-
ing and using a custom component is up front as well.

Collecting and Passing Data
Now that you have your form put together and you know where it’s
taking users, you need to pass their input to the target location.
The details of how you collect the information might vary from
form to form, but how you pass it will generally remain the same
in most cases. The vast majority of the time you won’t be storing
the information directly from the banner itself, but it may be cap-
tured and stored once it reaches the destination site. On the other
hand, the information may only be used to display the correct page
or data once a user has made it to the destination.

Sending the Data
Once a user has filled out the form and hit the submit button, you’ll
need to do some quick processing behind the scenes to get the
information packaged up and sent over to the correct destination.
Granted, you could create a string that is made of the landing page
URL plus the concatenated values of the text fields (and you may
actually have to in some cases), but it would be better practice and
easier to work with if you separated the target URL from the name
and value pairs that you’re sending. This is where the combination
of the URLRequest and URLVariables classes comes in quite handy.

70 Chapter 4 FORMS AND DATA

While the URLRequest class holds the target URL and will be
used with the navigateToURL method, the URLVariables class is
used as an object to pass variables between a Flash file and a server.
Once you’ve created an instance of URLVariables, you can then
assign it to the data property of your URLRequest object and also
start assigning those name and value pairs as well. In Example 4.1,
you can see a simple function that uses the URLRequest and URL-
Variables classes to pass the information gathered in a form contain-
ing a few text fields. This function assumes that your form has
text fields named firstNameInput, lastNameInput, and zipCodeInput.
It also assumes that it is being triggered by a MouseEvent listener.

EXAMPLE 4.1
Using URLRequest with URLVariables
function submitForm(e:MouseEvent):void{

var urlRequest:URLRequest = new
URLRequest(“http://www.flashadbook.com/urlVariablesPost.php”
);

var urlVariables:URLVariables = new URLVariables();
urlRequest.method = URLRequestMethod.POST;
urlRequest.data = urlVariables;
urlVariables.userFirst = firstNameInput.text;
urlVariables.userLast = lastNameInput.text;
urlVariables.userZip = zipCodeInput.text;
navigateToURL(urlRequest, “_self”);

}

In this example function, the first thing we do is create a
variable named urlRequest, which is of course a URLRequest
object. Also, since we know the URL we’re going to be pointing to,
we’ll go ahead and put it in the url parameter for the URLRequest:

var urlRequest:URLRequest = new
URLRequest(“http://www.flashadbook.com/urlVariablesPost.php”
);

Next, we create an instance of URLVariables, name it urlVari-
ables, and assign the name and value pairs (remember that these
variable names must match the corresponding variable names on
the landing page URL). Using the variable names from the server
in conjunction with the text fields in our form, we have the values
we need to pass to the server:

var urlVariables:URLVariables = new URLVariables();
urlRequest.method = URLRequestMethod.POST;
urlRequest.data = urlVariables;

Chapter 4 FORMS AND DATA 71

urlVariables.userFirst = firstNameInput.text;
urlVariables.userLast = lastNameInput.text;
urlVariables.userZip = zipCodeInput.text;

Now that we have the variables packed up and organized all
nice and neat, it’s time to send the user and his or her package of
variables on over to his or her destination. The parameters for
the navigateToURL method are expecting the following (in this
order): the URLRequest containing the target URL and the target
window or frame. The parameter for the target window is null by
default, and if no value is given, a new empty window is created.

navigateToURL(urlRequest, “_self”);

The target URL used in this example has been set up to receive
the variables used in this example. If you would like to test this
function, you can either set up your own Flash file that uses it
(leave the variable names and target URL as they are) or go to
http://www.flashadbook.com/urlVariablesForm.php to see my
working version. Remember that if you set up your own Flash file,
you may need to run it in an HTML wrapper as opposed to the
external player that’s used when you test movies from within the
Flash IDE (Integrated Development Environment).

Conclusion
When you’re working in advertising, your end goal is to get users
to do something. You want them to complete some sort of task,
and exactly what that task is depends completely on the client and
the product or service being advertised. If you work on enough
online advertising projects (and it doesn’t take many), you’ll
inevitably be involved with one that is asking users to complete the
task of filling out a form of some kind.

Whether you’re asking users to fill out a form with information
pertaining to the color, trim level, and engine size of your client’s
new car or you’re asking them to fill in the dates that they would
like to book a flight and hotel for their vacation, you’ll need to
know where to send that information. On top of that, you’ll need
to know what variable names and possible values the processing
page will expect when users are sent to it. There are many ways to
get this information including asking your client for it or even
visiting and viewing the source of their version of the same form
on their Web site.

Something to keep in mind when you’re building banners with
forms in them is file size. If your forms contain a TextInput com-
ponent, you can plan on it eating up most of your permitted file

72 Chapter 4 FORMS AND DATA

size, and if you plan on using Flash’s ComboBox, you can also plan
on going over your file size limit. In order to avoid this issue, you
can either run your ads as rich-media banners or do a little
research into building custom components.

After your form is all laid out and ready to program, you’ll want
to use the URLRequest and URLVariables classes. As I said in the
“Sending the Data” section, the URLVariables class organizes all
your variables into a nice little package. Once your variables are all
packed up like a suitcase, you can send users on their trip to the
destination Web site. Once there, they’ll unpack all the variables
and receive the information they were after when they started
filling out your form.

Chapter 4 FORMS AND DATA 73

This page intentionally left blank

5
FILE OPTIMIZATION

CHAPTER OUTLINE
Image Types 76

.jpg 76

.gif 79

.png 80
Image Compression 81

High-Quality Images 81
Manage Compression in Flash 82

Vectors and Fonts 85
Scaling and Zooming 86
Vector Considerations 86
Text and Fonts 87

Optimizing Code 88
Don't Repeat Yourself 88
Allow the Flash Player to Relax 89

Conclusion 90

Whether you’re building banner ads, microsites, games, applications,
or anything else, it’s always a good practice to do your best to keep
your file sizes as low as you can while still achieving your design and
animation goals. Although microsites and games are going to be
bigger than banners, you don’t want them to be too big because you
may risk the loss of potential users. Those potential users are, in
turn, potential customers for your client. Banners need to be kept
down in file size for a different reason: specs. When you go over
the file size allowed in the banner’s specs, the site(s) on which it is
running will most likely reject your banner.

Enter file optimization. Optimizing your Flash files can consist of
anything from changing the compression settings on your images to
slimming down your code or using vector drawing instead of
imported images. There are several ways to reduce your file size and
knowing some of them can not only help your sanity, but also help
you in building your projects without the need to remove any key
features or images.

Flash Advertising. DOI: 10.1016/B978-0-240-81345-5.00005-0
© 2010 Jason Fincanon. Published by Elsevier, Inc. All rights reserved. 75

There are generally two major areas in which you can optimize
your files: graphics and code. Within those two areas, there are
smaller areas of discussion that I’ve split into the following sections:
• Image Types
• Image Compression
• Vectors and Fonts
• Optimizing Code

Image Types
Different images call for different formats. If you have a picture of a
person, you’ll generally want to use a .jpg (.png is definitely an option,
but the .jpg’s file size is most likely going to be smaller). If you have a
line drawing or any other image that isn’t photographic, you’ll prob-
ably want to use a .gif and for the most part, you’ll probably want to
save the .png format for images that contain transparency.

.jpg
As mentioned earlier, .jpg files are best used for photographs or images
with smooth variations of tone and color. They use what is called a
“lossy” data compression method, which basically means that the data
is compressed in such a way that it is actually different from the origi-
nal data but still close enough to be used. As the compression levels
increase, the resulting file size reduces. However, with that higher com-
pression and lower file size, you start to see image artifacts that give
less quality to the pictures. Figures 5.1–5.4 illustrate the same image
with four different quality settings: 100%, 80%, 60%, and 0% (higher
quality setting = lower compression). For each of these examples, I’ve
zoomed in on the same area to better show the image artifacts.

The image in Fig. 5.1 has a quality setting of 100% and is hard to
distinguish from the original photograph even though the original
can take up to six times more file size. If you are using Photoshop’s
“Save for Web & Devices…” function, you’ll notice that 100% is also
called “Maximum” quality under the .jpg settings.

With a quality setting of 80%, Fig. 5.2 is less than half the file size
of the uncompressed original image in this case. At 80%, the image
still looks great, but we can still go lower for the Web. Photoshop’s
“Save for Web & Devices…” function labels 80% as “Very High”
quality.

Figure 5.3 shows the quality that you’ll most likely want to use for
your Flash projects (or almost any project on the Web). This is
because at 60% quality, the image artifacts that start to appear
because of compression are extremely small and mostly unnoticeable
at the 72 dots per inch (dpi) that computer monitors display. The
final file size of a .jpg saved at 60% quality can be up to 20 times

76 Chapter 5 FILE OPTIMIZATION

smaller than the original image. In Photoshop’s “Save for Web &
Devices…” function, 60% is also called “High” quality and can be
found as a preset.

The only real use for including Fig. 5.4 at 0% quality is to illus-
trate what is happening at a much higher level than the previous
figures. With the quality set this low, you can really notice the

Figure 5.2 Image quality: 80%;
file size: 193k.

Figure 5.1 Image quality: 100%;
file size: 328k.

Chapter 5 FILE OPTIMIZATION 77

image artifacts. With such a poor visual quality, you should never
use an image compressed by this much.

TIP
Image artifacts are basically blocks of color that become larger and more
visible as the compression rate of an image gets higher.

Figure 5.4 Image quality: 0%;
file size: 37k.

Figure 5.3 Image quality: 60%;
file size: 127k.

78 Chapter 5 FILE OPTIMIZATION

.gif
Due to the cost of graphics cards that rendered more than 256 colors
at the time the .gif format was first introduced, .gif files themselves
were limited to a palette of 256 colors. Because of this limitation,
.gifs are most useful for graphics with fewer colors than you would
find in a photographic image; graphics such as diagrams, cartoon-
style drawings or any other imagery that is intended to use a limited
color palette. .gifs use a different compression method from .jpgs
called “lossless.” Lossless data compression differs from lossy data
compression in that it allows the exact original data to be recon-
structed from the compressed data and this exact reconstruction is
very important when image details must be seen clearly.

Unlike .jpgs, .gifs support image transparency. However, it’s
important to remember that when you create a .gif with transparent
areas, you’ll get a single pixel of solid color around the nontranspar-
ent area. This works fine if the background of your animation is the
same solid color, but not so well if your background is multicolored
or gradient. See Figs. 5.5 and 5.6 for examples of the same .gif on
different backgrounds.

TIP
It should be noted that .gifs support frame-based animations and that
these .gif animations may be a great choice for your non-Flash backup
image.

Figure 5.5 A .gif with transparency on a solid white
background.

Figure 5.6 A .gif with transparency on a gradient
background.

Chapter 5 FILE OPTIMIZATION 79

.png
The .png format was specifically created to replace the .gif format.
Although the file size of a .png graphic may generally be larger than
that of a .gif, remember that .pngs support true-color imaging. Like
.gifs, .png files use lossless data compression and support transpar-
ency. Unlike .gifs, .pngs don’t include a pixel border around the
nontransparent area of your images. Because of the true-color ima-
ging and better alpha transparency, .pngs are ideal when you have
photographic-style images that need to animate across a multicolor
or gradient background. Figure 5.7 illustrates the same image from
Figs. 5.5 and 5.6 on the same background. However, Fig. 5.7(a) is a
.gif and Fig. 5.7(b) is a .png. Note the lack of a white border around
the nontransparent areas of the .png.

TIP
Both .gif and .png formats support transparency. However, .gif files will
give you a border that appears as an outline around the opaque area of
the image. In addition to the absence of the pixel border, .png files
usually have a better image quality than .gif files. The cost of that better
image quality is, of course, file size.

TIP
When you’re working with .pngs and you’re saving your files through
Photoshop’s “Save for Web & Devices,” you’ll usually want to go with
png-24. However, if the color palette contains fewer colors, then you may
want to use png-8.

Figure 5.7 A .gif (a) and a .png
(b) on the same gradient
background.

80 Chapter 5 FILE OPTIMIZATION

Image Compression
When it comes to optimizing images for use in
Flash, I’ve heard advice stating that compres-
sing your images before importing them is bet-
ter and I’ve also heard that letting Flash do the
compressing is better. I’d like to offer the fol-
lowing “middle of the road” advice: Compress a
little before importing and let Flash do the rest.
By that, I mean you should save your images at
a high-quality compression setting and then
adjust as needed within Flash.

High-Quality Images
Because you are most likely creating work to be
viewed on a computer monitor, you don’t need
to worry about your images having high resolu-
tions as you would for another medium such as
print. The fact that computer monitors show
everything at 72 dpi also helps with your file
size. One mistake I’ve seen made by various
people is to save an image from Photoshop with
the “Save As…” command as opposed to using
the “Save for Web & Devices…” option in
Photoshop’s File menu (Fig. 5.8). The reason I
consider this to be a mistake is due to file/image
control and resulting file size. Although the dif-
ference in the resulting file sizes may not be
huge in some cases, there is still a difference
that could end up pushing your work just over
the constraints set by your project specs. The
“Save for Web & Devices…” option is a very
easy process that I’ve outlined in the following
steps:
1. With your image already open in Photoshop,

choose “Save for Web & Devices…” from
the File menu (Fig. 5.8).

2. In the resulting window, choose “JPEG High”
(or any other available choice) from the
Preset menu on the right and press the Save button (Fig. 5.9).

3. When the Save Optimized As window opens, navigate to the
correct folder where your image will live and name your file
accordingly (Fig. 5.10).

4. Use your saved image in your banner or microsite.

Figure 5.8 The Photoshop File menu.

Chapter 5 FILE OPTIMIZATION 81

Manage Compression in Flash
Once your images are saved, it’s time to bring them into Flash and
fine-tune some compression settings. In some cases, you’ll only
have a couple of images and a large file size to work within. So,
before you do any compressing, build and test your Flash movie to
make sure that you absolutely need to tweak the settings. If you
find that you need to lower the file size of the resulting .swf, then
it’s time to start modifying some compression settings.

Figure 5.9 The Save for
Web & Devices window.

Figure 5.10 The Save
Optimized As window.

82 Chapter 5 FILE OPTIMIZATION

TIP
If the images you’ll be using are going to be “pulled in” as external files,
then you’ll want to manage their compression from your image-editing
software such as Photoshop.

It’s tempting for some to use the JPEG quality slider in the
Publish Settings dialog box (Fig. 5.11), but this will result in chan-
ging the compression for every image in your file. One reason to
avoid this is because, sometimes, you can get away with applying a
lot of compression to one image like a blurry background image,
but not on another image like the picture of the main item of focus
within your project.

Figure 5.11 The JPEG quality
slider in the Publish Settings
dialog box.

Chapter 5 FILE OPTIMIZATION 83

If you need to lower your file size, you’ll
want to optimize each image on an individual
basis by adjusting the bitmap properties of the
images in your library. The following steps
and Figs. 5.12–5.15 explain the process with
the assumption that you already have a Flash
file open that contains images in the library.
1. With your Flash file open, choose “Library”

from the Window menu (Fig. 5.12).
2. In the Library window, right-click on the

image for which you’d like to alter the com-
pression settings and choose “Properties”
from the menu (or double-click on the bit-
map icon to the left of the image name)
(Fig. 5.13).

3. In the resulting Bitmap Properties window,
make sure the “Compression” drop-down
menu is set to “Photo (JPEG)” and that
“Custom” is selected in the “Quality” section
(Fig. 5.14).

Figure 5.12 The Flash Window menu. Figure 5.13 The right-click menu for a Library item.

84 Chapter 5 FILE OPTIMIZATION

4. Again, with “Custom” selected, change the number in the input
box and press the “Test” button to see the original file size, the
compressed file size, and a preview of your image with the cur-
rent setting (Fig. 5.15).

5. Once you’re happy with the compressed size, press OK and your
image is ready to go.

Vectors and Fonts
There are times when a simple image can be re-created as a vector
graphic instead of using a raster (bitmap) graphic. Due to processor
usage, the simplicity of the image itself should play a key role in
your decision to use vector or raster. Keep an eye out for images
that can be redrawn with a small number of lines, as well as flat
colors instead of gradients. If you find that you have come across
one of these images in your work, take the time to redraw it as a
vector graphic, and you’ll generally save some file size because the

Figure 5.14 The Bitmap
Properties window.

Figure 5.15 Original and
compressed file sizes of the
modified image.

Chapter 5 FILE OPTIMIZATION 85

vector image is made up of calculations that are drawn to the
screen rather than a large number of static, colored pixels.

Scaling and Zooming
When used correctly, vector graphics will not only lower your file
size, but, unlike raster images, they offer the ability to be indefi-
nitely scaled up or zoomed in on without any loss in quality. For
example, if you scaled a .jpg of a green sphere to 900%, you would
find that the curve of the circle is not actually a smooth curve at
all, but a series of pixels whose square shape creates a jagged edge.
However, the same green sphere created as a vector graphic proves
to have nice smooth curves no matter how much you increase its
scale. In Fig. 5.16, I’ve created a drawing of the sphere and saved it
as both a raster and a vector graphic. I then zoomed in on the
same area of each to show the results. The smoother vector graphic
is on the right while the raster image is on the left.

Vector Considerations
Although using vector graphics correctly can save file size and
increase the scalability of the image, there are some things to keep
in mind such as the number of colors, the use of gradients, and
the complexity of the graphic as a whole. If your artwork starts to
get too complicated and has lines numbering in the high hundreds,
or even reaches more than 1000, you may want to reconsider using
a raster image instead. While the vector re-creation may be prettier
and you may be able to zoom in on it much closer, you have to
remember that the Flash Player on the end user’s computer will
have to recalculate every line contained within your drawing every
time that drawing moves even a single pixel. On its own, a very
complicated vector line drawing can end up considerably slowing

Figure 5.16 Vector versus
raster zooming and scaling.

86 Chapter 5 FILE OPTIMIZATION

the frame rate of your movie. When you start adding other factors
like user interaction, other animations happening at the same time,
and functions running their code when they’re called, you can
imagine the potential consequences.

The colors you use in your vector art should be just as much of
a consideration as the complexity of the lines. As you might ima-
gine, gradients are more complicated than solids and they contain
a good deal more data for the Flash Player to process. Obviously
gradients can’t be avoided 100% of the time, but you should try to
limit how often you use them and how many you have on the
screen at any given time (especially if they will be animated).

Text and Fonts
Something else to consider in the optimization of your work is text
and fonts. I’m including them in this chapter because they can
sometimes bloat your file size by great amounts without you even
realizing that it’s happening. They can also be treated in the wrong
way and end up looking like a big blurry, unreadable mess. When
you’re working with a specific font that is used by your client,
don’t embed the entire font if the text is going to be static. Instead,
embed only the letters, numbers, and punctuation that will actually
be used. Another option for static areas of text is to use an image.
It might sound a little antiproductive in the sense of optimization,
but if you only have one or two words in a particular font,
sometimes an image produces a smaller file size than embedding
any of the font at all. If you do end up using such an image, be
aware that changes to the wording will mean more work. Instead
of just opening up your Flash file and typing in the change, you’ll
have to open up another tool like Photoshop to make the change,
save the new image, and update it in your .fla. With the number
of changes that can very easily be coming your way, it can get
a little tedious.

Another option that you may want to experiment with but
generally avoid is breaking apart the text. In some cases, this may
save you a small bit of file size and it may be just enough to
squeak that banner in under the required size. However, you
should also remember that when you break that text apart, it is
converted into vector shapes and lines. Jumping back just a bit,
you’ll recall that I suggested avoiding complicated vectors and
there are some fonts out there that can have extremely complicated
outlines. In addition to the complicated vectors, there’s also the
issue of editing the text after it’s broken apart. Imagine if you were
working on a project where you were creating 30 banners and all
of them had the same tagline in them. Now imagine you break
apart the text for the taglines in all of them. Next, imagine that you
have finished creating all of the banners and you’re told that one

Chapter 5 FILE OPTIMIZATION 87

of the words is misspelled. Just like making edits to text in an
image, this one could get very tedious as well.

Optimizing Code
Optimizing your code can be just as important as optimizing your
images in terms of both file size and processor usage. As with most
steps in your projects, it is always best to keep code optimization
in mind from the very start before you have written a single line.
However, we all know that there are times when we just need to
make it work as quickly as we can, no matter what it takes. The
trick to those hurried times is to remember that we need to set
time aside so that we can later go back and optimize, or “clean
up,” our code. In the rest of this section, I’ll be passing on a few
suggestions that have either been passed on to me or that I have
found in my own projects over time.

Don’t Repeat Yourself
I often find that I remind myself not to reinvent the wheel while
I’m working on projects. An example of what I mean would be that
if I find myself writing a function that does something very similar
to another function I’ve already written within the same project,
I can usually modify the first one to serve the needs of both.
I remember a particular microsite I was working on at the same
time I was working on a large round of banners. Although it’s not
unusual to work on more than one project at a time or for those
projects to have tight deadlines, this site had grown in size and
scope as it progressed. While the project was in midswing, new
sections and functionality were being added that affected the way
the site was being programmed. The deadline, however, could not
be adjusted due to critical timing on a product launch.

In order to get the new sections built into the site, I had to work
fast. And because those sections were added after all planning had
been completed, I had to get a little “creative” in my programming.
The end result, I’m a little embarrassed to say, was a fairly tangled
web of messy code in which I had multiple functions completing
the same tasks on the same objects and variables. If you’ve ever
run into this situation, you know how confusing it can be to go
back in and make changes or fixes to that kind of “spaghetti code.”
You quickly discover that you’re asking questions like, “Did I call
function A from there or was it function C?” or, “Well, I had to fix
function A and function B does the same thing … do I need to fix
it as well? Am I even calling function B from anywhere?” Once you
hit that point, you have no choice but to take the time to go back
and optimize your code.

88 Chapter 5 FILE OPTIMIZATION

Allow the Flash Player to Relax
Computers have come a long way since I first sat down in front of
my dad’s Apple II with a beginner’s game programming book for
children (how’s that for dating myself?). They’ve come a long way
in graphics, hard disk space, physical size, memory, and speed (as
well as many other aspects). As computers advanced in all of these
ways, software developers wrote their programs to utilize the
changes, and we, as Flash Platform developers, have done so as
well. However, as fast and efficient as a computer may be, it can
still be “bogged down” without too much effort. And, like the com-
puter itself, the Flash Player in which your work is viewed can be
bogged down or even stop responding if the correct preventative
care is not taken.

The Flash authoring environment will let you know about a few
problems in this area such as an infinite loop. What it won’t tell
you is how to optimize and/or speed up your working processes.
The following are just a few tips that will help the Flash Player run
more smoothly.

If you’re looping through several objects and you’re calling a
simple function that affects each of those objects individually,
move the contents of that function inside the loop. In other words,
don’t make the Flash Player start a loop, find the object to be
affected, go outside the loop to find the function you’re calling, run
the function contents on the object, and then return to the loop
only to do it all again with another object. Instead, let the Flash
Player start the loop, find the object, affect it, and move on to the
next one.

When you give your objects data types, avoid overusing the
ambiguous Object type. Instead, figure out which type is better sui-
ted for the needs of the object, such as String, Number, or Array.
While those three types are very different, there may be times when
more than one type will suit your immediate needs. The Object type
should only be used when there is no other option, and if you’re
unsure which type to use, the Help section of the Flash authoring
environment should be able to answer your question.

TIP
If you’re able to target Flash Player 10, you may want to look into the
Vector class for some of your Array needs. A Vector is very much like a
typed Array that is typically more efficient than an actual Array. Also, if
you are used to working with Arrays, then working with Vectors will be
very easy because they contain many (but not all) of the same methods.
You can find an example of the Vector being used in Chapter 12.

If you’re writing a “for loop” that is running the length of an
Array, avoid actually using Array.length in the for statement itself.

Chapter 5 FILE OPTIMIZATION 89

Instead, assign the value of the Array’s length to a variable that
you can then reference. Example 5.1 shows the two different
techniques.

EXAMPLE 5.1
//Assign the value of myArr.length to a variable before using
it in a for loop:
var myArr:Array = new Array
(“item1”,“item2”,“item3”,“item4”);
var myArrLen:Number = myArray.length;
for(var i:Number = 0; i < myArrLen; i++){

trace(“Array item at position ” + i + “ is: ” + myArr[i];
}
//Instead of accessing it directly:
var myArr:Array = new Array
(“item1”,“item2”,“item3”,“item4”);
for(var i:Number = 0; i < myArray.length; i++){

trace(“Array item at position ” + i + “ is: ” + myArr[i];
}

Conclusion
As I’ve covered in this chapter, optimizing your files can be
achieved on several levels. When it comes to file size, you should
always optimize as much as you can without making heavily
noticeable sacrifices to image quality or functionality. When you
prepare your images for your Flash files, remember to choose the
best file type for the individual image and to save that image at a
high enough quality so that it’s clear on your monitor. If you see
obvious image artifacts, raise the quality of the image before you
use it in Flash. Once inside Flash, manage the compression of your
images on an individual basis from the Library window instead of
globally from the Publish Settings window.

Use vector images when you can, but remember to use them
wisely. If you’ve got a visually complicated image, go ahead and
use the raster version. However, if that image can be re-created
with a minimal number of lines and colors, you may benefit from
drawing it in vector format in order to achieve a possibly smoother
representation that can be scaled without worry of quality loss. In
addition to keeping the number of lines and colors to a minimum,
do the same with gradients, as they require the Flash Player to
work just a little harder. As for fonts, try to embed only what you
need to embed and only if you need to embed them at all. If you
need to use a specific font for only one or two words, try using a
raster image of those words, and try to avoid breaking the text
apart into complicated vector shapes.

90 Chapter 5 FILE OPTIMIZATION

Your code should be optimized not only for performance, but
also for readability and maintenance. As you are writing your
ActionScript, pay attention to what your different functions are
doing. If you have two functions that are doing very nearly the
same thing, consolidate them into one function that can handle
both of your objectives. Another thing I like to suggest is to look
back through your code at certain intervals to make sure you aren’t
repeating yourself or that you haven’t left any code that you aren’t
using anymore. In other words, refactoring is good and you should
do it. Remember that making your code base smaller optimizes
your file and your time now and later.

In Chapter 6, I’ll be talking about some third-party rich-media
companies like Eyeblaster and PointRoll. As you read about them,
you’ll learn that one of the benefits in utilizing their technologies is
that you are allowed more file size for your banners. However, that
fact should never keep you from optimizing your work because one
of the overall goals of any project should be an end product with a
file size that’s as small as it can reasonably be.

Chapter 5 FILE OPTIMIZATION 91

This page intentionally left blank

6
THIRD-PARTY RICH-MEDIA TECHNOLOGIES

CHAPTER OUTLINE
When to Utilize Rich-Media Technology 93

Audio/Video 94
Dynamic Content In Your Ads 95
Extra Loads 96
More Interactivity 96
Floating Ads 96
Expandable Ads 96

Rich-Media Companies 97
They’re All Different In the Same Ways 97

Conclusion 98

Third-party rich-media technologies are a powerful tool when it
comes to advertising. As I mentioned previously, these technologies
are available through companies who specialize in opening new,
more captivating channels for advertisers’ usage. Without these tech-
nologies in place, Flash banners would most likely be limited to the
regular old standard ads and constrained to 30–40k in file size.
However, since they are available and ready to be used, we can
create banners that are capable of everything from playing video to
expanding out to a larger size to working like tiny Web sites (mini-
microsites, if you will). All of these options offered by rich-media
companies afford us the room to give users more information than
we could fit in a standard Flash banner. And did I mention that the
file sizes allowed are usually much larger than standard ads, or that
unlike standard ads, you can load external files such as child .swfs,
.xml files, and .jpgs? There are even options out there for streaming
full-screen video. So let’s get to the following sections in this chapter:
• When to Utilize Rich-Media Technology
• Rich-Media Companies

When to Utilize Rich-Media Technology
One question that is often asked is, “How do I know when to
choose between a rich-media technology and a standard Flash ad?”
As I mentioned at the beginning of this book, a key factor in this

Flash Advertising. DOI: 10.1016/B978-0-240-81345-5.00006-2
© 2010 Jason Fincanon. Published by Elsevier, Inc. All rights reserved. 93

decision can be cost. However, because there are so many extra
features and advantages gained through using a rich-media tech-
nology, your clients may decide that it’s well worth the extra
money, and it’s up to you to inform them when they should and
shouldn’t utilize the technology.

Audio/Video
For those that have done any work with audio and/or video, it’s
pretty obvious that you’d be safe betting against much (if any) of
it fitting in a Flash file that’s constrained to 40k. Those banner
ads that will use audio or video are prime candidates for use
of a rich-media technology. With companies like Eyeblaster,
EyeWonder, and PointRoll, your media can actually be streamed
into the ad.

The only usual requirement is that you can’t start the audio
until a user interacts with the banner. While it may seem that it
would be beneficial to start playing your audio as soon as the ban-
ner appears on a user’s screen, this requirement can actually work
in your favor. If a user went to a Web site that was running your
ad and your ad immediately started playing sounds, then that user
could very easily get annoyed with your banner and thereby
annoyed with your client. Imagine a user at work in a quiet office
who doesn’t realize his/her speakers are turned on and all of
the sudden, your ad starts blaring out the audio from one of your
client’s commercials. Another bad situation would be the potential
consumer who is using a dial-up connection (yes, they are still out
there in fairly large numbers). These users are the reason I would
even suggest that you refrain from playing a video in a muted
state. Instead, give them instruction on how to start viewing the
video. Although the key word is “streaming,” you still don’t want to
be a bandwidth hog unless users want you to be one. If any of
these users run into your banner again, they may start to build a
worse opinion about your client than they would have otherwise.
However, if you put users in control, the opposite may happen.
They may watch the video and be entertained by it or they may
pay more attention and learn something about your client that they
didn’t know before. The key, again, is putting users in control
rather than forcing it on them and eating up their bandwidth with-
out their consent. Another good thing about waiting for user inter-
action is that you generally start the video over when they click. By
doing this, you can be sure that users viewed the entire video (or
at least that they didn’t miss the beginning of it). And finally, at the
end of the video, you can give them an opportunity to click
through to the site where they can learn more information from
watching more videos or a longer version of the one in the ad.
Again, more interaction and time spent with the brand.

Inside Advertising

With the audio and video
capabilities of the Internet
increasing by leaps and
bounds every day, more
and more video is being
produced specifically for
online use. Although some
ads and microsites may
show video that was
originally created for
television, others are
allowing viewers to watch
content that was scripted,
directed, and produced
especially for that ad or
site.

94 Chapter 6 THIRD-PARTY RICH-MEDIA TECHNOLOGIES

TIP
When you’re working with video in a rich-media banner, check with the
rich-media company to see if they have a Flash video player already built
for use in their system. They may have special code to work with their
streaming servers, and you’ll just need to skin their player to match your
design.

Dynamic Content In Your Ads
I was once approached to answer a question about feeding
dynamic content into a banner. The reason, in this particular case,
was because we had just launched a microsite that was entirely dri-
ven by user-generated content. In the site, a user could fill out a
form to submit two different sides on any topic. If the topic was
approved by the microsite’s administrator, then other users could
go on to debate which of the two sides of the topic was better. For
example, one topic might be sports and one discussion in that
topic might be about football versus fútbol. Users would go to the
microsite to use text, audio, or video to weigh in on the side they
liked better. In addition, users could simply click a button to vote
on their favorite side without saying anything at all.

TIP
Remember that if you want the capability to load external files such as
XML or images, you’re going to need to use a rich-media company to
serve your ads.

Getting back to the banner ads with the dynamic content; with
such a site running off of user-generated content, the topics of dis-
cussion are always current and up-to-date with real-world events.
Because the microsite always had current information, the banners
needed to have current information as well. The answer was to build
a single round of banners that could be updated “on the fly.” Because
regular 40k standard Flash banners don’t allow the luxury of loading
external files or content, rich media was the option available.

Once the banners were built, they would pull their content from
an external XML file that could be changed at any time deemed
necessary. And because all of the content within the banner was
dynamic, only one banner had to be built for each size. In other
words, even though there were 10 different sites running the
160 × 600 ad with different content on each banner, there was only
one 160 × 600 banner built. The readers on site A might be inter-
ested in different topics of discussion than the readers on site B,
and using the rich-media technologies allowed us to give them
each the dynamic content that they were interested in.

Chapter 6 THIRD-PARTY RICH-MEDIA TECHNOLOGIES 95

Extra Loads
If you have clients who refuse to show anything less than their
entire line of products in a single banner, they’re going to need to
understand what that means in terms of file size. Once you find
yourself having to use a certain amount of photographs in a ban-
ner, it doesn’t matter how much you compress your images, they
simply won’t fit inside a file size constraint of 40k or less. Enter the
rich-media technologies with their increased file size limitations
and ability to load external files (such as .jpg or .swf).

This is one of the easy ones to explain to clients who are having
difficulty in understanding why they need to incur the extra cost
involved in utilizing rich-media technology. If you run into any
issues in this area, you can simply show your clients the file size of
a Flash movie with all of the required images. They will appreciate
that you have actually taken the time to both explain and show
them why their banners would be turned away from any site on
which they are supposed to be shown. If they still insist on having
the same number of images in the banner, they will feel better
about spending the extra money.

More Interactivity
Another thing to consider when choosing between a rich-media
technology and a standard Flash banner ad is the level of interactiv-
ity available with each. Regular ads basically give you a defined
area in which to show your content and a set file size in which to
do so. However, rich-media technologies offer not only the pre-
viously mentioned option to load external files and content, but also
the ability to literally take your creation outside of the box. With
floating ads, expandable ads, interactive video ads, and many more
options, there isn’t much that you can’t accomplish in terms of
communicating your message to your clients’ potential customers.

Floating Ads
Floating ads are ads that actually appear over the content of the
page on which they are played. Because they are played on a trans-
parent layer above the page, they can take on any shape you like
within a certain defined area. An example might be if you created
a floating ad for an auto manufacturer, and you actually built the
ad to take on the shape of their newest car.

Expandable Ads
Expandable banners are a great place to pack a large amount
of information into a small space. These ads are where the mini-
microsites, which I mentioned at the start of this chapter, would fit.

Inside Advertising

While I only list a couple
of the rich-media ad
formats here, there are
many more available for
your use. To learn more
about all of the formats,
visit the Web sites of
companies like Eyeblaster
(http:\\www.eyeblaster.
com), EyeWonder (http:\\
www.eyewonder.com),
and PointRoll (http:\\
www.pointroll.com).

96 Chapter 6 THIRD-PARTY RICH-MEDIA TECHNOLOGIES

In a nutshell, your expandable banners will be made of more than
one Flash movie: the main movie, which might be put together like
a regular 160 × 600 (or one of several other sizes), and the child
movies or “panels.” The number of panels your ad has depends on
how much information there is and exactly how it will be pre-
sented. When a user interacts with the main banner, a panel movie
is loaded and the overall size of the advertisement is expanded.
From there, the user might be able to open more panels or simply
click the (usually required) close button if he or she has finished.

Rich-Media Companies
There are many choices out there when it comes to rich-media
companies, and while several of them started out specialized in
one or two products (such as expandable units, floating ads, or
video ads), most of them have come to offer a wide range of options
in recent years. Some, like PointRoll (http:\\www.pointroll.com) and
EyeWonder (http:\\www.eyewonder.com), offer a downloadable file
that integrates directly into the Flash authoring environment to help
speed up and streamline your work. Some other companies, like
Eyeblaster (http:\\www.eyeblaster.com), offer an online tool for set-
ting up your ads. Once you log into their tool, you simply upload
your files, change a few settings accordingly, and assign the ad to
the correct placement. With a seemingly endless amount of other
options available out there, it’s definitely worth doing your research
because you’ll find some great companies that are working very
hard to provide some great tools for us to work with.

