

 HANDS-ON GUIDE SERIES®

Hands-On Guide to

Creating Flash Advertising

The Focal Press Hands-On Guide Series
The Hands-On Guide Series serves as the ultimate resource in streaming and digital media-

based subjects for industry professionals. The books cover solutions for enterprise, media

and entertainment, and educational institutions. A compendium of everything you need to

know for streaming and digital media subjects, the series is known in the industry as a must-

have tool of the trade.

Books in the series cover streaming media-based technologies, applications and solutions

as well as how they are applied to specific industry verticals. Because these books are not

part of a vendor-based press they offer objective insight into the technology weaknesses

and strengths, as well as solutions to problems you face in the real-world.

Competitive books in this category have sometimes been criticized for being either techni-

cally overwhelming or too general an overview to actually impart information. The Hands-

On Guide Series combats these problems by ensuring both ease-of-use and specific focus

on streaming and digital media-based topics broken into separate books.

Developed in collaboration with the series editor, Dan Rayburn, these books are written by

authorities in their field, those who have actually been in the trenches and done the work

firsthand.

All Hands-On Guide books share the following qualities:

 • Easy to follow practical application information

 • Step-by-Step instructions that readers can use in real-world situations

 • Unique author tips from “in the trenches” experience

 • Compact at 225–300 pages in length

The Hands-On Guide Series is the essential reference for Streaming and Digital Media

professionals!

Series Editor: Dan Rayburn (www.danrayburn.com)

Executive Vice President for StreamingMedia.com, a diversified news media company with a

mission to serve and educate the streaming media industry and corporations adopting inter-

net based audio and video technology. Recognized as the “voice” for the streaming media

industry and as one of the internet industry’s foremost authorities, speakers, teachers, and

writers on Streaming and Digital Media Technologies.

Titles in the Series:

 • Hands-On Guide to Webcasting

 • Hands-On Guide to Windows Media

 • Hands-On Guide to Video Blogging & Podcasting

 • Hands-On Guide to Streaming Media

 • Hands-On Guide to Flash Video

 • Hands-On Guide to Creating Flash Advertising

JASON FINCANON

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Focal Press is an imprint of Elsevier

 HANDS-ON GUIDE SERIES®

Hands-On Guide to

Creating Flash Advertising:

From Concept to

Tracking— Microsites,

Video Ads, and More

Acquisitions Editor: Paul Temme
Publishing Services Manager: George Morrison
Project Manager: Mónica González de Mendoza
Assistant Editor: Dennis McGonagle
Marketing Manager: Rebecca Pease
Cover Design: Eric Decicco
Book Production: Borrego Publishing (www.borregopublishing.com)

Focal Press is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2008, Jason Fincanon, published by Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford,
UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.co.uk. You may
also complete your request online via the Elsevier homepage (http://elsevier.com), by selecting “Customer
Support” and then “Obtaining Permissions.”

Recognizing the importance of preserving what has been written, Elsevier prints its books on acid-free
paper whenever possible.

Library of Congress Cataloging-in-Publication Data
Fincanon, Jason.
 Creating Flash advertising : from concept to tracking microsites, video ads and more / Jason Fincanon.
 p. cm.
 ISBN-13: 978-0-240-80949-6 (pbk. : alk. paper) 1. Computer animation. 2. Flash (Computer file)
3. Internet advertising. I. Title.
 TR897.7.F48 2007
 006.6’93--dc22
 2007023375

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-240-80949-6

For information on all Focal Press publications
visit our website at www.books.elsevier.com

08 09 10 11 12 13 10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

This book is dedicated to my entire family whose love and support is the most valu-

able thing I could ever have.

To my wife, Sarah: Thank you for all of your understanding and support of the days

and nights spent working on this book either at home in front of the computer or at

the library. I couldn’t have fallen in love with (and married) a better woman or found

a better friend. I love you bunches and munches!

To my son, Riley: As I am writing this, you are not yet two years old. I never could

have imagined what it would be like to have you in my life, and now I can’t imagine

what it must have been like before you were here. Be nice, be respectful, be caring,

be strong, and never forget that I will always love you and be here for you no matter

what. Oh, by the way, you’re going to be a big brother soon!

To my parents: Thank you for everything you’ve ever done for me (including putting

up with those crazy teenage years). I wouldn’t be where I am today without your

love, help, and support. If I can do even half as good of a job at raising my children

as I feel you’ve done with me, I’ll know that I’ve done well. I love you guys!

In memory of my father

Bill Fincanon

May 2, 1950–November 29, 2004

I love you and I miss you dad.

This page intentionally left blank

 Table of Contents vii

Table of Contents

Foreword ... xi

Acknowledgments ..xiii

About the Author ... xv

Introduction...xvii

Chapter 1: Flash Advertising Quick Start

Why Use Flash for Advertising? .. 2

Ad Formats ... 4

Interactive Standards and the Interactive Advertising Bureau..6

Flash’s Built-in Advertising Templates 7

Microsites ... 8

Mobile Devices .. 10

Place, Design, Build, and Launch .. 12

Conclusion ... 15

Chapter 2: Constants and Considerations

Ad Specs ... 18

Deadlines ...20

Quality Control ..22

Version Control ..24

Conclusion ...28

Chapter 3: Designing Banner Ads

Conception ...29

Goal of the Campaign ...34

Designing with Transitions and Animation in Mind36

Conclusion ...39

viii Table of Contents

Chapter 4: Preparing and Building Ads

Planning ...42

Setting Up Your File ..43

Cutting Images ..47

clickTags and Links ... 51

Script to Save Time ...54

Building to Standards ...57

Bandwidth Profi ler ..59

HTML/JavaScript ..62

Default Images ..65

Quality Control ..65

Conclusion ...67

Chapter 5: Forms and Data in Ads

Where Are You Going? ..70

File Size Consumption ..71

Collecting and Passing Data ..75

Conclusion ... 77

Chapter 6: File Optimization

Image Types ...80

Image Compression .. 87

Vectors and Fonts ..96

Optimizing Code ...98

Conclusion ..101

Chapter 7: Third-party Rich-media Technologies

When to Utilize a Rich-media Technology 104

Rich-media Companies .. 108

Conclusion ... 109

 Table of Contents ix

Chapter 8: Trafficking and Tracking Your Ads

The Media Buy ..112

Ad Server Tools ..116

Tracking Your Ads ...118

Rich-media Ads ... 120

Site-served Ads ... 123

Conclusion ... 124

Chapter 9: Designing Microsites

Less Constraints .. 128

Conception ... 129

Know the Brand (and Learn It if You Don’t) 130

Navigation ... 131

Designing with Transitions and Animation in Mind 132

Conclusion ... 134

Chapter 10: Preparing and Building Microsites

Plan of Attack ... 138

Collecting Assets.. 141

Building to Standards ... 142

HTML/JavaScript .. 144

No-Flash Backup... 144

Collecting User Data ... 147

Quality Control ...151

Conclusion ... 152

Chapter 11: Driving Traffic to Your Microsite

Paid Search .. 156

Banner Ads ... 159

To the Microsite from the Main Site 160

Word of Mouth (a.k.a. Viral Marketing) 162

User Interactions and Referrals .. 165

Conclusion ... 166

x Table of Contents

Chapter 12: Advertising Examples

Rich-media Banners ... 169

Conclusion ... 179

Chapter 13: Snippets and Classes

Snippets ..181

Classes .. 186

Conclusion ... 219

Index ... 221

 Foreword xi

Foreword

Not all that many years ago online advertising was limited to pop-up ads and

 annoying banners filled with animated gifs that were anything but “interactive.”

Flash and other rich media were in wide use but mainly relegated to the arena of

websites. It wasn’t really considered a viable option for advertising online because

of bandwidth limitations and the high costs associated with the production of such

 ad units. Well, as is always the case, the tools and technologies evolved and

 adapted to overcome those limitations. In today’s technical arsenal, Flash sits

atop the coveted throne of rich media. The technology has become refined and

optimized so as to allow developers to focus on the core of its capabilities rather

than concern themselves with all the mundane details that formerly consumed the

lion’s share of their energy.

Today, the World Wide Web is flooded with rich media in every conceivable shape

and form. From banners and microsites to heavily branded online games as well as

immersive and heavily experiential websites. It seems as though everyone is pro-

ducing Flash-based ads in one form or another. But how effective are these execu-

tions? How much thought has gone into layout, optimization and design? From a

creative as well as a technical perspective? Has any consideration been given to

search engine compatibility? How did the programmer go about addressing the

vast (and growing) array of diverse platforms and web browsers? Or worse, will the

produced units even be supported by the sites they’re destined to run on?

If you’ve ever found yourself stumped or just curious about what goes into the pro-

duction of a successful Flash-based media execution, this book is one you’ll want

to add to your library. And if you’re considering a career in the field of multimedia

advertising, this book may be the one to form the cornerstone of that library.

xii Foreword

Jason Fincanon has carved out a niche for himself in the world of Flash advertising

and has taken the medium itself to a whole new level in the process. He can just as

often be found hovering over a colleague’s desk answering questions as hunkered

down over his own code as he looks for ways to squeeze just one more ounce of

optimization out of the end product. However, Jason really isn’t what you’d expect

from someone with his depth of knowledge and professional experience. He takes

his work very seriously, but he’s definitely not above pulling off the occasional prac-

tical joke (or bearing the brunt of one himself for that matter). Jason has earned the

respect and admiration from both his colleagues in the field of multimedia devel-

opment as well as that of those from the other side of the creative tracks, the art

directors (or “creatives” as we like to refer to them).

In writing this book, Jason has managed to incorporate both his sense of humor

and his unquestionable expertise in the subject matter in a way that really takes the

edge off of a very challenging topic. If you’re already an experienced Flash devel-

oper this book will show you how you can take your craft to the next level without

overwhelming your senses and forcing you to read and re-read each section to

grasp the methods discussed. You’ll find yourself thinking about the production

process in ways that you’ve never considered before. And even if you’re new to the

technical disciplines you’ll likely find value in Jason’s methodical approach and at-

tention to detail as he takes you through the production process.

From working within the constraints of antiquated site specs, to navigating the

stringent quality control process while keeping your wits about you. From optimiz-

ing your code for re-usability to taking full advantage of version control, Jason has

covered it all. He’s been there and done that. And now he’s taken the time to share

what he’s learned so perhaps you won’t be forced to learn those same hard lessons

at the cost of countless hours of lost sleep and anxiety.

Randy Bradshaw, Principal, Click Here, Inc.

 Acknowledgments xiii

Acknowledgments

My thank you list could go on for pages in this book, but I’ll trim it down a bit. First

off, thanks to Glenn Thomas for introducing me to Paul Temme at Focal Press.

Thanks to Paul Temme, my acquisitions editor, and Dan Rayburn, the Hands-on

Guide Series editor, for all of the hard work they put in to making sure everything

stayed on track and got done right. Thanks to Geoff Stearns and Bobby van der Sluis

whose work I’ve referenced in this book. Thanks to everyone at Click Here and spe-

cifically to (in no particular order) Randy Bradshaw, Dick Mitchell, Chris Long, Shawn

Scarsdale, Scott Filloon, Eric Patrick, Brian Linder, Jamie Squires, Mackenzie Squires

(with The Richards Group), Harley Jebens, John Keehler, Paul Herring, Kyle Sawai,

Katie Holmes, Cheryl Huckabay, Roddy McGinnis, James Henningson, Brad Vinall,

and James Wilson. Finally, thanks to the wonderful people at National Pork Board

and The Patrón Spirits Company for allowing me to show works created for them.

This page intentionally left blank

 About the Author xv

About the Author

After graduating with a major in computer animation from The Art Institute of Dallas

in 1998, Jason started working at a publishing company creating artwork for school

yearbooks. Since he was working the “graveyard shift,” he kept his eyes open for any

new opportunities that might happen to come along. Within six months, he found a

new job where he was first introduced to Flash.

At the beginning of his Flash career, Jason was only making small animations and

programming very simple interactivity such as buttons that linked out to other

websites. During that first year of working with Flash, he started to see the strengths

and power of ActionScript. He decided he wanted to move in that direction, and

since then has put nearly all of his focus on ActionScript.

Once Jason moved on from that first Flash job, he found himself going back and

forth between freelancing and being employed by companies that fell along with

so many other startups that no longer exist today. Fortunately, just as he was

 getting tired of chasing after paying gigs and thinking of changing careers, Jason

was put in touch with Click Here in Dallas, Texas (http://www.clickhere.com), one

of the nation’s largest interactive advertising agencies. Upon talking with them in

2003, Jason was hired as a contractor and subsequently moved over to a full-time

 employee. He has since become a Macromedia Certified Flash Developer, moved

into a senior position, and works on projects for some of America’s biggest and

best brands.

xvi About the Author

Outside of work, Jason enjoys creating experiments with Flash, playing his gui-

tars and video games (when there’s time), and most of all, spending time with his

 family. In addition, he also maintains two Flash-related blogs. One of them, titled

“The FlashCanon,” is about various Flash topics and can be found at http://

flash.fincanon.com. The other blog, “The FlashCanon Lab,” is a collection of

his Flash experiments and can be found at http://lab.fincanon.com.

 xvii

Introduction

Advertising online has come to have a not-so-favorable reputation with Internet

users. Combine that reputation with the often uninformed opinion that Flash is for

creating exceptionally annoying banners or website intros that are bloated in file

size and you’ve got a recipe for disaster. On the other hand, when done correctly,

Flash can be (and is) used to create some of the most eye-catching, awe-inspiring,

mind-blowing, award-winning work on the Web.

A major contributor to the unfortunate misconception of this combination is the fact

that there is work out there that fits directly within its own reputation. However, with

a little forethought and planning, those same ads could be very quickly redesigned

with the outcome of much better user reception and interaction. If the work that is

causing the bad reputation for Flash advertising can be made better, then so can

the reputation itself. This book was written in hopes of doing just that. It was written

to help educate and inform individuals, teams, departments, and even companies

on the ins and outs of creating advertising with Flash. Let’s take a quick look at the

chapters inside.

Introduction

xviii Introduction

Chapter 1: Flash Advertising Quick Start

As I mention in this opening chapter, you should always choose the correct tech-

nology for the job at hand. With that in mind, I talk a little about when and why you

would want to use Flash to create your online advertising in the form of either ban-

ners or microsites. This chapter then moves on to give a bit of an overview on the

different banner formats that will be covered later in the book and a little informa-

tion on interactive standards, and touches on Flash advertising templates. Lastly

in this chapter, I show a quick, high-level rundown of the general life of any given

project from design to launch.

Chapter 2: Constants and Considerations

In every project you work on, there will always be some aspects that will remain the

same. Likewise, there will be certain considerations to keep in mind as you work on

those projects. In this chapter, I cover several of those constants and considerations,

such as ad specs, deadlines, quality control, and version control. Sometimes just

paying attention to the steps you are taking in a project can help you better prepare

for, and save time on, future projects.

Chapter 3: Designing Banner Ads

Designing banner ads may seem very simple on the surface, but there are things to

know before jumping right into Photoshop. For example, do you know the goal of

the campaign? How well do you know your client on a business level? A personal

level? How well do you know the audience and what they are interested in? Now

figure file size constraints and animation time limits into the mix and there’s a bit

more of a challenge. In this chapter, I share some insight I’ve received from some of

the best art directors in the industry and show how to handle these questions and

potential production speed bumps while you design.

Chapter 4: Preparing and Building Ads

The next natural step after designing banner ads is to prepare and build them. As

with most of the chapters, the title of this one says it all. I start off talking about

planning your ad by thinking ahead to issues like how interactions will work and if

your animations will be tweened, scripted, or use a combination of both. Moving on

from planning, I cover setting up and naming a typical advertising Flash file. Next

 xix

in this chapter is a section on cutting images to be used in your banner followed

by sections on linking out from your work, using ActionScript to save development

time, and building to internal standards within your team and company. You’ll also

find some information on Flash’s bandwidth profiler and how you can (and should)

use it on every banner ad you create. After your Flash file is built and you’ve pub-

lished your swf, you’ll need some sort of wrapper to contain it, so I cover that as

well as a couple of potential issues in the sections titled “HTML/JavaScript” and

 “Default Images.” Finally, the chapter ends just as the banner project itself would—

with quality control.

Chapter 5: Forms and Data in Ads

Some projects will require you to include a form in your ads. That form may be for

finding and booking a flight and hotel, it may be for configuring the color and trim

level of a car, or it may be for any number of other tasks you would like the user to

complete. Regardless of the specific function of an individual form, there are things

to know and keep in mind when building them into your ads. Some of those items,

such as variable names and possible values or where the form will actually submit

its information, are very obvious when you think of forms in general. Other items,

however, such as the amount of file size consumed by a Flash comboBox compo-

nent, are less apparent on the surface but just as important. In this chapter, I not

only talk about the common form functions, but I also give some ideas on keeping

the Flash components from bloating your file size.

Chapter 6: File Optimization

One of the challenges I often come across while working on an advertising cam-

paign is file size restriction on banner ads. While I talk about tips to cut file size on

forms in the last chapter, this chapter will cover more areas where file optimization

is possible (and recommended). Since your banners will almost always need to

be under a given file size (usually 25–30k), it’s good to know where you can trim

the virtual fat. However, file optimization doesn’t only lend itself to banner ads. It’s

also a good idea to keep the size of your microsite files as low as possible. The tips,

tricks, and things to keep in mind that are in this chapter will help lower the final

size of your swf files.

Introduction

xx Introduction

Chapter 7: Third-party Rich-media Technologies

There are companies out there that specialize in finding and providing ways for

 advertisers to push way beyond standard 30k banners. The technologies they have

in place allow developers to create ads that are far more inviting, engaging, and

generally have a much higher “wow” factor to them. From taking over an entire

page (with users’ permission of course) to playing a video in a banner to creating

the equivalent of what I like to call a “micro-microsite,” these technologies are

where to turn when you just can’t say what you need to say in a 30k Flash banner.

Chapter 8: Trafficking and Tracking Your Ads

Even though you might be finished building a round of banners, that doesn’t mean

the project is complete. After your ads are built, checked for quality control, and

approved by everyone who needs to approve them, they need to be trafficked

out to the Internet. This chapter covers the general steps involved in making that

happen as well as what’s involved with tracking their performance. If you’re new to

online advertising, I also introduce some terms in this chapter such as impressions,

interactions, clicks, and conversions, and what the differences are between them.

Additionally, you’ll learn about determining the different costs associated with your

ads and how to optimize the entire campaign.

Chapter 9: Designing Microsites

When people think of online advertising, they generally only think of pop-up ads

and banners they’ve seen on the top or side of a website they’ve visited. While ban-

ner ads do encompass the general meaning of advertising, there’s another form of

advertising online that gets by under a different name: microsites. In this chapter,

I talk about concepts/designs for microsites and some things to consider while

you’re in this step of a project.

Chapter 10: Preparing and Building Microsites

This chapter shares a few similarities with Chapter 4, “Preparing and Building Ads.”

For example, you still need to have a good plan in place before building and you

still need to have as many assets in place as possible before you actually need

them. However, there are also plenty of differences when it comes to building a

microsite as opposed to building a round of banners. For one thing, you’ll need to

 xxi

have a different backup plan in case your viewer either has an older version of Flash

Player or doesn’t have it installed at all. Another big difference is the amount of

user information you can collect (if users are willing to share it), and how you’ll col-

lect and subsequently store that information.

Chapter 11: Driving Traffic to Your Microsite

You’ve just finished building and launching a microsite for your client and you need

to somehow let people know it’s out there. In this chapter, I discuss some of the

important steps to take in not only letting people know about your microsite, but

getting them there as well. From the banners that may accompany the microsite to

purchasing predefined keywords in search engines to kicking off a viral marketing

campaign by getting the buzz started, there are many ways to inform potential visi-

tors of the new site and to get them talking about it as well.

Chapter 12: Advertising Examples

In this chapter, I show examples of actual client work in which I’ve been involved.

For each example, there are screenshots of the work, and I explain just what the

banner or microsite in question does. These examples should not be confused with

case studies, but looking over them should give you some idea of the possibilities

(but definitely not the limits) of using Flash to create your online advertising.

Chapter 13: Snippets and Classes

Just as the title of this chapter suggests, this is where you can find reusable code

in the form of snippets and classes. For each piece I explain what happens from a

user’s perspective, then I show the code, and then I explain what is happening in

the code. All of the code in this chapter has been used in actual projects and can be

found on the book’s accompanying website located at http://www.flashadbook.com.

Introduction

This page intentionally left blank

1

CCHAPTERHAPTER

Flash Advertising Quick Start

With the lines between the computer desktop, the Internet, and the television blur-

ring more and more every day, it has become increasingly important to give users

better, more intriguing experiences in everything they do online, including viewing

 advertising. Whether it’s a small ad with some fun animation, a larger rich-media ad

with interactive video, or a full microsite for a product or service, people want to be

wowed and your clients want you to wow them.

Flash has matured and grown into a powerful tool over the years, but there are still

a lot of ads and sites out there giving some people a bad impression and it’s up to

us to change their minds. So how do we change the minds of these people and wow

them at the same time? We can start by following a few simple design rules, antici-

pating interaction and animation issues, targeting the correct audience, and steer-

ing away from the things we find annoying or wouldn’t want to see ourselves.

As Flash has grown, so has online advertising. There was a time when you had to

choose between a static jpg or an animated gif file for your banners. Not anymore.

The option to use Flash has enabled interactive advertising agencies, as well as

individual developers, to create much more engaging and entertaining ads. It has

also opened up a channel for more interactivity and the ability to gather user infor-

mation from within an ad itself (see Chapter 5).

Flash Advertising Quick Start

11

2 1. Flash Advertising Quick Start

In this first chapter I’m going to talk about why you should use Flash for advertising

and several of the choices you have in doing so. The sections contained within this

chapter are:

 • Why Use Flash for Advertising?

 • Ad Formats

 • Interactive Standards and the IAB

 • Flash’s Built-in Advertising Templates

 • Microsites

 • Mobile Devices

 • Place, Design, Build, and Launch

One more thing before we get started. Let’s make sure you have the software you’ll

need to move on (Figure 1.1). If you don’t have Flash installed, you can get a trial

version at http://www.adobe.com/products/flash/. The other main tool I’ll be

 using in this book is Photoshop, which you can get a trial version of at http://www

.adobe.com/products/photoshop/.

Okay, now that you’ve got your tools, let’s continue.

Figure 1.1

Your tools for this book—Flash and Photoshop.

Why Use Flash for Advertising?

I’ll be completely honest here and say that Flash isn’t going to be the best option to

achieve your goals 100% of the time. As with any technology, you should avoid using

Flash just for the sake of using Flash. Instead, you should assess the project at hand

3Why Use Flash for Advertising?

Inside the Industry

 “The true purpose of any online ad unit is to communicate the biggest

message in the smallest amount of real estate.”

— Randy Bradshaw, Principal, Click Here, Inc.

to decide if Flash is the best option to go with. That said, this is a book about creating

Flash advertising, so we’ll go ahead and make the assumption your work calls for it.

 Banners

So why use Flash for advertising? Why use it to create banner ads for your client’s

service or product? The short answer: Brand interaction via features not available

with other options. With a static jpg or even an animated gif banner, you might have

a good enough picture to get a user to click and go to the intended destination,

but that’s pretty much all you have—a picture. With Flash, you have the ability to

engage your audience with your client’s brand. You can use smooth animation and

interaction to tell a story. You can build an ad with tabs for different “pages” within

your banner. You can build a banner that gives users even more interactive ele-

ments once they interact with it the first time. You can even show an actual televi-

sion commercial or other video inside your ad.

Let’s look at an automobile manufacturer as an example. Your client, XYZ Motors,

wants you to build a round of online advertisements that will allow the end user

to begin choosing options on their newest model car. They want people to see the

 ad, make choices from dropdown menus about what color and trim package they

would like on the car, submit the form, and be taken to the “build your own” sec-

tion of the manufacturer’s website where the selections made in the banner will

carry over. By allowing users to fill out the form in the banner, you’ve allowed them

to complete a portion of the task before they even get to the site.

So why wouldn’t you just build the banner out with HTML? That would be a great

option if we were only talking about a form and two, maybe three, frames of images

and text. However, your client wants more than that. They want to see several differ-

ent images of the car smoothly cross-fade from one to the next on user interaction.

They also want to offer users an option to watch their new TV spot directly inside the

banners. Now, if you can pull all of that off without the use of Flash, I’d be interest-

ed in meeting you and hearing how you did it.

4 1. Flash Advertising Quick Start

 Microsites

So what about microsites? In addition to the banners, XYZ Motors wants to launch

a site specifically for the new car. They would like to see an interactive 360-degree

view of the car, an image gallery page, a video page, maybe a driving game fea-

turing the new car, and several other features. This is of course in addition to the

information you would expect to find on a car site like a specs page or the manufac-

turer’s suggested retail price (MSRP) of the car. They would also like to see a nice,

fresh, creative approach to page transitions. Now you could probably accomplish

some of those tasks with anything like Ruby, PHP, .NET, or several others, but in or-

der to give them the full experience they seem to be looking for, I’d suggest design-

ing and building them a Flash microsite. I’ll talk a little more about microsites later

on, but for now let’s get back to the banner ads.

While covering the banner example for XYZ Motors I mentioned forms, videos,

 animation, and a few other things that need to be considered. What I haven’t talked

about yet is the different ad formats that are available for you to choose from. Let’s

get to that now.

 Ad Formats

When it comes to creating online banner ads, you have options for the format in

which you will build them and the top-level, bird’s eye view of those options are

standard Flash and rich media.

Standard Flash

I’m going to stick with XYZ Motors for now and we’re going to tone down their ads

to simple animations with nothing more than a couple of images and some text.

Since we aren’t going to include any high-profile extras like video, this is a good

time to use what’s called a standard Flash ad. Standard ads are the most basic of

all the Flash ads you’ll build. They’re simple, straightforward, and get the message

across. Your standard Flash ads will usually consist of a small animation, a couple

of lines of copy with a call to action such as “click here to visit our site,” and one or

more clickable areas. These ads are usually constrained to a file size limitation of

20–30k and are served by either an ad serving company or directly by the site on

which the ad is running (see more on ad serving companies and site serving ads in

Chapter 8). Keep in mind that while some sites allow you to utilize more file size,

standard banners are not the place to try to squeeze in anything like audio or video.

5Ad Formats

Rich Media

If you’re looking to have audio or video in your ads, or if you feel you’ll need more

than the 20–30k file size allowed by standard Flash ads, you’ll need to move them

over to a third-party rich-media company (I talk about several of them in Chapter 7).

These companies have technologies in place that allow you to have much more file

size, interactivity, video, audio, etc. They allow you to build a much richer experi-

ence. In addition to the features I’ve just mentioned, you’ll need the rich-media

companies to serve your banners if you plan on creating anything like expandable

or floating ad units. Again, I’ll talk more about those later in the book but as a quick

explanation, both of those banners do exactly what you’d think: Expandable ads

expand to a larger size when a user rolls over or clicks on them and floating ads

“float” over the main content of the page.

Cost Can Be an Issue

 ALERT When you are planning and working on a banner campaign,

always remember that choosing rich-media banners over stan-

dard Flash ads can cost more. However, also remember that the

added benefits of rich-media banners may very well be worth the

extra expense.

So why wouldn’t I design my ads to run with a rich-media company every single

time? I mean, if I’m going to be constrained to a file size, I’d rather be constrained

to 100k than 30k. How about the ability to have additional loads in the form of Flash

files, images, XML, or several other options? Why give that up? What about the

 video I want to stream into my ads? The answer is cost, my friend, cost. When you

upsize that meal at the drive-thru or when you buy the car with the larger engine,

you expect to pay more because you get more, right? The same concept applies

here. The difference is that you aren’t spending your own money now; you’re spend-

ing your client’s money. Another concept that fits perfectly is the concept of not

using a technology just for the sake of using that technology. Pitch your ideas to

your client and let them know which ones will require them to “upsize their order.”

They will let you know which one they are happy with as well as which one they feel

comfortable spending their money on.

6 1. Flash Advertising Quick Start

 Interactive Standards and the Interactive Advertising Bureau

Since we just got finished talking about ad formats and since I mentioned a usual

file size limit of 20–30k, let’s spend a minute on online advertising standards. The

 Interactive Advertising Bureau (IAB) is an association whose goals are not only to

campaign for interactive marketing and advertising, but also to prove its effective-

ness. In addition, they also lead the charge to get the industry organized with a

voluntary set of standards and guidelines for interactive marketing.

The voluntary guidelines you’ll find from the IAB are those that most sites and

 agencies currently follow. They include, but are not limited to, ad units, emails, pop-

ups, and rich media. By familiarizing yourself with their voluntary guidelines and

standards, you’ll know valuable information pertaining to important topics dealing

with your work. Topics like ad formats (width and height), recommended file sizes,

 animation lengths, and audio/video controls.

Figure 1.2

The Interactive Advertising Bureau’s website.

7Flash’s Built-in Advertising Templates

I’ll go into a bit more

information about the

 IAB in Chapter 2. You can

also find more informa-

tion and IAB guidelines

on everything from ad

units to rich media to

email to pop-ups on

their website located

at http://www.iab.net

 (Figure 1.2).

Flash’s Built-in Advertising Templates

A quick word on the advertising templates that come packaged with Flash (Figure

1.3). While I personally don’t use them, it’s worth mentioning that they are built

at some of the industry standard sizes as far as height and width. By starting your

 project with one of these, you’ll save yourself the step of resizing the stage. There

isn’t a whole lot to them, but you can use them as a starting point or you can modify

them to suit your needs and save your own custom templates. For example, you

might start a new file from the 300 × 250 advertising template, change the frame

rate from 12 frames per second to 18 frames per second, and bump the player

version up to something more current. Once you have made the modifications you

need and you are satisfied with the properties of your new file, select “Save as Tem-

plate” from the File menu, name your file, and you’ve got a new custom template

made for you, by you.

Author’s Tip

The Bandwidth Profiler in Flash is a very useful resource

when it comes to keeping your banners within the file size

allowed by your specs. It also comes in quite handy for see-

ing how your microsites will download and play with various

settings, such as a user with a 56k dial-up modem versus a

user with DSL. To get to the Bandwidth Profiler, simply test

your Flash movie by pressing both the Ctrl button and the

Enter button on your keyboard. Once your test movie is play-

ing, press both the Ctrl button and the B button to toggle the

Bandwidth Profiler on and off. I’ll get a little more in depth

with the Bandwidth Profiler in Chapters 4 and 10.

8 1. Flash Advertising Quick Start

Figure 1.3

Flash’s advertising templates.

Microsites

What exactly is a microsite? Well, it’s smaller than a full website but bigger than a

banner, and it can be anything from pure information to a full multimedia experi-

ence. With microsites you can concentrate on that one specific product or idea that

your client wants to push. Since it is being built for that single product, the site can

have its own look and feel that doesn’t necessarily have to match that of the client’s

main website. A microsite can be designed to portray how elegant the product is.

It can be built to give users a feel for how fun the product is. It can have its own

soundtrack so users can hear how exciting the product is. The possibilities are lim-

ited only by your creativity, your client’s approval, and the end goal of the campaign.

 Design to the Campaign

Keep in mind that it’s a good idea to tie the design of your microsite in with any

 other advertising that is going on in the campaign at the same time. This means

that you would want to take a look at something like the television commercials or

9

 print ads and you would want to use some design elements from them. The new

XYZ Motors car is a very nice one. It’s extremely elegant, refined, and generally

top of the line in luxury and comfort, and it’s being advertised as such offline. So

let’s take that slick, expensive-looking background from the magazine ad and

 incorporate it into the site. And let’s take the smooth, elegant, classical track from

the television commercial to use as background music on the site.

Microsites

Inside the Industry

 It’s very common to use materials online that were originally created for

offline production. Essentially anything that was created for print, tele-

vision, radio, or outdoors (billboards, etc.) can be used in one form or

another in your online campaign efforts.

A lot of times when you build a microsite, you’ll also build banners to go with it.

You’ve probably guessed that the banners are intended to drive traffic to the micro-

site and that’s exactly what they’ll do. In addition to the banners, there should also

be a piece on the client’s main website that promotes and drives even more traffic

to the new microsite.

Microsites are usually very fun projects and you generally have more creative free-

dom with them than you do with banners. This is the place where you’ll have more

opportunities to script some new effects or try out that cool new feature that’s only

available in a newer version of Flash.

Author’s Tip

If you know you are going to be working on a microsite for a client, try to get ap-

proval to publish out to the latest version of the Flash Player. If they won’t agree to

that, ask for the next version down. Being able to publish out to the latest version

is beneficial for all parties involved: Creative departments get to design with new

features in mind, Flash programmers get to work directly with those new features,

and clients get cutting-edge microsites that people talk about and pass around

to their friends. In addition to those benefits, you’ll be helping the penetration

rates of that version of the Flash Player. The quicker the penetration rates rise, the

easier it is to convince a client that it’s safe to use.

10 1. Flash Advertising Quick Start

 Mobile Devices

There are several ways to approach mobile devices: graphics, text, and Java, and

then there’s Flash Player for Pocket PC and Flash Lite (Figure 1.4). An example of

a mobile device that supports Flash Player for Pocket PC is one that runs on Win-

dows Mobile, and at the time of writing this, that player was at version 7. Flash Lite

is a smaller, more compact version of the Flash Player that is built specifically for

mobile devices. At the time of this writing, Flash Lite was at version 2.1 and had a

Flash 7 code base with support for ActionScript 2.0.

Figure 1.4

A few of Flash’s mobile device templates.

A Growing Medium

The number of mobile devices using one version of the Flash Player or the other

is growing at an incredible rate and that means that there is another great medium

out there to utilize. With applications ranging from games to maps to animations

to magazines on cell phones, there are plenty of opportunities to use it. Design a

game around your client’s brand or build a map application that discretely plots the

11

locations of their storefronts while users are looking for directions. Imagine if a user

was looking for directions to your client’s competition, your application made him or

her change his or her mind, and he or she showed up at your client’s door instead.

Who’s the hero now?

 Features

So how about some of the supported features of these mobile Flash Players? Let’s

briefly look at a few for Flash Lite. The dynamic XML data could provide many pos-

sibilities by way of updating the content in your ads on the fly. You might use the

dynamic XML data to change content like sales prices being offered by XYZ Motors

or the available dates of those prices. In addition to the dynamic XML data, you have

media support for dynamic images, video, and sound. This means that not only

could you change the offered price of a car, but you could change the picture of the

car itself. Another nice feature is persistent data that can be used to store informa-

tion. The information you choose to store can be many things, but one idea would

be to keep track of high scores in a game that you built and branded for a client. If

users have a retrievable list of past scores, they are more likely to keep playing the

game to try to beat their previous records. And the more they play the game, the

more they are exposed to your client’s brand. All of these features are possible be-

cause of the fact that you can program with support for ActionScript 2.0 in the Flash

7 code base. That little fact also makes building Flash for mobile devices very close

to building Flash for the Web.

Considerations

There are some considerations to keep in mind while moving forward with mobile

 advertising. For example, unless things have changed in the United States since

the time I’m sitting here writing this, mobile providers have not yet gotten fully in

sync with each other on their technologies or any real mobile standards. While the

 mobile market in general is expanding more and more every day, it seems to be

growing in segregated pockets. There are several small bubbles building pressure

and about to burst as opposed to one big one. Since that is the case, your ads and

 applications may be limited to fewer users right now than is potentially possible

in the near future. However, I believe these issues will correct themselves and I

believe it will happen fairly soon (if it hasn’t already happened by the time you’re

reading this). Once the providers agree to all get on board with the same technolo-

gies, and once data transfer finally gets an equal share of the mobile bandwidth pie,

the options will open up to near, if not matching, those of online advertising.

Mobile Devices

12 1. Flash Advertising Quick Start

There’s more information about Flash Lite available for you to read on Adobe’s

website at http://www.adobe.com/products/flashlite/. You can also get informa-

tion about Flash Player for Pocket PC at http://www.adobe.com/products/

flashplayer_pocketpc/.

Place, Design, Build, and Launch

The time has come to start talking about projects and their life cycles. There are

several differences in both the process and the thinking when it comes to banners

and microsites. However, as you’ll soon find out, there are also similarities between

the two. Let’s do a quick walkthrough to give you an idea.

Place

By the time an ad makes it to the Flash developer’s desk, there are a number of

things that have already taken place. For one, the media has already been pur-

chased. When the media is purchased, this means that the list of banner sizes and

the sites that will show them have been chosen. However, don’t be thrown off by

my deceptively simple explanation of that step because choosing the sites to show

your ads on takes a great deal of careful thought, consideration, and work. You

must think about what the message is that you are trying to get across and who you

want to get it across to. In other words, find your target audience and decide how

best to give them the information that you want them to have. Know what they are

reading online and get your ads running right beside that content. Don’t just place

that ad for XYZ Motors on any random page of a random website; place it in the

automotive section of a newspaper’s website or maybe on the search results page

of an automobile research site.

 Design

Another step that has already taken place is the creative. While every step of the

process is important and while an ad can’t come to life without development and

 programming, it is often said that “creative is king” and that’s a hard point to try to

argue against. If you think about it for a minute, what makes you talk about that tele-

vision commercial you saw the other night? What made you laugh at that billboard

on the side of the road the other day? And what makes you point your friends and

coworkers to that website you think is so cool? Aside from the occasional answer

of “I like the functions, methods, and classes that must have been used to make

that site work,” most answers are going to tie right back into creative. Just like the

 media buy, a lot of thought has to go into the creative step of the process. A couple

13

of issues to consider are branding and messaging. Again, what are you trying to say

and who are you saying it to? Are you selling a new car with all the technical bells

and whistles for listening to music or are you selling a luxury car built for comfort?

Obviously one of those is going to need to be targeted toward a younger, “hipper”

crowd and the other toward a more refined and “experienced” audience. When it

comes to targeting your audience, the main difference between the media buy and

the creative is that with the media buy you research to find out where they are. With

the creative, you have to know what will attract their senses to your work.

Place, Design, Build, and Launch

 ALERT When working on a design for a campaign, you should always be

aware of, and adhere to, your client’s brand style guide.

When thinking about branding, find out if your client has a brand style guide. These

style guides will determine certain aspects of the design such as color pallets and

 fonts. If your client does have one, you should follow it perfectly and without fault.

There are many more things to talk about in the creative step and I’ll go more in

depth in Chapters 3 and 9.

Build

Once the creative step is complete, it’s time to move on to development. I don’t

mind saying that this is my favorite step because this is where the Flash developer

gets to breathe life into a design. This is where the creative team gets to see their

visions realized. This is where the magic behind the scenes happens, and this is the

first place that people can watch the work in moving, functioning action and say,

“Wow, that’s awesome!”

Whether it’s an ad or a microsite, challenge yourself if you are the Flash developer

on the project. I remember a set of banners I was working on that started out show-

ing a solid black stage with the first message to users in white text. After giving

users several seconds to read the text, a diagonal line of colorful dots swept across

the stage from left to right. While dots wiped the first message away as they swept,

they revealed an image, a client logo, and the call to action in its place. Well, I think I

had about 15 different sizes of banners with 3 different messages in each size (quick

math puts that at 45 banners) and that’s a lot of repetitive work that would take a

14 1. Flash Advertising Quick Start

good bit of time to complete. Being not unlike most

people I know, I wanted to simplify the large amount

of tedious work ahead of me, so I challenged myself

a little. Instead of animating each individual banner,

I spent a little time figuring out and writing code

that I could put into a class. In the end, my class

used the Flash drawing Application Programming

Interface (API) to draw all of the colorful dots and

the mask that revealed the final frame. By using

the stage height, I was able to determine how many

dots I needed to draw to have a complete line from

top to bottom. Once I had those all drawn in, I called

a function in the class to run the animation. After all

of the code was written, I only needed to change out

the message and picture in each banner. No lining

up dots, no tweening, no mind-numbing repetitions.

