

Advanced Information and Knowledge Processing

Series Editors
Professor Lakhmi Jain
Lakhmi.jain@unisa.edu.au

Professor Xindong Wu
xwu@cems.uvm.edu

For further volumes:
http://www.springer.com/series/4738

Nathan Griffiths · Kuo-Ming Chao
Editors

Agent-Based
Service-Oriented Computing

123

Editors
Dr. Nathan Griffiths
University of Warwick
Coventry
UK

Prof. Kuo-Ming Chao
Coventry University
Coventry
UK

ISBN 978-1-84996-040-3 e-ISBN 978-1-84996-041-0
DOI 10.1007/978-1-84996-041-0
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2009943261

c© Springer-Verlag London Limited 2010
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms of licenses issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be
sent to the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Service-oriented computing (SOC) has rapidly become an established approach for
supporting the construction and management of distributed applications. A range
of tools, techniques and standards have emerged to support the construction, publi-
cation, discovery, composition and management of services. Agent-based systems
are a natural complement to SOC and can provide the intelligence and reasoning
capabilities that are needed to effectively support and manage the resulting systems.

The integration of agents and SOC is an active research area, and the goal of
this book is to give an overview of current research and techniques, and to identify
the most likely future directions. This book is a collection of chapters that discuss
the main current areas of research, along with a chapter devoted to selected future
directions that we see as important. We also include a chapter that introduces the
basic notions of SOC, to keep the book accessible to a general reader.

We would like to express our gratitude to the authors who have contributed their
research, and to Rebecca Mowat, Beverley Ford and everyone at Springer who has
helped with the publication of this book.

Coventry, UK Nathan Griffiths
September 2009 Kuo-Ming Chao

v

Contents

1 Introduction . 1
Kuo-Ming Chao and Nathan Griffiths
1.1 Distributed Systems . 1
1.2 Software Agents . 2
1.3 Service-Oriented Architectures . 4
1.4 Modelling Methodologies . 5

1.4.1 Agent Modelling Methodologies . 6
1.4.2 SOA Modelling Methodologies . 7
1.4.3 Agents and Services . 8

1.5 Supporting Development Platforms . 9
1.6 Agents and SOA Standards . 10

1.6.1 Foundation for Intelligent Physical Agents (FIPA) 11
1.6.2 SOA and Web Service Architecture Standards 11

1.7 Overview of Chapters . 13
1.8 Conclusion . 17
References . 17

2 Service Advertisement and Discovery . 21
Shanshan Yang and Mike Joy
2.1 Introduction to Service Advertisement and Discovery 21
2.2 Basic Technologies . 24

2.2.1 SOAP . 24
2.2.2 WSDL. 25
2.2.3 UDDI . 25

2.3 Web Service Registry Architectures . 26
2.3.1 Centralised Registries . 26
2.3.2 Decentralised Registries . 27
2.3.3 Hybrid Registries . 30

2.4 Data Structures . 31
2.5 System Requirements . 33
2.6 Advertisement and Discovery Services . 34

vii

viii Contents

2.7 Agents in Service Advertisement and Discovery 36
2.7.1 Agents in Service Oriented Computing 36
2.7.2 Development of Agents in Service Advertisement

and Discovery . 37
2.8 Challenges in Service Advertisement and Discovery 40

2.8.1 System Requirements . 41
2.8.2 System Modelling . 41

2.9 Summary . 41
References . 42

3 Multi-Agent Coordination for Service Composition 47
Junzhou Luo, Wei Li, Bo Liu, Xiao Zheng and Fang Dong
3.1 Introduction . 48
3.2 Preliminaries . 49

3.2.1 Service Composition . 49
3.2.2 QoS Attributes and User Satisfaction Degree of Service . 52
3.2.3 Task Graph . 53
3.2.4 Service Composition Graph . 54
3.2.5 From Task Graph to Services Composition Graph 55
3.2.6 The Fundamentals of the Ant Algorithm 56

3.3 Related Work . 57
3.3.1 Framework of Service Composition 57
3.3.2 Service Composition Plan Generation 58
3.3.3 Service Selection and Plan Optimization 58
3.3.4 Multi-Agent Based Service Composition 59

3.4 Architecture of MQSC . 60
3.4.1 Portal Agent . 60
3.4.2 Decision Agent . 61
3.4.3 Search Agent . 61
3.4.4 Registry Agent . 62
3.4.5 Management Agent . 62
3.4.6 Execution Agent . 62

3.5 Service Composition Generation . 63
3.5.1 Service Search and Composition Plan Generation 63
3.5.2 QoS-Aware Service Selection . 64

3.6 Service Composition Deployment and Execution 66
3.6.1 How to Manage the EA to Implement the Composite

Plan for the MA . 67
3.6.2 The Plan Scheduling Algorithm of the EA 67
3.6.3 An Example for the Scheduling Algorithm of the EA 69

3.7 Case Study . 71
3.7.1 Case Scenario Description . 71
3.7.2 Multi-Agent System for Service Composition 74
3.7.3 Travel Assistant Service Compositing 75

3.8 Conclusion and Future Work . 78
References . 79

Contents ix

4 Flexible Workflow Management in Service Oriented Environments . 81
Birgit Hofreiter and Christian Huemer
4.1 Introduction . 81
4.2 Orchestration and Choreography . 83

4.2.1 Motivation and Definitions . 83
4.2.2 Orchestration . 84
4.2.3 Local Choreography . 86
4.2.4 Global Choreography . 88
4.2.5 Approaches to Transform Between Orchestration

and Choreography . 89
4.3 Workflow and Web Services . 90

4.3.1 Web Services Standards for Business Processes 90
4.3.2 Specifying a Business Process by Means of BPEL 90
4.3.3 Analyzing BPEL by Workflow Patterns 97

4.4 The Role of Agents in Service-Based Business Processes 98
4.5 Dynamic Workflows . 100

4.5.1 Dynamic Selection of Best Service Providers 100
4.5.2 Changes to the Workflow Schema . 103

4.6 Summary and Outlook . 107
References . 108

5 Semantics for Service-Oriented Architectures . 113
Michael Stollberg and Dieter Fensel
5.1 Introduction . 113
5.2 Web Services and SOA . 115

5.2.1 Web Services . 115
5.2.2 Service-Oriented Architectures . 117

5.3 Semantic Web Services . 119
5.3.1 Ontologies and the Semantic Web . 120
5.3.2 SWS Frameworks . 122

5.4 Semantic Techniques for Automating SOA . 126
5.4.1 Discovery . 127
5.4.2 Selection and Ranking . 129
5.4.3 Behavioral Compatibility . 130
5.4.4 Composition . 130
5.4.5 Mediation . 131
5.4.6 Automated Execution . 132

5.5 Conclusions and Outlook . 132
5.5.1 Summary . 133
5.5.2 Future Challenges . 134

References . 135

x Contents

6 Dependability in Service-Oriented Computing 141
Arshad Jhumka
6.1 Introduction . 141
6.2 Service-Oriented Architecture . 143

6.2.1 Dependability Issues in Service-Oriented Architectures . . 146
6.3 Models . 147

6.3.1 System Models . 147
6.3.2 Fault Models . 148

6.4 Dependability Enhancement in a Service Oriented Architecture . . . 152
6.4.1 Fault Prevention . 152
6.4.2 Fault Tolerance . 153
6.4.3 Fault Removal . 154
6.4.4 Fault Forecasting: Fault Injection . 154

6.5 Dependability Evaluation . 155
6.6 Case Studies . 157

6.6.1 A Web-Based Application . 157
6.6.2 Service-Oriented Computing in Ubiquitous Systems 159

6.7 Conclusions . 159
References . 160

7 Consensus Issues for Service Advertisement and Selection 161
Ping Wang, Chi-Chun Lo and Leon Smalov
7.1 Introduction . 161

7.1.1 Semantic Confusion . 162
7.1.2 Reaching Consensus . 164

7.2 Existing Solutions for Web Service Selection 165
7.3 The Proposed QoS-Aware Services Selection Model 170

7.3.1 Basic Definitions and Notations . 171
7.3.2 Consistence and Inconsistence Measurements 171
7.3.3 Problem Formulation . 174

7.4 Two Numerical Cases . 176
7.4.1 Numerical Case I . 176
7.4.2 Numerical Case II . 179

7.5 Discussion . 184
7.6 Conclusion . 185
References . 185

8 Trust and Reputation . 189
Sarah N. Lim Choi Keung and Nathan Griffiths
8.1 Introduction . 189
8.2 Trust and Reputation . 190

8.2.1 Trust . 190
8.2.2 Reputation . 191
8.2.3 The Multiple Approaches to Trust and Reputation Models191
8.2.4 Review of Trust and Reputation Models 194
8.2.5 Summary of Views of Trust and Reputation Models 210

Contents xi

8.3 Agents and Service-Oriented Computing . 211
8.3.1 Peer-to-Peer Architectures . 211
8.3.2 Grid Computing . 215

8.4 Trust Classes and Ontologies . 218
8.4.1 Trust Semantics . 219

8.5 Summary . 220
References . 220

9 QoS-Aware Service Selection . 225
James W. J. Xue and Stephen A. Jarvis
9.1 Introduction . 225
9.2 Service Selection Procedure . 226
9.3 Case Study—Selection of Switching Service 227

9.3.1 Server Switching in Internet Hosting Centres 227
9.3.2 Server Switching Procedure . 229
9.3.3 Modelling Multi-tier Internet Services 229
9.3.4 Model Parameterisation . 232
9.3.5 Bottleneck Identification of Multi-tier Architecture 232
9.3.6 Server Switching for Revenue Maximisation 234
9.3.7 Switching Policies . 236
9.3.8 Proactive and Reactive Switching . 239
9.3.9 Admission Control . 240

9.4 Performance Evaluation . 240
9.4.1 Experimental Setup . 240
9.4.2 Evaluation Results . 241

9.5 The Selection of Switching Services . 249
9.6 Summary . 250
References . 250

10 Future Directions . 253
Nathan Griffiths, Kuo-Ming Chao, Simon Miles, Sanjay Modgil, Nir
Oren, Michael Luck and Kwei-Jay Lin
10.1 Introduction . 254
10.2 Trust and Reputation . 254

10.2.1 Standardisation . 255
10.2.2 Technology Integration . 256
10.2.3 Further Challenges for Trust and Reputation 257

10.3 Contract-Based Systems . 258
10.3.1 Electronic Contracts . 259
10.3.2 Conceptual Frameworks for Contract-Based Systems 260
10.3.3 Supporting Architectures for Contract-Based Systems . . . 260
10.3.4 Existing Work and Future Directions 261

10.4 Service Accountability . 262
10.4.1 Introduction to Accountability . 263
10.4.2 SOA Accountability . 263
10.4.3 Accountable Service Computing Model 264

xii Contents

10.4.4 Accountability System Components 267
10.4.5 Related Work . 268
10.4.6 Future Direction . 269

References . 270

Index . 273

List of Contributors

Kuo-Ming Chao
Department of Computer Science, Coventry University, Coventry, CV1 5FB, UK,
e-mail: k.chao@coventry.ac.uk

Fang Dong
School of Computer Science and Engineering, Southeast University, Nanjing
210096, P.R. China, e-mail: fdong@seu.edu.cn

Dieter Fensel
Semantic Technology Institute (STI), University of Innsbruck, Innsbruck, Austria,
e-mail: dieter.fensel@sti2.at

Nathan Griffiths
Department of Computer Science, University of Warwick, Coventry, CV4 7AL,
UK, e-mail: nathan@dcs.warwick.ac.uk

Birgit Hofreiter
Institute of Information Systems, University of Liechtenstein, Vaduz 9490,
Liechtenstein, e-mail: Birgit.Hofreiter@hochschule.li

Christian Huemer
Vienna University of Technology, Favoritenstrasse 9-11/188-3, Vienna 1040,
Austria, e-mail: huemer@big.tuwien.ac.at

Stephen A. Jarvis
Department of Computer Science, University of Warwick, Coventry, CV4 7AL,
UK, e-mail: S.A.Jarvis@warwick.ac.uk

Arshad Jhumka
Department of Computer Science, University of Warwick, Coventry, CV4 7AL,
UK, e-mail: H.A.Jhumka@warwick.ac.uk

Mike Joy
Department of Computer Science, University of Warwick, Coventry, CV4 7AL,
UK, e-mail: M.S.Joy@warwick.ac.uk

xiii

xiv List of Contributors

Wei Li
School of Computer Science and Engineering, Southeast University, Nanjing
210096, P.R. China, e-mail: xchlw@seu.edu.cn

Kwei-Jay Lin
Department of Electrical Engineering and Computer Science, University of
California, Irvine, CA, USA, e-mail: klin@uci.edu

Sarah N. Lim Choi Keung
Department of Computer Science, University of Warwick, Coventry, CV4 7AL,
UK, e-mail: S.N.Lim.Choi.Keung@dcs.warwick.ac.uk

Bo Liu
School of Computer Science and Engineering, Southeast University, Nanjing
210096, P.R. China, e-mail: bliu@seu.edu.cn

Chi-Chun Lo
Institute of Information Management, National Chiao Tung University, Hsinchu,
Taiwan, e-mail: cclo@faculty.nctu.edu.tw

Michael Luck
Department of Computer Science, King’s College London, London, WC2R 2LS,
UK, e-mail: michael.luck@kcl.ac.uk

Junzhou Luo
School of Computer Science and Engineering, Southeast University, Nanjing
210096, P.R. China, e-mail: jluo@seu.edu.cn

Simon Miles
Department of Computer Science, King’s College London, London, WC2R 2LS,
UK, e-mail: simon.miles@kcl.ac.uk

Sanjay Modgil
Department of Computer Science, King’s College London, London, WC2R 2LS,
UK, e-mail: sanjay.modgil@kcl.ac.uk

Nir Oren
Department of Computer Science, King’s College London, London, WC2R 2LS,
UK, e-mail: nir.oren@kcl.ac.uk

Leon Smalov
Faculty of Engineering and Computing, Coventry University, Coventry, CV1 5FB,
UK, e-mail: csx211@coventry.ac.uk

Michael Stollberg
SAP Research CEC Dresden, SAP AG, Dresden D-01187, Germany, e-mail:
michael.stollberg@sap.com

Ping Wang
Department of MIS, Kun Shan University, Yung–Kang, Taiwan, e-mail:
pingwang@mail.ksu.edu.tw

List of Contributors xv

James W. J. Xue
Department of Computer Science, University of Warwick, Coventry, CV4 7AL,
UK, e-mail: W.J.Xue@warwick.ac.uk

Shanshan Yang
Department of Computer Science, University of Warwick, Coventry, CV4 7AL,
UK, e-mail: Shanshan.Yang@dcs.warwick.ac.uk

Xiao Zheng
School of Computer Science and Engineering, Southeast University, Nanjing
210096, P.R. China, e-mail: xzheng@seu.edu.cn

Chapter 1
Introduction

Kuo-Ming Chao and Nathan Griffiths

Abstract The increasing number and growing complexity of distributed systems
in current dynamic business environments requires more sophisticated methods
and technologies to tackle the related emerging issues and requirements. Software
agents, an AI-based technology, has demonstrated its potential in dealing with un-
coordinated heterogeneous distributed systems. Service-oriented computing, which
has evolved and learned lessons from Internet and distributed object technologies,
has attracted significant interest from industry and academia for the development of
distributed enterprise systems. This chapter gives an overview of the characteristics
of agents and services and the relationships between them by analysing their mod-
elling methods, supporting specifications, and platforms for system development.
We argue that although the focus of these two technologies is diverse, they have
great potential to complement each other to advance distributed applications. In this
chapter we also introduce the remaining chapters of this book.