TIP
The different rich-media companies offer several of the same ad formats,
but at the same time, each of them may also offer something a little dif-
ferent than the rest. I won’t try to sway you one way or the other, but it’s
not an entirely bad idea to utilize one more than the others. The reason
being is that the processes involved in running ads with each company
are different, and it’s good to use the same process as much as possible.
If you need to run an ad format that isn’t available with your primary
rich-media company, simply move it over to the company that has that
format.

They’re All Different In the Same Ways
Because the majority of the rich-media companies you’ll work with
have come to offer a lot of the same options when it comes to ad
formats, you may want to research their costs and get a feel for
their levels of service. Just like with any product or service, you’re

Chapter 6 THIRD-PARTY RICH-MEDIA TECHNOLOGIES 97

going to find different rates and you’re going to be happier with
how you are treated as a customer by one company as compared
with how you are treated by another company. Keep in mind that
levels of service shouldn’t only be measured on how you were trea-
ted as a person and customer, but how much help and support the
company is able to provide when you need them.

Conclusion
As online advertisers, rich-media companies and their technologies
offer us the means to create advertising experiences that might
otherwise be unavailable. Although those options are nice to have
at our disposal, it’s important to know when to use them and
when to stick with a standard Flash banner. A major aspect of any
campaign that will come into play when you’re making the deci-
sion is cost; because you’re getting more out of the advertising and
technology, the price is going to be higher.

As I mentioned in this chapter, the options you have with a
rich-media advertising technology will allow you to create banners
that incorporate more engaging content such as audio and video.
You’re also afforded the luxury of loading external child files,
which you wouldn’t be able to fit within certain file size con-
straints, and the ability to load dynamic content from something
like an XML file.

When it comes to the companies that house these technologies,
you’ll want to spend a little time doing some research to see which
one you should go with. Although there are those that offer options
not available by any others, a majority of them offer many of the
same ad formats. The main differences you’ll find between them
may come down to the cost of their products and their customer
service levels.

98 Chapter 6 THIRD-PARTY RICH-MEDIA TECHNOLOGIES

7
TRAFFICKING AND TRACKING YOUR ADS

CHAPTER OUTLINE
The Media Buy 100

Target Audience 100
Placement Availability 102
Ad Rotation 102

Ad-Server Tools 103
Enter Your Media Plan 103
Load Your Banner Files and Landing Page URL 104
Test Your Banners 104
Get the “Tag” 104
Send the “Tag” 104

Tracking Your Ads 104
Impressions, Interactions, Clicks, and More 105
Determining the “Cost per Everything” 106
Optimize Your Campaign 106

Rich-Media Ads 107
Trafficking Rich Media 107
Enter Your Media Plan 107
Upload Your Files and Enter the Landing Page URL 107
Preview Your Banner 108
Assign Each Banner to Its Flight 108
Send the Eyeblaster Reference to the Site 108
Tracking Rich Media 108

Site-Served Ads 109
Loss of Control 109
Slow Changes 110
Less Tracking 110

Conclusion 110

Trafficking your ads is when you actually load them into an ad-server
system or onto the hosting site. This is the step in the process when
your work is actually made “live” on the Internet. This is very
obviously an important step in the life of a project, because without
it, no one would ever see the ads and no one would ever make it to
the site that is being promoted within those ads (at least not by way
of the ads themselves).

Flash Advertising. DOI: 10.1016/B978-0-240-81345-5.00007-4
© 2010 Jason Fincanon. Published by Elsevier, Inc. All rights reserved. 99

Once the banners are live, you will be able to track aspects like
impressions, interactions, and clicks (I’ll explain these later in this
chapter), as well as determine the cost of these metrics. You can
then use the gathered information to optimize the campaign.
Before any of this is possible, and even before the banners are
built and programmed, there are other steps that take place, such
as the media buy. If you have a media team, they are no doubt
involved from the very beginning of a campaign all the way
through to the end (and even beyond). It’s the steps they take that
I’ll be discussing in this chapter, and I’ll lay those steps out in the
following sections:
• The Media Buy
• Ad-Server Tools
• Tracking Your Ads
• Rich-Media Ads
• Site-Served Ads

The Media Buy
Aside from actually gaining a new client or having an existing client
let you know they’d like to run a new campaign, the media buy is
one of the very first steps that take place in the life of a banner
project. Much like trafficking your ads at the end of the project, the
media buy is a very important step that could very well decide the
fate of the campaign itself. If done properly, the ads will be seen by
the correct target audience and they will perform very well. How-
ever, if the wrong placements are purchased and the ads end up
running on sites that have absolutely nothing to do with your target
audience, they will perform poorly and large amounts of money
can be lost in the process.

Target Audience
There are certain people who you want to respond to your cam-
paign, and as harsh as it may sound, there are also certain people
whose response is less important (on a particular campaign).
Those people who you are trying to reach are called your “target
audience,” and they will vary from client to client and sometimes
even from campaign to campaign. They are groups of people who
fit into predefined categories involving their lifestyles, behaviors,
and other key factors.

The audience can generally be narrowed down using different
levels of targeting such as demographics. Demographics are essen-
tially the characteristics of a given population and include variables
like race, age, gender, income, employment, and location (as well
as others). With the information gained by demographic studies,

100 Chapter 7 TRAFFICKING AND TRACKING YOUR ADS

you can gain information like what type of person is visiting
a given Web site. For example, upon doing a study for Web site A,
you may find that the vast majority of its visitors are married,
middle-class females in the 25–54 age range.

Another part of the study of your audience might be the psycho-
graphics. Similar to the demographics, the psychographics offer
insight to different aspects of the given population. The difference is
that with psychographics, you gain a little deeper information than
with demographics. The information gained here would be attributes
related to users’ personalities, attitudes, interests, and several other
“under the surface” factors. You may also hear these factors called
“IAO variables,” which is short for interests, attitudes, and opinions.
By combining your demographics with your psychographics, you can
further narrow your audience to make sure your ads are being seen
by the correct people. To carry the demographic example a step
further, we may now have targeted married, middle-class females
who are 25–54 years old, and are interested in entertainment and
have purchased items online in the past 6 months. With that kind of
information sitting directly in front of you, it’s hard not to hit your
intended audience.

The target audience for a given campaign will most likely be
given to you by your client, and it will not always be the audience
you thought it would be. For example, you may have a client
whose product or service is typically associated with senior citizens.
When your client tells you that they want to target men who are
25 years of age and older, you may be surprised. However, when
you stop to think about the fact that your client’s product is already
associated with senior citizens, you’ll find out that they most likely
already have a hold on them. Therefore, it would make more sense
to spend the advertising dollars targeting a new group that is not
currently using the product/service to its full potential.

So now that you know who your target audience is, the next
challenge is how to find them. There are several ways of doing so
right at your fingertips. If you do a search online for something
along the lines of “Internet market research,” you’ll get results
pointing to many Web sites and companies where you’ll find both
free and fee-based information. As you might guess, the fee-based
information is going to be much more in depth and probably
more reliable as well. A couple of the industry leaders in market
research are Nielsen NetRatings, which can be found within the
main Nielsen site at http:\\www.nielsen.com, and Quantcast (http:\\
www.quantcast.com). The extensive audience research and solutions
from companies like these offer advertising agencies an easy way to
find their target audience for any given campaign. By utilizing the
information found in their research, you’ll know that your ads are
being shown to the intended viewers thereby maximizing your
client’s advertising dollars.

Chapter 7 TRAFFICKING AND TRACKING YOUR ADS 101

Placement Availability
As I’ve said about most of the topics in this book, placing your
ads on a Web site takes forethought. Although there are some
sites that may be able to run your ad the very day you first call
them, they are getting to be few and far between. Most Web sites’
policies and procedures require advance notice before running
any ads on their pages, and exactly how far in advance can
depend on several factors. Some of the factors involved can
include things like what dates you plan on running your banners
or how many other advertisers are running ads at the same time
in the same place.

TIP
Available placements can indeed sell out on any given Web site, and it
happens more and more every year. Although it makes complete sense
that this can happen, it’s not something that everyone thinks about every
day. One way to look at it is like a time-share condo; in any given week,
there are only a certain number of hours that can be split between the
renters. Once those hours are all taken, you have to move to the next
week if you want to spend your vacation there.

It is a good idea to plan on purchasing your placements about
3 months in advance. However, there are special dates where you
may be better off getting your order in 6 months or more in
advance. The Super Bowl is a good example. We all know and
love the television commercials that air during the Super Bowl,
and with more and more of those commercials directing viewers
to Web sites, the traffic to those sites is increased by leaps and
bounds during (and after) the game. In addition to that online
traffic is the increased number of visitors to sports-related sites
leading up to, during, and after the Super Bowl. Because the traf-
fic to all of these sites grows so much during these times, they
have become prime spots for online advertising and as with any-
thing in high demand, this leads to placements selling out more
quickly.

Ad Rotation
Because I’ve used the analogy of a time-share condo to explain
placements selling out, I’ll go ahead and use it again for ad rota-
tion. If the placement itself is the condo, then your ad is a renter.
There are other renters (ads) out there that are sharing the condo
(placement) with yours, but they all get it at individual times. How-
ever, the placement isn’t normally purchased by the day or week; it
is instead purchased in blocks of 1000 impressions (each time your
ad is viewed, it’s called an impression).

102 Chapter 7 TRAFFICKING AND TRACKING YOUR ADS

A common misunderstanding about ad rotation is how the time
is split up among banners. If you maintain your own Web site, you
may have seen ad rotation scripts that other developers have so
kindly distributed free of charge. Most of them (that I’ve seen) dis-
play different ads, which have been predetermined by you, based
on percentages. For example, you may tell the script to show ban-
ner A 75% of the time and banner B the other 25% of the time.
However, running banners with ad servers doesn’t work quite
exactly the same way due to the fact that percentages vary greatly
from site to site. Where two million impressions may be equal to
1% on a very popular and busy site, that same two million may be
equal to 50% on a less popular site. So instead, the percentage is
set across the entire ad campaign. Using the same banners from
the previous example, you can look at it like this: If banner A is set
to run 75% of the time across an entire campaign then banner A
will be shown three times before banner B is displayed regardless
of the site that each ad is running on.

Ad-Server Tools
A huge plus to using an ad-serving company to host your banners is
not only the level of control you keep on your work, but the set of tools
they have available to help you achieve that control. The ad-server
tools allow you to set up your entire campaign, upload your work,
enter every piece of important information that pertains to the cam-
paign, and have the ability to actually look back at that information to
track how the campaign is performing. I’ll go into more detail on track-
ing later in this chapter.

Each ad server is different, but they all have pretty much the same
capabilities when it comes to the workflow for getting your banners up
and running. Here’s a very general breakdown of the steps involved.
1. Enter your media plan.
2. Load your banner files and landing page URL.
3. Test your banners.
4. Assign each banner to its placement to get the “tag.”
5. Send the “tag” to the site that is running your ad.

Enter Your Media Plan
The first step involved in getting your banners running on an ad
server is to enter the media plan into the ad-server tool. The media
plan will consist of items such as the placements for your banners,
the number of impressions that have been purchased for the cam-
paign, all of the costs involved with running the banners (such as
the cost of the impression), and the dates your banners will actu-
ally be running. This information will be extremely important in
tracking the performance of your ads.

Inside Advertising

When purchasing the
banner placements on
Web sites, the placements
are bought in blocks of
1000 impressions. The
price of those blocks,
which can range
anywhere from $2 all the
way up to $100–$200 for
standard Flash banners
and an additional cost
from around 80 cents to
around $5 for rich-media
banners, is known as the
cost per thousand (CPM,
where the M is the roman
numeral for one thousand).
The actual percentage that
your purchase works out to
will vary from site to site
and that percentage is
called the share of voice.

Chapter 7 TRAFFICKING AND TRACKING YOUR ADS 103

Load Your Banner Files and Landing Page URL
This step in the process is pretty self-explanatory. Each ad-server
tool has an interface that allows you to upload your files to their
servers. For each file you upload, you enter the URL (usually
referred to as the landing page URL) that users will be directed to
when they click on the banner. The URL that is entered here is the
URL that is passed in to the variable you may know as “clickTag”
(see Chapter 4).

Test Your Banners
Test, test, and test. While writing this book, I’ve come to notice just
how much testing we do on each and every banner that gets
created. I’ve also come to notice that the testing itself becomes
such second nature in the work that some of us may not even
realize just how often we’re doing it, and that’s not a bad thing by
any stretch of the imagination. As noted by this step, testing should
continue all the way through the life of a project, and testing the
banners at this point is very important because they are only a few
clicks away from being visible to the rest of the world.

Get the “Tag”
Once the banners have been uploaded and tested, it’s time to
generate the “tag” for the banner. The tag is basically a reference
back to the code that will house the banner. That code may be for
something like an iFrame or the JavaScript that will place the
banner on the page in which it will be shown. Different ad servers
may have slightly different steps for tag generation so you’ll want
to check with yours for the exact process.

Send the “Tag”
After the tag has been generated and everyone has approved the
banner, it’s time to take the final step in releasing your banner to
the world by sending the tag to the site from which you have
purchased your impressions. As I mentioned before, the tag is a
reference to a piece of code that will house your banner, and by
sending a tag to the site, you are not sending your actual files.

Tracking Your Ads
After your ads have been set up in the ad-server tools, the next
thing to do after a predetermined amount of time has passed is
track their performance. Tracking the performance of your banners
can give you a wealth of information that can be used, in part, on

104 Chapter 7 TRAFFICKING AND TRACKING YOUR ADS

future projects. You will receive information relating to how many
times the ad was viewed, how many viewers clicked on it, and
whether or not the ad ended up helping your client make a profit
on their advertising dollars. All of this information is available in
the same ad-server tools that were used to launch your banners.
It’s the reason you entered all of the details about the media plan
in step one of the previous section, and because of the tracking,
you will be able to show your client their return on investment
(ROI) in regards to a particular campaign.

TIP
When you sit down to figure out the ROI for a direct marketing campaign,
keep in mind that the number of sales for the particular product or
service may be skewed. This is due to a gray area that lies in between the
direct marketing approach and the brand awareness approach. The most
likely course of customer action that would fall into this gray area would
be if they viewed your ad for a product and then later drove to the store
to purchase (as opposed to buying online). Because the in-store purchase
cannot be directly tied to the banner view, the sale cannot be figured in
with the ROI.

Impressions, Interactions, Clicks, and More
People often get the terms impressions, interactions, and clicks
confused with one another the first few times they hear them. I’ll
go ahead and admit now that when I first came into the advertising
field, I wasn’t 100% sure if I was using each term correctly when I
spoke of them. However, I’m happy to say that I quickly caught on
and can now confidently pass the information on.

When the tag that was explained in the previous section is
called, your banner is shown and an impression is counted. Also
mentioned earlier in this chapter is the fact that the number of
times your ad will be shown is predetermined by the amount of
impressions that have been purchased in the media plan.

Interactions and clicks can be very easily mixed up just by look-
ing at the words themselves. The difference between the two is that
when an interaction is counted, it means that someone interacted
with something in the banner, but didn’t actually visit the landing
page. Interactions can be anything from rolling over a certain item
in the banner to scrolling through images in the banner. A click
is different because when a click is tracked, it means someone
literally clicked on the banner and was taken to the promoted Web
site.

Because you now have the numbers on hand for how many
times your ad was shown (impressions) and the number of times
someone clicked on the ad to visit the landing page (clicks), you

Chapter 7 TRAFFICKING AND TRACKING YOUR ADS 105

can find out what the click-through rate (CTR) is. The CTR is the
rate at which users click on your ad based on how many times it
was shown. In most cases, the math will be done for you by the
ad-server tool, but just in case, the formula is simply clicks divided
by impressions times one hundred ((clicks ÷ impressions) × 100).
So if you have 1000 impressions and 100 users clicked on the ad,
your CTR would be as follows: (100 ÷ 1000) × 100 = 10%.

Finally, a conversion is counted when a user has clicked on your
banner, been directed to the landing page, and performed the
action that you intended for him or her to perform. For example,
your banner may have directed a user to a page with an e-mail
sign-up form. If he or she fills out the form and submits it, a conver-
sion is counted. Likewise, you may have directed him or her to a
page where he or she could instantly purchase your client’s product.
Again, if he or she makes the purchase, a conversion is counted.

Determining the “Cost per Everything”
Now comes the part where you find out how well the banners are
working for their money. If you aren’t already working in the online
advertising world, you may have never heard several of the terms I’m
about to talk about. Then again, you may be working in online adver-
tising but never paid much attention to what these terms mean.
Either way, I’m about to explain a few costs that are determined by
the information gained from tracking your banners’ performance.

In regard to figuring out how well an ad was performing on a
cost basis, I was once jokingly told, “We have a cost per everything.”
There’s a cost per click, a cost per interaction, a cost per conversion,
and so on. There are formulas for figuring out each of these costs
but they will most likely be done for you in the ad-server tool. In
short, the ads that are performing better will have lower costs asso-
ciated with them, and the ones that are performing worse will have
higher costs. The importance of knowing how much each aspect of
your ad is costing comes into play on several occasions and one of
those is when it’s time to optimize the campaign.

Optimize Your Campaign
At some point, enough time will have passed that you can use the
numbers from your tracking and costs to optimize your campaign.
When you optimize your campaign, you’re making the banners
work more efficiently for the money spent, which in turn means
that your client is getting a better return on their advertising
dollars. Figuring out how exactly your campaign should be opti-
mized is pretty straightforward. The first step is to study the perfor-
mance of each banner on each site. After comparing them all
against each other to find which ones are doing better, you’ll know

106 Chapter 7 TRAFFICKING AND TRACKING YOUR ADS

which ones to remove and which ones to keep. However, removing
some and keeping some is only part of the optimization. After you
remove the ads that are performing poorly, you need to increase
the number of times the better performing ads are shown. If an ad
is performing well, increasing the number of times it’s shown will
mean even more clicks, and, as I mentioned earlier, more clicks
equals lower costs and lower costs equals happy clients.

Rich-Media Ads
There was a time when the tracking and reporting from rich-media
companies (see Chapter 6) was far less robust than the reporting
you get from a general ad-serving company. However, in the past
few years, they have expanded their capabilities to match. With
that said, trafficking and tracking rich-media ads remain a little bit
different because there is a necessary third party involved in the
process. Additionally, the final piece of reference code that you
send to your client will be different as well.

Trafficking Rich Media
When trafficking a rich-media banner, the steps taken may differ a
little from one rich-media company to another. One quick example
would be the process you might experience when trafficking your
ads through a company such as Eyeblaster, which has an online
interface (or tool) that allows you to log in to complete every step
involved in getting your ads live on the Web. Once you have logged
in to the tool, the steps are pretty straightforward and not all that
different from setting up your standard banners.
1. Enter your media plan.
2. Upload your files and enter the landing page URL.
3. Preview your banner.
4. Assign each banner to its flight.
5. Send the Eyeblaster reference to the site.

Enter Your Media Plan
Just as with the standard banners, the first thing you should do
when running your ads through Eyeblaster is enter the information
about the media plan. Again, this information includes things like
the number of impressions purchased, the costs involved, and the
placements where the ads will show.

Upload Your Files and Enter the Landing Page URL
When it comes to uploading your files, Eyeblaster has made it nice
and easy with a piece of their interface that will allow you to add a

Chapter 7 TRAFFICKING AND TRACKING YOUR ADS 107

file using a simple form. But what if you’re setting up a campaign
that is running 30 different banners? Uploading all of those Flash
files and backup images could be very tedious and time consum-
ing, so Eyeblaster went ahead and included the ability to upload
multiple files at the same time, which helps streamline your day a
little.

Preview Your Banner
After your files are uploaded, the Eyeblaster tool has an ad-preview
feature that allows you to see a fully functional version of your ad.
You can either preview it by itself on a blank background or you
have the option to see how it looks laying on top of any Web site
of your choice. Once you’re happy with it, you can e-mail a link to
the preview to yourself, your quality control team, and anyone else
who may need to approve the ad before it goes live.

Assign Each Banner to Its Flight
In the Eyeblaster tool, placements are called “flights,” and once
your ad is approved by all of the appropriate people, you can start
assigning them. When you do start assigning your ads to their
flights, remember that each individual ad can be assigned to multi-
ple flights at the same time. In other words, if you had 10 flights
that were running a 728 × 90 ad, you wouldn’t actually need to
create 10 different 728 × 90 ads unless they were visually different
from one another.

Send the Eyeblaster Reference to the Site
Sending the ads to the sites on which they will be running is a little
different when you’re using Eyeblaster as opposed to setting up a
standard banner. With Eyeblaster, you’ll use their interface to send
an e-mail to the sites (and anyone else you specify) notifying them
that the ads are ready for their review. Within the e-mail are any
notes you’ve included, as well as instructions for the recipients to
view the ads. Once they have looked over the ads, they can then
use the Eyeblaster tool to respond by approving or declining them.
If they have chosen to decline, they will write their reasons in the
response. Based on those reasons, you can make the needed
revisions and resubmit the ads until they are correct.

Tracking Rich Media
Tracking rich-media ads is similar to tracking standard ads. In fact,
the two are so similar that you can do the tracking for both with the
same ad-serving company like Atlas or DoubleClick. That also means

108 Chapter 7 TRAFFICKING AND TRACKING YOUR ADS

that all of your tracking can be in one place for a given campaign in
which you have both standard and rich-media banners. Generally,
this is possible with the use of a 1 × 1 transparent .gif file. The .gif is
loaded from the ad server (Atlas, DoubleClick, and so on) into the
rich-media placement. Each time the .gif is loaded, it gets counted as
an impression of the banner.

On top of all of your tracking being in one central location, the
reason it’s a good idea to track your rich-media banners through a
standard ad server is because the conversion reporting is far less
robust with rich-media companies (if they offer it at all). That said,
rich-media companies do report on actions like clicks, impressions,
interactions, and so forth.

Site-Served Ads
Site-served ads are simply ads that are hosted by the site on which
they are running instead of being hosted by an ad server. The
more time that passes, the more rare site-served ads have become
for several reasons. Although it may seem like less hassle and
trouble to go ahead and send your files directly to the site, you end
up with far less control, and the ability to track the performance of
the ad is greatly reduced.

ALERT!
When a banner ad is site served, you will lose many valuable pieces of
control over it, such as the ability to quickly make changes.

Loss of Control
If your banners are site served, you are going to lose a very con-
siderable amount of control over them. For example, you’ll be send-
ing the site your actual files instead of the previously mentioned
reference tag. This means that you’ll need to depend on the person
in charge of programming that site to get everything right. By turn-
ing over that control, you may find that your 728 × 90 banner was
accidentally placed in a 300 × 250 spot … without being tested.
In addition to possibly using the wrong dimensions, the code that
shows the default image in the case of a viewer not having the Flash
Player installed may not be used. Another large loss is the assurance
of knowing the ad was even placed on the site when it should have
been. The only real way you have of knowing is to take the time
to visit each individual site on which you’re running a site-served
ad (and you probably have more important things to do with
that time).

Chapter 7 TRAFFICKING AND TRACKING YOUR ADS 109

Slow Changes
If you’ve ever had to change anything online, you know how nice it
is to have direct access to the files you need to alter. But imagine
for a minute if you didn’t have access to those files. If you have
any ads being site served, you’ll run into this problem if your ban-
ner needs to be changed or replaced. There is a big difference
between using an ad server or running site-served ads when it
comes to easily making those changes, and that difference is time.
Because of the channels you’ll most likely have to go through to
change a site-served banner, it could possibly take up to a week
before the change is actually made. However, while hosting your
banners on an ad server, the same changes could be done in an
hour.

Less Tracking
Along with not knowing for sure if your ad has actually been
placed when and where it should be, your ability to track how well
your ad is performing is reduced. Of course that means less ability
to look at costs, clicks, conversions, profitability, and anything else
that falls under the tracking umbrella. With less tracking, you’ll
have a harder time knowing how well that particular banner con-
tributed to the campaign or if you should even spend money in the
future to run more ads in that same spot.

Conclusion
To wrap up this chapter, let’s take a quick walk back through it.
One of the very first steps in any banner project is the media buy,
which, as I hope I’ve shown, involves much more than simply pick-
ing up the phone and placing an order. Making sure you’re pur-
chasing the correct placements for ads means not only knowing
who your target audience are but also what they do, what sites
they visit, what they’re interested in, and much, much more. Once
you have that information, you can better decide where, when, and
how often to run your ads. That is, of course, dependent on those
times and placements being available.

Also covered in this chapter were the general steps involved in
setting up your banners in an ad-server tool. Just as a quick recap
on those steps, they were to first enter your media plan, then load
your banner files and landing page URL. The next step is to test
your banners. Once tested, you assign each banner to its placement
to get the tag and finally you send the tag to the site that is running
your ad.

Once your banners are live online, you can track their perfor-
mance and figure out how much each individual ad (and even

110 Chapter 7 TRAFFICKING AND TRACKING YOUR ADS

detailed aspects of it) is ultimately costing your client. Based on the
performance of your banners, you can then optimize the campaign
by removing poor-performing ads and increasing the share of voice
for ads that are doing better.

Another topic covered in this chapter was that of trafficking and
tracking your rich-media ads. Although there are differences
between these and trafficking/tracking standard banners, the
general process is very similar. Once it gets down to the actual
tracking, standard banners and rich-media banners are no different
at all because you can track them altogether in one location.

Finally, I talked about site-served ads. Although having your ads
hosted by the individual sites themselves is becoming an increas-
ingly rare occurrence, there may still be times when you don’t
have much choice. It’s generally a good idea to avoid site-served
ads, but if you find yourself in the situation, keep in mind (and let
your client know about) the downsides, such as slow changes, less
tracking, and less control over the placement itself.

Chapter 7 TRAFFICKING AND TRACKING YOUR ADS 111

This page intentionally left blank

8
DESIGNING MICROSITES

CHAPTER OUTLINE
Less Constraints 114

No File Size Limit 114
No Timing/Looping Limit 116

Conception 117
Lighten Up, Man 117
Let the Product Guide You 118

Know the Brand (and Learn It if You Don't) 119
Find Information 120

Navigation 122
What Can't You Do? 122
Plain or Pretty 123

Designing to Move 124
Plan to Move Users 124
Squash, Stretch, and Anticipation 125
Know When to Say When 126

Conclusion 128

As I mentioned in Chapter 2, there are similarities between
designing microsites and designing banners. If you recall, I also
mentioned that there are differences between the two as well, and
this chapter concentrates on the microsite side of things. These
differences can make designing a microsite a very exciting and fun
experience due to many factors. Factors such as no file size con-
straints, more freedom of design, and the ability to load various
types of external files at runtime all help open up the channels of
creativity required to create a microsite that will be viewed and
passed from person to person. As you read through the sections in
this chapter, you’ll notice several visual examples of microsites that
have been provided by Click Here, Inc. (Fig. 8.1 through Fig. 8.13).
• Less Constraints
• Conception
• Know the Brand (and Learn It if You Don’t)
• Navigation
• Designing to Move

Flash Advertising. DOI: 10.1016/B978-0-240-81345-5.00008-6
© 2010 Jason Fincanon. Published by Elsevier, Inc. All rights reserved. 113

Less Constraints
Before getting into a discussion about the actual designing
of microsites, I’d like to discuss a little more about some of the
differences between microsite design and banner design. More
specifically, I’d like to point out those differences that open
up the avenues of creativity by removing the invisible box of
constraints. As with just about anything else in life, when the
constraints are lifted, more brilliance is possible. On the other
hand, sometimes, when constraints are removed, more discipline
is required.

No File Size Limit
When you transition from designing banner ads into design-
ing microsites, you’ll find that one of the most noticeable
differences is the lack of file size limits. The main reason

Figure 8.1 2006 Hyundai Azera – Produced by Click Here, Inc.

114 Chapter 8 DESIGNING MICROSITES

banner ads have file size constraints is because the banners
themselves are not the main focus of the page on which they are
displayed. However, when it comes to your microsite, people
have navigated to your URL to see it and it alone. In other words,
your microsite takes a back seat to no one at its own Web
address.

With no file size limit, you are much freer to do nearly anything
you like as far as images and other aspects of a file that raise the
final size of a .swf output. Notice that I say nearly anything. I say
that because even if you are informed that the sky is the limit on
file constraints, even if you’re told that your only target audience is
in office buildings with the highest available Internet connection
speeds, and even if you’re told that your files will only be seen
across an intranet, you should always aim for the lowest possible
file size on your final output. This is where increased discipline
comes into play, and it can be very important to the success of
your microsite. Remember to shoot for the moon, but then reel it
back in a bit until you feel comfortable with the final file size and
subsequent load times.

Figure 8.2 Casio G’zOne – Produced by Click Here, Inc.

Chapter 8 DESIGNING MICROSITES 115

No Timing/Looping Limit
Your microsites obviously aren’t going to just sit there and loop an
animation over and over again, but you may have some element
on your site that does. Perhaps it’s a particle effect like sparks, fire,
or smoke, and if you ran that same element inside a banner, you’d
have to put a stop to it after a given amount of time. On the other
hand, you don’t have to worry about any of those timing or looping
constraints within your site. The main reason I mention this in a
chapter about designing is to let you know that you can feel free to
run animations and effects for any given span of time that you feel
necessary (even indefinitely if you like). You should, however, keep
processor usage and distraction from the content in mind. If your
user is too distracted from the content, then they aren’t as likely to
buy into your client’s products or services. Also, if the site has so
much going on in it that it causes the user’s browser to bog down,
they’ll be less likely to come back.

Figure 8.3 GameStop/Left 4 Dead 2 – Produced by Click Here, Inc.

116 Chapter 8 DESIGNING MICROSITES

Conception
While coming up with a design for a microsite can sometimes be very
involved and challenging, the amount of fun that can go into it makes
it worthwhile. If you compare designing a microsite to designing a full
company Web site, you’ll find that the biggest differences are usually
structure and content weight. Since company Web sites are the online
representation of the companies themselves, they usually want those
to be nice, clean, corporately structured, and full of business-related
content (depending on the client, of course). On the other hand,
microsites offer companies a more interactive and immersive escape
of sorts to show how fun and free flowing their product or service is
when it’s in your hands.

Lighten Up, Man
Like I said, microsites are typically a lot more fun than company sites.
A comparison might be like saying that if the company Web site is
equivalent to sitting in a meeting in the stuffy boardroom on the 50th
floor of a corporate glass tower, the microsite should be like doing a
base jump from the window of that same boardroom. Both scenarios
involve the same company, but the experiences are quite different.

Figure 8.4 ArcLight Cinemas – Produced by Click Here, Inc.

Chapter 8 DESIGNING MICROSITES 117

Along with being more entertaining, the microsite is also usually
a lot shorter on content than the company Web site. The simple
reason for that is because people visit the company Web site to get
information about the company itself, but people visit the microsite
to experience a product. It’s all dependent on what users are after.
If they are looking for heavy amounts of corporate information, the
company site is their target destination. If they are looking for
something that gets right to the point of a product while being big
on emotion and experience, then you’ll want to direct them to the
microsite.

Let the Product Guide You
What your client actually does is obviously very important to
the design of a microsite. There are certain industries (and even
specific products within an industry) that lend themselves to
somewhat of a predefined look and feel. Some will scream for a

Figure 8.5 Kiwi – Produced by Click Here, Inc.

118 Chapter 8 DESIGNING MICROSITES

shiny, extravagant design with lots of bells, whistles, and extra
features to amaze viewers and users, while others will call for
more of a simple, elegant, slick design. On a more detailed level,
the product itself should also influence the colors you choose. For
example, if you were designing a site about rocket engines, you
might use a combination of reds, oranges, and blues to add to the
feel and signify the fire and sky associated with rockets.

Know the Brand (and Learn It if You Don’t)
Being familiar with the brand for which you’re building a microsite
is worth mentioning again (I spoke to this topic in Chapter 2 as
well). It should significantly sway your thoughts of design for the
site just as much as the individual product if not more. But what
happens when you get a project to design a microsite for a brand
that has never been targeted at you, one that you’re not familiar
with, or one that you’ve simply never heard of? Well, it’s time to
hit the Internet and the stores to start studying up.

Figure 8.6 Dallas Symphony Orchestra – Produced by Click Here, Inc.

Chapter 8 DESIGNING MICROSITES 119

Find Information
If you’re unfamiliar with your client’s brand or product, don’t
hesitate to search around the Internet for it. In this day of free-
flowing information, you can usually find what you’re looking for
extremely fast. First off, visit the client’s current Web site to read
about them, view their products, and experience their brand as it
exists prior to your redesign. In addition to visiting their Web site,
find out who their competitors are and take a look at how they are
presenting themselves.

Another good place to look is to your friends and family. If
you are female and the brand is targeted at males, talk to some
men who might know something about the product in question.
The same can be said for any of the demographics, such as
age range. The people you’re looking for are those who actually
interact with the brand and might be able to tell you their
take on it as a consumer. Once you’ve talked to the correct peo-
ple, try to put yourself in their shoes and see the brand the way
they do.

Figure 8.7 TiVo – Produced by Click Here, Inc.

120 Chapter 8 DESIGNING MICROSITES

TIP
In addition to a company’s Web site and your friends and family,
social tools like Facebook and Twitter are an excellent source
for gathering opinions and experiences with products. You’re
almost guaranteed to get plenty of replies if you put a question out
there asking people if they’ve used product X and what they thought
about it.

Finally, look to the world around you. Everywhere you look,
something is being advertised, and there are brands being shown
around every corner. Take a look at billboards as you drive to
work, pay attention to advertising on the side of buses you pass,
don’t be so quick to skip over the ads in a magazine you’re read-
ing, and watch the commercials that interrupt your favorite televi-
sion shows. While you’re noticing all of this advertising that
surrounds you day in and day out, pay attention to those that are
similar to the brand you’re currently working with. What is most
important here is that you don’t look at the ads in terms of copying
any designs, but rather look to them for inspiration. One last
thing to pay attention to is life. Ideas can come out of any strange
little happening that you may miss. They can spur from a single
sentence that someone says to you on the elevator or from a lunch
conversation that has absolutely nothing to do with the topic.
I even have to wonder how many great advertisements were born
from some silly little thing a child said while doing nothing more
than playing with his or her toys and imagination. The point here
is to keep your eyes and ears open because you may just catch
onto something that fits perfectly with the brand.

Figure 8.8 Patrón, Simply
Perfect (create a debate) –
Produced by Click Here, Inc.

Chapter 8 DESIGNING MICROSITES 121

Navigation
Navigation is an extremely important element when it comes
to designing a microsite. Not only should the navigation menu
be easy to find, but it should also be easy to understand and
use. The most typical placement for a site’s menu is going
down the left side of the page or across the top. If there are
subsections under any menu items, they typically drop down
under the top navigation or show up beside the left menu when
a user places his or her mouse over that item. However, this is
Flash, and Flash affords us the luxury of things like interactive
animation.

What Can’t You Do?
Since we are now in the world of Flash, the question changes
from, “What else can I do with navigation?” to “What can’t I do
with navigation?” Well, there isn’t a whole lot that you can’t do,
but there are a number of things that you shouldn’t do. A quick
browsing session of Flash sites on the Internet can usually give

Figure 8.9 Patrón, Simply Perfect (join a debate) – Produced by Click Here, Inc.

122 Chapter 8 DESIGNING MICROSITES

you some ideas of both good and bad navigation. Putting
the actual look of the menu aside, you should think about aspects
like movement, interaction, readability, and the submenu (if there
is one).