So what’s my point here? I saved a great amount

of time on the back of the project just by spending

a little bit up front. Not only that, but a few weeks

later, more rounds of those banners were needed

and we were able to knock them all out very quickly

by using that same class.

So when I say challenge yourself, I mean it in more

than one way. There’s the obvious way of challenging yourself to write code and do

things in Flash you’ve never done before, and then there’s the challenge of work-

ing less. Now don’t take that the wrong way and start surfing the Web in place of

completing your projects, because that may get you in a situation where you aren’t

working at all. Instead, use the old adage, “Work smarter, not harder.”

 Launch

Okay, the name of this section is “Place, Design, Build, and Launch.” There’s only

one of those left to talk about and I’m going to make it much shorter. The process

of launching your work is going to be different between banners and microsites.

Once banners have been through all of the necessary testing and debugging, the

approved work is sent to the ad servers or sites and set up to run in the spots men-

tioned at the beginning of this section. As for the microsite you’ve been working on

for any extended amount of time, the step of pushing it to a live server can be an

Author’s Tip

While I talk about classes in this

book (and even dedicated most

of Chapter 13 to them), I’d like

to point out that the number of

advantages to building classes

for banners can vary greatly

from project to project. This is

because each round of banners

will usually be so different from

the round before it that you

may create a class that ends up

being used no more than one

time. However, that one time

may apply to a round of 30 ban-

ners. My suggestion is to look at

how much time can be saved in

the individual project and also

at how much the class may be

utilized in future projects.

15

exciting one. Not only have you reached the final

milestone, but now you get to proudly show your

completed work to your friends, family, and anyone

who reads your blog or the forums on which you

post. I personally like the anticipation of waiting to

see how the people I don’t know are going to react

to the work because it’s those people that are going

to be the most honest about what they think.

Conclusion

To wrap up the first chapter, let’s do a quick once

over on what was talked about. The first topic was about blurring the lines that sep-

arate the Internet from other mediums like the desktop and television. The blur-

ring of those lines moves us right into the next topic on why you should use Flash

for advertising. In a nutshell, a good, compelling experience needs to be created

and Flash is just the tool for the job. I also touched on different ad formats like

standard banners and rich- media ads. Different sites and ad servers will give you

small variations on specs for your ads, but there are general standards and guide-

lines that are recommended by the IAB. While I was on the topic of standards, I

went very briefly into the advertising templates that come installed with Flash.

After that, we talked about microsites—what they are, the purpose they serve, and

how they can provide opportunity to push some limits. A short talk about mobile

devices followed, and then I went on to a quick touch on the points involved in the

life of a project. Coming up in Chapter 2, “Constants and Considerations,” I’ll go a

little deeper into specs and IAB standards. I’ll also be talking about quality control

and version control and why they are both so important to you and your sanity.

Conclusion

Author’s Tip

After you have launched a mi-

crosite, be sure to share it with

as many people as you can. Not

only does it increase the traf-

fic to the site, but it helps raise

awareness of your client’s brand

and product.

This page intentionally left blank

17

Constants and Considerations

As with most things in life and programming, there are certain aspects of creat-

ing Flash advertising that remain unchanged as you move from project to project.

While planning and working on an ad campaign or microsite, you should consider

how these constants will affect your workflow. For example, you will always have to

follow specs for your ads and you will always have to meet your deadlines (or come

up with an explanation for your client as to why their microsite won’t be launching at

the same time as the product). A couple of other considerations are quality control

and version control—both of which are very important but sometimes overlooked.

Constants and Considerations

22CCHAPTERHAPTER

 ALERT If you aren’t using any kind of version control, I highly recom-

mend you start immediately. The simple practice of using version

control has been known, on several occasions, to actually save

a project that would have otherwise been lost to problems like

accidental deletion and/or miscommunication between devel-

opers. Being able to save these projects can also save you from

potentially losing your client as well.

18 2. Constants and Considerations

Before we move on to talking about the constants and considerations involved with

creating Flash advertising, here’s a quick overview of the sections you’ll find within

this chapter:

 • Ad Specs

 • Deadlines

 • Quality Control

 • Version Control

 Ad Specs

Rules, rules, rules. Everywhere you turn there are rules telling you what you can

and can’t do and ad banners are no exception to that rule. Almost every major site

your ads may run on has a section where you can get their specs. If you can’t find a

link that takes you to their advertising area, simply contact the site to let them know

you need their advertising specs and there should

be no problem obtaining them. The information

you are after are things like the maximum file size

your ad can be when published to the final .swf, the

amount of timing you are allowed to run animation,

and the number of times your banner can loop be-

fore finally coming to a stop. Another thing to watch

out for is a maximum frame rate. While most sites

may not have the maximum frame rate listed in

their specs, some do, and your work can very easily

get kicked back to you if you exceed it.

Keep It Down (Your File Size That Is)

The sites that your ads will run on don’t want to bog

down their readers’ bandwidth with banners that

exceed the file size in their specs and you don’t

want the banners to take too long to start playing. If

you built an ad that was 500k, your audience would

have to wait for it to load before they ever got to see

the product. Sure, with that much file size you’d

probably have a pretty amazing banner, but your end goal to intrigue users and get

Author’s Tip

The maximum frame rate at

which site specs will allow your

work to run can vary from site,

but it has been an extremely

rare case that I’ve seen a site

allow anything over 18 frames

per second (fps). However, it

has also been very rare that

I’ve seen any sites set their

maximum below 18 (I once ran

across a site that would allow

no more than 12 fps). With that

in mind, I would try to avoid

building anything with a frame

rate higher than 18.

19Ad Specs

them to interact with your ad could be lost in all of it. As I mentioned in Chapter 1,

most sites usually stick with a maximum file size of 20–30k. There are, of course,

exceptions where some sites will accept a higher file size like 50k. Another fairly

consistent spec is timing and looping. A lot of sites prefer to set a time limit of 15 or

30 seconds with a maximum of three loops.

More Interactive Advertising Bureau

Since we’re on the subject of specs, let’s expand on the information about the IAB

from Chapter 1. As I was mentioning before, the IAB has voluntary guidelines for

what they call “ Interactive Marketing Unit (IMU) Ad Formats.” These guidelines are

updated as needed after the IAB’s Ad Unit Task Force meets on a biannual basis.

Table 2.1 shows the sizes in the guidelines at the time of writing this book.

Table 2.1

Example of IAB Voluntary Guidelines for Interactive Marketing Unit Sizes

 Banners and Buttons Rectangles and Pop-ups Skyscrapers

468 × 60 (full banner) 300 × 250 (medium rectangle) 160 × 600 (wide skyscraper)

234 × 60 (half banner) 250 × 250 (square pop-up) 120 × 600 (skyscraper)

88 × 31 (microbar) 240 × 400 (vertical rectangle) 300 × 600 (half-page ad)

120 × 90 (button 1) 336 × 280 (large rectangle)

120 × 60 (button 2) 180 × 150 (rectangle)

120 × 240 (vertical banner)

125 × 125 (square button)

728 × 90 (leader board)

Keep in mind that the sizes listed in Table 2.1 may have changed by the time you

are reading this. To make sure you have the most up-to-date guidelines, visit the

 IAB’s Standards and Guidelines page at http://www.iab.net/standards/ and look for

the link to Ad Unit Guidelines. While you are there, be sure to also take a quick look

around at the other guidelines for more advertising options like Pop-up Guidelines,

Rich-media Guidelines, or Broadband Ad Creative Guidelines. The later is where

you’ll find information on running audio and video in your banners.

20 2. Constants and Considerations

Deadlines

So let’s jump right in to talking about deadlines and

their importance because they can make or break

your client list. When a project is set up and your

client “signs off” on you doing the job for them,

there will be a time associated with having that work

finished and pushed live on the Internet. If you are

not the actual person that agreed to and set this

deadline, then that person most likely has a pretty

good idea of how long it will take you to create the

work and you’ll be held to that date. Now I won’t

candy coat this issue by saying that there are never

going to be any problems or stress with tight dead-

lines. Quite frankly, most deadlines will be at least

a little bit tight and there will be times when you’ll

need to work some late hours in order to meet

those deadlines. So how big of a deal is it when you

start missing your deadlines? Well, on top of the

potential embarrassment of not delivering the work

when you promised the client you would, you could

be facing any one of several levels of consequences

from a small warning all the way up to losing your client. The severity of the conse-

quences may depend on several factors like the policies of your place of employ-

ment or how many deadlines you’ve missed in a given amount of time. Just try to

remember that deadlines are an extremely important part of a project and they

should be taken as such.

Aim Ahead of Schedule

One suggestion I would like to make is to aim ahead of your deadline. If you have

four weeks to complete a microsite, try to have it finished in three. If you have three

days to build a round of banners, see if you can knock them out in one and a half.

If you are the Flash developer on the project, your first deadline will most likely

be to get your project handed over to quality control. The quicker you can get it to

them, the less crunched they are on time and the better they can do their job. The

next deadline you will probably face is the deadline to have the bugs that are found

by quality control worked out. This deadline usually ties right in with the launch or

Author’s Tip

Your rest and energy levels

can play a key role in meeting

deadlines. There comes a point

in a long, long work day that

your productivity level actually

drops due to fatigue. It may

happen after 12 hours or it may

happen after 18 hours, but that

drop in productivity can have

you working even longer into

the night without accomplish-

ing anything and possibly even

creating problems in your code.

Sometimes the best thing to

do is walk away, go home to get

some rest, and try again the

next day.

21

 campaign start date. Imagine if you turned the project over to quality control two

days early, they find a few issues, report them to you, and you fix them right away.

Now you look again at your final deadline, and yes, you’ve just completed the proj-

ect three full days ahead of schedule. What client isn’t going to want the reassuring

comfort that you and your team have everything so completely under control? You

are the hero again and all is well in the world.

 ALERT Remember that other than quality control, you are usually the

last to have your hands in a project before it goes live to the

world. Since that is the case, your deadlines are extremely im-

portant. Don’t miss them.

Creeping Scope

Another good reason to stay ahead of the game when it comes to your deadlines

is scope creep. The best way I can describe this phenomenon is the same as it has

been explained to me in the past: Scope creep is the inevitable process in which

the client or stakeholder, after agreeing to initial deliverables, discovers what those

deliverables truly need to be. This process usually occurs gradually over time and

only becomes evident once the project is nearing completion.

If it’s not managed well, scope creep can very easily translate into many extra work

hours. However, by expecting it to happen, you can be prepared to watch for the

signs ahead of time.

You’re Not Alone

Since we’ve talked about your deadlines as the Flash developer, let’s talk about

another deadline: The deadline to have the layouts and artwork delivered to you.

After all, how can you start building a banner or site if you don’t have the needed

 assets? If someone other than yourself is doing the creative/art side of the project,

they should be given a date by which they need to have these assets to you. The

probability of you making your deadline is partially dependent on them making

theirs. However, you should keep in mind that some companies may choose to uti-

lize different approaches to these particular deadlines. For example, your employer

may have a bit of a loose schedule in this area to allow the timelines of different

Deadlines

22 2. Constants and Considerations

disciplines to overlap. This would mean that while layouts are due to you by a cer-

tain date, those layouts may only include select pages of a microsite. This method

allows the creative talent to keep working on the design of the underlying areas

while you start developing the main functionality of the site. The result is a site that

has had more attention given to the details and more details given to the site. And

we all know the old saying, “It’s all in the details.”

Keep in Touch

While working with these overlapping work times, it is extremely important that you

stay in close contact with the creative person. As you’ll quickly learn, this is because

parts of the site that have not yet been designed may be affected by the func-

tionality you are programming into the main area of the site or vice versa. While

developing the main functionality, let the creative person know what you are doing

as you are doing it. Let them know exactly what your functions/methods/ classes

will do, and ask them to explain the underlying sections that could be affected by

that functionality. What you are trying to avoid here is spending a couple of hours

coding only to find out that you need to change it in such a way that you are nearly

starting over.

 Quality Control

Before I start with this section, I’d like to offer a quick bit of clarification: Quality

control may go by many other names such as quality assurance or quality testing.

However, for consistency, I will always refer to it as quality control within this book.

And now that you’re aware of that piece of information, let’s talk about it.

Much like version control (which I’ll talk about next in this chapter), quality control

is a step that some developers (and even companies) choose to skip for some rea-

son. The unfortunate choice that is sometimes made against quality control is one

that can cost everyone involved and it can cost them dearly. Imagine if you created

a piece of work and didn’t test it even a single time. You’re probably good enough

that that one piece of work would be fine and so would the next ten. However, what

if you hadn’t had your morning coffee yet? Or what if you were at the end of an 18-

hour work day? You might just miss something and end up sending your work to

the client, bugs and all. Now imagine that you did test your work but since you’re so

close to the project, you missed an error and sent it out anyway. The best solution to

all of this is to check your own work and then have someone else check it again.

23

Test Yourself

You should be testing your own work as it pro-

gresses and again after it is complete. Among other

things, this testing is another advantage to aiming

ahead of your deadlines. If you finish up with the

 animation and coding with time to spare, you can

(and always should) test it out before sending it

on to quality control. If you find a bug at this point,

that’s one less you’ll have to fix after you hand it

off (not to mention that you will have helped make

quality control’s job a little easier). The fewer bugs

you pass to quality control and the fewer bugs you

have to fix at the end of the project, the earlier it

can be approved to go live and the quicker everyone

can either go home or move on to the next piece of work. I’ll go into more detail on

quality control as it pertains to banners and microsites individually in their respec-

tive chapters later on in the book. For now though, how about a bit of an overview?

The Reason for Quality Control

So what is the focus of quality control? The answer to that question is in the first

word of the job title itself: quality. The work you do should be held to the highest

standard and quality control is there to help make sure that it is. By making sure

your work stays within the specifications that have been set and by attempting to

actually break anything and everything you create, they are making your work virtu-

ally unbreakable while also making sure it doesn’t get kicked back from the hosting

company or sites on which it will run. You personally benefit from this process as

well, because in the future, you will remember what broke, how it broke, and what

you did to fix it. With this information, you become better and better as a Flash de-

veloper and/or designer because you have the practice that they say makes perfect

and you have made the mistakes from which you can learn. So while doing your ab-

solute best to avoid creating bugs, welcome those that are reported to you as new

opportunities to advance your knowledge even if only a little.

Author’s Tip

It’s always a good idea to test as

you work. Each time you create

a new piece of functionality for

a project; don’t just test that

one piece. Instead, do at least a

quick run through of the proj-

ect to make sure that your new

functionality didn’t break other

pieces or sections.

Quality Control

24 2. Constants and Considerations

You’re Still Not Alone

I also have a piece of information that may help you sleep a little easier at night:

Not all bugs will rest on your shoulders alone. For example, there may be issues

that come up that involve changing something in the original layout of the work.

When these issues arise, be sure to get the creative talent involved with the change.

It is, after all, their design you’ll be altering and it probably shouldn’t be altered

without the knowledge of the original creator of the work. Another example might

be if there is someone else working on the database from which you are pulling in-

formation for a microsite. If something needs to be changed that involves the code

that person wrote, they obviously need to be informed and involved in the change.

Speaking of changes, what happens when you make a change and you later find out

that you need to undo that change? Well, hopefully you’ve got some kind of version

control system in place.

Version Control

Have you ever realized that you hadn’t saved in quite a while just as the program

you’re working in was crashing? Have you ever worked on a file for several days or

even weeks? Have you ever had one of those files get corrupted or accidentally

deleted? How about a coworker? Have you ever opened a file to find that a coworker

had changed almost everything in the file and saved it before realizing they had the

wrong file open? How about you? Have you ever accidentally messed up any files

in any way? Were you able to get your files back and roll them back to the condition

they were in when they worked oh so well? If you answered no to that last question

and yes to any of the others, then you, my friend, need to get some sort of version

control in place and you need to get it in place as soon as possible. Once you have it

in place, make sure that your entire team is using it as well.

Options

When it comes to version control you have many options of both proprietary (such

as Microsoft’s SourceSafe) and free solutions (such as Subversion; Figure 2.1).

Each of them has their individual advantages and disadvantages, but the end goal

to all of them is the same: To save past versions of your work in case you lose the

current version or you need to revert back to an older one. A very basic example of

simple version control would give a file a version number of 1 on its initial creation.

If that file is then modified, the version number is bumped up to 2. The next change

would increment the version number again, and so on.

25

Figure 2.1

The Subversion project: http://subversion.tigris.org.

You may work a little differently with version control depending on the file you’re

actually modifying. For example, if you’re working on an .as file you won’t need

to check-out or lock the file in the versioning system unless you absolutely don’t

want anyone else working on it at the same time. This is because the .as file is, in

essence, a text file that the versioning system should be able to read and decipher

differences. In other words, you and another team member can make modifications

to the same file at the same time. If the other developer finishes theirs and updates

the file in version control before you do, you’ll be notified that there are differences

when you attempt to update the file with yours. Your versioning system should then

show you the differences and allow you to make any changes needed before actu-

ally updating the file. With that said, it’s good practice to keep good communication

between team members and to avoid working on the same file at the same time if

at all possible.

Version Control

26 2. Constants and Considerations

Working with fla files in version control is a little different because fla files are binary

files (as are jpg, png, psd, etc.). Since the versioning system can’t read the code writ-

ten within fla files, it can’t detect the actual differences that may be within them even

though it is able to detect that the files are indeed different. Since that is the case, it

is best to check-out or lock fla files so there is no possibility of other team mem -

bers working on them at the same time as you. Once you are finished making your

changes to a file, update it in the versioning system and release the lock to allow

other developers access to it in case they need to make additional modifications.

 ALERT Always check-in or unlock your files in version control once

you’re finished working on them. Since some version control

solutions won’t let anyone access files except for the person

who has them checked out, it’s important to release the control

of those files in case you leave the office or end up being out

sick the following day. If you leave the files locked, it will make

it more difficult for your team to continue working on them in

your absence.

A Version Control Story

John and Mary work for an interactive advertising agency and they have been

working on a microsite for one of their biggest clients. Things have gone smoothly

throughout the life of the project and they are almost ready to send it to quality

control when John notices a problem during one of his own quality tests. He iso-

lates the issue, notes the steps taken to recreate the problem, and opens the fla

file that he believes actually contains the error. After navigating to the line of code

he suspects as the bad line, he makes his change and publishes the .swf file. Since

it’s the end of the day and John has a flight to catch for an out-of-town vacation, he

saves his work, shuts down his computer, and leaves.

The next morning, Mary passes the project over to quality control as soon as she

gets to work. Within an hour, she starts receiving numerous notifications of bugs in

the site; bugs in areas she thought she had tested the day before. Mary opens the

site in her web browser and starts to navigate to the sections that contain the re-

ported issues, and sure enough, there are a lot of areas that have mysteriously

27

decided to break. Since the final deadline for this project is fast approaching, Mary

feverishly opens the source fla files and starts to search for the cause of each bug.

As she digs through the code in each file, she comes across a couple of possible

culprits and makes changes to those lines. After making each change, Mary tests

the file and finds that the errors still exist. She goes back to the code and, without

undoing her previous changes, she tries other options that only end up creating

more bugs in areas she isn’t currently testing. By the end of the day not only has

Mary not been able to solve the original problem, but more have surfaced in her

attempts. It has gotten late and Mary is tired and frustrated so she decides to call it

a night and try again tomorrow.

The next morning Mary feels rested and refreshed. As she opens the files to take

another run at fixing the bugs, she realizes there is one more thing she didn’t think

of before. She finds her way to the line of code she presumes is causing a problem

and discovers that her new suspicion is correct. She makes the change, publishes

the .swf files and tests for the problem, which is now corrected. However, since Mary

made so many changes to the code yesterday that she failed to remove, the site is

now broken in many other areas and she has to try to remember where each modi-

fication is in the site. After hours of work, Mary finally resolves all of the issues that

were reported to her by quality control and the site is ready to go live . . . a day late.

What Happened?

When John made his change before leaving town, he misspelled the name of a

variable that was extremely important to the rest of the site. Since he was in a rush

to catch his plane, he failed to check his work and ended up creating more issues

than previously existed. Since Mary was unaware that John had made the change,

she went directly to the code that was actually indirectly affected by the change and

accidentally created even more bugs in the site.

How Could It Have Been Avoided?

On top of the lack of communication between the team members (especially

on John’s part), the entire string of events and resulting errors could have been

 avoided by simply using version control. When John made his change, he should

have included a note with the file he updated on the version control server. That

note would have let the team know what change he made and in which file he made

that change. Even if Mary didn’t see the note to the team, she would have been

able to “roll back” her files to the state they were in before she started making her

changes that created so many more issues. When she rolled them back, the files

Version Control

28 2. Constants and Considerations

would only contain the initial error created by John and she would be able to make

that single change to launch the site on time.

Conclusion

As I mentioned at the beginning of this chapter, there will be aspects of your work

that will remain constant from project to project and there are considerations to

keep in mind as you move between those projects. Once you start to recognize

which aspects are reoccurring and to which ones you need to give special attention

and thought, you can start fine tuning your plan each time you start a new piece of

work. One benefit to the constants is that because you know that every project is

going to go through a quality control process, you’ll start catching your bugs before

they even happen, which can actually improve your coding skills. Also, as time pro-

gresses, you will start to be able to tell if a banner will fit within the file size limita-

tions set by the project specs just by looking at the design layout, which brings us to

Chapter 3, “Designing Banner Ads.”

29

Designing Banner Ads

While designing for banner ads and designing for microsites can be a very similar

process, there are still differences between the two. For example, you have a much

larger virtual canvas and file size to work with in microsites, but you are constrained

to specific widths, heights, and kilobytes in banners. Another difference is that your

microsites can (and should, in most cases) be broken up into multiple files, but you

are only allowed a single file with standard Flash banners and a limited amount of

additional external files with rich-media banners.

Because of these differences, I’ll split this topic into two different chapters. In this

chapter, I’ll be talking about banners and then I’ll go into designing for microsites

in Chapter 9, aptly titled “Designing Microsites.” The sections you’ll find here are as

follows:

 • Conception

 • Goal of the Campaign

 • Designing with Transitions and Animation in Mind

 Conception

Before you have a final design for a banner, you should create two or three layouts

for the client to choose from. These layouts are called “ concepts” and they gener-

ally can be viewed as the different directions in which the final design can go.

Conception

33CCHAPTERHAPTER

30 3. Designing Banner Ads

Inside the Industry

 Every great design that achieves its goal has meaning and planning be-

hind it and that planning is usually done by a planner. While the job title

may differ from workplace to workplace, the job itself is essentially the

same: to research products, brands, target audiences, clients, and client

competition. The research may consist of many different approaches,

such as focus groups or even getting your hands on the actual product to

test it out. Once the research is complete, a plan is put in place to cre-

ate a “map” for the campaign. Included in the map is a creative brief, and

that’s where the design ideas are generated. The creative brief is basically

a rundown of all of the information that pertains to the audience, the look

and feel of the brand, and the goal of the campaign.

Many different techniques can be used to find the best look for a banner and each

designer will have his or her own individual ways of coming up with ideas. With that

said, one suggestion to try after reading over the creative brief for the project is to

jump right in and start getting creative. Your first impression and your first thoughts

about the project at this point are oftentimes going to be very close (if not dead on)

to where they need to be for designing your concepts. Try to use your “off the cuff”

emotions to drive the initial design, or another way to look at it is to follow your first

instincts because they usually work best. Once you get going, you’ll hopefully find

that your work is feeding your ideas as you go.

Now that I’ve offered up the thought of basically flying by the seat of your pants in

your design, I’m going to attempt to bring you back down to Earth a little. There is

some thought that needs to be put into your designs. While much of that thought

can be found in the creative brief, some of it will require a little research and client/

 brand interaction of your own.

Know Your Client

Knowing your clients on a little bit of a personal level can work wonders in the

design of your work and you should do your best to talk directly with them as much

as you can without going overboard. Of course when you talk to them the first

few times it will most likely be all business, but you can usually gauge a person’s

personality somewhat quickly (they might be fun and personable or they might be

31Conception

more serious and “corporate”). Once both of you start mentioning topics unrelated

to work, you may start to gain some perspective into their personality and possibly

some of their likes and dislikes. With this information, you can start to get an idea of

the type of design they might like to see (the fact that you’ll concept more than one

design should relieve any pressure you might feel about missing the “personality

 target” on the first shot).

Another benefit to knowing your client on somewhat of a personal level is trust; the

better they know you, the more comfortable they are with you, and the more com-

fortable they are with you, the more they’ll trust you and your decisions.

It Takes All Types (of Clients)

A great art director once told me that you can generally classify clients into three

high-level groups and that you should quickly figure out which one a client falls un-

der when talking to them about your work. Those three groups (for which I’ve made

up my own names) are as follows, in no particular order.

The first type of client is the “ tech-yes” type. These clients know about technol-

ogy, they know that online is in the natural progression of advertising, and they

embrace it with open arms. When talking to a tech-yes client, you can usually speak

in industry and technology terms. If they don’t understand what a certain word (or

acronym) means, they aren’t often shy or embarrassed about asking. However, you

may still want to take the terminology down a notch by lightly explaining some of

the things you feel people outside of the advertising and technology fields may not

fully understand.

The second type of client is “ tech-maybe” type. Like the tech-yes, the tech-maybes

know that online advertising is something they need to do and they are willing to do

it. The difference is that they are not quite as sure in their knowledge of the technol-

ogies. Their instinct is to give you any information you need or ask for and then trust

you to be in charge of their project. When you’re talking to a tech-maybe, try to keep

the industry terminology down a little and explain what you are talking about.

The third type is the “ tech-no” type. Tech-nos are your biggest challenge simply be-

cause they don’t seem interested in the technology realm at all. Whether they are

intimidated by it or they just don’t have the time to learn about it, they don’t seem

to care too much for it. A tech-no client will actually create reasons to avoid mov-

ing their advertising dollars to online and you may hear something along the lines

of, “The results of offline advertising are always measured the same way, so I think

32 3. Designing Banner Ads

we’ll just stick with that for now.” Even though this

type of client is a challenge, don’t give up on them

right away. Remember there was a time when even

you didn’t understand advertising or technology.

Know the Brand

Knowing your client is not necessarily the same

as knowing their brand because, as I mentioned

earlier, you’ll want to know your client on a bit of a

personal level. However, their individual personal-

ity may likely differ from that of the brand itself.

While your client may be a very relaxed, fun, easy-

going person who likes skydiving and snowboard-

ing, the brand may be more refined and formal (or

vice versa).

Knowing the brand will help you determine how

you will design everything from where the logo will

be placed to what will happen when users roll their

mouse over the banner. If you’re dealing with the refined brand, you’ll probably

want to have a nice, clean design with crisp lines and nice fonts. If you were dealing

with an edgy brand, you would want the design to reflect that as well.

While the ideas for your banner concepts can come from many different places,

a good place to start is the site that the banners will drive users to visit. From that

destination, you should be able to get plenty of ideas based on the look and feel,

the motion, and if at all possible, you may even want to use some of the actual

graphic elements from the site itself. The design of the site combined with the

 brand standards will give you items like colors, fonts, logo treatments, etc. And

while you need to stay within the confines of the brand standards, you may want

to push the limits when you can. Obviously some of your clients’ brand standards

will be stricter than others and that could, in turn, affect just how far you can push

the limits. On the other hand, some brand standards are very loose and forgiving.

Pushing the limits on these relaxed standards could lead to more projects (such as

microsites), and who knows, you may even influence your client to come up with a

new look and feel for their entire brand.

Author’s Tip

Whether you are talking to a

tech-savvy client or a client who

isn’t sure how to attach a file

to an email, you should always

explain everything and explain

it in a step-by-step fashion. Use

simple terms that are easy for

anyone to understand while

being very careful to avoid

sounding patronizing. The last

thing you want is for your client

to feel like you’re talking down

to them because you feel like

you’re smarter than they are.

33

Know the Audience

Much like your clients, there are different types of people at whom you will target

your design. These groups of people are called your target audience and they will

be another determining factor in the look and feel of your design. The specifics of

the target audience, such as age, income, influence, and other demographics, will

most likely be found within the creative brief put together by the planner. Using

those specifics, you can decide the direction your design will take. For an audience

that is regarded as the elite, rich, upper-class decision makers, you might have a very

clean, slick, simple design that gets straight to the point of the message. On the

other hand, you may want to design something more edgy if you will be going after a

younger audience that is deep into gaming, extreme sports, and heavy music.

Know the Placements

Hand in hand with knowing your audience is to know where your ads will be run-

ning. There’s a lot to be said for knowing your surroundings and coming up with

designs for banner ads is no exception to that. If you are aware of how many sites

(and precisely which sites) your ads will be shown on, you can take some time to

surf around to them for a little inspiration. This is not to say that you should go to

those sites and copy their designs into your banners, but that you should look them

over to better decide how you can make your ad stand out without doing so in an

obnoxious way.

The number of placements in which your ad will be seen can greatly affect this

approach. If there are a large number of sites that will be running the ad, it may be

harder to find a design that fits within all of them at the same time. On the other

hand, you may be dealing with a small or very specifically targeted account that

only has the banners running on a single site. Either way, you want your ad to be

seen and knowing the look and feel of the surrounding area can help make that

happen. Before leaving this section, I would like to reiterate one important note:

Avoid making your banners stand out in the wrong way on a site. The last thing you

should want to do is annoy and distract people from the content they are actually

there to read or view. The real goal should be to gently attract their eye to your de-

sign and make them want to interact with your client’s brand. After all, they are your

client’s potential customers and you want them to have a good experience.

Conception

34 3. Designing Banner Ads

 Goal of the Campaign

The goal of the campaign will be another on the list of items that will dictate how

a banner should look and feel. You may have a different design for a banner that is

being created to sell a service versus one being created to sell a tangible product.

You may have another completely separate design for a banner with the purpose of

raising brand awareness versus a banner being created solely to drive traffic to your

microsite.

The overall goal of a campaign will commonly fall

into one of two areas: brand awareness or direct

 marketing. The purpose of brand awareness is ex-

actly what you would think it is: to raise awareness

of the brand itself. You aren’t necessarily advertising

a particular product or service, but you are trying to

drive customers to at least consider the brand more

closely the next time they see it in the store. On the

other side of that coin is direct marketing. When you

use direct marketing, you want them to actually pur-

chase the service or product that is being advertised

in that ad.

Branding and Selling

As I said previously, your banners will generally be

designed to accomplish one of two main goals: sell-

ing goods or raising awareness of the brand. That

said, a banner whose purpose is to sell will still have

 branding in it, but a banner built for brand aware-

ness will not necessarily contain any form of sales

messaging. To explain exactly what I mean by that,

let’s look just a little deeper at each of these goals.

Author’s Tip

It’s important to step back dur-

ing each step of a project and

try to view what you’re working

on from a user’s point of view.

Try to imagine how a person is

going to experience the work

the very first time he or she

sees it. Try to determine if he

or she will be compelled to

take the actions you are trying

to get him or her to take and if

the paths to those actions are

immediately apparent. Re-

member that a user won’t have

the benefit of a creative brief

or meetings about the project

to fully understand the work in

question. The work has to do

that on its own.

 ALERT Since branding is such an extremely large subject that requires

much more in-depth explanation than I could fit into this book,

I have only given a very high overview on the subject.

35

Brand It

Raising the public’s awareness to your client’s brand makes them feel comfort-

able with it. It gives them something to identify with and at the same time it says,

“Hey, I’m here. Remember me. Remember me when you see these images. Re-

member me when you see these fonts and these colors. Remember me when you

think about __________.” In addition to asking people to remember the brand, raising

awareness also means that you’re trying to evoke or solidify an emotion or feel-

ing within them. As I mentioned before, that feeling may be comfort. However, the

emotion/feeling that you actually want to call upon could also be something much

different like excitement or curiosity. The simplest explanation of branding is that it

consists of beautiful imagery, your client’s logo, and some short but sweet message

that appeals to the targeted emotions (possibly your client’s tagline).

Designing for brand awareness can take on different levels of difficulty depending

on the consumers’ current view of the brand itself. If the public already has good

thoughts and feelings about the brand, then the efforts that are currently in place

are doing their job and you’ll simply need to stay within those design standards. On

the other hand, a client may have sought you out to change the public’s thoughts of

their brand. While there may be questions as to what caused the brand to develop

an undesired image, the design process for a new brand direction can be a fun and

challenging one. When a brand needs a new image, it needs to shine. This means

that the brand design standards are usually very loose or even completely out the

window in favor of the new direction.

For both of these scenarios there can be challenges. In the case of continuing

successful brand awareness, it can be a challenge for some to stick within the

strict (but again, successful) design standards. And when it comes to changing the

public’s view on a brand, some may find it difficult to have such an open design

field to play in.

Sell It

Selling your client’s product via online banner ads requires a different approach

than raising brand awareness. For starters, your viewers are (hopefully) already

familiar and comfortable with the brand. This works in your favor because they may

only catch a glimpse of your ad from the corner of their eye as they are reading an

article. Since the brand awareness campaigns for this particular client were suc-

cessful, the viewer remembers the brand and takes a look at the banner. With this

banner having the purpose of selling, users will no doubt see different elements

Goal of the Campaign

36 3. Designing Banner Ads

and one of them is the messaging. The banner itself will be more offer oriented and

the message within will get directly to the point it’s trying to get across: “Buy this

product!” or “Look at this incredible price! Now buy this product!”

Something to remember is that while sales-driven banners are definitely harder

hitting with less fluff, they should still borrow some techniques from branding ads.

While they are highlighting an offer or a price on the surface, they should still have

an underlying feeling of comfort and emotion that has come to be associated with

the brand.

Designing with Transitions and Animation in Mind

Standard Flash banners are usually constrained to an animation time of 15–30

seconds. Rich-media banners, on the other hand, are most often only limited on

animation time up until a user interacts with them. Either way, animation is one of

the key benefits to using Flash for online advertising and the design of that anima-

tion is just as important as the design of the ad itself. The wrong movement can

make an otherwise beautiful banner look amateurish and unplanned while the right

movement can actually improve upon the look and feel.

Visualize While You Work

 A good practice to get into is to go ahead and try to visualize your animations while

you’re creating your design. If you come across an asset that you feel would make

a good moving part of the design, you should also take care to consider if it will

be possible to make that piece move in the way it should. The only time you want

something to look like it has unnatural, clunky movement is when the design actu-

ally calls for unnatural, clunky movement. In most designs, however, you’ll want to

try to create smooth, organic-style movement to keep the work from looking like it’s

trying too hard (and just to make it look good in general).

Some things to keep an eye out for when you’re planning animation in advance are

moving parts, visual angles of photographs, transparent areas, backgrounds, and

several other similar properties of the piece in question. When you’re dealing with

moving parts of a larger object, are those parts cut in such a way that they can each

be animated as needed? In other words, can the object bend at its joints and rotate

its gears? If there’s a background, do you already have the image cut away from it

and do you already have the background filled back in? It can get quite frustrating

for a Flash developer to get a request to make a car drive across a background im-

age when the car is actually a part of that background image.

37

Animation Assets

You can plan an animation all day and all night but when it comes down to it, you

can’t actually create that animation if you don’t have the proper assets. For exam-

ple, you’re working on a banner for your client and they want you to build an inter-

active 360-degree view of their product. However, you only have two images of the

product: one from the front and one from the side. It goes without saying that you

can’t build much of a 360-degree view with only those images so you’re left with

some options. You can go back to your client and ask for the extra images of the

product (which they may or may not have available), you can inform your client that

extra money will need to be spent to do a photo shoot of the product, or you can

spend your personal time doing your own photo shoot. There are other options as

well, but you get the point here.

Turn Over a Little Control

If you’re the person that designed the banner, there comes a time when it’s good

to let someone else take a little control and animations may be one of those times.

Bringing an idea of movement to a Flash developer in the form of words (or even

 storyboards) may not always get the exact message across in exactly the way you

wanted it to. Most times, when you explain something to someone (anyone, not

just Flash developers), they are going to visualize it differently than you do. Since

that’s the case, the end result of the animation will most likely differ from what you

originally intended. Step back, let go of your thoughts for a minute, and take a look

at what the Flash developer has created. While there is a chance that you could

shoot down this new idea, there’s also the chance that you may like it better than

your own.

Another approach on this topic is to sit with the Flash developer while you both

work together to get the major mechanics ironed out. For example, you know that

you want object A to move from point B to point C. What you don’t know quite yet is

the detail of its trip between the two points. Did it bounce to get there? Did it ease

into or out of the animation? Did it bounce after it got to its final destination? As the

designer, try not to let those details bother you right now and let the Flash devel-

oper take care of those questions. There are a couple of advantages to taking this

approach with your designs. First, the Flash developer can actually sit there trying

different animations from directly within the Flash authoring environment. Once

he or she finds the one that feels best, you can both decide together if it’s the right

animation for the project. The other advantage to this is pride of ownership. Turning

Designing with Transitions and Animation in Mind

38 3. Designing Banner Ads

over this control to the Flash developer will make the Flash developer feel more

inspired to do a better job on the project due to the fact that the project feels more

like it’s his or hers instead of feeling like he or she is just another part of an assem-

bly line.

Know the Strengths and Limitations

Because the design of each round of banners will differ, they will each have dif-

ferent strengths and limitations when it comes time to animate or program, and

you’ll need to be able to recognize them ahead of time in the design process. For

example, moving objects over a large area at a very slow rate of speed can end up

looking choppy if it’s not done correctly. Another example, which I’ll talk about in

Chapter 6, is the format chosen for images used within a banner. Sometimes mov-

ing an object across the stage will require it to have a transparent area. This can be

both a strength and a limitation at the same time: a strength because of the ability

to support the transparent area of the image, but a limitation because of the extra

amount of file size that can be taken by that image (as opposed to an image without

 transparency). Knowing the strengths and limitations of Flash is something that

comes with time. After some experimenting, some trial and error, and needing to

rework a few projects, more and more of these strengths and limitations will be-

come apparent.

Back to Step One

Don’t forget, just because you completed that first concept, you aren’t actually fin-

ished yet. As I stated earlier in this chapter, you’ll need more choices to offer to the

client. In addition to giving the client more options, you can also take this oppor-

tunity to do a little mix-and-match exercise. After you’ve come up with your two or

three concepts, take a look back over each of them together and see if you can find

pieces to pull out of one design to put into another. You may be able to find ways to

enhance your designs and you may even find enough from each concept to develop

a forth piece that could possibly end up outshining all of the others!

39

Conclusion

Designing banners isn’t as straightforward and simple as some might think. The

amount of thinking and planning that goes on prior to, and behind the scenes of,

the actual artwork can get very extensive in some cases. Knowing your client’s

brand and knowing your client’s business is a must when you’re designing their

banners, but knowing your client on somewhat of a personal level can give you an

inside track on their likes and dislikes. On top of knowing your client, you should

also know who your audience is and the sites on which they’ll be viewing your work.

The goal of the campaign will also be a determining factor in your designs. If you’re

working on a brand awareness campaign, you’re going to treat it differently than you

will a sales/ marketing campaign. With a brand awareness campaign, you’ll gener-

ally want to make users feel good about the brand and remember it the next time

they see it. With a sales campaign, your overall goal is to drive users to buy a prod-

uct by highlighting its price and value. At the same time you’re asking them to buy,

you’ll also want to inject a little brand awareness into the design; something that

says, “Buy me now, remember me later.”

An important factor to think about in designing banners is how they will animate

and how they will make transitions from one frame or section to the next. It’s a good

idea to think about these movements beforehand, because once in development, it

can sometimes be difficult to retrofit an animation of a particular object. In addition

to thinking ahead, you’ll also want to make sure that the assets you’re working with

can actually animate in the fashion you have pictured in your head. In Chapter 4,

“Preparing and Building Ads,” I’ll start getting into the steps involved in bringing

your designs to life, from planning out how it will be built to using code as a time

saver to sending your work through quality control.