1.1 Distributed Systems

The increasing popularity of the Internet facilitates software accessibility and inter-
action. Due to rapid changes in the operating environment and increased demand
for sophisticated functionality from software, centralised approaches for the man-
agement and development of large scale software becomes a less viable option. The
growing number of distributed systems with associated supporting technologies, and
the trend towards globalisation, has shaped the new landscape of computer system

Kuo-Ming Chao
Department of Computer Science, Coventry University, Coventry, CV1 5FB, UK
e-mail: k.chao@coventry.ac.uk

Nathan Griffiths
Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
e-mail: nathan@dcs.warwick.ac.uk

N. Griffiths, K.-M. Chao (eds.), Agent-Based Service-Oriented Computing, 1
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-041-0 1, c© Springer-Verlag London Limited 2010

2 Kuo-Ming Chao and Nathan Griffiths

development, which puts more emphasis on issues such as flexibility, interoperabil-
ity, reusability and Quality of Service (QoS).

Software agents are one of a number of fast growing technologies designed to
cope with increasingly dynamic and complex environments. Its theory has been
widely studied and the breadth of its applications range from engineering to busi-
ness; from personal assistants to large-scale system integration. The emergence of
service-oriented computing has provided an alternative way to design and model
software systems and this has gained a large degree of support from academia and
industry alike. As a result, an increasing number of companies are adopting service-
oriented architectures (SOAs), and the related technologies, to implement their IT
systems.

Although agent-oriented and service-oriented computing have different perspec-
tives from which they contribute to distributed system design, they share a number
of common characteristics in software development, such as raising system scal-
ability, emphasising system abstraction modelling, increasing software reusability
and distributed systems coordination etc. Software components can be orchestrated,
composed or coordinated to produce a compelling distributed system that none of
the individual components can accomplish alone. This, however, raises the question
of whether, given that they overlap, these paradigms can work together with suf-
ficient effectiveness to further improve distributed system design. If the answer is
yes, then a further question is determining how they can complement each other.
In this chapter, we examine these two technologies by looking into various aspects.
We will give more background on agent-oriented and service-oriented computing.
We also briefly introduce the definitions and properties of agents and SOAs, as these
may lead to the various modelling methodologies and the focus of their applications.
Finally, we include a brief overview of the remaining chapters of this book.

1.2 Software Agents

The term agent has been extensively used in computer science and there is no gen-
eral consensus on its definition. W3C defines an agent as, “a program acting on
behalf of a person or organisation” [15]. This definition gives space for develop-
ers to give varying interpretations to the definition in shaping their agents. This is
understandable as W3C involves several initiatives in standardising Internet-related
specifications. If the definition is too detailed and specific, it may hinder the scope of
applications and development. According to this definition, some agents can possess
sophisticated and complex functions, while others can be very simple which only
contain a program routine. Berners-Lee et al. [2] view, for example, software agents
in the context of semantic web technologies as being responsible for coordinating
searches and comparing and negotiating on the web to greatly reduce a user’s effort.

Bradshaw [3] concluded that the “software agent” definition proposed by Shoham
in 1997 might be acceptable to many agent researchers. That is, “a software entity
which functions continuously and autonomously in a particular environment, often

1 Introduction 3

inhabited by other agents and processes” [34]. Wooldridge also proposed a similar
definition, namely that, “an agent is a computer system that is situated in some en-
vironment, and that is capable of autonomous actions in this environment in order
to meet its delegated objectives” [36, 37].

Interestingly, the FIPA and OMG Agent Special Interest Group, a joint effort
by two standards organisations in promoting agents, does not prescribe a specific
definition to agents or explicitly prescribe their properties [6]. Instead of giving
a specific definition, however, a software agent can be characterised by the four
properties of autonomy, reactivity, pro-activeness, and social ability [38].

The property of autonomy drives the agent to be proactive by coordinating with
other agents to achieve their common interests. Ideally, a group of agents can or-
ganise themselves by following certain social norms or ethics rules to form a com-
munity (agency) with minimum human intervention to realise their design goals.
The interaction between agents is typically through communication, and as with
other traditional distributed systems requires suitable protocols. Since agents are
autonomous entities that have control over their internal states and actions, com-
munication protocols such as remote procedural calls or method invocation, which
allow agents to directly change states or behaviours of other agents, are not suffi-
cient [9]. These protocols, however, can be used as a vehicle to convey messages,
but individual agents have the ultimate right to decide how to reply or react. In other
words, a high-level communication protocol with rich semantics sits above a trans-
port protocol to enable the agents to interact at an intentional and social level and to
influence each other to carry out actions to reach their desired intentions. An Agent
Communication Language [13], a standardised communication protocol for agents
based on speech act theory [33], was proposed to facilitate the higher-level agent
interactions such as negotiation and coordination. Like objects, an agent has the ca-
pability to react to requests from the environment or from other agents. It also has
the ability to continuously monitor the environment in which it is situated and its
internal status, to ensure that its course of action will not deviate from its designated
goal. If there is any deviation, then appropriate actions will be taken to correct it.
An intelligent agent, therefore, is goal-oriented and focuses on task planning and
execution [6].

These properties are not the only set of properties having been proposed as asso-
ciated with agents. For example, Etzioni and Weld, and Franklin and Graesser, have
proposed different sets of properties [12,14]. This leads to different classifications of
agents which serve different purposes. However, Nwana [21] broadly divided agent
research into two strands, macro and micro, based on their evolution.

The research classified as macro-level is interested in understanding the inter-
action and communication between agents, the decomposition and distribution of
tasks, coordination and cooperation, and conflict resolution via negotiation etc. This
line of research is mainly derived from distributed AI and economics. On the other
hand, micro-level research has greater emphasis on the design and development
of agent systems by providing the underlying architecture. In this aspect, the in-
troduction of software agents to computational systems enables legacy software,
which has little or no capability to interact with other software, to interoperate with

4 Kuo-Ming Chao and Nathan Griffiths

other agents in a consistent manner. The Palo Alto Collaborative Testbed (PACT)
project, funded by DARPA [10], demonstrated the effectiveness of agents in knowl-
edge sharing and reuse for complex engineering design. As the field of agent-based
systems evolves over time, it has become a new paradigm in modelling complex
software systems. The focus has shifted from intelligence and reasoning ability, to
actions and modelling. According to these classifications, different types of agents
with more specific functions have emerged for different agent-based applications.

In this chapter, we view agents as software programs with a degree of intelli-
gence or autonomy to perform functions on behalf of person, organisation or other
software system. The terms, agent, software agent, and intelligent agent will be used
interchangeably. An agent, in this case, implies its existence in a multi-agent system,
as it works with other agents to achieve a common goal. The term agent, however,
does have slightly different interpretations by some authors in this book, as detailed
in the corresponding chapters.

1.3 Service-Oriented Architectures

Service-Oriented Architectures are another paradigm to allow software developers
to focus on the fulfilment of required enterprise functionalities at a conceptual level
by providing standardised communication protocols, interfaces, workflow and ser-
vice management infrastructures/policies. SOAs enable developers to compose the
required services from existing ones without being concerned by the barriers caused
by heterogeneous operating and hardware systems, and the syntax level differences
among different software and locations [7].

Although the concept of a SOA has been backed by numerous organisations, it
is similar to agents in that a number of competing definitions for SOAs have been
proposed, by various industry bodies, respected researchers and standards organisa-
tions. W3C defines a service as, “an abstract resource that represents a capability of
performing tasks that represents a coherent functionality from the point of view of
provider entities and requester entities” [5]. A service is an abstract concept, but it is
granular, as it can only provide one function. W3C further define a Service-Oriented
Architecture as, “a set of components which can be invoked, and whose interface
descriptions can be published and discovered” [15]. This conflicts with alternative
views of SOAs, due to its narrow description of a SOA as a set of components. In
addition, this definition is mainly concerned with implementation and deployment
issues with less consideration of the architectural level [35].

IBM defines SOAs as, “an approach to build distributed systems that deliver ap-
plication functionality as services to end-user applications or to build other services.
SOA can be based on web services, but it may use other technologies instead” [8]. In
this definition, the relationship between SOAs and web services has been explicitly
clarified. In other words, web services are a tool which can help realise a SOA.

OASIS defines SOAs as the following: “A paradigm for organising and utilis-
ing distributed capabilities that may be under the control of different ownership

1 Introduction 5

domains. It provides a uniform means to offer, discover, interact with and use ca-
pabilities to produce desired effects consistent with measurable preconditions and
expectations” [24]. This implies that a number of related standards and measure-
ments are needed in a SOA, so that services can be provided and consumed in a
consistent manner. This leads to different standards having been proposed for the
various aspects of SOAs and web services. Regardless of the diverse nature of these
definitions, Service-Oriented Computing (SOC), can be considered as a study of
SOA in the context of computing.

We believe that agents and services share a number of similarities, but they also
have some important differences. Agents and services, like other software modelling
methods, attempt to separate concerns into agents and services in order to under-
stand the functions and behaviours of a particular system in the process of system
modelling and development. Both aim at increasing software reusability by dividing
the system logic into a collection of agents and services. An agent can join differ-
ent agencies to achieve different goals. A service can be part of different composite
services to serve different functions. Agents are able to reuse subsystems, while
services are designed to reuse functions. States and data are embedded in objects,
and agents have beliefs, but services (and web services) are stateless. Both have
possession of different degrees of autonomy. Services have control over the logic
they encapsulate. A service can complete its prescribed functions without involving
other services, and functions in one service will not interact with others residing in
other services directly. Similarly an agent can fulfil its advertised capabilities with-
out assistance from other agents, although of course assistance is permitted and is
often valuable. Both have intentions of promoting loss-coupling. In the next few
sections, we will explore further agents and services from three different aspects,
namely modelling methodologies, standardisation, and supporting tools.

1.4 Modelling Methodologies

A software modelling methodology provides a systematic approach with relevant
guidelines, principles, and models to help the developer analyse an application do-
main and requirements, and to lead to system design and development. A develop-
ment life cycle is associated with the methodology consisting of the various stages,
activities and processes for system modelling. It also specifies the deliverables or
models that should be produced at each specific stage of the development life cy-
cle. This provides a matrix against which to measure deliverables to ensure that the
project is on track and that software quality can be met. The process of modelling
normally starts with an abstract or logical view of the system in order to capture its
essence. The content of the model can be enriched by adding more detailed and con-
crete elements and processes. As the development process continues, along with the
progressing of life cycle, more detailed specifications for implementation should be
revealed and designed. At the end, the conceptual system can be realised by using
suitable technologies and can be deployed.

6 Kuo-Ming Chao and Nathan Griffiths

Unlike OO which has a mature standard modelling language and related meth-
ods, UML, to support system analysis and design, there are currently no well
recognised systematic methodologies for the analysis and design of agent-oriented
and service-oriented software systems. However, a handful of agent modelling ap-
proaches have been proposed and adopted by researchers to develop agent-based
applications.

1.4.1 Agent Modelling Methodologies

Existing methodologies for modelling agent-oriented systems originate from either
knowledge engineering techniques or object-oriented modelling methods [3]. The
Belief-Desire-Intention (BDI) architecture is an approach to modelling the inter-
nal states of an agent in terms of three main elements—beliefs, desires and inten-
tions [30]. Beliefs represent an agent’s beliefs about the world (including the agent
itself and others). Desires are a set of possible goals the agent wishes to achieve.
Intentions are commitments to goals, typically in the form of intermediate goals
associated with plans that the agent has selected to perform. The benefit of this
method is that it provides a systematic coherent approach from modelling logical
mental states to realising BDI agents. JACK agents, a commercial tool to support
intelligent agent development, is based on this approach. The authors also proposed
the AAII methodology to model an agent’s interaction rules with other external
agents [31].

Gaia [38] is an agent-oriented analysis and design methodology for modelling
both the macro-level (societal) and the micro-level (agent) aspects of agent based
systems. The approach supports a number of models for each stage (analysis and
design) to capture concepts from abstract to concrete levels. The whole development
is an iterative process to ensure that the system has been modelled appropriately. At
the analysis stage, a prototypical role and interaction model which includes key roles
and the interactions between the roles in the system is identified. The outcome of
the analysis is a comprehensive roles model which details the information about the
key roles, interaction protocols and activities. The design stage in Gaia is to create
an agent model by grouping the roles identified in the previous step into agent types
and to define their relationships. The next step is to develop a service model to
include essential functions to support agent’s roles and activities. The final step is to
develop an acquaintance model from the interaction model and agent model. After
the completion of these stages, the specifications for an agent system are ready for
implementation.

In Gaia, the purpose of an agent possessing a service model is to describe and
support its capabilities. An agent has a collection of services that correspond to the
functions required by the agent to play its role in a given environment or organi-
sation. The activities identified at the analysis stage relate to the roles through the
corresponding services. Each role will be supported by at least one service. The
services that are allocated to one agent are not directly accessible to other agents.

1 Introduction 7

In other words, one agent cannot directly invoke the other agent’s operations (re-
gardless of implementation platform, for example even if web services were used).
The Gaia service model focuses on modelling concrete concepts, and so the issue
of service implementation is not addressed [16]. For each service it is necessary to
document its properties such as its required input and output as well as constraints
such as pre-conditions, and post-conditions.

1.4.2 SOA Modelling Methodologies

Arsanjani proposed a service-oriented modelling approach with seven layers for
the development of services [1]. The approach consists of modelling, analysis, de-
sign techniques, and activities to define the foundations of a SOA. The main task
of service identification is to use top-down, bottom-up, and middle-out techniques
to analyse the application domain and to decompose the domain into manageable
subsystems for service identification. After the required services have been identi-
fied, the relationships between these services need to be recognised and drawn up
as a hierarchical structure, so that the composite and atomic services can be deter-
mined. The activity in the subsystem analysis specifies the interdependencies and
flow between the subsystems. Once the subsystems have been specified, services
can be assigned to these subsystems. Prior to doing this, the component that imple-
ments the services must be documented. The final step is to realise the services by
selection or custom building. Other options that are available include integration,
transformation, subscription and the outsourcing of parts of the functionality using
web services.

The SOA foundation life cycle is another means to guide service develop-
ment [17]. The SOA life cycle consists of four main phases: modelling, assembly,
deployment, and management. Another important process is governance to manage
the whole process for quality of service. During the modelling phase of the service
life cycle the main task is to identify candidate services and their possible interac-
tions based on the result of a requirements analysis and an analysis of the business
process. Modelling functions that meet the required business objectives in the form
of services is another important task. The resulting model is designed and simulated
in order to test whether the system has met the requirements or not. In the assem-
bly phase the developers locate the available services which can be composed to
produce the designated functions. If the required functions cannot be satisfied with
the services in the repository, then constructing new services is necessary. Service
testing before the composition takes place is an essential task to ensure system de-
pendability. In this phase, the policies for governing the service interactions need
to be determined. When the system is ready for deployment, the deployers need to
configure the system for the real runtime environment. Other related roles such as
IT system managers and end users etc. have to be involved to integrate business
processes and information to eliminate any possible barriers. The deployed services

8 Kuo-Ming Chao and Nathan Griffiths

must be managed and monitored to ensure that there are no abnormal behaviours
and that they comply with non-functional QoS requirements.

1.4.3 Agents and Services

W3C states that “A web service is an abstract notion that must be implemented by
a concrete agent. The agent is the concrete piece of software or hardware that sends
and receives messages, while the service is the resource characterised by the abstract
set of functionality that is provided” [5]. This means that a web service can be
implemented by one agent and that this agent can be replaced with another, provided
that the service still provides the same functionality. For example, suppose that a
Google agent, that includes a Google search engine and related index database, can
retrieve the required information for requests and that a Yahoo agent has a similar
search capability, but it is associated with the Yahoo search engine and database.
An Internet search service can be implemented using the Google agent to search
over the Internet, but the service can change its underlying agent from the Google
agent to the Yahoo agent. The service still has the same functionality for internet
search, but the results searched by these two agents may be different and the QoS
offered by these two agents could vary. Therefore, the Service Level Agreement
(SLA) between service consumers and providers becomes an important instrument
for SOAs [32]. The service can select appropriate agents to honour its described
functions and promised QoS based on a SLA.