Plain or Pretty
While you’re figuring out how you want the navigation to look and
move, don’t forget to consider the number one factor in the pro-
ject: your client. The menu design of some sites will have to be
plain, while others get to be more decorative and pretty. It may go
without saying, but if you’re working on a microsite for cancer
research, you’re probably not going to design the same menu as
you might for a fun-and-games site for kids. One will be more
straightforward and simple, while the other has a crazier, outside-
the-box look to it. However, both menus should be very easy to
understand and navigate. If you find that you have to include any
kind of directions telling users how to use the menu, it may be
time to rethink the design.

Figure 8.10 Patrón, Simply Perfect (watch the commercials) – Produced by Click Here, Inc.

Chapter 8 DESIGNING MICROSITES 123

Designing to Move
A couple of details that some people tend to let slip their minds
when designing are transitions and animation. When a page or sec-
tion of a Flash microsite is designed, you should always think
about what happens between the times that users click on a button
and when they arrive at the resulting destination. Will the page
simply do a “hard cut” type of change as it would with an old-
school, pre-AJAX HTML page, or will there be some movement to
get them from point A to point B?

Plan to Move Users
Since we are working with a toolset that will allow us to literally
“move” users from one section of a site to another, we should
take advantage of that when the situation calls for it. Sometimes,
the best thing to do is the hard cut, but there will be plenty of
other times when a nice quick animation will actually strengthen
what the design is attempting to portray or just make the site a

Figure 8.11 Hoovers Hoov Lane – Produced by Click Here, Inc.

124 Chapter 8 DESIGNING MICROSITES

little more interesting to navigate. If you stop and think about
some of the sites where transitions caught your eye, there’s an
extremely high chance that those animations didn’t just happen
by accident. Instead, they were very well thought out, planned,
and designed in advance of the site actually being built and pro-
grammed in Flash.

Just as I stated in Chapter 2, it’s a good idea to plan your major
animations while you are laying out the design (and even sooner
than that when you’re only visualizing the design in your head).
A very big part of that planning is making sure that you have
the assets you need to make the animation happen. Without the
correct images (or video), the person that will be animating and
programming the site can’t create the correct movement. I am
reiterating the importance of this again in this chapter because it
does happen that animations are planned without thought to how
they will be (or if they even can be) executed with the available
assets.

Squash, Stretch, and Anticipation
While the major movements of the transitions and animations
should absolutely be planned in the design phase of the project,
you would be okay to wait on the details of those movements.
When the design is handed over to the Flash developer, do your
best to let go a little while still staying involved. First, explain the
major movements that you have designed to the Flash developer.
After working with him or her to get the overall mechanics of the
animation created, ask him or her to tweak the movement accord-
ingly. In other words, let him or her work out and create the details
to making the animation feel as it should rather than just suddenly
moving from one point to the next. For example, you may have a
ball in your design that you want to get from one side of the screen
to the other, and the major movement you’ve decided on is boun-
cing (as opposed to rolling or being thrown). Let the Flash develo-
per know your thoughts and work with him or her on getting the
general bounce animated. Then, walk away and let him or her
apply the details such as the general animation rules of squash,
stretch, and anticipation. During all this tweaking, remember that
there could be a couple of projects where timelines/deadlines may
not allow for all the tweaks you’d like to see. If you find yourself in
that situation, try to think of which animations and tweaks are the
most important and which ones will be okay with simply moving
an object from point A to point B. The bottom line is to trust
the Flash developers with the work. After all, it’s what they do for a
living, right?

Chapter 8 DESIGNING MICROSITES 125

Know When to Say When
Knowing when to stop animating is just as important as knowing
what to animate and when to animate it. Knowing when to stop ani-
mating also means more than one thing: it means not overanimating
the microsite (unless the brand calls for it), it means animating at
the right speeds and intervals, and it means knowing when to stop
making changes to the animations.

Overanimation of a microsite can get very annoying to a visitor
very quickly. That is unless the overanimation enhances the
experience of the brand. As with several other design and anima-
tion rules, this one will apply differently to different projects.
The main thing is to pay attention to how much animation you
have happening within the site that doesn’t serve much of a pur-
pose, like getting a user from one section to the next. Again,
you’ll have to make a judgment call on this from project to
project.

The speed and frequency at which an animation happens
is also something that can either keep users coming back to

Figure 8.12 Pork Recipes – Produced by Click Here, Inc.

126 Chapter 8 DESIGNING MICROSITES

your site or drive them away after the first visit. How many
Flash-based sites have you visited where every little move you
made played an animation before you could get where you
wanted to go? And how many sites have you been to where you
find yourself waiting longer than you feel you should for those
animations to finish? How about sites where you spend more
time watching things animate than you spend actually reading
the content? Your visitors have most likely experienced the same
thing at other sites as well. That’s why it’s important to use
animations and transitions quickly and only where they help add
to the experience of the site.

A final list of all the major animations should be decided on
prior to animating and programming the site. Any new animations
that are thought of after the site is in full swing of production
could possibly set the timeline back depending on the complexity
of the new movements. While changes to the site are definitely
going to be inevitable in some cases, try your hardest to avoid
adding new animations or even changing the existing ones too
drastically. Depending on exactly how the site in question is built,
retrofitting it for a new animation may even mean having to
scrap and rebuild parts that could have taken hours to complete
the first time.

Figure 8.13 Mix & Match Pork – Produced by Click Here, Inc.

Chapter 8 DESIGNING MICROSITES 127

Conclusion
Designing for microsites has a few different steps and several of
the same steps as designing for banner ads. Going back over
some of those steps in this chapter, you’ll see that one big differ-
ence between the two is the fact that you aren’t constrained by
final file size or time limits when you’re working on a microsite.
However, while more and more people are moving to some form
of broadband Internet connection, you should still try to keep
your files and your site from getting too bloated. If you make
people wait too long to see your microsite, they may give up and
leave.

Coming up with a concept for microsites is similar to coming
up with a concept for banners, but more detailed and on a larger
scale. Your clients want their product (and brand) to be remem-
bered, and your design will help them accomplish that goal.
Remember that this isn’t your client’s corporate Web site, so
depending on the product and where it takes you, keep your con-
cepts from being too stuffy and strict. In other words, try to design
for users to have a memorable experience rather than forcing them
to read a bunch of legal copy.

Part of being able to create concepts for a new microsite is to
know something about the product and the brand. If it’s a brand
that you’re already familiar with, then ideas should start generating
in your head right away based on your past experiences with it.
On the other hand, it may not be anything that you’ve ever come
in contact with and that means you’ll need to do a little research
to get a feel for the brand. One way to find your answer is talking
to people you know who fall into the target audience of the
product.

Menu design is very important on a microsite. It’s how users
will find their way to new areas of the experience, and they should
be able to do so very easily. Just like the overall design itself, the
layout of the menu is going to be dependent on the client or pro-
duct involved. For some, you’ll need to stick with the classic left or
top menu bar, while others will call for something more creative
and fun. The most important thing to remember in designing the
menu is to make it easy and intuitive. Otherwise, you may end up
with users who leave too soon simply because they got confused
on how to navigate the site.

Finally, think about how your design will live and breathe.
You’re designing a microsite that will be built in Flash, so go
ahead and design some animation and transitions while you’re
at it. However, remember to actually plan those movements
while you work. Make sure you have all the assets that will be
needed in order to create those animations in advance of hand-
ing the design over to the Flash developer. Once you do hand it

128 Chapter 8 DESIGNING MICROSITES

over, work with the developer to get the major motions and
mechanics of the animation created. After that, let go and turn
over some creative control to let the developer flesh out the
small details in the movement. Once everyone is happy with
all the animations, and aside from changes that absolutely
must be made, try to keep from making big modifications or
additions in terms of the animations themselves. Afterthoughts
and retrofitting animation could possibly push a project over its
deadline.

Chapter 8 DESIGNING MICROSITES 129

This page intentionally left blank

9
PREPARING AND BUILDING
MICROSITES

CHAPTER OUTLINE
Choosing Your Tools 132

Flash 132
Flash Builder (Flex) 133
Other Tools 134

Planning Your Work 135
Collecting Assets 136
Building to Standards 137
HTML and JavaScript 139
No-Flash Backup 140
Deep Linking 141
Collecting User Data 146
Quality Control 148

Development Environment 149
Staging Environment 150

Conclusion 150

As I’ve mentioned before, a microsite is exactly what it claims to be:
a site that is smaller than a regular, full-size site. You could probably
also guess that building a microsite is a good deal different than
building a banner. For starters, there’s going to be a lot more infor-
mation and interactivity available for your audience on a microsite
than on a banner. Despite the differences, there will also be similari-
ties between the two projects. As with building a round of banners,
you’ll need to plan out how you’re going to work on the microsite.
You’ll also need to make sure you have assets in order and a backup
plan for users who have disabled the Flash Player and/or JavaScript.
If you’ve already read Chapter 3, you’ll notice some of the similari-
ties and differences in preparing and building microsites as you read
through this chapter, which is broken into the following sections:
• Choosing Your Tools
• Planning Your Work
• Collecting Assets
• Building to Standards

Flash Advertising. DOI: 10.1016/B978-0-240-81345-5.00009-8
© 2010 Jason Fincanon. Published by Elsevier, Inc. All rights reserved. 131

• HTML and JavaScript
• No-Flash Backup
• Deep Linking
• Collecting User Data
• Quality Control

Choosing Your Tools
When you’re tasked with building a Flash Web site, it doesn’t
necessarily mean that you’ll be working in the Flash IDE. It really just
means that you’ll be using one (or more) of several choices of tools to
compile .swf files for users to view and interact with in the Flash
Player. The tools you use will depend on several factors ranging from
the project requirements to your personal experience level to budgets.
Oh, and let’s not forget a few more important factors like the capabil-
ities of a given tool or the ease of execution of a given task. For
example, a project with a lot of animation is probably going to call for
Flash Professional CS5 over Flash Builder 4. On the other side of that
example and in my own personal experience, Flash Builder is
probably going to be a better choice for a project that’s more about
data (HTTPService, WebService, and so on) and less about animation.
Of course when it comes to making things look pretty, both options
are outstanding and you’re only bound by your creativity.

Flash
As I was saying, one option you have when you’re creating a Flash
Web site is to do so with Flash itself and this is the most likely
option when you’re talking about microsites in the realm of advertis-
ing. For this book, I’m using Flash Professional CS5 (Fig. 9.1) but
CS4 and CS3 are obviously still extremely valid options. If you’re

Figure 9.1 Flash Professional CS5.

132 Chapter 9 PREPARING AND BUILDING MICROSITES

reading this book, I have to assume that you’re at least somewhat
familiar with Flash so I won’t spend a huge amount of time describ-
ing it in depth. However, I’ll go ahead with a very quick background
and talk about it at a bit of a high level for anyone who happens to
be reading this who isn’t a Flash developer or designer (i.e., project
managers, and so on).

Although Flash has been around since 1996, most people didn’t
know about it until a little later as it started showing up in more
and more places on the Internet. At that time, it was primarily
used and known for Web sites with large amounts of animations
and glitzy little spinning and blinking effects. Due to the fact that
most of those sites were way bigger in file size than they really had
any business being in a primarily dial-up connection world, Flash
also started being known as a way to show an “intro” for your site
while it loaded. Fast forward to today since I said I’d keep it high
level and the Flash experience has matured by leaps and bounds in
terms of user experience and interaction design. Today, it’s very
easy to find that Flash is used to create everything from banners
and full-blown Web sites to games and applications.

When you’re looking at Flash as a possible candidate for a given
project, or even just a task within a project, one of the main things
you’ll want to consider is animation. If you’re dealing with animated
assets like characters with walk/run cycles, your life will be much
easier if you create those animations on the timeline as opposed to
trying to write code to accomplish the same thing. Another thing
that would make Flash the ideal choice is if the design is very image
heavy and there are a lot of cut images to work with. Finally, the
final .swf size is typically smaller when published from Flash as
opposed to Flex/Flash Builder because it doesn’t need to compile
the Flex framework in with your project. Speaking of Flash Builder,
let’s look at that option next.

Flash Builder (Flex)
So another option that you may find yourself considering is Flex.
There are a number of ways to work with Flex including (but not
limited to) using the text editor of your choice in conjunction with
the free SDK (Software Development Kit) or working in Flash
Builder 4 (Fig. 9.2), which was previously named Flex Builder. If
you’ve downloaded and installed Flash Builder, then you’ve also
installed the Flex SDK and you’re ready to go.

Although Flash is going to be the choice more often in advertis-
ing, there will still be times when you’ll want to use Flex because
of its feature set or because of the project requirements. A few
things that might make you lean toward Flex for a microsite would
be data collection, charting/data visualization, or certain classes
that are included in the Flex framework but aren’t available in Flash.

Chapter 9 PREPARING AND BUILDING MICROSITES 133

For example, you may have a contest microsite where you’ve built
several forms for collecting information from the user. With the vali-
dators that are available in Flex (EmailValidator, PhoneNumberVali-
dator, and so on), you can validate the information a lot easier than
you would be able to while working in Flash. A broad, general rule
of thumb that I like to use if I’m considering Flex/Flash Builder for a
project is this: If it performs more like a data-centric application
than an “experience,” Flex may very well be the answer. That think-
ing also ties in with how heavy the project is on graphical assets,
movement, transitional animations, and so on.

TIP
Even if you’re using the various validators in Flex, you should still per-
form server-side validation of any data sent across.

Other Tools
In addition to Flash Professional CS5 and Flash Builder 4, there
are many other tools available for you to work with when it comes
to writing the code for your project. Depending on what you’re
looking for and what operating system you’re working on, your
choices range from free to a small fee to hundreds of dollars.
Some of the options are much more robust than others in that
they include features like code hinting, formatting, debugging, and
even launching a test movie from the editor (through Flash). With
all of that said, I’d like to suggest you do a bit of research into
what tools work best for you. To get you started in that direction,
do a quick search and take a look at tools like FDT, FlashDevelop,
and TextMate.

Figure 9.2 Flash Builder 4 Premium.

134 Chapter 9 PREPARING AND BUILDING MICROSITES

Planning Your Work
Having a good plan in place before working on any project is price-
less. If you get into a project and find out that things weren’t
planned out quite well enough after spending a good amount of
hours on it, you just may find yourself in a very troublesome posi-
tion. You may find that you have to change so much in the site to
accommodate for the lack of planning that you end up reverting
back by half of the time already spent.

So where do you start to plan for your build? Discuss with the
artist on the project, of course. Before the artist designed and laid
out the site, there was already some planning in place. Planning of
what the client wanted to accomplish, a wireframe of the site,
possible paths that users might take to navigate the site, and so on.
That planning should have played a major role in how the site was
designed from a creative standpoint and that artist has a vision of
how it should all tie together.

Inside Advertising

A site wireframe is a
diagrammed skeleton of the
site itself. It contains all of
the navigation items and
how each one ties into or
connects with the others. By
looking at the wireframe,
you can see possible paths
of navigation and how
many pages deep a given
section of the site may go.
On some pages, you can
see processes that may
occur and a general outline
of the content, as well as
the importance of a given
piece of content. Figure 9.3
is an example of a single
page from a site
wireframe.

Figure 9.3 Example page from a site wireframe.

Chapter 9 PREPARING AND BUILDING MICROSITES 135

ALERT!
When you’re creating and working with information architecture docu-
ments, such as site maps and wireframes, it is very important to let your
clients know that those items are intended to show site organization and
content hierarchy/importance, not design. On top of verbally informing
them of this, you may also consider including it on the documents them-
selves. Simply place a sentence like, “These documents are not intended
to show design, only to inventory page contents and relationships” in a
place where they will be seen on each page.

While you are talking to the artist, get as many details as you
can and take plenty of notes on his answers. Don’t be scared to ask
about anything no matter how small it may seem because you will
often find out that not everything was thought of beforehand. If
there are multiple pages in the site, how will you transit between
them? Do the buttons have rollover states and are menu items ani-
mated or do they just cut from the up state to the over state? What
if a user clicks that button right there? And that button? Where
does this button take the user? You get the idea. The point to this
line of questioning is multifaceted: on one side, you need to know
how the site will live and breathe; on another side, you need to
know how the site will react to certain interactions; and on yet
another side, you and the artist can (and should) try to detach
yourselves from the project and think like an outside user.

Another thing to do while you are in the planning phase is to
think about the code you’ll be writing. When you’re talking with
the artist about the features and functionality of the site, make
mental notes about what code you might need to complete each
item. Better yet, write down those mental notes so you don’t forget.
Also, think about past projects you’ve worked on. You may find
that you worked on another site or even a round of banners that
have code you can use in the form of classes or snippets. If you do
happen to think of such a project, you’ll know that you can already
plan on saving a little development time by reusing that code.

Collecting Assets
Before you can actually build a microsite, you’ll need to know what
it’s going to look like, right? Okay, so the artist on your team has
designed the layout of the site and hopefully given that layout to
you in at least the form of a Photoshop file (and possibly print-
outs). That layout is your guide and template for this project and
your goal is to mimic it as closely as you can. And that doesn’t just
mean images either. You’ll also need to pay attention to aspects
like the typography. There’s an art to everything you see in the
layout and the text is no exception. Kerning, tracking, leading,

136 Chapter 9 PREPARING AND BUILDING MICROSITES

ragging – every bit of it is as intentional as the location of the client
logo or the menu item names, and you can’t forget to build it into
the site the same as it appears in the design.

Speaking of typography, another asset to collect is fonts, and
you’ll need to get your hands on any that the artist used in the lay-
out. If you don’t have a place on your servers where you store fonts,
ask the artist to get you the fonts you need to build the site. Because
the artist used the fonts in the design, he or she should be able to
get them for you. Be sure to get exactly the right fonts too. Most
fonts have different sets even for the bold or italic versions. If you
only get the “regular” version of a font and then try to add bold or
italics inside Flash, you may end up with a font that appears slightly
different than the one you should actually be using, and that could
make enough of a difference in the end product that you may not
get creative approval (or client approval for that matter).

Any imagery within the design will need to be exported from
the layout for use in your site. A lot of times, there can be a mix-
ture of both raster and vector art. Looking back at Chapter 3, you’ll
remember that raster images are defined as images that are a
rectangular grid of pixels with individually defined colors. Although
raster graphics are generally larger than vector graphics in file size,
they will be required for many parts of your work such as photo-
graphs of client products. Again referring back to Chapter 3, when
cutting raster images from Photoshop, you should give yourself
about three pixels of cushion between the edge of the object in the
image and the edge of the crop area if you can.

Vector graphics are different than raster graphics in that they are
not based on a set grid of pixels. Instead, vector graphics use mathe-
matics with primitive shapes like points, lines, and curves. Vector
graphics also scale much more gracefully than raster graphics. As a
matter of fact, you can scale a vector graphic indefinitely with no loss
to the quality of the image it creates. Try that with a raster image and
you’ll end up with a poor-quality, pixilated picture that looks more
like a piece of blurry mosaic art than the image you started with.

Any time you have a piece of the design that can be built with
vector art, you should do your best to build it that way. If, however,
the artist on the project has already built it as a vector graphic, you
should be able to export it from Photoshop, Illustrator, and so forth
and bring it directly into Flash. This will ensure that you are keep-
ing exactly to the layout as it was originally designed.

Building to Standards
As I covered in Chapter 3, it’s a good idea to find a naming conven-
tion and stick with it. Whether it’s you developing the site on your
own or a team that you’re a part of, a good naming convention just

Chapter 9 PREPARING AND BUILDING MICROSITES 137

makes everything that much easier to find and work with. Table 9.1
contains the same examples I used in the “Conventions and Best
Practices” section of Chapter 3, but I thought I’d include it again for
people like myself who tend to flip around in books.

Separating your site into different files is another good practice
to get into. You gain several benefits when you compartmentalize
your work in this way. One of those benefits is the option to easily
split the project among more than one developer where each per-
son works on a set number of sections in the site. You also gain
the benefit of quickly isolating and resolving issues and errors with
the site. For example, a bug might be reported to you that only
happens in the “About Us” section of a site you’ve just passed on
to quality control. Because each section of your site is broken out
to its own file(s), you’re going to have a 99.9% chance that you
know exactly which file to open to fix the bug. Additionally, since
that file doesn’t contain the entire site itself, you won’t have to dig
through any overly large libraries or classes to find the culprit of
your problem.

Because we’re talking about compartmentalizing your work, let’s
talk a bit about classes. I’ll be completely honest here and admit
that I didn’t make any real use of classes until just before Action-
Script 3 came out. During the days of ActionScript 2, I was big on
putting the majority of my code on the timeline, and the most I
strived for was to get as much of it on the first frame of the main
timeline as I could. Now I find myself striving to have as little code
on the timeline as I possibly can while reminding myself and
understanding that sometimes it’s necessary and it’s definitely not
any kind of a sin. Quickly for those who aren’t familiar with classes,
ActionScript classes are files with the .as extension and they can
contain the code to do anything from completing a simple task like
dispatching a custom event to building entire custom components.
Something else worth noting is that while writing classes with
ActionScript 2 was more forgiving in its rules, ActionScript 3 has
changed that leniency. In the years since ActionScript 3 was
released, there has been much debate in the development commu-
nity about whether or not that strictness is a good thing or not. As
a matter of fact, you can probably still find developers discussing if

Table 9.1 Naming Convention Examples

MovieClip containing a form formMovieClip
TextInput for user’s e-mail address emailTextInput
Button to submit a form submitButton
Sound object for background music musicSound

138 Chapter 9 PREPARING AND BUILDING MICROSITES

it has made the language stronger or if it just made us have to
write more code to accomplish the same tasks. My quick take on it
is that it’s a great thing because it seems to have done a lot to
change the strength, speed, and quality of the code itself. For more
detailed information on ActionScript, give a visit to the ActionScript
Technology Center on the Adobe Web site at http://www.adobe.
com/devnet/actionscript/ (Fig. 9.4). There they list plenty of learn-
ing resources, tutorials, and so on. At the time of writing this, you
can also find a section for ActionScript 2 tutorials and one for
migrating from ActionScript 2 to ActionScript 3.

HTML and JavaScript
Referring back to the “HTML and JavaScript” section of Chapter 3,
you’ll find some information and quick examples of SWFObject.
Although that section of the book was covering banners, the same
methods are used to implement SWFObject in the case of a micro-
site. As a matter of fact, the same methods are used to implement
it with any .swf. The main difference between using it with a site
versus a banner is the HTML you end up putting in the containing
div and we’ll talk more about that in the next section. If you haven’t
read it already, turn back to Chapter 3 and give a quick read to the
section about SWFObject.

Figure 9.4 The ActionScript Technology Center on the Adobe Web site.

Chapter 9 PREPARING AND BUILDING MICROSITES 139

No-Flash Backup
It’s probably because of being a Flash Platform developer, but I
don’t completely understand why some users choose to disable the
Flash Player in their browsers. I hear their reasons, but I still think
they’re just missing out on so much of the truly rich, interactive
Web. At any rate, it happens and we need to be prepared for it.
There are several options to choose from when it comes to a no-
Flash backup, so let’s discuss some of them and you can decide
which is best for your project.

One option is to present users with an image or some text that
lets them know that they need the Flash Player to view your site.
Although you may choose to take this route, there are some down-
sides that go along with it. If you limit your site to Flash only, you
limit the potential reach of your client’s information. Your clients
are trying to sell their product and they are relying on you to help
them do so. If you have any control over it, you should avoid this
option and save it as a last resort.

Another option is to have a landing page that gives the user
an option of a Flash site or a non-Flash site. This option at least
lets the Flash-disabled person get to the content of the site. But
who likes the old “choose your own adventure” landing page any-
more, right? All the more reason to take advantage of SWFObject.
If the user’s Flash Player is disabled, they’ll get to see the HTML
you placed inside that div that we keep talking about. Well now,
you’ve just saved your audience from an extra click and took care
of it for them while also making sure they were able to get to the
information they were trying to find in the first place. That’s
mighty thoughtful of you. So what about the fact that you’ve only
built one page worth of information within that div? Build a
menu into that page for access to other pages. In other words,
build it as if it’s the home page to a non-Flash site (because it
really is).

With this site behind the site, you’re allowing full access to all of
the information that you are trying to get to the user. Also, by using
the same information in the non-Flash site that you use in the
Flash site, your information can be found by search engines and
that’s obviously another plus. In order to handle the links that will
be indexed by the search engines, you’ll want to include some
form of deep linking into your Flash site. Let’s jump in to another
scenario real quick: Pretend for a moment that a user is searching
for a product that your client sells. The user presses the search but-
ton and a link to the microsite you’ve built is within the results.
This link could appear in many ways depending on which language
you’ve chosen to write your non-Flash site. One example might be
PHP where the link looks something like this: http://www.yoursite.
com/pages.php?p=prod. The important part of that URL is the

140 Chapter 9 PREPARING AND BUILDING MICROSITES

variable “p” on the end. We’ll take the value of that variable, pass it
in to the Flash site, and have the Flash site respond accordingly. In
our scenario, the value of p is “prod” and we know that we want to
see the products page.

I won’t go any further into the non-Flash site itself because
that’s another book on another language all together. But let’s go
ahead and discuss a bit about deep linking.

TIP
While I use PHP as the example language in my non-Flash site scenario,
remember that you can use your language of choice as long as you pass
the correct variable(s) into the Flash site. I remember a particular project
I worked on that used Ruby on Rails for the backend. The deep linking
worked in such a way that the URL might read “http://www.yoursite.com/
123” and the Flash movie would receive the “123” from the end and
know where to go within the site.

Deep Linking
Deep linking in a Flash site is not as hard as you might first think it
is, and as with most things, there is more than one way to accom-
plish it, so let’s quickly run over them in no particular order of
importance or preference. We’ll get back to the PHP query string
example in a minute, but first let’s take a look at frame anchors.
Frame anchors work much like HTML anchors because they mark
frames on the timeline where the .swf will jump to in the event
that the URL includes a reference to them. Also like an HTML
anchor, the URL uses the pound sign (£) as the anchor identifier.
Example 9.1 shows a possible URL pointing to the “About Us” sec-
tion of yoursite.com.

EXAMPLE 9.1
Sample URL for use with frame anchors
http://www.yoursite.com/#about

Setting up a frame anchor is exactly like setting a frame
label except that you’ll set the label type to “Anchor” instead of
“Name” (Fig. 9.5). And once you’ve given the frame anchor a name,
you’ll notice the anchor icon on the frame that you anchored to
(Fig. 9.6).

After you have your anchors set up, you’ll need to change the
“Template” in the HTML Publish Settings to “Flash with Named
Anchors” (Fig. 9.7). Changing that setting tells Flash that it needs
to add a little extra to the HTML wrapper in order for the frame
anchors to actually work. More specifically, you should notice

Chapter 9 PREPARING AND BUILDING MICROSITES 141

something similar to Example 9.2 added to your HTML. As you can
imagine, if you’re not using the default HTML that the Flash IDE
pumps out, you’ll need to extract these extra bits and put them in
your HTML.

Figure 9.6 The frame anchor icon.

Figure 9.5 Select “Anchor” from the type selection for the frame label.

142 Chapter 9 PREPARING AND BUILDING MICROSITES

Figure 9.7 Changing the HTML Template to “Flash with Named Anchors.”

Chapter 9 PREPARING AND BUILDING MICROSITES 143

EXAMPLE 9.2
Extra bits added to your HTML when using the “Flash with Named
Anchors” template
...
<script language=“JavaScript”>

// This is only needed for Netscape browsers.
function flashGetHref() { return location.href; }
function flashPutHref(href) { location.href = href; }
function flashGetTitle() { return document.title; }
function flashPutTitle(title) { document.title = title; }

</script>
...
<!--bookmarks used in the movie-->

...

Now getting back to the query string I talked about in the pre-
vious section, you could potentially do much more than just jump
to a frame on the timeline. Let’s say you want to run some code
before you take the user to a given page/section and that code
needs to be completely different, depending on the value of the
variable in the query string. Or maybe there are cases where you
don’t even want to change the page but you do want to run some
code. Example 9.3 should give you an idea as to how you might
like to handle the issue yourself.

EXAMPLE 9.3
Handling deep linking with a switch statement
switch(stage.loaderInfo.parameters.p){

case “home”:
gotoAndStop(“homePage”);
break;

case “about”:
someFunction();
gotoAndStop(“aboutUs”);
break;

case “contact”:
launchContactForm();
break;

default;
break;

}

144 Chapter 9 PREPARING AND BUILDING MICROSITES

In this example, we’re using a switch statement to determine
where the user is trying to go. The value for the variable “p” has
been passed into your movie through FlashVars, and we need
to look at the parameters of the loaderInfo to find out exactly
what that value is. Depending on which case evaluates to true, we
handle things differently. Something to remember if you’re going
the route of frame anchors or query strings passed in through

Figure 9.8 “Enable integration with browser navigation.”

Chapter 9 PREPARING AND BUILDING MICROSITES 145

FlashVars is that once the user comes to the site, then that URL is
going to stay as it was when they got there. That may be perfectly
fine, but if you want the URL to update as they work their way
through the site, you’ll need to write up some code to handle it.
However, if you’re thinking about doing that, you may want to
reconsider because someone else has already taken care of it
for you.

Another option for deep linking is SWFAddress by Asual.
SWFAddress works with SWFObject and not only does it provide
you with deep linking in your Flash and Flex sites, but also enables
use of the Back, Forward, and Refresh buttons in your browser. It
does this by utilizing the ExternalInterface functionality introduced
in Flash Player 8 and, at the time of this writing, supports the
following browsers: Mozilla Firefox 1+, Camino 1+, Internet
Explorer 6+, Safari 1.3+, Opera 9.5+, and Chrome 1+. To download
SWFAddress and read much more information about it, visit http://
www.asual.com/swfaddress/.

While we’re talking about deep linking, I should also go
ahead and mention the BrowserManager in Flex. Along with
the URLUtil class, the BrowserManager class enables you to
access the URL and more specifically, the portions (or “frag-
ments”) of the URL that are found after the pound sign. The
pound sign works just like the question mark in a URL in that it
marks the beginning of a query string or set of parameters.
In order for this deep linking to work, your HTML wrapper needs
a few extra files that Flash Builder should include for you.
Those files are history.css, history.js, and historyFrame.html. To
enable deep linking in your Flash Builder project, you need to
make sure that the “Enable integration with browser navigation”
option is selected in the Flex Compiler section of your project
properties (Fig. 9.8).

Collecting User Data
Microsites are a prime location to collect information about your
users. They are also a great place to give those users an opportu-
nity to sign up for information about your client. Maybe your
client has a monthly newsletter that they offer from their main
site, but they want potential customers to have access to it from
the microsite as well. Or maybe your client wants to know
whether users have been to their physical storefronts and how
they would rate their experience. In any case, you’ll be collecting
information from the users, and the forms you build will be
determined by the end goal of what that information is going to
be used for.

146 Chapter 9 PREPARING AND BUILDING MICROSITES

Going back to Chapter 4, remember that I
talked about the amount of file size that is taken
up by Flash components such as the ComboBox.
Do you also remember how I went on to suggest
building your own custom components to save
that file size? Well, while file size is still impor-
tant in your microsites, it’s not quite as impera-
tive that you stay under a given amount. If
you’re in any kind of situation where you might
be running tight on your deadline and you still
need to build out a form, you might stick with
the Flash components. If you need them to
match the color scheme of the site, you can
still skin them. However, if you have the time to
create your own components or if they already
exist, you can make the choice of which compo-
nent to use in your forms: Flash’s components
or yours.

Once you have the forms built, you’ll need to process and
store the information being given to you. To do this from within
Flash, you’ll need an outside processing page. The processing
page can be the same as one you might use for a non-Flash site.
As a matter of fact, you could even build a single processing
page for your Flash site and your non-Flash backup site. The
only thing you’ll need to make sure you know is the name/value
pairs for the fields in the form. As with the non-Flash backup
site, your processing page can be in any one of many choices of
programming languages such as PHP, .NET, Ruby on Rails, and
so on. Once you pass the user’s information to the processing
page, it will most likely be stored in a database for later use. I’ll
get into some of those uses in just a bit, but first let’s take a look
at Example 9.4 and how to pass that information to the proces-
sing page using URLRequest and URLVariables. For the example,
we’ll assume your form has a “Submit” button and text
fields labeled “First Name,” “Last Name,” and “Zip Code,” as in
Fig. 9.9.

EXAMPLE 9.4
Handling form information.
function submitForm (e:MouseEvent):void{

var urlRequest:URLRequest = new
URLRequest(“http://www.yoursite.com/processingpage.php”);

var urlVariables:URLVariables = new URLVariables();
urlRequest.method = URLRequestMethod.POST;
urlRequest.data = urlVariables;
urlVariables.userFirst = firstNameInput.text;

Figure 9.9 An example of a simple form in Flash.

Chapter 9 PREPARING AND BUILDING MICROSITES 147

urlVariables.userLast = lastNameInput.text;
urlVariables.userZip = zipCodeInput.text;
navigateToURL(urlRequest, “_self”);

}

So here’s a quick rundown of what’s going on in Example 9.4. The
first thing that happens in this submitForm function is that we set up a
URLRequest and point it to our processing page. Next, we set up a
URLVariables object and set the method of the URLRequest to
“POST.” After that we assign the URLVariables to the data property of
your URLRequest and set up all of the name/value pairs. Finally, we
call out to the processing page with navigateToURL.

Captured information about visitors can be used by your client
to offer periodic e-mails such as updates, newsletters, or limited-
time sale offers. Because the Federal Trade Commission (FTC)
made the CAN-SPAM Act law effective in January 2004, there are a
set of rules that must be followed. These rules are very important
for you to know because if they are broken, there may be legal
consequences such as sizeable fines. Some of the overall rules to
follow are that you should not be misleading about who has sent
the e-mail, don’t be deceptive in the subject line, and give users the
ability to “opt-out” of your e-mails.

ALERT!
When allowing users to sign up to receive any kind of e-mails from your
client, you should be fully aware of the CAN-SPAM Act. If you are not
familiar with this law, please take the time to learn about it on the FTC
Web site at http://www.ftc.gov/spam/.

The opt-out feature gives a user the choice to stop receiving
e-mails from your client, and there must be backend code in place
to handle these requests for a certain amount of time after you send
the e-mail. One thing you don’t want to do is make your client’s
customers unhappy with them, and forcing unsolicited e-mails to
their inboxes would most likely do just that.

Quality Control
You didn’t think you were going to get out of this chapter without
someone testing your work and trying to break it, did you? If so,
think again. Everything you build should not only be continually
tested by you but also by someone else and preferably by someone
whose actual job description involves testing and quality control.
You should send your banners through a quality control process,

148 Chapter 9 PREPARING AND BUILDING MICROSITES

and you should definitely send your microsites through one as
well. Although some microsites can be very small and live up to
their namesake, some of them can be very deceivingly wide
and involved. Generally, common sense tells us that the wider and
more involved something is, the more potential it has to be proble-
matic for us. You could carry that thought over to your microsites
and say that the more pages, sections, and functionalities it has,
the more chances there are that you’ll come across some errors
and bugs.

Because your microsite is most likely larger than your banners,
it will require more time for the quality control person to test it.
There are pages to click through, scenarios to enact, and generally
much more for them to try to make it break. So I ask you this:
Should they (a) wait until you are completely finished before they
start testing, or (b) test while you are working on it? The best
answer here is (b). For the best results on that answer, you’ll
need to keep in close contact with the quality control person the
entire time you’re working on the site. The general idea is that
you do several builds in succession of one another. Your first
build might consist of as little as the navigation menu. Have qual-
ity control make sure that they can’t break the navigation and
also let them know it’s working by placing a dynamic text field on
the stage to tell them what section they just clicked on. From
there, you add more and more to the site until you have it
entirely built out. The advantage here is that quality control can
inform you of bugs before they become a part of a larger problem.
Now, to avoid the fact that they can’t really test something that
you keep changing while you’re working, you’ll need to set up
two environments: the development environment and the staging
environment.