Conclusion

This page intentionally left blank

41

Preparing and Building Ads

So it’s time to start building a round of ads, huh? That’s good because that’s just

what we’ll be talking about in this chapter. But you shouldn’t just jump right in to

 animating and coding because you have to make sure that you have everything pre-

pared and that you have all of the information you need. You’ll need to know who is

involved with project and what role they each take so you’ll know who to turn to for

any particular question or need. Speaking of questions, think of as many as you can

up front. For example: Have you thought ahead to how your ad will work? Is there a

 layout for default images in case a user doesn’t have Flash enabled? Do you have

any class files already written that may work with this project? There are more ques-

tions to come, so let’s get to it by looking at the following topics:

 • Planning

 • Setting Up Your File

 • Cutting Images

 • clickTags and Links

 • Script to Save Time

 • Building to Standards

 • Bandwidth Profiler

 • HTML/ JavaScript

 • Default Images

 • Quality Control

Preparing and Building Ads

44CCHAPTERHAPTER

42 4. Preparing and Building Ads

Planning

Before you start to build your ad, you’ll need to do some planning. How will your

images be cut? Will you tween your animations, script them, or have a combina-

tion? How many destination URLs will you link to? Which areas will users click to

get to those destinations? These and several other questions will need to be an-

swered during the life of the project, so you should try to answer as many of them

as you can ahead of time and you might even consider making a checklist that you

can refer back to on each project.

If you are working with a creative department, you will need to keep in very close

 communication with the designer who laid out your ad. He or she will most likely

have a vision of the animation in his or her head and you want the end product to

match that vision as closely as possible. Since most of us can’t actually read minds,

you should get printouts of the main frames of the ad and have the designer sit with

you to explain how he or she imagines the art coming to life. Once you have the

designer’s description, you will have a better idea as to the important pieces of the

puzzle. Pieces like how your images need to be cut, which parts of the animation

can be scripted, and at what speed they need to animate.

In addition to all of the information that pertains to the creative aspect of your ad,

you will want to know the details of the more technical side. For example, if there

is a form in your ad that submits to a client’s processing page, do you have all of

the correct variable names and possible values? For any ActionScript you may use,

check to see if you have snippets you can pull from existing libraries that would

meet this project’s needs.

 Specs

Another side to consider when planning is the specs that you are given by the host-

ing site or third-party ad serving company. These specs will include the items that

were covered back in Chapter 1, such as stage dimensions, maximum file sizes,

amount of time and/or loops the animation can play, the highest version of Flash

you can use, and sometimes the highest frame rate that will be accepted. It is very

hard to say which aspect of the ad is most important and you would probably get a

different answer from each person you asked. However, if you fail to stay within all

of the specs, your ad will most likely get kicked back to you from the sites and they

probably won’t run it until it is revised.

43Setting Up Your File

A good tool to help plan time spent on your project is a lowest common denomi-

nator (LCD) sheet. An LCD sheet is exactly what it sounds like—a sheet listing the

lowest specs accepted on each size of your banners by all sites. Let me explain a

little further. You have a 300 × 250 banner that is going to run on five different sites.

Of those five sites, two will accept a maximum file size of 30k, one a file size of 28k,

and the last two will only accept up to 25k. You obviously wouldn’t want to create

the same banner five times (once for each site). So the next thought might be to

create one banner for each maximum file size giving you a smaller total of three

banners. Well, as we all know, time is money and you should only spend the time

you need to create the banner one time and one time only. Since the 25k version

fits within the specs of all sites involved, that’s the size you’ll want to keep your

300 × 250 banner below.

Setting Up Your File

Okay, so you’ve received the layouts from the creative department, you’ve been

given direction on the animation and interactivity, and you have your plan of attack

ready to execute. Let’s get started on the fun stuff by getting a file set up. You can

use one of the advertising templates we discussed in Chapter 1 or you can set up

your own. For this exercise, let’s go ahead and set up our own 300 × 250 banner.

 1. Create a folder to house your Flash files. Let’s name this folder “myAd.”

 2. Create a subfolder within the “myAd” folder and name it “cut_art” (this

folder will hold all of the images used in your ad).

 3. Create a new Flash Document from the File menu or the Flash start page

(Figure 4.1).

 4. Open the Document Properties window by clicking the “Size:” button in

the Properties tab of the main movie (Figure 4.2).

 5. Set the width to 300 pixels and the height to 250 pixels. While we’re in

here, let’s go ahead and set the frame rate to 18 frames per second as

well. After you’ve done that, click OK.

 6. Open the Publish Settings window by clicking the “Publish:” button and

setting the version according to the specs you received from the site

(Figure 4.3).

 7. Click OK and save your new file to the “myAd” folder.

44 4. Preparing and Building Ads

Figure 4.1

The Flash start page.

When you save your file, you’ll want to be descriptive in your naming conven-

tion. For this banner, we’ll use a name such as 300x250_30_my_ad.fla. (I’ll cover

naming your file in more depth in the “Building to Standards” section later in this

chapter.) Once you’ve saved your file, you’re ready to move on to the next step—

cutting images.

45

Figure 4.2

The Document Properties window.

 ALERT Version control is extremely important, but often forgotten or

just not used. There are several options when it comes to the

 applications you can use such as SourceSafe or Subversion. I

highly recommend you spend a little time doing some research

on which application best suits your needs and use it on every

project without fail.

Setting Up Your File

46 4. Preparing and Building Ads

Figure 4.3

The Publish Settings window.

47

Cutting Images

A raster graphic is a graphic that is made up of a rectangular grid of pixels. Within

that grid, each individual pixel is assigned its own color, and the more colors an im-

age has, the larger the file size is going to be. There are both pros and cons to raster

graphics. For example, raster graphics can show very nice imagery, but they can-

not scale without degradation in their quality. In contrast, vector graphics can scale

indefinitely without any change in the quality at all. This is due to the fact that vector

graphics are actually drawn to the screen using mathematics. See Figure 4.4 for a

comparison of zooming in on a section of both a raster and a vector graphic.

Figure 4.4

Zooming in on raster and vector graphics.

Cutting Images

48 4. Preparing and Building Ads

Choices

In 9.827526 times out of 10 you’ll be using at least one raster image in your ad.

(Okay, I made that stat up, but you get the point.) Whether it’s a photograph of a

product, scene, or person, you’ll need to figure out the best way to cut those im-

ages out of the Photoshop file and get them into your Flash ad. Most of the time,

the choice of image format is extremely obvious. A few general rules of thumb that

I like to follow are (1) if you will need to use transparency in the image, save it out as

 png-24, (2) if it’s a photographic-type image and you do not need transparency, the

best option is most likely jpg, and (3) if it’s a drawing or line art of any kind, try the

 gif format. Whichever format you use, take care not to over compress when export-

ing from Photoshop. Save the images at a high enough quality that they are very

clear and you don’t see any pixilation or fuzziness, and let Flash do the compres-

sion when it has its turn with the images. Now, for just a moment, let’s step back a

few sentences to my rules of thumb on pngs and jpgs. According to Flash 8 best

practices, the best bitmap format to import into Flash is png. However, the file size

for a png image is typically larger than a jpg and one of your major goals is to fit

your banner within a certain file size. I’ll cover more on image compression later in

Chapter 6.

Cut Away

On to the actual cutting of the images. Since you spent a little time planning out

your ad, you should be well aware of which elements from your Photoshop file will

be static, which ones will be animated, and which ones will be interactive. When cut-

ting out the images that will animate, you want to crop the Photoshop file down to

the size of the object you need, hide all of the layers you don’t need, and export the

image to the appropriate format. As you set the size to which you are going to crop,

keep in mind that you should not cut exactly at the edge of the object you are cut-

ting out. If at all possible, you should give yourself (and Flash) a bit of room all the

way around the image. This is because of a rendering “feature” in the Flash Player

that sometimes cuts off the edge of an image or shifts the image data over by a few

pixels. I usually give about a three-pixel buffer and that works out pretty well.

As for the static elements, try to include as many of them as you can in one im-

age that can be used as the background of your banner. A lot of times you can

treat interactive elements the same as static elements and include them in your

background image. For example, if you have a logo that will remain in the top left

corner of the ad and that will link out to the client’s home page, why make it its own

49

image? Unless there is another element that needs to animate behind that logo,

include it as part of the static image and place an invisible button on top of it. Just in

case you aren’t sure what I mean by “ invisible button,” simply follow these steps to

create one:

 1. Draw a shape on the stage by using one of the shape drawing tools

(Figure 4.5).

 2. Once the shape is drawn, select it and press F8 to convert it to a Button

symbol.

 3. Give the Button symbol a name and press OK in the “Convert to Symbol”

dialog box (Figure 4.6).

 4. After you’ve created the button, double click it to edit it.

 5. Move the shape from the “Up” frame to the “Hit” frame (Figure 4.7).

Figure 4.5

Draw a shape to the stage.

Cutting Images

50 4. Preparing and Building Ads

 6. Go back to the main timeline of your movie and there you have your

 invisible button.

Once you have all of your images cut and saved to the cut_art folder, it’s time to

start importing them into Flash for animations and interactions based on the direc-

tion that was determined in the planning phase of your banner.

Figure 4.6

“Convert to Symbol” dialog box.

51

Figure 4.7

Move the shape to the “Hit” frame.

 clickTags and Links

To know how your banners are performing after you have released them into the

world, you’ll need to track a couple of things. For instance, you’ll need to know how

many people have clicked them and what site those people were actually on when

they did so. So how do you get this information? Whether your ads are hosted by

the site on which they run or by a third-party ad serving company, such as Atlas or

 DoubleClick, you will use a tracking tag. That tracking tag will contain the actual

URL you are attempting to drive users to as well as a string of seemingly random

letters and numbers that are generated by the tracking application. Once users click

your ad, they are directed to the destination URL while seamlessly passing informa-

tion to the tracking application.

clickTags and Links

52 4. Preparing and Building Ads

One or Many

Unless the site or ad serving company tells you differently, you will most likely be

 using the variable name “clickTag” to link out of your units. Check with your site or

 ad server on the actual name you should use if you will be linking to a single desti-

nation URL as some will ask that you add the number “1” to the end. For example,

ad serving company A might ask you to use “clickTag1,” whereas ad serving com -

pany B might ask you to use “clickTag” (without the “1”). When linking out to multiple

URLs, most ad servers handle it the same way: clickTag1, clickTag2, clickTag3, etc.

Example 4.1 shows two typical onRelease functions that need to be tracked from

within the same banner.

Example 4.1
myBtn1.onRelease = function(){

 getURL(_level0.clickTag1,“_blank”);

}

myBtn2.onRelease = function(){

 getURL(_level0.clickTag2,“_blank”);

}

Along with the clickTag is the target window. The majority of sites and ad serving com-

panies will ask that you use “_blank” as the target window in your getURL(). There are

a few, however, that require you to target “_self,” while still others require a target of

“_top.” It is best to check with your site or ad server for individual specifications.

The Value of clickTag

Now that we have talked about linking out to a variable name, let’s discuss how to

get a value assigned to it. In most cases of running your units with an ad serving

company, you won’t need to worry too much about getting the value of your click-

Tag variable inside the unit itself. This is because most of the ad serving companies

have their own HTML templates that are already set up to pass the value in. How-

ever, you will still need to test your banner before it goes live. While there are many

ways to pass a variable value into Flash, I’ll just show a quick one here that uses

 JavaScript to assign the actual value to clickTag and then to append it as a query

string on your swf. Keep in mind that I’ve left out a good amount of the code in

 Example 4.2 so we could put more focus on the clickTags.

53

Example 4.2
<script language=“javascript”>

 …

 var mySwf = “yourFlashFile.swf”;

 var clickTag1 = “http://www.yoursite.com”; // main url

 var clickTag2 = “http://www.yoursite.com/your_product.html”; // product url

 …

document.write(‘…

<embed src=”’ + mySwf + ‘?clickTag1=’ + clickTag1 + ‘&clickTag2=’ + clickTag2

…

‘</embed>’

…

</script>

 ALERT In the early part of 2006, the outcome of a patent dispute af-

fected the way ActiveX content (such as Flash) is displayed in

Internet Explorer. Because of that outcome, the code in Example

4.2 will require a user to click the banner before being able to

actually interact with it. At the time of this writing, almost all

third-party ad serving companies had their solutions in place for

this issue. I will, however, still cover a couple of solutions later in

this chapter because you will need to use one of them for testing

and quality control.

clickTags and Links

54 4. Preparing and Building Ads

 Script to Save Time

As you spend more and more time building ad units, you will begin to find com-

monalities between them. Some of these will pertain to different ads for a single

client, while others will spread across clients. When you start to notice these reus-

able code snippets and assets, set them aside so you can pull from them when

you need them in another project. After all, that wheel has already been invented,

right? For example, a large amount of your banners will have a single destination

and therefore will contain a single clickTag. In the typical case of having the entire

banner clickable, why not utilize the drawing API to create an invisible button that

covers the stage as in Example 4.3.

Example 4.3
var myBtn:MovieClip = this. createEmptyMovieClip(“myBtn”,this. getNextHighestDepth()

);

myBtn.beginFill(0x000000,0);

myBtn.moveTo(0,0);

myBtn.lineTo(Stage.width,0);

myBtn.lineTo(Stage.width,Stage.height);

myBtn.lineTo(0,Stage.height);

myBtn.lineTo(0,0);

myBtn.endFill();

myBtn.onRelease = function(){

 getURL(_level0.clickTag,“_blank”);

}

In Example 4.3, we’ve created a new MovieClip

object, set the fill color to 0x000000 (black) and

opacity to 0, followed the stage’s width and height

to draw out a box, and then applied the onRelease

function. That’s all there is to it. Now our banner is

fully clickable and we can carry this snippet from

unit to unit.

You could carry this a little further and create a

 class file as in Example 4.4.

Author’s Tip

Note that the moveTo() on line 3

is optional in Example 4.3.

This is because when you cre-

ate a new MovieClip object, it is

instantiated at an x and y of 0,0

as is the “pen” when you use the

 drawing API.

55

Example 4.4
class BorderButton extends MovieClip{

 public function BorderButton(tag:String,clickable:Boolean,outline:

Boolean,lineColor:Number,lineThickness:Number){

 if(outline == undefined){

 outline = false;

 }

 if(lineColor == undefined){

 lineColor = 0x000000;

 }

 if(lineThickness == undefined){

 lineThickness = 1;

 }

 var bbMc:MovieClip = _level0. createEmptyMovieClip(“bbMc”,_level0. -

getNextHighestDepth());

 if(outline){

 bbMc.lineStyle(lineThickness,lineColor);

 }

 bbMc.beginFill(0x000000,0);

 bbMc.moveTo(lineThickness/2,lineThickness/2)

 bbMc.lineTo(Stage.width-(lineThickness/2),lineThickness/2);

 bbMc.lineTo(Stage.width-(lineThickness/2),Stage.height-(lineThickness/2));

 bbMc.lineTo(lineThickness/2,Stage.height-(lineThickness/2));

 bbMc.lineTo(lineThickness/2,lineThickness/2);

 bbMc.endFill();

 if(clickable){

 bbMc.onRelease = function(){

 getURL(tag,“_blank”);

 }

 }

 }

}

Script to Save Time

56 4. Preparing and Building Ads

Something to note in Example 4.4 is in the moveTo() and lineTo() methods: Instead

of drawing the border line from an x and y of 0,0 to the full stage width and height,

we need to pull it back in by about half of the line thickness. This is due to the way

Flash renders the border when it’s all the way at the edge. Try changing those num-

bers up to draw the border all the way to each edge and see if you lose the bottom

and right side of the border. Table 4.1 outlines the BorderButton parameters.

Table 4.1

 BorderButton Class Parameters

Parameter Explanation

tag
The URL that users will be taken to when they click on the

banner. The tag parameter should be passed in as a string.

clickable

A Boolean value that indicates whether or not the area is

clickable. If set to true, the entire banner becomes clickable.

If set to false, only the border is drawn.

outline (optional)

A Boolean value that indicates whether or not to draw a

border around the banner. This parameter is set to false by

default.

lineColor (optional)

A number value that determines the color of the border. The

lineColor should be passed in the form of 0x000000. The

default value of this parameter is 0x000000 (black).

lineThickness (optional)
The thickness of the border in pixels. The lineThickness

should be passed in as a number and is set to 1 by default.

Now let’s look at what’s actually happening inside the class. The first thing we do

is check the optional parameters to see if values have been passed for them. If

not, we assign the default values. This takes place in lines 3–11. Next, we create an

empty MovieClip in line 12. Then we check back to the outline parameter to deter-

mine whether or not we will draw the outline. If we find a value of true, we use the

lineColor and lineThickness parameters to set the lineStyle() accordingly. After

that, we begin the transparent fill and draw a rectangle (or square depending on the

banner size) to the stage in lines 16–22. Finally, we check to see if our BorderBut-

ton is clickable. If it is, we set up the onRelease function to go to the intended URL.

That’s all there is to it. Now when you are ready to use the class, you simply type

one of the lines from Example 4.5 into your ActionScript window.

57

Example 4.5
//A BorderButton that is clickable and has an outline

var fullBtn:BorderButton = new BorderButton(“http://www.flashadbook.com”, true,

true, 0xff0000, 3);

//A BorderButton that only draws an outline on the banner

var fullBtn:BorderButton = new BorderButton(“http://www.flashadbook.com”, false,

true, 0xff0000, 3);

//A BorderButton that is clickable and does not draw an outline on the banner

var fullBtn:BorderButton = new BorderButton(“http://www.flashadbook.com”, true);

Forms

Another good example of a reusable asset is a form. Forms will be covered in more

depth in Chapter 5, but for now let’s assume we’ve already created one and let’s

simply call it “Our Form.” Our Form was created to

be used from within a banner that we’ve built for

client X and its purpose is to search client X’s inven-

tory for a user’s desired product. Once we have Our

Form built and functioning properly, we should set

it aside in its own fla, so that each time we need to

use it in another banner we can just grab it, place

it in a new banner, and resize it or move elements

around as needed.

Building to Standards

When someone uses the phrase “building to standards,” I can’t help but think of

World Wide Web Consortium (http://www.w3.org) compliance and accessibility for

users with visual or auditory disabilities. And while accessibility is very important

in sites and microsites, it’s not what I’ll be talking about in this section on banners.

Instead, I’ll be discussing standardizing in the sense of code design, naming con-

ventions, folder structures, etc. At some point, you will be sick or on vacation

and a coworker will need to open your files to make some changes. Or maybe

the coworker is out and you’re the one who has to make the changes to their files.

Wouldn’t it be nice to open their code and, within a matter of seconds, know

exactly what they were thinking as they wrote each line? Some local standards

would fit perfectly into this little scene.

Author’s Tip

In addition to reusable code,

you should also keep an eye out

for reusable graphics such as

logos, products, backgrounds,

etc.

Building to Standards

58 4. Preparing and Building Ads

Naming Objects

How about if we start with object naming conventions. When naming your objects,

you want to be descriptive so you will know exactly which object your ActionScript

is communicating with and what kind of object it actually is. Table 4.2 shows a few

examples of object names.

Table 4.2

Naming Convention Examples

MovieClip containing form fields myFormMc

Input TextField for user’s email address emailInputTxt

Button to submit form formSubmitBtn

Sound object for background music myMusicSnd

Along with naming your objects, you should set up folders in your library. My per-

sonal favorite library setup uses folders named by type, where the “MCs” folder

contains MovieClips, the “bitmaps” folder contains imported images, the “graph-

ics” folder contains graphic symbols, the “sounds” folder contains audio files, etc.

You get the gist of it. Of course, all of these names are just suggestions, and, if you

haven’t already, try to set up a time to talk about these conventions with your co-

workers to make sure you are all on the same page.

Code

Another standard to be agreed on is that of code design. A few questions to ask

yourself and your coworkers when you are discussing code design are: Will you try

to keep all of the code on the main timeline (rather than scripting directly on ob-

jects such as buttons)? How will functions, variables, etc. be named? If the situation

gives you the option, do you use setInterval or onEnterFrame? There are, of course,

other similar questions that will arise when you start to talk about this subject, and

you probably shouldn’t expect to get every possible naming and/or coding con-

vention hammered out in one sitting. However, the quicker the conventions can be

agreed on, the quicker everyone will be creating files and writing code that is easy

for the rest of the team to understand and work with.

File Names

One more thing that should be consistent throughout your projects is the nam-

ing of your files. Your file names should be descriptive and easy to understand at

a glance because you may need to revisit one of them later. An example of this

would be if a particular ad performed very well and your client wanted to use the

59

same creative, but to change the message within it. There are many naming con-

ventions you could choose to go with, but I would like to recommend one here. If

you refer back to the section “Setting Up Your File,” you’ll notice we named that file

300x250_30_my_ad.fla. This is a pretty self-explanatory name because it contains

all of the information you need and each part of that information is separated by

an underscore. The first part of the name is obviously the size of the banner (300 ×

250). After that is the maximum file size, in kilobytes, allowed for this particular ad

(30). Next in line we used the word “my”; this is where you would place either an ab-

breviation or the full name of the client for which the banner is being built. Finally,

at the end of the file name, you’ll want to use another abbreviation to describe the

 creative being used. For example, if the creative is that of water being poured into

a glass, use the word “pour.” Another good standard to practice is limiting your file

names to a certain number of characters (including the file extension); somewhere

around 30 is usually a good number to go with.

Bandwidth Profiler

While Flash’s Bandwidth Profiler can be more helpful in the development of mi-

crosites, it can also be invaluable when you are creating banners. The most useful

part of the Bandwidth Profiler during banner development is going to the left side,

which contains all of the information about the banner (Figures 4.8 and 4.9).

Figure 4.8

Opening Flash’s Bandwidth Profiler.

Bandwidth Profiler

60 4. Preparing and Building Ads

Figure 4.9

Flash’s Bandwidth Profiler.

What You See

A quick rundown on the left side of the Bandwidth Profiler (see Figure 4.9) gives us

the following information under the “Movie” heading: “Dim” signifies the dimensions

of your stage; “Fr rate” shows the frames per second at which the banner will play;

“Size” is one of the more important ones here because it shows the file size of your

published banner; “Duration” lets you know how many frames long your banner’s

main timeline is and then goes on to do the math and show you the actual number

of seconds it will take for your banner’s main timeline to get to the end (this is very

useful when you are dealing with time constraints in your specs); and finally, “Pre-

load” will tell you how long it will take your banner to download to a user’s computer.

61

Next is the “Settings” header, which has only one item under it—“ Bandwidth.” This is

where you see the bandwidth that the Flash movie is being tested against. You can

change this setting by choosing one of the options in Download Settings under the

View menu of your tested movie (Figure 4.10).

Figure 4.10

Select on option to change the bandwidth setting.

The last section of information you see on the left side of the Bandwidth Profiler is

“State.” Like the Settings heading, the State heading only contains a single item—

“Frame”—which shows both the current frame of the movie that the Flash playhead

is on at any given time and the amount that particular frame is contributing to the

overall file size of the banner.

Bandwidth Profiler

62 4. Preparing and Building Ads

 HTML/ JavaScript

Before the legal dispute I mentioned in the “click-

Tags and Links” section, we could create our ban-

ners and write the containing HTML using the old

object and embed tags. However, times change

and so has the way we have to present our files in

the browser. These days we need to get rid of those

tags and use JavaScript in their place. So how do

you embed a Flash file in a page without using the

object and/or embed tag? The best place I would

say to start is with SWFObject by Geoff Stearns or

the Unobtrusive Flash Object (UFO) by Bobby van

der Sluis. In a nutshell, both of them are external

 JavaScript files that you reference from your HTML.

The JavaScript file then writes the code back to your

HTML file and displays the Flash file. Another nice

perk to this is that you can build what I’ve heard

Geoff Stearns call “the site behind the site.” This

is because when using either of the options, you

start by creating a block element, such as a div, in

which you place HTML content. When your Flash

file is written to the page, it actually replaces this

content. However, if a user doesn’t have Flash, he or she will still see the content in

the div. This works out perfectly, because you will be prepared for that user with the

 default image we’ll talk about later in this chapter. In addition to being able to show

a default image for banners, you can also use it to make your sites more readily

available to search engines. But let’s wait until Chapter 10, “Preparing and Building

Microsites,” to get into that. For now, let’s take a little deeper look at SWFObject

and UFO.

Author’s Tip

If you are using any code that is

dependent on the Stage. height

property and you run your file in

the test player (Ctrl + Enter), the

 Bandwidth Profiler will cause

the player to read the wrong

value for the height of the

stage. For example, if you are

working on a banner that is 300

pixels wide and 250 pixels high,

the Profiler will cause the player

to read the height as 150 pixels.

In order to force the player to

read the correct information,

hide the Bandwidth Profiler

(Ctrl + B) and then retest your

file or simply press Ctrl + Enter

again.

63

 SWFObject

Geoff Stearns’ SWFObject can be found and downloaded from his blog at http://

blog.deconcept.com/swfobject/. It’s a nice, simple way to not only embed your

Flash content into the page, but have plenty of control over it as well. When you

download SWFObject, you’ll find the swfobject.js file, which you will include in your

HTML. The following example from Stearns’ blog shows the minimum amount of

code needed to use the SWFObject.

Example 4.6
<script type=“text/javascript” src=“swfobject.js”></script>

<div id=“flashcontent”>

 This text is replaced by the Flash movie.

</div>

<script type=“text/javascript”>

 var so = new SWFObject(“movie.swf”, “mymovie”, “200”, “100”, “7”, “#336699”);

 so.write(“flashcontent”);

</script>

Since the full breakdown of what the code is doing is also available on his blog,

I’ll only cover a few things here. Let’s jump right to making the call to create a new

 SWFObject and the six required parameters. First is the swf parameter (“movie.swf”

in Example 4.6). This is where you’ll place the name of and path to your swf file.

Next up is the ID parameter (“mymovie” in Example 4.6), which is the ID of your

<object> or <embed> tag. After the ID are the width and height parameters (“200”

and “100,” respectively) and the version parameter. The version parameter is where

you declare the required player version for your content. It must be a string and can

either be passed as just the majorVersion (“7” in Example 4.6) or in the format of

majorVersion.minorVersion.revision such as “6.0.65.” Last we see the background

color parameter that controls just what you would guess from its name. The back-

ground color should be a hex value like “#336699” in Example 4.6. In addition to

the required parameters, there are also some optional parameters such as quality

and redirectURL. You can find the full list of these parameters and more informa-

tion about SWFObject at Stearns’ blog.

HTML/ JavaScript

64 4. Preparing and Building Ads

Unobtrusive Flash Object

Bobby van der Sluis’ Unobtrusive Flash Object (UFO) can be downloaded at http://

www.bobbyvandersluis.com/ufo/. As with SWFObject, you’ll have a great amount

of control over your content when you use UFO. Again, UFO is using JavaScript to

write your Flash movie to the page. Let’s take a look at the example from van der

Sluis’ site.

Example 4.7
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN” “http://www.w3.org/TR/

xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=“http://www.w3.org/1999/xhtml” lang=“en” xml:lang=“en”>

 <head>

 <script type=“text/javascript” src=“ufo.js”></script>

 <script type=“text/javascript”>

 var FO = { movie:“swf/myMovie.swf”, width:“300”, height:“120”,

majorversion:“6”, build:“40” };

 UFO.create(FO, “ufoDemo”);

 </script>

 </head>

 <body>

 <div id=“ufoDemo”>

 <p>Replacement content</p>

 </div>

 </body>

</html>

As you can see, there are slight differences between SWFObject and UFO. However,

you still need to pass in parameters. How about a quick look at the essentials?

The movie parameter is the path and name of your swf file. The width and height

parameters are . . . you guessed it, the width and height. The majorversion param-

eter is the major version of the Flash player needed to view your work, and the build

parameter is the build number of that major version. UFO also has a good list of

optional parameters to give you even further control and you can find that list at van

der Sluis’ site.

65

When you have a couple of minutes, I suggest visiting both Stearns’ and van der

Sluis’ sites to get more detailed information on their work. Read up on them and

figure out which one of them will best suit your needs and work best for your

 particular project. You may even find that you’ll want to use one of them for certain

projects and the other one for different projects.

 Default Images

Now, I know this is going to sound really crazy, but what if an end user doesn’t have

Flash installed? Or what if he or she doesn’t have JavaScript turned on? Sure, you

could just say it’s his or her loss, but it’s really your client’s loss (and thereby your

loss). In the interest of driving all possible users to your client and to keep your

client happy with you, let’s serve up a default image in place of the Flash banner to

these unfortunate few people. Basically your default gif or jpg is either a still frame

or animation (gif) that can get the same branding and messaging across that your

Flash file does. While designing and saving your default images for the Web, keep

 file size in mind because the sites that will be showing them generally give you less

than they do for your Flash files.

 Quality Control

Once you have built your ads, it is best to have someone other than yourself test

them. This is simply because you are too close to the project and you know exactly

what to do and when to do it. Quality control’s job is not only to make sure your work

is within the specs it should be, but also to basically try to break your work by doing

nearly anything it takes to do so. While in this step of the process, your ads should

be hammered as if an end user wants to prove that he or she can render your ad

useless (yes, there are people out there that will do it just to show someone else

that they can). In addition, your ads should be tested on different operating systems,

in different browsers, with different versions of the Flash player, with and without the

Flash player and/or JavaScript, and pretty much anything else that may cause them

to either perform in an unexpected manor or not perform at all. The end goal of all

of this is obviously to make sure that your ad shows, plays, and is as interactive as it

should be. As I mentioned in Chapter 2, you should expect to receive fixes and revi-

sions from your quality control person. You’ll also remember from that chapter that

I talked about doing the best you can to test and catch bugs even before your work is

sent to them in order to make everyone’s job just a little easier.

Quality Control

66 4. Preparing and Building Ads

 Sign-off Sheet

Because it can be a little frustrating for several people if there are changes to be

made after the work has been tested for bugs, fixed, and is ready to ship out, you’ll

want to complete another quick task before sending it to quality control: a sign-off

sheet. The sign-off sheet should contain a checklist with items that are common

to all banners that you create. Some of those items might be that the final swf is

within the maximum file size, that the width and height of the final swf match the

 specs, that you have a backup image for users without the Flash player, and that

the banner matches the original creative layout. Of course there should be several

other items on the list, but you get the idea. Once you have checked that all of the

items in the list are complete, you’ll need to get the sign-off sheet from the creative

person and the person in charge of the client account. By getting these sign-off

sheets, you’re minimizing the chance of things like creative changes after the ban-

ners have already been tested.

Inside the Industry

 A good tool to use for quality control is some kind of issue tracking soft-

ware. One of those is OnTime Defect and Feature Management System

by axosoft and you can find it at http://www. axosoft.com.

Prioritize

 I have found that when I do receive my changes, it is best to read through them

before jumping right into making them. By doing this, not only can you prioritize,

but you can determine which changes may affect other changes. As I’m sure you’re

well aware, making changes to one piece of code can cause other codes to react

in unanticipated ways. On the other hand, fixing one problem can also sometimes

cascade into correcting other errors at the same time. When it comes to prioritizing

the changes, there are some things to consider. If the ad is acting differently in a

very, very minor way in a very particular version of a particular browser on a particu-

lar operating system, the change that’s causing that issue may be put lower on the

list. On the other hand, if the ad opens up and doesn’t play or link out to anywhere,

that one needs to go closer to the top. Now, to take it a step further, prioritize by

how long each task will take you to complete or by how involved it is. To be perfectly

honest, I switch this one around depending on how I’m feeling on a given day. What

67

I mean by that is that sometimes I do the tasks that are more involved and take

 longer first and sometimes I knock out the quick ones first. It’s really a personal

preference and you should figure out which way of prioritizing works best for you

today and then again tomorrow and again the day after that.

Check Again

So now that you’ve corrected all of the issues that were reported to you, it’s time

to start the quality control process again. The difference in this round is that the

testing will be mainly focused on the bugs that you fixed before. If any more prob-

lems are found at this time, you’ll need to do another round through quality control

and continue to do so until your banner is virtually unbreakable. Once it has proven

itself worthy, it’s ready for the big show—the Internet.

Conclusion

So what did we cover in this chapter? Well, I started it off with planning. With a good

plan, your work can move much faster than it would without one. Think of how you

want to build your ads before you actually start building them. In your head, picture

how you are going to get from a blank white stage to an interactive work of art in a

banner. From there I talked about setting up your file and we started a new file for

a 300 × 250 Flash banner ad. After that, I talked about cutting images to work in

just such a file. In the next section I went on to explain how to link out of an ad with

 clickTags. While you can still hard code your URLs directly in to your movies, click-

Tags are the industry standard for clicking on links that you want to track. Another

topic that I talked about was scripting to save time. This basically means using any

class files or code snippets over and over again as opposed to rewriting them every

time. Next up, I talked about standardizing your naming and coding conventions

within your team or organization. Local standards can dramatically improve produc-

tion time and make your work easier for you and others to decipher at a later date. I

also talked about HTML and JavaScript for your ads. I introduced (or reintroduced)

you to Geoff Stearns’ SWFObject and Bobby van der Sluis’ Unobtrusive Flash Ob-

ject or UFO. After the HTML and JavaScript came a little information about default

images, and we wrapped it all up by sending our ads through a round of quality

control.

If you remember back in the “Script to Save Time” section, I briefly mentioned

forms in your banners. In Chapter 5 I’ll be going more in depth on setting them up,

using them, and what they mean for your ads.

Conclusion

This page intentionally left blank

69

Forms and Data in Ads

In some ads, you’ll need to gather information from your users to improve their

 experience. You may want to give them the opportunity to select options on a new

car as in the XYZ Motors example earlier in the book or you may want to let them

fill out information for something else altogether. A good example of an ad to use

a form in might also be one for a travel company. Again, for the sake of an example,

let’s choose a fictional name for our travel company—how about TravCo.

TravCo comes to you and says they want to let people know about discount prices

for flights and hotels that people need to reserve for the upcoming holidays. You or

your creative team sit down, design some layouts, and show them to your new cli-

ent. After choosing one of the designs, TravCo lets you know that they would like to

include a form to let users choose the city they are leaving from, city they are travel-

ing to, their departure date, and their return date (the length of stay in the hotel can

be determined from those dates). Once the information is filled in, users can press

a submit button to not only go to TravCo’s site but be taken to a specific page show-

ing the results of the information they entered in the form.

So what did users experience in this? Well, let’s assume they were reading an

article about upcoming holiday events in the city they plan on visiting. While read-

ing, they came across your TravCo banner and decided to go ahead and fill out the

form to see what kind of prices TravCo had to offer. Since they were taken directly to

a results page upon submitting their data, they can choose the flight and hotel they

like and book them right away. There’s no need to search around the TravCo site

to find what they are looking for because you seamlessly took them directly where

Forms and Data in Ads

55CCHAPTERHAPTER

70 5. Forms and Data in Ads

you knew they wanted to go. So now let’s go back behind the scenes again and talk

about what it took to get them there by going through the following sections:

 • Where Are You Going?

 • File Size Consumption

 • Collecting and Passing Data

Where Are You Going?

The biggest piece of information you’ll need when using forms in your banner ads

is exactly where you need to send your users. In some cases, you’ll send them to

a page where the information from the form only partially completes all of the in-

formation needed for results. Our XYZ Motors example would be a good example

of this because there usually isn’t enough room in a banner to include a form that

would ask for all of the information needed about selecting a new car. There’s trim

packages, engine sizes, custom wheels, leather or cloth interior, etc. So you use a

couple of options such as the trim package and paint color and then leave the rest

for users to fill out on the site. While this way doesn’t instantly return the results a

user was looking for on a new car, it does get him or her one step closer to that end

goal. On the other hand, our travel company, TravCo, only needs to know the dates

and cities that a user will travel to and from. With only four pieces of information to

gather, this can easily fit within our banner size and the user can be taken to a page

with full results.

Required Variables

You can probably guess that knowing where you need to send your users is really

only a part of the information you need to complete your task. You’ll also need to

know name and value pairs for the form you’re asking them to complete. You can

get this information in a couple of ways: You can ask your client to get it for you

or you can get it directly from the forms on their site (assuming you can view the

source of their forms). I often choose the latter of those two options simply for the

sake of speed and efficiency. The reason I say speed and efficiency is because your

contact at your client’s offices is not very often one of the people who wrote the

code on their site. Knowing that, you may have to ask your contact for the informa-

tion and expect some delay. The delay is simply because your contact may need to

get your requested information from their site developers before they can relay it

71File Size Consumption

back to you. Depending on how large of a company your client is, it could possibly

be a day or more before you get your answer. So let’s go back to the quicker option

of viewing the source of the forms on their site. Just in case you are unfamiliar with

viewing the source of a website, follow these steps:

 1. Open your web browser and navigate to the website from which you need

information.

 2. Right-click (opt + click on a Mac) and choose the option in the menu to

view the source of the page. In Firefox, the menu option is “View Page

Source,” and in IE it’s “View Source.”

 3. Search for a word or phrase that you know is next to a field in the form

from which you want to gather information.

 4. Once you find the form in the code, you’ll see the name/value pairs you

need.

Now that you have the name/value pairs, you can build out your form and test it to

make sure it works. “But Jason,” you say, “when I build the forms into my banners,

my file size goes way up and I have to crunch the quality of my images so much

that the client will never approve them!” Ah yes, the file size consumption of Flash

components.

File Size Consumption

A key factor to keep in mind from the very begin-

ning of a banner that will contain a form is the

amount of file size that is taken up by the Flash

components you may need to use. Don’t get me

wrong, I love the built-in Flash components. I just

wish they were less of a strain on file size. And don’t

include textFields in my little warning here because

they take up virtually no file size at all (and also be-

cause they aren’t actually components). The main

one you’ll need to be concerned with while working

on banners is the comboBox (a.k.a. the dropdown

menu) component.

Author’s Tip

If you have a form that requires

users to type in their informa-

tion, use a textField set to input

text rather than a textInput com-

ponent. The file size consump-

tion for the textInput compo-

nent is around 25k, whereas the

file size consumption of a text-

Field is much lower at around

118 bytes (Figure 5.1).

72 5. Forms and Data in Ads

Figure 5.1

A dynamic textField (left) uses less file size than a textInput component (right).

The Bulk Is Up Front

When using the comboBox component, you’ll need to plan on it using about 15k.

That’s if you’re using the Flash 6 or 7 components. If you’re using the Flash 8 com-

ponents you can expect more than double that size at about 55k (Figure 5.2). So if

15k is already taken out of the 30k you’re allowed in your specs, what happens when

you need more than one comboBox? This is where you can relax at least a little and

know that the initial hit was the hardest because each additional comboBox after

the first one adds a minuscule amount of file size.

The reason for all of the bulk up front is due to the fact that components inherit

from each other. In other words, when you put that first comboBox in your file, it

also has to pull in the framework for the comboBox component (as well as the

73

scrollbar and buttons used within). However, when you add the second comboBox,

the framework is already in the file. Since the amount of added file size by the

subsequent comboBoxes is so small, it would be safe to say that one comboBox is

equal to three comboBoxes and that’s also equal to five comboBoxes as far as that

file size is concerned.

Figure 5.2

A Flash 6 comboBox (left) uses less file size than a Flash 8 comboBox (right).

So now that you know how much of your file size is going to be used up by compo-

nents, you’ll quickly realize that you don’t have much left to use toward the creative.

This leads me back to the design process of the banner; if you know there are go-

ing to be dropdown menus in the ad, don’t plan too much animation involving the

 raster images of the layout. One way to combat this issue is to build your banners

File Size Consumption

74 5. Forms and Data in Ads

to be served by a rich-media company such as those I talk about in Chapter 7. Since

running your ads from these companies gives you more file size and the option of

loading child movies, you obviously won’t have to worry as much about going over

the size listed in your specs. On the other hand, you may not have the option of

using a rich-media company. In that case there’s the option of building your own

custom comboBox component.