Agents might also be autonomous and able to deliberate to plan and fulfil the
goal (tasks) a service assigns to it. A composite service is a collection of services
that contain a group of agents. The agents will not communicate with each other
directly, but through the associated service interfaces. If an Agent Communication
Language (ACL) is the only communication mechanism for agents, then the com-
munication between service and agent and between services will be messages that
contain the ACL. A workflow will prescribe the relationships at runtime not only
between services, but also between agents. A discovery and selection service could
include a service discovery and selection agent to automate the service discovery
and selection process. In this approach, an agent is wrapped by a service. The is-
sue of coordinating heterogeneous agents could be alleviated, as services will be
the only interface for service consumers to interact with, and so the standard web
services architecture is applicable.

The Gaia methodology takes a very different approach from the W3C web ser-
vice architecture to define the relationship between agents and services. The services
in the Gaia service model are designed to realise the agents role. Services are one of
the main building blocks to equip an agent with functions. In other words, a service
is part of an agent and it can be one of the activities that an agent is able to carry out.
An agent has control over the services and their interactions. In this model, an agent
can adopt SOA standards to tackle issues such as non-functional QoS requirements,
governance, and dependability etc., to which the community pays little attention but

1 Introduction 9

are important factors for business and engineering applications. We further discuss
the standards issue later in this chapter. The agent can also select relevant services
to not only produce the required functions, but also meet QoS requirements.

1.5 Supporting Development Platforms

There are very few software tools that have been developed for agents that comply
with FIPA specifications, and some of these are no longer supported or maintained
by the developers. For example, the April Agent Platform (AAP) and Language
(April) (http://sourceforge.net/projects/networkagent/) and the Fipa-OS agent plat-
form (http://fipa-os.sourceforge.net/index.htm) are no longer actively developed.
The Spyse agent platform (http://sourceforge.net/projects/spyse/) has become open
source software in attempt to attract input from researchers in the community.

One of popular development tools for agent-based systems is JADE which is a
Java based agent platform. It focuses on the support of the FIPA agent management
platform, Agent Communication Language, and underlying communication proto-
cols, but there is no support for the intelligent mechanisms needed by an agent.
Therefore, to enable agents to have intelligence or decision making, developers need
to combine JADE with other reasoning engines.

JACK, a commercial tool, is not FIPA compliant but does has a sophisticated in-
ference engine based on the Belief, Desire, Intention (BDI) paradigm [30] to support
agent reasoning. It focuses on modelling agents’ internal mental states, and does
not provide associated communication or coordination mechanisms. This hinders
its application to multi-agent systems. Recently, the introduction of JACK Teams
aims to overcome this disadvantage by enhancing its capability in the modelling
of social structures and coordinated behaviours. Zeus, an open source agent devel-
opment tool kit created by BT and associated partners, supports a BDI like repre-
sentation for reasoning and an ontology to integrate different concepts [22]. Zeus
supports agents with intelligent message handling functionality for communication
with other agents, such that agents can reactively respond to requests from others.
The software, however, is no longer supported by the original developers.

Industry is unenthusiastic about the development of agent development toolkits.
Industry and academic research communities, however, are more interested in de-
veloping tools or methods to support particular aspects of agents, such as mobility,
learning, coordination and economic analysis etc. Aglets, for example, was devel-
oped at the IBM Tokyo Research Laboratory (TRL) to develop mobile agent appli-
cations [20]. It is a Java mobile agent platform, and so developers can utilise built-in
libraries to develop mobile agents and embed the technology to their applications.
Aglets, however, is no longer supported by IBM.

Even though agent based systems receives input from industry, SOAs gain more
support from industry as the web services (WS) architecture is perceived as an
industry-accepted method of technology deployment. Several large IT companies
have developed software platforms or solutions to support the concept of SOAs.

10 Kuo-Ming Chao and Nathan Griffiths

For example, BEA has WebLogic Server, and the .Net Framework in Microsoft of-
fers toolkits for developing web service based applications. Sun Microsystems also
perceives the potential of service-oriented applications by introducing web service
technologies to NetBeans/Java Studio Enterprise, and IBM WebSphere provides a
heavy weight software platform to support service-oriented computing. There are
other examples such as HP web services platform 2.0, SAP Web Application Server
and Oracle Application Server Web Services etc. These are simply illustrative ex-
amples, and not an exhaustive list. Such companies envisage service-oriented soft-
ware platforms as a tool to facilitate the change of company practices in business by
introducing service-oriented concepts to IT systems. Therefore, they provide a sys-
tematic methodology to model business functions and processes. Enterprise Service
Bus (ESB) [18], for example, supported by IBM, Oracle and other IT companies,
is a reference architecture, or middleware structure, that facilitates communication
among different services and applications. The ESB not only includes a collection
of key services to assist the SOA developers in building and managing the services,
but it also encloses a set of services to support better decision-making with real-time
information. Since the main objective of ESB is to support the development of SOA
applications and to provide flexible connectivity for services and applications, the
components or services in ESB can be varied according to the system or customer
requirements [38].

The number of supporting tools for developing agent-based systems is limited.
This could raise the threshold for naı̈ve programmers or software engineers to gain
familiarity. It can also increase development costs, since it can consume more re-
sources and time in building agent-oriented systems. The other reason for the in-
creasing number of SOA applications and their popularity is due to the fact that
commercial tools and software platforms available for developing service-oriented
applications can be acquired without difficulty. So, developers can utilise these tools
to gain sufficient assistance to facilitate the software development.

The barriers to attracting more investment and participation from industry in
agent-based system development platforms need to be removed. One possible ap-
proach is to introduce agent features such as deliberation, intelligence, and decision
making etc. to the SOA compliant development tools, so that software development
time and resources can be reduced. The service-oriented applications produced can
then exploit the advantages of combining agents and service technologies to achieve
business objectives.

1.6 Agents and SOA Standards

In the following subsections we review the main standards for agents and services.

1 Introduction 11

1.6.1 Foundation for Intelligent Physical Agents (FIPA)

Unlike the web services architecture, software agents only have a small number of
standard specifications. The most widely accepted specifications e.g. agent manage-
ment and the Agent Communication Language have been developed by FIPA, the
Foundation for Intelligent Physical Agents (http://www.fipa.org/), which includes
several academic institutions and industrial partners. The aim of the organisation
is to develop and agree standards for heterogeneous interacting agents and agent-
based systems by defining a full set of standards for both implementing systems
within which agents could execute (agent platforms) and for how agents themselves
should communicate and interact. FIPA was founded in 1996, but despite its popu-
larity in the late 1990s and early 2000s, it never succeeded in gaining the commer-
cial support which was originally envisaged. In 2005, an IEEE standards committee
was set up to take over from FIPA. AUML, the Agent Unified Modelling Language
(http://www.auml.org/) is a standardised modelling language proposed by FIPA and
OMG to capture agent concepts and their interactions.

1.6.2 SOA and Web Service Architecture Standards

Four main standards organisations, W3C, OASIS, OMG, and Open Group, have had
extensive involvement in specifying SOAs and web services. The working groups
in W3C mainly focus on web service family standards, which have been impor-
tant specifications in building enabling technologies for the realisation of SOAs.
Open Standards working groups, technical committees, and special interest groups
in OASIS, OMG and Open Group also have significant interest in specifying SOA
standards. The following is an illustrative list of the standards that have been pro-
posed.

• The OASIS Reference Model for SOA [23].
• The Open Group SOA Ontology [26].
• The OMG SOA Modeling Language (OMG SoaML) [25].
• The OASIS Reference Architecture for SOA Foundation [24].
• The Open Group SOA Reference Architecture [29].
• The Open Group Service Integration Maturity Model (OSIMM) [28].
• The Open Group SOA Governance Framework [27].

The SOA reference model and ontology are specified to understand and cap-
ture the core concepts within a domain and describe the relationships between these
core concepts. OMG SoaML, which is based on UML with extended notations, is
designed to have enabling capabilities in service modelling. The Open Group SOA
Reference Architecture and the OASIS Reference Architecture for SOA Foundation
both intend to provide guidelines to support other architectures in the standards, and
assist architects in the modelling and decision making processes [19]. The Open
Group Service Integration Maturity Model (OSIMM) is to assist organisations that

12 Kuo-Ming Chao and Nathan Griffiths

adopt SOA solutions in their businesses in assessing the maturity within a complete
SOA migration path. The SOA Governance Framework assumes that an organisa-
tion already has its own governance model in place. The framework provides mod-
els to help organisations define and customise their own focused SOA Governance
model.

The variety of standard specifications associated with web services, “WS-*”, re-
flect services captured as different perspectives of the same subject for different pur-
poses and applications. Various standards bodies and industry companies have par-
ticipated in proposing and specifying standards to realise SOA applications. These
provide SOA developers with various choices to facilitate service interoperability
at various levels and aspects. These standards, however, with varying degrees of
maturity may complement, contradict or compete with each other. For example,
IBM and Microsoft adopt WS-* for transaction specification, but IBM proposes the
WS-BPEL extension for people, which Microsoft did not contribute to or adopt.
In addition, most WS-* specifications are still evolving, and so a change of the
specifications is likely take place in the future. Figure 1.1 shows an example of the
WS-Policy and its relation to other specifications which utilise the specifications to
define their own related policy [11].

WS-Metadata
Exchange

WS-Policy

WS-Reliable
Messaging

WS
Addressing

Web Service

SOAP
Message

WS-Security
Can specify delivery

assurance for
sequences defined by

Can be used to retrieve
policies defined by

Can specify
policy assurances

for endpoint
defined by

Provides a policy assertion
framework for

Can define requirement
for requestCan express security

requirements and other
rules for

Fig. 1.1 WS-policy with other WS specifications

SOA and WS-Architecture have gained great support from industry, standard or-
ganisations, and academia, and a number of interest groups have been formed to
propose and specify open standards. These standards offer guidelines in their re-
spective areas to facilitate system interoperability for service-oriented applications
built upon different development platforms to allow them to interact, if they com-
ply with the standards. Some of these are designed to support each other to bring
technological compatibility. In contrast, the agent community has a relatively small
number of standardised specifications. Interoperability among heterogeneous agents
using different technologies can be an issue. For example, two agents may try and

1 Introduction 13

cooperate, but they may adopt different coordination approaches. These two agents
fail to cooperate, due to the lack of a standardised coordination approach. The large
number of evolving standards for SOA and WS-*, however, might also be problem-
atic, since only large software vendors can afford to support all of these standards.
This could exclude small software vendors, as they may find it difficult to contribute
and participate. In addition, some of the specifications might prove too complex and
too detailed. The adoption of the full specifications becomes unnecessary for small
applications, as some of the features may not be required. Standards help to bridge
gaps between diverse technologies and help to advance the technology, but proof of
concept for these standards can be very costly. From the above, one might even try
to argue that standardisation can bring more harm than good. However, we do not
believe that this is the case, since standards make interoperability among distributed
systems possible. The benefits of the SOA and WS-family specifications have be-
come evident as the number of applications adopting these standards have increased
significantly. Some of the standards for SOAs might also be useful for agent-based
service-oriented applications, for example, if developers adopted the Gaia service
model to develop the agents functions.

1.7 Overview of Chapters

One of the key activities in service-oriented computing is service advertisement and
discovery, which allows service providers to make others aware of their service pro-
visions, and service consumers to locate their required services. Service providers
need to describe their service provision in such a way that it can be published in a
registry that is accessible to service consumers. A broker is typically the owner of
the registry to facilitate the searching and locating of services in order to identify
matches between service providers and consumers. In FIPA, the agent management
platform includes agent directory services which serve as white pages for agent reg-
istration, and service directory services which serve as yellow pages for agents to
register their services. Therefore, agents can use these directories to locate services
for their needs. In WS-architecture, UDDI is the mechanism for service providers
to advertise their services and for consumers to discover their required services.

Chapter 2 gives an overview of the existing architectures and technologies that
support service discovery and advertisement, and discusses related issues. The au-
thor‘s view is that current popular technologies for service discovery are evolved
from the various technologies for objects and components. The authors classify reg-
istry architectures into three different types, namely centralised, decentralised and
hybrid registries. Each architecture has its advantages and disadvantages, and so
the adoption of these architectures depends on the characteristics of the application.
Agents in a SOA can play different roles such as consumer, provider, and broker
etc. to perform various functions. A broker agent can be designed to carry out the
essential tasks to achieve effective service discovery and advertisement. In some
cases, multi-agent systems have been proposed for discovery, and so agents can

14 Kuo-Ming Chao and Nathan Griffiths

coordinate themselves to discover their required services. A number of agent-based
service discovery approaches are also reviewed and discussed in this chapter.

Services can be composed manually or automatically to meet design require-
ments. Automating the service composition process requires a software tool with
decision making capabilities to link the services together in a logical way, so that
the composite services can produce the desired functions. An agent with intelli-
gence and autonomy can play an important role to facilitate this process. Chapter
3 illustrates the use of agent technologies in automating the service composition
process. The proposed multi-agent based QoS-aware Service Composition solution
(MQSC) is a mechanism for dynamic service composition and is able to ensure end-
to-end QoS of composite services. The approach includes a number of agents such
as a Portal Agent (PA), Decision Agent (DA), Search Agent (SA), Registry Agent
(RA), Management Agent (MA) and Execution Agent (EA) playing different roles
in the system and working together as a team to compose the required services. Even
though the approach emphases the process of service composition, it is able to man-
age other stages of the composite service life cycle including discovery, selection,
deployment and execution. Three different types of agent are introduced in order to
support deployment, and a number of methods such as Ant theory and Graph theory
etc. have been utilised to realise service composition.

Workflow is one of the key elements in enabling services to work together. Two
well-known concepts in flows, orchestration and choreography, are abstract notions
that facilitate the interactions among services. They are useful in modelling work-
flow, but the realisation of workflow needs a concrete representation of workflow
and a suitable engine to process it. In Chapter 4, the authors distinguish between
these two concepts and propose an approach to allow them to complement each
other, so that the workflow modelled using these concepts can act consistently, col-
lectively and seamlessly. One of most popular web service based workflow lan-
guages, BPEL4WS (Business Process Execution Language for Web Services) pro-
vides the syntax and a set of operators for modelling workflow. With a suitable
engine the specified workflow can be executed accordingly and the relevant ser-
vices will be invoked. However, the engine and the specifications do not provide
facilities to cope with a change of services at runtime. The authors have proposed
an approach to tackle this issue. The authors also argue for the role that agents
can contribute to the realisation of flexible workflow by introducing two possible
approaches, bottom-up and top-down, in combination with the concept of chore-
ography to model the interactions between partners in a dynamic environment. In
addition, the authors are interested in the issues associated with unplanned situations
that have not been considered in the design of a workflow. This chapter gives a com-
prehensive survey on the concept of flexible workflow and uses a simple example to
illustrate the concepts and the related issues.