TIP
When working with gradual builds of a site for quality control, be sure to
let them know of any issues you are already aware of and working on.
Also let them know of parts of the site that are in progress and will prob-
ably break. This will keep quality control from spending time on nonbugs,
and it will also keep you from having to sift them out.

Development Environment
The development (dev) environment is where you’ll do most of
your own testing and work on your microsites. The environment
for each site will differ according to the site itself and the dev ser-
ver should be set up exactly how the live server will be. If the final
live site will be using Linux, Ruby on Rails, and a MySQL database,

Chapter 9 PREPARING AND BUILDING MICROSITES 149

that’s exactly what should be set up on the dev server. Because
this is the first place you’ll be able to tie your Flash work in
with the backend, this area should be thought of as your develop-
ment team’s own private sandbox. Anyone looking at the site on
this server should most likely expect bugs and glitches right up
until the end of the project.

Although accessing data that resides on the dev server is com-
pletely possible from your local computer, you should also be sure
to test your Flash movies from the server as well. Because the
development environment is set up to mimic the live site, it’s an
excellent source for discovery and problem solving. You may find
the occasional issues that arise only after you move your files to a
server, and you’ll be able to solve those problems before the site
goes live.

Staging Environment
The staging environment should also be set up to mimic the
live site. Because the backend languages, databases, server soft-
ware, and anything else that may be specific to the site are all the
same as the dev server, you can simply move your files over once
they are ready to be tested by quality control and viewed for
internal approval. You can think of the staging environment like a
rehearsal of sorts where your site is practicing to perform for the
world.

Conclusion
As you can see from this chapter, there are a few similarities
between building a banner and building a microsite. However,
there are also many differences like menus, pages, deep linking,
and so on. A big part of either project is planning. Without a good
plan, your site can very easily start to spin out of control and be
hard to get back on track. Once you have a plan in place, you can
start collecting assets you’ll need to build the site (don’t forget
about the fonts your artist used in the layout). Something else I
talked about in this chapter was standardizing your projects by
means of naming conventions used for your files, objects in Flash,
code, and so on. Having your files and code set up in such a way
that it is completely understandable and reusable is very impor-
tant because it makes projects run a lot more smoothly. After the
standards, I went into the topic of the HTML page that houses
your Flash files and the site behind the site that allows users with-
out Flash to still access the information they are trying to reach.
Additionally, I talked a bit about deep linking into your Flash
movie, gave a couple of quick options on how to do so, and a

150 Chapter 9 PREPARING AND BUILDING MICROSITES

little information on SWFAddress by Asual. Beyond those topics
was discussion on collecting user data and then a look into qual-
ity control where I talked a bit about the different environments
you should use while building a microsite. In Chapter 10, I’ll give
information about driving traffic (visitors) to your newly created
microsite.

Chapter 9 PREPARING AND BUILDING MICROSITES 151

This page intentionally left blank

10
DRIVING TRAFFIC TO YOUR
MICROSITE

CHAPTER OUTLINE
Paid Search 154

Small Costs, Big Results 154
Targeting Your Search Terms 155
Matching 155
Text Ads 156
Contextual Advertising 157

Banner Ads 157
Design Matters 157
Keep Your Promise 158

From Main to Micro 158
Highlight and Promote 159
Send Them Back 159

Viral Marketing and Social Networking 160
Generating a Buzz 160
Internal Kick-Off 161
Seed the Link 161
Targeting Specific Blogs 162
Social Utilities 163

User Interactions and Referrals 164
What Do Users Like? 165
Where Do Users Come From? 165

Conclusion 166

The specific purpose of any given microsite may be as individual
and unique as the site itself. The site’s intention may be to educate
and inform its visitors about a product or to simply entertain them
with games and videos while exposing them to your client’s brand.
However, there is always an underlying objective of any microsite
created within the advertising domain: brand and/or product
awareness and interaction. When users come to your client’s
microsite, they should be able to later recall whose site it was
when they think of it. If they do remember (and they remember for
the right reasons), the site was a success. But before they can

Flash Advertising. DOI: 10.1016/B978-0-240-81345-5.00010-4
© 2010 Jason Fincanon. Published by Elsevier, Inc. All rights reserved. 153

remember your client’s microsite, they need to be told it exists, and
they need some sort of vehicle to drive them there. The topic of
this chapter deals with the step that takes place before the users’
interaction with, or even knowledge of, the site.

There are several ways to get your client’s potential customers
to visit their site. Some of those ways cost a little money and some
of them are completely free. In this chapter, I’ll cover several
options to drive traffic to your microsite and those options will be
spread across the following sections:
• Paid Search
• Banner Ads
• From Main to Micro
• Viral Marketing and Social Networking
• User Interactions and Referrals

Paid Search
One of the most valuable ways to drive users to a Flash microsite is
by way of a paid search. In a nutshell, you’re actually purchasing
words and terms in a search engine such as Yahoo! or Google.
When people do a search for those words, your microsite is dis-
played in the results. While your site may also find its way into the
results based on unpaid (or natural) search terms, this takes time.
And because many microsites usually have a limited life span, time
is something that may be against you here.

Another advantage that paid search has over natural search is
guaranteed placement. By purchasing search terms, you are ensur-
ing your client a spot in the search results that they may not get by
means of natural placement. As for how high in the results your
client’s microsite is placed, each search engine determines its rank-
ing differently. Although some search engines actually base the
placement on who paid more for a given search term, others have
formulas they use to determine the order of the results. One exam-
ple is that a search engine may take into account how much was
paid for the search term, but they also look at the click-through
rate for each placement. By figuring in how many people were
clicking on a placement after searching for a particular term, the
results are more accurate and relevant to the term itself. That extra
bit of sorting can make all the difference of where your client’s site
ends up on the list of results.

Small Costs, Big Results
With costs starting at mere pennies per click on the larger search
engines, paid search consistently has the lowest cost per acquisition
of any outbound marketing you can do for a microsite outside of

Inside Advertising

When you are choosing
which search terms to
purchase, be sure to keep
the list relevant to the
industry, client, and site.
If your client is in the
automobile industry, it
wouldn’t make much sense
to purchase a term like
“waterslide” or “baseball.”
Although those examples
are very clear, there are
terms that are less obvious
but just as irrelevant. On
top of being bad practice
and a potential waste of
advertising dollars, some
search engines will check
the relevancy of your terms
to make sure they are in
line with the advertised site.

154 Chapter 10 DRIVING TRAFFIC TO YOUR MICROSITE

viral marketing, which I’ll cover later in this chapter. Although you
can find some cases of the cost reaching up to $100 per click in
certain industries, most terms will fall in a lower range under a
couple of dollars.

When you talk about the actual price of a search term, there
are a few factors that come into play. For example, if you’re
looking at buying a very broad term that is more likely to be
searched more often by more people, you’ll have to pay more
money. However, a very specific search term is going to cost less
money. Let’s say you purchased the term “code.” That term could
apply to an extremely wide range of results, and the reason for the
higher cost in this case is because your microsite will be included
in the results of everything from “computer code” to “morse code”
to “state code” (law). However, a more specific term like “Action-
Script” is going to be searched by a smaller group of people and,
therefore, your site will be included in fewer results. You may be
wondering why it costs more for the broad term when you’re
going to end up in less relevant results. The reason for the higher
rate is the popularity of the term itself and how many other
companies have also purchased it. Although it would sometimes
be smarter to spend less money to reach a more targeted search
audience, there are times when the broad term will be worth the
extra dollars. For instance, if within 1 month the targeted term
yields 30 clicks that result in 5 conversions (the user purchased,
signed up for e-mail, and so on) and the broad term yields
300 clicks resulting in 50 conversions, it was probably worth
spending the extra money.

Targeting Your Search Terms
When you purchase your search terms, you’ll have other options to
choose from to further define your target audience. Some of the
options will make the target more refined and narrow and some
others will widen the target to reach even more people. How you
choose between them will change from project to project and client
to client.

Matching
When people do searches, they are less likely to search for a single
word than they are for a phrase. For that reason, you will want to
look at some of the matching options for your terms. One of those
options is called broad matching, and it basically watches for your
word to be used in any search that is performed. If you have
purchased the word “car,” then broad matching will return your
site in the results of searching for everything from “car dealer” to

Chapter 10 DRIVING TRAFFIC TO YOUR MICROSITE 155

“car wash” to “new car.” The upside to broad matching is that you
get exposure to thousands of search phrases, but you only had to
set up one term. The downside is that your site may end up in
irrelevant results. However, remember that more results can equal
more clicks, which can equal more conversions, which means
more return on investment.

Another matching option is phrase matching. With phrase
matching, you have actually purchased a phrase as opposed to a
single word. An example of this might be that you have bought the
phrase “car dealer.” Phrase matching will make sure that your
microsite is returned in the results when people search for that
particular phrase, but not variations of it. In other words, your site
will show up in a search for “car dealer,” but not in a search for
“dealer car.”

Yet another form of matching is exact matching, and, just as
you might suspect, your microsite is only included in the results if
a user searches for the exact term that you’ve purchased. Both
phrase matching and exact matching will put your site in more tar-
geted and relevant search results.

Another way to further target-specific searches is to create a
negative keyword list. This list is used in conjunction with broad
matching to weed out any searches that you know you don’t want
to be included in. Sticking with the search term “car,” let’s say your
client is a car dealership and they don’t want their site to show up
in a search for “car wash.” Simply add the word “wash” to the
negative keyword list and the search engine will make sure that the
site is omitted from those results.

Text Ads
Text ads (also known as sponsored links) are the text-based
advertisements that you see (usually on the right side of the
page) when your search results are returned to you. The search
engine will determine which text ads to display based on a num-
ber of factors, including the amount paid for the advertisement
and the relevance to the term that was searched. Although the
amount you can actually say in any given text ad may change a
little from search engine to search engine, the format is generally
the same across the board. Typically, you’ll be allowed to include
a headline, a couple of lines of copy, and a URL for the adver-
tised site. Because of the limited amount of text allowed in these
ads, it’s important to have good copy written that gets right to
the point while still enticing the user to click on your ad instead
of the others around it.

One thing to look for when purchasing text ads is the process
the search engine uses in getting the ad running for the first time.
Although some of them allow your ad to show up immediately

156 Chapter 10 DRIVING TRAFFIC TO YOUR MICROSITE

after you make the purchase, some others will require you to run
your ad through their approval processes before it is launched.

Contextual Advertising
Some search engines offer another extremely valuable option that
you can sign up for: contextual advertising. At the time of purchas-
ing your search terms, you can also spend a little extra marketing
money to have your microsite show up in ads that are running on
other sites. Blogs are a great place to find contextual advertising
happening, and if you’re familiar with Google AdSense, then
you’ve seen an example of contextual advertising in action. The
way it works is that the search engine has a system running that
reads the content of the site on which the ad is being shown.
If that system finds terms that match those that you’ve purchased,
a link to your site will be included in the rotation of ads on that
particular site. Contextual advertising is so valuable because it’s a
winning situation for everyone involved. Every time a user clicks
on one of these ads, the site that is running the ads gets revenue,
the search provider generates revenue, and your client’s microsite
gets another visitor and possibly a new customer. On top of that,
the chances that a visitor will be interested in your client’s brand
are fairly high due to the search for relevant terms on the site they
are already reading.

Banner Ads
Using banners to attract visitors involves more than simply creating
a link in an ad and hoping people accidentally click on it. You defi-
nitely shouldn’t trick them into clicking your ad by presenting them
with a fake close button, a fake form to fill out, or anything else
along those lines. Tricking your users into visiting your site will
only turn them against your client. Instead, your viewers should be
enticed or intrigued enough by your banner that they want to visit
the site at their own will.

Design Matters
The design of your ads will have a huge impact on whether or
not people want to interact with it and visit your site. If they find
the ad “attractive,” human nature makes them much more likely
to be tempted to click on it to see if the destination is just as
nice. They will also be quicker to click on an ad that clearly lets
them know that they are going to be taken to a place they are
interested in.

Chapter 10 DRIVING TRAFFIC TO YOUR MICROSITE 157

In addition to designing your banners in a visually pleasing
manner, consistency will help attract users to the ads and sub-
sequently to the site itself. The consistency of the banners should
be thought of on a few different levels of design. Not only should
you pay attention to making sure the banners all look alike, but
they should also have similar animations. By doing this, you
ensure that no matter what size banner users see from this
campaign and no matter where they see it, they’ll recognize it.
If a user previously clicked on one of the banners from the
campaign and liked the site, they will probably click on another
one that looks and acts the same. Keep in mind that the consis-
tency should not stop with the banners themselves, but should
also tie the banners to the site. This consistency from banner to
site will help ensure a smoother transition from the site a user is
currently visiting into yours.

Keep Your Promise
When a user clicks on your banner ad, he or she is usually expect-
ing something in particular at the site where he or she is being
taken to. That something is whatever you have told her that she
should expect when she first viewed the banner. Delivering on
your promise is not only good business, but it’s something that will
drive traffic back to your site after the initial visit. If users click on
a banner because they are expecting to fill out a form for travel
reservations, then that’s what they should get. However, if they get
to the site and can’t find the form, they may become frustrated and
go elsewhere to book their travel plans. Once that happens, they’ll
only remember that they had difficulty on your client’s site and
they may not return at all.

From Main to Micro
Another form of driving traffic to a microsite is by way of the main
Web site. Because your clients probably own their own main Web
site, driving traffic from there to a new microsite is going to be
extremely low cost when compared with a banner campaign. The
fact that they won’t have to pay for the actual placements on their
own site is one thing that helps keep the cost down. In addition to
the lower cost, you can rest assured that the people viewing the
site (and the advertisement) are all but automatically your target
audience. Because they are visiting your client’s main Web site,
you know that they are already aware of, and interested in, the
brand. They can be considered the largest built-in audience of the
new microsite, and all they need now is a little push in the right
direction.

158 Chapter 10 DRIVING TRAFFIC TO YOUR MICROSITE

TIP
I made a brief mention earlier in this chapter about the often short
life span of microsites, and while it would be nice to leave them up for
an extended period of time, it doesn’t always work out that way. This
means at some point, there’s going to be a virtual hole where the micro-
site used to live on the Internet. If users have visited the site before and
found it to be useful, they may try to come back only to find it has gone
missing. Rather than leaving them wondering what happened, it’s a good
idea to redirect them to your client’s main Web site. To leave even less
room for confusion, it’s a better idea to redirect them right to the
product’s specific page. For example, if you were to visit a microsite for a
certain model car and that microsite no longer existed, the best scenario
would take you to the page about that car within the auto manufacturer’s
main Web site.

Highlight and Promote
The push users need can come in several different forms and the
one that’s best is dependent on the Web site and even the brand
itself. One approach would be that the Web site has a section on
the home page that is reserved for featured products or services.
This may be an area where a client typically advertises a sale or
other upcoming event. If your client has taken the time and spent
the money to have a microsite built for a particular product,
chances are pretty high that they won’t have any problem at all
using that promotional area to advertise and drive traffic to that
microsite. There may be other areas within the main site that can
be utilized for making visitors aware of the new microsite, but the
goal is the same throughout: Highlight and promote the new pro-
duct or service for which the microsite was built.

Send Them Back
Where the main site is a great source of traffic for the microsite,
the same can be said in reverse. There are some clients who are
naturally very good about keeping users flowing in both direc-
tions and then there are those who you’ll need to explain this to.
Although a microsite is focused on a particular product or service
that your client has to offer, it’s smart to try to influence users to
also visit the client’s main Web site to find more. Once they visit
the main Web site, they may find products or services that your
client has to offer that they were previously unaware of. And who
knows, they may even be interested in buying those other items.
Another advantage to driving users to both sites from within both
sites is link popularity. For every link and every click from one
site to the other, the destination site’s link popularity grows,

Chapter 10 DRIVING TRAFFIC TO YOUR MICROSITE 159

which, in turn, raises that site in search results. With that said,
I should point out that it’s a bad practice to overload your sites
with links to each other just for the sake of raising their
popularity.

Viral Marketing and Social Networking
If the site is designed and built right, users will walk away remem-
bering not only the information they learned or the fun game they
played, but they’ll be able to tell their friends and coworkers whose
microsite they were visiting and the URL to get to that site. Believe
it or not, this is actually a form of advertising that goes by different
names like “word of mouth” or “viral marketing,” and they say it’s
one of the best forms of advertising available. For one thing, out-
side of the initial expense to get it going, it’s free of cost. The other
great aspect is that it seems to be in human nature to listen to and
trust people we know much more than we listen to or trust typical
advertising. If a friend tells you about a Web site they visited,
chances are that you’re going to give it a visit because if your
friend liked it, it must have been good and you’re guessing you’ll
like it as well.

One of the great things about microsites is that they are so
perfectly built to accommodate viral marketing. If you think about
how many times you’ve suggested a site to a friend or how many
times you’ve been told about a site, you’ll start to see that those
sites are microsites more often than they are full corporate/
company Web sites. When you have a site that is centered around
one specific idea, product, or service, you’re able to put more focus
and energy into that one item. With that energy, your creations can
dig further into the realm of entertainment and that’s when you
start to hit on the things that people talk about and pass around to
each other.

Generating a Buzz
Before people start talking about your site, those first potential
visitors will need to know it exists, right? After all, if nobody ever
sees it then nobody will be able to talk about it. This somewhat
wraps back around to using the other forms of driving traffic to
your site previously mentioned in this chapter because those
other methods can be used to generate the initial buzz. Then,
once people have started talking about the site and passing
the URL around to their friends, you can phase those methods
out and let the site advertise itself for a while. If traffic starts to
die down at any point, you always have the option of stirring up
a buzz again.

Inside Advertising

“Viral isn’t about how you
get someone to your site;
it’s about what happens
after they leave.”

—John Keehler,
Director of Digital Strategy,

Click Here, Inc.

160 Chapter 10 DRIVING TRAFFIC TO YOUR MICROSITE

Internal Kick-Off
A great first step that most companies, clients, agencies, freelance
developers, and so on can (and should) do in their attempts to
generate buzz about a new microsite is to kick-off the site intern-
ally. If you work for an advertising agency, send a notification out
to everyone letting them know to check out the new site that your
company has just launched for their client. Additionally, you may
make a suggestion that your client does the same within their
offices. When your client’s employees start visiting the microsite,
they’ll most likely pass it on to their friends and family. Speaking of
friends and family, let yours know about the microsite as well.
After all, you should be proud that you’ve been a part of the huge
effort that has taken place to make it happen.

Seed the Link
Another way to kick-start a little viral action is blogs. I think it’s
pretty safe to say that there are a large amount of people who
maintain a blog of some sort. Whether they maintain it on their
own Web site or they use one of the many available blogging
networks, they are out there and you can utilize them. One way
to do this is to find bloggers who are already writing about the
brand you are promoting and make them aware of the new
microsite.

ALERT!
Blog spamming (also known as comment spamming) is a very bad
practice and it should be avoided at all costs. To avoid blog spamming,
simply avoid talking about or posting a link to the microsite on blogs that
are irrelevant to the subject matter of the microsite itself. Just remember
that if you are going to plug your work in the comments of someone
else’s blog, either have the blogger’s permission to do so or make very
sure it fits within the flow of conversation.

There are several ways to find the people or interest groups that
are writing about the brand and one of those ways is Technorati
(http://www.technorati.com). Technorati allows you to search blog
posts from all over the world for a certain term such as your cli-
ent’s company name. Once your results are returned to you, you
have several sorting/refining options at your disposal such as topic,
authority, relevance, and date. The authority option uses link popu-
larity along with other factors to determine which blogs historically
have the most (or least) authority on the subject of your search.
Choosing to include those with less authority will yield a larger
number of results, while choosing to show only those with a lot of
authority will do just the opposite and lower the number of results

Chapter 10 DRIVING TRAFFIC TO YOUR MICROSITE 161

shown. Trim the results further and get more targeted by changing
the topic as well. These features may come in handy when you’re
looking for a person who manages a blog that has many readers
and that has posts talking about your client’s brand. After finding
those individuals, you can proceed to contact them through e-mail
to find out if they are interested in writing about your client’s new
microsite.

ALERT!
When contacting a blog owner about potentially writing a piece about,
or including a link to, your client’s new microsite, always be up front
and honest about the fact that you work for the advertising agency that
created the site (if you created the site on your own and don’t work for
an agency, you should still inform them as to who you are). Not only is
it better business to be honest about such things, but also the blog
owner will appreciate that honesty and will be more likely to want
to help you out. If you decide against informing the blog owner about
who you are, you run a high risk of him figuring it out later down the
line. If that happens, not only will he probably remove the story/link,
but you can bet he will never trust you again after that point. Addition-
ally, it could end up completely reversing the blog owner’s thinking
about your client.

In addition to contacting other blog owners, you can also write
to your own blog to help promote the new microsite. For example,
I maintain a blog in which I talk about Flash Platform–related
topics and one of the things I’ve blogged about in the past is
Flash-based projects that my employer has launched (regardless of
if I personally worked on it or not). Although my intention is
simply to share the work with the online community, there have
been times when people have read my blog, visited a site I wrote
about, and subsequently wrote about the site on their own blog.
From that point, this scenario can very easily turn into the classic
“I shared it with two friends, they shared it with two friends, those
friends each shared it with two friends, and so on” scenario. With
that, you can see how it can spread quickly without much effort on
anyone’s part. As a matter of fact, it’s that virus-like spreading that
gives it the name “viral marketing.”

Targeting Specific Blogs
Another way to advertise your microsite on blogs is by actually
targeting them individually. The difference between using a con-
textual network and using a blog-advertising specialist such as
Blogads (www.blogads.com) is that you can choose which blogs
your ads will appear on. You can start out by sorting through a
list of highly visible and influential blogs and then you can

162 Chapter 10 DRIVING TRAFFIC TO YOUR MICROSITE

narrow your target down as far as you want. For example, you
might want to target blogs that are only read by car enthusiasts.
Or maybe you want to target Flash Platform developers. Or you
could even narrow it down further by targeting Flash Platform
developers who are car enthusiasts and live in Dallas, Texas.
Targeting specific blogs in this way can give you visitors who are
interested in topics and products that more directly relate to your
client’s microsite.

Social Utilities
Something that has really exploded over the last few years is all of the
different social utilities that are out there. Whether you’re looking at
more business-based tools like LinkedIn or more personal-based
tools like Facebook and Twitter, there are an uncountable number of
potential visitors to your microsite and every single one of them could
be a potential customer for your client. Although a tool like LinkedIn
is more likely to be used for business contacts and B2B communica-
tions, there are also groups that individuals can join or be invited to.
For example, your car client may create a different group for the
owners of each of its models. From those groups, they can send links
to featured content, updates, or special promotions that are running
on their microsites.

On a more personal front, Facebook and Twitter are currently
enjoying very large success in terms of number of users. Think
about this: According to Facebook’s statistics at the time of this
writing, there are more than 400 million active users who spend an
average of more than 55 min per day on the site and have an aver-
age of 130 friends. That’s a pretty large amount of people spending
a pretty large amount of time there, huh? So how to use this tool
to your advantage? Well, you have several options of which you
can do one, some, or all. One of those options is to create a “Face-
book Page” for your client. Here are a couple more numbers for
you: There are currently three million active Pages on Facebook,
and the average user becomes a fan of four Pages each month.
Once a user becomes a fan of your client’s Page, they are informed
of updates, events, photos, links, and anything else that your client
posts to the Page. That makes for the perfect opportunity to send
them to new microsites as they are built!

In addition to creating Pages, Facebook offers several other
options that can and should be considered such as Widgets
and paid ads. There are different kinds of Facebook Widgets for
individuals, businesses, and even developers. One example of a
Widget for a business is the Fan Box. The Fan Box can actually be
embedded on a Web page, and it will not only show a stream of
information coming from that company’s Facebook Page (such as
links to microsites), but also will allow a reader to become a fan of

Chapter 10 DRIVING TRAFFIC TO YOUR MICROSITE 163

that company right from that page. That means the user doesn’t
even have to be on Facebook to become a fan of your client’s
Facebook Page! What!? I know!

So what about paid advertising on Facebook? If you’re a Face-
book user, go ahead and go to the site now and find a friend’s
name to click on. I’ll wait. Okay, are you looking at your friend’s
profile? Do you see those three ads stacked on the right side?
Those are paid advertising and you can do some pretty cool tar-
geting with them. For example, you can target them at anyone
who lives in Texas. You can also get more defined and target
them at anyone who lives in Dallas, Texas. Okay, that’s no big
deal but how about this: You can target the ads at only fans of
your client’s Facebook Page. Hmm… that doesn’t make sense,
why target them if they are already fans? Okay, then let’s target
their friends. Let’s target only friends of fans of your client’s Face-
book Page. And you can actually keep getting even more granular
than that based on virtually any information that a user has
entered into his or her account.

Another great tool to use right now is Twitter. Setting up a
Twitter account for your client is free and takes just a few min-
utes. The key after that is getting followers, and there are a few
ways to do that including running Twitter searches for the client’s
name or product and responding to the people who have men-
tioned it. Another way would be to place links to the client’s
Twitter profile on their sites (both full and micro). As the number
of followers starts to climb, so do the number of potential
customers. With a 140-character limit, there’s only so much you
can expect to do with this tool, but links to the microsite are defi-
nitely one of those things. You can also use the Twitter account
to link to the Facebook Page and to make it even more powerful,
you can actually tie the two accounts together in such a way that
each time the clients update their status on one account, it also
updates on the other.

With more and more options and features on sites like
Facebook, it’s definitely a good idea to keep your finger on the
social pulse of the Internet as much as you can. After all, the more
people you can reach and engage, the more potential customers
you can generate for your client and the more your client will keep
coming back to you to reach and engage more potential customers.
It’s like the circle of life but different.

User Interactions and Referrals
I think it’s safe to say that you can learn a lot about what people
like by physically watching what they do, where they go, and even
who they interact with. The same is true for those people when

164 Chapter 10 DRIVING TRAFFIC TO YOUR MICROSITE

they visit a microsite. The only difference is that you are looking
at a virtual trail of actions they left behind. Although tracking the
sections a user has visited in a Flash site requires a little help
from another language outside of Flash (JavaSript, PHP, and so
on), the benefits can be very rewarding in terms of knowing what
steps you need to take next in your efforts to bring even more
visitors to the site.

What Do Users Like?
You can build your own custom-tracking scripts or you can do it
through one of several companies like Omniture (http://www.
omniture.com) who actually specialize in this field. Using either
your scripts or the products these companies have to offer, you can
get various reports on items like which areas of the site were visited
more. Once you know which particular areas of the microsite inter-
est users the most, you can apply that information to the next
banner campaign by highlighting those sections in the creative.

Where Do Users Come From?
Another highly valuable piece of information is to know where your
visitors actually come from. A lot of Web-hosting companies will
provide you with site statistics that give you a list of referrers
for your site. Those referrers have a link somewhere on their Web
site that directs their visitors to your microsite. If your hosting
company does not provide site stats or if you (or your company)
are hosting the microsite yourself, you may need to look into other
ways of getting your referrer reports. There are many options out
there ranging from expensive solutions that need to be installed on
your server to free solutions like Google Analytics. And just as
there is a range of cost for the different solutions, there is also a
range of features and details with each solution (which should not
actually be judged by the cost).

Regardless of which direction you use to get your list of refer-
rers, that list can help you enhance and fine-tune your next (and
even current) campaign. By reviewing the list, you can find new
referrers as soon as they appear. As a kind gesture, and to open a
new relationship with a potential future referrer of your work, it’s
not a bad idea to send certain new referrers an e-mail thanking
them for linking to your microsite. Of course, this depends on the
kind of site it is, what they had to say about the site, and a few
other factors that you’ll have to judge for yourself. Additionally, if
you find that one of two sites are sending a much larger number of
visitors than any of the other referrers, you may want to go ahead
and plan on contacting them in the future to see if they would like
to promote other projects.

Chapter 10 DRIVING TRAFFIC TO YOUR MICROSITE 165

Conclusion
To wrap up this chapter, remember that part of the effort that
should be put into a microsite project is getting people to visit it.
There are many ways to get people to come to your new site.
Some of those ways cost money all the way through the project
and eventually in the end, while others cost a little bit up front
but resolve to no cost in the end. On top of being virtually free,
viral advertising can last just as long as people are still talking
about it. There are even times when the talk may die down for
several months only to have someone bring it back up to their
friends at a later date (which could stir the viral effect back into
motion).

Don’t forget that search engines can be your very best friend
when you want to drive people to a microsite. By utilizing their
paid search terms, you can guarantee your client a spot in the list
of results returned on a search of a given word. Additionally, some
search engines also tie in with blogs to offer an additional point of
contact with potential customers. In the end, the benefits of using
paid search far outweigh the cost involved with doing so.

Another avenue clients (and sometimes even agencies or
developers) forget about is that of the client’s main Web site. There
are not many reasons I can think of that would prevent you from
linking from the main Web site to the microsite and vice versa. The
visitors are already there, they are already familiar with the brand,
and they obviously like it enough to be at one of the two sites in
the first place. Why not take advantage of that built-in audience
and offer them a way to get to the other site to find more enter-
tainment or information about the brand?

Don’t rule out getting other people involved in your viral
marketing. Send e-mails around notifying friends, family, and
coworkers about the launch of the site. If you maintain a blog,
write about it to let the world know of your company’s wonderful
work. Contact other blog owners who are already interested in
your client’s brand, and, after telling them your intentions and who
you are, most people will be more than happy (and even thrilled)
to be a part of the advertising effort. Some of those blog owners
are even signed up to blog-advertising networks on which you can
purchase space to run your ads. By utilizing a blog-advertising net-
work, you can run your ads on blogs that you have targeted based
on as specific of a criterion as you see fit. Let’s also not forget that
“social” is the current word of the day, and at the time of writing
this, it is a very big word with a huge amount of advertising poten-
tial. From LinkedIn to Facebook and Twitter, you should definitely
find ways to utilize these tools to their fullest.

Finally, keep an eye on what your users are doing while they
are visiting your microsite. If you keep reports on areas of higher

166 Chapter 10 DRIVING TRAFFIC TO YOUR MICROSITE

interest, you can better tailor your next campaign to fit what your
visitors want to see. In addition to paying attention to what they
are doing while they are on your site, you should know where they
were prior to getting there. With that piece of information, you can
do things like run ads on sites that have sent a high number of
visitors to your microsite or contact the sites directly the next time
you launch a similar project.

Chapter 10 DRIVING TRAFFIC TO YOUR MICROSITE 167

This page intentionally left blank

11
ADVERGAMING AND APPLICATIONS

CHAPTER OUTLINE
Advergames 170

Branded Play 171
Play Again? 174
Modularity FTW! 182

Applications 185
AIR Overview 186
Freedom of Design 187

Conclusion 188

Since this book is titled “Flash Advertising” and not “Flash Gaming”
or “Flash Apps,” I’ll go ahead and state up front that this chapter is
not intended to teach you the full ins and outs of building games or
applications. I’ll also be skipping over the discussion of topics
like image compression and general optimization because those
were already covered in earlier chapters, and you’ll pretty much
handle it all the same in your games and applications. What I would
like to do instead is just take a little bit of your time to discuss
these subjects at a high level in terms of how they relate to the
world of advertising and maybe we’ll hit on some general tips and
suggestions to remember while planning and building. Also within
this chapter, you’ll notice several screenshots of games (Fig. 11.1
through Fig. 11.21) produced by the wonderful folks at Blockdot, Inc.
(http://www.blockdot.com). As you look over these examples, note
that each of them could be (and have been) very easily reskinned
with a client brand to provide a fun and memorable interactive
experience for the end users. With that said, let’s jump in:
• Advergames

• Branded Play
• Play Again?
• Modularity FTW!

• Applications
• AIR Overview
• Freedom of Design

Flash Advertising. DOI: 10.1016/B978-0-240-81345-5.00011-6
© 2010 Jason Fincanon. Published by Elsevier, Inc. All rights reserved. 169

Advergames
I’m not sure if you’ve noticed or not, but over the last several
years, casual gaming has really taken off and you can find people
playing around at all times of day or night regardless of where they
are. If they’re at work, they may be playing during their lunch
break (or just when the boss isn’t looking). If they’re at home, they
may be spending a little time playing some Flash games before
they go to bed at night. I’ve seen people playing Flash games in
libraries, coffee shops, and believe it or not, I’ve even seen them
playing while waiting to get the oil changed on their car. So with
all of this interaction between these people and these games, you
know that someone had to come up with the idea of branding
them (the games, not the people). And if you stop to think about
it, you’ll see that advertising has been tied in with games of
one sort or another for a very long time. Look no further than
professional sports to find that evidence.

TIP
For great in-depth coverage of Flash game development, I would highly
recommend “Real-World Flash Game Development: How to Follow Best
Practices and Keep Your Sanity” by Chris Griffith.

Figure 11.1 “Tax Smack” –
Produced by Blockdot, Inc.

170 Chapter 11 ADVERGAMING AND APPLICATIONS

Branded Play
So let’s think about this for a minute. There are innumerous people
who are spending an enormous amount of hours playing Flash
games online at all times of the day. They play and leave, and if
the developer of that game is lucky, they come back later to play

Figure 11.2 “Tax Smack” –
Produced by Blockdot, Inc.

Figure 11.3 “Tax Smack” –
Produced by Blockdot, Inc.

Chapter 11 ADVERGAMING AND APPLICATIONS 171

again. With each user dedicating so much time to seeing the same
screens over and over again, wouldn’t it make sense to slap your
client’s logo in there? Or maybe somehow actually place their pro-
duct somewhere in the game? And while we’re at it, let’s go ahead
and alter the overall color scheme as well so that it matches with
your client’s branding. The point here is exposing users to the
brand while they are having fun playing a game. Think about all of
the Flash games you’ve played online. While I’m sure there are
some that weren’t trying to sell you on any product, service, or
even a company in general, I would be willing to bet that plenty of
them did and that you can name a few of the companies or pro-
ducts that were branded in those games.

So in case it’s not completely obvious yet, the value for your
client in all of this is mostly the repeated exposure to the brand, and
we’ll add bonus points because users are (hopefully) having a good
time interacting with it in a fun environment as well. As for the
uncountable ways to immerse them in the brand while playing these
games, you’re really bound only by imagination and creativity here
(oh, and those pesky legal departments). Take a look at the brand
and what it stands for or represents. Take a look at the product or
service and take a look at the values and beliefs of your client. Those
things combined with other things like the campaign goals and
target audience should help you figure out the best way for those
users to play around with the brand so to speak. In some cases,
you’ll find that simply placing your client’s logo in a visually strategic
location will suffice. For example, the best type of game to use for

Figure 11.4 “Art Thief” –
Produced by Blockdot, Inc.

172 Chapter 11 ADVERGAMING AND APPLICATIONS

the campaign may be something like tic-tac-toe or another
extremely simple idea like that. In that case, maybe the logo is in the
form of a watermark under the game board. You could take it a
small step further in this example by using other branded elements
like images of actual products instead of Xs and Os.

However, you may find that you want to build an entire game
branded from top to bottom. Let’s go back to our car company,
Typical Motors, from earlier in the book. You could place their
company logo behind a tic-tac-toe game board and you could
even use individual car logos for the game pieces. But what if you
took it even further? How about a racing game designed 100%
around the Typical Motors branding? You could allow players to
choose from their different models of cars and even give them the
option of customizing with new wheels, bigger engines, and other
modifications. Of course, the players would need to somehow
earn those modifications, right? You can’t just allow every player
to put in the most powerful engine and the best looking wheels
from the start. This is where you add a little data storage to the
mix so you can let players log in, win points in races, and save
car models and any other information that might be handy to
reuse again at a later time. Tie the whole thing together in a real-
time multiplayer experience, allow player A to challenge players B
and C, and I’m sure you’ll have a good number of users playing
the game time and time again. Brand interaction score! While sav-
ing their info and allowing them to play against each other will
help bring players back to the game, there are also other things
you can do that will help as well.