Custom Components

As I mentioned earlier, a Flash component brings its framework into your file

when you place it on the stage and that increases your file size by a relatively large

amount. If you are able to take the time to build your own component, you can save a

large amount of that file size and you’ll be able to customize and reuse it elsewhere.

 ALERT Component creation is a large enough subject that an entire

book could be (and has been) written on that subject alone, so I

won’t go into the actual process myself.

The amount of time it takes you to create your own custom component will depend

on the component itself. Some may take under an hour to build and others may

take days to perfect. The good news is that, if built correctly, you won’t have to go

back to rebuild it when you need it on another future project. Instead, you would be

able to simply place your component on the stage, assign values to its parameters

(if it requires any), and move on with your work. Much like a built-in Flash compo-

nent is heavy with the first use and less thereafter, the bulk of the amount of time

involved in creating and using a custom component is up front as well.

75

Collecting and Passing Data

Now that you have your form put together and you know where it’s taking users, you

need to pass their input to the target location. The details of how you collect the

information might vary from form to form, but how you pass it will generally re-

main the same in most cases. The vast majority of the time you won’t be storing the

information directly from the banner itself, but it may be captured and stored once

it reaches the destination site. On the other hand, the information may only be used

to display the correct page or data once a user has made it to the destination.

 LoadVars() and send() the Data

Once a user has filled out the form and hit the submit button, you’ll need to do

some quick processing behind the scenes to get the information packaged up and

sent over to the correct destination. Granted, you could create a string that is made

of the destination URL plus the concatenated values of the textFields (and you may

actually have to in some cases). This is where I personally think the wonderful Load-

Vars() object comes in very handy and more specifically, it’s send() method.

The LoadVars() object is used to pass variables between Flash and a server. It’s ba-

sically an object for storing variable name/value pairs to send to a URL. It can also

be used to receive variables from a URL, but that isn’t our goal in this case. In a ban-

ner, you’ll want to use the send() method to—you guessed it—send the variables to

a processing page or other destination URL. In Example 5.1, you can see a simple

function that uses the LoadVars.send() method to pass the information gathered in

a form containing a few textFields. This function assumes your form has textFields

named firstNameTxt, lastNameTxt, and zipCodeTxt.

Example 5.1
function sendForm(){

 var sfLv:LoadVars = new LoadVars();

 sfLv.userFirst = firstNameTxt.text;

 sfLv.userLast = lastNameTxt.text;

 sfLv.userZip = zipCodeTxt.text;

 sfLv.send(“http://www.flashadbook.com/loadVarsSend.php”,”_self”,“POST”)

}

Collecting and Passing Data

76 5. Forms and Data in Ads

In this example function, the first thing we do is create a variable named “sfLv,”

which stands for sendFormLoadVars, and make it a new LoadVars() object:

var sfLv:LoadVars = new LoadVars();

Next, we give sfLv some variable names (remember that these variable names

must match the corresponding variable name on the destination URL) to store the

information, and, at the same time, we actually assign the values to those variables

using the text from the textFields in the form:

sfLv.userFirst = firstNameTxt.text;

sfLv.userLast = lastNameTxt.text;

sfLv.userZip = zipCodeTxt.text;

Now that we have the variables packed up and organized all nice and neat, it’s time

to send a user and his or her package of variables on over to his or her destination.

The parameters for the LoadVars.send() method are (in this order): the destination

URL, the target window or frame (if no value is given, “_self” is used), and the op-

tional HTTP protocol method to use with your variables (the default is “GET”).

sfLv.send(“http://www.flashadbook.com/loadVarsSend.php”,”_self”,“POST”)

The destination URL used in this example has been set up to receive the variables

used in this example. If you would like to test this function, you can either set up

your own Flash file that uses it (leave the variable names and destination URL as

they are), or you can go to http://www.flashadbook.com/loadVarsSendForm.php to

see my working version.

77

Conclusion

When you’re working in advertising, your end goal is to get users to do something.

You want them to complete some sort of task and exactly what that task is depends

completely on the client and the product or service being advertised. If you work on

enough online advertising projects (and it doesn’t take many), you’ll inevitably be

involved with one that is asking users to complete the task of filling out a form of

some kind.

Whether you’re asking users to fill out a form with information pertaining to the

color, trim level, and engine size of your client’s new car or you’re asking them to fill

in the dates that they would like to book a flight and hotel for their vacation, you’ll

need to know where to send that information. On top of that, you’ll need to know

what variable names and possible values the processing page will expect when us-

ers are sent to it. There are many ways to get this information including asking your

client for it or even visiting and viewing the source of their version of the same form

on their website.

Something to keep in mind when you’re building banners with forms in them is file

size. If your forms contain a comboBox component, you can plan on it eating up

most of your permitted file size if not all of it. In order to avoid this issue, you can ei-

ther run your ads as rich-media banners or do a little research into building custom

components.

After your form is all laid out and ready to program, you’ll want to use the send()

method of the LoadVars() object. As I said in the “ LoadVars() and send() the Data”

section, this organizes all of your variables into a nice little package. Once your

variables are all packed up like a suitcase, you can send users on their trip to the

destination website. Once there, they’ll unpack all of the variables and receive the

information they were after when they started filling out your form.

Conclusion

This page intentionally left blank

79

File Optimization

Whether you’re building banner ads or microsites, it’s always good practice to do

your best to keep your file sizes as low as you can while still achieving your design

and animation goals. While microsites are going to be bigger than banners, you

don’t want them to be too big, because you may risk the loss of potential viewers.

Those potential viewers are, in turn, potential customers for your client. Banners

need to be kept down in file size for a different reason: specs. When you go over the

file size allowed in the banner’s specs, your banner will most likely get rejected by

the site(s) on which it is running.

Enter file optimization. Optimizing your Flash files can consist of anything from

changing the compression settings on your images to slimming down your code or

using vector drawing instead of imported images. There are several ways to reduce

your file size and knowing some of them cannot only help your sanity, but it can

also help you create your banners or microsites without the need to remove any

features or images.

There are generally two major areas in which you can optimize your files: graph-

ics and code. Within those two areas, there are smaller areas of discussion that I’ve

split into the following sections:

 • Image Types

 • Image Compression

 • Vectors and Fonts

 • Optimizing Code

File Optimization

66CCHAPTERHAPTER

80 6. File Optimization

Image Types

Different images call for different formats. If you have a picture of a person, you’ll

want to use a jpg (you could also use a png, but the jpg’s file size is most likely go-

ing to be smaller). If you have a line drawing, you’ll want to use a gif. You’ll probably

want to save the png for an image that contains any transparency.

 jpg

As mentioned previously, jpg files are best used for photographs or images with

smooth variations of tone and color. They use what is called “lossy” data compres-

sion method, which basically means that the data

are compressed in such a way that they are actu-

ally different from the original data but still close

enough to be used. As the compression levels rise,

the resulting file size lowers. However, with that

higher compression and lower file size you start

to see image artifacts that give less quality to the

 pictures. Figures 6.1 through 6.4 illustrate the

same image with four different quality settings:

100%, 80%, 60%, and 1% (higher quality setting =

lower compression).

Author’s Tip

Both gif and png formats sup-

port transparency. However, gif

files will give you a single pixel

border (usually white) that ap-

pears as an outline around the

opaque area of the image. In

addition to the absence of the

pixel border, png files usually

have better image quality than

gif files. The cost of that better

image quality is, of course, file

size.

81Image Types

Figure 6.1

Image quality: 100%; file size: 224k.

The image in Figure 6.1 has a quality setting of 100% and is hard to distinguish

from the original photograph even though the original would normally take up to

six times more file size. If you are using Photoshop’s “ Save for Web” function, you’ll

notice that 100% is also called “Maximum” quality under the jpg settings.

82 6. File Optimization

Figure 6.2

Image quality: 80%; file size: 104k.

With a quality setting of 80%, Figure 6.2 is around ten times smaller than the un-

compressed original image. At 80%, the image still looks great, but we can still go

lower for the Web. Photoshop’s “ Save for Web” function labels 80% as “Very High”

quality.

83

Figure 6.3

Image quality: 60%; file size: 59.2k.

Figure 6.3 shows the quality that you’ll most likely want to use for your Flash

 projects (or almost any project on the Web). This is because at 60% quality, the im-

age artifacts that start to appear because of compression are extremely small and

mostly unnoticeable at the 72 dots per inch (dpi) that computer monitors display.

The final file size of a jpg saved at 60% quality is typically going to be 20 times

smaller than the original image. In Photoshop’s “ Save for Web” function, 60% is

also called “High” quality and can be found as a preset.

Image Types

84 6. File Optimization

Figure 6.4

Image quality: 1%; file size: 12.9k.

The only real use for including Figure 6.4 at 1%

quality is to illustrate what is happening at a much

more refined level in the previous figures. With the

quality set this low, you can really notice the image

artifacts. With such a poor visual quality, you should

never use an image compressed by this much.

Author’s Tip

Image artifacts are basically

blocks of color that become

larger and more visible as the

 compression rate of an image

gets higher.

85

 gif

Due to the cost of graphics cards to render more than 256 colors at the time the

gif format was first introduced, gif files themselves are limited to a palette of 256

colors. Because of this limitation, gifs are most useful for graphics with relatively

less colors than you would find in a photographic style image; graphics such as

diagrams or cartoon-style drawings. Gifs use a different compression method that

is called “lossless.” Lossless data compression differs from lossy data compression

in that it allows the exact original data to be re-

constructed from the compressed data. This exact

reconstruction is very important when image details

must be seen clearly.

Unlike jpgs, gifs support image transparency. As

mentioned earlier, however, you’ll notice that when

you create a gif with transparent areas, you’ll get a

single pixel of solid color (usually white) around the

nontransparent area. This works fine if the back-

ground of your animation is the same solid color,

but not so well if your background is multicolored or

gradient. See Figures 6.5 and 6.6 for examples of

the same gif on different backgrounds.

Figure 6.5

A gif with transparency on solid white background.

Image Types

Author’s Tip

It should be noted that gifs sup-

port frame-based animations

and that these gif animations

may be used for your non-Flash

backup image. Since you’ll be

 animating within Flash, how-

ever, the subject of animated

gifs is probably better suited for

another book.

86 6. File Optimization

Figure 6.6

A gif with transparency on a gradient background.

 png

The png format was specifically created to replace the gif format. While the file size

of a png graphic may be larger than that of a gif, keep in mind that pngs support

true-color imaging. Like gifs, png files use lossless data compression and support

 transparency. Unlike gifs, pngs don’t include a pixel border around the nontrans-

parent area of your images. Because of the true-color imaging and better alpha

 transparency, pngs are ideal when you have photographic-style images that need

to animate across a multicolor or gradient background. Figure 6.7 illustrates the

same image from Figures 6.5 and 6.6 on the same background. However, the im-

age on the left is a gif and the image on the right is a png. Note the lack of a pixel

border around the nontransparent areas of the png.

87

Figure 6.7

A gif (left) and a png (right) on the same background.

Image Compression

When it comes to optimizing images for use in Flash, I’ve heard advice stating that

compressing your images before importing them is better and that letting Flash do

the compressing is better. I’d like to offer the following “middle of the road” advice:

Compress a little before importing and let Flash do the rest. By that, I mean you

should save your images at a high-quality compression setting and then adjust as

needed within Flash.

High-quality Images

Because you are most likely creating work to be viewed on a computer monitor, you

 don’t need to worry about your images having high resolutions as you would for

another medium such as print. The fact that computer monitors show everything at

72 dpi also helps with your file size. One mistake I’ve seen made by various people

is to save an image from Photoshop with the “Save As” command as opposed to us-

ing the “ Save for Web” option in Photoshop’s File menu (Figure 6.8). The reason I

consider this a mistake is due to file/image control and resulting file size. While the

difference in the resulting file sizes may not be huge in some cases, there is still a

difference that could end up pushing your work just over the constraints set by your

Image Compression

88 6. File Optimization

project specs. The “ Save for Web” option is a very easy process that I’ve outlined in

the following steps:

 1. With your image already open in Photoshop, choose “ Save for Web” from

the File menu (or press Alt + Shift + Ctrl + S) (Figure 6.8).

Figure 6.8

The Photoshop File menu.

89

 2. In the resulting window, choose “JPEG High” (or any other available

choice) from the Presets menu on the right and press the Save button

above the menu (Figure 6.9).

Figure 6.9

The Presets menu in the “ Save for Web” window.

Image Compression

90 6. File Optimization

 3. When the “Save Optimized As” window opens, navigate to the correct

folder where your image will live and name your file accordingly (Figure

6.10).

 4. Use your saved image in your banner or microsite.

Figure 6.10

The “Save Optimized As” window.

Manage Compression in Flash

Once your images are saved, it’s time to bring them into Flash and fine tune some

 compression settings. In some cases, you’ll only have a couple of images and a large

file size to work within. So, before you do any compressing, build and test your Flash

movie to make sure you absolutely need to tweak the settings. If you find that you

91

need to lower the file size of the resulting swf, it’s

time to start modifying some compression settings.

It’s tempting for some to use the JPEG quality slider

in the Publish Settings dialog box (Figure 6.11),

but this will result in changing the compression for

every image in your file. One reason to avoid this is

because sometimes you can get away with apply-

ing a lot of compression to something like a blurry

 background image, but not on the picture of the

main item of focus within your movie.

Author’s Tip

If the images you’ll be using are

going to be “pulled in” as exter-

nal files, you’ll want to manage

their compression from your

image manipulation software

such as Photoshop.

Figure 6.11

The JPEG quality slider in the Publish Settings dialog box.

Image Compression

92 6. File Optimization

If you need to lower your file size, you’ll want to optimize each image on an indi-

vidual basis by adjusting the bitmap properties of the images in your library. The

following steps and Figures 6.12 through 6.15 explain the process with the as-

sumption that you already have a Flash file open that contains images in the library.

 1. With your Flash file open, choose “Library” from the Window menu (or

press Ctrl + L) (Figure 6.12).

Figure 6.12

The Flash Window menu.

93

 2. In the Library window, right-click on the image for which you’d like to

alter the compression settings and choose “Properties” from the menu

(or double-click on the bitmap icon to the left of the image name)

(Figure 6.13).

Figure 6.13

The right-click menu for a Library item.

Image Compression

94 6. File Optimization

 3. In the resulting Bitmap Properties window, make sure the “Compression”

dropdown menu is set to “Photo (JPEG)” and that the “Use imported

JPEG data” checkbox is not selected (Figure 6.14).

Figure 6.14

The Bitmap Properties window.

95

 4. Change the number in the “Quality” input box and press the “Test” but-

ton to see the original file size and the compressed file size of your im-

age (Figure 6.15).

 5. Once you’re happy with the compressed size, press OK and your image is

ready to go.

Figure 6.15

Original and compressed file sizes of the modified image.

Image Compression

96 6. File Optimization

 Vectors and Fonts

There are times when a simple image can be recreated as a vector graphic instead

of using a raster (bitmap) graphic. Due to processor usage, the simplicity of the im-

age itself should play a key role in your decision to use vector or raster. Keep an eye

out for images that can be redrawn with a small number of lines as well as flat col-

ors instead of gradients. If you find that you have come across one of these images

in your work, take the time to redraw it as a vector graphic, and you’ll generally save

some file size, because the vector image is made up of calculations that are drawn

to the screen rather than a large number of static, colored pixels.

Scaling and Zooming

When used correctly, vector graphics will not only lower your file size, but, unlike

 raster images, they offer the ability to be indefinitely scaled up or zoomed in on

without any loss in quality. For example, if you scaled a jpg of a plain red circle with

a black outline to 500%, you would find that the curve of the circle is not actually

a smooth curve at all, but a series of pixels whose square shape creates a jagged

edge. On the other hand, the same red circle created as a vector graphic proves

to have nice smooth curves no matter how much you increase its scale. In Figure

6.16, I’ve created a drawing of the red circle and saved it as both a raster and a

 vector graphic. I then zoomed in on the same area of each to show the results. The

smoother vector graphic is on the left while the raster image is on the right.

Vector Considerations

While using vector graphics correctly can save file size and increase the scalability

of the image, there are some things to keep in mind such as the number of colors,

the use of gradients, and the complexity of the graphic as a whole. If your artwork

starts to get too complicated and has lines numbering in the high hundreds, or

even reaches above one thousand, you may want to reconsider using a raster image

instead. While the vector recreation may be prettier and you may be able to zoom

in on it much closer, you have to remember that the Flash Player on the end user’s

computer will have to recalculate every line contained within your drawing every

time that drawing moves even a single pixel. On its own, a very complicated vector

line drawing can end up slowing the frame rate of your movie to a mere crawl. When

you start adding other factors like user interaction, other animations happening at

the same time, and functions running their code when they’re called, you can imag-

ine the potential consequences.

97

Figure 6.16

 Vector versus raster zooming and scaling.

The colors you use in your vector art should be just as much of a consideration as

the complexity of the lines. As you might imagine, gradients are more complicated

than solids and they contain a good deal more data for the Flash Player to process.

Obviously gradients can’t be avoided 100% of the time, but you should try to limit

how often you use them and how many you have on the screen at any given time

(especially if they will be animated).

Text and Fonts

Something else to consider in the optimization of your work is text and fonts. I’m

including them in this chapter because they can sometimes bloat your file size by

great amounts without you even realizing it’s happening. They can also be treated

in the wrong way and end up looking like a big blurry, unreadable mess. When

you’re working with a specific font that is used by your client, don’t embed the entire

font if the text is going to be static. Instead, embed only the letters, numbers, and

Vectors and Fonts

98 6. File Optimization

punctuation that will actually be used. Another

option for static areas of text is to use an image. It

might sound a little anti-productive in the sense of

optimization, but if you only have one or two words

in a particular font, sometimes an image produces

a smaller file size than embedding any of the font

at all.

Optimizing Code

Optimizing your code can be just as important as

optimizing your images in terms of both file size

and processor usage. As with most steps in your

 projects, it is always best to keep code optimization

in mind from the very start before you have written

a single line. However, we all know that there are

times when we just need to make it work as quickly

as we can, no matter what it takes. The trick to those

hurried times is to remember that we need to set

time aside that we can use later to go back and opti-

mize, or “clean up,” our code. In the rest of this sec-

tion I’ll be passing on a few suggestions that have

either been passed on to me or that I have found in

my own projects over time.

Don’t Repeat Yourself

I often find that I remind myself not to reinvent the

wheel while I’m working on projects. An example of

what I mean would be that if I find myself writing a

function that does something very similar to an-

other function I’ve already written within the same

project, I can usually modify the first one to serve

the needs of both. I remember a particular micro-

site I was working on at the same time I was work-

ing on a large round of banners. While it’s not unusual to work on more than one

project at a time or for those projects to have tight deadlines, this site had grown

Author’s Tip

A common misconception and

mistake people make when

dealing with fonts is to break

them apart by choosing “ Break

Apart” from the “Modify” menu

or by pressing Ctrl + B. Break-

ing your text apart actually turns

the letters (numbers, punc-

tuation, etc.) into shapes and

lines. This takes us back to the

“Vector Considerations” section

above where I suggested avoid-

ing complicated vectors (some

 fonts can have extremely com-

plicated outlines). Additionally,

your text can’t be edited after

you’ve broken it apart. Imagine

if you were working on a project

where you were creating 30

banners and all of them had

the same tagline in them. Now

imagine you break apart the

text for the taglines in all of

them. Finally, imagine that you

have finished creating all of the

banners and you’re told that

one of the words is misspelled.

That could get very frustrating

very fast.

99

in size and scope as it progressed. While the project was in mid-swing, new sec-

tions and functionality were being added that affected the way the site was being

 programmed. The deadline, however, could not be adjusted due to critical timing

on a product launch.

In order to get the new sections built into the site, I had to work fast. And because

those sections were added after all planning had been completed, I had to get a

little “creative” in my programming. The end result, I’m a little embarrassed to say,

was a fairly tangled web of messy code in which I had multiple functions complet-

ing the same tasks on the same objects and variables. If you’ve ever run into this sit-

uation, you know how confusing it can be to go back in and make changes or fixes to

that kind of “ spaghetti code.” You quickly discover that you’re asking questions like,

“Did I call function A from there or was it function C?” or, “Well, I had to fix function

A and function B does the same thing . . . do I need to fix it as well? Am I even call-

ing function B from anywhere?” Once you hit that point, you have no choice but to

take the time to go back and optimize your code.

Allow the Flash Player to Relax

Computers have come a long, long way since I first sat down in front of my dad’s

Apple II with a beginner’s game programming book for children (how’s that for

dating myself?). They’ve come a long way in graphics, hard disk space, physical

size, memory, and speed (as well as many other aspects). As the computers were

advanced in all of these ways, software developers wrote their programs to utilize

the changes, and we, as Flash developers, have done so as well. However, for as

fast and efficient as a computer may be, it can still be “bogged down” without too

much effort. And, like the computer itself, the Flash Player in which your work is

viewed can be bogged down or even stop responding if the correct preventative

care is not taken.

The Flash authoring environment will let you know about a few problems in this

area such as an infinite loop. What it won’t tell you is how to optimize and/or speed

up your working processes. Here are a few tips that will help the Flash Player run

more smoothly:

If you’re looping through several objects and you’re calling a simple function that

affects each of those objects individually, move the contents of that function inside

the loop. In other words, don’t make the Flash Player start a loop, find the object to

Optimizing Code

100 6. File Optimization

be affected, go outside the loop to find the function you’re calling, run the func-

tion contents on the object, and then return to the loop only to do it all again with

another object. Instead, let the Flash Player start the loop, find the object, affect it,

and move on to the next one.

When you give your objects data types, avoid overusing the ambiguous object type.

Instead, figure out which type is better suited for the needs of the object, such as

string, number, or array. While those three types are very different, there may be

times when more than one type will suit your immediate needs. The object type

should only be used when there is no other option, and if you’re unsure which type

to use, the Help section of the Flash authoring environment should be able to an-

swer your question.

If you’re writing a for loop that is running the length of an array, avoid actually using

 Array.length in the for statement. Instead, assign the value of the array length to a

variable that you can then reference. Example 6.1 shows the two different ways.

Example 6.1
//Assign the value of myArr.length to a variable before using it in a for loop:

var myArr:Array = new Array(“item1”,“item2”,“item3”,“item4”);

var myArrLen:Number = myArray.length;

for(var i:Number = 0; i < myArrLen; i++){

 trace(“Array item at position ” + i + “ is: ” + myArr[i];

}

//Instead of accessing it directly:

var myArr:Array = new Array(“item1”,“item2”,“item3”,“item4”);

for(var i:Number = 0; i < myArray.length; i++){

 trace(“Array item at position ” + i + “ is: ” + myArr[i];

}

101

Conclusion

As I’ve covered in this chapter, optimizing your files can be achieved on several

levels. When it comes to file size, you should always optimize as much as you can

without making heavily noticeable sacrifices to image quality or functionality. When

you prepare your images for your Flash files, remember to choose the best file type

for the individual image and to save that image at a high enough quality so that it’s

clear on your monitor. If you see obvious image artifacts, raise the quality of the im-

age before you use it in Flash. Once inside Flash, manage the compression of your

images on an individual basis from the Library window instead of globally from the

File Publish Settings window.

Use vector images when you can, but remember to use them wisely. If you’ve got

a visually complicated image, go ahead and use the raster version. However, if that

image can be recreated with a minimal number of lines and colors, you may benefit

from drawing it in vector format in order to achieve a possibly smoother representa-

tion that can be scaled without worry of quality loss. In addition to keeping the num-

ber of lines and colors to a minimum, do the same with gradients, as they require

the Flash Player to work just a little harder. As for fonts, try to embed only what you

need to embed and only if you need to embed them at all. If you need to use a spe-

cific font for only one or two words, try using a raster image of those words, and try

to avoid breaking the text apart with the Ctrl + B combination or the “ Break Apart”

from the “Modify” menu.

Your code should be optimized not only for performance, but for readability and

ease of modification as well. As you are writing your ActionScript, pay attention to

what your different functions are doing. If you have two functions that are doing very

nearly the same thing, consolidate them into one function that can handle both of

your objectives. Another thing I like to suggest is to look back through your code at

certain intervals to make sure you aren’t repeating yourself or that you haven’t left

any code that you aren’t using anymore. Remember that making your code base

smaller optimizes your file now and your time later.

In Chapter 7, I’ll be talking about some third-party rich-media companies like Eye-

blaster and PointRoll. As you read about them, you’ll learn that one of the benefits

to utilizing their technologies is that you are allowed more file size for your ban-

ners. However, that fact should never keep you from optimizing your work, because

one of the overall goals of any project should be an end product with a file size

that’s as small as it can reasonably be.

Conclusion

This page intentionally left blank

103

Third-party Rich-media

Technologies

Third-party rich-media technologies are a powerful tool when it comes to advertis-

ing. As I mentioned previously, these technologies are available through companies

who specialize in opening new, more captivating channels for advertisers to utilize.

Without these technologies in place, Flash banners would most likely be limited to

the regular old standard ads and constrained to 20–30k in file size. However, since

they are available and ready to be used, we can create banners that are capable of

everything from playing video to expanding out to a larger size to working like tiny

websites (mini-microsites, if you will). All of these options offered by rich-media

companies afford us the room to give users more information than we could fit in

a standard Flash banner. And did I mention that the file sizes allowed are usually

much larger than standard ads, or that unlike standard ads, you can load external

files such as child swfs, xml files, and jpgs? There is even an option out there to

 stream full-screen video. So let’s get to the sections in this chapter:

 • When to Utilize a Rich-media Technology

 • Rich-media Companies

Third-party Rich-media Technologies

77CCHAPTERHAPTER

104 7. Third-party Rich-media Technologies

When to Utilize a Rich-media Technology

One question that is often asked is, “How do I know when to choose between a rich-

media technology and a standard Flash ad?” As I mentioned in Chapter 1, a key fac-

tor in this decision can be cost. However, because there are so many extra features

and advantages gained through using a rich-media technology, your clients may

decide that it’s well worth the extra money and it’s up to you to inform them when

they should and shouldn’t utilize the technology.

Audio/ Video

Inside the Industry

 With the audio and video capabilities of the Internet increasing by leaps

and bounds every day, more and more video is being produced specifi-

cally for online use. While some ads and microsites may show video that

was originally created for television, others are allowing viewers to watch

content that was scripted, directed, and produced especially for that ad

or site.

For those that have done any work with audio and/or video, it’s pretty obvious that

you’d be safe betting against much (if any) of it fitting in a Flash file that’s con-

strained to 30k. Those banner ads that will use audio or video are prime candidates

for use of a rich-media technology. With companies like Eyeblaster, PointRoll, and

 DART Motif by DoubleClick, your media can actually be streamed in to the ad.

The only usual requirement is that you can’t start the audio until a user interacts

with the banner. While it may seem that it would be beneficial to start playing your

 audio as soon as the banner appears on a user’s screen, this requirement can actu-

ally work in your favor. If a user went to a website that was running your ad and your

ad immediately started playing sounds, that user could very easily get annoyed

with your banner and thereby annoyed with your client. Imagine a user at work in a

quiet office and he or she doesn’t realize the speakers are turned up, and all of the

sudden your ad starts blaring out the audio from one of your client’s radio commer-

cials. Another bad situation would be the potential consumer that is using a dial-up

connection (yes, they are still out there in fairly large numbers). While the key word

is “ streaming,” you still don’t want to be a bandwidth hog unless users want you to

105When to Utilize a Rich-media Technology

be one. If any of these users run into your banner again, they may start to build a

worse opinion about your client than they would have otherwise. On the other hand,

if you put users in control, the opposite may happen. They may watch the video and

be entertained by it or they may pay more attention and learn something about your

client that they didn’t know before. The key, again, is putting users in control rather

than forcing it on them and eating up their bandwidth without their consent. An-

other good thing about waiting for user interaction is that you generally start the

video over when they click. By doing this, you can be

sure that users viewed the entire video (or at least

that they didn’t miss the beginning of it).

 Dynamic Content in Your Ads

I was once approached to answer a question about

feeding dynamic content into a banner. The rea-

son, in this particular case, was because we had

just launched a microsite that was entirely driven

by user-generated content. In the site, a user could

fill out a form to submit two different sides on any

topic. If the topic was approved by the microsite’s

administrator, then other users could go on to de-

bate which of the two sides of the topic was better.

For example, one topic might be sports and one

discussion in that topic might be about football and fútbol. Users would go to the

microsite to use text, audio, or video to weigh in on the side they liked better. In ad-

dition, users could simply click a button to vote on their favorite side without saying

anything at all.

Getting back to the banner ads with the dynamic

content; with such a site running off of user-gener-

ated content, the topics of discussion are always

current and up to date with real-world events. Since

the microsite always has current information, the

 banners needed to have current information as well.

The answer was to build a single round of banners

that could be updated “on the fly.” Since regular 30k

 standard Flash banners don’t allow the luxury of

loading external files or content, rich media was the

only way to go.

Author’s Tip

When you’re working with video

in a rich-media banner, check

with the rich-media company to

see if they have a Flash video

player already built for use in

their system. They may have

special code to work with their

 streaming servers, and you’ll

just need to skin their player to

match your design.

Author’s Tip

Remember that if you want the

capability to load external files

such as xml or images, you’re

going to need to use a rich-

 media company to serve your

ads.

106 7. Third-party Rich-media Technologies

Once the banners were built, they would pull their content from an external xml file

that could be changed at any time deemed necessary. And since all of the content

within the banner was dynamic, only one banner had to be built for each size. In

other words, even though there were ten different sites running the 160 × 600 ad

with different content on each banner, there was only one 160 × 600 banner built.

The readers on site A might be interested in different topics of discussion than the

readers on site B, and using the rich-media technologies allowed us to give them

each the dynamic content they were interested in.

Extra Loads

If you have clients who refuse to show anything less than their entire line of pro-

ducts in a single banner, they’re going to need to understand what that means in

terms of file size. Once you find yourself having to use a certain amount of photo-

graphs in a banner, it doesn’t matter how much you compress your images, they

simply won’t fit inside a file size constraint of 30k or less. Enter the rich-media

technologies with their increased file size limitations and ability to load external

files (such as jpg or swf).

This is one of the easy ones to explain to clients who are having a hard time under-

standing why they need to incur the extra cost involved in utilizing rich-media tech-

nology. If you run into any issues in this area, you can simply show your clients the

file size of a Flash movie with all of the required images. They will appreciate that

you have actually taken the time to both explain and show them why their banners

would be turned away from any site on which they are supposed to be shown. If they

still insist on having the same number of images in the banner, they will feel better

about spending the extra money.

More Interactivity

Another thing to consider when choosing between a rich-media technology and a

 standard Flash banner ad is the level of interactivity available with each. Regular

ads basically give you a defined area in which to show your content and a set file

size in which to do so. On the other hand, rich-media technologies offer not only

the previously mentioned option to load external files and content, but the ability to

literally take your creation outside of the box. With floating ads, expandable ads, in-

teractive video ads, and many more options, there isn’t much that you can’t accom-

plish in terms of communicating your message to your clients’ potential customers.

107

Inside the Industry

 While I only list a couple of the rich-media ad formats here, there

are many, many more available for your use. To learn more about all

of the formats, visit the websites of companies like Eyeblaster (http://

www.eyeblaster.com), PointRoll (http://www.pointroll.com), and DART

Motif by DoubleClick (http://www.dartmotif.com).

Floating Ads

Floating ads are ads that actually appear over the content of the page on which they

are played. Since they are played on a transparent layer above the page, they can

take on any shape you like within a certain defined area. An example might be if you

created a floating ad for an auto manufacturer and you actually built the ad to take

on the shape of their newest car.

 Expandable Ads

Expandable banners are a great place to pack a large amount of information into

a small space. These ads are where the mini-microsites I mentioned at the start of

this chapter would fit in. In a nutshell, your expandable banners will be made of

more than one Flash movie: the main movie, which might be put together like a

regular 160 × 600 (or one of several other sizes), and the child movies or “ panels.”

The number of panels your ad has depends on how much information there is and

exactly how it will be presented. When a user interacts with the main banner, a

 panel movie is loaded and expands the overall size of the advertisement. From

there, the user might be able to open more panels or simply click the (usually

 required) close button if he or she is finished.

When to Utilize a Rich-media Technology

108 7. Third-party Rich-media Technologies

Rich-media Companies

There are many choices out there when it comes to rich-media companies, and

while several of them started out specialized in one or two products (such as ex-

pandable units, floating ads, or video ads), most of them have come to offer a wide

range of options in recent years. Some, like PointRoll (http://www.pointroll.com)

and DART Motif by DoubleClick (http://www.dartmotif.com), offer a downloadable

file that integrates directly into the Flash authoring environment to help speed up

and streamline your work. Some other companies, like Eyeblaster (http://www

.eyeblaster.com), offer an online tool for setting up your ads. Once you log into their

tool, you simply upload your files, change a few settings accordingly, and assign

the ad to the correct placement. Among the seemingly endless amount of other

options available are companies like Vividas (http://www.vividas.com) with their

full-screen video products, or Viewpoint (http://www.viewpoint.com) with their

Video Cube that allows you to utilize each of six sides on a user-controlled three-

dimensional cube.

They’re Different Like Each Other

As I’ll discuss in Chapter 8, “ Trafficking and Track-

ing Your Ads,” all of these rich-media companies

have some form of tracking and reporting. How-

ever, their reporting is not currently as robust as a

 standard ad serving company’s reporting. In gen-

eral, you’ll be able to get reports on clicks, interac-

tions, and impressions. The main thing that won’t

be as detailed in the reporting is the conversions.

Since the majority of the rich-media companies

you’ll work with have come to offer a lot of the

same options when it comes to ad formats, you

may want to research their costs and get a feel

for their levels of service. Just like with any prod-

uct or service, you’re going to find different rates

and you’re going to be happier with how you are

treated as a customer by one company as com-

pared to how you are treated by another company.

Keep in mind that levels of service shouldn’t only

be measured on how you were treated as a person

Author’s Tip

The different rich-media compa-

nies offer several of the same ad

formats, but at the same time,

each of them may also offer

something a little different than

the rest. I won’t try to sway you

one way or the other, but it’s not

an entirely bad idea to utilize one

more than the others. The rea-

son being is that the processes

involved in running ads with each

company are different, and it’s

good to use the same process as

much as possible. If you need to

run an ad format that isn’t avail-

able with your primary rich-media

company, simply move it over to

the company that has that format.

109

and customer, but how much help and support the company is able to provide when

you need them to.

Conclusion

As online advertisers, rich-media companies and their technologies offer us the

means to create advertising experiences that might otherwise be unavailable. While

those options are nice to have at our disposal, it’s important to know when to use

them and when to stick with a standard Flash banner. A major aspect of any cam-

paign that will come into play when you’re making the decision is cost; since you’re

getting more out of the advertising and technology, the price is going to be higher.

As I mentioned in this chapter, the options you have with a rich-media advertising

technology will allow you to create banners that incorporate more engaging con-

tent such as audio and video. You’re also afforded the luxury of loading external

“child” files, which you wouldn’t be able to fit within certain file size constraints, and

the ability to load dynamic content from something like an xml file.

When it comes to the companies that house these technologies, you’ll want to

spend a little time doing some research to see which one you should go with. While

there are those that offer options not available by any others, a majority of them

offer many of the same ad formats. The main differences you’ll find between them

may come down to cost of their products and their customer service levels.

Conclusion

This page intentionally left blank

111

 Traffi cking and Tracking

Your Ads

 Trafficking your ads is when you actually load them into an ad server system or on

the hosting site. This is the step in the process when your work is actually made

“live” on the Internet. This is very obviously an important step in the life of a project,

because without it, no one would ever see the ads and no one would ever make it

to the site that is being promoted within those ads (at least not by way of the ads

themselves).

Once the banners are live, you will be able to track aspects like impressions, in-

teractions, and clicks (I’ll explain these later in this chapter), as well as determine

the cost of these metrics. You can then use the gathered information to optimize

the campaign. Before any of this is possible, and even before the banners are built

and programmed, there are other steps that take place, such as the media buy. If

you have a media team, they are no doubt involved from the very beginning of a

campaign all the way through to the end (and even beyond). It’s the steps they take

that I’ll be talking about in this chapter, and I’ll lay those steps out in the following

sections:

 • The Media Buy

 • Ad Server Tools

 • Tracking Your Ads

 • Rich-media Ads

 • Site-served Ads

 Trafficking and Tracking Your Ads

88CCHAPTERHAPTER

112 8. Trafficking and Tracking Your Ads

The Media Buy

Aside from actually gaining a new client or having an existing client let you know

they’d like to run a new campaign, the media buy is one of the very first steps that

take place in the life of a banner project. Much like trafficking your ads at the end

of the project, the media buy is a very important step that could very well decide

the fate of the campaign itself. If done properly, the ads will be seen by the correct

 target audience and they will perform very well. However, if the wrong placements

are purchased and the ads end up running on sites that have absolutely nothing to

do with your target audience, they will perform poorly and large amounts of money

can be lost in the process.

 Target Audience

There are certain people who you want to respond to your campaign, and as harsh

as it may sound, there are also certain people whose response is less important (on

a particular campaign). Those people who you are trying to reach are called your

“ target audience,” and they will vary from client to client and sometimes even from

campaign to campaign. They are groups of people who fit into predefined catego-

ries involving their lifestyles, behaviors, and other key factors.

The audience can generally be narrowed down using different levels of targeting

such as demographics. Demographics are essentially the characteristics of a given

population and include variables like race, age, gender, income, employment, and

location (as well as others). With the information gained by demographic studies,

you can gain information like what type of person is visiting a given website. For

example, upon doing a study for website A, you may find that the vast majority of its

visitors are married, middle-class females in the 25–54 age range.

Another part of the study of your audience might be the psychographics. Similar

to the demographics, the psychographics offer insight to different aspects of the

given population. The difference is that with psychographics you gain a little deeper

information than with demographics. The information gained here would be attri-

butes related to users’ personalities, attitudes, interests, and several other “under

the surface” factors. You may also hear these factors called “ IAO variables,” which

is short for interests, attitudes, and opinions. By combining your demographics with

your psychographics, you can further narrow your audience to make sure your ads

are being seen by the correct people. To carry the demographic example a step

further, we may now have targeted married, middle-class females who are 25–54

113The Media Buy

years old, and are interested in entertainment and have purchased items online in

the past six months. With that kind of information sitting directly in front of you, it’s

hard not to hit your intended audience.

The target audience for a given campaign will most likely be given to you by your

client, and it will not always be the audience you thought it would be. For example,

you may have a client whose product or service is typically associated with senior

citizens. When your client tells you they want to target men who are 25 and older,

you may be surprised. However, when you stop to think about the fact that your

client’s product is already associated with senior citizens, you’ll find out that they

most likely already have a hold on them. Therefore, it would make more sense to

spend the advertising dollars targeting a new group that is not currently using the

product/service to its full potential.

So now that you know who your target audience is, the next challenge is how to

find them. There are several ways of doing so right at your fingertips. If you do a

search online for something along the lines of “Internet market research,” you’ll

get results pointing to many websites and companies where you’ll find both free

and fee-based information. As you might guess, the fee-based information is

going to be much more in depth and probably more reliable as well. One of the

industry leaders in market research is Nielsen//NetRatings, which can be found

at http://www.nielsen-netratings.com. Nielson//NetRatings’ extensive audience

research and solutions offer advertising agencies an easy way to find their target

audience for any given campaign. By utilizing the information found in their re-

search, you’ll know that your ads are being shown to the intended viewers thereby

maximizing your client’s advertising dollars.

 Placement Availability

As I’ve said about most of the topics in this book, placing your ads on a website

takes forethought. While there are some sites out there that may be able to run

your ad the very day you first call them, they are getting to be few and far between.

Most websites’ policies and procedures require advance notice before running any

ads on their pages, and exactly how far in advance can depend on several factors.