Services contain a set of interfaces to access the functions they provide. The
meanings of these interfaces and their provided functions can be misinterpreted by
consumers or providers due to a lack of semantic annotation [4]. The introduction
of Semantic Web services (SWS) aims to overcome the deficiency of initial web
service technologies in service discovery and selection. SWS are a technology with

1 Introduction 15

sufficient facilities for annotating web services and reasoning over annotations in or-
der to automate the process of service discovery and selection. Chapter 5 introduces
the most prominent frameworks for Semantic Web services that have been adopted
by the research and industry communities. OWL-S (Web Ontology Language-S)
defines an upper ontology that consists of three elements (service profile, service
model and service grounding) for annotating web services with OWL semantics.
The Web Service Modelling Ontology (WSMO) is proposed to provide a compre-
hensive framework that can semantically enable SOA technologies. The Semantic
Web Services Framework (SWSF) introduces a formal process language to improve
insufficient specification models and a language for the Service Model in OWL-S.
WSDL-S and Semantic Annotations for WSDL and XML Schema (SAWSDL) both
extend WSDL specifications with extra XML tags to allow XML data types, as well
as the messages and operations to be represented in a systematic way. SAWSDL in-
cludes additional tags that reference a domain ontology to WSDL documents. These
technologies can be very useful in enabling agents to automate the process at differ-
ent stages in the SOA development life cycle and to manage services at runtime.

Chapter 6 focuses on investigating various issues relating to system faults and
dependability in service-oriented computing, and proposes possible solutions. A
service is a software component and often exists as a group either virtually or physi-
cally, and so faults occurring in one of these components at any basic SOA step have
knock-on effects on others. The author regards these steps as publishing, discovery,
composition, binding and execution. Failures in each step can be further classified
into different types of faults in order to assist in the design of an appropriate de-
pendability mechanism. The choice of type of dependability mechanism is based
on the types of faults, characteristics of applications, and the state mechanism in
services. Fault avoidance, fault removal, fault forecasting, and fault tolerance are all
mechanisms for developing a dependable system, but they are not all applicable to
each step in SOA development. Fault forecasting may not be easy to conduct, when
faults appear rarely in the system. In this case, artificial faults have to be introduced
so that the impact of bugs on the system can be assessed. The criteria for service
selection are not only based on functional requirements, but also non-functional
properties. Dependability can be an important criterion for the non-functional re-
quirements. There are a number of attributes and mechanisms that can be used to
measure dependability properties. Evaluation of the dependability attributes of a
service is usually achieved by performing fault injection experiments. The chapter
also uses a case study to illustrate fault identification and removal in a web-based
dependable system.

Service selection involves a process that measures service properties against the
requirements from users. Service selection can be considered as a decision making
problem, as it often needs to take multiple attributes, entries, and their relationships
into account in order to form a model that can be used for assessment. In this as-
pect, the methods for service selection can mainly be divided into two categories:
Multiple Attribute Decision Making (MADM) and mathematical programming. The
criteria for service selection can be divided into functional and non-functional re-
quirements. Non-functional requirements normally refer to a set of attributes that

16 Kuo-Ming Chao and Nathan Griffiths

are related to quality of service which can be represented in crisp and fuzzy forms
by users to express their subjective opinions and imprecise preferences over these
attributes. The QoS profile of a service and its associated values should be derived
from group consensus in order to minimise the subjectivity, if there is any. The au-
thors of Chapter 7 propose a quality of services aware web service selection model
based on fuzzy linear programming, to identify the differences on service alterna-
tives, and assist service providers and consumers in selecting the most suitable ser-
vices with consideration of their expectations and preferences. The proposed model
is able to handle vague preferences or linguistic opinions for QoS attributes ex-
pressed by service consumers and providers in the process of selecting web services.
It can also explore the weightings of QoS attributes in order to generate optimal so-
lutions. The approach is capable of realistically gaining a consensual ranking on
web service alternatives. Two examples are given to illustrate the proposed model.

Trust and reputation can be considered as another set of criteria for service selec-
tion. Trust and reputation have become one of the common approaches for support-
ing the management of interactions among agents. The authors of Chapter 8 focus
on a review of existing models in trust and reputation, and their applications to agent
and service-oriented computing. These models can be classified based on three dif-
ferent views namely socio-cognitive, computational, and reputational. The socio-
cognitive based models utilise the mental states of an agent to predict and assess
the degree of trustworthiness of other agents or a society. The computational based
approaches use decision-making or game-theoretical methods to model trust. The
trust values in this category are represented in numerical values, and so mathemat-
ical techniques such as probability modelling, numerical processing and strategic
solutions can be applicable. Reputation can be used as a complementary measure-
ment to derive trustworthiness. One agent can evaluate another’s trustworthiness,
even though they have never had direct interactions. The authors have carried out a
comprehensive review and analysis on these existing approaches and report the re-
sults in this chapter. The authors use peer-to-peer architectures and grid computing
to demonstrate the benefits that trust and reputation models can bring.

Chapter 9 reports another aspect of QoS for service selection. It focuses on the
application of service switching policies to model, measure and improve service
performance in multi-tier internet services. Service performance is one of the crite-
ria in QoS that can be explicitly measured, and so performance analysis becomes an
important method for effective service evaluation. The available switching policies
include proportional and bottleneck-aware switching policies. The adoption of the
policy depends on their revenue generation which is derived from a revenue func-
tion with a given set of parameters and input values. Two approaches, proactive
switching and reactive switching, can be used to choose switching policy. Proactive
switching is used to predict the workload and allocate appropriate resources to main-
tain performance before the performance degrades. Reactive switching is based on
the data generated at runtime to make appropriate responses. These approaches have
pros and cons, as it depends on the nature of the environment. An agent with built-in
knowledge can make appropriate decisions to maximise the revenue (utility). The

1 Introduction 17

authors have conducted a comprehensive evaluation on a case study to demonstrate
the benefits of performance analysis to service selection.

Finally, Chapter 10 includes a number of research directions proposed by differ-
ent researchers for future work in area of agent-based service-oriented computing.

1.8 Conclusion

Software agents and services have become important paradigms for modelling dis-
tributed systems. Both have a number of similar properties, but there are also some
differences. Research on software agent technologies evolved from distributed AI
with some influence from distributed systems, and has focused on improving reason-
ing capabilities and the design of coordination mechanisms for loosely coupled sys-
tems. Researchers and developers on service-oriented architectures learned lessons
from CORBA, and have put great emphasis on standardising the architectures and
the related specifications in order to resolve possible differences between the dis-
tributed systems (services). Decision-making capabilities have not been the main
issue for study in the area. As the technologies for SOA are becoming mature, the
demand on autonomous services will likely increase. In this case, agent technolo-
gies can play an important role for services. Agent communities can benefit from the
thriving applications of service-oriented architectures, as SOAs can possibly support
their development. A number of authors from the agent and service communities
were invited to share their thoughts and research results with us, and this book is the
result, which aims to help readers learn more about the current state-of-the-art and
likely future directions in this area.

Acknowledgements

We would like express our gratitude to Shah Nazaraf for his input.

References

1. A. Arsanjani. Service-oriented Modeling and Architecture. http://www.ibm.com/developer-
works/library/ws-soa-design1/, 2004.

2. T. Berners-Lee, J. Hendler and O. Lassila. The Semantic Web. Scientific American, May 2001.
3. J. Bradshaw. Introduction to Software Agents. In Software Agents, AAAI Press/The MIT

Press, 1997.
4. K. Breitman, M. A. Casanova and W. Truszkowski. Semantic Web: Concepts, Technologies

and Applications, 219–228, Springer, 2007.
5. D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris and D. Orchard. Web

Services Architecture. http://www.w3.org/TR/ws-arch/, 2005.
6. B. Chaib-draa and F. Dignum. Trends in Agent Communication Language. Computational

Intelligence, 2(5), 2002.

18 Kuo-Ming Chao and Nathan Griffiths

7. J.-Y. Chung and K.-M. Chao. A view on service-oriented architecture. Service Oriented
Computing and Applications, Springer, 1(2), 93–95, 2007.

8. M. Colan. Service-Oriented Architecture expands the vision of Web ser-
vices, Part 1. http://www.ibm.com/developerworks/webservices/library/ws-
soaintro.html?S TACT=105AGX04&S CMP=LP#N10053, 2004.

9. G. Coulouris, J. Dollimore and T. Kindberg. Distributed Systems: Concepts and Design,
Addison-Wesley, 2000.

10. M. R. Cutkosky, R. S. Engelmore, R. E. Fikes, M. R. Genesereth, T. R. Gruber, W. S. Mark, J.
M. Tenenbaum and J. C. Weber. PACT: An Experiment in Integrating Concurrent Engineering
Systems. IEEE Computer, 26(1), 28–37, 1993.

11. T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall, 2005.
12. O. Etzioni and D. S. Weld. Intelligent agents on the Internet: Fact, fiction, and forecast. IEEE

Expert, 10(4), 44–49, 1995.
13. T. Finin, J. Weber, G. Wiederhold, M. Gensereth, R. Fritzzon, D. McKay, J. McGuire, R,

Pelavin, S, Shapiro and C. Beck. DRAFT Specification of the KQML Agent-Communication
Language, 1993.

14. S. Franklin and A. Graesser. Is It an Agent or Just a Program? A Taxonomy for Autonomous
Agents. In Proceedings of the Third International Workshop on Agent Theories, Architectures,
and Languages, Springer-Verlag, 1996.

15. H. Haas and A. Brown. Web Services Glossary. http://www.w3.org/TR/ws-gloss/, 2004.
16. B. Henderson-Sellers and P. Giorgini. Agent-Oriented Methodologies. Idea Group Publishing,

2005.
17. R. High, S. Kinder and S. Graham. IBM’s SOA Foundation: An Architectural Introduction

and Overview. http://download.boulder.ibm.com/ibmdl/pub/software/dw/webservices/ws-
soa-whitepaper.pdf, 2005.

18. IBM. Getting Started with WebSphere Enterprise Service Bus V6.
http://www.redbooks.ibm.com/abstracts/sg247212.html, 2006.

19. H. Kreger and J. Estefan. Navigating the SOA Open Standards Landscape around Architec-
ture. https://www.opengroup.org/projects/soa/uploads/40/20044/W096.pdf, 2009.

20. D. B. Lange and O. Mitsuru. Programming and Deploying Java Mobile Agents Aglets, 1st
edition, Addison-Wesley, 1998

21. H. Nwana. Software agents: An overview. The Knowledge Engineering Review, 11(3), 205–
244, 1996.

22. H. S. Nwana, D. T. Ndumu, L. C. Lee and J. C. Collis. ZEUS: A toolkit and approach for
building distributed multi-agent systems. In Proceedings of the third annual conference on
Autonomous Agents, 360–361, 1999.

23. OASIS. OASIS Reference Model for SOA, Version 1.0. OASIS Standard, docs.oasis-
open.org/soa-rm/v1.0/soa-rm.pdf, 2006.

24. OASIS. OASIS Reference Architecture for SOA Foundation, Version 1.0. OASIS Public
Review Draft 1, docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-pr-01.pdf, 2008.

25. OMG. OMG SOA Modeling Language (OMG SoaML) Specification for the UML Profile and
Metamodel for Services (UPMS), Revised Submission. www.omg.org/cgi-bin/doc?ad/08-11-
01, 2008.

26. The Open Group. The Open Group SOA Ontology, Draft Technical Standard.
www.opengroup.org/projects/soa-ontology, 2009.

27. The Open Group. The Open Group SOA Governance Framework, Draft Technical Standard.
www.opengroup.org/projects/soa-governance, 2009.

28. The Open Group. The Open Group Service Integration Maturity Model (OSIMM), Draft
Technical Standard. www.opengroup.org/projects/osimm, 2009.

29. The Open Group. The Open Group SOA Reference Architecture, Draft Technical Standard.
www.opengroup.org/projects/soa-ref-arch, 2009.

30. M. Rao and P. Georgeff. BDI-agents: From Theory to Practice. In Proceedings of the First
International Conference on Multiagent Systems (ICMAS 95), 1995.

31. M. Rao and P. Georgeff. Formal models and decision procedures for multi-agent systems.
Technical Note, AAII. 1995.

1 Introduction 19

32. A. Sahai, A. Durante and V. Machiraju. Towards Automated SLA Management for Web Ser-
vice. http://www.hpl.hp.com/techreports/2001/HPL-2001-310R1.pdf, HPL-2001-310, 2001.

33. J. Searle. Speech Acts. Cambridge University Press, 1969.
34. Y. Shoham. An Overview of Agent-oriented Programming. In Software Agents, AAAI Press,

1997.
35. D. Sprott and L. Wilkes. Understanding Service-Oriented Architecture. Microsoft Architect

Journal, http://msdn.microsoft.com/en-us/library/aa480021.aspx, 2004.
36. M. Wooldridge. Introduction to Multiagent Systems. Wiley, 2009.
37. M. Wooldridge. Reasoning about Rational Agents. The MIT Press, 2000.
38. M. Wooldridge, N.R Jennings and D. Kinny. The Gaia Methodology for Agent-Oriented

Analysis and Design. Journal of Autonomous and MultiAgent Systems, 3(3), 285–312, 2000.

Chapter 2
Service Advertisement and Discovery

Shanshan Yang and Mike Joy

Abstract Service Advertisement and Discovery is a fundamental process in service
oriented computing, which also provides a precondition for other processes such
as service selection and composition (these will be covered in detail in later chap-
ters). This chapter provides an introductory overview of the concepts, standards and
current developments related to Service Advertisement and Discovery, summarised
from the perspectives of system architecture, data structures, system requirements
and Web Services. The incorporation of agent-based technology into Service Ad-
vertisement and Discovery is covered, and the chapter concludes with a discussion
of future research challenges in this area.

2.1 Introduction to Service Advertisement and Discovery

A service is “a software system designed to support interoperable machine-to-
machine interaction over a network” [73]. The purpose of a service is to “provide
some functionality on behalf of its owner—a person or organisation, such as a busi-
ness or an individual” [73]. The service provider is the entity that provides a particu-
lar service, and the service requester (or consumer) is the entity that wishes to make
use of a provider’s service. The goal of finding an appropriate service (the process
of performing discovery) requires the service requester and provider to “become
known to each other”, and it is necessary to ensure that service descriptions are
published somewhere (in a registry) before that information is available to others.
This task is performed by another entity—a service broker [49].

Shanshan Yang
Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
e-mail: Shanshan.Yang@dcs.warwick.ac.uk

Mike Joy
Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
e-mail: M.S.Joy@warwick.ac.uk

N. Griffiths, K.-M. Chao (eds.), Agent-Based Service-Oriented Computing, 21
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-041-0 2, c© Springer-Verlag London Limited 2010

22 Shanshan Yang and Mike Joy

Requestor
Service

Provider
Service

Broker
Service

Ser
vi

ce
 c
om

po
si
tio

n Service A
dvertisem

ent

Service Discovery

Fig. 2.1 Service oriented architecture

Most authors consider that a basic service oriented architecture consists of three
different entities: services providers and requesters and a service broker (reg-
istry) [13,31,48,53,67], and the relationships between these entities are illustrated in
Figure 2.1. Dustdar and Treiber [31] identify the role of the service provider as one
of providing descriptions, and that of the broker as publishing them. The requester
contacts a broker in order to locate a suitable service to fulfil a given task, and
when an appropriate service has been identified, the broker will additionally pro-
vide information about how that service can be invoked. The broker uses a service
registry (repository) to store the necessary information about services, allowing both
user searches and the publication of service descriptions. Searching for and locat-
ing services, in order to identify matches between service requesters and providers,
is regarded as a key issue, and service brokers (or registries) play a major role in
this task. Thus the role of the service broker and its registry is central to the current
model of service oriented computing [28].

Discovery

Composition

Selection

Fig. 2.2 Service execution workflow

2 Service Advertisement and Discovery 23

Singh and Huhns’ [75] summary (Figure 2.2) of the services execution workflow
identifies the activity of service discovery as the first step, followed by the other pro-
cesses including service selection and composition. Some or all of these steps can
be performed offline or at runtime. Service discovery deals with finding services
that meet a specified description, whereas selection deals with “choosing appropri-
ate services from among those that are discovered for the given description” [80].
Service composition deals with combining small services into larger ones to meet a
specified goal [8, 10]. As Wu [93] remarks, “As an essential SOA activity, [service
discovery] paves the way for conducting further important SOA activities such as
service sharing, reusing and composing in a dynamically changing environment.”
In this chapter, we consider the first phase—service advertisement and discovery—
since in order to discover the services needed by the requester, it is necessary to
specify and publish the services effectively first, which means that service adver-
tisement provides a essential precondition for service discovery. We focus in par-
ticular on web services, that use web technologies to implement a service-oriented
architecture.