Figure 11.5 “Art Thief” –
Produced by Blockdot, Inc.

Chapter 11 ADVERGAMING AND APPLICATIONS 173

Play Again?
There are a number of fairly simple things you can do to get players
to return to play a game and interact with the brand several times
over, and it can really be just as easy as making sure they don’t lose
too easily. Let’s start with something I’m sure we’re all familiar with: a
level-based game. In most level-based games, you’ll notice that not

Figure 11.6 “Bashing
Pumpkins” – Produced by
Blockdot, Inc.

Figure 11.7 “Bashing
Pumpkins” – Produced by
Blockdot, Inc.

174 Chapter 11 ADVERGAMING AND APPLICATIONS

only is the first level usually very simple, but also the first few levels
are often designed to teach the player how to use the controls and
perform certain tasks within the game. This allows the player to get
more comfortable with the mechanics of the game while also building
their confidence in the game play itself. Raising that confidence will
keep them from getting frustrated and leaving too quickly.

Figure 11.8 “Bashing
Pumpkins” – Produced by
Blockdot, Inc.

Figure 11.9 “Bashing
Pumpkins” – Produced by
Blockdot, Inc.

Chapter 11 ADVERGAMING AND APPLICATIONS 175

Once you’ve given them a chance to get a handle on how to
play the game, you’ll want to present them with a bit more of a
challenge a few levels in. As I’m sure you know from your own
game-playing experiences, the difficulty usually increases more and
more with each level from there on. And if you do want to chal-
lenge the player, make it difficult for them to go to the next level,

Figure 11.10 “Poker Solitaire” –
Produced by Blockdot, Inc.

Figure 11.11 “Poker Solitaire” –
Produced by Blockdot, Inc.

176 Chapter 11 ADVERGAMING AND APPLICATIONS

but you still want them to be able to get there eventually. Again,
think about games you’ve played before where you got stuck on a
level and you came back again and again to try to get past the part
that was holding you back. Something you might notice is that a
lot of those probably had certain steps you had to follow to get
past the point where you were stuck. At some point, your persis-
tence paid off and you moved to the next level, and you may have
felt some sense of accomplishment (if even just a little bit). The
goal is to make the levels get harder, but not so hard that they can
never be defeated by anyone. If players stop feeling like they can
advance further into your game or that they don’t stand a chance
of beating it altogether, a large number of them will stop trying
and move on to something else. Brand interaction fail! One more
important aspect I should point out here is the ability for a player
to save their progress in your game or, at the very least, have pre-
determined codes that will allow access to levels as they progress.
Level two has its own code; level three has its own and so on.
Giving a user the option to jump straight back to the level they last
played alleviates the frustration of having to play the same levels
over and over. And we all know that can be especially tedious the
further you are in a game when you stop playing.

So let’s discuss a little about another reason users would want to
come back to play a game with your client’s brand all over it. How
about a little payoff? Or a big payoff if that’s more suitable for your
client. If players know that they are actually playing toward some-
thing, it can be an incredible incentive for them to come back to
play again. This is especially true if they are big fan of your client’s
brand or even just the product for which the game was designed
and built. And the payoff doesn’t always have to hold a monetary
value because there are plenty of players out there who consider
simple recognition to be the best prize you could offer them. For
example, we’ve all seen the contests or other challenges where the
prize is something along the lines of “A chance to have your name
and photograph featured in/on _______!” On the other end of the
spectrum, your client may be willing to offer up a more elaborate
grand prize like a television, a game console, a new car, or an
all-expense-paid trip to anywhere the winner would like to visit. The
extent of the prizes is really up to what the client is willing to do.

Also, it doesn’t have to be just a single prize at the end of some
specified time period. Something else to consider is that your client
could do something like giving out smaller prizes to players during
the course of the games. Maybe the game will be running for the
duration of a 6-month campaign and at the end, the top scoring
person wins the grand prize, but the smaller prizes are given out at
regular intervals to active players. Or maybe a tournament-style
game is the way to go where prizes are given to something like the
top 10 players. Tenth place gets a small prize, and the prizes get

Chapter 11 ADVERGAMING AND APPLICATIONS 177

Figure 11.12 “Dr. Strangemitten’s Shrunken Heads” – Produced by Blockdot, Inc.

178 Chapter 11 ADVERGAMING AND APPLICATIONS

Figure 11.13 “Dr. Strangemitten’s Shrunken Heads” – Produced by Blockdot, Inc.

Chapter 11 ADVERGAMING AND APPLICATIONS 179

Figure 11.14 “Dr. Strangemitten’s Shrunken Heads” – Produced by Blockdot, Inc.

180 Chapter 11 ADVERGAMING AND APPLICATIONS

progressively larger until the number one player gets the grand
prize. As for those smaller prizes, they can be anything from key
chains to drinking glasses to thumb drives, but the one require-
ment about them is that they really should have your client’s brand
all over them. At that point, your client has just made the transition
from interacting with a potential customer in a game to being in
their home and day-to-day life. Brand interaction score!

One more thing real quick before we move on: security. When
you start getting into contests, prizes, winners, losers, and even just
high-score tables, you’ll definitely need to consider different (and
possibly multiple) forms of security. There’s a wide range of things
you can do from obfuscating your .swfs to encrypting any data to
protect from cheaters. I recommend both and a quick Internet
search for “swf encryption” or “swf obfuscation” will return tools
like Amayeta’s SWF Encrypt and Kindisoft’s secureSWF. As for
encrypting/hashing the data, look no further than as3corelib, where

Figure 11.15 “Three Card Monte” – Produced by Blockdot, Inc.

Chapter 11 ADVERGAMING AND APPLICATIONS 181

you’ll find classes for MD5 and SHA1 hashes. At the time of writing
this, as3corelib can be found on Google Code at http://code.google.
com/p/as3corelib/.

Modularity FTW!
When the time comes to start the actual development of the game,
one big thing you should really strive for is portability of
your game and its code. Regardless of its original form being in a
banner, a microsite, a standalone AIR application, or an iPhone
application, the more code you can use to port your client’s game
to the other options, the better. A big part in achieving that port-
ability is to keep things very modular in terms of class files, .flas
and assets. At a high level, you can think of it like this: If all of the
logic behind your game doesn’t care about things like image
dimensions or actual stage size, it can be moved from one .fla
to another with minimal to no changes at all. Within each different

Figure 11.16 “Three Card Monte” – Produced by Blockdot, Inc.

182 Chapter 11 ADVERGAMING AND APPLICATIONS

.fla, you may have different images for assets like game pieces and
your stage size may be different from file to file due to the game
being shown in a microsite versus a banner versus an iPhone.

One example of that would be a memory game that I origin-
ally worked on with a friend of mine at Ovrflo Media some time
ago. If you aren’t familiar with the game of memory, it’s a
matching game where you are presented with several cards in
the facedown position. For each card, there is a matching card,
and the goal is to turn over two matching cards in a single turn.
If you don’t match cards, you turn both of them facedown and
try again. Anyway, this memory game was originally built to be
played within a microsite, and the core engine was written as a
single class with a couple of other classes that accompanied it.
Not too long after the microsite was launched, the client asked if
we could build a “widget” version for Web site owners to place
on their sites. Because of the decision to build the game the way
we did, it was much easier to build the smaller version than it

Figure 11.17 “Three Card Monte” – Produced by Blockdot, Inc.

Chapter 11 ADVERGAMING AND APPLICATIONS 183

would have been if all of the code had been on the timeline and
dependent on hardcoded values for things like width and height.
Now to take it even further, the code base was used again more
than a year later. I chose to make slight modifications to the way
it played, but I was still able to use the core classes before mak-
ing another version that I published for the iPhone. If you’re
interested, you can search the App Store for the game, which is
called Memory4Kidz. Remember that at the time of writing this,
I’m not sure if it will still be available due to the new iPhone
developer rules dealing with building apps in anything other
than Objective-C. Also due to the new rules, it doesn’t seem that
I’ll be able to update the design as I had originally planned.

Figure 11.19 “Three Card
Monte” for the iPhone (built
with Flash Professional CS5) –
Produced by Blockdot, Inc.

Figure 11.18 “Three Card
Monte” for the iPhone (built
with Flash Professional CS5) –
Produced by Blockdot, Inc.

184 Chapter 11 ADVERGAMING AND APPLICATIONS

Applications
The Internet is a wondrous place with its vast fields of information
and rolling hills of branded experiences all right within your brow-
ser, wouldn’t you agree? And it’s a great thing to be able to learn
and play and discover new products and services right from within
that very same browser, yes? Well let’s take a few minutes and
ditch that browser to talk briefly about advertising on the users’
desktop through Adobe AIR.

If you stop to think about it for a second, there are a ton of
ideas that could be utilized to present your client’s brand to the
user in an application that’s running directly on their desktop.
Some of those ways might tie directly in with your client’s products
or services, whereas others may seem a little more arbitrary but

Figure 11.21 “Three Card
Monte” for the iPhone (built
with Flash Professional CS5) –
Produced by Blockdot, Inc.

Figure 11.20 “Three Card
Monte” for the iPhone (built
with Flash Professional CS5) –
Produced by Blockdot, Inc.

Chapter 11 ADVERGAMING AND APPLICATIONS 185

can still be related in one way or another. For example, you may
present the idea of a branded weather application to an automobile
company. While you may not include a form for users to customize
and order a new car, it would allow them to check weather condi-
tions before they get on the road and they would do so with your
client’s brand right in front of them.

Another more related example might be an application that
allows users to book their travel arrangements (flight, hotel, car,
and so on) without ever opening a browser. Obviously, this one
would be designed around the brand of your travel company client.
As you can imagine, the possibilities are pretty much only bound
by your imagination … and maybe a little by deadlines. For more
specific examples of how companies are using AIR to extend their
brand to the desktop, go check out the Adobe AIR showcase at
http://www.adobe.com/products/air/showcase/. At the time of writ-
ing this, companies listed include names like eBay, Nickelodeon,
AOL, and The New York Times.

AIR Overview
So what is Adobe AIR? Well, in a nutshell it’s a runtime that allows
developers to create desktop applications with their choice of
HTML, Ajax, Flash, and/or Flex. The compiled fruit of that develo-
per’s labor yields a single installer that can be successfully run
across various operating systems in much the same way that a
Flash site can be built once and viewed across various browsers. It
provides a great way to keep the user engaged with your client’s
brand even while their browser is closed.

One of the many cool things about an AIR application is how it
can work with a user’s Internet connection (or lack thereof). In the
weather example I mentioned earlier, the user would definitely
need to be connected to get the most up-to-date weather condi-
tions. On the other hand there are also cases, like a game of
solitaire, where the user may not need to be connected at all. On
the third hand (what, you don’t have three?), there are plenty
of good reasons that an application could work offline and then
perform some action once the user gets connected.

So let’s talk about a couple of benefits of AIR when it comes to
your clients. Obviously, the big value is that users continue to interact
with the brand even after they leave the browser, but there are some
others as well. For example, if developed to do so, an AIR application
can push notifications to the end user. Imagine a user is planning on
booking a flight for a trip in the near future, but he or she’s waiting
for a good price before doing so. I’m sure the user would appreciate
it very much if your client’s application was kind enough to inform
him or her that it had found a flight below a certain price that he or
she had set in advance. Another benefit would be in the case of a

186 Chapter 11 ADVERGAMING AND APPLICATIONS

business traveler. With the right “sometimes-connected” AIR
application, the business traveler could go ahead and get started on
something like a multipage form while on an airplane with no
connectivity. That data could very easily be stored locally and then
pushed online once the traveler arrives at his or her destination and
gets connected.

Freedom of Design
Continuing with some of the benefits of AIR, let’s move into the
fact that you have a huge amount of freedom in the design of your
application. Not only have you broken out of the browser by creat-
ing an AIR application, but you can also escape the boring ‘ol box
in which it’s built. While the browser and most other applications
are typically constrained to four sides, you can utilize some of the
AIR features to remove that box and shape your application the
way you want it shaped. The great thing about a feature like this is
that you can really compliment the brand with the right window
design. For example, if your client is a movie theater, your applica-
tion could provide show times and be shaped like a movie ticket
with the notches cut out on both sides.

TIP
When you are designing a custom shaped window chrome, remember not
to get too crazy unless the brand truly calls for it. Someone looking for a
good price on an airplane ticket doesn’t necessarily need an application
that’s shaped like an airplane. However, a little more creative license can
probably be taken when designing a game targeted at children.

User controls are another aspect to think about when you’re
designing your application. Although you may want them to perpe-
tually interact with it, most users are going to want a way to close
the application at some point and you really should provide it to
them in the form of what? If you said a “close button,” you win!
In addition to the close button, think about the controls that you
see on so many other applications. Controls like the minimize/
maximize buttons, the handle to resize the window, the scrollbars,
and scroll arrows. Although some of these are must-have controls
(close button), others may not be as important and can be left out.
It’s up to you if you want the user to be able to do something like
change the size of the window.

Something else to put on the design plate for your application
is the icons. I would be willing to bet that just about every appli-
cation that you work with has icons associated with it. There
are the small icons you see when you come across the application
in Windows Explorer or Finder on the Mac. There are the icons

Chapter 11 ADVERGAMING AND APPLICATIONS 187

that represent the application in the Windows Taskbar and the
Dock on the Mac. And you may even want to go ahead and think
about the icon for the Windows system tray because you may just
need it.

One more thing to mention before I move on is the install badge.
The install badge is a .swf file that you can put on a Web site for
seamless installation of your application. Not only does the badge
present the opportunity to install the application directly from within
the browser, it also checks to see if the user has the AIR runtime
installed (which is kind of important here). If they don’t, it installs it
and then moves on to installing your application. If they do already
have it installed, it jumps right to your application and installs it
from the site without requiring the user to save it to their system
first. For quick and easy creation of your installer badges, check out
the Badger AIR application that Grant Skinner put together for
Adobe. At the time of this writing, you could get Badger at http://
www.adobe.com/devnet/air/articles/badger_for_air_apps.html. If it’s
not there any more, a quick search for “Grant Skinner Badger”
should yield some good results.

Conclusion
Well, like I was saying earlier, this was a bit of a high-level over-
view of linking games and applications to your advertising. With
the enormous growth that Flash-based games have seen over the
last few years, advergaming is definitely something to pitch to your
clients when coming up with a campaign strategy or even just for
brand awareness. And because people are spending more and
more time playing games in their browsers through the Flash
Player, there are more and more opportunities to really get them
immersed in a fun, branded experience. Remember also that the
experience can be very subtly branded by just placing your client’s
logo in a strategic location or it can be completely designed around
the brand from the ground up.

Another thing to think about is how to get players coming back
to play the game again and again. Some of the tactics to achieve
that goal are in features like allowing them to save their progress
or collect points to spend on in-game items. Something else that is
good at drawing players back in is competition. Generally speaking,
people are naturally competitive and love to challenge other people
to games where one of them will be a winner and the other will be
a loser. Make it interesting for them by taking the competition a
step or two further and offering actual prizes (client branded of
course). Introducing that element into the mix will not only make
more people come back more often, but also get the brand
physically in their hands. Again, don’t forget about security.

188 Chapter 11 ADVERGAMING AND APPLICATIONS

Security is very important in this case because you really don’t
want people cheating to win any prizes. Not only could it turn into
a big legal issue, but also it’s just not cool.

Also, you should shoot for as much portability as you possibly
can in your advergames. Remember that if you build a game that
is successful in terms of how often it gets played and how many
users it attracts, you may be asked to build it again in another
form. If you originally built it as a feature in a microsite, it might
make sense to rebuild it in a banner that drives people to the
microsite or to even port it to the iPhone. The best way to do that
is to keep everything modular. If possible, you should have one set
of classes that can drive any one of several .fla files that contain
nothing more than different assets from one another.

Finally, AIR applications can be a very powerful form of adver-
tising because you can stay engaged with the user even after they
have left the browser. You can build applications that help them
with their productivity, provide them with information to help
them plan their day, and offer many other things that they may
need to use on a daily basis. Applications that can continue to
work without an Internet connection, but that will make sure that
all required data is correct as soon a connection is available, are
another bonus to offering AIR to your clients. And let’s not leave
out the designers, right? The designers get to completely (and
literally) break outside the box when concepting and designing an
AIR application.

Chapter 11 ADVERGAMING AND APPLICATIONS 189

This page intentionally left blank

12
CLASSES

CHAPTER OUTLINE
Set Up 192
Packages 192
Document Class 193
The BorderButton Class 195

BorderButton Code 196
BorderButton Breakdown 197
Sample Use of BorderButton 200

The SimpleMenu Class 200
SimpleMenu Code 201
SimpleMenu Breakdown 206
Sample Use of SimpleMenu 212

The SimpleGallery Class 213
SimpleGallery Code 214
SimpleGallery Breakdown 217
Sample Use of SimpleGallery 225

The ReverseClip Class 226
ReverseClip Code 226
ReverseClip Breakdown 227
Sample Use of ReverseClip 230

The ClickTagger Class 231
ClickTagger Code 231
ClickTagger Breakdown 234
Sample Use of ClickTagger 238

Conclusion 238

Writing good classes (and reusable code in general) can sometimes
be a challenge in the advertising agency world where timelines
tend to be significantly shorter than a developer would like and
project functionality can change at the drop of a hat during the
final moments of a tight deadline. Another challenge to writing
code that can be easily passed across projects is the fact that, in
general, no two projects are ever the same. That said you should
still strive for reusable classes in your projects.

Flash Advertising. DOI: 10.1016/B978-0-240-81345-5.00012-8
© 2010 Jason Fincanon. Published by Elsevier, Inc. All rights reserved. 191

Even if they have to be slightly modified from project to project,
it’s always a good thing to have reusable classes at your disposal.
Classes that you can grab and throw into a project at a moment’s
notice without having to worry too much if it’s going to work cor-
rectly or not. And just in case the chapter title didn’t give it away,
we’ll be spending the next several pages looking over different
classes. Some of them have been used in actual client projects,
some of them were written specifically for this book, and all of
them can be found at http://www.flashadbook.com/code/.

Set Up
Before we dive in, I’d like to offer a bit of an explanation of
how my files were set up while working on these classes. When
you download the code from the Web site, you’ll see that I placed
all the separate classes in a folder structure as seen in Fig. 12.1.
The structure starts with the com/flashadbook folder and then goes
down to the base, display, engines, events, and utils folders. When
working with these folder structures within the code of the classes
themselves, these will be the structures of the packages.

Packages
By the most simple of explanations (and as we just discussed), a
package is a representation of a directory path where a group of
your classes is stored. When used correctly, not only are packages
a great way to organize and maintain your code but they also help
minimize the risk of name conflicts between classes.

Figure 12.1 Folder structure for
the classes used in this
chapter.

192 Chapter 12 CLASSES

TIP
Best practices for package naming conventions are to use the top-level
domain first (com, net, org, and so on) followed by the company name or
site domain (com.flashadbook for flashadbook.com). Beyond that, your
package names should break down to specific sections or functionalities
such as utils, events, or engines.

Package declaration occurs at the beginning of your class file
with the directory path in dot notation. For example, using the
directories mentioned in the previous section, your package
declarations would be as follows: com.flashadbook.base, com.
flashadbook.display, com.flashadbook.engines, com.flashadbook.
events, and com.flashadbook.utils. While the display, events, and
utils are pretty standard packages to use for certain kinds of classes,
I also have an engines package that contains the MemoryGame engine
from the next chapter and the base package that contains Docu-
ment classes used to show examples of these classes. What’s a
Document class? Let’s take a look.

Document Class
Rather than placing any code on the timeline of my .fla, I’ve created
a separate Document class for each sample. For example, in order
to implement the BorderButton class, I’ve created a BorderButton-
Sample class that is used as the Document class of a .fla file. This
way, you can work with a single .fla in which you only need to
change the Document class to create a completely different output
.swf based on the examples. There are also several other benefits to
using a Document class, including the fact that it allows a developer
to work on the code while a designer works in the .fla file, or that
you can extend your code much more easily if it doesn’t live on the
timeline. How about adding the ability to do things like reuse your
code in a Flex project even after it was originally written for a Flash
project? When you start looking at these and the many other bene-
fits, it’s very much worth keeping the code in a Document class.

The next question then is how to tie a Document class to a .fla,
and the answer is that you have two choices. One option is through
the Advanced ActionScript 3.0 Settings, and the other is through
the Properties window of the .fla. To set the Document class via the
Advanced ActionScript 3.0 Settings, go to the File menu and select
“Publish Settings.” From the resulting window, make sure the box
next to “Flash (.swf)” is checked and choose the tab labeled “Flash.”
Within the Flash tab, make sure “ActionScript 3.0” is selected in the
drop-down labeled “Script” and click the “Settings…” button. Finally,
in the Advanced ActionScript 3.0 Settings window, type in the
path to the class you would like to use as the main code for the .fla
(see Fig. 12.2).

Chapter 12 CLASSES 193

Alternatively (and slightly more easily) you can set the Document
class from the Properties window of your .fla. To do so, simply
make sure the Properties window is visible by going to the Window
menu and selecting “Properties.” Once the Properties window is
available, type the path to your class in the “Class” text field under
the Publish section (Fig. 12.3). If you don’t see the “Class” text field
in the Properties window, make sure you don’t have anything
selected on the stage.

And now that we’ve got some of those items taken care of, let’s
get to the classes. Most of them are rewrites from their original
ActionScript 2 versions that were in the first edition of this book.
And once again, you can download all these files from the Web site
at http://www.flashadbook.com/code/.

Figure 12.2 Setting the
Document class from the
Advanced ActionScript 3.0
Settings window.

194 Chapter 12 CLASSES

The BorderButton Class
In addition to creating an invisible button that covers the stage, the
BorderButton class also gives you the option to include a border of
any color and thickness you need based on the design layout and
specs (some sites require a border to separate banners from their
content). As a matter of fact, the BorderButton class is set up to
offer three different choices. One option for using this class would
be a full-stage button that also draws a border around your banner.
Another option would be a full-stage button that does not draw a
border around your banner. The third option would be to draw a
border around your banner without creating a full-stage clickable
area. Each of these options has their uses, and the project at hand
will determine which you would use. An example would be if you
had a banner with specs that called for a border, but you also need
to make three different clickable areas within the banner. In that
case, you would go with the third option of drawing the banner
without including the full-stage clickable area.

Figure 12.3 Setting the
Document class from the
Properties window.

Chapter 12 CLASSES 195

BorderButton Code
package com.flashadbook.classes {

import flash.display.DisplayObjectContainer;
import flash.display.Sprite;
import flash.events.MouseEvent;
import flash.net.URLRequest;
import flash.net.navigateToURL;

public class BorderButton extends Sprite{
private var _bbParent:DisplayObjectContainer; //the

parent of the BorderButton
private var _halfThick:Number; //half the thickness

of the border line
private var _w:Number; //the width to draw the

BorderButton
private var _h:Number; //the height to draw the

BorderButton
private var _targetWindow:String; //the window in

which the targetURL will open
private var _request:URLRequest = new URLRequest();

//the URLRequest used to get to the target url

public function BorderButton(){
super();

}

public function draw(parent:DisplayObjectContainer,
outline:Boolean = false, lineColor:uint = 0x000000,
lineThickness:int = 1):void {

_bbParent = parent;
_bbParent.addChild(this);
_halfThick = lineThickness / 2;
_w = _bbParent.stage.stageWidth – _halfThick;
_h = _bbParent.stage.stageHeight – _halfThick;
graphics.lineStyle(lineThickness, lineColor);
graphics.beginFill(0, 0);
graphics.drawRect(0, 0, _w, _h);

}

public function activate(targetUrl:String,
targetWindow:String = "_blank"):void {

buttonMode = true;
_request.url = targetUrl;
_targetWindow = targetWindow;
if(!hasEventListener(MouseEvent.CLICK)){

addEventListener(MouseEvent.CLICK,
clickOut, false, 0, true);

}
}

196 Chapter 12 CLASSES

public function erase():void{
if(_bbParent != null){

deactivate();
_bbParent.removeChild(this);

}
}

public function deactivate():void{
if(hasEventListener(MouseEvent.CLICK)){

buttonMode = false;
removeEventListener(MouseEvent.CLICK,clickOut);

}
}

private function clickOut(e:MouseEvent):void {
try {

navigateToURL(_request, _targetWindow);
}catch (e:Error){

trace("An error occurred trying to navigate
to the target url.");

}
}

}
}

BorderButton Breakdown
On the very first lines of the BorderButton class, you’ll see the
package declaration and the imports used within.

package com.flashadbook.display {
import flash.display.DisplayObjectContainer;
import flash.display.Sprite;
import flash.events.MouseEvent;
import flash.net.URLRequest;
import flash.net.navigateToURL;

Next is the class declaration where you’ll notice the use of the
final class attribute and the fact that the BorderButton extends Sprite.
A Sprite is a very basic display object that gives us access to properties
like graphics, so we can draw out the border. The access to the gra-
phics property also allows us to use drawRect a bit further in. Directly
inside the class constructor, we’ll set up the variables in Table 12.1.

public final class BorderButton extends Sprite{

The next item in the lineup is the class constructor that, in this
case, is really just an empty function that reestablishes the call to
the parent class (Sprite) with super.

public function BorderButton(){
super();

}

Chapter 12 CLASSES 197

Now, we’ll get to the real functionality of the BorderButton
class with the draw method. The draw method does exactly what
you probably guessed it does: it draws the BorderButton by using
the parameters (Table 12.2) passed in by you, the developer. Note
the use of the _halfThick variable in this method. Because of the
way that Flash draws out the lines, I’ve learned that I have to pull
the width and height of my button in by half the thickness of the
line. If this is not done and your button goes right to the edge of
the stage, you’ll notice half of the border getting cut off from the
right and bottom.

public function draw(parent:DisplayObjectContainer,
outline:Boolean = false, lineColor:uint = 0x000000,
lineThickness:int = 1):void {

_bbParent = parent;
_bbParent.addChild(this);
_halfThick = lineThickness / 2;
_w = stage.stageWidth – _halfThick;
_h = stage.stageHeight – _halfThick;

Table 12.1 The Private Variables of the
BorderButton Class

Variable Purpose

_bbParent (DisplayObjectContainer) The parent object of the BorderButton
_halfThick (Number) Half the thickness of the border line
_w (Number) Width to draw the BorderButton
_h (Number) Height to draw the BorderButton
_targetWindow (String) Window where targeted URL will open
_request (URLRequest) Used to launch the target URL

Table 12.2 Parameters for the Draw Method

Parameter Purpose

parent (DisplayObjectContainer) The parent where the BorderButton will be added as a child
outline (Boolean) Determines if the BorderButton will have the border or not; default

is false
lineColor (uint) The color of the border; default is black
lineThickness (int) The thickness of the border; default is 1 pixel thick

198 Chapter 12 CLASSES

graphics.lineStyle(lineThickness, lineColor);
graphics.beginFill(0, 0);
graphics.drawRect(0, 0, _w, _h);

}

The next method is the activate method, and once again, the
name should give away its role in this class. By calling the activate
method, we’re telling the BorderButton that its buttonMode should be
active and that it should listen for the user to click on it (if it isn’t
already listening). Since this method only accepts two parameters, I’ll
cover them real quick rather than use another table. The first one is
targetURL, and it’s used to pass in the URL you want the users to visit
when they click your add. targetURL has no default value. The other
parameter is the targetWindow parameter. This one defaults to
“_blank,” but you may have some specific reason to change that value
when calling the activate method. You’ll notice a reference to the
clickOut method in the event listener. We’ll get to that one in just a bit.

public function activate(targetUrl:String,
targetWindow:String = "_blank"):void {

buttonMode = true;
_request.url = targetUrl;
_targetWindow = targetWindow;
if(!hasEventListener(MouseEvent.CLICK)){

addEventListener(MouseEvent.CLICK, clickOut, false,
0, true);

}
}

After the activate method are a couple of methods that are
there to tear down the BorderButton. The first of those is the erase
method. The erase method simply checks to see if the Border-
Button has a parent. If it does, then it removes the BorderButton
from its parent. However, before doing that, it calls another method
named deactivate. The deactivate method is just as simple as the
erase method, but this one turns off the buttonMode of the Border-
Button and removes the mouse click event listener.

public function erase():void{
if(_bbParent != null){

deactivate();
_bbParent.removeChild(this);

}
}

public function deactivate():void{
if(hasEventListener(MouseEvent.CLICK)){

buttonMode = false;
removeEventListener(MouseEvent.CLICK,clickOut);

}
}

Chapter 12 CLASSES 199

Last, but far from least, is the clickOut method that was
referenced in the activate method. This method is called when the
user clicks on the BorderButton (if the BorderButton is active).
Once again, we have a very simple and straightforward method
sitting in front of us. This one uses a try catch statement to make an
attempt at taking the user to the targeted URL by first trying to use
navigateToURL. If it succeeds, that’s great. If it doesn’t, then it cur-
rently traces out a message letting you, the developer, know about it.
You may want to put some proper error handling in the catch.

private function clickOut(e:MouseEvent):void {
try {

navigateToURL(_request, _targetWindow);
}catch (e:Error){

trace("An error occurred trying to navigate to the
target url.");

}
}

Sample Use of BorderButton
The following code is the full code from the Document class
named BorderButtonSample in the com.flashadbook.base package.
It’s pretty simple and takes care of everything in just a few steps: a
new BorderButton is instantiated, a clickTag is assigned to a private
variable, and the BorderButton is drawn and activated. That’s it.

package com.flashadbook.base {
import com.flashadbook.display.BorderButton;
import flash.display.Sprite;
import flash.events.MouseEvent;

public class BorderButtonSample extends Sprite {
private var _borderButton:BorderButton = new

BorderButton();
private var _clickTag:String =

"http://www.flashadbook.com";

public function BorderButtonSample(){
_borderButton.draw(this);
_borderButton.activate(_clickTag);

}
}

}

The SimpleMenu Class
The following SimpleMenu class is a single-dimension (no drop-
downs) menu that has limited styling properties that can be set by the
developer. One of the styles that is changeable is the TextFormat used

200 Chapter 12 CLASSES

for the upstate (when the mouse is not over the button), the overstate,
and the downstate. For example, you may want to show your menu
using Arial font with no underlines until a user rolls his or her mouse
over a button. The other modifiable style in the SimpleMenu class is
the rectangle that is drawn behind the text of each button. You can
control the opacity of the rectangle in the different states with the
backgroundUpAlpha, backgroundDownAlpha, and backgroundDownAlpha
properties to have it semi see-through (or set their value to 0 and get
rid of the rectangle altogether). Additionally, you can control the color
of the rectangle separately for each state as well. Once the Simple-
Menu class is used to create a menu in your project, you can assign
any function to any button within that menu by using the assign
Action method.