Some of the factors involved can include things like what dates you plan on running

your banners or how many other advertisers are running ads at the same time in the

same place.

114 8. Trafficking and Tracking Your Ads

It is a good idea to plan on purchasing your place-

ments about three months in advance. However,

there are special dates where you may be better off

getting your order in six months or more in ad-

vance. The Super Bowl is a good example. We all

know and love the television commercials that air

during the Super Bowl, and with more and more of

those commercials directing viewers to websites,

the traffic to those sites is increased by leaps and

bounds during (and after) the game. In addition to

that online traffic is the increased number of visitors

to sports-related sites leading up to, during, and

after the Super Bowl. Since the traffic to all of these

sites grows so much during these times they have

become prime spots for online advertising, and, as

with anything in high demand, this leads to place-

ments selling out more quickly.

 Ad Rotation

Since I’ve used the analogy of a time-share condo to explain placements sell-

ing out, I’ll go ahead and use it again for ad rotation. If the placement itself is the

condo, then your ad is a renter. There are other renters (ads) out there that are

sharing the condo (placement) with yours, but they all get it at individual times.

However, the placement isn’t normally purchased by the day or week; it is instead

purchased in blocks of 1,000 impressions (each time your ad is viewed, it’s called

an impression).

Author’s Tip

Available placements can

indeed sell out on any given

 website, and it happens more

and more every year. While it

makes complete sense that this

can happen, it’s not something

that everyone thinks about

every day. One way to look at

it is like a time-share condo; in

any given week, there are only

a certain number of hours that

can be split between the rent-

ers. Once those hours are all

taken, you have to move to the

next week if you want to spend

your vacation there.

115

Inside the Industry

 When purchasing banner placements on websites, the placements are

bought in blocks of 1,000 impressions. The price of those blocks, which

can range anywhere from $2 all the way up to $100–$200 for standard

Flash banners and an additional cost from around 80 cents to around

$5 for rich-media banners, is known as the CPM (or cost per thousand,

where the M is the roman numeral for one thousand). The actual per-

centage that your purchase works out to will vary from site to site and

that percentage is called the share of voice.

A common misunderstanding about ad rotation is how the time is split up among

banners. If you maintain your own website, you may have seen ad rotation scripts

that other developers have so kindly distributed free of charge. Most of them (that

I’ve seen) display different ads, which have been predetermined by you, based on

percentages. For example, you may tell the script to show banner A 75% of the

time and banner B the other 25% of the time. However, running banners with ad

servers doesn’t work this way due to the fact that percentages vary greatly from site

to site. Where two million impressions may be equal to 1% on a very popular and

busy site, that same two million may be equal to 50% on a less popular site. This

all leads back to the previous mention on purchasing placements in blocks of 1,000

impressions.

The Media Buy

116 8. Trafficking and Tracking Your Ads

Ad Server Tools

A huge plus to using an ad serving company to host your banners is not only the

level of control you keep over your work, but the set of tools they have available to

do so. The ad server tools allow you to set up your entire campaign, upload your

work, enter every piece of important information that pertains to the campaign, and

have the ability to actually look back at that information to track how the campaign

is performing. I’ll go into more detail on tracking later in this chapter.

Each ad server is different, but they all have pretty much the same capabilities

when it comes to the workflow for getting your banners up and running. Here’s a

very general breakdown of the steps involved.

 1. Enter your media plan.

 2. Load your banner files and destination URL.

 3. Test your banners.

 4. Assign each banner to its placement to get the “tag.”

 5. Send the “tag” to the site that is running your ad.

Enter Your Media Plan

The first step involved in getting your banners running on an ad server is to enter the

media plan into the ad server tool. The media plan will consist of items such as the

 placements for your banners, the number of impressions that have been purchased

for the campaign, all of the costs involved with running the banners (such as the cost

of the impression), and the dates your banners will actually be running. This infor-

mation will be extremely important in tracking the performance of your ads.

Load Your Banner Files and Destination URL

This step in the process is pretty self-explanatory. Each ad server tool has an inter-

face that allows you to upload your files to their servers. For each file you upload,

you enter the URL that users will be directed to when they click on the banner. The

URL that is entered here is the URL that is passed in to the variable you may know

as “ clickTag” (see Chapter 4).

117

Test Your Banners

Test, test, test. While writing this book, I’ve come to notice just how much testing

we do on each and every banner that gets created. I’ve also come to notice that

the testing itself becomes such second nature in the work that some of us may

not even realize just how often we’re doing it, and that’s not a bad thing by any

stretch of the imagination. As noted by this step, testing should continue all the way

through the life of a project, and testing the banners at this point is very important

because they are only a few clicks away from being visible to the rest of the world.

Get the “Tag”

Once the banners have been uploaded and tested it’s time to generate the “tag” for

the banner. The tag is basically a reference back to the code that will house the ban-

ner. That code may be for something like an iFrame or the JavaScript that will place

the banner on the page in which it will be shown. Your ad server will typically have a

wizard that will walk you through steps to generate the tag.

Send the “Tag”

After the tag has been generated and everyone has approved the banner, it’s time

to take the final step in releasing your banner to the world by sending the tag to the

 site from which you have purchased your impressions. As I mentioned before, the

tag is a reference to a piece of code that will house your banner, and by sending a

tag to the site, you are not sending your actual files.

Ad Server Tools

118 8. Trafficking and Tracking Your Ads

Tracking Your Ads

After your ads have been set up in the ad server tools, the next thing to do after

a predetermined amount of time has passed is track their performance. Tracking

the performance of your banners can give you a wealth of information that can be

used, in part, on future projects. Information relating to how many times the ad

was viewed, how many viewers clicked on it, and

whether or not the ad ended up helping your client

make a profit on their advertising dollars. All of this

information is available in the same ad server tools

that were used to launch your banners. It’s the rea-

son you entered all of the details about the media

plan in step one of the previous section, and be-

cause of the tracking, you will be able to show your

client their return on investment (ROI) in regards to

a particular campaign.

 Impressions, Interactions, Clicks, and More

People often get the terms impressions, interac-
tions, and clicks confused with one another the first

few times they hear them. I’ll go ahead and admit

now that when I first came into the advertising field,

I wasn’t 100% sure if I was using each term correctly

when I spoke of them. However, I’m happy to say

that I quickly caught on and can now confidently

pass the information on.

When the tag that was explained in the previous

section is called, your banner is shown and an im-
pression is counted. Also mentioned earlier in this

chapter is the fact that the number of times your

ad will be shown is predetermined by the amount of impressions that have been

purchased in the media plan.

Interactions and clicks can be very easily mixed up just by looking at the words

themselves. The difference between the two is that when an interaction is counted,

it means that someone interacted with something in the banner, but didn’t actually

visit the destination site. Interactions can be anything from rolling over a certain

Author’s Tip

When you sit down to figure out

the ROI for a direct marketing

 campaign, keep in mind that

the number of sales for the

particular product or service

may be skewed. This is due to

a gray area that lies in between

the direct marketing approach

and the brand awareness ap-

proach. The most likely course

of customer action that would

fall into this gray area would

be if they viewed your ad for a

product and then later drove to

the store to purchase (as op-

posed to buying online). Since

the in-store purchase cannot be

directly tied to the banner view,

the sale cannot be figured in

with the ROI.

119

item in the banner to scrolling through images in the banner. A click is different,

because when a click is tracked, it means someone literally clicked on the banner

and was taken to the promoted website.

Since you now have the numbers on hand for how many times your ad was shown

(impressions) and the number of times someone clicked on the ad to visit the

destination website (clicks), you can find out what the click through rate (CTR) is.

The CTR is the rate at which users click on your ad based on how many times it was

shown. In most cases the math will be done for you by the ad server tool, but just in

case, the formula is simply clicks divided by impressions (clicks ÷ impressions). So

if you have 1,000 impressions and 100 users clicked on the ad, your CTR would be

as follows: 100 ÷ 1,000 = 0.1 or 10%.

Finally, a conversion is counted when a user has clicked on your banner, been di-

rected to the destination website, and performed the action that you intended for

him or her to perform. For example, your banner may have directed a user to a page

with an email sign-up form. If he or she fills out the form and submits it, a conver-

sion is counted. Likewise, you may have directed him or her to a page where he or

she could instantly purchase your client’s product. Again, if he or she makes the

purchase, a conversion is counted.

Determining the “Cost per Everything”

Now comes the part where you find out how well the banners are working for their

money. If you aren’t already working in the online advertising world, you may have

never heard several of the terms I’m about to talk about. Then again, you may be

working in online advertising but never paid much attention to what these terms

mean. Either way, I’m about to explain a few costs that are determined by the infor-

mation gained from tracking your banners’ performance.

In regard to figuring out how well an ad was performing on a cost basis, I was once

jokingly told that “We have a cost per everything.” There’s a cost per click, a cost per

interaction, a cost per conversion, etc. There are formulas for figuring out each of

these costs but they will most likely be done for you in the ad server tool. In short,

the ads that are performing better will have lower costs associated with them, and

the ones that are performing worse will have higher costs. The importance of know-

ing how much each aspect of your ad is costing comes into play on several occa-

sions and one of those is when it’s time to optimize the campaign.

Tracking Your Ads

120 8. Trafficking and Tracking Your Ads

Optimize Your Campaign

At some point enough time will have passed that you can use the numbers from

your tracking and costs to optimize your campaign. When you optimize your cam-

paign, you’re making the banners work more efficiently for the money spent, which

in turn means that your client is getting a better return on their advertising dollars.

To figure out how exactly your campaign should be optimized is pretty straightfor-

ward. The first step is to study the performance of each banner on each site. After

comparing them all against each other to find which ones are doing better, you’ll

know which ones to remove and which ones to keep. However, removing some and

keeping some is only part of the optimization. After you remove the ads that are

performing poorly, you need to increase the number of times the better perform-

ing ads are shown. If an ad is performing well, increasing the number of times it’s

shown will mean even more clicks, and, as I mentioned earlier, more clicks equals

lower costs and lower costs equals happy clients.

Rich-media Ads

 Trafficking and tracking rich-media ads is a little bit different since there is a nec-

essary third party involved in the process. While these companies (see Chapter 7)

may offer their own forms of tracking and reporting, it is far less robust (at the time

of this writing) than the reporting you will get from a general ad serving company.

Additionally, the final piece of reference code that you send to your client will be

different as well.

 Trafficking Rich Media

When you traffic a rich-media banner, the steps taken may differ a little from rich-

media company to rich-media company. For example, if you are using DART Motif,

then you should have their Flash extension (see Chapter 7). In short, the extension

basically packages any needed files for your ad into an mtf file (which is something

like a zip file). Once packaged, you send the mtf file to Motif and work with them to

 traffic the ads to the correct placements.

Another process you might experience is that of trafficking your ads through a com-

pany such as Eyeblaster. Eyeblaster has an online interface (or tool) that allows you

to log in to complete every step involved in getting your ads live on the Web. Once

you have logged in to the tool, the steps are pretty straightforward and not all that

different from setting up your standard banners.

121

 1. Enter your media plan.

 2. Upload your files and enter the destination URL.

 3. Preview your banner.

 4. Assign each banner to its flight.

 5. Send the Eyeblaster reference to the site.

Enter Your Media Plan

Just as with the standard banners, the first thing you should do when running your

ads through Eyeblaster is enter the information about the media plan. Again, this

information includes things like the number of impressions purchased, the costs

involved, and the placements where the ads will show.

Upload Your Files and Enter the Destination URL

When it comes to uploading your files, Eyeblaster has made it nice and easy with a

piece of their interface that will allow you to add a file using a simple form. But what

if you’re setting up a campaign that is running 30 different banners? Uploading all

of those Flash files and backup images could be very tedious and time consuming,

so Eyeblaster went ahead and included the ability to upload multiple files at the

same time, which helps streamline your day a little.

Preview Your Banner

After your files are uploaded, the Eyeblaster tool has an ad preview feature that

allows you to see a fully functional version of your ad. You can either preview it by

itself on a blank background or you have the option to see how it looks laying on top

of any website of your choice. Once you’re happy with it, you can email a link to the

preview to yourself, your quality control team, and anyone else who may need to ap-

prove the ad before it goes live.

Assign Each Banner to Its Flight

In the Eyeblaster tool, placements are called “ flights,” and once your ad is approved

by all of the appropriate people, you can start assigning them. When you do start

assigning your ads to their flights, remember that each individual ad can be as-

signed to multiple flights at the same time. In other words, if you had ten flights

that were running a 728 × 90 ad, you wouldn’t actually need to create ten different

728 × 90 ads unless they were visually different from one another.

Rich-media Ads

122 8. Trafficking and Tracking Your Ads

Send the Eyeblaster Reference to the Site

Sending the ads to the sites on which they will be running is a little different when

you’re using Eyeblaster as opposed to setting up a standard banner. With Eye-

blaster, you’ll use their interface to send an email to the sites (and anyone else you

specify) notifying them that their ads are ready for their review. Within the email are

any notes you’ve included as well as instructions for the recipients to view the ads.

Once they have looked over the ads, they can then use the Eyeblaster tool to re-

spond by approving or declining them. If they have chosen to decline, they will write

their reasons in the response. Based on those reasons, you can make the needed

revisions and resubmit the ads until they are correct.

 Tracking Rich Media

Tracking rich- media ads is similar to tracking standard ads. In fact, the two are so

similar that you can do the tracking for both with the same ad serving company like

 Atlas or DoubleClick. That also means that all of your tracking can be in one place

for a given campaign in which you have both standard and rich-media banners.

Generally, this is possible with the use of a 1 × 1 transparent gif file. The gif is loaded

from the ad server (Atlas, DoubleClick, etc.) into the rich-media placement. Each

time the gif is loaded, it gets counted as an impression of the banner.

On top of all of your tracking being in one central location, the reason it’s a good

idea to track your rich-media banners through a standard ad server is because the

 conversion reporting is far less robust with the rich-media companies (if they offer

it at all). That said, rich-media companies do report on actions like clicks, impres-

sions, interactions, etc.

123

 Site-served Ads

Site-served ads are simply ads that are hosted by the site on which they are running

instead of being hosted by an ad server. The more time that passes, the rarer site-

served ads have become for several reasons. While it may seem like less hassle and

trouble to go ahead and send your files directly to the site, you end up with far less

control and the ability to track the performance of the ad is greatly reduced.

 ALERT When a banner ad is site served, you will lose many valuable

pieces of control over it, such as the ability to quickly make

changes.

Loss of Control

If your banners are site served, you are going to lose a very considerable amount of

control over them. For example, you’ll be sending the site your actual files instead

of the previously mentioned reference tag. This means that you’ll need to depend

on the person in charge of programming that site to get everything right. By turning

over that control, you may find that your 728 × 90 banner was accidentally placed

in a 300 × 250 spot . . . without being tested. In addition to possibly using the wrong

dimensions, the code that shows the default image in the case of a viewer not hav-

ing the Flash Player installed may not be used. Another large loss is the assurance

of knowing the ad was even placed on the site when it should have been. The only

real way you have of knowing is to take the time to visit each individual site on which

you’re running a site-served ad (and you probably have more important things to do

with that time).

Site-served Ads

124 8. Trafficking and Tracking Your Ads

Slow Changes

If you’ve ever had to change anything online, you know how nice it is to have direct

access to the files you need to alter. But imagine for a minute if you didn’t have ac-

cess to those files. If you have any ads being site served, you’ll run into this problem

if your banner needs to be changed or replaced. There is a big difference between

using an ad server or running site-served ads when it comes to easily making those

changes, and that difference is time. Because of the channels you’ll most likely

have to go through to change a site-served banner, it could possibly take up to a

week before the change is actually made. On the other hand, while hosting your

 banners on an ad server, the same changes could be done in an hour.

Less Tracking

Along with not knowing for sure if your ad has actually been placed when and where

it should be, your ability to track how well your ad is performing is reduced. Of

course that means less ability to look at costs, clicks, conversions, profitability, and

anything else that falls under the tracking umbrella. With less tracking, you’ll have a

harder time knowing how well that particular banner contributed to the campaign or

if you should even spend money in the future to run more ads in that same spot.

Conclusion

To wrap up this chapter, let’s take a quick walk back through it. One of the very first

steps in any banner project is the media buy, which, as I hope I’ve shown, involves

much more than simply picking up the phone and placing an order. Making sure

you’re purchasing the correct placements for ads means not only knowing who your

 target audience is but also what they do, what sites they visit, what they’re inter-

ested in, and much, much more. Once you have that information, you can better

decide where, when, and how often to run your ads. That is, of course, dependent

on those times and placements being available.

Also covered in this chapter were the general steps involved in setting up your

banners in an ad server tool. Just as a quick recap on those steps, they were to first

enter your media plan, then load your banner files and destination URL. The next

step is to test your banners. Once tested, you assign each banner to its placement

to get the tag and finally you send the tag to the site that is running your ad.

125

Once your banners are live online, you can track their performance and figure out

how much each individual ad (and even detailed aspects of it) is ultimately costing

your client. Based on the performance of your banners, you can then optimize the

 campaign by removing poor-performing ads and increasing the share of voice for

ads that are doing better.

Another topic covered in this chapter was that of trafficking and tracking your rich-

media ads. While there are differences between these and trafficking/tracking stan-

dard banners, the general process is very similar. Once it gets down to the actual

tracking, standard banners and rich-media banners are no different at all because

you can track them altogether in one location.

Finally, I talked about site-serving ads. While having your ads hosted by the indi-

vidual sites themselves is becoming an increasingly rare occurrence, there may still

be times when you don’t have much choice. It’s generally a good idea to avoid site-

serving ads, but if you find yourself in the situation, keep in mind (and let your client

know about) the downsides, such as slow changes, less tracking, and less control

over the placement itself.

Conclusion

This page intentionally left blank

127

 Designing Microsites

As I mentioned in Chapter 3, there are similarities between designing microsites

and designing banners. If you recall, I also mentioned that there are differences be-

tween the two as well. This chapter will concentrate on the microsite side of things.

These differences can make designing a microsite a very exciting and fun experi-

ence due to many factors. Factors such as no file size constraints, more freedom of

design, and the ability to dynamically load various types of files at run time all help

open up the channels of creativity required to create a microsite that will be viewed

and passed from person to person. For a quick overview of what’s ahead, here is a

list of the sections found in this chapter:

 • Less Constraints

 • Conception

 • Know the Brand (and Learn It if You Don’t)

 • Navigation

 • Designing with Transitions and Animation in Mind

Designing Microsites

99CCHAPTERHAPTER

128 9. Designing Microsites

Less Constraints

Before getting into a discussion about the actual designing of microsites, I’d like

to talk a little more about some of the differences between microsite design and

banner design. More specifically, I’d like to talk about those differences that open

up the avenues of creativity by removing the invisible box of constraints. As with just

about anything else in life, when the constraints are lifted, more brilliance is possi-

ble. On the other hand, sometimes when constraints are removed, more discipline

is required.

No File Size Limit

When you transition from designing banner ads into designing microsites, you’ll

find that one of the most noticeable differences is the lack of file size limits. The

reason banner ads have file size constraints is because the banners themselves

are not the main focus of the page on which they are displayed. However, when it

comes to your microsite, people have navigated to your URL to see it and it alone.

In other words, your microsite takes a back seat to no one at its own web address.

With no file size limit, you are much freer to do nearly anything you like as far as im-

ages and other aspects of a file that raise the final size of an swf output. Notice that

I say nearly anything. I say that because even if you are informed that the sky’s the

limit on file constraints; even if you’re told that your only target audience is in office

buildings with the highest available Internet connection speeds; and even if you’re

told that your files will only be seen across an intranet, you should always aim for

the lowest possible file size on your final output. This is where increased discipline

comes into play and it can be very important to the success of your microsite. Re-

member to shoot for the moon, but then real it back in a bit until you feel comfort-

able with the final file size and subsequent load times.

No Timing/Looping Limit

Your microsites obviously aren’t going to just sit there and loop an animation over

and over again, but you may have some element on your site that does. Perhaps

it’s a particle effect like sparks, fire, or smoke, and if you ran that same element

inside a banner, you’d have to put a stop to it after a given amount of time. On the

other hand, you don’t have to worry about any of those timing or looping constraints

within your site. The main reason I mention this in a chapter about designing is to

129Conception

let you know that you can feel free to run animations and effects for any given span

of time that you feel necessary (even indefinitely if you like). You should, however,

keep processor usage and distraction from the content in mind.

 Conception

While coming up with a design for a microsite can sometimes be very involved and

challenging, the amount of fun that can go into it makes it worthwhile. If you com-

pare designing a microsite to designing a full company website, you’ll find that the

biggest differences are usually structure and content weight. Since company web-

sites are the online representation of the companies themselves, they usually want

those to be nice, clean, corporately structured, and full of business-related content

(depending on the client, of course). On the other hand, microsites offer companies

a more interactive and immersive escape of sorts to show how fun and free flowing

their product or service is when it’s in your hands.

Lighten Up, Man

Like I said, microsites are typically a lot more fun than company sites. A comparison

might be like saying that if the company website is equivalent to sitting in a meeting

in the stuffy boardroom on the fiftieth floor of a corporate glass tower, the microsite

is like doing a bungee jump or a base jump from the window of that same board-

room. Both scenarios involve the same company, but the experiences are quite

different.

Along with being more entertaining, the microsite is also usually a lot shorter on

content than the company website. The simple reason for that is because people

visit the company website to get information about the company itself, but people

visit the microsite to experience a product. It’s all dependent on what users are

after. If they are looking for heavy amounts of corporate information, the company

site is their target destination. If they are looking for something that gets right to the

point of a product while being big on emotion and experience, then they’ll be look-

ing for the microsite.

130 9. Designing Microsites

Let the Product Guide You

What your client actually does is obviously very important to the design of a micro-

site. There are certain industries (and even specific products within an industry) that

lend themselves to somewhat of a predefined look and feel. Some will scream for

a shiny, extravagant design with lots of bells, whistles, and extra features to amaze,

and some will call for more of a simple, elegant, slick design. On a little bit more of

a detailed level, the product itself should also influence the colors you choose. For

example, if you were designing a site about rocket engines, you might use a com-

bination of reds, oranges, and blues to add to the feel and signify the fire and sky

associated with rockets.

Know the Brand (and Learn It if You Don’t)

Being familiar with the brand for which you’re building a microsite is worth men-

tioning again (I spoke to this topic in Chapter 3, “Designing Banner Ads,” as well).

It should significantly sway your thoughts of design for the site just as much as the

individual product if not more. But what happens when you get a project to build a

microsite for a brand that has never been targeted at you, that you’re not familiar

with, or that you’ve simply never heard of? Well, it’s time to start studying up.

Find Information

If you’re unfamiliar with your client’s brand or product, don’t hesitate to search

around the Internet for it. In this day of free-flowing information, you can usually

find what you’re looking for extremely fast. First off, visit the client’s current website

to read about them, view their products, and experience their brand as it exists prior

to your redesign. In addition to visiting their website, find out who their competitors

are and take a look at how they are presenting themselves.

Another good place to look is to your friends and family. If you are female and the

brand is targeted at males, talk to some men who might know something about

the product in question. The same can be said for any of the demographics, such

as age range. The people you’re looking for are those who actually interact with

the brand and might be able to tell you their take on it as a consumer. Once you’ve

talked to the correct people, try to put yourself in their shoes and see the brand the

way they do.

131

Finally, look to the world around you. Everywhere you look, something is being

advertised and there are brands being shown around every corner. Take a look at

billboards as you drive to work, pay attention to advertising on the side of busses

you pass, don’t be so quick to skip over the ads in a magazine you’re reading, and

watch the commercials that interrupt your favorite television shows. While you’re

noticing all of this advertising that surrounds you day in and day out, pay attention

to those that are similar to the brand you’re currently working with. Most important

here is that you don’t look at it in terms of copying any designs; rather look to it

for inspiration. One last thing to pay attention to—life. Ideas can come out of any

strange little happening that you may miss. They can spur from a single sentence

that someone says to you in passing. Keep your eyes and ears open and you may

catch onto something that fits perfectly with the brand.

Navigation

Navigation is an extremely important element when it comes to designing a micro-

site. Not only should the navigation menu be easy to find, but it should also be easy

to understand and use. The most typical placement for a site’s menu is going down

the left side of the page or across the top. If there are subsections under any menu

items, they typically drop down under the top navigation or show up beside the left

menu when a user places his or her mouse over that item. However, this is Flash

and Flash affords us the luxury of things like interactive animation; luxuries that

aren’t available in a regular old HTML site.

What Can’t You Do?

Since we are now in the world of Flash, the question changes from, “What else can

I do with navigation?” to “What can’t I do with navigation?” Well, there isn’t a whole

lot that you can’t do, but there are a number of things that you shouldn’t do. A quick

browsing session of Flash sites on the Internet can usually give you some ideas

of both good and bad navigation. Putting the actual look of the menu aside, you

should think about aspects like movement, interaction, readability, and the sub-

menu (if there is one).

Navigation

132 9. Designing Microsites

Plain or Pretty

While you’re figuring out how you want the navigation to look and move, don’t

forget to consider the number one factor in the project: your client. The menu

design of some sites will have to be plain while others get to be more decorative

and pretty. It may go without saying, but if you’re working on a microsite for cancer

research, you’re probably not going to design the same menu as you might for a

fun-and-games site for kids. One will be more straightforward and simple, while the

other has a crazier, outside-the-box look to it. However, both menus should be very

easy to understand and navigate. If you find that you have to include any kind of

directions telling users how to use the menu, it may be time to rethink the design.

 Designing with Transitions and Animation in Mind

A couple of details that some people tend to let slip their minds are transitions and

animation. When a page or section of a Flash microsite is designed, you should al-

ways think about what happens between the times that users click on a button and

when they arrive at the resulting destination. Will the page simply do a “hard cut”

type of change as it would with an HTML page, or will there be some movement to

get them from point A to point B?

Plan to Move Users

Since we are working with a development tool that will allow us to literally “move”

users from one section of a site to another, we should take advantage of that when

the situation calls for it. Sometimes the best thing to do is the hard cut, but there

will be plenty of other times when a nice quick animation will actually strengthen

what the design is attempting to portray or just make the site a little more inter-

esting to navigate. If you stop and think about some of the sites where transitions

caught your eye, there’s an extremely high chance that those animations didn’t just

happen by accident. Instead, they were very well thought out, planned, and de-

signed in advance of the site actually being built and programmed in Flash.

Just as I stated in Chapter 3, it’s a good idea to plan your major animations while

you are laying out the design (and even sooner than that when you’re only visual-

izing the design in your head). A very big part of that planning is making sure that

you have the assets you need to make the animation happen. Without the correct

images (or video), the person that will be animating and programming the site can’t

create the correct movement. I am reiterating the importance of this again in this

133

chapter because it does happen that animations are planned without thought to

how they will be (or if they even can be) executed with the available assets.

Squash, Stretch, and Anticipation (Animation Details)

While the major movements of the transitions and animations should absolutely be

planned in the design phase of the project, you would be okay to wait on the details

of those movements. When the design is handed over to the Flash developer, do

your best to let go a little while still staying involved. First, explain the major move-

ments that you have designed to the Flash developer. After working with him or

her to get the overall mechanics of the animation created, ask him or her to tweak

the movement accordingly. In other words, let him or her work out and create the

details to making the animation feel as it should rather than just suddenly mov-

ing from one point to the next. For example, you may have a ball in your design

that you want to get from one side of the screen to the other and the major move-

ment you’ve decided on is bouncing (as opposed to rolling or being thrown). Let

the Flash developer know your thoughts and work with him or her on getting the

general bounce animated. Then, walk away and let him or her apply the details such

as the general animation rules of squash, stretch, and anticipation. During all of

this tweaking remember that there could be a couple of projects where timelines/

 deadlines may not allow for all of the tweaks you’d like to see. If you find yourself

in that situation, try to think of which animations and tweaks are the most important

and which ones will be okay with simply moving an object from point A to point B.

The bottom line is to trust the Flash developers with the work. After all, it’s what

they do for a living, right?

Know When to Say When

Knowing when to stop animating is just as important as knowing what to animate

and when to animate it. Knowing when to stop animating also means more than

one thing: it means not over animating the microsite (unless the brand calls for it),

it means animating at the right speeds and intervals, and it means knowing when to

stop making changes to the animations.

Overanimation of a microsite can get very annoying to a visitor very quickly. That is

unless the overanimation enhances the experience of the brand. As with several

other design and animation rules, this one will apply differently to different proj-

ects. The main thing is to pay attention to how much animation you have happening

within the site that doesn’t serve much of a purpose, like getting a user from one

Designing with Transitions and Animation in Mind

134 9. Designing Microsites

section to the next. Again, you’ll have to make a judgment call on this from project

to project.

The speed and frequency at which an animation happens is also something that

can either keep a user coming back to your site or drive him or her away after the

first visit. How many Flash-based sites have you visited where every move you made

played an animation before you could get where you wanted to go? And how many

sites have you been to where you find yourself waiting longer than you feel you

should for those animations to finish? Your visitors have most likely experienced

the same thing at other sites as well. That’s why it’s important to use animations

and transitions quickly and only where they help add to the experience of the site.

A final list of all of the major animations should be decided on prior to animating

and programming the site. Any new animations that are thought of after the site is

in full swing of production could possibly set the timeline back depending on the

complexity of the new movements. While changes to the site are definitely going

to be inevitable in some cases, try your hardest to avoid adding new animations

or even changing the existing ones too drastically. Depending on exactly how the

site in question is built, retrofitting it for a new animation may even mean having to

scrap and rebuild parts that could have taken hours to complete the first time.

Conclusion

Designing for microsites has a few different steps and several of the same steps

as designing for banner ads. Going back over some of those steps in this chapter,

you’ll see that one big difference between the two is the fact that you aren’t con-

strained by final file size or time limits when you’re working on a microsite. How-

ever, while more and more people are moving from dial-up connections to some

form of broadband like DSL or Cable, you should still try to keep your files and your

site from getting too bloated. If you make people wait too long to see your micro-

site, they may give up and leave.

Coming up with a concept for microsites is similar to coming up with a concept for

banners, but more detailed and on a larger scale. Your clients want their product

(and brand) to be remembered, and your design will help them accomplish that

 goal. Remember that this isn’t your client’s corporate website, so depending on the

product and where it takes you, keep your concepts from being too stuffy and strict.

In other words, try to design for users to have a memorable experience rather than

forcing them to read a bunch of legal copy.

135

Part of being able to create concepts for a new microsite is to know something

about the product and the brand. If it’s a brand that you’re already familiar with,

then ideas should start generating in your head right away based on your past ex-

periences with it. On the other hand, it may not be anything that you’ve ever come

in contact with and that means you’ll need to do a little research to get a feel for the

brand. One way to find your answer is talking to people you know who fall into the

 target audience of the product.

Menu design is very important on a microsite. It’s how users will find their way to

new areas of the experience and they should be able to do so very easily. Just like

the overall design itself, the layout of the menu is going to be dependent on the

client or product involved. For some, you’ll need to stick with the classic left or top

menu bar while others will call for something more creative and fun. The most

important thing to remember in designing the menu is to make it easy and intuitive.

Otherwise, you may end up with users that leave too soon simply because they got

confused on how to navigate the site.

Finally, think about how your design will live and breathe. You’re designing a micro-

site that will be built in Flash, so go ahead and design some animation and transi-

tions while you’re at it. However, remember to actually plan those movements while

you work. Make sure you have all of the assets that will be needed in order to create

those animations in advance of handing the design over to the Flash developer.

Once you do hand it over, work with the developer to get the major motions and

mechanics of the animation created. After that, let go and turn over some creative

control to let the developer flesh out the small details in the movement. Once ev-

eryone is happy with all of the animations, and aside from changes that absolutely

must be made, try to keep from making big modifications or additions in terms of

the animations themselves. Afterthoughts and retrofitting animation could possibly

push a project over its deadline.

Conclusion

This page intentionally left blank

137

Preparing and Building

Microsites

As I’ve mentioned before, a microsite is exactly what it claims to be: a site that is

smaller than a regular, full-size site. You could probably also guess that building a

microsite is a good deal different than building a banner. For starters, there’s go-

ing to be a lot more information and interactivity available for your audience on a

 microsite than on a banner. Despite the differences, there will also be similarities

between the two projects. As with building a round of banners, you’ll need to plan

out how you’re going to work on the microsite. You’ll also need to make sure you

have assets in order and a backup plan for users that have disabled the Flash Player

and/or JavaScript. If you’ve already read Chapter 4, “Preparing and Building Ads,”

you’ll notice the similarities and differences in preparing and building microsites as

you read through this chapter, which is broken into the following sections:

 • Plan of Attack

 • Collecting Assets

 • Building to Standards

 • HTML/ JavaScript

 • No-Flash Backup

 • Collecting User Data

 • Quality Control

Preparing and Building Microsites

1010CCHAPTERHAPTER

138 10. Preparing and Building Microsites

Plan of Attack

Having a good plan in place prior to working on any project is priceless. If you

get into a project and find out that things weren’t planned out quite well enough

after spending a good amount of hours on it, you just may find yourself in a very

troublesome position. You may find that you have to change so much in the site to

accommodate for the lack of planning that you end up reverting back by half of the

time already spent.

So where do you start to plan for your build? Talk with the creative person on the

project, of course. Before the creative person designed and laid out the site, there

was already some planning in place. Planning of what the client wanted to accom-

plish, a wireframe of the site, possible paths that users might take to navigate the

site, etc. That planning played a major role in how the site was designed from a cre-

ative standpoint and that creative person has a vision of how it will all tie together.

Inside the Industry

 A site wireframe is a diagrammed skeleton of the site itself. It contains all

of the navigation items and how each one ties into or connects with the

others. By looking at the wireframe, you can see possible paths of navi-

gation and how many pages deep a given section of the site may go. On

some pages you can see processes that may occur and a general outline

of the content as well as the importance of a given piece of content.

 Figure 10.1 is an example of a single page from a site wireframe.

13
9

P
la

n
 o

f A
tta

ck

Figure 10.1

Example page from a site wireframe.

Page: Video/Audio file administration and moderation

Notes

Legend

Page
Page

element

Page
functionality

2

Email

Not intended to show design, only to inventory page contents and relationships.

Home Page

1.0

Section One

2.0

Section Two

3.0

Section Three

4.0

Section Four

5.0

Video

Encoding

Video

Encoding

Is Video/Audio File

approved for publication?

Batch Process

1–2 times

per day
Archive

Yes No

Upload to site

140 10. Preparing and Building Microsites

 ALERT When you’re creating and working with information architecture

documents such as site maps and wireframes, it is very important

to let your clients know that those items are intended to show

 site organization and content hierarchy/importance, not design.

On top of verbally informing them of this, you may also consider

including it on the documents themselves. Simply place a sen-

tence like “These documents are not intended to show design,

only to inventory page contents and relationships” in a place

where they will be seen on each page.

While you are talking to the creative person, get as many details as you can and

take plenty of notes on his or her answers. Don’t be scared to ask about anything no

matter how small it may seem because you will often find out that not everything

was thought of beforehand. If there are multiple pages in the site, how will you

 transition between them? Are the rollover states of the buttons and menu items

animated or do they just flip from the upstate to the overstate? What if a user clicks

that button right there? And that button? Where does this button take the user?

You get the idea. The point to this line of questioning is multifaceted: on one side,

you need to know how the site will live and breathe; on another side, you need to

know how the site will react to certain interactions; and yet on another side, you and

the creative person can try to detach yourselves from the project and think like an

outside user.

Another thing to do while you are in the planning phase is to think about the code

you’ll be writing. When you’re talking with the creative person about the features

and functionality of the site, make mental notes about what code you might need to

complete each item. Better yet, write down those mental notes so you don’t forget.

Also, think about past projects you’ve worked on. You may find that you worked on

another site or even a round of banners that have code you can use in the form of

classes or snippets. If you do happen to think of such a project, you’ll know that you

can already plan on saving a little development time by reusing that code.

141

 Collecting Assets

Before you can actually build a microsite, you’ll need to know what it’s going to look

like, right? Okay, so the creative person on your team has designed the layout of the

 site and hopefully given that layout to you in at least the form of a Photoshop file

(and possibly printouts). That layout is your guide and template for this project and

your goal is to mimic it as perfectly close as you can. And that doesn’t just mean

images either. You’ll also need to pay attention to aspects like the typography.

There’s an art to everything you see in the layout and the text is no exception. Kern-

ing, tracking, leading, ragging—every bit of it is as intentional as the location of the

client logo or the menu item names, and you can’t forget to build it into the site the

same as it appears in the design.

Speaking of typography, another asset to collect is fonts and you’ll need to get your

hands on any that the creative person used in the layout. If you don’t have a place

on your servers where you store fonts, ask the creative person to get you the fonts

you need to build the site. Since the creative person used the fonts in the design,

he or she should be able to get them for you. Be sure to get exactly the right fonts

too. Some of the fonts can have different sets even for the bold or italic versions. If

you only get the “regular” version of a font and then try to add bold or italics inside

Flash, you may end up with a font that appears slightly different than the one you

should actually be using, and that could make enough of a difference in the end

product that you may not get approval from the creative person.

Any imagery within the design will need to be exported from the layout for use in

your site. A lot of times, there can be a mixture of both raster and vector art. Look-

ing back at Chapter 4, you’ll remember that raster images are images that are a

rectangular grid of pixels with individually defined colors. While raster graphics

are generally larger than vector graphics in file size, they will be required for many

parts of your work such as photographs of client products. Again referring back to

Chapter 4, when cutting raster images from Photoshop you should give yourself

about three pixels of cushion between the edge of the object in the image and the

edge of the crop area if you can.

 Vector graphics are different than raster graphics in that they are not based on a set

grid of pixels. Instead, vector graphics use mathematics with primitive shapes like

points, lines, and curves. Vector graphics also scale much more gracefully than ras-

ter graphics. As a matter of fact, you can scale a vector graphic indefinitely with no

loss to the quality of the image it creates. Try that with a raster image and you’ll end

Collecting Assets

142 10. Preparing and Building Microsites

up with a poor-quality, pixilated picture that looks more like a piece of blurry mosaic

art than the image you started with.

Any time you have a piece of the design that can be built with vector, you should

do your best to build it that way. If, however, the creative person on the project has

already built it as a vector graphic, you should be able to export it from Photoshop,

Illustrator, etc. and bring it directly into Flash. This will ensure you are keeping ex-

actly to the layout as it was originally designed.

Building to Standards

As I covered in Chapter 4, it’s a good idea to find a naming convention and stick with

it. Whether it’s you developing the site on your own or a team that you’re a part of, a

good naming convention just makes everything that much easier to find and work

with. Table 10.1 contains the same examples I used in the “Building to Standards”

section of Chapter 4, but I thought I’d include it again for people, like myself, who

tend to flip around in books.

Table 10.1

Naming Convention Examples

MovieClip containing form fields myFormMc

Input TextField for user’s email address emailInputTxt

Button to submit form formSubmitBtn

Sound object for background music myMusicSnd

Separating your site into different files is another good practice to get into. You

gain several benefits when you compartmentalize your work in this way. One of

those benefits is the option to easily split the project among more than one de-

veloper where each person works on a set number of sections in the site. You also

gain the benefit of quickly isolating and resolving issues and errors with the site.

For example, a bug might be reported to you that only happens in the “About Us”

section of a site you’ve just passed on to quality control. Since each section of your

 site is broken out to its own file, you’re going to have a 99.9% chance that you know

exactly which file to open to fix the bug. Additionally, since that file doesn’t contain

the entire site itself, you won’t have to dig through lots of layers and MovieClips on

top of MovieClips to hopefully find the code that is the culprit of your problem.