There are no generally accepted formal definitions of either Service Advertise-
ment or Discovery (or synonymous phrases), and different approaches to describing
them have been employed. For example, Yu et al. [95] define service publication as
“to make the service description available in the registry so that the service client can
find it” and service lookup as to “query the registry for a certain type of service and
then retrieve the service description.” The service description is identified as con-
taining both syntactic information (such as the data formats and protocols used by
the services) and semantic information (relating to the domain in which the services
are employed together with generic issues such as service functionality and quality
of service). Vitvar [87] describes discovery as “tasks for identifying and locating
services which can achieve a requester’s goal”, whereas Singh and Huhns [75] view
discovery as “the act of locating a machine-processable description of a web service
that may have been previously known and that meets certain functional criteria”.

Advertising service information is normally considered at the same time as ser-
vice discovery. Current research in service advertisement focuses on how web ser-
vices are described, or specified, or published from a technical view, such as what
standards people should adopt, or what architecture could be used effectively.

A number of researchers [12,55,58, 69] also suggest that agent technologies can
be fitted into service oriented architectures, to improve the effectiveness of the ser-
vice advertisement and discovery process. Agents can be members of multi-agent
environments acting not only as brokers, but also as service providers and con-
sumers. Details of agent based approaches will be covered after we have introduced
the fundamental technologies and current developments of service advertisement
and discovery.

24 Shanshan Yang and Mike Joy

2.2 Basic Technologies

It is commonly agreed that three basic standards are currently in use for web service
advertisement and discovery [17, 20, 31, 37, 48], each with its own specific role.

• SOAP: Communication—how services can be used
• WSDL: Description—how services can be published
• UDDI: Discovery—how services can be discovered

Fundamental to the efficacy of these standards is the use of a common commu-
nications language [75], and XML is used by each. The communications protocol
is defined by SOAP, and WSDL includes support for passing information about
functions supported by services, including their names, parameters and result types.
UDDI specifies the contents of the registry, enabling users to search for services
and find sufficient information for their deployment—an essential prerequisite if
web services are to be meaningful. These standards have been developed by organ-
isations including the World Wide Web Consortium (W3C) [73], OASIS [61] and
the Open Group [64] since 2000 with the latest versions published in 2007.

2.2.1 SOAP

In the context of web services, SOAP (Simple Object Access Protocol) is regarded
as the standard message protocol for exchanging XML data over the Internet.
SOAP is a stateless paradigm which enables complex interactions between services
through request/response exchanges and other unidirectional messages. However,
SOAP lacks support for the transmission of semantic data, such as routing and fire-
wall traversal [25].

A SOAP message is essentially an XML element with two XML child elements,
a head and a body. These contain descriptions of the message content and how to
process it, encoding rules (for application-specific data types), and the representa-
tions of remote procedure calls and responses [86]. This information is then wrapped
into an envelope, and is bound to a transport protocol for the purposes of the actual
information exchange [78]. The following is an example of a SOAP message for in-
voking a web service for getting a stock price, which is cited from the W3C School
website [88]:

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap=

"http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle=

"http://www.w3.org/2001/12/soap-encoding">
<soap:Body xmlns:m=
"http://www.example.org/stock">

<m:GetStockPrice>
<m:StockName>IBM</m:StockName>

</m:GetStockPrice>
</soap:Body>

</soap:Envelope>

2 Service Advertisement and Discovery 25

2.2.2 WSDL

WSDL (Web Service Description Language) formally provides a model for describ-
ing interfaces for web services [75, 86, 89]. A WSDL description specifies the loca-
tion of the service, the operations for invoking and consuming the web service, and
supports binding for defining message formats and protocol details. The following
is a typical structure of a WSDL document, which is cited from W3C School [88]:

<definitions>
<types>definition of types</types>
<message>definition of a message</message>
<portType>
<operation>definition of a operation</operation>

</portType>
<binding>definition of a binding</binding>
<service>
<port>definition of a port</port>

</service>
</definitions>

A typical WSDL document contains the following elements. The type element
specifies the complex data types for a message, which describe the data being com-
municated between the web service and the requester. A set of messages and their
directions (input or output) form the operations the service exposes. A set of op-
erations then forms a port type, for each of which the concrete protocol and data
format specifications are referred to as a binding. The association of a network ad-
dress with a binding defines a port, and a collection of ports defines a service. In a
single WSDL file multiple services can be described [92].

WSDL defines services as “collections of network endpoints or ports”. The ab-
stract definitions of messages and the endpoints/ports are then separated from their
concrete implementation, such as protocols and data formats, allowing for reuse of
those definitions [73].

2.2.3 UDDI

UDDI (Universal Description, Discovery and Integration) is a registry of web ser-
vice descriptions, allowing users (such as businesses) to publish descriptions of
themselves and their services (together with technical information about service
interfaces), and clients (such as customers) to identify appropriate service descrip-
tions and create bindings to them (using SOAP) [89, 96]. Wang [89] summarises a
UDDI registry as being “similar to a CORBA trader and can be considered as a DNS
service for business applications”. It serves as a generic data model for providing
detailed web service specifications including business entities, technical access in-
formation, natural language descriptions, keyword-based classification scheme and
relevant technical specifications [25].

The initial idea of maintaining a central registry for publicly available web ser-
vices by large vendors, such as IBM or Microsoft, has been abandoned because a

26 Shanshan Yang and Mike Joy

single repository can not meet all the needs for different specific SOA systems [96].
Version 3 of the UDDI specification is over 400 pages long and contains over 300
function calls. This complexity (for end users) has led to the closure of the public
UDDI Business registry and has hindered its widespread adoption, and has led to
speculation that future registries will be private [93]. As Chappell [21] remarks: “the
public registry UDDI is too complex for end users since UDDI specification is more
driven by its primary members than feedback from the real world end users”. How-
ever, Baresi and Miraz [6] also suggest that the central registry will continue to be
important since not all companies will have the facilities for servicing requests lo-
cally, and Wu [93] considers that “most private registries would focus on a specific,
closed domain”.

Both private and public registries follow the two principals of UDDI specifica-
tions relating to the composition, structure and operation of a registry—the infor-
mation provided about each service (including its encoding) and an API specifying
how to update the registry and how to make queries. The information encoded by
UDDI is of three possible types—white pages (names, contact information), yellow
pages (categories of information based on service types) and green pages (technical
data) [25, 92].

A recent development is UDDIe, an extension to UDDIe which incorporates ser-
vice leasing and replication. UDDIe includes the ability to search for services based
on blue pages (user defined properties associated with a service). Support for ser-
vice leases, by which a service is restricted to storage in the registry for a limited
period of time, enhances the dynamic capabilities of the registry [74].

2.3 Web Service Registry Architectures

This section covers how a web service registry supports and implements service
advertisement and discovery. Currently, a number of architectures for web service
advertisement and discovery have been developed, influenced by the architectures
of different service oriented systems, which can be viewed from both structural and
functional perspectives. However, the technology is still emerging, and components
still being developed include quality of service descriptions and interaction models.

The main structure difference between different architectures is about how the
registries are distributed, and three types of architectures have been proposed,
namely centralised, decentralised and hybrid.

2.3.1 Centralised Registries

In a centralised registry (such as UDDI), all web service registry entries are con-
tained within a single “well known” central entity used by each web service
provider, similar to a traditional client-server approach [22, 31, 39].

2 Service Advertisement and Discovery 27

However, there are limitations on this type of architecture. First of all, a cen-
tralised registry is not scalable—it can only support small scale systems. Simple
easy-to-use technologies such as UPnP, SLP and Jini [39] and the DS-1, Hawkeye
and RGMA approaches for grid systems [47] have been reported as examples of
small-scale centralised approaches which do not scale well. The second limitation
is that it is unsuitable for dynamic environments, and Chamri-Doundane et al. [39]
point out that frequent changes affect the system behaviour and its efficiency. The
third is that a centralised registry does not handle fault-tolerance well, there being
the possibility of a single point of failure [77].

Despite these limitations, several centralised approaches exist, and are effec-
tively applied in situations where scalability, dynamism and fault tolerance are not
paramount. Below, we introduce a selection of example centralised systems.

The ebXML (electronic business XML) standard defines a framework within
which businesses can co-operate. It is similar to UDDI, but is broader in scope, be-
ing able to store arbitrary data and specifying interrelated components for business
activities. Two interfaces are specified, LifeCycleManager (which handles the sub-
mission of new objects to the registry, the classification of existing objects and the
removal of obsolete objects) and QueryManager (which handles the processing of
client requests to locate web services using either SQL queries or filters) [33].

SLP (Service Location Protocol) is used by devices (such as printers) on a (lo-
cal) network to announce services. The centralised service repository is known as a
directory agent (DA), and service agents (SAs) and user agents (UAs) use the DA
to register and locate services respectively [42, 70].

Sun Microsystems’ Jini (now being developed by Apache as Apache River) is a
networked technology which allows Java software to be accessed using a centralised
service architecture. In addition to service information, lookup services store prox-
ies which enable code to be executed either locally or remotely, thus supporting
dynamic use of drivers at runtime [4].

The Salutation Consortium has created an open standard which is both a ser-
vice discovery and a session management protocol. The architecture is principally
targeted at device connectivity on local networks, and relies on devices communi-
cating with a centralised repository (the Salutation Manager) in a fully distributed
manner and using a message-passing paradigm. In a low-bandwidth wireless net-
work without fixed IP addresses, the large volume of control traffic generated is
problematic. The Consortium was disbanded in 2005 [71].

R-GMA (Relational Grid Monitoring Architecture) is based on a relational data
model, and uses a relational database to implement the centralised GMA reg-
istry [47].

2.3.2 Decentralised Registries

As opposed to centralised systems, the localisation of services in a decentralised
registry is completely distributed and diffused. This type of registry architecture

28 Shanshan Yang and Mike Joy

has been applied to different types of modern environments, including peer-to-peer
networks, mobile-ad-hoc-networks and Grids [39].

2.3.2.1 Peer-to-Peer Networks

In a Peer-to-Peer (P2P) network, each node is (in some sense) equivalent to every
other node. Applications rely on ad-hoc connections between nodes (peers) with-
out a centralised server, and the advantage lies in scalability, robustness, and ease
of deployment and maintenance. An example set of protocols that supports a P2P
architecture is Sun Microsystem’s JXTA, which includes features such as service
advertisement and messaging in addition to basic peer management [55]. Each ser-
vice provider has a local registry and performs the roles both of service provider and
of registry, but only for the period of time that the provider is connected to the P2P
network, thus limiting the lifespan of each registry entry and enabling a dynamic
registry structure with resource localisation and sharing [31, 39, 66].

A number of P2P approaches to web services exist. Schmidt and Parashar’s ar-
chitecture [72] uses distributed hash tables and an indexing system based on the
CHORD data lookup protocol. Web services are indexed using descriptive key-
words, and a dimension reducing indexing scheme is used. Dustdar and Treiber’s [32]
VISR (View based Integration of Web Service Registries) is a peer to peer archi-
tecture which combines multiple web service registries with transient web service
providers in a seamless integrated system. “Views” serve as an abstraction layer
which uses web service profiles as a global data model, and are supported by a sim-
ple grammar (View Description Language). The web service profiles allow extra
information to supplement the registry entries without affecting the original entries
themselves [32].

2.3.2.2 Mobile Ad-Hoc Networks

In a Mobile Ad-Hoc Network (MANET), cooperating autonomous mobile devices
acting as router nodes form a dynamic network infrastructure. Wireless technolo-
gies are usually employed, and the use of standard protocols and interfaces ensures
that the devices communicate effectively so that advertising and discovery is possi-
ble [35, 54, 59].

Tyan and Mahmoud [83] propose grouping mobile nodes into clusters, with one
device in each cluster acting as a gateway for routing purposes, using a location-
aware network layer routing protocol. The gateways also improve service discov-
ery performance by acting as directories, and a context-aware agent-based service
selection mechanism is included. This solution addresses issues of scalability and
context-awareness since complex graph algorithms are no longer needed to maintain
the clusters and support management of the network topology.

Carlos et al. [19] have developed a component-based service discovery frame-
work, which can be used in both fixed and ad hoc networks, and supports adaptive

2 Service Advertisement and Discovery 29

service discovery middleware. This approach enhances framework configurability
and minimises resource usage.

Talwar et al. [82] have developed a novel resource and service discovery mech-
anism for MANETs using RIMAs (Routing Intelligent Mobile Agents), which col-
lect and index information on service availabilities as well as network resource and
routing data. Each RIMA is associated with a node in the network, and each mobile
node is close to one or more RIMA nodes. Discovery agents are used by service
requesters to identify resources by using the indices contained in the RIMA nodes.
The mechanism has been tested by simulating MANETs with up to 800 nodes.

2.3.2.3 Grid Computing

Issarny et al. [50] characterise Grid computing as addressing “the creation of dis-
tributed communities that share resources such as storage space, sensors, software
application and data, by means of a persistent, standards-based service infrastruc-
ture”. Currently used principally by the scientific community as a high-performance
computing infrastructure, a Grid can support more general large-scale applications
requiring substantial data processing and computation. Grid computing often re-
quires secure resource sharing amongst multiple institutions, and this model does
not fit in well with the current Internet infrastructure [55].

Globus Toolkit (GT) is an open source set of libraries and programs that has been
developed over the last few years by the Globus Alliance consortium to support the
building of distributed system services and applications. It addresses the fundamen-
tal issues such as resource discovery, resource access, resource management, data
movement and security [36]. The architecture contains three sets of components:
a set of implementation services, a set of service containers, and a set of client li-
braries [40].

GISs (Grid Information Services) form a key component in many Grid architec-
tures, and S-Club is a mechanism which supports efficient service discovery on a
GIS mesh network. Using the existing CROWN (China Research and Development
environment Over Wide-area Network) GIS network, S-Club forms an overlay in
which services are clustered as “clubs”, each club providing services of a given
type. A given service may belong to multiple clubs, and a service requester will ini-
tially use the S-Club overlay to identify providers by searching appropriate clubs.
The overlay is constructed dynamically, and a minimum-spanning tree topology is
used in order to ensure that messages are transmitted efficiently. Experimental re-
sults show that the S-Club approach improves response times for searches as well
as reducing traffic overhead [47].

Bell et al. [9] propose an extension of the Grid framework to include semantic
services in a real-world commercial context—a “Business Grid”. An upper service
ontology is used to provide the semantic context, and web services taken from in-
vestment banks have been used to validate the approach.

Yu et al. [95] propose the Grid Market Directory (GMD), a registry which man-
ages the provision of services efficiently using a pricing mechanism. It is designed

30 Shanshan Yang and Mike Joy

to be applied to market-oriented Grids to “support an infrastructure that enables the
creation of a marketplace for meeting of providers and consumers”. GMD contains
two components: the portal manager and the query web service. The portal manager
covers the tasks of “provider registration, service publication and management, and
service browsing”, and the query web service allows clients such as resource bro-
kers to query the GMD and obtain resource information to identify those that satisfy
the user’s QoS requirements [95].

2.3.3 Hybrid Registries

In addition to pure centralised and decentralised architectures, some hybrid (fed-
erated) systems have been proposed, in which registry information is distributed
amongst multiple entities in a peer-to-peer manner, but access to the registry in-
formation is through dedicated “super peer” nodes (peer registries). Such systems
appear to users as centralised, since the use of peers is transparent and the user is
unaware of the distributed implementation. This approach allows for registries to
specialise in particular types of web service, although this benefit must be weighed
against the increased communication overhead [31, 94].