SimpleMenu Code
package com.flashadbook.display {

import flash.display.DisplayObjectContainer;
import flash.display.Sprite;
import flash.events.MouseEvent;
import flash.text.TextField;
import flash.text.TextFormat;

public class SimpleMenu extends Sprite {

// ——— layout options for the menu
public static var HORIZONTAL:String = "horizontal";
public static var VERTICAL:String = "vertical";

private var _layout:String; // used to hold the
chosen layout

private var _spacing:Number; // the amount of space
between menu items

private var _menuItem:Sprite; // used to create and
alter individual menu items

private var _menuItemLabel:TextField; // used to
create and alter individual menu item labels

// ——— background color
private var _upBackground:uint = 0x000000;
private var _overBackground:uint = 0x000000;
private var _downBackground:uint = 0x000000;

// ——— background alpha
private var _backgroundUpAlpha:Number = 1.0;
private var _backgroundOverAlpha:Number = 0.5;
private var _backgroundDownAlpha:Number = 0.0;

// ——— label text format
private var _labelFormatUp:TextFormat = new

TextFormat();

Chapter 12 CLASSES 201

private var _labelFormatOver:TextFormat = new
TextFormat();

private var _labelFormatDown:TextFormat = new
TextFormat();

// ——— color, alpha and format used for different
states of the menu items

private var _stateBackgoundColor:uint =
upBackground;

private var _stateBackgroundAlpha:Number =
backgroundUpAlpha;

private var _stateTextFormat:TextFormat =
labelFormatUp;

public function SimpleMenu(menuArray:Array,
spacing:Number = 0, layout:String = "horizontal") {

_layout = layout;
_spacing = spacing;
setDefaultFormats();
menuArray.forEach(createMenuItem);

}

public function assignAction(itemIndex:int,
action:Function):void {

_menuItem = Sprite(getChildByName("menuItem" +
itemIndex));

_menuItem.addEventListener(MouseEvent.CLICK,
action, false, 0, true);

}

public function
setPosition(xPosition:Number,yPosition:Number):void{

x = xPosition;
y = yPosition;

}

// START PRIVATE FUNCTIONS
private function setDefaultFormats():void {

labelFormatUp.color = 0xFFFFFF;
labelFormatUp.underline = false;

labelFormatOver.color = 0xCCCCCC;
labelFormatOver.underline = true;

labelFormatDown.color = 0x000000;
labelFormatDown.underline = true;

}

private function createMenuItem(itemLabel:String,
index:int, array:Array):void {

_menuItem = new Sprite();
_menuItem.name = "menuItem" + index;

202 Chapter 12 CLASSES

_menuItem.mouseChildren = false;
_menuItem.buttonMode = true;

_menuItemLabel = new TextField();
_menuItemLabel.name = "itemText";
_menuItemLabel.autoSize = "left";
_menuItemLabel.antiAliasType = "advanced";
_menuItemLabel.selectable = false;
_menuItemLabel.text = itemLabel;
_menuItemLabel.setTextFormat(_labelFormatUp);

drawItemBackground(_menuItem, _upBackground,
_backgroundUpAlpha, _menuItemLabel.width,
_menuItemLabel.height);

addItemListeners(_menuItem);
placeItem(_menuItem, index);

_menuItem.addChild(_menuItemLabel);
addChild(_menuItem);

}

private function
drawItemBackground(item:Sprite,color:uint,alpha:Number,
w:Number,h:Number):void {

item.graphics.clear();
item.graphics.beginFill(color, alpha);
item.graphics.drawRect(0, 0, w, h);

}

private function addItemListeners(item:Sprite):void
{

item.addEventListener(MouseEvent.MOUSE_OVER,
alterState, false, 0, true);

item.addEventListener(MouseEvent.MOUSE_DOWN,
alterState, false, 0, true);

item.addEventListener(MouseEvent.MOUSE_UP,
alterState, false, 0, true);

item.addEventListener(MouseEvent.MOUSE_OUT,
alterState, false, 0, true);

}

private function
placeItem(itemToPlace:Sprite,index:int):void {

if(index == 0) return;
var lastItem:Sprite = Sprite(getChildAt(index –

1));
switch(_layout){

case HORIZONTAL:
itemToPlace.x = lastItem.x +

lastItem.width + _spacing;
break;

Chapter 12 CLASSES 203

case VERTICAL:
itemToPlace.y = lastItem.y +

lastItem.height + _spacing;
break;

default:
trace('Please use a String value of

"horizontal" or "vertical" for the SimpleMenu layout
param.');

break;
}

}

private function alterState(e:MouseEvent):void {
_menuItem = Sprite(e.target);
_menuItemLabel =

TextField(_menuItem.getChildByName("itemText"));
switch(e.type) {

case MouseEvent.MOUSE_UP:
case MouseEvent.MOUSE_OVER:

_stateBackgoundColor = overBackground;
_stateBackgroundAlpha =

backgroundOverAlpha;
_stateTextFormat = labelFormatOver;
break;

case MouseEvent.MOUSE_DOWN:
_stateBackgoundColor = downBackground;
_stateBackgroundAlpha =

backgroundDownAlpha;
_stateTextFormat = labelFormatDown;
break;

case MouseEvent.MOUSE_OUT:
_stateBackgoundColor = upBackground;
_stateBackgroundAlpha =

backgroundUpAlpha;
_stateTextFormat = labelFormatUp;
break;

}

_menuItemLabel.setTextFormat(_stateTextFormat);
drawItemBackground(_menuItem,

_stateBackgoundColor, _stateBackgroundAlpha,
_menuItem.width, _menuItem.height);

}
// END PRIVATE FUNCTIONS

// START GETTERS AND SETTERS
// ——— background colors
public function get upBackground():uint {

return _upBackground;
}

204 Chapter 12 CLASSES

public function set upBackground(value:uint):void {
_upBackground = value;

}
public function get overBackground():uint {

return _overBackground;
}

public function set overBackground(value:uint):void
{

_overBackground = value;
}

public function get downBackground():uint {
return _downBackground;

}
public function set downBackground(value:uint):void

{
_downBackground = value;

}

// ——— background alphas
public function get backgroundUpAlpha():Number {

return _backgroundUpAlpha;
}
public function set

backgroundUpAlpha(value:Number):void {
_backgroundUpAlpha = value;

}
public function get backgroundOverAlpha():Number {

return _backgroundOverAlpha;
}
public function set

backgroundOverAlpha(value:Number):void {
_backgroundOverAlpha = value;

}
public function get backgroundDownAlpha():Number {

return _backgroundDownAlpha;
}
public function set

backgroundDownAlpha(value:Number):void {
_backgroundDownAlpha = value;

}
// ——— label text formats
public function get labelFormatUp():TextFormat {

return _labelFormatUp;
}
public function set

labelFormatUp(value:TextFormat):void {
_labelFormatUp = value;

}

Chapter 12 CLASSES 205

public function get labelFormatOver():TextFormat {
return _labelFormatOver;

}
public function set

labelFormatOver(value:TextFormat):void {
_labelFormatOver = value;

}

public function get labelFormatDown():TextFormat {
return _labelFormatDown;

}
public function set

labelFormatDown(value:TextFormat):void {
_labelFormatDown = value;

}
// END GETTERS AND SETTERS

}
}

SimpleMenu Breakdown
Once again, we’ll start with the package and the imports for
SimpleMenu:

package com.flashadbook.display {
import flash.display.DisplayObjectContainer;
import flash.display.Sprite;
import flash.events.MouseEvent;
import flash.text.TextField;
import flash.text.TextFormat;

The next thing in line is the class declaration and a list of several
variables. Most of the variables are private, and two of them are
public and static. Also, most of the private variables have getters and
setters further down in the class that allow the values to be set and
retrieved from outside of the class itself. As with the BorderButton
class, the SimpleMenu class extends Sprite. The reason I chose
Sprite again for SimpleMenu was to gain access to many of the
properties and functionalities available to a MovieClip, but without
needing a timeline. So let’s take a look at that class declaration
followed by the variables in Table 12.3:

public class SimpleMenu extends Sprite {

Let’s move on to the class constructor, shall we? To instantiate a
new SimpleMenu, there are three parameters that need to be con-
sidered. One of them (menuArray) is required, and the other two
(spacing and layout) are optional. menuArray is an array of Strings
that will be used as the labels for the menu items. The optional
parameter, spacing, sets the distance (or padding) between the

206 Chapter 12 CLASSES

menu items. spacing defaults to 0 if nothing is passed in. The other
optional parameter, layout, tells the SimpleMenu the direction in
which to organize the menu items. The options are horizontal and
vertical with the default being set to horizontal. Once inside the
SimpleMenu class constructor, we’ll make the values of the spacing
and layout parameters available to the rest of the class by assigning
them to the private variables through the (almost) same names of
_layout and _spacing. The next line calls the setDefaultFormats
method, which we’ll get to in just a bit. After that call, I use the forEach
method from the Array class to call the createMenuItem method with
each item of the menuArray. More on that a little further in as well.

public function SimpleMenu(menuArray:Array, spacing:Number
= 0, layout:String = "horizontal") {

_layout = layout;
_spacing = spacing;
setDefaultFormats();
menuArray.forEach(createMenuItem);

}

Table 12.3 The Variables of the SimpleMenu Class

Variable Purpose

HORIZONTAL (public, static String) Option for laying out the menu in the horizontal direction
VERTICAL (public, static String) Option for laying out the menu in the vertical direction
_layout (String) Holds the chosen layout
_spacing (Number) The number of pixels to place between menu items
_menuItem (Sprite) Used for the creation and manipulation of each menu item
_menuItemLabel (TextField) Used for the creation and manipulation of each menu item label
_upBackground (uint) The background color of the menu items in the upstate; default is black
_overBackground (uint) The background color of the menu items in the overstate; default is black
_downBackground (uint) The background color of the menu items in the downstate; default is black
_backgroundUpAlpha (Number) The background alpha of the menu items in the upstate; default is 1 (100%)
_backgroundOverAlpha (Number) The background alpha of the menu items in the overstate; default is 0.5 (50%)
_backgroundDownAlpha (Number) The background alpha of the menu items in the downstate; default is 0
_labelFormatUp (TextFormat) The TextFormat used for the menu item labels in the upstate
_labelFormatOver (TextFormat) The TextFormat used for the menu item labels in the overstate
_labelFormatDown (TextFormat) The TextFormat used for the menu item labels in the downstate
_stateBackgroundColor (uint) Holds the background color of the current state of a menu item that is

being interacted with
_stateBackgroundAlpha (Number) Holds the background alpha of the current state of a menu item that is

being interacted with
_stateTextFormat (TextFormat) Holds the TextFormat of the current state of a menu item’s label that is

being interacted with

Chapter 12 CLASSES 207

Next are a couple of publicly available methods used to
control the position of the entire menu and the behavior of each
individual menu item. The setPosition method does exactly what
its name claims to do: it sets the position of the SimpleMenu.
There’s not too much to explain there except that you pass in
the x and y values where you want the SimpleMenu to live. On
the other hand, the assignAction method does a bit more. The
assignAction method allows you to write the functionality outside
of the class for each individual menu item and then pass it in
and assign it to the desired menu item. You can do so with this
method’s two parameters, itemIndex and action, both of which
are required. Because the createMenuItem method names each
menu item in a particular way using the index of that item in the
menuArray, we’re also able to use those index numbers here. For
example, let’s say you want to assign functionA to the first item
in your menuArray. You would pass in 0 as the itemIndex and
functionA as the action.

public function assignAction(itemIndex:int,
action:Function):void {

_menuItem = Sprite(getChildByName("menuItem" +
itemIndex));

_menuItem.addEventListener(MouseEvent.CLICK, action,
false, 0, true);
}

public function
setPosition(xPosition:Number,yPosition:Number):void{

x = xPosition;
y = yPosition;

}

Remember, we’ll discuss the createMenuItem method in just a
bit, but first, let’s take a quick look at the setDefaultFormats
method. This one is very straightforward because it’s not doing
anything but setting the color and underline values for the menu
item labels in each state (up, over, and down). These default values
could be set to match your style guide, or they could be left as they
are, but the point is to have defaults in case they aren’t set later
when a new instance of SimpleMenu is created.

private function setDefaultFormats():void {
labelFormatUp.color = 0xFFFFFF;
labelFormatUp.underline = false;

labelFormatOver.color = 0xCCCCCC;
labelFormatOver.underline = true;

labelFormatDown.color = 0x000000;
labelFormatDown.underline = true;

}

208 Chapter 12 CLASSES

And now, without further ado, the much talked about create
MenuItem method! This little chunk of code is responsible for creating
each menu item and adding it to the stage. If you remember in the
class constructor, we called this method with each item in the
menuArray. The three parameters in this method are the parameters
that get passed when you use the forEach method from the Array
class. They are the value of the item, the index of that item in its
containing Array, and the containing Array object itself. Inside
createMenuItem, the first thing that happens is the instantiation and
naming of a new Sprite, which will be the new menu item. In order
to access the menu item later (e.g., from the assignAction method),
the menu item is named by appending its index in the array to the
string “menuItem,” so we end up with menuItem0, menuItem1, and so
on. Next, we’ll set the mouseChildren property to false, so no
children within this menu item will be able to take over the focus of
the mouse. After that comes setting the buttonMode to true, so the
menu item will show the hand cursor and will accept a click event if
the space bar or Enter key are pressed while it has focus.

After creating the new menu item, I move on to create its label
as a new TextField. I won’t go through each line of this process in
great detail, but you can see that the properties being set are name,
autoSize (set to “left”, which essentially means the text is left
aligned), antiAliasType, selectable, and text. Also, we run a
setTextFormat call to set the initial formatting of the label. From
here, we call a couple of other methods for the look, interactivity,
and location of the menu item being created (those are up next).
Finally, the label is added to the menu item, and the menu item is
added to the SimpleMenu.

private function createMenuItem(itemLabel:String,
index:int, array:Array):void {

_menuItem = new Sprite();
_menuItem.name = "menuItem" + index;
_menuItem.mouseChildren = false;
_menuItem.buttonMode = true;

_menuItemLabel = new TextField();
_menuItemLabel.name = "itemText";
_menuItemLabel.autoSize = "left";
_menuItemLabel.antiAliasType = "advanced";
_menuItemLabel.selectable = false;
_menuItemLabel.text = itemLabel;
_menuItemLabel.setTextFormat(_labelFormatUp);

drawItemBackground(_menuItem, _upBackground,
_backgroundUpAlpha, _menuItemLabel.width,
_menuItemLabel.height);

addItemListeners(_menuItem);
placeItem(_menuItem, index);

Chapter 12 CLASSES 209

_menuItem.addChild(_menuItemLabel);
addChild(_menuItem);

}

So now let’s see those methods that are called at the end of
the createMenuItem method. The first two we’ll look at together are
drawItemBackground and addItemListeners. drawItemBackground uses
the graphics property of the menu item passed in (via the item
parameter) to draw a rectangle with the color, alpha, and size that are
also passed in through the method’s parameters. The first thing it
does is clear the graphics in case there was anything drawn in the
menu item prior to this call. Once things are cleared out, the begin
Fill method is called. This is where the background color and alpha
values come in. With the fill color and alpha set, all that’s left to do in
this method is to call the graphics.drawRect method. The next
method, addItemListeners, simply adds MouseEvent listeners to the
menu item, so its look can be changed with the alterState method
(coming up after we look at the placeItem method).

private function
drawItemBackground(item:Sprite,color:uint,alpha:Number,
w:Number,h:Number):void {

item.graphics.clear();
item.graphics.beginFill(color, alpha);
item.graphics.drawRect(0, 0, w, h);

}

private function addItemListeners(item:Sprite):void {
item.addEventListener(MouseEvent.MOUSE_OVER,

alterState, false, 0, true);
item.addEventListener(MouseEvent.MOUSE_DOWN,

alterState, false, 0, true);
item.addEventListener(MouseEvent.MOUSE_UP, alterState,

false, 0, true);
item.addEventListener(MouseEvent.MOUSE_OUT, alterState,

false, 0, true);
}

The last method that was called from within createMenuItem was
placeItem, and it’s the next method we’re going to look at. The two
parameters this method is expecting are, of course, the item that
needs to be placed (itemToPlace) and the index of that item. The
very first thing we do here is check to see if index is equal to 0. If
it is, we can jump right back out of this method because there’s
nothing we need to do since the very first item in a SimpleMenu
gets placed at the x,y position of (0,0) within the SimpleMenu itself.
Once index is anything other than 0, the code can continue on to
the next line where we need to get a reference to the previously
created menu item (lastItem). This is the second time the index
parameter comes in handy because we can check one position

210 Chapter 12 CLASSES

beneath that index to get the reference we need. Finally, we’ll run a
quick switch statement to check the _layout of the SimpleMenu.
Depending on that value, we know to place the current menu item
either beneath the lastItem (VERTICAL) or beside it (HORIZONTAL). If
some other value was passed in when the SimpleMenu was instan-
tiated, now is the time to let the developer know he or she has
made a mistake and inform him or her of the acceptable values.
That gets taken care of in the default case of the switch statement.

private function
placeItem(itemToPlace:Sprite,index:int):void {

if(index == 0) return;
var lastItem:Sprite = Sprite(getChildAt(index – 1));
switch(_layout){

case HORIZONTAL:
itemToPlace.x = lastItem.x + lastItem.width +

_spacing;
break;

case VERTICAL:
itemToPlace.y = lastItem.y + lastItem.height +

_spacing;
break;

default:
trace('Please use a String value of

"horizontal" or "vertical" for the SimpleMenu layout
param.');

break;
}

}

Other than the getter and setters, there’s only one method left
to cover in the SimpleMenu class and that is the alterState
method. If you recall, the addItemListeners method added
MouseEvent listeners to change the states of the menu items. The
alterState method handles the changing of the background color,
the background alpha, and the formatting of the label as a menu
item is interacted with. Again, this is a very simple method because
it is just checking the type of MouseEvent that occurred and setting
the values accordingly. One thing to note in the switch statement is
that there is nothing for the MouseEvent.MOUSE_UP case (not even a
break). You’ll also notice that the MouseEvent.MOUSE_OVER case is
directly after it. By leaving that first case blank, the outcome is the
same for both the upstate and the overstate. The thinking behind
that is that when you put the item in a downstate and then bring it
back to the upstate, your mouse is still over the item. In that case,
the upstate should be the same as the overstate. Once the mouse
triggers the MouseEvent.MOUSE_OUT event, then I set all the styling
back to the real upstate styling that was originally intended.

Chapter 12 CLASSES 211

The last thing that happens here is another call to the drawItem
Background method, which you’ll remember clears the graphics and
redraws with the desired color and alpha values.

private function alterState(e:MouseEvent):void {
_menuItem = Sprite(e.target);
_menuItemLabel =

TextField(_menuItem.getChildByName("itemText"));
switch(e.type) {

case MouseEvent.MOUSE_UP:
case MouseEvent.MOUSE_OVER:

_stateBackgoundColor = overBackground;
_stateBackgroundAlpha = backgroundOverAlpha;
_stateTextFormat = labelFormatOver;
break;

case MouseEvent.MOUSE_DOWN:
_stateBackgoundColor = downBackground;
_stateBackgroundAlpha = backgroundDownAlpha;
_stateTextFormat = labelFormatDown;
break;

case MouseEvent.MOUSE_OUT:
_stateBackgoundColor = upBackground;
_stateBackgroundAlpha = backgroundUpAlpha;
_stateTextFormat = labelFormatUp;
break;

}
_menuItemLabel.setTextFormat(_stateTextFormat);
drawItemBackground(_menuItem, _stateBackgoundColor,

_stateBackgroundAlpha, _menuItem.width, _menuItem.height);
}

Sample Use of SimpleMenu
The following code is the full code from the Document class
named SimpleMenuSample in the com.flashadbook.base package.
The first thing this class does is to declare a _simpleMenu variable
and a _menuArr variable. Once inside the class constructor, we’ll
create the new SimpleMenu using the _menuArr. We’ll set the pad-
ding between menu items to 10 and tell it to have a vertical layout.
The next thing we take care of is assigning actions to each menu
item using the assignAction method of SimpleMenu. After that,
we’ll call setPosition with an x value of 100 and a y value of 0, and
then we’ll add the SimpleMenu to the stage. Once again, nothing
much to it.

package com.flashadbook.base {
import com.flashadbook.display.SimpleMenu;
import flash.display.Sprite;
import flash.events.MouseEvent;

212 Chapter 12 CLASSES

public class SimpleMenuSample extends Sprite {

private var _simpleMenu:SimpleMenu;
private var _menuArr:Array = new Array("Menu Item

1","Menu Item 2","Menu Item 3");

public function SimpleMenuSample(){
_simpleMenu = new

SimpleMenu(_menuArr,10,SimpleMenu.VERTICAL);
_simpleMenu.assignAction(0, releaseFunction1);
_simpleMenu.assignAction(1, releaseFunction2);
_simpleMenu.assignAction(2, releaseFunction3);
_simpleMenu.setPosition(100, 0);
addChild(_simpleMenu);

}

public function
releaseFunction1(e:MouseEvent):void{

trace("function 1");
}
public function

releaseFunction2(e:MouseEvent):void{
trace("function 2");

}
public function

releaseFunction3(e:MouseEvent):void{
trace("function 3");

}
}

}

The SimpleGallery Class
There will most likely be occasions where your client wants to
show off a gallery of either several of their products or multiple
photographs of a specific product. The automobile manufacturer
example I’ve used in this book would be a prime candidate for a
photo gallery. Since you may find yourself making these galleries
on project after project after project, it might be a good idea to
have a simple base for one at your disposal. The SimpleGallery
class is meant as exactly that. With control over properties to do
things like move the entire gallery around and control how many
columns you want to break the gallery into, it gives you a simple
layout with a simple method to view each thumbnail in its larger
form. You only need to tell it the directory where the images live
and which ones to pull from that directory, and it will take care of
the rest for you. As we go through the code, note that there is no
transition from the thumbnail of an image to its full-size version.

Chapter 12 CLASSES 213

The change in size happens instantaneously in the imageClicked
method, and you may want to consider adding in a tiny bit of
math for transitions or even looking into one of the popular
tweening libraries like Tweener or TweenLite.

SimpleGallery Code
package com.flashadbook.display {

import flash.display.DisplayObjectContainer;
import flash.display.Loader;
import flash.display.Sprite;
import flash.events.MouseEvent;
import flash.geom.Point;
import flash.net.URLRequest;
import flash.events.Event;
import flash.events.IOErrorEvent;

public class SimpleGallery extends Sprite{

private var _galleryParent:DisplayObjectContainer;
// the parent of the gallery

private var _galleryPath:String; // external folder
that holds the images

private var _imageArray:Array; // array of image
names within the _galleryPath

private var _columns:int; // number of columns for
the gallery

private var _thumbScale:Number; // percentage to
shrink the image for the thumbnail

private var _padding:Number; // the amount of space
between menu items

private var _numberOfImages:int; // number of
images in the gallery

private var _numberLoaded:int; // how many images
have finished loading

private var _imageLoader:Loader; // used to load
and manipulate each image

private var _loadedImage:Loader; // used to
reference each image as it is loaded

private var _targetScale:Number; // used to scale
images up and down

private var _targetX:Number; // used to move the x
position of a selected image

private var _targetY:Number; // used to move the y
position of a selected image

private var _halfWidth:Number; // half the width of
the gallery

private var _halfHeight:Number; // half the height
of the gallery

214 Chapter 12 CLASSES

private var _imageNamePrefix:String = "image_"; //
used for naming the images

private var _pointVector:Vector.<Point> = new
Vector.<Point>(); // vector of points for the images

private var _imageURLRequest:URLRequest = new
URLRequest(); // used to load the images

public function
SimpleGallery(parent:DisplayObjectContainer,galleryPath:
String,imageArray:Array,columns:int=1,thumbScale:Number=1,
padding:Number=5) {

_galleryParent = parent;

_galleryPath = galleryPath;

_imageArray = imageArray;

_columns = columns;

_thumbScale = thumbScale;

_padding = padding;

_numberOfImages = imageArray.length;

for (var r:int = 0; r < _numberOfImages; r +=
columns) {

for (var c:int = 0; c < columns; c++) {
if(r+c < _numberOfImages){

createImage(c, r);
}

}
}

}

public function setPosition(xPosition:Number = 0,
yPosition:Number = 0) {

x = xPosition;
y = yPosition;

}

// START PRIVATE FUNCTIONS
private function createImage(column:int,

row:int):void {
_pointVector.push(new Point(column,

row/_columns));
_imageURLRequest.url = _galleryPath +

_imageArray[row + column];

_imageLoader = new Loader();
_imageLoader.name = _imageNamePrefix + (row +

column);
_imageLoader.addEventListener(MouseEvent.CLICK,

imageClicked, false, 0, true);
_imageLoader.contentLoaderInfo.addEventListener(Event.

COMPLETE, placeImage, false, 0, true);

Chapter 12 CLASSES 215

_imageLoader.contentLoaderInfo.addEventListener
(IOErrorEvent.IO_ERROR, imageLoadError, false, 0, true);

_imageLoader.load(_imageURLRequest);
}

private function placeImage(e:Event):void {
e.target.removeEventListener(Event.COMPLETE,

placeImage);

e.target.removeEventListener(IOErrorEvent.IO_ERROR,
imageLoadError);

_loadedImage = e.target.loader;
var pIndex:int = pointIndex(_loadedImage);
var column:int = _pointVector[pIndex].x;
var row:int = _pointVector[pIndex].y;

_loadedImage.scaleX = _loadedImage.scaleY =
_thumbScale;

_loadedImage.x = _pointVector[pIndex].x =
(column * _loadedImage.width) + (column * _padding);

_loadedImage.y = _pointVector[pIndex].y = (row
* _loadedImage.height) + (row * _padding);

addChild(_loadedImage);
_loadedImage = null;

_numberLoaded++;
if(_numberLoaded == _numberOfImages){

_halfWidth = width/2;
_halfHeight = height/2;

}
}

private function imageClicked(e:MouseEvent):void {
_imageLoader = Loader(e.target);
_targetScale = _imageLoader.scaleX == 1 ?

_thumbScale : 1;
_targetX = _imageLoader.scaleX == 1 ?

_pointVector[pointIndex(_imageLoader)].x : _halfWidth –

(_imageLoader.content.width/2);
_targetY = _imageLoader.scaleX == 1 ?

_pointVector[pointIndex(_imageLoader)].y : _halfHeight –

(_imageLoader.content.height/2);
if(_targetScale == 1){

swapChildren(_imageLoader,
getChildAt(numChildren – 1));

}

_imageLoader.scaleX = _imageLoader.scaleY =
_targetScale;

216 Chapter 12 CLASSES

_imageLoader.x = _targetX;
_imageLoader.y = _targetY;
_imageLoader = null;

}

private function pointIndex(loader:Loader):int {
return

int(loader.name.substring(_imageNamePrefix.length));
}

private function
imageLoadError(e:IOErrorEvent):void{

trace("!!! There was an error loading an image
!!!");

trace(e.text);
}
// END PRIVATE FUNCTIONS

// START READ-ONLY GETTERS
public function get numberOfImages():int {

return _numberOfImages;
}
public function get galleryPath():String{

return _galleryPath;
}
public function get imageArray():Array{

return _imageArray;
}
// END READ-ONLY GETTERS

}
}

SimpleGallery Breakdown
The SimpleGallery class package and imports:

package com.flashadbook.display {
import flash.display.DisplayObjectContainer;
import flash.display.Loader;
import flash.display.Sprite;
import flash.events.MouseEvent;
import flash.geom.Point;
import flash.net.URLRequest;
import flash.events.Event;
import flash.events.IOErrorEvent;

Now with that out of the way, let’s take a look at the variables for
this class because there are indeed a lot of them. All of them are
private, and only one of them has a public “getter” at the end of the

Chapter 12 CLASSES 217

class. When you look at them in the code, you might notice that they
appear to be in two groups separated by an empty line. The only
reason I did that is because the first group are the variables that are
immediately set inside the SimpleGallery class constructor. So let’s
take a look at these variables now in Table 12.4.

The SimpleGallery class constructor doesn’t have a huge
amount of code in it. The first thing it does is to set some of the
private variables based on the parameters that are passed in. The
six parameters used in the constructor are evenly split between
required and optional. The first three (parent, galleryPath, and
imageArray) need values from you when you create a new instance
of the SimpleGallery. The other three (columns, thumbScale, and
padding) aren’t as dependent and needy. Instead, they each have
default values (1, 1, and 5, respectively), which, when left

Table 12.4 The Private Variables of the
SimpleGallery Class

Variable Purpose

_galleryParent (DisplayObjectContainer) The parent of the gallery
_galleryPath (String) The path to the external directory that holds the images
_imageArray (Array) An array of image names located within the external directory
_columns (int) The number of columns in which to layout the gallery
_thumbScale (Number) The scale the thumbnail should be in relation to the original image
_padding (Number) The number of pixels to place between the images
_numberOfImages (int) The number of images in the gallery
_numberLoaded (int) The number of images that have completely finished loading
_imageLoader (Loader) Used to load and manipulate the images
_loadedImage (Loader) Used to reference each image as it has finished loading
_targetScale (Number) Used to scale the images up and down when the user interacts with them
_targetX (Number) Used to set and move the x position of an image that a user is

interacting with
_targetY (Number) Used to set and move the y position of an image that a user is

interacting with
_halfWidth (Number) Half the width of the gallery; used for placement of an image as it is

interacted with
_halfHeight (Number) Half the height of the gallery; used for placement of an image as it is

interacted with
_imageNamePrefix (String) Used as the first part of the name of each image as it is loaded and

placed in the gallery
_pointVector (Vector) A Vector containing the Points to use for the placement of each image
_imagesURLRequest (URLRequest) Used to load each image

218 Chapter 12 CLASSES

unchanged, will simply lay your unscaled images out in a vertical
line with 5 pixels between each one.

TIP
If you aren’t familiar with the Vector class, I would like to go ahead and
recommend that you take a few minutes to look it up in the Adobe
ActionScript 3.0 Language Reference online. The general description is
that a Vector is like an Array, but you only put one type of data in it. You
might have a Vector that contains Strings or one that contains Points as
we have in the SimpleGallery class. A Vector is more efficient to work
with than an Array.

Once the private variables have been set to match the
parameters, we’re going to run through a nested for loop and
call out to the createImage method if conditions permit. If
conditions permit? What do I mean by that? Well, you’ll notice
that I use the variables r and c in the for loops (yeah, yeah,
I know… variable names less than three letters). These represent
rows and columns, respectively, and we can use them to count
which image we’re currently on in our loop. For example, if
we’re on row 2 (r=2) and column 4 (c=4), then we know we’re
on image number 6 (2 + 4 = 6). However, if we only have five
images in our gallery, then we don’t want to run the createImage
method, and we want to get out of the loop instead. If you
noticed and were wondering about the part of the code that says
columnLoop: prior to the for loop, this is where it comes in. By
placing this before the for loop, we’ve labeled the loop, and we
can reference it by that label from within itself or its nested
children loops (break columnLoop). So let’s look at this chunk of
code on its own, and while we’re at it, let’s take a quick look at
setPosition as well. We’ve seen this simple method in other
classes earlier in the chapter, and it does the same thing here. It
allows you to set the x and y positions of your newly instantiated
SimpleGallery.

public function
SimpleGallery(parent:DisplayObjectContainer,galleryPath:
String,imageArray:Array,columns:int=1,thumbScale:Number=1,
padding:Number=5) {

_galleryParent = parent;
_galleryPath = galleryPath;
_imageArray = imageArray;
_columns = columns;
_thumbScale = thumbScale;
_padding = padding;
_numberOfImages = imageArray.length;

Chapter 12 CLASSES 219

columnLoop: for (var r:int = 0; r < _numberOfImages; r
+= columns) {

for (var c:int = 0; c < columns; c++) {
if(r+c < _numberOfImages){

createImage(c, r);
}else{

break columnLoop;

}
}

}
}

public function setPosition(xPosition:Number = 0,
yPosition:Number = 0) {

x = xPosition;
y = yPosition;

}

Now let’s take a look into that createImage method that was
being called from the for loop in the constructor. Since this is an
image gallery, there are images in it, and they need to be created
(or loaded, actually). The two parameters required by this method
are the column and row where the image will end up. If you
remember from the for loop, we passed those in with the two
variables c and r. On the very first line of createImage, we’re going
to create a new Point with an x value equal to the column parameter
and a y value equal to the row parameter. That new Point is immedi-
ately added to the _pointVector for later use. Yes, you are correct.
That means you now have a Vector filled with Points with x,y values
like (0,1), (0,2), and (1,2). It may not make sense right away, but it
will make more when we look at the placeImage method. The next
way we’re going to use the column and row parameters together is to
grab an image name from _imageArray and append it to _gallery
Path. With those two values added together, we should have a valid
URL to an image for the gallery. What a coincidence! We need a
value like that for the url property of _imageURLRequest. Let’s use
this one, shall we?

Okay, now we’re going to use the _imageLoader variable to create a
new Loader for loading the image. Once we’ve instantiated that new
Loader, we’re going to give it a name using the _imageNamePrefix
combined (once again) with row and column. This time we’re adding
the values of row and column to come up with a number, so we
end up with names for our images like image_1, image_2, and
image_3. Let’s add a few listeners to our images’ Loaders next. First is
a MouseEvent.CLICK listener that will call the imageClicked method.
The second is an Event.COMPLETE listener that will call placeImage
once the image has finished loading from its external location.

220 Chapter 12 CLASSES

The last one I’m adding is an IOErrorEvent.IO_ERROR listener. This is
in place in case there’s a problem loading the image. It calls out to
imageLoadError, which you’ll need to modify to fit your particular
error-handling needs. And finally, we’ll use the load method of our
Loader to attempt to load an image.

_imageURLRequest.
private function createImage(column:int, row:int):void {

_pointVector.push(new Point(column, row/_columns));
_imageURLRequest.url = _galleryPath + _imageArray[row +

column];

_imageLoader = new Loader();
_imageLoader.name = _imageNamePrefix + (row + column);
_imageLoader.addEventListener(MouseEvent.CLICK,

imageClicked, false, 0, true);
_imageLoader.contentLoaderInfo.addEventListener(Event.

COMPLETE, placeImage, false, 0, true);
_imageLoader.contentLoaderInfo.addEventListener(IOError

Event.IO_ERROR, imageLoadError, false, 0, true);
_imageLoader.load(_imageURLRequest);

}

So now that we’ve created the images, the next thing that
happens for each one after it’s finished loading is that it notifies
the placeImage method of its load completion. The first thing the
placeImage method then does is to release a little memory
by removing the two load-related listeners (Event.COMPLETE and
IOErrorEvent.IO_ERROR). Now we’re going to use _loadedImage to
reference and manipulate our currently targeted Loader (image).
So here’s where we get back to the Vector full of Points with x,y
values that didn’t make any sense earlier. Remember when we
named our images and added the row and column together to
append a number to the end of the name? Well that number just
so happens to match the image’s index in _imageArray and the
index of the Point it will use from _pointVector. See where I’m
going with this?

So let’s take _loadedImage and pass it to the pointIndex method.
We’ll quickly look at that method later, but it basically just strips the
number off the end of the name for us to use in the next steps. Now
that we’ve got that number, we can use it to pull the correct Point
from _pointVector. We’ll grab the x and y values from that Point
and assign them back to column and row variables for use within this
method. Next is to set the image’s scaleX and scaleY according to
the _thumbScale variable and then get into a tiny bit of math.

Now that we’ve scaled the image, we’re dealing with a thumbnail
(assuming that the _thumbScale variable was set lower than 1).
The math in the next couple of lines is where the location of the

Chapter 12 CLASSES 221

thumbnail is both determined and stored. The first part is
the x value of the location, and it is realized by multiplying the
column number with the width of the thumbnail and then adding
that product to the product of the column multiplied with _padding.
It looks like this:

(column * _loadedImage.width) + (column * _padding)

So let’s say you’re in column 3, the width of your thumbnail is
120 pixels and the padding between your images is 10 pixels. The
x position of that particular thumbnail would be 390: (3 * 120) +
(3 * 10) = 390.

That total is not only used to place the image in the correct
x position but also used to change the x property of the correspond-
ing Point in _pointVector and will be called on later when the user
is interacting with the image. The same thing is then done for the y
position of the thumbnail and y property of the Point but with the
row and thumbnail height. Once we have the position worked out,
it’s time to place the image on the stage and set _loadedImage back
to null to clear up any memory that was associated with it. Finally,
we’re going to increment _numberLoaded and test to see if it matches
_numberOfImages. If it does, then all images are loaded, resized to
their thumbnail sizes, and placed on the stage. With all of them in
place, we can get the width and height of our gallery, and therefore,
we can assign values to _halfWidth and _halfHeight (which we’ll
use in the imageClicked method).

private function placeImage(e:Event):void {
e.target.removeEventListener(Event.COMPLETE,

placeImage);
e.target.removeEventListener(IOErrorEvent.IO_ERROR,

imageLoadError);

_loadedImage = e.target.loader;
var pIndex:int = pointIndex(_loadedImage);
var column:int = _pointVector[pIndex].x;
var row:int = _pointVector[pIndex].y;

_loadedImage.scaleX = _loadedImage.scaleY =
_thumbScale;

_loadedImage.x = _pointVector[pIndex].x = (column *
_loadedImage.width) + (column * _padding);

_loadedImage.y = _pointVector[pIndex].y = (row *
_loadedImage.height) + (row * _padding);

addChild(_loadedImage);
_loadedImage = null;

_numberLoaded++;
if(_numberLoaded == _numberOfImages){

222 Chapter 12 CLASSES

_halfWidth = width/2;
_halfHeight = height/2;

}
}

Now that all the images are in their correct locations on the stage,
they’re ready for user interaction via the imageClicked method. The
first thing we need to do is assign the Loader (image) that was clicked
to the _imageLoader variable (notice how we keep reusing that
variable and then we clear it out when we’re finished with it). After
that, there’s a set of ternary operators that are determining how to
scale the image and where to place it. The first one assigns a value to
the _targetScale variable by testing against the current scale of the
image. If the current scale is 1 (100%), then the image needs to be
sized down to the value of _thumbScale. If it isn’t currently at a scale
of 1, then it needs to be and that is the value assigned to _target
Scale. The next two ternary operators are essentially the same as one
another except for the fact that one is assigning a value to _targetX
and the other to _targetY. To do so, we test against the current scale
of the image again. Once again, if the scale is equal to 1, the image is
on its way back to thumbnail size and therefore needs to be on its
way back to its thumbnail position as well. So we’ll grab the appropri-
ate property (x or y) from the appropriate Point in _pointVector and
assign that value. On the other hand, the current scale may not be
equal to 1. If that’s the case, the image is on its way to being viewed
at full size and needs to be placed in the correct location. This is
where the _halfWidth and _halfHeight variables come in and allow
us to center the full-size image to the gallery itself:

_halfWidth - (_imageLoader.content.width/2)

Now, we have stored the values we need prior to the targeted
image being altered in any way, so let’s start altering it. The first
thing to do here is check to see if _targetScale is set to 1. If it is,
we know the image is about to be viewed, and we need to make
sure it’s in front of all other images in the gallery. To do that we’ll
use swapChildren with the image that sits at the top of the gallery’s
display list (getChildAt(numChildren – 1)). After all that is finished, it’s
time to manipulate the target image by assigning our stored values
to set its scale and position. And finally, let’s clear that associated
memory up again by setting _imageLoader back to null.

private function imageClicked(e:MouseEvent):void {
_imageLoader = Loader(e.target);
_targetScale = _imageLoader.scaleX == 1 ? _thumbScale :

1;
_targetX = _imageLoader.scaleX == 1 ?