143

Since we’re talking about compartmentalizing your work, let’s talk a bit about

 classes. I’ve learned over the years that class files are wonderful little helpers that I

mentally file among the things that I wish I had understood and utilized much ear-

lier than I did. Flash class files are files with the .as extension and they contain the

code to complete a given task whether that task is animation, drawing, interactivity,

or any number of other little jobs that could be written in ActionScript. While writing

classes with ActionScript 2.0 is more forgiving in its rules, the release of Action-

Script 3.0 has changed that leniency. However, by changing that leniency, it has also

changed the strength, speed, and quality of the code itself. For detailed information

on both ActionScript 2.0 and 3.0, visit the ActionScript Technology Center on the

Adobe website at http://www.adobe.com/devnet/actionscript/ (Figure 10.2).

Figure 10.2

The ActionScript Technology Center on the Adobe website.

Building to Standards

144 10. Preparing and Building Microsites

 HTML/ JavaScript

Referring back to the “HTML/ JavaScript” section of Chapter 4, you’ll find informa-

tion on Geoff Stearns’ SWFObject and Bobby van der Sluis’ Unobtrusive Flash

Object (UFO). Neither of these is only for embedding banners, and in fact, either of

them can (and should) be used to embed any Flash movie at all including micro-

sites. The methods of using them are the same as they are for the banners. The

main difference is the HTML you will end up placing in the containing div and we’ll

talk more about that in the next section. If you haven’t read it already, turn back to

Chapter 4 and read about SWFObject and UFO.

 No-Flash Backup

I can’t imagine why some users choose to disable the Flash Player in their brows-

ers. I’m not sure, but maybe I can’t imagine that because I’m a Flash developer. At

any rate, it happens and we need to be prepared for it. There are several options to

choose from when it comes to a no-Flash backup, so let’s talk about some of them

and you decide which is best for your project.

One option is to present users with an image or some text that lets them know that

they need Flash to view your site. While you may choose to take this route, there

are some downsides that go along with it. If you limit your site to Flash only, you

limit the reach of your client’s information. Your client is trying to sell their product

and they are relying on you to help them do that. If you have any control over it, you

should avoid this option and save it as a last resort.

Another option is to have a landing page that gives the user an option of a Flash

 site or a non-Flash site. This option at least lets the Flash-disabled person get to

the content of the site. But who likes the old “choose your own adventure” landing

page anymore, right? So what if we take advantage of SWFObject or UFO? If the

user’s Flash Player is disabled they’ll get to see the HTML you placed inside that

div we keep talking about. Well now, you’ve just saved your audience from an extra

click and took care of it for them while also making sure they were able to get to the

information they were trying to find in the first place. That’s awful thoughtful of you

and you deserve a pat on the back. So what about the fact that you’ve only built one

page worth of information within that div? Build a menu into that page for access to

other pages. In other words, build it as if you were not building a Flash site at all.

145

With the site behind the site, you are allowing full

access to all of the information that you are trying to

get to the user. Also, by using the same information

in the no-Flash site that you use in the Flash site,

your information can be found by search engines

and that’s obviously another plus. In order to handle

the links that will be indexed by the search engines,

you’ll want to include some form of deep linking

into your Flash site. Let’s jump in to another sce-

nario real quick: Pretend for a moment that a user

is searching for a product that your client sells. He

or she presses the search button and a link to the

microsite you’ve built is within the results. This link

could appear in many ways depending on which

language you’ve chosen to write your no-Flash site.

One example might be PHP where the link looks

something like this: http://www.yoursite.com/

pages.php?p=prod. The important part of that URL

is the variable “p” on the end. We’ll take the value

of that variable, pass it in to the Flash site, and have

the Flash site respond accordingly. In our scenario,

the value of p is “prod” and we know that we want to see the products page.

I won’t go any further into the no-Flash site itself because that’s another book on

another language all together. But let’s go ahead and talk about deep linking.

Author’s Tip

While I use PHP as the example

language in my no-Flash site

scenario, keep in mind that you

can use your language of choice

as long as you pass the correct

variable in to the Flash site. I

remember a particular project

I worked on that used Ruby

on Rails for the backend. The

 deep linking worked in such a

way that the URL might read

“http://www.yoursite.com/123”

and the Flash movie would

receive the “123” from the end

and know where to go within

the site.

No-Flash Backup

146 10. Preparing and Building Microsites

Deep Linking

Deep linking in a Flash site is not as hard as you might first think it is. In short, the

Flash movie is given a value for a variable and it goes to a particular place within

itself as if the user had navigated to that place. As with most things, there is more

than one way to accomplish this deep linking. Example 10.1 should give you an

idea as to how you might like to handle the issue yourself.

Example 10.1
switch(_level0.p){

 case “about” :

 [code to handle moving to the About Us section];

 break;

 case “prod” :

 [code to handle moving to the Products section];

 break;

 default :

 [code to handle errors or unknown values];

 [the best thing to do here is take the user to the home page];

 break;

}

In this example, we’re using a switch statement to determine where the user is try-

ing to go. The value for the variable “p” has been passed in to Flash at _level0 and

that’s where we look to find out exactly what that value is. If any of the cases in the

 switch statement are true, we’ll need to write code to move to the intended section

of the microsite. One way to do this is to call the same function that would be called

if the user clicked on the menu item for that particular section.

Another option for deep linking is SWFAddress by Asual. SWFAddress works with

Geoff Stearns’ SWFObject to not only provide you with deep linking, but enable

use of the Back, Forward, and Refresh buttons in your browser. It does this by

utilizing the ExternalInterface functionality introduced in Flash Player 8 and, at the

time of this writing, supports the following browsers: Mozilla Firefox 1+, Mozilla

1.8+, Camino 1+, Netscape 8+, Internet Explorer 6+, Safari 1.3+, and Opera 9.02+.

To download SWFAddress and read much more information about it, visit http://

www.asual.com/swfaddress/.

147

Collecting User Data

 Microsites are a prime location to collect information about your users. They are

also a great place to give those users an opportunity to sign up for information

about your client. Maybe your client has a monthly newsletter that they offer from

their main site, but they want potential customers to have access to it from the

microsite as well. Or maybe your client wants to know if users have been to their

physical storefronts and how they would rate their experience. In any case, you’ll be

collecting information from the users, and the forms you build will be determined

by the end goal of what that information is going to be used for.

Going back to Chapter 5, “Forms and Data in Ads,” remember that I talked about the

amount of file size that is taken up by Flash components such as the comboBox.

Do you also remember how I went on to suggest building your own custom compo-

nents to save that file size? Well, while file size is still important in your microsites,

it’s not quite as imperative that you stay under a given amount. If you’re in any kind

of situation where you might be running tight on your deadline and you still need

to build out a form, you might stick with the Flash components. If you need them

to match the color scheme of the site, you can still skin them. However, if you have

the time to create your own components or if they already exist, you can make the

choice of which component to use in your forms: Flash’s components or yours.

Once you have the forms built, you’ll need to process and store the information

being given to you. To do this from within Flash, you’ll need an outside processing

page. The processing page can be the same as one you might use for a non-Flash

site. As a matter of fact, you could even build a single processing page for your

Flash site and your no-Flash backup site. The only thing you’ll need to make sure

you know is the name/value pairs for the fields in the form. As with the no-Flash

backup site, your processing page can be in any one of many choices of program-

ming languages such as PHP, .NET, Ruby on Rails, etc. Once you pass the user’s

information to the processing page, it will be most likely stored in a database for

later use. I’ll get into some of those uses in just a bit, but first let’s take a look at

Example 10.2 and how to pass that information to the processing page using the

 sendAndLoad method of the LoadVars class. For the example, we’ll assume your

 form has a “Submit” button and TextFields labeled “First Name,” “Last Name,”

 “Address,” “Phone Number,” and “Email Address,” as in Figure 10.3.

Collecting User Data

148 10. Preparing and Building Microsites

Figure 10.3

An example of a simple form in Flash.

Example 10.2
mySubmitBtn.onRelease = function(){

 processForm();

}

var myResultLV:LoadVars = new LoadVars();

myResultLV.onLoad = function(){

 if(success){

 [code to handle successfully processing user information];

 }else{

 [code to handle processing failure];

 }

}

function processForm(){

 var mySendLV:LoadVars = new LoadVars();

 mySendLV.firstName = firstNameTxt.text;

 mySendLV.lastName = lastNameTxt.text;

149

 mySendLV.address = addressTxt.text;

 mySendLV.phone = phoneTxt.text;

 mySendLV.email = emailTxt.text

 mySendLV.sendAndLoad(“http://www.mysite.com/processingpage.

php”,myResultLV,“POST”);

}

Here’s a rundown of what’s going on in Example 10.2. The first thing you see in the

code is the onRelease function we’ve assigned to the “Submit” button. When the

user fills out the form and clicks on the “Submit” button, the processForm function

is called. When called, this function creates a new instance of the LoadVars class

and gives it a name of “mySendLV.” After that, we go through each item in the form

and gather the information that the user has typed in. At this point each line repre-

sents one name/value pair being passed to the processing page. These lines break

down like this: “mySendLV” is of course the name of the LoadVars object we’ve just

created; “firstName” is the name of the variable that is expected by the processing

page for the textField labeled “First Name”; next is the value that will be passed

with the firstName variable—“firstNameTxt” is the name we’ve given the textField

and the “.text” property gives us the actual text the user typed in as their first name.

Now that all of the name/value pairs have been assigned to our mySendLV object,

it’s time to call the sendAndLoad method. The sendAndLoad method accepts three

 parameters as follows: a URL in the form of a string that will accept the variables

you are passing (this is the URL of the processing page), a target object that will ac-

cept pass or fail information back from the processing page, and an optional HTTP

method in the form of a string. The HTTP method can be either “GET” or “POST”

and the default value is “POST.” Once the sendAndLoad method has run and all

of your variables have been sent out of Flash to the processing page, Flash will be

waiting for an answer in return. This is where the onLoad method of myResultLV

is called. If the processing page receives all of the information and processes it

successfully, a value of “true” is handed back to Flash. However, if there are any

problems in processing the data or if the page times out due to network problems,

Flash will be given a value of “false.” The true or false value is handled in our state-

ment that starts with “if(success)” and appropriate code should be written to handle

either scenario.

Collecting User Data

150 10. Preparing and Building Microsites

 ALERT When using the sendAndLoad method of the LoadVars class,

always include code for the possibility of a failed attempt to

process information. Since computers (and thereby the Inter-

net) are not perfect, unforeseen problems such as users losing

their Internet connection or a power outage at the location of

the server can occur and should be handled accordingly in your

 programming.

Capturing information about visitors can be used by your client to offer periodic

emails such as updates, newsletters, or limited-time sale offers. Since the Federal

Trade Commission (FTC) made the CAN-SPAM Act law effective in January 2004,

there are a set of rules that must be followed. These rules are very important for

you to know, because if they are broken, there may be legal consequences such as

sizeable fines. Some of the overall rules to follow are: Don’t be misleading about

who has sent the email, and don’t be deceptive in the subject line and give users

the ability to “ opt-out” of your emails.

 ALERT When allowing users to sign up to receive any kind of emails

from your client, you should be fully aware of the CAN-SPAM

Act. If you are not familiar with this law, please take the time to

learn about it on the FTC website at http://www.ftc.gov/bcp/

conline/pubs/buspubs/canspam.htm.

The opt-out feature gives a user the choice to stop receiving emails from your cli-

ent, and there must be backend code in place to handle these requests for a certain

amount of time after you send the email. One thing you don’t want to do is make

your client’s customers unhappy with them, and forcing unsolicited emails to their

inboxes would most likely do just that.

151

 Quality Control

You didn’t think you were going to get out of this chapter without someone test-

ing your work and trying to break it, did you? If so, think again. Everything you build

should be tested by someone other than yourself and preferably by someone

whose actual job description involves testing and quality control. You should send

your banners through a quality control process and you should definitely send your

 microsites through one as well. While some microsites can be very small and live

up to their namesake, some of them can be very deceivingly wide and involved.

Generally, common sense tells us that the wider and more involved something is,

the more potential it has to be problematic for us. You could carry that thought over

to your microsites and say that the more pages, sections, and functionalities it has,

the more chances there are that you’ll come across some errors and bugs.

Since your microsite is most likely larger than your banners, it will require more

time for the quality control person to test it. There are pages to click through,

scenarios to enact, and generally much more for them to try to make it break. So I

ask you this: Should they (a) wait until you are completely finished before they start

testing, or (b) test while you are working on it? The best answer here is (b). For the

best results on that answer, you’ll need to keep in close contact with the quality

control person the entire time you’re working on the site. The general idea is that

you do several builds in secession of one another. Your first build might consist

of as little as the navigation menu. Have quality

control make sure they can’t break the navigation

and let them know it’s working by placing a dynamic

 TextField on the stage to tell them what section

they just clicked on. From there, you add more

and more to the site until you have it entirely built

out. The advantage here is that quality control can

inform you of bugs before they become a part of

a larger problem. Now, to avoid the fact that they

can’t really test something that you keep chang-

ing while you’re working, you’ll need to set up two

environments: the development environment and

the staging environment.

Quality Control

Author’s Tip

When working with gradual

builds of a site for quality con-

trol, be sure to let them know

of any issues you are already

aware of and working on. Also

let them know of parts of the

site that are in progress and will

probably break. This will keep

quality control from spending

time on nonbugs and it will also

keep you from having to sift

them out.

152 10. Preparing and Building Microsites

Development Environment

The development (dev) environment is where you’ll do most of your own testing

and work on your microsites. The environment for each site will differ according to

the site itself and the dev server should be set up exactly how the live server will be.

If the final live site will be using Linux, Ruby on Rails, and a MySQL database, that’s

exactly what should be set up on dev. Since this is the first place you’ll be able

to tie your Flash work in with the backend, this area should be thought of as your

development team’s own private sandbox. Anyone looking at the site on this server

should most likely expect bugs and glitches right up until the end of the project.

While accessing data that reside on the dev server is completely possible from your

local computer, you should also be sure to test your Flash movies from the server

as well. Since the development environment is set up to mimic the live site, it’s an

excellent source for discovery and problem solving. You may find the occasional is-

sues that arise only after you move your files to a server, and you’ll be able to solve

those problems before the site goes live.

Staging Environment

The staging environment should also be set up to mimic the live site. Since the

backend languages, databases, server software, and anything else that may be

specific to the site are all the same as the dev server, you can simply move your files

over once they are ready to be tested by quality control and viewed for internal ap-

proval. You can think of the staging environment like a rehearsal of sorts where your

site is practicing to perform for the world.

Conclusion

As you can see from this chapter, there are a few similarities between building a

banner and building a microsite. However, there are also many differences like

menus, pages, deep linking, etc. A big part of either project is planning. Without a

good plan, your site can very easily start to spin out of control and be hard to get

back on track. Once you have a plan in place, you can start collecting assets you’ll

need to build the site (don’t forget about the fonts your creative person used in the

layout). Something else I talked about in this chapter was standards; standards by

means of accessibility and standards by means of naming conventions used for

your files, objects in Flash, code, etc. Having your files and code set up in such a

way that it is completely understandable and reusable is a great thing and making

153

sure your site is accessible to users with disabilities is very important. After the

standards, I went into the topic of the HTML page that houses your Flash files and

“the site behind the site” that allows users without Flash to still access the informa-

tion they are trying to reach. Additionally, I talked briefly about deep linking into

your Flash movie and gave both a quick and rough example of how to do so, and a

little information on SWFAddress by Asual. Beyond those topics was discussion on

collecting user data and then into quality control where I talked a bit about the dif-

ferent environments you should use while building a microsite. In Chapter 11, I’ll be

giving information about driving traffic (visitors) to your newly created microsite.

Conclusion

This page intentionally left blank

155

Driving Traffi c to Your Microsite

The specific purpose of any given microsite may be as individual and unique as

the site itself. The site’s intention may be to educate and inform its visitors about a

product or to simply entertain them with games and videos while exposing them to

your client’s brand. However, there is always an underlying objective of any micro-

site created within the advertising domain: brand/product awareness and interac-

tion. When users come to your client’s microsite, they should be able to later recall

whose site it was when they think of it. If they do remember (and they remember

for the right reasons), the site was a success. But before they can remember your

client’s microsite, they need to be told it exists, and they need some sort of vehicle

to drive them there. The topic of this chapter deals with the step that takes place

prior to the users’ interaction with, or even knowledge of, the site.

There are several ways to get your client’s potential customers to visit their site.

Some of those ways cost a little money and some of them are literally as free as

talking to a friend. In this chapter, I’ll cover several options to drive traffic to your

microsite and those options will be spread across the following sections:

 • Paid Search

 • Banner Ads

 • To the Microsite from the Main Site

 • Word of Mouth (a.k.a. Viral Marketing)

 • User Interactions and Referrals

Driving Traffic to Your Microsite

1111CCHAPTERHAPTER

156 11. Driving Traffic to Your Microsite

Paid Search

One of the most valuable ways to drive users to a Flash microsite is by way of a paid

search. In a nutshell, you’re actually purchasing words and terms in a search engine

such as Google or Yahoo. When people do a search for those words, your micro-

site is displayed in the results. While your site may also find its way into the results

based on unpaid (or natural) search terms, this

takes time. And since many microsites usually have

a limited life span, time is something that may be

against you here.

Another advantage that paid search has over natu-

ral search is guaranteed placement. By purchasing

search terms, you are ensuring your client a spot in

the search results that they may not get by means

of natural placement. As for how high in the results

your client’s microsite is placed, each search en-

gine determines its ranking differently. While some

 search engines actually base the placement on

who paid more for a given search term, others have

formulas they use to determine the order of the

results. One example is that a search engine may

take into account how much was paid for the search

term, but they also look at the click-through rate for

each placement. By figuring in how many people

were clicking on a placement after searching for a

particular term, the results are more accurate and

relevant to the term itself. That extra bit of sorting

can make all the difference of where your client’s

 site ends up on the list of results.

Author’s Tip

When you are choosing which

search terms to purchase, be

sure to keep the list relevant

to the industry, client, and site.

If your client is in the automo-

bile industry, it wouldn’t make

much sense to purchase a term

like “waterslide” or “baseball.”

While those examples are very

clear, there are terms that are

less obvious but just as ir-

relevant. On top of being bad

practice and a potential waste

of advertising dollars, some

 search engines will check the

relevancy of your terms to make

sure they are in line with the

advertised site.

157Paid Search

Small Costs, Big Results

With costs starting as low as $0.10 per click on the larger search engines, paid

search consistently has the lowest cost per acquisition of any outbound marketing

you can do for a microsite outside of viral marketing, which I’ll cover later in this

chapter. While you can find some cases of the cost reaching up to $100 per click in

certain industries, most terms will fall within the lower range of $0.10 to a couple

of dollars.

When you talk about the actual price of a search term, there are a few factors that

come into play. For example, if you’re looking at buying a very broad term that is

more likely to be searched more often by more people, you’ll have to pay more

money. On the other hand, a very specific search term is going to cost less money.

Let’s say you purchased the term “code.” That term could apply to an extremely

wide range of results, and the reason for the higher cost in this case is because

your microsite will be included in the results of everything from computer code to

morse code to state code (law). However, a more specific term like “ ActionScript”

is going to be searched by a smaller group of people and, therefore, your site will

be included in fewer results. You may be wondering why it costs more for the broad

term when you’re going to end up in less relevant results. The reason for the higher

rate is the popularity of the term itself and how many other companies have also

purchased it. While it would sometimes be smarter to spend less money to reach

a more targeted search audience, there are times when the broad term will be

worth the extra dollars. For instance, if within one month the targeted term yields

30 clicks that result in 5 conversions (the user purchased, signed up for email, etc.)

and the broad term yields 300 clicks resulting in 50 conversions, it was probably

worth spending the extra money.

 Targeting Your Search Terms

When you purchase your search terms, you’ll have other options to choose from

to further define your target audience. Some of the options will make the target

more refined and narrow and some others will widen the target to reach even more

people. How you choose between them will change from project to project and cli-

ent to client.

158 11. Driving Traffic to Your Microsite

Matching

When people do searches, they are less likely to search for a single word than they

are for a phrase. For that reason, you will want to look at some of the matching

options for your terms. One of those options is called broad matching and it basi-

cally watches for your word to be used in any search that is performed. If you have

purchased the word “car,” then broad matching will return your site in the results of

searching for everything from “car dealer” to “car wash” to “new car.” The upside to

broad matching is that you get exposure to thousands of search phrases, but you

only had to set up one term. The downside is that your site may end up in irrelevant

results. However, remember that more results can equal more clicks, which can

equal more conversions, which means more return on investment.

Another matching option is phrase matching. With phrase matching, you have actu-

ally purchased a phrase as opposed to a single word. An example of this might

be that you have bought the phrase “car dealer.” Phrase matching will make sure

that your microsite is returned in the results when people search for that particular

phrase, but not variations of it. In other words, your site will show up in a search for

“car dealer,” but not in a search for “dealer car.”

Yet another form of matching is exact matching, and, just as you might suspect,

your microsite is only included in the results if a user searches for the exact term

that you’ve purchased. Both phrase matching and exact matching will put your site

in more targeted and relevant search results.

Another way to further target specific searches is to create a negative keyword list.

This list is used in conjunction with the broad matching to weed out any searches

that you know you don’t want to be included in. Sticking with the search term “car,”

let’s say your client is a car dealership and they don’t want their site to show up in a

search for “car wash.” Simply add the word “wash” to the negative keyword list and

the search engine will make sure that the site is omitted from those results.

 Text Ads

Text ads (also known as sponsored links) are the text-based advertisements you see

(usually on the right side of the page) when your search results are returned to you.

The search engine will determine which text ads to display based on a number of

factors, including the amount paid for the advertisement and the relevance to the

term that was searched. While the amount you can actually say in any given text ad

may change a little from search engine to search engine, the format is generally the

159

same across the board. Typically, you’ll be allowed to include a headline, a couple

of lines of copy, and a URL for the advertised site. Because of the limited amount

of text allowed in these ads, it’s important to have good copy written that gets right

to the point while still enticing the user to click on your ad instead of the others

around it.

One thing to look for when purchasing text ads is the process the search engine

uses in getting the ad running for the first time. While some of them allow your ad

to show up immediately after you make the purchase, some others will require you

to run your ad through their approval processes prior to it being launched.

 Contextual Advertising

Some search engines offer another extremely valuable option that you can sign up

for: contextual advertising. At the time of purchasing your search terms, you can

also spend a little extra marketing money to have your microsite show up in ads

that are running on other sites. Blogs are a great place to find contextual advertis-

ing happening, and if you’re familiar with Google AdSense, then you’ve seen an

example of contextual advertising in action. The way it works is that the search en-

gine has a system running that reads the content of the site on which the ad is being

shown. If that system finds terms that match those that you’ve purchased, a link to

your site will be included in the rotation of ads on that particular site. Contextual ad-

vertising is so valuable because it’s a winning situation for everyone involved. Every

time a user clicks on one of these ads, the site that is running the ads gets revenue,

the search provider generates revenue, and your client’s microsite gets another

visitor and possibly a new customer. On top of that, the chances that a visitor will be

interested in your client’s brand is fairly high due to the search for relevant terms on

the site he or she is already reading.

Banner Ads

Using banners to attract visitors involves more than simply creating a link in an ad

and hoping people accidentally click on it. You definitely shouldn’t trick them into

clicking your ad by presenting them with a fake close button, a fake form to fill out,

or anything else along those lines. Tricking your users into visiting your site will only

turn them against your client. Instead, your viewers should be enticed or intrigued

enough by your banner that they want to visit the site at their own will.

Banner Ads

160 11. Driving Traffic to Your Microsite

 Design Matters

The design of your ads will have a huge impact on whether or not people want to in-

teract with it and visit your site. If they find the ad “attractive,” human nature makes

them much more likely to be tempted to click on it to see if the destination is just

as nice. In addition, they will be quicker to click on an ad that clearly lets them know

that they are going to be taken to a place they are interested in.

In addition to designing your banners in a visually pleasing manor, consistency will

help attract users to the ads and subsequently to the site itself. The consistency

of the banners should be thought of on a few different levels of design. Not only

should you pay attention to making sure the banners all look alike, but they should

have similar animations as well. By doing this you ensure that no matter what size

banner users see from this campaign and no matter where they see it, they’ll rec-

ognize it. If a user previously clicked on one of the banners from the campaign and

liked the site, he or she will probably click on another one that looks and acts the

same. Keep in mind that the consistency should not stop with the banners them-

selves, but should also tie the banners to the site. This consistency from banner to

site will help ensure a more smooth transition from the site a user is currently visit-

ing into yours.

Keep Your Promise

When a user clicks on your banner ad, he or she is usually expecting something in

particular at the site he or she is being taken to. That something is whatever you

have told users that they should expect when they first viewed the banner. Deliver-

ing on your promise is not only good business, but it’s something that will drive

 traffic back to your site after the initial visit. If users click on a banner because they

are expecting to fill out a form for travel reservations, then that’s what they should

get. However, if they get to the site and can’t find the form, they may become frus-

trated and go elsewhere to book their travel plans. Once that happens, they’ll only

remember that they had difficulty on your client’s site and they may not return at all.

To the Microsite from the Main Site

Another form of driving traffic to a microsite is by way of the main website. Since

your client probably owns their own main website, then driving traffic from there

to a new microsite is going to be extremely low cost when compared to a banner

 campaign. The fact that they won’t have to pay for the actual placements on their

own site is one thing that helps keep the cost down. In addition to the lower cost,

161

you can rest assured that the people viewing the

 site (and the advertisement) are all but automati-

cally your target audience. Since they are visiting

your client’s main website, you know that they are

already aware of, and interested in, the brand. They

can be considered the largest built-in audience of

the new microsite, and all they need now is a little

push in the right direction.

Highlight and Promote

The push users need can come in several different

forms and the one that’s best is dependent on the

website and even the brand itself. One approach

would be that the website has a section on the

home page that is reserved for featured products or

services. This may be an area where a client typi-

cally advertises a sale or another upcoming event. If

your client has taken the time and spent the money

to have a microsite built for a particular product,

chances are pretty high that they won’t have any

problem at all using that promotional area to adver-

tise and drive traffic to that microsite. There may be

other areas within the main site that can be utilized

for making visitors aware of the new microsite, but

the goal is the same throughout: Highlight and

promote the new product or service for which the

microsite was built.

Send Them Back

Where the main site is a great source of traffic for

the microsite, the same can be said in reverse. There

are some clients that are naturally very good about

keeping users flowing in both directions and then

there are those that you’ll need to explain this to. While a microsite is focused on a

particular product or service that your client has to offer, it’s smart to try to influence

users to also visit their main website to find more. Once they visit the main web-

site, they may find products or services that your client has to offer that they were

To the Microsite from the Main Site

Author’s Tip

I made a brief mention earlier

in this chapter about the often

short life span of microsites,

and while it would be nice to

leave them up for an extended

period of time, it doesn’t always

work out that way. This means at

some point there’s going to be

a virtual hole where the micro-

site used to live on the Internet.

If users have visited the site

before and found it to be use-

ful, they may try to come back

only to find it has gone miss-

ing. Rather than leaving them

wondering what happened, it’s

a good idea to redirect them to

your client’s main website. To

leave even less room for confu-

sion, it’s a better idea to redirect

them right to the product’s

specific page. For example, if

you were to visit a microsite for

a certain model car and that

microsite no longer existed, the

best scenario would take you to

the page about that car within

the auto manufacturer’s main

website.

162 11. Driving Traffic to Your Microsite

 previously unaware of. And who knows, they may even be interested in buying those

other items. Another advantage to driving users to both sites from within both sites

is link popularity. For every link and every click from one site to the other, that des-

tination site’s link popularity grows, which, in turn, raises that site in search results.

With that said, I should point out that it’s a bad practice to overload your sites with

links to each other just for the sake of raising their popularity.

 Word of Mouth (a.k.a. Viral Marketing)

If the site is designed and built right, users will walk away remembering not only

the information they learned or the fun game they played, but they’ll be able to tell

their friends and coworkers whose microsite they were visiting and the URL to get to

that site. Believe it or not, this is actually a form of advertising that goes by different

names like “ word of mouth” or “ viral marketing,” and they say it’s one of the best

forms of advertising available. For one thing, outside of the initial expense to get it

going, it’s free of cost. The other great aspect is that it seems to be in human nature

to listen to and trust people we know much more than we listen to or trust typical

 advertising. If a friend tells you about a website they visited, chances are you’re go-

ing to give it a visit, because if your friend liked it, it must have been good and you’re

guessing you’ll like it as well.

One of the great things about microsites is that they are so perfectly built to accom-

modate viral marketing. If you think about how many times you’ve suggested a site

to a friend or how many times you’ve been told about a site, you’ll start to see that

those sites are microsites more often than they are full corporate/company web-

sites. When you have a site that is centered around one specific idea, product, or

service, you’re able to put more focus and energy into that one item. With that en-

ergy, your creations can dig further into the realm of entertainment and that’s when

you start to hit on the things that people talk about and pass around to each other.

Inside the Industry

 “Viral isn’t about how you get someone to your microsite; it’s about what

happens after someone leaves your microsite.”

—John Keehler, Strategist, Click Here, Inc.

163

Generating a Buzz

Before people start talking about your site, those first potential visitors will need

to know it exists, right? After all, if nobody ever sees it then nobody will be able to

talk about it. This somewhat wraps back around to using the other forms of driving

traffic to your site previously mentioned in this chapter, because those other meth-

ods can be used to generate the initial buzz. Then, once people have started talking

about the site and passing the URL around to their friends, you can phase those

methods out and let the site advertise itself.

Internal Kick-off

A great first step that most companies, clients, agencies, freelance developers, etc.

can (and should) do in their attempts to generate buzz about a new microsite is to

kick-off the site internally. If you work for an advertising agency, send a notification

out to everyone letting them know to check out the new site that your company has

just launched for their client. Additionally, you may make a suggestion that your cli-

ent does the same within their offices. When your client’s employees start visiting the

microsite, they’ll most likely pass it on to their friends and family. Speaking of friends

and family, let yours know about the microsite as well. After all, you should be proud

that you’ve been a part of the huge effort that has taken place to make it happen.

Seed the Link

Another way to kick-start word of mouth are blogs. I think it’s pretty safe to say that

there are a large amount of people who maintain a blog of some sort. Whether

they maintain it on their own website or they use one of the many available blog-

ging networks, they are out there and you can utilize them. One way to do this is to

find bloggers who are already writing about the brand you are promoting and make

them aware of the new microsite.

 Word of Mouth (a.k.a. Viral Marketing)

 ALERT Blog spamming (also known as comment spamming) is a very

bad practice and it should be avoided at all costs. To avoid blog

spamming, simply avoid talking about or posting a link to the

microsite on blogs that are irrelevant to the subject matter of the

microsite itself. Just remember that if you are going to plug your

work in the comments of someone else’s blog, either have the

blogger’s permission to do so or make very sure it fits within the

flow of conversation.

164 11. Driving Traffic to Your Microsite

There are several ways to find the people or interest groups that are writing about

the brand and one of those ways is Technorati (http://www.technorati.com). Tech-

norati allows you to search blog posts from all over the world for a certain term

such as your client’s company name. Once your results are returned to you, you

have a couple of sorting options at your disposal such as authority and language.

The authority option uses link popularity along with other factors to determine

which blogs historically have the most (or least) authority on the subject of your

search. Choosing to include those with less authority will yield a larger number of

results, while choosing to show only those with a lot of authority will do just the

opposite and lower the number of results shown. This feature may come in handy

when you’re looking for a person who manages a blog that has many readers and

that has posts talking about your client’s brand. After finding those individuals, you

can proceed to contact them via email to find out if they are interested in writing

about your client’s new microsite.

 ALERT When contacting a blog owner about potentially writing a piece

about, or including a link to, your client’s new microsite, always

be up front and honest about the fact that you work for the adver-

tising agency that created the site (if you created the site on your

own and don’t work for an agency, you should still inform them

as to who you are). Not only is it better business to be honest

about such things, but the blog owner will appreciate that hon-

esty and will be more likely to want to help you out. If you decide

against informing the blog owner about who you are, you run a

high risk of him or her figuring it out later down the line. If that

happens, not only will he or she probably remove the story/link,

but you can bet he or she will never trust you again after that

point. Additionally, it could end up completely reversing the blog

owner’s thinking about your client.

In addition to contacting other blog owners, you can also write to your own blog

to help promote the new microsite. For example, I maintain a blog in which I talk

about Flash-related topics. Each time we (Click Here, Inc.) launch a new site that is

built with Flash, I write about it on my blog. While my intention is simply to share

our work with the online community, there have been times when people have

165

read my blog, visited a site I wrote about, and subsequently wrote about the site on

their own blog. From that point, this scenario can very easily turn into the classic “I

shared it with two friends, they shared it with two friends, those friends each shared

it with two friends, and so on.” With that, you can see how it can spread quickly with-

out much effort on anyone’s part. As a matter of fact, it’s that viruslike spreading

that gives it the name “viral marketing.”

 Targeting Specific Blogs

Another way to advertise your microsite on blogs is by actually targeting them

individually. The difference between using a contextual network and using a blog

advertising specialist such as Blogads (http://www.blogads.com) is that you can

choose which blogs your ads will appear on. You can start out by sorting through a

list of highly visible and influential blogs and then you can narrow your target down

as far as you want. For example, you might want to target blogs that are only read

by car enthusiasts. Or maybe you want to target Flash developers. Or you could

even narrow it down further by targeting Flash developers who are car enthusiasts

and live in Dallas. Targeting specific blogs in this way can give you visitors who are

interested in topics and products that somehow relate to your client’s microsite.

User Interactions and Referrals

I think it’s safe to say that you can learn a lot about what people like by physically

watching what they do, where they go, and even who they interact with. The same

is true for those people when they visit a microsite. The only difference is that you

are looking at a virtual trail of actions they left behind. While tracking the sections a

user has visited in a Flash site requires a little help from another language outside

of Flash (JavasSript, php, etc.), the benefits can be very rewarding in terms of know-

ing what steps you need to take next in your efforts to bring even more visitors to

the site.

What Do Users Like?

You can build your own custom tracking scripts or you can do it through one of

several companies like WebSideStory (http://www.websidestory.com) who actually

specialize in this field. Using either your scripts or the products these companies

have to offer, you can get various reports on items like which areas of the site were

visited more. Once you know which particular areas of the microsite interest users

the most, you can apply that information to the next banner campaign by highlight-

ing those sections in the creative.

User Interactions and Referrals

166 11. Driving Traffic to Your Microsite

Where Do Users Come From?

Another highly valuable piece of information is to know where your visitors actu-

ally come from. A lot of Web hosting companies will provide you with site statistics

that give you a list of referrers for your site. Those referrers have a link somewhere

on their website that directs their visitors to your microsite. If your hosting company

does not provide site stats or if you (or your company) are hosting the microsite

yourself, you may need to look into other ways of getting your referrer reports.

There are many options out there ranging from expensive solutions that need to be

installed on your server to free solutions like Google Analytics. And just as there is a

range of cost for the different solutions, there is also a range of features and details

with each solution (which should not actually be judged by the cost).

Regardless of which direction you use to get your list of referrers, that list can help

you enhance and fine tune your next (and even current) campaign. By reviewing

the list, you can find new referrers as soon as they appear. As a kind gesture, and to

open a new relationship with a potential future referrer of your work, it’s not a bad

idea to send certain new referrers an email thanking them for linking to your micro-

site. Of course this depends on the kind of site it is, what they had to say about the

site, and a few other factors that you’ll have to judge for yourself. Additionally, if you

find that one of two sites are sending a much larger number of visitors than any of

the other referrers, you may want to go ahead and plan on contacting them in the

future to see if they would like to promote other projects.

Conclusion

To wrap this chapter up, remember that part of the effort that should be put into

a microsite project is getting people to visit it. There are many ways to get people

to come to your new site. Some of those ways cost money all the way through the

project and eventually in the end, while others cost a little bit up front but resolve

to no cost in the end. On top of being virtually free, word-of-mouth advertising can

last just as long as people are still talking about it. There are even times when the

talk may die down for several months only to have someone bring it back up to their

friends at a later date (which could stir the viral effect back into motion).

Don’t forget that search engines can be your very best friend when you want to drive

people to a microsite. By utilizing their paid search terms, you can guarantee your

client a spot in the list of results returned on a search of a given word. Additionally,

some search engines also tie in with blogs to offer an additional point of contact

167

with potential customers. In the end, the benefits of using paid search far outweigh

the cost involved with doing so.

Another avenue clients (and sometimes even agencies or developers) forget about

is that of the client’s main website. There are not many reasons I can think of that

would prevent you from linking from the main website to the microsite and vice

versa. The visitors are already there, they are already familiar with the brand, and

they obviously like it enough to be at one of the two sites in the first place. Why not

take advantage of that built-in audience and offer them a way to get to the other site

to find more entertainment or information about the brand?

Don’t rule out getting other people involved in your viral marketing. Send emails

around notifying friends, family, and coworkers about the launch of the site. If you

maintain a blog, write about it to let the world know of your company’s wonderful

work. Contact other blog owners who are already interested in your client’s brand,

and, after telling them your intentions and who you are, most people will be more

than happy (and even thrilled) to be a part of the advertising effort. Some of those

blog owners are even signed up to blog advertising networks on which you can pur-

chase space to run your ads. By utilizing a blog advertising network, you can run your

ads on blogs that you have targeted based on as specific of a criteria as you see fit.

Finally, keep an eye on what your users are doing while they are visiting your micro-

site. If you keep reports on areas of higher interest, you can better tailor your next

campaign to fit what your visitors want to see. In addition to paying attention to what

they are doing while they are on your site, you should know where they were prior

to getting there. With that piece of information, you can do things like run ads on

sites that have sent a high number of visitors to your microsite or contact the sites

directly the next time you launch a similar project.

Conclusion

This page intentionally left blank

169

 Advertising Examples

In this chapter I’m going to show some examples of actual client work that I have

been a part of. These examples are not intended to be case studies, but rather a

way to illustrate some of the possibilities that exist when it comes to using Flash for

online advertising. I’ve broken this chapter into the following sections:

 • Rich-media Banners

 • A Simply Perfect Microsite

 Rich-media Banners

As you may have guessed by the title of this section, the following examples were

designed and created to utilize some of the technologies that were covered in

Chapter 7 and are made available by rich-media companies.

Rich-media Banners

1212CCHAPTERHAPTER

170 12. Advertising Examples

Simply Perfect Dynamic Debate Ads

 Client: Patrón Spirits

 Target website: http://www. simplyperfect.com

Figure 12.1

The three main frames of a Simply Perfect Dynamic Debate ad.

171Rich-media Banners

While the banners in Figure 12.1 may look like standard Flash banners with no spe-

cial technology in place, there are things happening behind the scenes that require

the ability to load external content. More specifically, they load a feed in the form

of an xml file from the website that they promote. The ads were placed on several

different websites and the content of each ad could be easily altered to reflect the

most current up-to-date information that also tied in with the content of the website

itself. For example, if the ad was placed on a financial website, the content could

be changed to a topic dealing with something like stocks and bonds. If the ad was

running on a sports-related website, the content could be changed to talk about

football, baseball, hockey, soccer, or any other sports topic.

For each size of these ads, a single fla file was created that contained a variable that

held the name of the website on which the banner would be shown. If the media

plan for this campaign called for six 160 × 600 banners to run on six different sites,

the single 160 × 600 fla was published six times with a different value given for the

variable in each one. The second piece to the puzzle was an xml file created spe-

cifically for the 160 × 600 banners. The xml file contained information pairing up

the value of the variable with a topic ID number. In Table 12.1 I’ve given fictitious

examples of how these associated values would pair up. Once each banner had

its assigned topic ID number, that number was then passed to the Simply Perfect

website, which answered by returning the content for the banner to display. In these

particular banners, that content was two sides of a debate and the percentage of

people who had voted or discussed each side.