Gateway Gateway Gateway

Gateway

Distributed
Domain

Gateway

Domain
Centralized

Gateway

Open
Domain

P2P Discovery Domain

Fig. 2.3 Ghamri-Doudane’s service discovery architecture

Ghamri-Doudane et al. [39] present a purely unstructured service discovery ar-
chitecture containing components which include centralised, distributed and P2P
discovery domains. The intention is to integrate all existing service discovery
protocols but with a specific service gateway for each technology, as shown in
Figure 2.3 [39].

Verma et al. [86] present a scalable, high performance environment for web ser-
vice publication and discovery among multiple registries. Using an ontology-based
approach, registries are organised into domains, so that web services can be classi-
fied using those domains. A semantic approach to the publication and discovery of
web services is used, and it is claimed that this is appropriate for systems containing

2 Service Advertisement and Discovery 31

large numbers of registries. METEOR-S is an architecture which supports this en-
vironment and an implementation has been tested [86].

Papazoglou and Heuvel [67] (Figure 2.4) introduce the concept of service-
syndications, where related businesses form groups based on common interests, and
each group has its own UDDI peer registry.

RegistrySuper

Service Service Service Service Service Service

Registry

Syndication

Registry Registry

Syndication Syndication

Fig. 2.4 Papazoglou and Heuvel’s service discovery architecture

Caron’s unstructured peer-to-peer network architecture extends traditional Network-
Enabled Server (NES) by enabling tree-based service discovery which takes account
of the underlying network topology. The benefits claimed for this approach include
improved fault-tolerance and efficiency on wide-area networks [19].

2.4 Data Structures

Data on web services can include complex information, such as collaboration pro-
tocols and structured ontological information, in addition to more basic data such as
the service name and information about the service provider.

Perhaps the most commonly used data model is UDDI, which is hierarchically
structured and contains five data types defined using an XML schema [74]. The
tModel data type is used to represent information about a given service, including
a technical description of what the service does and how it does it, whilst the other
data types contain information about the service providers, the range of services of-
fered by each, and descriptions of the services on offer. Each entity in the model is
allocated a unique identifier (UUID), and classified according to a published taxon-
omy [89]. In versions 1 and 2 of UDDI, the following classification schemes were
used [95]:

• the North American Industry Classification System (NAICS),
• the Universal Standard Products and services Code System (UNSPSC), and
• the ISO Geographic taxonomy (ISO 3166).

32 Shanshan Yang and Mike Joy

The use of a taxonomy is seen as important in that it offers a structured frame-
work which facilitates searching for services. The UDDI model is composed of four
identity types, as the following diagram (Figure 2.5) illustrates [25]:

businessEntity: Describes a business or other

organization that typically

Describes a collection of related
Web services offered by an
organization described by a
businessEntity

businessService:

bindingTemplate: Describes the technical information
necessary to use a particular

category system.

a reusable concept, such as a Web service

provides Web services

web service.

tModel: Describes a ’technical model’ representing

type, a protocol used by web services, or a

Fig. 2.5 UDDI data model

The ebXML data model is broader in scope than UDDI, and in addition to ser-
vices it supports further data related to e-business. Data in an ebXML registry takes
the form of metadata about objects in the registry (including, but not restricted to,
web services) [33].

The Web Service Discovery Architecture (WSDA) is a modular architecture
which defines services, interfaces, operations and protocol bindings, based on indus-
try standards. WSDA has the advantage of flexibility, since the modular components
can be customised easily and adapted to support a range of behaviours [46].

The Web Services Inspection Language (WSIL) is a distributed approach to the
provision of data for service discovery, in contrast to the centralised model adopted
by UDDI. Each web service produces a WSIL XML file containing the necessary
data (which is similar to the data stored within UDDI), and that file is made accessi-
ble by (for example) publishing it using simple naming conventions on an advertised
web site [91].

2 Service Advertisement and Discovery 33

2.5 System Requirements

In this section, registry architectures are viewed from the angle of their common
functions and requirements from the users’ perspective. Interoperability and match-
making are the only two core requirements for service advertisement and discovery
systems, and the others are optional. As Doulkerdis [29] remarks: “Existing ser-
vice discovery mechanisms usually focus on exact or semantic matching of static
attributes”. Although each system is able to meet more that one requirement, no
single system meets them all. In the remainder of the section, the requirements are
defined, and systems that meet each requirement are discussed.

Interoperability means “the ability to exchange and use information between dif-
ferent heterogeneous web service registry environments” [31]. O’Brien et al. [62]
mention that “increased interoperability is the most prominent benefit of SOA”, and
Yu et al. [95] reinforce this opinion, arguing that, “[i]nteroperability is the core func-
tionality that web services endeavour to achieve”.

Matchmaking is “a mechanism by which service requesters can find potential
web services (providers) that have capabilities for meeting their specific require-
ments” [93], and is explicitly supported by models such as Garg’s System Template
approach [38] which seeks to match instances of related services into groups.

Scalability “defines how well a web service registry responds to increasing
load” [31]. An example of an architecture for which scalability has been a major
motivation is AtomServ [93], which uses standard web feed technologies (Atom
and RSS) accessible through ubiquitous application interfaces such as browsers.
The use of UPnP is another means of supporting scalability, such as has been used
in CSSD [7].

Fault tolerance is “the ability of a web service registry to continue normal op-
eration despite the presence of hardware or software faults” [31]. Service Address
Routing (SAR), which supports a “location-independent” distribution of services
across a network, is an example of a fault-tolerant mechanism which has been
applied successfully both to tightly-coupled networks and to a loosely-coupled
Grid [72].

Reliability means “the degree to which a web service registry is capable of main-
taining the service at a given service quality” [31]. This has been addressed, for
example, by an extension to Web Service Repository Builder (WSRB) architecture
in which a Web service Relevancy ranking Function (WsRF) is used, to modify the
service discovery process. WsRF uses QoS metrics, such as reputation and compli-
ance, together with relevancy rankings based on clients’ preferences, and the tech-
nique has been validated experimentally [1].

Security means “where necessary, communications are both encrypted and au-
thenticated” [26]. As part of the Ninja project, the Secure Service Discovery Service
(SSDS) supports a high level of security. SSDS provides clients with directory-style
access to services, with encrypted communication facilitated by per-session keys.
Individual components are allocated certificates which can be signed by clients and
by service providers, and the model then allows a client to identify services they
trust based on the levels of trust the client has in the signatories to the services’

34 Shanshan Yang and Mike Joy

certificates. Furthermore, SSDS supports signed messages (capabilities) which iden-
tify that a user has access to a set of services, thus restricting clients to those services
which the system has identified as appropriate and allowed [24, 44, 76].

Context awareness is the ability “to seamlessly adapt behaviour according to the
context within which the systems executes”. This involves sensing the environment
and adapting the behaviour of an application according to both the users’ profiles
and the available resources [50, 79].

CSSD is an example of a system which uses context (dynamically changing in-
formation about the services provided and the user, and the user’s environment as
provided by an external system) to inform the service discovery algorithm [7]. An-
other initiative has been the development of MobiShare—a cellular mobile resource
architecture—to include Context-Aware Service Directories (CASDs) within the ar-
chitecture’s Cell Administration Servers (CASs) [30].

Mobility refers to the support offered by an architecture for mobile (wireless) de-
vices. For example, the Siena architecture is implemented as an overlay on a GPRS
mobile network, uses a distributed publish/subscribe paradigm, and supports a vari-
ety of Internet applications and services [18, 23, 29].

It is perhaps useful at this point to note that all systems surveyed here address
the issues on interoperability and of matchmaking, most of those systems are also
scalable, and roughly half consider fault-tolerance to be an important feature. The
other issues are only addressed by few of the systems.

2.6 Advertisement and Discovery Services

A variety of common technologies are currently used by discovery services [85],
although Hoffert et al. [45] note that “while discovery services are fairly mature
and broadly applicable to today’s systems much R&D remains to support emerging
systems of ultra-large scale effectively, such as the Global Information Grid”. This
section discusses those technologies which can be considered mature.

The Common Object Request Broker Architecture (CORBA) is a technology
which allows objects, possibly created using different languages and implemented
on different platforms, to communicate across a network. The CORBA Naming
Service is a database containing bindings of names and associated objects, which
allows distributed objects to be located by name and accessed by clients—a “white
pages” technology. The CORBA Trading Service, in contrast, allows objects to be
located based on a requirements description rather than by name—a “yellow pages”
technology [63].

The Data Distribution Service (DDS) for Real-Time Systems has recently been
approved as an OMG standard. In contrast to the client/server approach, DDS adopts
a data-centric publish/subscribe (DCPS) model, grouping data into “topics” (sets
of related data-objects with a common data type), and allows the user to specify
Quality of Service parameters [27].

2 Service Advertisement and Discovery 35

The Jini Lookup Service (JLS) uses Java RMI (Remote Method Invocation) to
allow Java clients to discover services (Java objects or proxies) by specifying an
interface. This approach benefits from optimisation (such as bytecode and object
caching) available through RMI, but Hoffert et al. [45] note that “it can also have
undesirable side effects, such as increased latency and jitter when first transferring
the object”. Although Jini may superficially appear to be a Java version of CORBA,
the differences in approach and implementation are substantial [4, 51].

Low-level protocols are used by networks in support of service discovery. For
example, Simple Service Discovery Protocol (SSDP) is used by UPnP to allow
services (such as external devices and resources) to be identified by clients which
use those services. The Bluetooth Service Discovery Protocol (SDP) uses the Log-
ical Link Control and Adaptation Protocol (L2CAP) layer to initialise connections
for devices via the Logical Link Control and Adaptation Protocol (L2CAP) layer
within the short-range wireless network used by Bluetooth. Service Location Pro-
tocol (SLP) is a packet-oriented protocol which allows devices to locate services
across a LAN, without prior configuration, and is scalable to large networks. Three
agents are employed—a user agent which seeks appropriate services, a service agent
which provides information about available services, and an optional directory agent
which enhances the performance of the service agents by providing a central repos-
itory which stores the locations of the services [45].

JXTA is a collection of open-source XML-based protocols which supports a peer-
to-peer communication between networked devices and services via a network over-
lay. Low-bandwidth devices (edge peers), which may only be connected temporar-
ily, are treated differently to super peers, which co-ordinate other peers and facilitate
communication through firewalls and between subnets [52].

UDDI supports service discovery by registering service descriptions in the UDDI
Business Registry (UBR), which users can query to find either a given provider or
the category of service [84].

Peer-to-peer (P2P) architectures—perhaps most commonly used for file-sharing
and MP3 downloads rather than for more general resources—can also support dis-
tributed service provision. Gnutella (and its fork Gnutella2) is a P2P resource shar-
ing network which—like products such as Bittorrent—is typically used to exchange
files, and uses a network overlay scheme together with a number of optimisation
techniques. These include QRP (Query Routing Protocol), which uses a hash ta-
ble to prevent queries being forwarded to inappropriate network nodes, and DQ
(Dynamic Querying) which caps the number of results returned by a search and so
reduces network traffic [41]. Napster is an architecture which, unlike Gnutella, uses
a centralised registry in addition to using network nodes as resource servers, so that
the registry can direct traffic to an appropriate server [57].

36 Shanshan Yang and Mike Joy

2.7 Agents in Service Advertisement and Discovery

The technologies and approaches discussed in this chapter present service adver-
tisement and discovery as typically decentralised and asynchronous activities. The
software components which implement and support them have attributes—such as
autonomy and adaptivity—which are characteristics of an agent-based approach,
suggesting that the incorporation of agent technologies into service oriented archi-
tectures may improve the effectiveness of the process [15,65]. Singh [75] notes that:

“Typical agent architectures have many of the same features as service oriented architec-
tures. Agent architectures provide service directories, where agents advertise their distinct
functionalities and where other agents search to locate the agents in order to request those
functionalities.”

Luck [55] also remarks:

“It is natural to view large systems in terms of the services they offer, and consequently
in terms of the entities or agents providing or consuming services. In this view agents act
on behalf of service owners, managing across to services, and ensuring that contracts are
fulfilled. They also act on behalf of service consumers, locating services, agreeing contracts,
and receiving and presenting results.”

2.7.1 Agents in Service Oriented Computing

In service oriented systems, an agent can assume a role such as that of service
provider, consumer (user) or broker. The tasks a broker agent would be responsi-
ble for might include:

• identifying and locating appropriate service agents;
• implementing directory services;
• managing namespace services;
• storing, forwarding and delivering messages;
• managing communication between the other agents, databases and application

programs.

Singh and Huhns [75] advocate a generic agent-based service-oriented system
architecture containing agent types, as illustrated in Figure 2.6. Of these, directory
and broker agents and resource agents perform the tasks of service advertisement
and discovery. They claim that “[b]rokers simplify the configuration of multi-agent
systems”, and note that a broker’s knowledge about other agents within a system
allows it to identify and negotiate with potential agents which may be able to of-
fer a desired service. Resource agents provide access to information based services,
and user agents can behave as “an intermediary between users and information sys-
tems” [12, 58, 69, 75].

2 Service Advertisement and Discovery 37

Structured Data

Unstructured

Data

Directory and Broker

Agents

Database Resource

Agents

User Agents

Ontology Agent

Manager Agents

Execution or Data

Internet Data Agents

Application Programs

Service Advertisement

and Discovery

Fig. 2.6 Singh and Huhns’ agent based service oriented architecture

2.7.2 Development of Agents in Service Advertisement
and Discovery

The model offered by Singh and Huhns above is generic, and serves as a useful
starting point for exploring other approaches.

Service
Discovery
Agent

Matchmaking
 Agent

 Service Service

Agent
Execution

Personal
Agent

Service

Agent
Composition

Directory
Service

Applications

Service
Coordination
Layer

Layer
Networking

Fig. 2.7 CASCOM: Agent based service oriented architecture

38 Shanshan Yang and Mike Joy

The CASCOM project [14] focuses on semantic service coordination in intel-
ligent agent-based peer-to-peer networks (IP2P). An abstract architecture has been
developed (see Figure 2.7) which within the central Service Coordination Layer uses
Service Discovery Agents (SDAs) and Service Matchmaking Agents (SMAs) to
handle the semantic aspects of service discovery, together with Service Composition
Agents (SCAs) and Service Execution Agents (SEAs) for coordination purposes.
Personal Agents (PAs) handle user interaction, a Directory Services (DS) facility
in the Networking Layer handles low-level service lookup, and two subsystems—
Security and Privacy, and Context—provide the remaining functional support not
handled by the other components. The CASCOM approach has been prototyped
in the field of healthcare business, where its role based semantic service discovery
approach provides a novel mechanism to support (for example) travellers requiring
complex emergency medical and logistical support [14].

Ratsimor et al. [68] note that directory-based service discovery mechanisms do
not work well in ad-hoc (especially mobile) environments. In response, Allia has
been developed as a peer-to-peer caching based and policy driven agent service
discovery framework, in which individual agents form alliances. An alliance (of
a node) is a set of local agent nodes in the network whose service information is
cached by that node. A member of an alliance is aware of the other agents in that al-
liance but is not aware of which alliances it is a member of. As the network changes
in an ad-hoc manner, so do the alliances which have been set up, based on the local
topology in the vicinity of a given node, and on the service advertisements that node
has received. The dynamic nature of this approach is claimed to be effective in sup-
porting agent-service discovery in dynamically changing ad-hoc environments. It
has been implemented as an extension of the LEAP Agent Platform using Bluetooth
as the network communications technology, and its performance has been evaluated
in a GlomoSim simulator.