_pointVector[pointIndex(_imageLoader)].x : _halfWidth –

(_imageLoader.content.width/2);

Chapter 12 CLASSES 223

_targetY = _imageLoader.scaleX == 1 ?
_pointVector[pointIndex(_imageLoader)].y : _halfHeight –

(_imageLoader.content.height/2);

if(_targetScale == 1){
swapChildren(_imageLoader, getChildAt(numChildren –

1));
}
_imageLoader.scaleX = _imageLoader.scaleY =

_targetScale;
_imageLoader.x = _targetX;
_imageLoader.y = _targetY;
_imageLoader = null;

}

Finally, we’ve reached the pointIndex and imageLoadError
methods. There’s not much going on at all in either one of these,
but I felt they still deserved a quick mention. First is the pointIndex
method. If you remember earlier in the class, we called on this
method and passed in the name of the Loader (image) whose
index we were in search of. The workings inside pointIndex are
very simple because they are doing nothing more than stripping
the number off the end of the Loader’s name and returning it as
an int. As for the imageLoadError method, I only placed a couple
of trace statements in there and thought I’d leave it up to you to
handle that error in the best way you see fit for your particular
needs.

private function pointIndex(loader:Loader):int {
return

int(loader.name.substring(_imageNamePrefix.length));
}

private function imageLoadError(e:IOErrorEvent):void{
trace("!!! There was an error loading an image !!!");
trace(e.text);

}

One last group of items for the SimpleGallery are the “getters”
I placed at the end of the class. The fact that these variables have
getters but no setters makes them read-only properties. I decided
on numberOfImages, galleryPath, and imageArray because I saw
those as the most useful pieces of information that needed to be
made available. Of course, none of this is set in stone, and you can
obviously change it up as needed.

public function get numberOfImages():int {
return _numberOfImages;

}

224 Chapter 12 CLASSES

public function get galleryPath():String{
return _galleryPath;

}
public function get imageArray():Array{

return _imageArray;
}

Sample Use of SimpleGallery
And now a quick sample use of SimpleGallery. Just like the
previous samples, this is a Document class that is located in the
com.flashadbook.base package. This one uses an images directory
that contains nine images named galleryImage1.jpg through
galleryImage9.jpg. You can download the directory of images from
the same location as the code, and it should be placed with your
.fla file (or you should alter the _galleryPath variable to match its
location). So let’s go through this sample real quick.

Skipping the imports and jumping right into the variables,
we have the declaration of _simpleGallery, _galleryPath, and
_imageArray (all of which are obviously described in their
names). After that is the _columns variable that I chose to do a
little math on to get the number of columns and rows to come
as close to matching as possible given the number of images in
_imageArray. Again, set that value to meet the requirements of
the project at hand. _thumbScale and _padding are set next, and
again, these are self-explanatory in their names. Once we step in
to the constructor, we’ll create a shiny new SimpleGallery and
pass it all the variables we just got finished setting up. The last
two steps are to set the position of the gallery and then to add it
to the stage.

package com.flashadbook.base {
import com.flashadbook.display.SimpleGallery;
import flash.events.MouseEvent;
import flash.display.Sprite;

public class SimpleGallerySample extends Sprite {

private var _simpleGallery:SimpleGallery;
private var _galleryPath:String = "images/";
private var _imageArray:Array = new

Array("galleryImage1.jpg","galleryImage2.jpg","galleryImage
3.jpg","galleryImage4.jpg","galleryImage5.jpg","galleryImage
6.jpg","galleryImage7.jpg","galleryImage8.jpg","galleryImage
9.jpg")

private var _columns:int =
Math.round(Math.sqrt(_imageArray.length))

private var _thumbScale:Number = 0.15;
private var _padding:Number = 5;

Chapter 12 CLASSES 225

public function SimpleGallerySample(){
_simpleGallery = new SimpleGallery(this,

_galleryPath, _imageArray, _columns, _thumbScale,
_padding);

_simpleGallery.setPosition(84,105);
addChild(_simpleGallery);

}
}

}

The ReverseClip Class
Reversing a MovieClip in Flash can come in handy in many
situations like animated menu buttons or really anything else that
may be moving on the stage. I’ve included the following small
ReverseClip class that I put together simply because I find myself
using it to get to previous states of animations in numerous projects.
It’s pretty small and straightforward, so the explanation on this one
is shorter, but let’s take a look at the entire piece of code first.

ReverseClip Code
package com.flashadbook.utils{

import flash.display.MovieClip;
import flash.events.DataEvent;
import flash.utils.setTimeout;
import flash.events.TimerEvent;
import flash.utils.Timer;

public class ReverseClip{

public static const REVERSE_COMPLETE:String =
"reverseComplete";

private static var _revTimer:Timer = new Timer(0);
// the timer used to run the clip in reverse

private static var _targetClip:MovieClip; // the
MovieClip which will be reversed

private static var _targetFrame:int; // the frame
at which the reversal will be considered complete

private static var _loopCount:int; // the number of
times to repeat the reversal (0 is default, ‒1 loops
infinately)

private static var _currentLoop:int = 0; // the
loop that is currently playing

public static function play(targetClip:MovieClip,
loopCount:int=0, targetFrame:int=1, speed:Number=30):void {
if(!_revTimer.hasEventListener(TimerEvent.TIMER)){

_targetClip = targetClip;

226 Chapter 12 CLASSES

_targetFrame = targetFrame;
_loopCount = loopCount;
_revTimer.delay = speed;
_revTimer.addEventListener(TimerEvent.TIMER,

reverseFrame, false, 0, true);
}
_revTimer.start();

}

private static function
reverseFrame(e:TimerEvent):void {

if(_targetClip.currentFrame > _targetFrame){
_targetClip.prevFrame();

}else{
_targetClip.gotoAndStop(_targetFrame);
_revTimer.reset();
_loopCount==‒1 ? _targetClip.play() :

replay();
}

}
private static function replay():void {

if (_currentLoop < _loopCount) {
_currentLoop++;
_targetClip.play();

}else{
_revTimer.removeEventListener(TimerEvent.TIMER,reverseFrame
);

_targetClip.dispatchEvent(new
DataEvent(REVERSE_COMPLETE,true));

_targetClip = null;
}

}
}

}

ReverseClip Breakdown
Once again, a quick look at the package and imports and then we’ll
move on:

package com.flashadbook.utils{
import flash.display.MovieClip;
import flash.events.DataEvent;
import flash.utils.setTimeout;
import flash.events.TimerEvent;
import flash.utils.Timer;

In the class declaration, you’ll notice that we aren’t extending
anything in this class as we have in the previous classes in this

Chapter 12 CLASSES 227

chapter. Also like the other classes in this chapter, let’s take a quick
look at the variables in Table 12.5.

And now let’s move on to the functionality of ReverseClip by
first taking a look at its play method. The ReverseClip play method
calls for four parameters. Three of them are optional, one of them
is required, and all of them are listed in Table 12.6. But before we
look at these, what’s happening in the play method? The very first
thing that happens is that we check to see if _revTimer has a
TimerEvent listener attached to it. If it does, we know that
ReverseClip is in use and that all the variables already have values
assigned. In that case, we jump down to tell the _revTimer to start.
However, if it doesn’t have that TimerEvent listener attached to it,
that means it’s not being used and we need to assign some values
based on the parameters before we go any further. And don’t forget
that we also need to add that listener that will trigger the reverse
Frame method.

Table 12.6 Parameters for the ReverseClip
Play Method

Parameter Purpose

targetClip (MovieClip) The MovieClip you want to reverse
loopCount (int) The number of times you want your MovieClip to loop; default is 0 and ‒1 loops infinitely
targetFrame (int) The frame where you want the MovieClip to stop playing in reverse; default is 1
speed (Number) The number of milliseconds between the TimerEvents that tell the MovieClip to

reverse; default is 30

Table 12.5 The Variables of the ReverseClip Class

Variable Purpose

REVERSE_COMPLETE (public, static String) Passed via DataEvent to notify of reverse completion
_revTimer (private, static Timer) Timer used to reverse the MovieClip
_targetClip (private, static MovieClip) The MovieClip that will be reversed
_targetFrame (private, static int) Frame at which the reverse will be complete
_loopCount (private, static int) Number of times to allow the animation to loop
_currentLoop (private, static int) The number of loops that have happened so far

228 Chapter 12 CLASSES

public static function play(targetClip:MovieClip,
loopCount:int=0, targetFrame:int=1, speed:Number=30):void {

if(!_revTimer.hasEventListener(TimerEvent.TIMER)){
_targetClip = targetClip;
_targetFrame = targetFrame;
_loopCount = loopCount;
_revTimer.delay = speed;
_revTimer.addEventListener(TimerEvent.TIMER,

reverseFrame, false, 0, true);
}
_revTimer.start();

}

The reverseFrame method that gets called as a result of _revTimer
firing off a TimerEvent makes a simple decision to either move the
MovieClip back by one frame or not. So, first it compares the
currentFrame property of _targetClip to the value of _targetFrame.
If _targetClip hasn’t reached that point on the timeline yet, we’ll
tell it to go backwards by one frame (prevFrame). Remember, we’re
testing to see if currentFrame is greater than _targetFrame because
the MovieClip is playing backwards at this point. So if it’s
not greater, then we need to stop rewinding. The first thing to do in
this case is to force the MovieClip to gotoAndStop(_targetFrame).
This step is really just a fallback to make sure the timeline didn’t go
too far. Since we’re forcing the frame number, we’re accounting for
the possibility that the playhead reversed too far by at least one
frame. Next, we’ll reset the timer, so it will be ready to go when/if
we need it again. At the end of this piece, let’s check to see if _loop
Count is equal to ‒1 (remember, that means infinite looping). If it is
equal to ‒1, all we need to do is tell _targetClip to play again. On
the other hand, if _loopCount is not equal to ‒1, we’ll call the replay
method.

private static function reverseFrame(e:TimerEvent):void {
if(_targetClip.currentFrame > _targetFrame){

_targetClip.prevFrame();
}else{

_targetClip.gotoAndStop(_targetFrame);
_revTimer.reset();
_loopCount==‒1 ? _targetClip.play() : replay();

}
}

And now for the replay method. The replay method also
consists of a pretty simple if/else statement. Our test this time is to
see if _currentLoop is less than _loopCount. If it is, we increase
_currentLoop and tell _targetClip to play again (or loop).
If _currentLoop is not less than _loopCount, it’s time to stop

Chapter 12 CLASSES 229

everything and move on. The first of the last steps is to remove the
TimerEvent listener, so we can clear up a little memory. Next, we’ll
dispatch a DataEvent and pass our REVERSE_COMPLETE variable from
earlier as the type.

TIP
For dispatching a simple event where you just need to listen for a custom
name but you don’t need a full blown custom event class, consider
dispatching a DataEvent and using your custom event name as the type
parameter.

private static function replay():void {
if (_currentLoop < _loopCount) {

_currentLoop++;
_targetClip.play();

}else{
_revTimer.removeEventListener(TimerEvent.TIMER,reverseFrame
);

_targetClip.dispatchEvent(new
DataEvent(REVERSE_COMPLETE,true));

_targetClip = null;
}

}

Sample Use of ReverseClip
For this sample, place a MovieClip in your library and give it
a Class/Linkage of “ball” (or use the .fla available in the down-
loads from the book’s Web site). After creating a new instance
of ball named myBall, we jump straight into the action by
adding a REVERSE_COMPLETE listener to the ReverseClipSample
itself. Next, we’re going to use the wonderful addFrameScript
to add a function to the final frame of myBall. That method,
rewindBall, can have any code in it that you need, but let’s be
sure to include the line that tells ReverseClip to play and target
myBall for 1 loop (or as many as you’d like). Now that we’re all
set up, let’s add the ball to the display list using addChild. Lastly,
reverseCompleteHandler simply traces out a notification that it
has indeed been called. Again, use the code that best suits your
project here.

package com.flashadbook.base {

import com.flashadbook.utils.ReverseClip;
import flash.display.Sprite;
import flash.events.DataEvent;
import flash.events.EventDispatcher;

230 Chapter 12 CLASSES

public class ReverseClipSample extends Sprite {

private var myBall:ball = new ball();

public function ReverseClipSample(){
addEventListener(ReverseClip.REVERSE_COMPLETE,reverseComplete
Handler,false,0,true);

myBall.addFrameScript(myBall.totalFrames – 1,
rewindBall);

addChild(myBall);
}

private function rewindBall():void {
trace("rewindBall");
ReverseClip.play(myBall,1);

}

private function
reverseCompleteHandler(e:DataEvent):void{

trace("reverseCompleteHandler");
}

}
}

The ClickTagger Class
ClickTagger is a class that was primarily built to solve for the case
sensitivity issue that Flash developers may run into when using the
clickTag variable in their banners. Without a current standard in
place for ad-serving companies, some use clickTag, while others
use clickTAG, and still others use ClickTag or even clicktag.
In ActionScript 2, this wasn’t/isn’t an issue, but as soon as Flash
Platform developers or agencies start creating banners with Action-
Script 3, they may very quickly encounter the problem by having
their ads kicked back for not working correctly.

While writing ClickTagger, I also decided to add a bit of function-
ality to it to allow the developer to not only assign the clickTags to
the proper interactive elements but assign a fallback URL as well.
The fallback URL works for local testing from within the Flash IDE
(where clickTags aren’t passed in) and is also used in the unfortunate
event that there’s a problem loading the clickTags at runtime. If the
clickTags fail to load, at least the user will still be taken to the URL
you provide.

ClickTagger Code
package com.flashadbook.utils{

import flash.display.LoaderInfo;
import flash.events.MouseEvent;

Chapter 12 CLASSES 231

import flash.external.ExternalInterface;
import flash.net.URLRequest;
import flash.net.navigateToURL;
import flash.system.Capabilities;
import flash.display.InteractiveObject;

public class ClickTagger {

private var _clickTags:Array = new Array(); //
Array of clicktag objects

private var _clickObjects:Array = new Array(); //
Array of clickable items

private var _targetWindow:String = "_blank"; //
window to lauch the url in

private var _tagName:String = "clicktag"; // used
in solving for case sensitivity

private var _playerType:String =
Capabilities.playerType.toLowerCase(); // check for local
testing

private var _extInterfaceAvailable:Boolean = false;
// true if in browser AND ExternalInterface.available

private var _securePattern:RegExp = new
RegExp("^http[s]?\:\\/\\/([^\\/]+)"); // RegExp for
security check on clicktag url

public function ClickTagger(loaderinfo:LoaderInfo){
for(var p:String in loaderinfo.parameters){

// solve for case sensitivity (clickTag,
ClickTag, clickTAG, etc)

if (p.toLowerCase().indexOf(_tagName) == 0)
{

var tagPosition:int = 0;
if(p.length > _tagName.length){

tagPosition =
int(p.substr(_tagName.length))‒1;

}

_clickTags.push({tagIndex:tagPosition,tagUrl:loaderinfo.para
meters[p]})

}
}

_clickTags.sortOn("tagIndex", Array.NUMERIC);

}

public function
assignClickTag(element:InteractiveObject,failSafeUrl:String,
tagNumber:int=1):void{

tagNumber = tagNumber < 0 ? 0 : tagNumber‒1;
element.addEventListener(MouseEvent.CLICK,clickOut,false,0,
true);

232 Chapter 12 CLASSES

_clickObjects.push({clickElement:element,fallBack:failSafeUrl,
tagIndex:tagNumber});

}

private function clickOut(e:MouseEvent):void{
var clickedIndex:int;
var destination:String;

clickLoop: for(var obj:Object in
_clickObjects){

if(e.target ==
_clickObjects[obj].clickElement){

clickedIndex =
_clickObjects[obj].tagIndex;

destination =
_clickObjects[obj].fallBack;

break clickLoop;
}

}

if(_playerType=="activex" ||
_playerType=="plugin"){

if(_clickTags[clickedIndex]){
if(secureTag(_clickTags[clickedIndex].tagUrl)){

destination =
_clickTags[clickedIndex].tagUrl;

}
}
_extInterfaceAvailable =

ExternalInterface.available;
}

if (_extInterfaceAvailable) {
ExternalInterface.call(‘window.open’,destination,target
Window);

}else{
navigateToURL(new

URLRequest(destination),targetWindow);
}

}

private function
secureTag(targetURL:String):Boolean {

var resultObj:Object =
_securePattern.exec(targetURL);

if (resultObj == null || targetURL.length >=
4096) {

return false;

}

Chapter 12 CLASSES 233

return true;
}

public function get targetWindow():String{
return _targetWindow;

}
public function set

targetWindow(value:String):void{
_targetWindow = value;

}
}

}

ClickTagger Breakdown
Okay, are you ready to break this down? Because based on the rest
of this chapter, it’s time for that step, so let’s start out by taking a
look at Table 12.7 and the variables that are instantiated at the top
of the class.

And now let’s jump right into the ClickTagger constructor,
which requires only one parameter of type LoaderInfo, which is
very creatively named loaderInfo. The LoaderInfo class provides
plenty of information about our .swf including the parameters that
have been passed in to it like flashvars with clickTags. To get to
those parameters, we need not look any further than, you guessed
it, the parameters property of our loaderInfo to get the object that
contains all the name-value pairs that have been sent in to the
banner. Once we have those name-value pairs, we’re going to run
through them, convert them to lowercase, and test them against
our _tagName of “clicktag.” If we catch one that matches, we check

Table 12.7 The ClickTagger Variables

Variable Purpose

_clickTags (Array) An Array that will be filled with Objects containing all the clickTags and
their positions as they are passed in to the banner

_clickObjects (Array) An Array that will have an Object added to it each time the assignClickTag
method is called

_targetWindow (String) The window in which the target URL will be launched
_tagName (String) A String used to handle the case sensitivity issue
_playerType (String) A String used to determine if the ad is being played in the browser or not
_extInterfaceAvailable (Boolean) A Boolean that will be set to true if the ad is in a browser and

ExternalInterface is available
_securePattern (RegExp) A RegExp used to check for “http://” or “https://” in the clickTag

234 Chapter 12 CLASSES

it for an int on the end, so we’ll know if it’s clickTag1, clickTag2,
and so on. From that int, we get the “position” of the clickTag,
and we wrap it up in an object with the associated URL and put
that object in out _clickTags Array. Finally, after we’re finished
checking the parameters for clickTags, we sort the _clickTags
Array based on the tagIndex we pulled from the end of each
clickTag name. Next in this class is the assignClickTag method,
which calls for the parameters in Table 12.8, but first, here’s the
constructor:

public function ClickTagger(loaderinfo:LoaderInfo){
for(var p:String in loaderinfo.parameters){

if (p.toLowerCase().indexOf(_tagName) == 0) {
var tagPosition:int = 0;
if(p.length > _tagName.length){

tagPosition =
int(p.substr(_tagName.length))‒1;

}
_clickTags.push({tagIndex:tagPosition,tagUrl:loaderinfo.
parameters[p]})

}
}
_clickTags.sortOn("tagIndex", Array.NUMERIC);

}

This particular method is very short (three lines), but don’t judge
its value by its size because outside of the constructor, this is the
most important method in this class. The first line is reassigning the
value of the tagNumber parameter. The reason for this is because
before all is said and done, tagNumber is going to be used to call on
a position in our _clickTags Array. Since arrays are zero based but
our clickTags aren’t, we need to drop the value of tagNumber down

Table 12.8 Parameters for the ClickTagger
assignClickTag Method

Parameter Purpose

element (InteractiveObject) The InteractiveObject that will accept the click event from the user’s mouse
failSafeUrl (String) The URL to be used during testing and also in the event that the clickTags

don’t load for some reason
tagNumber (int) The clickTag to use for this particular InteractiveObject (clickTag1, clickTag2,

and so on); default is 1

Chapter 12 CLASSES 235

by one (unless it’s negative and then we set it to zero). After setting
that, we add a click listener to the element InteractiveObject (which
can be a SimpleButton, MovieClip, and so on) that was passed in.
On the third line, we create an object that consists of all the para-
meters and add that object to our _clickObjects Array.

public function
assignClickTag(element:InteractiveObject,
failSafeUrl:String,
tagNumber:int=1):void{

tagNumber = tagNumber < 0 ? 0 : tagNumber‒1;
element.addEventListener(MouseEvent.CLICK,clickOut,false,0,
true);
_clickObjects.push({clickElement:element,fallBack:failSafe
Url,tagIndex:tagNumber});
}

Oh wait, did I say that the assignClickTag method was really,
really important? Because so is this next method called clickOut. If
you noticed in the click listener that we added in the assignClickTag
method, clickOut is the method that gets called when the user clicks
on that element. First up, we create a couple of variables for the
index of the clicked item in the destination the user will be taken to.
Next, we use a for loop with a label of clickLoop to run through
our _clickObjects Array and find the object that was clicked on.
Once we have a match, we pull the tagIndex and fallBack out of
that object we created and added to the _clickObjects Array, and
we break out of the clickLoop. In the following if statements, we
check _playerType to see if we’re in the browser, and make sure
that there is actually an object at the clickedIndex position of the
_clickTags Array and then check the tagUrl of that object for
“http://” or “https://” with the secureTag method. Once we obtain
all of that clearance, we can change the value of destination from
the fallback URL to the clickTag that was passed in. If it doesn’t pass
any of those tests for some reason, destination remains set to the
fallback URL. From there, we check to see if ExternalInterface is
available. If it is, we use its call method to take the user to the
destination. If not, we go ahead and use navigateToURL instead.

TIP
Assigning labels to loops is a handy little tool that was introduced with
ActionScript 3. By placing a label directly before the loop statement, you
gain the ability to break out of a specific loop. This comes in extremely
handy in nested loops where you might need to break out of the parent
loop because the child loop has found what you’re looking for. Consider
this example: myLoopLabel: for(var obj:Object in myVector){…}. Now
you can break out of that loop by simple calling break myLoopLabel. Pretty
nifty, huh?

236 Chapter 12 CLASSES

private function clickOut(e:MouseEvent):void{
var clickedIndex:int;
var destination:String;

clickLoop: for(var obj:Object in _clickObjects){
if(e.target == _clickObjects[obj].clickElement){

clickedIndex = _clickObjects[obj].tagIndex;
destination = _clickObjects[obj].fallBack;
break clickLoop;

}
}

if(_playerType=="activex" || _playerType=="plugin"){
if(_clickTags[clickedIndex]){

if(secureTag(_clickTags[clickedIndex].tagUrl)){
destination =

_clickTags[clickedIndex].tagUrl;
}

}
_extInterfaceAvailable =

ExternalInterface.available;
}

if (_extInterfaceAvailable) {
ExternalInterface.call('window.open',destination,
targetWindow);

}else{
navigateToURL(new

URLRequest(destination),targetWindow);
}

}

The final items in ClickTagger are the secureTag method and a get-
ter and setter to allow the _targetWindow to be changed. We’ve already
pretty much covered what secureTag does (“http://” or “https://” in
the clickTag), and it either returns true or false based on its findings.

private function secureTag(targetURL:String):Boolean {
var resultObj:Object = _securePattern.exec(targetURL);
if (resultObj == null || targetURL.length >= 4096) {

return false;
}
return true;

}
public function get targetWindow():String{

return _targetWindow;
}
public function set targetWindow(value:String):void{

_targetWindow = value;
}

Chapter 12 CLASSES 237

Sample Use of ClickTagger
Much like the ReverseClip sample, this one requires you to add
a couple of things to the stage of your .fla. Also like the ReverseClip
sample, you have the option of downloading a .fla from the book’s
Web site (ClickTaggerTest.fla). If you choose to create your own .fla,
you’ll simply need to add three buttons to the stage and give them
instance names of button1, button2, and button3. Once you have
them in place, use the following code for your Document class. If you
have downloaded the code from the Web site, this is the code from
ClickTaggerSample.as in the com.flashadbook.base package. Within
this code, the first couple of things we do are create a new instance of
ClickTagger named _clickTagger and three fallback URLs (one for
each button) called _fallback1, _fallback2, and _fallback3 (again
with the crafty names). Finally, we get to the constructor of
our Document class where we are just calling ClickTagger’s assign
ClickTag method once for each button and passing in the variables as
described in the ClickTagger Breakdown section. Obviously, there
would be more if this was the Document class for an actual banner
ad, but since it’s not, that’s all there is to it.

package com.flashadbook.base {
import com.flashadbook.utils.ClickTagger;
import flash.display.Sprite;
import flash.events.MouseEvent;

public class ClickTaggerSample extends Sprite {
private var _clickTagger:ClickTagger = new

ClickTagger(stage.loaderInfo);

private var _fallback1:String =
"http://www.flashadbook.com";

private var _fallback2:String =
"http://www.jasonfincanon.com";

private var _fallback3:String =
"http://www.adobe.com";

public function ClickTaggerSample() {
_clickTagger.assignClickTag(button1,_fallback1,1);
_clickTagger.assignClickTag(button2,_fallback2,2);
_clickTagger.assignClickTag(button3,_fallback3,3);

}
}

}

Conclusion
Well, this is definitely the longest chapter in this book, and we just
finished up with a good amount of code here. As I said earlier,
some of these classes were pulled over from the first edition of

238 Chapter 12 CLASSES

this book and rewritten for ActionScript 3, and some of them are
completely new. All of them are available on the book’s Web site
and will be updated if errors are caught later or if any new
methods/functionality are added to any of them. Hopefully at least
one of them will come in handy for some of your projects. In the
next chapter, we’re going to continue with some more classes, but
these will all be used together to build a memory card game. See
you there!

Chapter 12 CLASSES 239

This page intentionally left blank

13
THE MEMORY GAME

CHAPTER OUTLINE
The DeckArray Class 241

DeckArray Code 242
DeckArray Breakdown 243

The MemoryGameEvent Class 244
MemoryGameEvent Code 244
MemoryGameEvent Breakdown 244

The MemoryGame Class (the Game Engine) 245
MemoryGame Code 245
MemoryGame Breakdown 249

Sample Use of MemoryGame 252
Conclusion 255

The memory game in this chapter was originally built for a site that
was targeted at children. The site itself emulated a board game that
had checkpoints along the way, and there was a spinner for the
users to click to determine how many spaces their game piece
would move. As they passed over each checkpoint, they would
be taken into one of six different secondary games. The memory
game was one of the six. Since then, this same engine has been
used to create a small memory game “widget” that Web site owners
could put on their sites, as well as a slightly modified version for an
iPhone memory game application (Fig. 13.1).

I’ve divided this chapter into four sections, and each one is
needed to build the game. The first three sections are the classes
that make up the core of the game, and the fourth section describes
how a .fla file would be set up to utilize the engine. Don’t forget, as
I’ve mentioned before, all these files are available to download at
http://www.flashadbook.com/code/.

The DeckArray Class
The DeckArray class is used to hold the deck of cards in the
memory game. It’s a pretty simple extension of the Array class that
adds the ability to shuffle. In addition to wanting the shuffle feature,

Flash Advertising. DOI: 10.1016/B978-0-240-81345-5.00013-X
© 2010 Jason Fincanon. Published by Elsevier, Inc. All rights reserved. 241

my intention for this class was (and is) to add new functionality to it
as needed. If I do happen to add anything to it, I’ll be sure to keep
it updated on the site.

DeckArray Code
package com.flashadbook.utils{

dynamic public class DeckArray extends Array{

private var _deckCount:uint; // the number of
cards in the deck

private var _shuffleNumber:int; // how many
times the deck has been shuffled in a single call

private var _shuffleCard:Object; // the card
currently being shuffled

public function DeckArray(…args){
for each (var val:* in args){

super.push(val);
}

}

public function
shuffle(timesToShuffle:int=2):Array{

_deckCount = this.length;
_shuffleNumber = 0;
while(_shuffleNumber < timesToShuffle){

for(var c:int=0; c<_deckCount; c++){
// remove a random card from the

deck and place it back on top

Figure 13.1 The iPhone
application “Memory4Kidz”
was built in Flash Professional
CS5 using a slightly modified
version of the memory game.

242 Chapter 13 THE MEMORY GAME

_shuffleCard =
this.splice([Math.floor(Math.random()*_deckCount)],1);

this.push(_shuffleCard);
}
_shuffleNumber++;

}
return this;

}
}

}

DeckArray Breakdown
First, the package. Since DeckArray is a utility, we’ll go ahead and
place it in the com.flashadbook.utils package. The first thing we do
inside the class is to declare a few variables that will be used by the
shuffle method. First is _deckCount, which is used to hold
the number of cards in the deck (also known as the objects in the
array). The reason we’ll need this is because we’re going to
reference it in a for loop in the shuffle method. By referencing this
variable instead of the .length property of the array, we save the vir-
tual machine the trouble of having to actually get the length on each
and every loop. The next variable is _shuffleNumber and is used to
count how many times the deck has been fully shuffled in a single
call to the shuffle method. The third variable is the _shuffleCard
variable. The _shuffleCard variable will be used as the card
that’s being pulled from the deck and then immediately put back
in a new position. The next item in the DeckArray class is the
constructor. Since it’s a pretty standard Array constructor, I’ll just
say that it’s there and it fills the DeckArray with the items passed in
via the …args parameter. And finally, we get to the shuffle method.

You’ll notice that the shuffle method returns an Array and
has a single optional parameter named timesToShuffle. This
parameter allows you to determine how many times the deck
should be fully shuffled, and it defaults to 2. Once inside
this method, we’ll immediately (re)set the values of two of the vari-
ables that were declared at the top of the class: _deckCount and
_shuffleNumber. Now for the actual shuffling of the cards. The
while loop keeps track of how many times the deck has been fully
shuffled by comparing _shuffleNumber against timesToShuffle, and
the for loop contained within does the shuffle. Inside the for loop,
a single, random card is assigned to the _shuffleCard variable,
pulled from the deck (this.splice), and placed back on top of the
deck (this.push). Once the number of cards that have been
shuffled matches the number of cards in the deck (_deckCount),
_shuffleNumber is increased, and the deck is shuffled again
if needed.

Chapter 13 THE MEMORY GAME 243

The MemoryGameEvent Class
Each time a user turns over two cards in the memory game, the
game needs to know if the two cards match or not. That’s where
the MemoryGameEvent class comes in. The MemoryGameEvent
class extends Event and is pretty specific to the memory game
since the events it dispatches are directly related to matching cards
and completing a game.

MemoryGameEvent Code
package com.flashadbook.events{

import flash.events.Event;
import flash.events.EventDispatcher;

public class MemoryGameEvent extends Event{
public static const INCORRECT_MATCH:String =

"incorrectMatch";
public static const CORRECT_MATCH:String =

"correctMatch";
public static const GAME_COMPLETE:String =

"gameComplete";

public function MemoryGameEvent(type:String,
bubbles:Boolean = false, cancelable:Boolean = false) {

super(type, bubbles, cancelable);
}

public override function clone():Event{
return new MemoryGameEvent(type, bubbles,

cancelable);
}

}
}

MemoryGameEvent Breakdown
Once again, the package for this class mirrors that of the class it
extends. In this case, MemoryGameEvent is in the com.flashad-
book.events package. Since it does extend Event and we want it to
behave as an Event would, the first thing we do is import flash.
events.Event and flash.events.EventDispatcher. The next items in
MemoryGameEvent are the constants that represent the events that
can be dispatched. They are pretty self-explanatory in their names:
CORRECT_MATCH, INCORRECT_MATCH, and GAME_COMPLETE. I’m sure you
can guess what each one represents. The only two things left in
this class are the standard Event constructor and the overridden
clone function.

244 Chapter 13 THE MEMORY GAME

ALERT!
If you are creating a custom event class that extends Event, remember
that it’s very important to override the clone function. By overriding the
clone function, you allow the event to be redispatched if needed.

The MemoryGame Class (the Game Engine)
And now for the core of this chapter and the engine of the game
itself: the MemoryGame class. The MemoryGame class uses an
array of images that are passed in to create, shuffle, and deal the
cards. It also handles user interactions, checks for card matches/
mismatches and game completions, and sends out a notification of
each event using the MemoryGameEvent class.

MemoryGame Code
package com.flashadbook.engines{

import flash.display.BitmapData;
import flash.display.Bitmap;
import flash.display.Sprite;
import flash.display.MovieClip;
import flash.events.MouseEvent;
import flash.utils.getDefinitionByName;
import flash.utils.setTimeout;
import com.flashadbook.DeckArray;
import com.flashadbook.events.MemoryGameEvent;

public class MemoryGame extends MovieClip{

public const GRID_LAYOUT:String = "gridLayout";
public const CUSTOM_LAYOUT:String = "customLayout";

private var _cardsToCompare:Array = new Array();
private var _memoryCards:DeckArray = new

DeckArray();
private var _numberOfCards:uint;
private var _cardPadding:int;
private var _matchesComplete:int;

private var _tempCard:Class;
private var _frontBmd:BitmapData;
private var _frontSkin:Bitmap;

private var _tempCardBack:Class;
private var _backBmd:BitmapData;
private var _backSkin:Bitmap;

Chapter 13 THE MEMORY GAME 245

private var _allowClick:Boolean = true;

public function
MemoryGame(cards:Array,cardBack:String=null,spread:int=10):
void{

var cardsLen:uint = cards.length;
for(var d:int=0; d<2; d++){

for(var e:int=0; e<cardsLen; e++){
_memoryCards.push(cards[e]);

}
}
_memoryCards.shuffle();
_numberOfCards = _memoryCards.length;
_cardPadding = spread;
_tempCardBack = cardBack==null ? null :

Class(getDefinitionByName(cardBack));
}

public function
deal(layoutType:String=GRID_LAYOUT,customCoordinates:Array=
null,rows:int=2):void{

var c:int;
switch(layoutType){

/*case YOUR_LAYOUT:
CREATE OTHER LAYOUTS HERE
"gridLayout" is only an example name

but you could use something like "circleLayout",
"lineLayout", etc.

Be sure to set the name as a public
const. For example: GRID_LAYOUT = "gridLayout"

break;*/
case CUSTOM_LAYOUT:

if(customCoordinates == null ||
customCoordinates.length != _numberOfCards){

trace('ERROR: When using layoutType
"custom", your customCoordinates array must contain twice
as many coordinates as your array of images.');

trace("If you have 4 images, you
must have 8 sets of coordinates.");

}else{
for(c=0; c<_numberOfCards; c++){

buildCard(_memoryCards[c],customCoordinates[c].x,custom
Coordinates[c].y);

}
}
break;

case GRID_LAYOUT:

246 Chapter 13 THE MEMORY GAME

/* The default GRID_LAYOUT places one
instance of each card in each row

The default GRID_LAYOUT uses 2 rows
and the number of columns is equal to the number of cards
passed in*/

for(var r:int=0; r<rows; r++){
for(c=0; c<_numberOfCards/rows;

c++){
var cardPos:int = c +

((_numberOfCards/rows)*r);

buildCard(_memoryCards[cardPos],(_frontSkin.width*c)+(_card
Padding*c),(_frontSkin.height*r)+(_cardPadding*r));

}
}
break;

}
}

// showCard draws a card to the game
private function

buildCard(cardName:String,cardX:int=-1,cardY:int=-1):void{
_tempCard =

Class(getDefinitionByName(cardName));
_frontBmd = new _tempCard(0,0);
_frontSkin = new Bitmap(_frontBmd);

_backBmd = _tempCardBack==null ? new
BitmapData(_frontSkin.width,_frontSkin.height,false,0xCCCCCC) :
new _tempCardBack(0,0);

_backSkin = new Bitmap(_backBmd);

var cardSprite:Sprite = new Sprite();
cardSprite.addChild(_frontSkin);
cardSprite.addChild(_backSkin);
cardSprite.x = cardX;
cardSprite.y = cardY;
cardSprite.buttonMode = true;

_cardSprite.addEventListener(MouseEvent.CLICK,showCard);
addChild(cardSprite);

}

// showCard completes the card flip and shows the
player what card they have chosen

private function showCard(e:MouseEvent):void{
if(!_allowClick){

return;
}

Chapter 13 THE MEMORY GAME 247

var cardObj:Object = e.currentTarget;
cardObj.buttonMode = false;
cardObj.getChildAt(1).visible = false;

_cardsToCompare.push({bitmap:cardObj.getChildAt(0).bitmapData,
card:cardObj});

if(_cardsToCompare.length == 2){

if(_cardsToCompare[0].bitmap.compare(_cardsToCompare[1].
bitmap) == 0){

dispatchEvent(new
MemoryGameEvent(MemoryGameEvent.CORRECT_MATCH));

correctMatch();
}else{

dispatchEvent(new
MemoryGameEvent(MemoryGameEvent.INCORRECT_MATCH));

_allowClick = false;
setTimeout(hideCards,1000);

}
}

}

// hideCards hides the cards if they are not a
match

private function hideCards():void{
for(var c:int=0; c<_cardsToCompare.length;

c++){

_cardsToCompare[c].card.getChildAt(1).visible = true;
_cardsToCompare[c].card.buttonMode = true;

}
_cardsToCompare.splice(0);
_allowClick = true;

}

/* correctMatch adds to the number of total matches
found and, if all matches

have been found, dispatches a custom event of
"GameComplete"*/

private function correctMatch():void{
_matchesComplete++;
_cardsToCompare.splice(0);
if(_matchesComplete == _numberOfCards/2){

dispatchEvent(new
MemoryGameEvent(MemoryGameEvent.GAME_COMPLETE));

}
}

}
}

248 Chapter 13 THE MEMORY GAME

MemoryGame Breakdown
I’m going to skip past explaining the imports for the MemoryGame
class, and I’ll just quickly go over the variables that are declared
at the top. The first variables are a couple of publicly available
constants that will be used later to help the engine determine the
pattern in which to layout the cards. The ones I’ve included are
GRID_LAYOUT (to place the cards in a grid pattern) and CUSTOM_LAYOUT
(used when you want to pass in your own set of coordinates for
each card). The rest of the variables are private, and while I tried to
make their names self-explanatory, let’s still take a quick look at
them in Table 13.1.