Table 12.1

Example of Websites and Associated Topic ID Numbers

Website Topic ID Number

Sports site 99

Entertainment site 98

Music site 428

Nightlife site 616

Business site 81

172 12. Advertising Examples

After the banners were trafficked, the only thing that needed to be changed to keep

the content fresh was the values in the xml file. As you can imagine, that simplicity

not only cut down the production cost of new iterations of these banners, but also

made it incredibly easy and fast to keep the banners up-to-date with hot topics of

discussion.

Pork on Tour

 Client: National Pork Board

 Target website: http://www.theotherwhitemeat.com

The idea behind the Pork World Tour banners (Figure 12.2) was to bring a fun

change to the dinner table. The overall National Pork Board campaign at the

time was titled “Don’t Be Blah”; and what better way to avoid being “blah” than to

breathe life into a pork chop and turn him into a guitar-wielding reggae/country/

jazz/blues/rock-n-roll star?

The ads were designed and built as music videos in which our pork star sang about

different recipe ideas for the audience. The songs themselves were recorded in

studio and one of our art directors even went the extra mile to sing and play guitar

on a couple of the tracks. Once the songs were recorded, edited, and finalized, it

was time to start the animations. Each of the animations was built as a “traditional”

 timeline animation, and care was taken to ensure the movement went in-line with

the song itself. Upon completing an animation, it was exported out as an flv (Flash

video) file with the audio included. Another file was then created that essentially

contained only the “stage” on which the star of the show would perform.

The Pork World Tour banners are a good example of using timeline animation with

original audio to create an animated video banner. And since the videos were also

set up in the “Fun Stuff” section of the National Pork Board’s main website, they are

also a good example of engaging users in something fun that they can pass along

to their friends for a smile (which can very easily turn into viral marketing).

17
3

Figure 12.2

Shots from Pork World Tour video banners.R
ich

-m
e

d
ia

 B
a

n
n

e
rs

174 12. Advertising Examples

A Simply Perfect Microsite

 Client: Patrón Spirits

 Website: http://www. simplyperfect.com

The microsite http://www. simplyperfect.com was very fun to work on and is driven

by user-generated content. The general concept of the campaign was that while

some areas of perfection are debatable, the perfection Patrón Spirits is not. The

main page of the site (Figure 12.3) displays a virtual world of debates laid out

across the screen. To browse through the different debates, a user would simply

move his or her mouse around the screen and the debates would react accordingly.

If a visitor was having trouble finding a particular discussion, he or she could resort

to the search functionality to see if any debates contained a word he or she was

looking for. Likewise, the same visitor could sort the debates by the category under

which he or she was originally submitted.

Debate Your Topic

One of the great things about the http://www. simplyperfect.com microsite is the

fact that visitors (and administrators) can create new topics of discussion as those

topics become hot areas of current debate. For example, a fan of a certain football

team may use the form in Figure 12.4 to submit a new debate about his favorite

team versus their biggest rival a week before the two teams are scheduled to play

against each other. And since the range of categories is fairly wide, almost any visitor

can usually find a debate in which he or she would like to voice his or her opinion.

Once a debate is submitted and approved by the site administrator, it is open for

discussion. While some debates attract a large amount of users and others attract

less, all are capable of accepting user input in the form of writing and/or uploading

 audio or video files of themselves making their point on the topic at hand. Figure

12.5 shows a debate in which many people have weighed in on both sides and a

video is playing at the top of the discussion area.

Microsite Television

The Simply Perfect campaign was spread across multiple forms of media from

online to billboards to magazines to television. Since Flash affords us the ability to

include video with such great quality, the television commercials were converted

and placed in the http://www. simplyperfect.com microsite for users to watch and

enjoy (Figure 12.6).

17
5

Figure 12.3

The main page on http://www. simplyperfect.com.

R
ich

-m
e

d
ia

 B
a

n
n

e
rs

17
6

12

. A
d

ve
rtisin

g
 E

x
a

m
p

le
s

Figure 12.4

The new debate submission form.

17
7

Figure 12.5

An active debate within http://www. simplyperfect.com.

R
ich

-m
e

d
ia

 B
a

n
n

e
rs

17
8

12

. A
d

ve
rtisin

g
 E

x
a

m
p

le
s

Figure 12.6

The Simply Perfect television commercials within the microsite.

179

Conclusion

As I mentioned at the beginning of this chapter, the above examples illustrate pos-

sible directions that can be taken with Flash advertising. While these are only a few

examples, there are many, many more out there that you have most likely come in

contact with at one point or another during your time online. It’s always a good idea

to keep track of microsites that catch your attention in one way or another and to re-

member banners that grab your eye as well. By creating your own list of examples,

you can refer back to them during those times when you need a little kick of inspi-

ration to draw from. While it goes without saying, I would like to add that your list

of examples should be used only for inspiration of new ideas and not for actually

copying others’ thoughts and designs.

Conclusion

This page intentionally left blank

181

Snippets and Classes

Some developers prefer to contain all of their code in classes or external .as files,

while some others are more comfortable having their code on the timeline, and still

others find that there are times for both depending on the project at hand. In this

chapter you’ll find helpful, reusable code and classes. The code for each piece will

be followed by an explanation about what’s happening within it. These snippets and

classes can also be found on the website at http://www.flashadbook.com/code/.

There are only two sections in this chapter, and you might have guessed that they are:

 • Snippets

 • Classes

Snippets

Snippets can be very useful when you see that there are tasks or functions that you

create and use over and over again. Rather than rewriting the code every time, it’s

a good idea to save pieces of it that can be moved from project to project. Follow-

ing are a couple of snippets of code that I’ve found useful in helping me add a little

speed to the process of building either banners or microsites.

Full- stage Button

The full-stage button snippet is one that I use quite frequently when I’m working

on banner ads that require only linking to a single location. Since I found myself

constantly creating invisible buttons that covered the entire stage, I figured I’d write

up this quick little helper to cut that monotonous step out of my production.

Snippets

1313CCHAPTERHAPTER

182 13. Snippets and Classes

The Code

var myBtn:MovieClip = this. createEmptyMovieClip(“myBtn”,this. getNextHighestDepth());

myBtn.beginFill(0x000000,0);

myBtn.moveTo(0,0);

myBtn.lineTo(Stage.width,0);

myBtn.lineTo(Stage.width,Stage.height);

myBtn.lineTo(0,Stage.height);

myBtn.lineTo(0,0);

myBtn.endFill();

myBtn.onRelease = function(){

 getURL(_level0.clickTag,“_blank”);

}

The Explanation

The first line of code in the full-stage button snippet simply creates a new empty

 MovieClip instance (I’ve given mine the name “myBtn,” but you can give it any name

you like). Since the default x and y locations of a newly created MovieClip are both

0, we don’t actually need to set them:

var myBtn:MovieClip = this. createEmptyMovieClip(“myBtn”,this. getNextHighestDepth());

The second line uses the beginFill method of the MovieClip to indicate that it’s

about to start drawing a shape that needs to be filled with the color and alpha val-

ues indicated in the method’s parameters, respectively:

myBtn.beginFill(0x000000,0);

Once the beginFill method has been called, lines 3–8 draw the invisible shape by

using the width and height properties of the Stage Object, which is exactly what you

might think it is: the “stage” (or virtual canvas) on which your work is displayed:

myBtn.moveTo(0,0);

myBtn.lineTo(Stage.width,0);

myBtn.lineTo(Stage.width,Stage.height);

myBtn.lineTo(0,Stage.height);

myBtn.lineTo(0,0);

myBtn.endFill();

183Snippets

Last, but not least, an onRelease handler is added

to our MovieClip and tells it what action to take

in the event that a user clicks (and subsequently

releases his or her mouse button over) our invisible

button:

myBtn.onRelease = function(){

 getURL(_level0.clickTag,“_blank”);

}

 Simple Preload Text

Preloaders have been built and coded many times

and in many different ways. As a matter of fact,

they’re used enough that there are preloader com-

ponents that can be used in your work. However, it’s

rare that you’ll want to use the same exact pre-

loader from client to client and from project to

project. Since I noticed that being the case in my

work, I put the following snippet together to use as

a starting point and sometimes even as the entire

preloader. Since putting this small piece of code to-

gether, I’ve used it in many different modified varia-

tions for many different projects. The description of

this snippet is very simple: It creates a TextField and

displays how much of the Flash piece has loaded.

Once it is fully loaded, the TextField is removed

from the screen and the Flash movie carries on to

its next step.

Author’s Tip

There are some optional lines

in the full-stage button snip-

pet that I’ve left in for good

practice. Line 3 sets the loca-

tion of the virtual drawing pen

to a registration point of 0,0.

However, since we have not

told the pen to draw anything

yet, it is already waiting for us

at that point. This line can be

removed if you like. Since we

are using the beginFill method,

lines 7 and 8 are doing pretty

much the same thing: closing

the area we are filling. However,

each time we move our pen

the beginFill method draws a

shape from our starting point

to each point we’ve added and

back to the starting point again.

Therefore, when our pen makes

it back to an x value of 0 in line

6, our invisible button is actu-

ally covering the stage already.

You can remove one or both

of lines 7 and 8 if you like, but

I would recommend leaving

one of them in place for good

measure.

184 13. Snippets and Classes

The Code

stop();

this. createTextField(“loadText”,this. getNextHighestDepth(), 100, 100, 0, 0);

loadText.autoSize = true;

this.onEnterFrame = function(){

 var loaded:Number = this. getBytesLoaded();

 var total:Number = this. getBytesTotal();

 var percent:Number = loaded/total;

 loadText.text = “Loading: ” + Math.round(percent*100)+“%”

 if(percent == 1){

 delete this.onEnterFrame;

 loadText. removeTextField();

 this.play(); //Replace this.play() with code telling your movie what to do

next

 }

}

The Explanation

The first thing to do is stop the movie from playing any further by simply placing a

stop command on the first line. Next, a textField is created on line 2:

this. createTextField(“loadText”,this. getNextHighestDepth(), 100, 100, 0, 0);

The parameters used to create a textField are as follows:

 createTextField(instanceName:String, depth:Number, x:Number, y:Number,

width:Number, height:Number). As you can see, we’ve given our textField an

 instanceName of “loadText” and a depth using the getNextHighestDepth() method,

which does exactly what it says. Next, we set both the x and y to 100. This number

should obviously be changed depending on the size of your stage and the design

of your work. Finally, we come to the width and height parameters, which are both

given a value of 0. This may not make sense on the surface and some might wonder

why you would even include the numbers if you’re only passing 0. Well, the answer

is pretty simple: Flash won’t create the textField without the parameters, so the 0 is

okay to pass because of the next line in the code, line 3:

loadText.autoSize = true;

185

The autoSize property of a textField does a couple of things based on the value

you give to it. The acceptable values for this property are “none” (default value),

“left,” “right,” and “center.” However, you can also assign a value of true or false to

achieve your desired outcome. If you set the value to false, it’s the same as setting

it to “none” or not assigning anything at all. If you set the value to true, it’s the same

as setting it to “left.” By assigning a value to the autoSize property of our loadText

textField, we’re telling it to expand as much as it needs to in order to accommo-

date the text we’re asking it to display. The direction it expands is determined by

the value we assign to autoSize. A value of true or “left” will tell the textField to

expand to the left, “right” will tell it to expand to the right, and “center” will tell it to

expand in both directions at the same time. Getting back to the code, the fact that

the textField will expand as much as it needs to is the reason it was okay to give it a

 width of 0 when it was initially created. Next is the function to update the text with

the loaded percentage of the Flash piece; this takes place on lines 4–14:

this.onEnterFrame = function(){

 var loaded:Number = this.getBytesLoaded();

 var total:Number = this.getBytesTotal();

 var percent:Number = loaded/total;

 loadText.text = “Loading: ” + Math.round(percent*100)+“%”

 if(percent == 1){

 delete this.onEnterFrame;

 loadText. removeTextField();

 this.play(); //Replace this.play() with code telling your movie what to do

next

 }

}

The function to update the percentage is an onEnterFrame function, which means

that the code within is executed at the same frame rate as the movie (or at least as

close to it as possible). Within the function, we have to do some quick math to get

the percentage before we can display it to a user. In order to do this math, we first

need to know how many bytes the file size is and how many of those bytes have

loaded. Flash makes this easy by providing the getBytesLoaded and getBytesTotal

methods that we assign to variables called “loaded” and “total,” respectively. Once

we have those numbers, we can do a little simple division (loaded/total) to get a

Snippets

186 13. Snippets and Classes

decimal number, which we assign to a variable named “percent.” Now we can actu-

ally inform a user as to how much of our movie has loaded for him or her. To convert

the percentage from a decimal number to a whole number, pass it through the

Math.round() method while also multiplying it by 100. Also, wrap some text around

it and assign it to the loadText textField:

 loadText.text = “Loading: ” + Math.round(percent*100)+“%”

Every time this function runs, we need to make sure we tell the movie what to do

once it’s completely loaded. This happens in the if() statement at the end of the

 onEnterFrame function. We test to see if our percent variable is equal to 1 (remem-

ber the percent variable was originally a decimal number less than 1, but climbing

toward 1). When percent does equal 1, we quickly delete the onEnterFrame function

(this stops it from executing its script anymore), we remove the loadText textField

because we don’t need it anymore, and we tell the Flash movie to go ahead and

play (or to do anything else we need it to do once it’s loaded).

 Classes

Classes can be a huge help to your production time, the consistency of your and

your team’s work, and even your sanity in those late hours before a deadline. When

using classes, you can rest assured that once you have them built and functioning

as you intend them to, you don’t need to worry about reinventing the wheel every

time you find yourself repeating a given task. It also helps to know that if it was

working correctly before, it will be working correctly now; that helps when it comes

time to send your work to quality control. In this section, I’ve included classes that

I’ve found useful in my time working in the advertising industry.

187

 BorderButton

The BorderButton class is something that grew from the full-stage button snippet

I previously covered. While you may still want to use the snippet in some cases, the

BorderButton class has added features. In addition to creating an invisible button

that covers the stage, this class also gives you the option to include a border of any

color and thickness you need based on the design layout and specs (some sites

require a border to separate banners from their content). As a matter of fact, the

BorderButton class is set up to offer three different choices. One option for using

this class would be a full stage button which also draws a border around your ban-

ner. Another option would be a full-stage button that does not draw a border around

your banner. The third option would be to draw a border around your banner without

creating a full-stage clickable area. Each of these options has their uses, and the

project at hand will determine which you would use. An example would be if you

had a banner with specs that called for a border, but you also need to make three

different clickable areas within the banner. In that case, you would go with the third

option of drawing the banner without including the full-stage clickable area.

 ALERT Always remember to name your file, class declaration, and con-

structor statement the same. For example, if you are going to

create a class named “myClass,” then your file should be named

myClass.as, and your declaration and constructor should be as

follows where the ellipses (…) indicate areas for other code:

 class BorderButton{… public function BorderButton(…){…}… }

Classes

188 13. Snippets and Classes

The Code

class BorderButton extends MovieClip{

 public function BorderButton(tag:String,clickable:Boolean,outline:

Boolean,lineColor:Number,lineThickness:Number){

 if(outline == undefined){

 outline = false;

 }

 if(lineColor == undefined){

 lineColor = 0x000000;

 }

 if(lineThickness == undefined){

 lineThickness = 1;

 }

 var bbMc:MovieClip = _level0. createEmptyMovieClip(“bbMc”,_level0.get

NextHighestDepth());

 if(outline){

 bbMc.lineStyle(lineThickness,lineColor);

 }

 bbMc.beginFill(0x000000,0);

 bbMc.moveTo(lineThickness/2,lineThickness/2)

 bbMc.lineTo(Stage.width-(lineThickness/2),lineThickness/2);

 bbMc.lineTo(Stage.width-(lineThickness/2),Stage.height-(lineThickness/2));

 bbMc.lineTo(lineThickness/2,Stage.height-(lineThickness/2));

 bbMc.lineTo(lineThickness/2,lineThickness/2);

 bbMc.endFill();

 if(clickable){

 bbMc.onRelease = function(){

 getURL(tag,“_blank”);

 }

 }

 }

}

189

The Explanation

In line 1, we declare the BorderButton class and have it extend MovieClip:

class BorderButton extends MovieClip{}

The reason for extending MovieClip is so we can inherit all of the methods we use

that come from the MovieClip class itself. Next, on line 2, is the BorderButton con-

structor statement:

 public function BorderButton(tag:String,clickable:Boolean,outline:

Boolean,lineColor:Number,lineThickness:Number){}

In the constructor statement, we set up the function that will be called when a new

instance of the class is created in Flash. The constructor statement is where both

required and optional parameters are declared for the class. Table 13.1 describes

the parameters of the BorderButton class.

Table 13.1

 BorderButton Class Parameters

Parameter Explanation

tag
The URL that users will be taken to when they click on the

banner. The tag parameter should be passed in as a string.

clickable

A Boolean value that indicates whether or not the area is

clickable. If set to true, the entire banner becomes click-

able. If set to false, only the border is drawn.

outline (optional)

A Boolean value that indicates whether or not to draw a

border around the banner. This parameter is set to false by

default.

lineColor (optional)

A number value that determines the color of the border.

The lineColor should be passed in the form of 0×000000.

The default value of this parameter is 0 (black).

lineThickness (optional)
The thickness of the border in pixels. The lineThickness

should be passed in as a number and is set to 1 by default.

Classes

190 13. Snippets and Classes

Next, we get inside the constructor statement to check the values passed in

through the parameters and respond. The very first thing we do is check the op-

tional parameters to see if values have been passed for them. If not, we assign the

default values. This takes place in lines 3–11:

if(outline == undefined){

 outline = false;

}

if(lineColor == undefined){

 lineColor = 0x000000;

}

if(lineThickness == undefined){

 lineThickness = 1;

}

Next, we create an empty MovieClip in line 12. Then we check back to the outline

parameter to determine whether or not we will draw the outline. If we find a value

of true, we use the lineColor and lineThickness parameters to set the lineStyle()

accordingly:

var bbMc:MovieClip = _level0. createEmptyMovieClip(“bbMc”,_level0.getNextHighest

Depth());

if(outline){

 bbMc.lineStyle(lineThickness,lineColor);

}

After that, we begin the transparent fill and draw a rectangle (or square depending

on the banner size) to the stage in lines 16–22:

bbMc.beginFill(0x000000,0);

bbMc.moveTo(lineThickness/2,lineThickness/2)

bbMc.lineTo(Stage.width-(lineThickness/2),lineThickness/2);

bbMc.lineTo(Stage.width-(lineThickness/2),Stage.height-(lineThickness/2));

bbMc.lineTo(lineThickness/2,Stage.height-(lineThickness/2));

bbMc.lineTo(lineThickness/2,lineThickness/2);

bbMc.endFill();

191

Finally, we check to see if our

 BorderButton is clickable. If it is, we

set up the onRelease function to go to

the intended URL:

if(clickable){

 bbMc.onRelease = function(){

 getURL(tag,“_blank”);

 }

}

Sample Use

To use the BorderButton class from

within Flash, use one of the following:

//A BorderButton that is clickable and has an outline

var fullBtn:BorderButton = new BorderButton(“http://www.flashadbook.com”, true,

true, 0xff0000, 3);

//A BorderButton that only draws an outline on the banner

var fullBtn:BorderButton = new BorderButton(“http://www.flashadbook.com”, false,

true, 0xff0000, 3);

//A BorderButton that is clickable and does not draw an outline on the banner

var fullBtn:BorderButton = new BorderButton(“http://www.flashadbook.com”, true);

 SimpleMenu

The following SimpleMenu class is a single-dimension (no dropdowns) menu that

has limited styling properties that can be set by the developer. One of the styles

that is changeable is the font used for both the upstate (when the mouse is not

over the button) and the overstate. For example, you may want to show your menu

using Arial font with no underlines until a user rolls his or her mouse over a button.

The other modifiable style in the SimpleMenu class is the rectangle that is drawn

behind the text of each button. You can control the opacity of the rectangle with

the backgroundOpacity parameter and have it semi-see-through (or set that value

to 0 and get rid of the rectangle altogether). Additionally, you can control the color

of both the upstate and the overstate of the rectangle. Once the SimpleMenu class

is used to create a menu in your project, you can assign any function to any button

within that menu by using the assignRelease method.

Author’s Tip

In the BorderButton class, it is important to

notice the numbers used in the moveTo()

and lineTo() methods. Instead of drawing

the border line from an x and y of 0 to the

full-stage width and height, we need to pull

it back in by about half of the line thickness.

This is due to the way Flash renders the

border when it’s all the way at the edge. Try

changing those numbers up to draw the bor-

der all the way to each edge and see if you

lose the bottom and right side of the border.

Classes

192 13. Snippets and Classes

The Code

class SimpleMenu extends MovieClip{

 var menuMc:MovieClip;

 public function SimpleMenu(parentMc:MovieClip,menuArr:Array,dir:

String,spacing:Number,upState:TextFormat,overState:TextFormat,backgroundOpacity:

Number,upBackground:Number,overBackground:Number){

 //check to see how many SimpleMenus have been created and increment that

number by one

 if(!parentMc.menuMc0){

 parentMc.menuNumb = 0;

 }else{

 parentMc.menuNumb++;

 }

 //create empty MovieClip to house the menu items

 menuMc = parentMc. createEmptyMovieClip(“menuMc”+parentMc.menuNumb,parentMc

. getNextHighestDepth());

 //loop through menuArr and create menu items for each item in the array

 for(var m:Number = 0; m<menuArr.length; m++){

 //create empty MovieClip to act as menu item button

 var itemMc:MovieClip = menuMc. createEmptyMovieClip(“itemMc”+m,menuMc. g

etNextHighestDepth());

 //check the direction to render the menu items. if no direction is

passed in, let the user know what to use.

 if(dir == “vertical”){

 var tempY:Number = menuMc[“itemMc”+(m-1)]._y + menuMc[“itemMc”+

(m-1)]._height;

 itemMc._y = tempY + spacing;

 }else if(dir == “horizontal”){

 var tempX:Number = menuMc[“itemMc”+(m-1)]._x + menuMc[“itemMc”+

(m-1)]._width;

 itemMc._x = tempX + spacing;

 }else{

193

 trace(‘Please use either “horizontal” or “vertical” for the

SimpleMenu direction param.’);

 }

 //check optional params and assign values as needed

 if(!spacing){

 spacing = 0;

 }

 if(!upState){

 itemMc.outFormat = new TextFormat();

 itemMc.outFormat.color = 0x000000;

 itemMc.outFormat.underline = false;

 }else{

 itemMc.outFormat = upState;

 }

 if(!overState){

 itemMc.overFormat = new TextFormat();

 itemMc.overFormat.color = 0x000000;

 itemMc.overFormat.underline = true;

 }else{

 itemMc.overFormat = overState;

 }

 if(!backgroundOpacity){

 backgroundOpacity = 0;

 }

 if(!upBackground){

 upBackground = 0xFFFFFF;

 }

 if(!overBackground){

 overBackground = 0xFFFFFF;

Classes

194 13. Snippets and Classes

 }

 if(backgroundOpacity == 0){

 upBackground = overBackground = 0xFFFFFF;

 }

 //create a TextField to display the text

 var itemName: TextField = itemMc. createTextField(“itemName”, itemMc. get

NextHighestDepth()+1, 0, 0, 1, 1);

 itemName.autoSize = true;

 itemName.antiAliasType = “advanced”;

 itemName.selectable = false;

 itemName.text = menuArr[m];

 itemName. setTextFormat(itemMc.outFormat);

 //set rollOver and rollOut functions for the MenuItem

 itemMc.onRollOver = function(){

 if(this._parent.chosenMenuItem != this){

 this.itemName.setTextFormat(this.overFormat);

 redrawBlock(overBackground,this);

 this. useHandCursor = true;

 }else{

 this. useHandCursor = false;

 }

 }

 itemMc.onRollOut = function(){

 if(this._parent.chosenMenuItem != this){

 this.itemName.setTextFormat(this.outFormat);

 redrawBlock(upBackground,this);

 this. useHandCursor = true;

 }else{

 this. useHandCursor = false;

 }

195

 }

 itemMc.onRelease = function(){

 if(this._parent.chosenMenuItem != this){

 this._parent.chosenMenuItem.itemName. setTextFormat(this.

outFormat);

 redrawBlock(upBackground,this._parent.chosenMenuItem);

 this._parent.chosenMenuItem = this;

 if(this.releaseFunc){

 this.releaseFunc();

 }

 }else{

 this. useHandCursor = false;

 }

 }

 redrawBlock(upBackground,itemMc);

 }

 //draw block for item background

 function redrawBlock(fillColor:Number,targetItem:MovieClip):Void{

 targetItem.clear();

 targetItem.beginFill(fillColor,backgroundOpacity);

 targetItem.lineTo(targetItem._width,0);

 targetItem.lineTo(targetItem._width,targetItem._height);

 targetItem.lineTo(0,targetItem._height);

 targetItem.lineTo(0,0);

 targetItem.endFill();

 }

 }

 //set the x and y values of the menu

 public function setPosition(menuX:Number,menuY:Number):Void{

 menuMc._x = menuX;

Classes

196 13. Snippets and Classes

 menuMc._y = menuY;

 }

 //get the x value of the menu

 public function get x():Number{

 return menuMc._x;

 }

 //get the y value of the menu

 public function get y():Number{

 return menuMc._y;

 }

 //get the width of the menu

 public function get width():Number{

 return menuMc._width;

 }

 //get the height of the menu

 public function get height():Number{

 return menuMc._height;

 }

 //assign an onRelease function to a menu item

 public function assignRelease(releaseFunction:Function,itemPosition:Number):

Void{

 menuMc[“itemMc”+itemPosition].releaseFunc = releaseFunction;

 }

}

197

The Explanation

As usual, line 1 is the SimpleMenu class declaration:

class SimpleMenu extends MovieClip{}

Next, on line 2, we declare a variable named “menuMc” and give it a type of

 “ MovieClip”:

var menuMc:MovieClip;

The reason for declaring this variable outside of the SimpleMenu constructor state-

ment (which fills lines 3–107) is so it will be available to the other methods of the

class, such as setPosition or assignRelease. Next, we move in to the constructor that

contains both required and optional parameters, which are explained in Table 13.2:

 public function SimpleMenu(parentMc:MovieClip,menuArr:Array,dir:

String,spacing:Number,upState:TextFormat,overState:TextFormat,backgroundOpacity:

Number,upBackground:Number,overBackground:Number){}

Table 13.2

 SimpleMenu Class Parameters

Parameter Explanation

parentMc The MovieClip in which the SimpleMenu will be created.

menuArr
An array of strings that will be used as the names dis-

played on each menu item.

dir
The direction in which to draw the menu items. Accept-

able values are “vertical” and “horizontal.”

spacing (optional)
The number of pixels placed between each menu item. If

no value is given, the default value of 0 is used.

upState (optional)

A TextFormat object that determines how the text looks

in the menu items when the mouse is not over them. If

no value is given, Arial font is used and is colored black.

overState (optional)

A TextFormat object that determines how the text looks

in the menu items when the mouse is over them. If no

value is given, Arial font is used, colored black, and

underlined.

 backgroundOpacity

(optional)

The opacity of the colored background rectangle. If no

value is given, the default value of 0 is used.

 upBackground (optional)

The color to use for the background rectangle in the

menu items when the mouse is not over them. If no value

is given, the default value of white (0×FFFFFF) is used.

 overBackground (optional)

The color to use for the background rectangle in the

menu items when the mouse is over them. If no value is

given, the default value of white (0×FFFFFF) is used.

Classes

198 13. Snippets and Classes

The first thing that happens within the constructor is that we check to see if any

other SimpleMenus have been created inside the same parent MovieClip that our

new SimpleMenu will live. We do this on line 5 by checking to see if the MovieClip

“menuMc0” exists. If it doesn’t, we create a variable in the parent MovieClip called

menuNumb and give it a value of 0 (this variable will be used in the next step of

the process). However, if menuMc0 does exist, then the variable menuNumb has

already been created and we increment it by 1:

if(!parentMc.menuMc0){

 parentMc.menuNumb = 0;

}else{

 parentMc.menuNumb++;

}

The next step, on line 11, is to utilize our previously declared variable, menuMc,

to create an empty MovieClip that will be our actual menu (note the use of the

menuNumb variable in the instance name of the SimpleMenu):

menuMc = parentMc. createEmptyMovieClip(“menuMc”+parentMc.menuNumb,parentMc.getNext

HighestDepth());

After the empty menuMc MovieClip has been created, it’s time to start creating

the buttons that will make up the menu. This is where the substance of the class is

as it uses lines 13–96 to loop through the array that was passed in as the menuArr

parameter. With each item in the array, a new button is created and given the appro-

priate style. The initial step (line 15) that is taken in this loop is to create the actual

MovieClip that will be used as the menu item button:

var itemMc:MovieClip = menuMc. createEmptyMovieClip(“itemMc”+m,menuMc.getNext

HighestDepth());

199

Next, we need to check in which direction the menu items will draw themselves to

the stage. This is done by checking the “dir” parameter in lines 17–25:

if(dir == “vertical”){

 var tempY:Number = menuMc[“itemMc”+(m-1)]._y + menuMc[“itemMc”+(m-1)]._height;

 itemMc._y = tempY + spacing;

}else if(dir == “horizontal”){

 var tempX:Number = menuMc[“itemMc”+(m-1)]._x + menuMc[“itemMc”+(m-1)]._width;

 itemMc._x = tempX + spacing;

}else{

 trace(‘Please use either “horizontal” or “vertical” for the SimpleMenu

direction param.’);

}

If an invalid value (or no value) is passed in to the “dir” parameter, we trace a mes-

sage to the user letting them know they need to use either “vertical” or “horizontal.”

Once the direction is determined, lines 27–55 check the optional parameters to

see if a default value needs to be assigned to any of them. As noted in Table 13.2,

the optional parameters are spacing, upState, overState, backgroundOpacity,

 upBackground, and overBackground:

if(!spacing){

 spacing = 0;

}

if(!upState){

 itemMc.outFormat = new TextFormat();

 itemMc.outFormat.color = 0x000000;

 itemMc.outFormat.underline = false;

}else{

 itemMc.outFormat = upState;

}

if(!overState){

 itemMc.overFormat = new TextFormat();

Classes

200 13. Snippets and Classes

 itemMc.overFormat.color = 0x000000;

 itemMc.overFormat.underline = true;

}else{

 itemMc.overFormat = overState;

}

if(!backgroundOpacity){

 backgroundOpacity = 0;

}

if(!upBackground){

 upBackground = 0xFFFFFF;

}

if(!overBackground){

 overBackground = 0xFFFFFF;

}

if(backgroundOpacity == 0){

 upBackground = overBackground = 0xFFFFFF;

}

Next, on line 57, we create a TextField inside the menu item MovieClip, and give it a

name of “itemName”:

var itemName: TextField = itemMc. createTextField(“itemName”,

itemMc. getNextHighestDepth()+1, 0, 0, 1, 1);

Note the depth at which we create the itemName TextField (itemMc. getNext

HighestDepth()+1). The “+1” is because we want to make sure the TextField is

placed above the colored rectangle that will be drawn in the MovieClip at a later

step. After the TextField is created, we’ll set a few properties on lines 58–60

to make sure it behaves as intended:

itemName.autoSize = true;

itemName.antiAliasType = “advanced”;

itemName.selectable = false;

201

First is the autoSize property that is given a value of true to make sure the text in

our menu items is not cut off. Next, the antiAliasType is set to “advanced” to make

the font more readable. The antiAliasType is available in Flash Player 8 and above,

therefore, this line should be omitted if you are developing for Flash Player 7 or

below. After the antiAliasType is set, the selectable property is set to false because

we want users to click on the menu items, not select their text. Finally, on lines 61

and 62, we assign the text from the appropriate position in the menuArr array to the

 TextField and then set the text format:

itemName.text = menuArr[m];

itemName. setTextFormat(itemMc.outFormat);

The next to last step, which takes place in lines 63–94, in creating each menu item

is to assign onRollOver, onRollOut, and onRelease functions:

itemMc.onRollOver = function(){

 if(this._parent.chosenMenuItem != this){

 this.itemName.setTextFormat(this.overFormat);

 redrawBlock(overBackground,this);

 this. useHandCursor = true;

 }else{

 this. useHandCursor = false;

 }

}

itemMc.onRollOut = function(){

 if(this._parent.chosenMenuItem != this){

 this.itemName.setTextFormat(this.outFormat);

 redrawBlock(upBackground,this);

 this. useHandCursor = true;

 }else{

 this. useHandCursor = false;

 }

}

itemMc.onRelease = function(){

Classes

202 13. Snippets and Classes

 if(this._parent.chosenMenuItem != this){

 this._parent.chosenMenuItem.itemName. setTextFormat(this.outFormat);

 redrawBlock(upBackground,this._parent.chosenMenuItem);

 this._parent.chosenMenuItem = this;

 if(this.releaseFunc){

 this.releaseFunc();

 }

 }else{

 this. useHandCursor = false;

 }

}

With each of these actions, the menu item checks its parent MovieClip (the menuMc

 MovieClip) for the value of a variable named “chosenMenuItem.” If the value of that

variable is the menu item itself, then none of the mouse actions receive a response

and the hand cursor is not shown. However, if the chosenMenuItem variable does not
contain a value that matches the menu item, the format of the itemName TextField

is altered and the colored block is redrawn to the new color by using the redrawBlock

function (which will be covered next). The onRelease function contains a couple of

lines of code that do two things: They give the chosenMenuItem variable a value

equal to the menu item that was clicked, and they call the releaseFunc function if

one exists (the releaseFunc function will be covered at the end of this section).

The final step in the creation of each menu item is to draw the colored rectangle be-

hind the TextField. This is done by calling the redrawBlock function (lines 97–106),

which takes two parameters: The fillColor parameter is the color that will be used

to draw the rectangle and the targetItem parameter is the menu item in which it will

be drawn. The fillColor will initially be given the value of the upBackground param-

eter that was passed in through the original creation of the SimpleMenu. Each time

the mouse rolls over (or out of) a menu item, that menu item calls the redrawBlock

function and passes it the upBackground or overBackground value accordingly.

When the function is called, it uses the “clear” method to erase the previously

drawn rectangle, resets the beginFill values, and then draws the rectangle back in

place with the corresponding color and opacity. Here’s the redrawBlock function:

203

function redrawBlock(fillColor:Number,targetItem:MovieClip):Void{

 targetItem.clear();

 targetItem.beginFill(fillColor,backgroundOpacity);

 targetItem.lineTo(targetItem._width,0);

 targetItem.lineTo(targetItem._width,targetItem._height);

 targetItem.lineTo(0,targetItem._height);

 targetItem.lineTo(0,0);

 targetItem.endFill();

}

Lines 108–128 contain a few methods to get or set properties of the SimpleMenu as

a whole. The setPosition method can be used to move the entire menu anywhere

on the stage by passing in the correct x and y values:

public function setPosition(menuX:Number,menuY:Number):Void{

 menuMc._x = menuX;

 menuMc._y = menuY;

}

The get x, get y, get width, and get height methods return number values for the

SimpleMenu’s _x, _y, _width, and _height properties, respectively. These methods

may be used to place other MovieClips, Buttons, etc. in relation to the SimpleMenu:

public function get x():Number{

 return menuMc._x;

}

public function get y():Number{

 return menuMc._y;

}

public function get width():Number{

 return menuMc._width;

}

public function get height():Number{

 return menuMc._height;

}

Classes

204 13. Snippets and Classes

Finally, the last method in the SimpleMenu class is the assignRelease method:

public function assignRelease(releaseFunction:Function,itemPosition:Number):Void{

 menuMc[“itemMc”+itemPosition].releaseFunc = releaseFunction;

}

This method allows you to have each menu item respond in its own way when

clicked. For example, one item may take the user to an external website, while

another item may load an external swf, and yet another item may simply load an

image into a MovieClip on the stage. The assignRelease method takes two param-

eters: releaseFunction is a function that you have written and itemPosition is the

zero-based position of the item within the SimpleMenu instance. For example,

you’ve written a function that loads an external jpg into a MovieClip on the stage

while also taking the user to an external website in a new window. You want the very

first menu item to call this function, so you write the following code:

myMenu.assignRelease(myFunction,0);

Now, when you click on the first item in the menu, not only will it set the chosen-

MenuItem variable mentioned earlier, but it will also call your function.

Sample Use

Here is a full example of using the SimpleMenu class in a Flash file:

var parentMc:MovieClip = this;

//create an array of names for the menu items

var menuArr:Array = new Array(“Menu Item 1”,“Menu Item 2”,“Menu Item 3”);

//set the direction of the menu

var dir:String = “vertical”;

//set the spacing between the menu items

var spacing:Number = 10;

//create a TextFormat for the upState

var upState:TextFormat = new TextFormat();

upState.font = “Arial”;

upState.color = 0x000000;

upState.underline = false;

205

//create a TextFormat for the overState

var overState:TextFormat = new TextFormat();

overState.underline = true;

//set the colors and opacity for the background rectangle

var backgroundOpacity:Number = 50;

var upBackground:Number = 0xFFFFFF;

var overBackground:Number = 0xCCCCCC;

//create the SimpleMenu

var myMenu:SimpleMenu = new SimpleMenu(parentMc,menuArr,dir,spacing,upState,

overState,backgroundOpacity,upBackground,overBackground);

//write functions for the menu items

function releaseFunction_0(){

 getURL(“http://www.flashadbook.com”,“_blank”);

}

function releaseFunction_1(){

 getURL(“http://flash.fincanon.com”,“_blank”);

}

function releaseFunction_2(){

 getURL(“http://lab.fincanon.com”,“_blank”);

}

//assign the functions to the menu items

myMenu.assignRelease(releaseFunction_0,0);

myMenu.assignRelease(releaseFunction_1,1);

myMenu.assignRelease(releaseFunction_2,2);

//place the menu at x,y of 10,10

myMenu.setPosition(10,10);

Classes

206 13. Snippets and Classes

 SimpleGallery

There will most likely be occasions where your client wants to show off a gallery of

either several of their products or multiple photographs of a specific product. The

automobile manufacturer example I’ve used in this book would be a prime can-

didate for a photo gallery. Since you may find yourself making these galleries on

 project after project after project, it might be a good idea to have a simple base for

one at your disposal. The SimpleGallery class is meant as exactly that. It gives you

a simple layout for an image gallery with a simple function to view each thumbnail

in its larger form. As I explain the code, note that the viewImage function can be re-

placed by any kind of a transition function that fits the needs of a particular project.

For example, you may want to have a look at some of Robert Penner’s easing equa-

tions that can be found at http://www.robertpenner.com/easing/.