The proximity of agents in ad-hoc networks has also motivated work by Campo
et al. [16], who proposed a Multi-Agent System for use in pervasive ad-hoc envi-
ronments. Their system allows agents running on different devices to share services
if those devices are close together on the network, and uses a Service Discovery
Agent which supports the communication of service ability information between
different agents in the network. Middleware supporting this architecture includes
the Pervasive Discovery Protocol (PDP), which is fully distributed, supporting ser-
vice discovery via both push and pull mechanisms. The associated Generic Service
Description Language (GSDL) is an XML-based markup language tailored to hier-
archical service descriptions in the context of pervasive environments [16].

The A4 (Agile Architecture and Autonomous Agents) management system for
grid computing is a distributed software system which uses federating agents to
provide services to a large-scale, dynamic, multi-agent system. A4 contains three
models—an hierarchical model (a method for organising large numbers of agents),
which is supported by a discovery model (for the locating of agent services) and
a coordination model (for organising services to provide more complex services).
The hierarchical model is illustrated in Figure 2.8. At the top of the hierarchy is a
single broker agent, and each sub-level contains a single coordinator agent together

2 Service Advertisement and Discovery 39

with individual agents and further sub-levels. The topology of the network is dy-
namic, and each agent can act as a router facilitating communication between agent
requesters and service providers. Each agent’s service information can be advertised
either up or down the hierarchy, and service discovery is likewise facilitated by the
topology of the hierarchy. As implemented, agents include the functionality of the
PACE performance prediction toolset, allowing efficiency issues for such a system
to be investigated [90].

Fig. 2.8 A4: Agent based
service oriented architecture

 Agent

Broker

 Agent

 Agent

 Agent
 Agent

Coordinator

Coordinator

A similar architectural approach has been adopted by the Mobile Service Man-
agement Architecture based on Mobile Agent (MA-MSMA), which uses an hierar-
chical tree-like structure populated by identical mobile agents, each of which can be
both a provider and a requester of Grid services. Agents forming internal nodes of
the tree adopt the role of broker or lookup agent [43].

The Southampton agent Framework for Agent Research (SoFAR) project shows
that the “agent concept can be closely aligned with a web service, in that an agent
can be described as a web service and discovered using a standard mechanism
UDDI”. Using WSDL gives an agent the ability to describe and advertise their ca-
pabilities. The use of ontologies as a semantic enhancement to WSDL and UDDI
enables services to be discovered and invoked by software through common termi-
nology and shared meanings. Avila-Rosas [5] notes that “this is a vital property in
an open system such as the Grid”.

The Software Agent-Based Groupware using E-services (SAGE) project “incor-
porates the use of intelligent agents to integrate human users with web services”.
The approach taken by SAGE is to identify a (human) user’s operational context,
and for each agent in the system to learn the rule-based preferences for that user
based on that contextual information. This allows for targeting of relevant web ser-
vices to be identified by the system and presented to the user [12].

Matchmaking and brokering are multi-agent coordination mechanisms for web
services. Sycara et al. [81] have used novel extensions to the Web Ontology

40 Shanshan Yang and Mike Joy

Language for Semantic Web Services (OWL-S) and to its process model to imple-
ment a broker which both provides discovery services and mediates between agents
and web services. They suggest agents might subcontract, by finding and interacting
with a provider who can solve a goal. The problems with this approach are similar
to those associated with brokering, their current research concerns automatic multi-
agent interaction and automatic Web service composition [81].

The Agent Approach for Service Discovery and Utilisation (AASDU) (Figure
2.9) is a flexible and scalable multi-agent system which allows dynamic insertion
and deletion of services and lightweight autonomous agents. The approach is un-
derpinned by web standards (including UDDI, SOAP, WSDL and XML), and a
communication protocol is employed which does not depend on addresses of the
agents sending and receiving messages. An extension to the Oak Ridge Mobile
Agent Community (ORMAC) framework is used as the basis of the agent archi-
tecture [65].

Registry
Agent A

Registry
Agent B

Rigistry
Agent C

Service

Agent
Composition

Service
Analyzer
Agent

Service
Providers

Fig. 2.9 Palathingal and Chandra’s agent based service oriented architecture

2.8 Challenges in Service Advertisement and Discovery

Service advertisement and discovery is a focus of active research, and a number of
popular areas of investigation and specific challenges have been identified, and can
be categorised as for system requirements and for system modelling.

2 Service Advertisement and Discovery 41

2.8.1 System Requirements

Scalability and adaptability [1, 15]: In particular, Wu [93] proposes that efficient
mechanisms should be introduced to allow “system function gracefully at very
high load of service discovery requests given reasonable resource consump-
tions”.

Security: Different security requirements for different environments, such as in
mobile computing, should be identified. Issues might include secure service reg-
istration, and deregistration; secure discovery and secure delivery, secure com-
munication protocols and more appropriate trust models and communication
paradigms [3, 24, 26, 44, 76].

Quality of service: Efficient protocols for the awareness of quality of service
should be introduced, as “QoS information is particularly important for real time
applications like streaming high quality video over wireless networks” [34].

Interoperability: Interoperability is also important since complex messages ex-
changed by web services are structurally and semantically heterogeneous [2,56].

2.8.2 System Modelling

Theoretical foundations: Little work has been done on theoretical foundations.
No generally accepted principle or procedure for system design and evaluation
has been identified so far, although a number of definitions regarding the concepts
and principles of service and service oriented architecture have been proposed by
different scholars [49, 60].

System structures: A number of different styles of system structures have been
summarised in Section 2, and it is challenge to design more and moreover to
combine these styles of structures together to improve the overall effectiveness
of the systems [32].

Agents based service oriented computing: We have introduced the idea of agent
based service discovery in Section 7, and it is important to identify and adopt
efficient approaches to merge agent technology into service oriented computing,
and develop efficient algorithms for agents to search, match and compose ser-
vices [5, 11, 76].

Technologies integration: It is also an opportunity and challenge to integrate SOA
with other technologies, such as wireless communications and the Grid, in order
to provide more powerful advertisement and discovery mechanisms [19,54,96].

2.9 Summary

The Service Broker (or Registry), which is one of the entities in current model of
Service Oriented Computing, plays a key role in the process of service advertisement

42 Shanshan Yang and Mike Joy

and discovery. Three types of registry architectures have been introduced—centra-
lised, decentralised and hybrid—together with major users’ requirements for service
advertisement and discovery systems. We have also described a number of mature
discovery technologies in this area, and explored how agent based technology might
improve the effectiveness of this process. This chapter provides a foundation for un-
derstanding the rest of the processes in Agent Based Service Oriented Computing.

References

1. AI-Masri, E., Mahnoud, Q.H.: Discovery the Best Web Service. In: WWW Poster Paper, pp.
1257–1258. ACM Press, Canada (2001)

2. Anjum, F.: Chanllenges on Providing Services in a Ubiquitous, Mobile Environment. In: the
3rd International Conference on Mobile and Ubiquitous Systems: Networking and Services,
pp. 1–3. IEEE Press, California (2006)

3. Antonopoulos, N., Shafarenko, A.: An Active Organisation System for Customized, Secure
Agent Discovery. The Journal of Supercomputing. 20, 5–35 (2001)

4. Arnold, K., Osullivan, B., Scheifler, R.W., Waldo, J., Wollrath, A., O’Osullivan, B.: The Jini
Specification. Addison Wesley, Reading (1999)

5. Avila-Rosas, A., Moreau, L., Dianlani, V., Miles, S., Liu, X.: Agents for the Grid: A Compar-
ison with Web Services. In: Workshop on Challenges in Open Agent Systems, PP. 238–244.
Bologna (2002)

6. Baresi, L., Miraz, M.: A Distributed Approach for the Federation of Heterogeneous Registries.
In: 4th International conference on Service Oriented Computing, pp. 240–251. Chicago (2006)

7. Balken, R., Haukrogh, J., Jensen, J.L., Jensen, M.N., Roost, L.J., Toft, P.N., Olsen, R.L.,
Schwefel, H.P.: Context Sensitive Service Discovery Experiment Prototype and Evaluation.
Wireless Personal Communications. 40, 417–431 (2007)

8. Baresi, L., Nitto, E., Ghezzi, C., Guinea, S.: A Framework for the Deployment of Adaptable
Web Service Compositions. SOCA. 1, 75–91 (2007)

9. Bell, D., Ludwig, S.A., Lycett, M.: Enterprise application reuse: Semantic Discovery of Busi-
ness Grid Services. Information Technology Management. 8, 223–239 (2007)

10. Benbernou, S., Hacid, M., Liris,: Resolution and Constraint Propagation for Semantic Web
Services Discovery. Distributed and Parallel Databases. 18, 65–81 (2005)

11. Blake, M., Cheung, W., Jaeger, M.C., Wombacher, A.: WSC-06: the Web Service Chal-
lenge. In: the IEEE international Conference on E-Commerce Technology, pp. 62. IEEE Press,
New York (2006)

12. Blake, M.B., Kahan, D. R., Nowlan, M. F.: Context-aware Agents for Use r-oriented Web
Services Discovery and Execution. Distributed and Parallel Databases. 21, 39–58 (2007)

13. Bucur, D., Bardram, J.E.: Resource Discovery in Activity-Based Sensor Networks. Mobile
Networks and Applications. 12, 129–142 (2007)

14. Caceres, C., Fernandez, A., Ossowski, S., Vasirani, M.: Agent-Based Semantic Service Dis-
covery for Healthcare: An Organizational Approach. In: IEEE Intelligent Systems, pp.11–20.
IEEE Press, New York (2006)

15. Cao, J., Kerbyson, D.J., Nudd, G.R.: High Performance Service Discovery in Large-Scale
Multi-Agent and Mobile-Agnet Systems. International Journal of Software Engineering and
Knowledge Engineering. 11, 621–641 (2001)

16. Campo, C.: Service Discovery in Pervasive Multi-agent Systems. In: Workshop on Ubiquitous
Agents on embedded, wearable, and mobile devices, pp. 133–146. Bologna (2002)

17. Campo, C., Munoz, M., Perea, J.C., Mann, A., Garcia-Rubio, C.: PDP and GSDL: A
New Service Discovery Middleware to Support Spontaneous Interactions in Pervasive Sys-
tems. In: 3rd IEEE International Conference on Pervasive Computing and Communications,
pp. 178–182. IEEE Press, New York (2005)

2 Service Advertisement and Discovery 43

18. Caporuscio, M., Carzangiga, A., Wolf, A.L.: Design and Evaluation of a Support Service for
Mobile, Wireless Publish/Subscribe Applications. IEEE Transactions on Software Engineer-
ing. 29, 1059–1071 (2003)

19. Caron, E., Desprez, F., Tedeschi, C.: Enhancing Computational Grids with Peer-to Peer Tech-
nology for Large Scale Service Discovery. Journal of Grid Computing. 5, 337–360 (2007)

20. Chakraborty, D., Joshi, A., Yesha, Y., Finin, T.: Toward Distributed Service Discovery in Per-
vasive Computing Environments. IEEE Transactions on Mobile Computing. 5, 97–112 (2006)

21. Chappell, D.: Who Cares about UDDI. Addison Wesley, New York (2002)
22. Charlet, D., Issarny, V., Chibout, R.: Service Discovery in Multi-radio Networks: An assess-

ment of Existing Protocols. In: MSWiM’06, pp. 229–238. ACM Press, New York (2006)
23. Chen, H., Joshi, A., Finin, T.: Dynamic Service Discovery for Mobile Computing: Intelligent

Agents Meet Jini in the Aether. Cluster Computing. 4, 343–354 (2001)
24. Cotroneo, D., graziano, A., Russo, S.: Security Requirements in Service Oriented Architec-

tures for Ubiquitous Computing. Middleware for Pervasive and Ad-Hoc Computing. In: 2nd
Workshop on Middleware for Pervasive and Ad-Hoc Computing, pp.172–177. ACM Press,
Canada (2004)

25. Curbera, F., Duftler, M., Khalaf, D., Nagy, W., Mukhi, N., Weerawarana, S.: Unraveling the
Web Services Web, An Introduction to SOAP, WSDL, and UDDI. IEEE Internet Computing.
6, 86–93 (2002)

26. Czerwinski, S., Zhao, B., Hodes, T. D., Joseph, vA.D., Katz, R.H.: An Architecture for A
Secure Service Discovery Service. In: International Conference on Mobile Computing and
Networking, pp. 24–35. Washington (1999)

27. Data Distribution Service, http://www.omg.org
28. Degwekar, S., Lam, H., Su, S.Y.W.: Constraint-Based Brokering(CBB) for Publishing and

Discovery of Web Services. Electronic Commerce Research. 7, 45–67 (2007)
29. Doulkeridis, C., Vazirgiannis, M.: Querying and Updating a Context-aware Service Directory

in Mobile Environments. In: IEEE/WIC/ACM Int. Conference on Web Intelligence (WI’04),
pp.562–565, IEEE Press, New York (2004)

30. Doulkeridis, C., Zafeiris, V. N?rv?g, K., Vazirgiannis, M., Giakoumakis, E.A.: Context-Based
Caching and Routing for P2P Web Service Discovery. Distrib Parallel Databases. 21, 59–84
(2007)

31. Dustdar, S., Treiber, M.: A View Based Analysis on Web Service Registries. Distributed and
Parallel Databases. 18, 147–171 (2005)

32. Dustdar, S., Treiber, M.: View Based Integration of Heterogeneous Web Service Registries—
the Case of VISR. World Wide Web. 9, 457–483 (2006)

33. ebXML Project, http://www.ebxml.org
34. Fan, Z., Ho, E.G.: Service Discovery in Ad Hoc Networks: Performance Evaluation and QoS

Enhancement. Wireless Personal Communications. 40, pp. 215–231 (2007)
35. Flores-Cortés, C.A., Blair, G.S., Grace, P.: A Multi-Protocol Framework for As-hoc Service

Discovery. In: MPAC’06, pp.10. ACM Press, New York (2006)
36. Foster, I.: Globus Toolkit Version 4: Software for Service-Oriented Systems. In: the Proced-

ding of the IFIP International Conference on Network and Parallel Computing, pp. 2–13,
Springer-Verlag, New York (2006)

37. Friday, A., Davies, N., Wallbank, N., Catterall, E., Pink, S.: Supporting Service Discovery,
Querying and Interaction in Ubiquitous Computing Environments. Wireless Networks. 10,
631–641 (2004)

38. Garg, P., Griss, M., Machiraju, V.: Auto-Discovery Configurations for Service Management.
Journal of Network and Systems Management. 11, 217–239 (2003)

39. Ghamri-Doudane, S., Agoulmine, N.: Enhanced DHT-Based P2P Architecture for Effective
Resource Discovery and Management. Journal of Network and Systems Management. 15,
335–354 (2007)

40. Globus Project, http://www.globus.org/
41. Gnutella Project, http://www.gnutella.com/
42. Guttman, E.: Service Location Protocol: Automatic Discovery of IP Network Service. IEEE

Internet Computing. 3, 71–80 (1999)

44 Shanshan Yang and Mike Joy

43. He, Y., Wen, W., Jin, H., Liu, H.: Agent based Mobile Service Discovery in Grid Computing.
In: Proceedings of the Fifth International Conference on Computer and Information Technol-
ogy, pp. 78–101. IEEE Press, New York (2005)

44. Hodes, T.D., Czerwinski, S.E, Zhao, B.Y., Joseph, A.D., Katz, R.H.: An Architecture for Se-
cure Wide-Area Service Discovery. Wireless Networks. 3, 213–230 (2002)

45. Hoffert, J., Jang, S., Schmidt, D.C.: A Taxonomy of Discovery Services and Gap Analysis for
Ultra-Large Scale Systems. In: ACMSE 2007, pp. 355–361. ACM Press, New York (2007)

46. Hoschek, W.: The Web Service Discovery Architecture. In: ACM/IEEE SC Conference
(SC’02), pp.38. IEEE Press, New York (2002)