Now, let’s move on to the MemoryGame constructor. The
constructor calls for three parameters (cards, cardBack, and spread)
with two of them being optional (see Table 13.2 for more details).
Once inside the constructor, we’ll assign the length of the cards Array
to a new variable called cardsLen. Just the same as before, we’re
assigning it to a variable, so the virtual machine doesn’t have to go
and get the length of the array each and every time it goes through the
upcoming for loop.

Up next is a nested for loop that creates duplicates of all the
cards in the cards Array. The whole reason I set it up this way was
in case I wanted to create some new kind of game where you had to
match more than two identical cards. By changing the 2 in the outer
for loop (for(var d:int=0; d<2; d++)) to a variable, you could set it

Table 13.1 The Private Variables of the
MemoryGame Class

Variable Use

_cardsToCompare (Array) Holds the two cards that are being compared for a match
_memoryCards (DeckArray) The deck of cards
_numberOfCards (uint) How many cards are in the deck
_cardPadding (int) The number of pixels between each card that is placed on the stage
_matchesComplete (int) How many cards the player has matched
_tempCard (Class) The raw Class representation of the front of each individual card
_frontBmd (BitmapData) The BitmapData for the front of each individual card
_frontSkin (Bitmap) The Bitmap representation of the front of each individual card
_tempCardBack (Class) The raw Class representation of the back of each individual card
_backBmd (BitmapData) The BitmapData for the back of each individual card
_backSkin (Bitmap) The Bitmap representation of the back of each individual card
_allowClick (Boolean) Determines whether or not the user should be able to click on a card

Chapter 13 THE MEMORY GAME 249

to any number you might want to user to match. Now that we’ve got
all the duplicated cards in our deck, we’ll call the shuffle method
from the DeckArray and then assign values to _numberOfCards,
_cardPadding, and _tempCardBack (if one if available).

The next item in this engine is the deal method. This one has
three optional parameters (Table 13.3) and is essentially just a
switch statement that can be added for different card patterns on
the “table.” This is where the GRID_LAYOUT and CUSTOM_LAYOUT vari-
ables I mentioned earlier come into play. Depending on which one
of these (or any others you may choose to add later) you pass in to
the deal method, the cards will be dealt and arranged on the
screen accordingly. To do this, you’ll notice we’re calling the
buildCard method as we loop our way through the deck.

The buildCard method is where the cards actually get created and
placed on the stage, and it does this with the use of three parameters.
Those three parameters are cardName, cardX, and cardY. I didn’t
include a table for these parameters because I think they do a good
job of explaining themselves with their names. The first thing that
happens here is that we create a new temporary card (_tempCard)
based on the cardName, which was passed in from the _memoryCards
DeckArray earlier (this will make more sense when we get to the .fla

Table 13.3 The Deal Method Parameters

Parameter Explanation

layoutType (String) A String representing the pattern in which the cards will be presented on the
stage (optional, default is GRID_LAYOUT)

customCoordinates (Array) An Array of Points or Objects with x and y values for each card (optional,
default is null)

rows (int) The number of rows to use when laying out the cards in a grid-style pattern
(optional, default is 2)

Table 13.2 MemoryGame Constructor Parameters

Parameter Explanation

cards (Array) The Array of BitmapData objects (images) that will be used as the cards for the game
cardBack (String) A String that represents a BitmapData object to use as the back of each card; if null, a gray

box is drawn to show the card (optional, default is null)
spread (int) The number of pixels between each card that is placed on the stage (optional, default is 10)

250 Chapter 13 THE MEMORY GAME

example in a little bit). After we have the temporary card, let’s go
ahead and use it to create a new Bitmap called _frontSkin, which
we’ll use as the face of the card. The next thing we need to do is
check to see if an image is available for the back of the card. If it is,
we’ll take the appropriate steps to use it to create another Bitmap
called _backSkin (the back of the card).

Now that we have something to use for both the face and the
back of the card, the next thing we’re going to do is create a new
Sprite called cardSprite. Once that’s instantiated, we add the
_frontSkin and _backSkin, set the location of the card (cardSprite.x
and cardSprite.y), and set its buttonMode to true, so the hand cursor
will show up giving the users a visual clue that they can click on the
card. Finally, we add a click listener to fire the showCard method and
add the card to the stage with addChild(cardSprite).

Now let’s take a look at this little interaction method named
showCard. Before I explain this one, let me point out that while there
aren’t any animated transitions happening during the card flip, it
wouldn’t be hard for you to add one of your choosing. I thought if
I left it out, you would have more freedom to play and experiment
with things like animating the card flip or fading from the back to
the front. Now that we have that settled, let’s take a look over this
method. The very first thing that happens is that we check to see if
the _allowClick variable is true or false. If it’s false, then return
kicks the user out of the method. However, if it’s true, then we jump
right in to turn off the buttonMode, so the user can’t click on it again
and hide the back of the card to reveal the front (this is where you
would want to insert a transition). Next, we add the card we just
clicked to our _cardsToCompare Array. After the user clicks on a sec-
ond card, the _cardsToCompare Array has a length of two, and we can
check those two cards to see if they match by using the BitmapData
.compare method. If the cards match, we dispatch the MemoryGame
Event.CORRECT_MATCH event and call the correctMatch method. If
they don’t, we call the MemoryGameEvent.INCORRECT_MATCH event, set
_allowClick to false so the user can’t keep clicking cards, and then
run a setTimeout to give the user time (1 s in this case) to realize he
or she was wrong before calling the hideCards method.

TIP
The compare method of BitmapData compares the width, height, and pixel
values within two BitmapData objects. If all three of those items are
equivalent, the compare method returns 0. Check out the Adobe LiveDocs
for more information.

The two last methods in this engine are pretty short, so I’ll breeze
through them real quick. First, the hideCards method does exactly
what it says by hiding the cards (or turning them over). It takes the

Chapter 13 THE MEMORY GAME 251

two cards in the _cardsToCompare Array, covers the face of the card
with the back of the card (another opportunity for a transition here),
and makes the card interactive again by setting its buttonMode to true.
After that, we just empty the _cardsToCompare Array with splice(0)
and return _allowClick to true. Finally, we have the correctMatch
method, which we fired earlier when there was what? Yes, a correct
match. The first thing this method does is increment _matches
Complete. After that, it clears out the _cardsToCompare Array and
checks to see if the number of cards matched is equal to the original
number of cards in the deck. If it is equal, a MemoryGameEvent.GAME_
COMPLETE event is dispatched, and that’s all there is to it.

Sample Use of MemoryGame
Within the com.flashadbook.base package, you can find this sample
code in MemoryGameSample.as, and here’s the quick breakdown of
what’s happening within that class. First, there are several variables
that get set up. _memoryGame is an instance of MemoryGame, and
_gameCards is an array of the Linkage names for some images that are
in the library of the .fla. These are the card faces. Next up are some
variables that hold the coordinates for the rows and columns that
we’ll use to place our cards. We’ll use those coordinates to fill the
_coordArr Array with x and y values. Next in line is the constructor
method, which, at this point, does nothing more than fire off the new-
Game method and passes in _gameCards for the required cardsToUse
parameter and _coordArr for the optional locationArr parameter.
The result of this sample is a game like the one in Figure 13.2.

TIP
Note that I populated the _coordArr with Objects containing x and y
values, but you could just as easily populate it with Points.

Now let’s take a quick look at the newGame method. This one
is another very straightforward method that instantiates a new
MemoryGame with the array of cards (cardsToUse), and if you have
one to use, the Linkage name of the image in the library that will be
the back of the card. After the game is instantiated, it’s added to the
stage, and the cards are dealt with the MemoryGame.deal method. In
this case, we’re using the custom layout and passing in that array of
coordinates we created earlier. The last thing we do in this method is
to add listeners to the game for each of the MemoryGameEvent
events. The last three methods in this class are simply the handlers
for each of those listeners.

package com.flashadbook.base {
import flash.display.MovieClip;
import flash.events.MouseEvent;

252 Chapter 13 THE MEMORY GAME

import com.flashadbook.engines.MemoryGame;
import com.flashadbook.events.MemoryGameEvent;

public class MemoryGameSample extends MovieClip{
private var _memoryGame:MemoryGame;
private var _gameCards:Array = new

Array("cardFace1","cardFace2","cardFace3","cardFace4");

/*The x and y values for the rows and columns of
the custom layout of the cards

The visual layout looks like this:
card card card
card card
card card card*/
private var _row1:int = 5;
private var _row2:int = _row1 + 172;
private var _row3:int = _row2 + 172;
private var _col1:int = 5;
private var _col2:int = _col1 + 136;
private var _col3:int = _col2 + 136;

//The array used to place the cards
private var _coordArr:Array = new

Array({x:_col1,y:_row1},{x:_col1,y:_row2},{x:_col1,y:_row3},
{x:_col2,y:_row1},{x:_col2,y:_row3},{x:_col3,y:_row1},{x:_col3,
y:_row2},{x:_col3,y:_row3});

public function MemoryGameSample() {
newGame(_gameCards,_coordArr);

}
private function

newGame(cardsToUse:Array,locationArr:Array=null):void{
_memoryGame = new

MemoryGame(cardsToUse,"cardBack");
addChild(_memoryGame);
//Deal the cards

_memoryGame.deal(_memoryGame.CUSTOM_LAYOUT,locationArr);

_memoryGame.addEventListener(MemoryGameEvent.CORRECT_MATCH,
correctMatchHandler,false,0,true);

_memoryGame.addEventListener(MemoryGameEvent.INCORRECT_MATCH,
incorrectMatchHandler,false,0,true);

_memoryGame.addEventListener(MemoryGameEvent.GAME_COMPLETE,
gameCompleteHandler,false,0,true);

}
private function

correctMatchHandler(e:MemoryGameEvent):void{

Chapter 13 THE MEMORY GAME 253

trace("HANDLE CORRECT MATCH HERE");
}
private function

incorrectMatchHandler(e:MemoryGameEvent):void{
trace("HANDLE INCORRECT MATCH HERE");

}
private function

gameCompleteHandler(e:MemoryGameEvent):void{
trace("HANDLE GAME COMPLETION HERE");

}
}

}

Figure 13.2 The result of the
sample use of MemoryGame.

254 Chapter 13 THE MEMORY GAME

Conclusion
This chapter was focused on a set of classes used for the singular
purpose of creating a memory game. However, like I was saying at
the beginning of this chapter, it’s also an example of a real-world
project that was reused to create multiple versions of the game
(including a version for the iPhone). Remember that not only can
you get all this code on the book’s Web site, but the site is set up
for discussion as well.

Chapter 13 THE MEMORY GAME 255

This page intentionally left blank

14
CASE STUDIES

CHAPTER OUTLINE
Eyeblaster 257

Case Study: Suzuki Race Fans Stay Up to Date with Dynamic Ads 258
Goals 258
Strategy 259
Tactics 259
Results 260

Case Study: 2–3 Minutes of Dwell Time: The Power of Online Branding 260
The Objective 260
The Execution 260
The Results 261

Blockdot 263
Case Study: Orlando/Orange County Convention & Visitors Bureau, Inc. 263
Case Study: Three Card Monte on the iPhone 264
Case Study: Kewlbox.com 264

This case studies chapter is exactly what it sounds like: a chapter
containing case studies from a couple of companies (Eyeblaster and
Blockdot) who were kind enough to share their experiences with the
rest of us. There’s not a lot more to say to set it up, so we’ll get right
to the case studies. Thanks for reading and don’t forget to visit the
book’s Web site at http://www.flashadbook.com.

Eyeblaster
In 1999, Eyeblaster (see their logo in Fig. 14.1) was among the
pioneers in rich-media communication. Today, Eyeblaster extends its
inventive heritage in digital advertising to ad-serving and global cam-
paign management. As the leading provider of digital advertising solu-
tions, Eyeblaster empowers marketers to engage consumers online.
The company’s flagship product, MediaMind, is the only ad-serving
and campaign management solution built from the ground up for
agencies and advertisers. MediaMind includes critical functions that
simplify campaign process, enable cross channel analytics, and
streamline integration with other technology components.

Headquartered in New York, Eyeblaster has over 35 offices
across all major markets worldwide. This footprint allows Eyeblaster

Flash Advertising. DOI: 10.1016/B978-0-240-81345-5.00014-1
© 2010 Jason Fincanon. Published by Elsevier, Inc. All rights reserved. 257

customers to deploy global campaigns with guaranteed service levels,
publisher acceptance, and integrated metrics. The company is the
only publisher-independent provider in the field, as well as the only
one certified for compliance with the three Interactive Advertising
Bureau (IAB) measurement guidelines: ad serving, video, and rich
media.

In 2009, Eyeblaster delivered campaigns in a variety of ad
formats including rich media, in-stream video, display, search, and
mobile for over 8500 brands serving approximately 3400 agencies
across over 5200 global Web publishers in 55 countries worldwide.
Learn more at http://www.eyeblaster.com.

Case Study: Suzuki Race Fans Stay
Up to Date with Dynamic Ads
• Advertiser: Suzuki
• Agency: Questus
• Campaign: Motor Race Win
• Eyeblaster Solution: Smart Versioning

As one of the leading motor racing teams in the United States,
Team Suzuki is accustomed to speed. While Suzuki dominates on
the track, its agency of record, Questus, races each week to update
the team’s ads with fresh race data. Until recently, making any
changes took hours and required a cumbersome process using
Microsoft’s Atlas and an XML solution. Since then, Questus switched
to Eyeblaster and is using its Smart Versioning solution to create,
serve, and measure all dynamic content and ads for Suzuki
motorcycle and ATV race teams. Suzuki has strengthened the brand’s
bond with race fans by establishing its advertising as a relevant and
up-to-date source of race information. See Figures 14.2 and 14.3 for
example images from the Suzuki case study.

Goals
• Inform Suzuki fans of weekly race winners through frequent

updates made directly within Suzuki’s motor racing online
banner ads.

• Deliver fresh and relevant content to motor sports fans.
• Reduce the time it takes to update and deliver dynamic content

to Suzuki race fans.

Figure 14.1 Eyeblaster.

258 Chapter 14 CASE STUDIES

Strategy
• Simplify the operational process associated with making dynamic

updates to online ads.
• Develop creative that enables dynamic updates to easily be made

each week.
• Adopt advanced tools that increase accuracy and efficiency within

Questus.

Tactics
• Leverage Smart Versioning to improve the process of making

live updates.
• Implement dynamic text fields within creative.
• Make weekly changes to text to reflect the most recent Suzuki

motor race winner.
• Manage all dynamic content under one unified reporting and

campaign management platform.

Figure 14.2 Smart Versioning enables the creation of ads that contain dynamic elements, such as text, images,
and videos, which can later on be used to quickly update the ad’s content.

Figure 14.3 Suzuki has strengthened the brand’s bond with race fans by establishing its advertising as a relevant and
up-to-date source of race information.

Chapter 14 CASE STUDIES 259

Results
• The new process of dynamic updates increased efficiency by

30% compared with the XML solution with Atlas.
• With Smart Versioning, weekly updates were made in minutes

as compared to hours.
• More than 75 changes were made to a single piece of creative

throughout the 2009 Suzuki race season.

Case Study: 2–3 Minutes of Dwell Time:
The Power of Online Branding
• Advertiser: L’Oréal
• Campaign: L’Oréal Derma Genesis
• Media Buy: MSN Homepage Skin with Video, MSN Hotmail

ROS Expandable Showcase with Video
• Creative Agency: Compass Interactive
• Media Agency: Carat Media Services (M) Sdn Bhd

The Objective
Derma Genesis is a new product line from L’Oréal designed to revi-
talize and illuminate the skin. In order to promote brand aware-
ness, L’Oréal launched a campaign in the Malaysian market to
promote the range of products.

L’Oréal has a reputation for their forward thinking, and this was
further proven by their first foray into online advertising. Rather than
“test the waters” with a minimum buy campaign, L’Oréal decided to
pull out all the stops with Derma Genesis and teamed up with
Eyeblaster, MSN, and Carat Media in Malaysia. Free samples, a video
contest, and interactive product information were made available
to connect consumers to the full Derma Genesis product line. See
Figures 14.4 and 14.5 for example images from the L’Oréal case study.

The Execution
The campaign utilized a premium brand format – the MSN Home-
page skinner. The presence of the brand clearly caught the atten-
tion of MSN Homepage and Windows Live Hotmail visitors, with
L’Oréal spokesmodel Penelope Cruz prominently featured on the
home page. Highlights of the campaign included the following:
• An auto-initiated skinner, which branded the user’s browser and

created a full L’Oréal environment.
• Information on the range of products was cleverly placed to

maintain the look and feel of the brand while targeting the
online audience suitable for L’Oréal Derma Genesis.

• A broadcast of the L’Oréal TV commercial in the banner and an
opportunity for users to gain a free sample using data capture.

Inside Advertising

Time is money and
multiple ad variations used
to take hours to produce.
With Smart Versioning, it
now takes minutes, which
means Suzuki can reach
its customers with even
fresher, more relevant
content than before.

–Keyvan Hajiani,
Sr. Account Director

at Questus

Inside Advertising

For this campaign, the
Eyeblaster team were
extremely helpful in
lending us their support to
get the technical
applications of the skin
format right …. They
provided the creative team
with all the troubleshooting
assistance that was
needed to get the takeover
ready in time.

–Rueben Vijaratnam,
MSN Malaysia

260 Chapter 14 CASE STUDIES

The Results
Combining eye-catching animation, great interaction including
video streaming, and a savvy use of data capture, the Derma Genesis
campaign provided very positive results for the client.

The campaign reached nearly 460,000 users, targeting users who
are more affluent and who regularly visit the MSN Homepage, as
well as the audience of 25–34-year-old females who use Windows

Figure 14.4 L’Oréal Paris.

Chapter 14 CASE STUDIES 261

Live Hotmail. Eyeblaster analytics enabled L’Oréal to measure the
dwell time of the users, which was recorded as up to nearly 3 full
minutes on the MSN Homepage Skinner and 2 min on the Hotmail
Banners. This is where interactivity was used in the best possible
manner. It provided the brand 100% attention from its users and
provided users an avenue to experience the brand.

The campaign also managed to generate high brand awareness
among the intended audience with a large number of exposures
(1,801,638 impressions) reaching each user an average of 3.96
times each. This optimum frequency placed the brand on top of
their mind. Over and above that, online was also used as an exten-
sion to broadcast the TV commercial at a minimal cost where
53,433 video views were recorded. And of that, more than 52% of
the videos were viewed fully.

“In terms of post-campaign analysis, Eyeblaster’s capability to
provide tracking services made our task easy to justify L’Oréal’s
spend on this campaign,” said Rueben Vijaratnam, MSN Malaysia.
“The high dwell times demonstrated to the client the true value of
online advertising when compared to the regular 30-second TV and
radio commercials that the client had relied upon previously.”

Finally, using free samples as a means to collect contact data,
the campaign had provided L’Oréal a total of 825 quality leads of
potential future customers who had clearly expressed interest in
their product.

Figure 14.5 L’Oréal Derma Genesis.

262 Chapter 14 CASE STUDIES

Blockdot
Blockdot (see their logo in Fig. 14.6) is a leading producer and
provider of casual games and company-sponsored advergames.
Blockdot has created over 800 games for a broad range of leading
brands and companies, including American Airlines, AT&T, Gen-
eral Motors, Kimberly-Clark, Kraft, LEGO, Microsoft, Motorola,
M&Ms, Nokia, Universal Pictures, and Verizon.

Case Study: Orlando/Orange County Convention
& Visitors Bureau, Inc.
Blockdot built “Find My Smile,” a truly unique game engine in
which players are challenged to find the photo of an iconic Orlando
hotspot hidden inside a picture montage. The picture montage itself
is made up of thousands of smaller photos.

Blockdot used ActionScript 3’s Client Library to create an
experience that allowed players to access pictures from their Face-
book account to use in the game, save their own picture montages
created within the application, post their scores on their Facebook
walls, and send gameplay notifications to their friends. See
Figures 14.7 and 14.8 for example images from the Orlando/Orange
County Convention & Visitors Bureau, Inc. case study.

Figure 14.6 Blockdot.

Figure 14.7 “Find My Smile” game for Orlando/Orange County Convention & Visitors Bureau, Inc.

Chapter 14 CASE STUDIES 263

The game, which appeals to adult couples looking for “getaways”
and adult females planning a “girls’ weekend,” became an integral
part of Orlando’s CVB Q3 marketing campaign. The game was
released on the Orlando Convention and Visitors Bureau Web site
and on Facebook.

Case Study: Three Card Monte on the iPhone
Blockdot released Three Card Monte, one of the first iPhone
applications to be created with Adobe Flash. By using technology
available with the release of Adobe Flash Professional CS5,
Blockdot’s game developers greatly reduced the turnaround time it
takes to release an application compared with traditional iPhone
development.

In Three Card Monte, you must keep your eyes on the prize as
the dealer flips, shuffles, and rearranges the cards! When the dealer
stops, choose the queen of hearts by touching a card on the screen.
Pick the correct card to earn points, and move on to the next
round! The fast-paced action becomes increasingly challenging as
you play … but be careful: get fooled by the dealer and the game
comes to an end!

After you play, you can post your high score directly to the
Kewlbox.com worldwide leader board – letting you see how you
stack up against other grafters. See Figures 14.9 and 14.10 for
example images of Blockdot’s Three Card Monte on the iPhone.

Case Study: Kewlbox.com
Blockdot’s Kewlbox.com (http://www.kewlbox.com) is one of the
top gaming portals on the Internet, with more than a hundred
Flash games on the site. See Fig. 14.11.

With so many gaming options on the Internet, Blockdot makes
Kewlbox.com stand out from the pack by creating a true networking/
social component for gamers. The site includes arcade, card, puzzle,

Figure 14.8 Find the hidden photo in a mosaic of many other photos.

264 Chapter 14 CASE STUDIES

Figure 14.9 The main screen for Blockdot’s Three Card Monte on the iPhone.

Figure 14.10 Gameplay in Blockdot’s Three Card Monte on the iPhone.

Chapter 14 CASE STUDIES 265

word, and casual flash games. Daily, weekly, and all-time scoreboards
provide a competitive environment for gamers and office workers
who are looking to goof off. The site also features community-
building activities like chat, polling, and an avatar and reward system.

Blockdot designers tricked out Kewlbox.com by using Flash
Media Server to add multiplayer gaming capability to many of
Blockdot’s titles.

Figure 14.11 Blockdot’s Kewlbox.com.

266 Chapter 14 CASE STUDIES

INDEX

Page numbers followed by f indicates a figure and t indicates a table

ActionScript Technology
Center, 139f

Ad rotation, 102–103
Adobe Flash Platform, 3, 4f
Adobe Flash Professional,

4, 5f
CS5, 22, 5f

Ads
creating time with code,
48–52

dynamic content in, 95
expandable, 96–97
floating, 96
placement of, 102
planning of, 38
specs, 12–13, 39
standard Flash, 9
types of, 9

Ad-server tools, 103
entering media plan
into, 103

loading banner files, 104
tag for banner, 104
testing banner, 104

Advergaming, 169–170
applications, 185–186
branded play, 171–173

Advertising templates in
Flash, 11–12

AIR, 6
application, 7, 186–187,

189
designing, 187–188

Animation, 126–127
assets, 33
visualization, 32–33

Art Thief game, 172f, 173f
Assets
collection of, 136–137
reusable, 52

assignClickTag method, 47
Audio, 94–95

Bandwidth Profiler, 55–58,
56f, 57f

Banner ads, designing, 25, 35,
157–158

branding, 30
campaign goal, 30
conception, 26
placements for, 29–30
selling through, 30–32
strengths and limitations, 34

Banners, 6–7
Bandwidth Profiler, 58,

56f, 57f
creating, set up files for, 39–42,

40f, 41f
naming of, 54
quality control, 61–63
sign-off sheet, 62
specs, 14t

Bashing Pumpkins game, 174f,
175f

Bitmap Properties window, 85f
Blockdot games, 263, 263f
Blogs, 161
spamming, 161
targeting, 162–163

BorderButton class, 52, 195
activate method, 199
breakdown, 197–200
clickOut method, 200
code, 196–197
creating, 49
deactivate method, 199
draw method parameters, 198,
51t, 198t

erase method, 199
private variables of, 198t
sample use of, 200

Brand
awareness, 30–31
banners, 30–31
knowing, 28–29

Broad matching, 155
Bug/issue tracking software, 44

Classes
BorderButton. see BorderButton
class

ClickTagger. see ClickTagger
class

DeckArray, 241
folder structure for, 192f
MemoryGame. see
MemoryGame class

MemoryGameEvent, 244
ReverseClip. see ReverseClip
class

SimpleGallery. see
SimpleGallery class

SimpleMenu. see SimpleMenu
class

Click-through rate (CTR),
106

clickTag, 46, 104, 200
value of, 48

ClickTagger class, 47, 49, 231
breakdown, 234–237
code, 231–234
LoaderInfo class, 234
parameters for assignClickTag
method, 235t

sample use of, 238
variables of, 234t

Clients, 26–27
types of, 27–28

ComboBox, 67, 69f
Contextual advertising, 157

Data
collecting and passing, 70
compression
lossless, 79
lossy, 76

sending, 70–72

INDEX 267

Deadlines, 14–15
DeckArray class, 241–242
breakdown, 243
code, 242
shuffle method, 243

Deep linking, 141–145
Default images, 61
Derma Genesis, 260
campaign, 260, 261

Direct marketing, 30
Document class, 193–194

from Advanced ActionScript
3.0 Settings, 193, 194f

from Properties window, 194,
195f

Dr. Strangemitten’s Shrunken
Heads game, 178f, 179f, 180f

Dynamic content in ads, 95

Expandable ads, 96–97
Eyeblaster, 107, 108, 257–258,

258f

Facebook, 163–164
File size consumption, 67–70
“Find My Smile” game, 263, 263f
.fla, 193
in version control, 22

Flash Builder (Flex), 5,
133–134, 5f

Flash developer, 33–34
Flash Platform, 2, 3–4, 6
Flash player, 89–90
Flash Professional CS5,

132–133
FlashVars, 145
Floating ads, 96
Fonts, 87–88
Forms, 52

Game playing, 174–182
.gif, 79, 79f

HTML, 58, 139

IAB. see Interactive Advertising
Bureau

Images
compression, 81–85
cutting of, 42–46

default, 61
format, 76
.gif, 79, 79f
.jpg, 76–78
.png, 80

high-quality, 81
Interactive Advertising Bureau

(IAB), 10–11, 13, 11f
recommended banner
specs, 14t

Interactive Marketing Units
(IMUs), 13

Invisible button, creating,
43–44, 49

iPhone, Three Card Monte game
for, 184f, 185f

JavaScript, 58, 139
JPEG quality slider, 83, 83f
.jpg, 76–78

quality settings of, 76, 77f, 78f

Kewlbox.com, 266–267, 266f

LCD sheet. see Lowest common
denominator sheet

LinkedIn, 163
L’Oréal, 260
Derma Genesis, 262f
online branding, 260

L’Oréal Paris, 261f
Lowest common denominator

(LCD) sheet, 39

Media buy, 100
ad rotation, 102–103
placement of ads, 102
target audience, 100–101

MediaMind, 257
MemoryGame class, 245
breakdown, 249–252
buildCard method, 250–251
code, 245–248
constructor parameters, 250t
correctMatch method, 251–252
deal method, 250
hideCards method, 250–251
newGame method, 252
sample use of, 252–254, 254f
variables of, 249t

MemoryGameEvent class, 244
breakdown, 244–245
code, 244

Microsites, 7, 16
collecting user data,
145–148

designing, 25,
117–119
constraints, 114
file size, 114–115
looping limit, 116
navigation, 122
plan to move users,
124–125

squash, stretch, and
anticipation, 125

timing, 116
driving traffic to, 154
banner ads, designing,
157–158

buzz generating, 160
main Web site, 158–159
paid search, 154
user interactions and
referrals, 164–165

preparing and building
planning for, 135–136
standards, 137–139
tools for, 132–134

quality control, 148–149
development environment,
149–150

staging environment,
150

Mobile devices, 7–8

Naming
banners, 54
convention examples,
54t, 138t

objects, 53–54
Navigation, 122–123
No-flash backup, 140–141

Optimizing code, 88
Orlando/Orange County

Convention & Visitors
Bureau, Inc., 263–264

“Find My Smile” game,
263, 263f

268 INDEX

Packages, 192–193
declaration, 193
naming conventions, 193

Paid search, driving traffic to
microsite, 154

contextual advertising, 157
costs, 154–155
matching, 155–156
text ads, 156–157

.png, 43, 80
Poker Solitaire, 176f
Publish settings dialog box, 83f
Publish settings window, 41f

Quality control, 17–18
for banners, 61–62
for microsites, 148–150
sign-off sheet, 62

Questus, 258

Raster graphics, 42, 85
zooming and scaling, 86, 42f, 86f

ReverseClip class, 226
breakdown, 227–230
code, 226–227
parameters for play method,
228t

replay method, 229
reverseFrame method, 228
sample use of, 230–231
variables of, 228t

Rich-media ads, 107
ad-preview feature, 108
entering media plan, 107
tracking, 108–109
trafficking, 107
uploading files, 107–108

Rich-media banners, 9, 32
Rich-media companies, 97–98
Rich-media technologies, 93–94
audio/video, 94
interactivity, 96
loading external files, 96

Scaling, 86, 86f
Scope creep, 15

Sign-off sheet, 62
SimpleGallery class, 213–214

breakdown, 217–218
code, 214–217
createImage method, 219–220
imageClicked method, 220,
223

imageLoadError method, 224
placeImage method, 220–221
pointIndex method, 221,
224

private variables of, 218t
sample use of, 225–226

SimpleMenu class, 200–201
alterState method, 211
assignAction method, 208
breakdown, 206–212
code, 201–206
createMenuItem method,
207–210

drawItem Background
method, 212

forEach method, 207, 209
parameters, 206–207
sample use of, 212–213
setDefaultFormats method,
207–208

setPosition method, 208
variables of, 207t

Site wireframe, 135, 135f
Site-served ads, 109
changes in, 110
loss of control of, 109
tracking, 110

Smart Versioning, 259f
Social networking, 160
Social utilities, 163–164
Specs, ads, 39
Sponsored links. see Text ads
Standard Flash banners, 9, 32
Suzuki race fans, dynamic ads,

258
.swf, 59, 60, 193
SWFObject, 58–61
dynamic method, 60
static method, 59

Target audience, 29
targetWindow property, 47
Tax Smack game, 170f, 171f
Team Suzuki, 258
advertising, 259f
goals, 258
strategy, 259
tactics, 259

Tech-maybe client type, 27
Tech-no client type, 27
Technorati, 161
Tech-yes client type, 27
Text ads, 156–157
Text and fonts, 87–88
TextInput component, 68, 69, 68f
Three Card Monte, 181f–183f
on iPhone, 265, 184f–185f,

264f–265f
Tracking ads, 104–105

impressions, interactions and
clicks, 105–106

optimization of campaign,
106–107

rich-media ads, 108–109
site-served ads, 110

Tracking tag, 46
Trafficking ads, 99
rich-media ads, 107

Twitter, 163–164

Unobtrusive flash objects (UFO), 58
URLRequest, 71
URLVariables, 71

Vector graphics, 42, 85–87
zooming and scaling, 86, 42f, 86f

Version control, 19–23, 42
.fla files in, 22

Video, 94
Viral marketing, 160

XFL format, 22
.xml files, 22

Zooming, 86, 42f, 86f

INDEX 269

This page intentionally left blank

	Flash Advertising
	Copyright
	Dedication
	Table of Contents
	Foreword
	Acknowledgments
	About the Author
	Introduction
	Chapter 1. Flash Advertising Overview
	What This Book Is and Is Not
	Supporting Web site
	The Flash Platform
	Why Use the Flash Platform for Advertising
	Types of Ads
	Interactive Standards and the Interactive Advertising Bureau
	Advertising Templates in Flash
	Ad Specs
	Deadlines
	Microsites
	Quality Control
	Version Control
	Conclusion

	Chapter 2. Designing Banner Ads
	Conception
	Campaign Goal
	Branding and Selling
	Designing to Move
	Conclusion

	Chapter 3. Preparing and Building ADS
	Planning
	Setting Up Your File(s)
	Cutting Art
	clickTags and Links
	Creating Time with Code
	Conventions and Best Practices
	The Bandwidth Profiler
	HTML and JavaScript
	Default Images
	Quality Control
	Conclusion

	Chapter 4. Forms and Data
	Where Are You Going?
	File Size Consumption
	Collecting and Passing Data
	Conclusion

	Chapter 5. File Optimization
	Image Types
	Image Compression
	Vectors and Fonts
	Optimizing Code
	Conclusion

	Chapter 6. Third-Party Rich-Media Technologies
	When to Utilize Rich-Media Technology
	Rich-Media Companies
	Conclusion

	Chapter 7. Trafficking and Tracking Your Ads
	The Media Buy
	Ad-Server Tools
	Tracking Your Ads
	Rich-Media Ads
	Site-Served Ads
	Conclusion

	Chapter 8. Designing Microsites
	Less Constraints
	Conception
	Know the Brand (and Learn It if You Don't)
	Navigation
	Designing to Move
	Conclusion

	Chapter 9. Preparing and Building Microsites
	Choosing Your Tools
	Planning Your Work
	Collecting Assets
	Building to Standards
	HTML and JavaScript
	No-Flash Backup
	Deep Linking
	Collecting User Data
	Quality Control
	Conclusion

	Chapter 10. Driving Traffic to Your Microsite
	Paid Search
	Banner Ads
	From Main to Micro
	Viral Marketing and Social Networking
	User Interactions and Referrals
	Conclusion

	Chapter 11. Advergaming and Applications
	Advergames
	Applications
	Conclusion

	Chapter 12. Classes
	Set Up
	Packages
	Document Class
	The BorderButton Class
	The SimpleMenu Class
	The SimpleGallery Class
	The ReverseClip Class
	The ClickTagger Class
	Conclusion

	Chapter 13. The Memory Game
	The DeckArray Class
	The MemoryGameEvent Class
	The MemoryGame Class (the Game Engine)
	Sample Use of MemoryGame
	Conclusion

	Chapter 14. Case Studies
	Eyeblaster
	Blockdot

	Index