The Code

class SimpleGallery{

 var galleryMc:MovieClip;

 public function SimpleGallery(parentMc:MovieClip,imagePath:String,imageArr:

Array,columns:Number,thumbScale:Number,padding:Number){

 //set a variable to the length value of the array of images

 var numbOfImages:Number = imageArr.length;

 //create MovieClip to house entire gallery

 galleryMc = parentMc. createEmptyMovieClip(“galleryMc”,parentMc.getNext

HighestDepth());

 //create a listener Object that will set the x and y of each image after

it’s loaded

 var thumbListener:Object = new Object();

 thumbListener.onLoadInit = function(targetMc:MovieClip):Void {

 var containerMc:MovieClip = targetMc._parent;

 containerMc._x = (containerMc.imgCol * containerMc._width) +

(containerMc.imgCol * padding);

 containerMc._y = (containerMc.imgRow * containerMc._height) +

(containerMc.imgRow * padding);

 }

 var imgLoader:MovieClipLoader = new MovieClipLoader();

207

 imgLoader.addListener(thumbListener);

 //loop through imageArr array and create MovieClips to hold each image

 for(var i:Number = 0; i < numbOfImages; i+=columns){

 for(var c:Number = 0; c < columns; c++){

 if(i+c < numbOfImages){

 var imgContainer:MovieClip = galleryMc. createEmptyMovieClip

(“imgContainer”+(i+c),galleryMc. getNextHighestDepth());

 var img:MovieClip = imgContainer. createEmptyMovieClip(“img”,

imgContainer. getNextHighestDepth());

 imgContainer.imgRow = i/columns;

 imgContainer.imgCol = c;

 imgContainer.imgDepth = imgContainer. getDepth();

 imgLoader.loadClip(imagePath + imageArr[i+c], img);

 imgContainer._xscale = imgContainer._yscale = thumbScale;

 imgContainer.onRelease = function(){

 viewImage(this);

 }

 }else{

 c = columns;

 i = numbOfImages;

 }

 }

 }

 //function to call when an image is clicked

 function viewImage(thumb:MovieClip):Void{

 if(thumb._xscale < 100){

 var halfWidth:Number = thumb._parent._width/2;

 var halfHeight:Number = thumb._parent._height/2;

 thumb._xscale = thumb._yscale = 100;

 thumb._x = halfWidth - thumb._width/2;

Classes

208 13. Snippets and Classes

 thumb._y = halfHeight - thumb._height/2;

 thumb.swapDepths(thumb._parent. getNextHighestDepth())

 }else{

 thumb._xscale = thumb._yscale = thumbScale;

 thumb._x = (thumb.imgCol * thumb._width) + (thumb.imgCol *

padding);

 thumb._y = (thumb.imgRow * thumb._height) + (thumb.imgRow *

padding);

 thumb.swapDepths(thumb.imgDepth);

 }

 }

 }

 public function setPosition(galleryX:Number,galleryY:Number):Void{

 galleryMc._x = galleryX;

 galleryMc._y = galleryY;

 }

 public function get x():Number{

 return galleryMc._x;

 }

 public function get y():Number{

 return galleryMc._y;

 }

 public function get width():Number{

 return galleryMc._width;

 }

 public function get height():Number{

 return galleryMc._height;

 }

}

209

The Explanation

The SimpleGallery class starts out by declaring a variable named “ galleryMc,” which

is typed as a MovieClip:

var galleryMc:MovieClip;

We’ll use this variable a few lines later to create a new empty MovieClip that will

house the entire gallery. Once the galleryMc variable is in place, we move on to the

constructor and its parameters, which are explained in Table 13.3:

public function SimpleGallery(parentMc:MovieClip,imagePath:String,imageArr:

Array,columns:Number,thumbScale:Number,padding:Number){}

Table 13.3

 SimpleGallery Class Parameters

Parameter Explanation

parentMc The MovieClip in which the SimpleGallery will be created.

imagePath
The path to the images in the file system. The imagePath value is a

string that can be either a relative or absolute path.

imageArr
An array of file names that will be used in the SimpleGallery. Each

file name in the array should be a string value.

columns
The number of columns (or images across) to display in your

SimpleGallery.

thumbScale
The size of the thumbnail images based on a percentage of the

full-size images (50 = 50%; 20 = 20%).

padding The number of pixels to place between each thumbnail image.

Once inside the constructor, the first thing we do

is create a variable named “ numbOfImages” and

give it a value of the length of the imageArr array

 parameter:

var numbOfImages:Number = imageArr.length;

Author’s Tip

Remember to always assign the

length of an array to a number

variable if you will be accessing

it from any repeating method

such as a for() loop or a while()

statement. It is less processor

intensive for the loop to reference

a number variable rather than

accessing an array and basically

counting its elements every time.

Classes

210 13. Snippets and Classes

We’ll refer back to the numbOfImages variable later when we create the thumbnails

of the images. Next, we use the galleryMc variable we declared earlier to create an

empty MovieClip within the parentMc:

galleryMc = parentMc. createEmptyMovieClip(“galleryMc”,parentMc.getNextHighest

Depth());

After the galleryMc MovieClip is created, we create another variable of type object

and give it a name of “thumbListener”:

var thumbListener:Object = new Object();

The thumbListener. onLoadInit function on lines 10–14 will then set the _x and _y

values of a given MovieClip (I’ll come back to this function at the end of this section).

The next step in the SimpleGallery class is to create a MovieClipLoader as is done

on line 15:

var imgLoader:MovieClipLoader = new MovieClipLoader();

After we’ve created the MovieClipLoader and given it a variable name of “imgLoader,”

we’ll assign the thumbListener object by using the addListener method:

imgLoader.addListener(thumbListener);

Now, the thumbListener will essentially “listen to” anything our MovieClipLoader

does. And since it’s listening, we can tell it what to do any time certain actions take

place (such as when an external load has started or finished).

211

Now that we have a MovieClip set up to hold all of our images and we have a lis-

tener object listening for us to load those images, it’s time to start loading them

into their own individual MovieClips, placing those MovieClips in the correct

places, and assigning onRelease functions to them. All of this is done in the

nested for() loops on lines 18–36:

for(var i:Number = 0; i < numbOfImages; i+=columns){

 for(var c:Number = 0; c < columns; c++){

 if(i+c < numbOfImages){

 var imgContainer:MovieClip = galleryMc. createEmptyMovieClip

(“imgContainer”+(i+c),galleryMc. getNextHighestDepth());

 var img:MovieClip = imgContainer. createEmptyMovieClip(“img”,img

Container. getNextHighestDepth());

 imgContainer.imgRow = i/columns;

 imgContainer.imgCol = c;

 imgContainer.imgDepth = imgContainer. getDepth();

 imgLoader.loadClip(imagePath + imageArr[i+c], img);

 imgContainer._xscale = imgContainer._yscale = thumbScale;

 imgContainer.onRelease = function(){

 viewImage(this);

 }

 }else{

 c = columns;

 i = numbOfImages;

 }

 }

}

Classes

212 13. Snippets and Classes

The nested for() loops can be thought of like this: The outside loop is for each en-

tire row of images while the inside loop is for the individual images in those rows. I’ll

explain with an example where the columns parameter has been given a value of

3. The first time the outside loop is run, the variable “i” has a value of 0 and we step

directly to the inside loop. Since the columns variable has a value of 3, we know this

loop will run three times. Here is what happens on lines 20–34: The if() statement

on line 20 checks to see that we have not gone over the number of images that

are in the imageArr array. If we have not, we step to line 21 where an imgContainer

 MovieClip is created to house both the image itself as well as a few variables we’ll

need later. After the imgContainer is created, we create another MovieClip inside it

and give this one a name of “img”:

if(i+c < numbOfImages){

 var imgContainer:MovieClip = galleryMc. createEmptyMovieClip(“imgContainer”+

(i+c),galleryMc. getNextHighestDepth());

 var img:MovieClip = imgContainer. createEmptyMovieClip(“img”,imgContainer.

 getNextHighestDepth());

Next, on lines 23–25, we assign important variables to the individual images:

imgContainer.imgRow = i/columns;

imgContainer.imgCol = c;

imgContainer.imgDepth = imgContainer. getDepth();

These variables will be used to determine the _x, _y, and depth of each image as it

is placed on the stage and interacted with. The first variable we assign is imgRow.

The value of imgRow is set based on two values: the value of the variable “i” in the

outer loop and the value of the columns parameter. Since the outer loop is incre-

menting the variable “i” by the value of the columns parameter, dividing these num-

bers works out perfectly. If the outer loop is running for the first time and “i” has a

value of 0, then 0 ÷ 3 = 0 (remember 3 is the value of columns in this example).

The next iteration would be 3 ÷ 3 = 1, then 6 ÷ 3 = 2, and so on. Next is the imgCol

variable, which needs much less explanation as it is simply based on the value of

213

the variable “c” in the inner loop. Since “c” is incremented by 1 each time, its value

is easy enough to guess (0, 1, 2, etc.). The next variable, imgDepth, is another

easy one to explain because it is simply given the value of the depth at which the

imgContainer MovieClip was created. Line 26 is where we actually load our image

(whose location we get by concatenating the value of the imagePath value with the

name of the file from the imageArr array) into the img MovieClip, and on line 27,

we look back to the value of the thumbScale parameter and apply that value to the

_xscale and _yscale properties of imgContainer:

imgLoader.loadClip(imagePath + imageArr[i+c], img);

imgContainer._xscale = imgContainer._yscale = thumbScale;

The last thing that we do to imgContainer in this loop is assign the onRelease func-

tion to call our viewImage function (the viewImage function will be covered next):

imgContainer.onRelease = function(){

 viewImage(this);

}

Once we have looped all the way through the imageArr array and created all of our

images, the value of “c” is set to the same value as the columns variable and the

value of “i” is set to the value of the numbOfImages variable. This step ensures that

we don’t continue trying to create images that don’t exist in the imageArr array:

}else{

 c = columns;

 i = numbOfImages;

}

As I mentioned earlier, the contents of the viewImage function can be replaced by

any kind of a transition function that fits the needs of a particular project. In this

case, I simply chose to take the image from its thumbnail size directly to its full size

while centering it to the rest of the gallery both vertically and horizontally. How-

ever, if the image is clicked on while it is already at its full size, it shrinks back to its

Classes

214 13. Snippets and Classes

thumbnail size and goes back to its correct position in the gallery layout. The first

step in this process is the if() statement on line 39 that checks the _xscale of the

image:

function viewImage(thumb:MovieClip):Void{

 if(thumb._xscale < 100){

 var halfWidth:Number = thumb._parent._width/2;

 var halfHeight:Number = thumb._parent._height/2;

 thumb._xscale = thumb._yscale = 100;

 thumb._x = halfWidth - thumb._width/2;

 thumb._y = halfHeight - thumb._height/2;

 thumb.swapDepths(thumb._parent. getNextHighestDepth())

 }

If the _xscale is less than 100, the process of enlarging the image is set in motion.

On lines 40 and 41, the variables halfWidth and halfHeight are given values of half

the width and height of the entire gallery, respectively. This is done by getting the

full width and height of the galleryMc MovieClip (thumb._parent) and dividing them

both by 2. Next, the _xscale and _yscale of the image are both set to 100. Once full

sized, the image is centered to the gallery. To center the image, its _x property is

set to the value of halfWidth minus half the width of the full-size image. The same

is then done for the height. Lastly, on line 45, the swapDepths() method is called to

move the full-size image on top of all of the other thumbnails. When the user clicks

on the full-size image, the imgCol, imgRow, and imgDepth properties that we set

earlier come into play:

}else{

 thumb._xscale = thumb._yscale = thumbScale;

 thumb._x = (thumb.imgCol * thumb._width) + (thumb.imgCol * padding);

 thumb._y = (thumb.imgRow * thumb._height) + (thumb.imgRow * padding);

 thumb.swapDepths(thumb.imgDepth);

}

215

First, on line 47, the image is scaled back down to the original thumbScale value.

Lines 48 and 49 check which row and column position the thumbnail came from

and set the _x and _y appropriately. And last but not least, the swapDepths()

method is called to put the thumbnail back on its original depth.

Now let’s get back to that onLoadInit function from lines 10–14:

thumbListener.onLoadInit = function(targetMc:MovieClip):Void {

 var containerMc:MovieClip = targetMc._parent;

 containerMc._x = (containerMc.imgCol * containerMc._width) + (containerMc.

imgCol * padding);

 containerMc._y = (containerMc.imgRow * containerMc._height) + (containerMc.

imgRow * padding);

}

The main reason I held off on the explanation of this function is because it uses

variables that I had not yet talked about in addition to the _width and _height

properties of the thumbnail (which had also not been set). The first thing to

mention is the targetMc parameter. This parameter was passed with a value of the

img MovieClip in each of the imgContainer MovieClips when we called the im-

gLoader.loadClip() method back on line 26. Using that targetMc parameter,

we create a variable of type MovieClip and name it “containerMc.” We then give

containerMc a value of the parent of the img MovieClip:

var containerMc:MovieClip = targetMc._parent;

Now we get to the variables that were created much earlier in this section: imgCol,

imgRow, and padding. In addition to the values of those variables, we can now ob-

tain the _width and _height properties of the MovieClip (these values were actually

0 prior to the image being loaded). Using these variables with a little addition and

multiplication, we can set the _x and _y properties of each thumbnail:

containerMc._x = (containerMc.imgCol * containerMc._width) + (containerMc.imgCol *

padding);

containerMc._y = (containerMc.imgRow * containerMc._height) + (containerMc.imgRow

* padding);

Classes

216 13. Snippets and Classes

Sample Use

Using the SimpleGallery within Flash is pretty straightforward as you can see in the

following example:

var parentMc:MovieClip = this;

var imagePath:String = “images/”

var imageArr:Array = new Array(“galleryImage1.jpg”,“galleryImage2.

jpg”,“galleryImage3.jpg”,“galleryImage4.jpg”,“galleryImage5.jpg”,“galleryImage6.

jpg”,“galleryImage7.jpg”,“galleryImage8.jpg”,“galleryImage9.jpg”)

var columns:Number = 3;

var thumbScale:Number = 15;

var padding:Number = 5;

var myGallery:SimpleGallery = new SimpleGallery(parentMc,imagePath,imageArr,column

s,thumbScale,padding)

myGallery.setPosition(100,100);

Just to recap a couple of the variables you see in this example, imagePath is the

path to the location of the images (this path can be either relative or absolute). The

imageArr variable is an array of the names of the images that are in the folder ref-

erenced by the imagePath variable. The names include the file extension to allow

the ability to use other types of images. A quick note on the imageArr variable: If

you have the proper code in place via PHP, .NET, Ruby, etc., you could use that code

to check the folder and dynamically pass all of the names of the files in to Flash.

Using that list, you could then populate your imageArr array. By doing it this way,

your gallery would be up to date and have the correct images each time you added

a new image to the folder.

Reverse

Reversing a MovieClip in Flash can come in handy in many situations like animated

menu buttons or really anything else that may be moving on the stage. I’ve in-

cluded the following small Reverse class that I put together simply because I find

myself using it to get to previous states of animations in numerous projects. It’s

pretty small and straightforward, so the explanation on this one is shorter, but let’s

take a look at the entire piece of code first.

217

The Code

class Reverse{

 public function Reverse(targetClip:MovieClip,targetFrame:Number,speed:Number){

 var rev:Number = setInterval(reverseClip,speed);

 function reverseClip():Void{

 if(targetClip._currentframe > targetFrame){

 targetClip.prevFrame();

 }else{

 targetClip.gotoAndStop(targetFrame);

 clearInterval(rev);

 }

 }

 }

}

The Explanation

As I said, this explanation will be short and sweet since there isn’t a whole lot to the

class itself. So to start, just like any other class we have the constructor on line 2:

public function Reverse(targetClip:MovieClip,targetFrame:Number,speed:Number){}

The parameters in this class are self-explanatory but I’ll go ahead and break them

down. The first parameter, targetClip, is the MovieClip that will be reversed. The

next parameter, targetFrame, is the frame on which you would like the targetClip to

stop reversing, and the last parameter, speed, is the speed by which the clip will be

reversed. Moving on to line 3, the setInterval will run the reverseClip function at the

given speed:

var rev:Number = setInterval(reverseClip,speed);

Classes

218 13. Snippets and Classes

Finally, on lines 4–11 is the actual function that performs the reverse on your

 MovieClip:

function reverseClip():Void{

 if(targetClip._currentframe > targetFrame){

 targetClip.prevFrame();

 }else{

 targetClip.gotoAndStop(targetFrame);

 clearInterval(rev);

 }

 }

Simply put, the reverseClip function checks the targetClip’s _currentframe property

to see if it is greater than the targetFrame. If it is, the targetClip is told to go back

one frame. Once the _currentframe property is not greater than the targetFrame,

the targetClip is told to go to the targetFrame and stop while the rev setInterval is

cleared.

Sample Use

A quick and easy sample use of this class would be if you had a MovieClip on your

 stage that was named myMc and had a timeline animation inside of it. To get myMc

to reverse to the first frame when it has been clicked on, use the following code:

myMc.onRelease = function(){

 var rv:Reverse = new Reverse(this,1,30);

}

To make myMc reverse to a certain point in its timeline, simply change the target-

Frame parameter like so:

myMc.onRelease = function(){

 var rv:Reverse = new Reverse(this,18,30);

}

219

Finally, you could place the call to the class at the end of an animation to cause it to

rewind after it has been played:

var rv:Reverse = new Reverse(this,1,30);

There are several ways you can use the Reverse class to control your animations, so

play around with it a little until you find the right use for your project.

Conclusion

While I hope you are able to get some use from the code snippets and classes

 within this chapter, the main goal was to give you some ideas of ways to streamline

your workflow. By saving snippets of code, you can easily copy and paste them into

your work rather than retyping all of the code every time. It also helps because

there are times when you’ll remember that you wrote code to perform a specific

function, but your brain seems to have gone blank and you can’t remember how

you did it previously.

Classes are also extremely handy and reusable. Even if you can’t use the exact line-

for-line code from a class, you can always create a new class by extending or modi-

fying it to suit the needs of a particular project. Keep an eye out for project situa-

tions that seem to repeat themselves on at least a semi-regular basis. When you

notice those situations, think about writing a class or saving a snippet or two of the

code that helped you complete the task at hand. One more suggestion: In addition

to reusing your code, be sure to share it with your team. If you’re all using the same

code, then projects are easier to maintain and troubleshoot.

Conclusion

This page intentionally left blank

221Index

Index

ActionScript 10, 11, 42, 56, 58, 101, 143, 157

ActionScript Technology Center 143

ActiveX 53

ad 1, 3–4, 12–13, 17–19, 33–36, 41–43,

48, 51, 58–59, 65–67, 69, 73, 104,

106–108, 113, 116, 118–121, 123–125,

158–159, 171

formats 4, 6, 15, 19, 106–109

planning 42, 67

preview feature 121

rotation 114–115

server 14–15, 52, 111, 115–117, 122–124

server tool 116, 118–119, 124

serving company 4, 42, 51–53, 108, 120, 122

specs 18–19, 42

units 3, 5–7, 54

addListener() 210

advertisement 3, 107, 158, 161

advertising 1, 3, 8, 11, 19, 31–32, 34, 36,

77, 103, 109, 113–114, 118– 120, 131,

155–156, 159, 162, 166–167

agencies 26, 113, 163–164

contextual 159

examples 169–180

standards 6

templates 7, 8, 43

word of mouth 162–166

advertising specs 18

agency 1, 6, 26, 113, 163–164, 167

animating 14, 41, 86, 132–134

animation 1, 3–4, 6, 10, 14, 18, 23, 36–38,

42–43, 50, 65, 73, 79, 85–86, 96,

128–129, 131–135, 143, 160, 172, 216,

218–219

background 36, 85

planning 36, 132

antiAliasType 201

application 10–11, 45, 51

array 100, 197–198, 201, 209, 212–213, 216

Array.length 100

.as 25, 143, 181

asset 21, 36–37, 39, 54, 57, 132–133, 135,

137, 141–142, 152

animation 37

collecting 141–142

Asual 146, 153

Atlas 51, 122

audience 1, 3, 13, 33, 39, 112–113, 137, 157,

161, 167

target 1, 12, 30, 33, 112–113, 124, 128, 135,

157, 161

audio 4–6, 19, 58, 104–105, 109, 172, 174

autoSize 185, 201

axosoft 66

222 Index

B

background 9, 36, 48, 57, 63, 86–87, 121,

197

animation 85

backgroundOpacity 191, 197, 199

blurry 91

color parameter 63

music 9, 58, 142

overBackground 197

upBackground 197

backgroundOpacity 191, 197, 199

bandwidth 11, 18, 61, 104–105

Bandwidth Profi ler 7, 59–62

banners 3–5, 7, 9, 12–14, 18–20, 29, 32–33,

36, 38–39, 43, 54, 59, 66, 71, 73, 77,

101, 103, 105–106, 159–160

ad serving company 116

Bandwidth Profi ler 59

brands 34

comboBox 71, 77

consistency 160

cost 5, 119–120

differences and similarities to microsites

12–15

dropdown menu 71

expendable 107

fi le size 79, 101, 106, 128

Flash 36

forms 71, 77

generating a tag 117

html 62

JavaScript 62

microsites 9

performance of 51, 118–120

placements 115

quality control 151

rich-media 36, 122, 169–173

sending the tag 118

sign-off sheet 66

site-served 123–124

snippets 181

testing 117

beginFill() 182–183, 202

bitmap properties 92, 94

blogs 15, 63, 159, 163–164, 167

advertising specialist 165

honesty 164

spamming 163

targeting 165

word of mouth 163

blogads 165

BorderButton class 187–191

parameters 56, 189

Bradshaw, Randy 3

brand 3, 10, 30, 34, 133, 155, 159

awareness 34–35, 118

design standards 35

interaction 3, 30

knowing your client’s brand 32, 130–131

standards 32

style guide 13

branded 11

branding 13, 34–36, 65

defi nition of 35

Break Apart 98, 101

broad matching 158

browser 26, 62, 65–66, 71, 144, 146

bug 20, 22–24, 26–28, 65–67, 142, 151–152

C

call to action 4, 13

campaign 5, 8, 13, 17, 21, 30, 39, 109,

112–113, 116, 118, 121, 160, 166, 171

optimizing 120, 125

campaign goal 8, 34–36, 39

CAN-SPAM Act 150

child movies 74, 107

class 14, 22, 54, 56, 143, 181, 186–219

advantages 14

223Index

BorderButton 187–191

SimpleGallery 206–219

SimpleMenu 191–205

class declaration 187, 197

clearInterval() 217–218

Click Here, Inc. 3, 162, 164

clickTag 51–54, 67, 116

value of 52

click through rate 119

client 130, 132–133

know your client 30–32

types of 31–32

code

design 57–58

 planning 140

comboBox 71–74, 77, 147

comment spamming 163

commercial 3, 8, 12, 104, 114, 131, 174, 178

communication 25, 27, 42

compression 48, 79–80, 83–87, 90–91, 93,

101

concept 29, 31, 38, 134

ideas 32, 38, 135

conception 29–33, 129–130

consideration 12

constants and 17–28

mobile devices 11–12

vector 96–97

version control 17

constraints 87, 128–129

fi le size 106, 109, 127–128

looping 128

time 60

timing 128

consumer 104

dial-up connection 104

review 35, 130

content 33

ActiveX 53

control over 64

distraction 129

dynamic 105–107

external 171

Flash 63

fl oating ads 107

hierarchy 140

HTML 62

outline 138

updating 11

user-generated 105

weight 129

contextual advertising 159

conversion 108, 122, 124, 157–158

defi nition 119

cost per click 119

cost per conversion 119

cost per interaction 119

CPM 115

createEmptyMovieClip() 54–55, 182, 188,

190, 192, 198, 206–207, 210–212

createTextField() 184, 194, 200

creative 4, 9, 12–13, 21–22, 42, 59, 73, 138,

140–141, 165

creative brief 30, 33–34

crop 48, 141

D

DART Motif 104, 107–108, 120

data 152

collecting 75–76

compression 80

lossless 85–86

lossy 85

gradients 97

image 48

passing 75–76

persistent 11

types 100

user 147–151

XML 11

224 Index

database 24, 147, 152

deadlines 17, 20–22, 23, 133, 147

debugging 14, 23, 142

deep linking 145–146, 152–153

default image 41, 62, 65, 123

demographics 33, 112, 130

defi nition 112

design 8–9, 12

consistency 160

concepts 29–33, 129–130

planner 30, 33

planning 30

user response 160, 162

designing

banner ads 29–39

for brand awareness 35

microsites 127–135

navigation 131–132

microsites vs. banner 128–129

with transitions and animation in mind

36–38, 132–134

developer 13, 20, 21, 37–38, 133, 142

and quality control 22–23

development 13, 59, 132

environment 151–152

time 140

direct marketing 34, 118

document properties 43, 45

DoubleClick 51, 104, 107–108, 122

Download Settings 61

draw 14, 49, 54, 56, 96, 182–183, 187, 189,

190–191, 197, 202

drawing API 54

drive traffi c 9, 34, 155, 160–161

driving traffi c 153, 160, 163

dynamic 11

content 105–106

data 11

textField 72, 151

E

elements 3, 35, 48, 57, 128, 209

block 62

design 9

graphic 32

interactive 3, 48

static 48

exact matching 158

expandable 108

ad 5, 106, 107

experience 4–5, 8, 15, 33–34, 69, 120, 127,

129–130, 133–135, 147

external fi les 29, 91, 103, 105–106

ExternalInterface 146

Eyeblaster 101, 104, 107–108, 120–122

F

features 11

Federal Trade Commission 150

fi le optimization 79–101

fi le size 5, 7, 18–19, 29, 38, 42–43, 47–48,

59, 71–72, 79, 81–84, 86–87, 127, 141

Bandwidth Profi ler 7, 60

code optimization 98

compression 80, 87–95

fonts 97–98

forms 71–74, 147

images 65, 80–84, 86

limitation 4–5

microsites 128, 147

raster graphics 47–48

rich-media technology 103, 106

sign-off sheet 66

text 97–98

vector graphics 96–97

.fl a 26–27, 57, 171

Flash components 74, 147

Flash Lite 10–12

225Index

Flash Player 9–10, 48, 96–97, 99–101, 123,

137, 144, 146, 201

Flash Player for Pocket PC 10, 12

fl ights 121

fl oating ad 5, 106–108

.fl v 172

focus group 30

folder structures 57

fonts 13, 32, 35, 96–98, 101, 141, 152

for loop 100

form 3, 42, 57–58, 69–71, 75, 77, 105, 119,

121, 142, 147–149, 159–160, 174, 176

format 38, 158

ad 4–6, 15, 107–109

for images 38, 48, 80–86

gif 48, 80, 85–87

jpg 48, 80– 84

png 48, 80, 86–87

text 201

vector 101

fps 18

frame rate 7, 18, 42–43, 96, 185

frames per second 7, 18, 43, 60

framework 72–74

full-stage button snippet 181–183, 187

full banner 19

full stage button snippet 187

G

gallery 4, 206, 213–214, 216

galleryMc 206, 209–210

SimpleGallery class 206, 209–210, 216

getBytesLoaded() 184–185

getBytesTotal() 184–185

getDepth() 207, 211– 212

getNextHighestDepth() 54–55, 182, 184,

192, 194, 200, 207–208, 211–212, 214

getURL() 52, 54–55, 182–183, 188, 191,

205

.gif 1, 3, 48, 65, 80, 85–87, 122

goal

advertising 77, 161

campaign, of the 30, 33–36, 39

clients, goal of 134

fi le size 18, 48, 79, 101

forms 147

quality control 65

version control 24

guidelines

for interactive marketing 6

for interactive marketing unit sizes 19

IAB 6–7, 15, 19

H

half-page ad 19

half banner 19

height 6–7, 29, 56, 62–64, 66, 182, 184, 191,

214

ad formats 6

banner ads 29

get height method 203

halfHeight 214

industry standards 7

setting up fi le 43

stage 14, 54, 56, 62

stage object 182

SWFObject 63–64, 66

hosting

company 23, 42, 111, 166

on an ad server 124

HTML 3, 52, 62–65, 131–132, 144

I

IAB 2, 6–7, 15, 19

Standards and Guidelines 6, 15, 19

IAO variables 112

image artifacts 80, 83–84, 101

images 38

compression 79, 87–95

cutting 47–51

226 Index

default 41, 65

format 38, 48, 80–86

gif 85–87

jpg 80–84

png 86–87

high-quality 87

imagePath 209, 216

numbOfImages 209, 211, 213

planning 48

raster 73, 96, 141

types 80–86

vector 96–97

impressions 114–119, 121–122

IMU 19

information architecture 140

interactions 118–119, 165–166

interactive 1, 3, 37, 48, 65–67, 106, 129, 131

standards 2, 6, 19

video 1, 106

interactivity 1, 5, 106, 137, 143

Interactive Advertising Bureau 2, 6, 19

Interactive Marketing Unit 19

invisible button 49–50, 54, 183, 187

J

JavaScript 41, 52, 62–65, 67, 117, 137, 144

JPEG quality slider 91

jpg 1, 3, 26, 48, 65, 80–81, 83, 96, 106, 204

K

Keehler, John 162

L

launch 14, 20, 99, 167

launching 14

layout 22, 29, 69, 141

deadlines 21, 22

default images 41

for an image gallery 206, 214

of the menu 135

of the site 141

LCD sheet 43

leader board 19

lineStyle() 56, 190

lineTo() 56, 191

link popularity 162, 164

LoadVars() 75–77, 148

LoadVars.send() 75–76

LoadVars.sendAndLoad() 147, 150

logo 13, 32, 35, 48–49, 141

looping 19, 99, 128

M

marketing 39, 157, 159

direct 34

interactive 6, 19

viral 162–163, 165, 167, 172

media 12

plan 116, 118, 121, 124, 171

rich 5

tracking 122

media buy 12–13, 111, 112–115, 124

message 4, 13–14, 199

messaging 13, 36, 65

metrics 111

microbar 19

microsite

animation 132–134

brands 129–130

constraints 128–129

designing 29, 127–135

fi le size 79, 128

looping 128

navigation 131–132

timing 128

transitions 132–134

microsites 4–5, 8–10, 12, 14

collecting user data 147–151

driving traffi c to 155–168

227Index

and referrals 165–166

and user interactions 165–166

and viral marketing 162–166

from main site 160–161

paid search 156–159

planning 138

preparing and building 137–154

quality control 151–152

mobile devices 10–12

mobile market 11

moveTo() 54, 56, 191

MovieClip 182–183, 189–190, 197–198, 200,

202–204, 209–218

mtf 120

N

name/value pairs 71, 75, 147, 149

naming convention 44, 57–59, 142, 152

examples 58

National Pork Board 172

natural search 156

navigation 131–132, 138

negative keyword list 158

Nielsen//NetRatings 113

no-Flash backup 144–147

O

onEnterFrame() 58, 185–186

onLoad() 149

onLoadInit() 210, 215

onRelease() 52, 54, 56, 149, 183, 191,

201–202, 211, 213

OnTime Defect and Feature Management

System 66

operating systems 65–66

opt-out 150

optimization

code 98–100

fi le 79–101

graphics 79–98

of your campaign 120

text and fonts 97–98

outdoors 9

P

paid search 156–159, 166

panels 107

parameters 56

assignRelease method 204

beginFill method 182

BorderButton 56, 189–190

custom components 74

LoadVars.send() method 76

MovieClip 217

redrawBlock function 202

sendAndLoad method 149

SimpleGallery 209

SimpleMenu 197, 199

SWFObject 63

textField 184

Unobtrusive Flash Object 64

Patrón Spirits 170, 174

penetration rates 9

Penner, Robert 206

photographs 36, 80, 141, 206

cutting 48

 and fi le size 106

Photoshop 2, 48, 81–83, 87–88, 91,

141–142

phrase matching 158

placements 33, 112–116, 120–121, 124, 156,

160

availability 113–114

planning 5, 17, 39, 152

and animation 132

before building ads 42, 67

code 140

and images 48, 50

specs 42

.png 26, 48, 80, 86–87

228 Index

.png-24 48

PointRoll 101, 104, 107–108

Pork World Tour 172–173

print 9

and resolution 87

processing page 42, 75, 77, 147, 149

processor

usage 96, 98, 129, 209

production

animation 134

cost 172

time 67

classes 186

programmers 9

programming 12, 17, 22, 123, 132, 134, 150

languages 147

projects

animation 37

assess 2

bugs 23, 152

code 140

optimization 98

snippets 54

creativity 30

custom components 74

deadlines 20–21

environment 152

Flash backup 144

image quality 83

life cycles 12

know the brand 130, 132

lowest common denominator sheet 43

media buy 112

microsites vs. banners 9

naming fi les 58

photo galleries 206

planning 42, 138

preload text 183

quality control 20–22, 65

referrers 166

scope creep 21

search 157

SimpleMenu 191

snippets 181

taglines 98

templates 7

testing 117

tracking 118

traffi cking 111

user’s point of view 34

using classes 14

version control 17, 26

.psd 26

psychographics 112

Publish Settings 43, 46, 91, 101

Q

quality assurance 22

quality control 17, 22–24, 65–67, 121,

151–152, 186

bugs 67

deadlines 20

reason for 23

sign-off sheet 66

software 66

quality testing 22

R

radio 9, 104

raster 47–48, 73, 96–97, 101, 141

referrals 165–166

removeTextField() 184–185

reporting 108, 120, 122

results page 12, 69

Reverse class 216, 219

rich-media banners 5, 29, 36, 77, 105, 115,

122, 125

examples 169–173

traffi cking 120

229Index

rich-media companies 5, 74, 101, 103, 105,

108–109, 120, 122, 169

rich media 4, 105

and IAB 6, 7

tracking 122

traffi cking 120–122

ROI 118

S

Save for Web 81–83, 87–89

scope creep 21

script 9, 115, 165

to save time 54–57

tracking 165

search engine 62, 145, 156–159, 166

search results 12, 156, 158, 162

search term 156–158

setInterval() 58, 217–218

setTextFormat() 194–195, 201–202

share of voice 115, 125

sign-off sheet 66

SimpleGallery class 206–219

parameters 209

SimpleMenu class 191–205

parameters 197

Simple Preload Text 183–186

simplyperfect.com 170, 174–175, 177

Simply Perfect website 171

site behind the site 62, 145, 153

sites

ad rotation 115

advertising specs 18

animation 132–134

banner ads 159

brands 32, 130

bugs 26–27, 142

clickTags 51–53, 117

color scheme 147

design of 22

development environment 152

experience 134

Eyeblaster 122

Flash 144–146

generating a buzz 163

interactions 118–119

layout 141

looping 128

maps 140

multiple pages 140

navigation 131–132

no-Flash 144–145

no-Flash backup 147

organization 140

performance 120

placement 33

planning 138

quality control 142, 151–152

referrers 166

searches 156, 158

search results 158

search terms 156

site-served ads 123–124

site serving 4

specs 42–43

staging environment 152

statistics 166

traffi c 161

viral marketing 162–166

vs. microsites 137

wireframe 138– 140

Skyscrapers 19

snippets 42, 54, 67, 140, 181–186

SourceSafe 24, 45

spaghetti code 99

specs

ad 15, 17–19, 42–43

banner 79

borders 187

clickTags 52

fi le size 7, 18, 28, 74, 79

230 Index

IAB 19

links 52

looping 19

lowest common denominator sheet 43

quality control 23, 65

sign-off sheet 66

timing 19

square pop-up 19

stage 14, 38, 54, 184, 187, 199, 203–204,

212, 216, 218

borders 56

code 62

custom components 74

dimensions 42, 60

full-stage button 181–183, 187

quality control 151

shapes 49, 56

Stage Object 182

staging environment 151–152

templates 7

standard ad 4, 103, 108, 122

standard Flash ad 4–5, 104

standard Flash banner 29, 103, 105–106,

109, 115, 171

standards

advertising 6

brand 32

building to 57–59, 142–143

design 35

IAB 6, 19

interactive 6

mobile 11

Stearns, Geoff 62–63, 65, 67, 144, 146

storyboards 37

stream 5, 103–104

streaming 104

servers 105

style guide 13

Subversion 24–25, 45

Subversion project 25

swapDepths() 214–215

swf xix, 52, 63–64, 66, 91, 106, 128, 204

SWFAddress 146, 153

SWFObject 62–64, 67, 144, 146

.swf 18, 26–27

switch statement 146

T

target 31, 75

destination 129

object 149

target audience 12, 30, 33, 112–113, 124,

128, 135, 157, 161

targeting 13, 113

blogs 165

demographics 112

IAO variables 112

psychographics 112

search terms 157–158

target window 52, 76

tech-maybe 31

tech-no 31

tech-yes 31

Technorati 164

television 1, 9, 104, 174

commercials 3, 8, 12, 114, 178

microsite 174

templates 7, 43

custom 7

Flash 8

Flash built-in 7–8

Flash mobile device 10

HTML 52

text ads 158

TextField 58, 142, 151, 183, 194, 200–202

TextFormat() 197

textInput 71–72

timeline

animation 172, 218

code 181

231Index

 main 50, 58, 60

tracking 108, 111–125, 165

application 51

custom scripts 165

tracking tag 51

traffi c 15, 114, 120

banners 9, 34, 120, 159–160

to microsite via main site 160–161

microsites, driving traffi c to 155–168

viral marketing 162–166

word of mouth 162–166

traffi cking 108, 111, 120

transition 140, 160, 206, 213

design 36–38, 132–134

page 4

transparency 38, 48, 80, 85–86

transparent 36, 38, 56, 85, 107, 122, 190

TV spot 3

tween 42

tweening 14

typography 141

U

Unobtrusive Flash Object (UFO) 62, 64, 67,

144

useHandCursor 194–195, 201–202

user-generated content 105, 174

user interaction 3, 96, 105

V

van der Sluis, Bobby 62, 64–65, 67, 144

vector 47, 79, 96, 98, 101, 141–142

vs. raster 96–97

version 24, 43

parameter 63

version control 15, 17, 22, 24–27, 45

example 26–27

versioning system 25–26

vertical banner 19

video 105

ads and rich-media companies 108

in animation 132

banners 103

cost 5

fi le size 4

Flash 104

IAB 19

interactive 1

interactive ads 106

rich-media companies 5

rich-media technology 104

Viewpoint 108

Viral Marketing 155, 162–163

Vividas 108

W

WebSideStory 165

website 8–9, 160

blogs 163

designing full vs. microsite 129

destination 119

driving traffi c 160–161

placement 113–115

policies and procedures 113

rotation scripts 115

source of 71

viral marketing 162

wide skyscraper 19

width 6–7, 29, 43, 54, 56, 63–64, 66, 182,

184–185, 191, 214

wireframe 138–139

Word of Mouth 155, 162–163

X

XML 5, 11

	Creating Flash Advertising: From Concept to Tracking—Microsites, Video Ads, and More
	Copyright Page
	Table of Contents
	Foreword
	Acknowledgments
	About the Author
	Introduction
	Chapter 1 Flash Advertising Quick Start
	Why Use Flash for Advertising?
	Ad Formats
	Interactive Standards and the Interactive Advertising Bureau
	Flash’s Built-in Advertising Templates
	Microsites
	Mobile Devices
	Place, Design, Build, and Launch
	Conclusion

	Chapter 2 Constants and Considerations
	Ad Specs
	Deadlines
	Quality Control
	Version Control
	Conclusion

	Chapter 3 Designing Banner Ads
	Conception
	Goal of the Campaign
	Designing with Transitions and Animation in Mind
	Conclusion

	Chapter 4 Preparing and Building Ads
	Planning
	Setting Up Your File
	Cutting Images
	clickTags and Links
	Script to Save Time
	Building to Standards
	Bandwidth Profiler
	HTML/JavaScript
	Default Images
	Quality Control
	Conclusion

	Chapter 5 Forms and Data in Ads
	Where Are You Going?
	File Size Consumption
	Collecting and Passing Data
	Conclusion

	Chapter 6 File Optimization
	Image Types
	Image Compression
	Vectors and Fonts
	Optimizing Code
	Conclusion

	Chapter 7 Third-party Rich-media Technologies
	When to Utilize a Rich-media Technology
	Rich-media Companies
	Conclusion

	Chapter 8 Trafficking and Tracking Your Ads
	The Media Buy
	Ad Server Tools
	Tracking Your Ads
	Rich-media Ads
	Site-served Ads
	Conclusion

	Chapter 9 Designing Microsites
	Less Constraints
	Conception
	Know the Brand (and Learn It if You Don’t)
	Navigation
	Designing with Transitions and Animation in Mind
	Conclusion

	Chapter 10 Preparing and Building Microsites
	Plan of Attack
	Collecting Assets
	Building to Standards
	HTML/JavaScript
	No-Flash Backup
	Collecting User Data
	Quality Control
	Conclusion

	Chapter 11 Driving Traffic to Your Microsite
	Paid Search
	Banner Ads
	To the Microsite from the Main Site
	Word of Mouth (a.k.a. Viral Marketing)
	User Interactions and Referrals
	Conclusion

	Chapter 12 Advertising Examples
	Rich-media Banners
	Conclusion

	Chapter 13 Snippets and Classes
	Snippets
	Classes
	Conclusion

	Index