47. Hu, C., Zhu, Y., Huai, H., Liu, Y., Ni, L.M.: S-Club: An Overlay-Based Efficient Service
Discovery Mechanism in CROWN Grid. Knowledge and Information Systems. 12, 55–75
(2007)

48. Huang, A. C., Steenkiste, P.: Network-Sensitive Service Discovery. Journal of Grid Comput-
ing. 1, 309–326 (2003)

49. Huhns, M., Singh, M.: Service Oriented Computing: Key Concepts and Principles. IEEE In-
ternet Computing. 9, 75–81 (2005)

50. Issarny, V., Caporuscio, M., Georgantas, N: A Perspective on the Future of Middleware-Based
Software Engineering. In: Future of Software Engineering, pp. 244–258. IEEE Press, New
York (2007)

51. Jini Lookup Service, http://www.jini.org/
52. JXTA Project, https://jxta.dev.java.net/
53. Kontogiannis, K., Smith, G.A., Litoiu, M., Müller, H., Schuster, S., Stroulia, E.: The Land-

scape of Service Oriented Systems: A Research Perspective. In: the International Workshop
on Systems Development in SOA Environments, pp. 1. IEEE Press, New York (2007)

54. Li, J., Mohapatra, P.: PANDA: A Novel Mechanism for Flooding Based Route Discovery in
Ad-hoc Networks. Wireless Netw. 12, 771–787 (2006)

55. Luck, M., McBurney, P., Shehory, O., Willlmott, S.: Agent Technology: Computing as Inter-
action. University of Southampton, Southamptom (2005)

56. Nagarajan, M., Verma, K., Sheth, A.P., Miller, J., Lathem, J.: Semantic Interoperability of Web
Services—Challenges and Experiences. In: Proceeding of the IEEE International Conference
on Web Services, pp.373–382. IEEE Press, New York (2006)

57. Napster Project, http://www.napster.co.uk/
58. Naumenko, A., Nikitin, S., Terziyan, V.: Service Matching in Agent Systems. Applied Intelli-

gence. 25, 223–237 (2006)
59. Nedos, A., Singh, K., Clarke, S: Mobile Ad Hoc Services: Semantic Service Discovery in

Mobile Ad Hoc Networks. Springer, Berlin (2006)
60. Newcomer, E., Lomow, G.: Understanding SOA with Web Services. Addison Wesley, London

(2005)
61. OASIS Homepage, http://www.oasis-open.org/home/index.php
62. O’Brien, L., Merson, P., Bass, L.: Quality Attributes for Service Oriented Architectures. In:

Internal Workshop on Systems Development in SOA Environments, pp. 216–122. IEEE Press,
New York (2007)

63. Object Management Group, http://www.omg.org/gettingstarted/
64. The Open Group Homepage, http://www.opengroup.org/
65. Palathingal, P., Chandra, S.: Agent Approach for Service Discovery and Utilization. In: Pro-

ceedings of the 37th Hawaii International Conference on System Sciences, pp. 1–9. IEEE
Press, New York (2004)

66. Papazoglou, M.P., Krimer, B.J., Yang, J.: Leveraging web services and Peer to Peer Networks.
Springer, Berlin (2003)

67. Papazoglou, M., Heuvel, W.: Service Oriented Architectures: Approaches, Technologies and
Research Issues. The VLDB Journal. 16, 389–415 (2007)

68. Ratsimor, D. Chakraborty, D., Joshi, A., Finin, T.: Allia: Alliance-Based Service Discovery
for Ad-Hoc Environments. In: International Workshop on Mobile Commerce, pp. 1–9. ACM
Press, New York (2002)

2 Service Advertisement and Discovery 45

69. Ratsimor, O. Chakraborty, D. Joshi, A., Finin, T., Yesha, Y.: Service Discovery in Agent-Based
Pervasive Computing Environments. Mobile Networks and Applications. 9, 679–692 (2004)

70. Richard III, G.G.: Service Advertisement and Discovery: Enabling Universal Device Cooper-
ation. IEEE Internet Computing. 5, 18–26 (2000)

71. Salutation Architecture Specification, http://www.salutation.org/specordr.
htm

72. Scherson, I.D. and Cauich, E., Valencia, D.S.: Service Discovery for GRID Computing Using
LCAN-mapped Hierarchical Directories. Journal of Supercomputing. 42, 19–32 (2007)

73. Service Oriented Architecture, http://www.w3.org/TR/ws-arch
74. ShaikhAli, A., Rana, O.F., AI-Ali, R., Walker, D.W. UDDIe: an tetended registry for web ser-

vices. In: the Proceedings of Application and the Internet Workshops, pp.85–89, IEEE Press,
New York (2003)

75. Singh, M.P., Huhns, M.N.: Service Oriented Computing, Semantics, Processes, Agents. John
Wiley & Sons, Chichester (2005)

76. Singha, A.: Web Services Security: Chanllenges and Techniques. In: 8th IEEE International
Workshop on Policies for Distributed Systems and Networks, pp. 282. IEEE Press, New York
(2007)

77. Sivavakeesar, S., Gonzalez, O.F., Pavlou, G.: Service Discovery Strategies in Ubiquitous Com-
munication Environments. IEEE Communications Magazine, 12, 106-113 (2006)

78. SOAP Specification, http://www.w3.org/TR/soap/
79. Soldatos, J., Dimarkis, N., Stamatis. K., Polymenakos, L.: A Breadboard Architecture for

Pervasive Context-Aware Services in Smart Spaces: Middleware Components and Prototype
Applications. Personal and Ubiquitous Computing. 11, 193–212 (2007)

80. Sreenath, R., Singh, M.: Agent based service selection. Web Semantics: Science, Services and
Agents on the World Wide Web. 1, 261–279 (2004)

81. Sycara, K., Paolucci, M., Soudry, J., Srinivasan, N.: Dynamic Discovery and Coordination of
Agent Based Semantic Web Services. IEEE Internet Computing, 66–73 (2004)

82. Talwar, B., Venkataram, P., Patnaik, L.M.: A Method for Resource and Service Discovery in
MANETs. Wireless Personal Communications. 41: 301–323 (2007)

83. Tyan, J., Mahmoud, Q.H.: A Comprehensive Service Discovery solution for Mobile Ad-Hoc
Networks. Mobile Networks and Applications. 10, 423–434 (2005)

84. UDDI Project Version 3.0.2, http://uddi.org/pubs/uddi-v3.0.2-20041019.
htm#_Ref8884251

85. Vanthournout, K., Deconinck, G., Belmans, R.: A Taxonomy for Resource Discovery. Personal
and Ubiquitous Computing. 9, 81–19 (2005)

86. Verma, K., Sivashanmugam, K., Sheth, A. Patil, A., Oundhakar, S., Miller, J.: METEOR-S
WSDI: A Scalable P2P Infrastructure of Registries for Semantic Publication and Discovery of
Web Services. Information Technology and Management. 6, 17–39 (2005)

87. Vitvar, T., Mocan, A., Kerrigan, M., Zaremba, M., Zeremba, M., Moran, M., Cimpian, E.,
Haselwanter, T., Fensel, D.: Semantically-Enable Service Oriented Architecture: Concepts,
Technology and Application. In: Service Oriented Computing and Applications. 1, 129–154
(2007)

88. W3C School, http://www.w3schools.com/
89. Wang, H., Huang, J. Z., Qu, Y., Xie, J.:Web Semantics: Science, Services and Agents. World

Wide Web. 1, 309–320 (2004)
90. Warwick University Computer Science Department High Performance Systems Research

Group, http://www.dcs.warwick.ac.uk/research/hpsg/A4/A4.html
91. Web Services Inspection Language, http://www.ibm.com/developerworks/

library/ws/wsilover/
92. WSDL Specification, http://www.w3.org/TR/wsdl
93. Wu, C., Chang, E.: Aligning with the Web: an Atom-based Architecture for Web Service

Discovery. SOCA. 1, 97–116 (2007)
94. Yang, Y., Dunlap, R., Rexroad, M, Cooper, B.: Performance of full text search in structured

and unstructured peer to peer systems. In: Proceedings of the 5th IPTPS, pp. 27–28. Santa
Barbara, USA (2006)

46 Shanshan Yang and Mike Joy

95. Yu, J., Venugopal, S., Buyya, R.: A Market-Oriented Grid Directory Service for Publication
and Discovery of Grid Service Providers and their Services. Journal of Supercomputing. 36,
17–31 (2006)

96. Yu, Q., Liu, X., Bouguettaya, A., Medjahed, B.: Deploying and managing Web Services: Is-
sues, Solutions and Directions. The VLDB Journal The International Journal on Very Large
Data Bases. 17, 537–572 (2006)

Chapter 3
Multi-Agent Coordination for Service
Composition

Junzhou Luo, Wei Li, Bo Liu, Xiao Zheng and Fang Dong

Abstract Service composition is an active ongoing area of research in the field of
Service-Oriented Computing. One of the research challenges is to provide a mecha-
nism for the autonomous search and selection of suitable service provid-ers for each
service type within service composition while guaranteeing the end-to-end QoS. A
multi-agent based QoS-aware Service Composition solution (MQSC) is presented
in this chapter. MQSC not only can provide a mechanism for the dynamic service
composition but also can ensure the end-to-end QoS of the composite service.

Junzhou Luo
School of Computer Science and Engineering, Southeast University, Nanjing 210096, P.R. China;
Key Laboratory of Computer Network and Information Integration, Ministry of Education, Nanjing
210096, P.R. China
e-mail: jluo@seu.edu.cn

Wei Li
School of Computer Science and Engineering, Southeast University, Nanjing 210096, P.R. China;
Key Laboratory of Computer Network and Information Integration, Ministry of Education, Nanjing
210096, P.R. China
e-mail: xchlw@seu.edu.cn

Bo Liu
School of Computer Science and Engineering, Southeast University, Nanjing 210096, P.R. China;
Key Laboratory of Computer Network and Information Integration, Ministry of Education, Nanjing
210096, P.R. China
e-mail: bliu@seu.edu.cn

Xiao Zheng
School of Computer Science and Engineering, Southeast University, Nanjing 210096, P.R. China;
Key Laboratory of Computer Network and Information Integration, Ministry of Education, Nanjing
210096, P.R. China
e-mail: xzheng@seu.edu.cn

Fang Dong
School of Computer Science and Engineering, Southeast University, Nanjing 210096, P.R. China;
Key Laboratory of Computer Network and Information Integration, Ministry of Education, Nanjing
210096, P.R. China
e-mail: fdong@seu.edu.cn

N. Griffiths, K.-M. Chao (eds.), Agent-Based Service-Oriented Computing, 47
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-041-0 3, c© Springer-Verlag London Limited 2010

48 Junzhou Luo, Wei Li, Bo Liu, Xiao Zheng and Fang Dong

3.1 Introduction

In Service-Oriented Computing (SOC), a service is the fundamental element of
distributed and heterogeneous applications. Service providers and customers can
dynamically publish, discover and invoke services. When a requirement from a cus-
tomer cannot be achieved directly by the existing services, there should be a pos-
sibility to combine and compose the functions of several services in order to fulfill
the requirement. Service composition offers a way to expand the ability of the sin-
gle service and implement service reuse [1]. It allows a distributed application to be
constructed through the combination of other existing services, and this composi-
tion offers an added value to the original services. Service composition accelerates
rapid application development, and implements service reuse for the providers and
enables seamless access to a variety of complex services for the customers.

The issues related to service composition are being addressed by ongoing work
in the area of Semantic Web [15, 23], agent [18, 20] and business process workflow
management [24]. Their overall approaches are to define a composition plan for
each customers goal involving abstract service descriptions. However, the service
discovery and selection mechanisms are static and not flexible in these approaches,
and the end-to-end Quality of Service (QoS) of a composite service can also not be
ensured. During the course of composing services, different services with the same
function may have different QoS, such as performance, cost, availability and so on,
and some QoS criteria are dynamic. So the composition plan should be adjusted
dynamically in order to satisfy the global QoS requirement of the composition. One
of the research challenges is to provide a mechanism for the autonomous search and
selection of suitable service providers for each service type within service compo-
sition while guaranteeing the end-to-end QoS. Multi-Agent Systems (MAS), which
originated from the Distributed Artificial Intelligence field, offers solutions that can
benefit the provision and design of a dynamic approach, and is very suitable for
dynamic service composition. On the one hand, service composition could be per-
formed dynamically through agent collaboration without predefining abstract plans.
On the other hand, the local and reactive processing in MAS can avoid the bot-
tlenecks caused by centralized systems and improve scalability. This chapter puts
forward a Multi-agent based QoS-aware Service Composition solution (MQSC).
MQSC not only provides a mechanism for the dynamic service composition but
also can ensure the end-to-end QoS of the composite service.

Multi-Agent Systems (MAS), which originated from the Distributed Artificial
Intelligence field, offers solutions that can benefit the provision and design of a dy-
namic approach, and is very suitable for dynamic service composition. On the one
hand, service composition could be performed dynamically through agent collabo-
ration without predefining abstract plans. On the other hand, the local and reactive
processing in MAS can avoid the bottlenecks caused by centralized systems and im-
prove scalability. This chapter puts forward a Multi-agent based QoS-aware Service
Composition solution (MQSC). MQSC not only provides a mechanism for the dy-
namic service composition but also can ensure the end-to-end QoS of the composite
service.

3 Multi-Agent Coordination for Service Composition 49

The remainder of this chapter is organized as follows. The next section overviews
the concepts and definitions of service composition, QoS attributes and user satis-
faction degree of service, task graph, service composition graph, and ant algorithm.
The related works in the area of multi-agent based service composition is discussed
in Section 3.3. Section 3.4 describes the architecture of MQSC and illuminates each
component. The mechanism of service search, service selection and service execu-
tion is presented in Sections 3.5 and 3.6 respectively. Section 3.7 analyzes a use-case
scenario in order to demonstrate MQSC. Finally, we conclude the chapter in Sec-
tion 3.8 with remarks on future work.

3.2 Preliminaries

In this section, some basic concepts and definitions are explained so that our solution
can be understood easily.

3.2.1 Service Composition

Service composition refers to the process of combining several services to provide
a value-added service. In SOC, it is impossible for a single service to accomplish a
complex task. One solution is to combine many different services and make them
collaborate to finish the complex task. Each service can locate in a wide area and
the composition relation between them is a loose coupling. The composite service is
usually composed according to the requirements of a customer and its deployment
is temporal and prompt. The composition relation can be canceled after tasks are
finished. Therefore, service composition is an important way of service reuse, the
construction and the deployment of a complex application in a SOC environment.
In the context of SOC, a service participating in a composition process is called a
component service. The result of service composition produces a composite service.
A service class is a collection of component services, which have the same functions
but different nonfunctional properties (such as QoS). The element in a service class
is also called a candidate service. An overview of the approaches for implementing
service composition is presented as follows.

3.2.1.1 Manual Composition Versus Automatic Composition

The execution process of manual composition is decided in a manual way. Such
a method manually chooses services that can participate in the composition, ana-
lyzes functions and interface parameters of each service to decide the dependen-
cies of the data flow and the control flow, and uses some modeling languages, such
as BPEL4WS [3] and EFLOW [5], to describe services and their dependencies.
Figure 3.1 shows an example describing a process for handing a loan application
using BPEL4WS, which is derived from a tutorial on BPEL4WS by IBM [11]. In

50 Junzhou Luo, Wei Li, Bo Liu, Xiao Zheng and Fang Dong

 

<process name="loanApprovalProcess" ... />
 <partners>
 < partner name="customer" ... />
 < partner name="assessor" ... />
 < partner name="approver" ... />
 </partners>
 <containers>
 < container name="request" messageType="loandef:CreditInformationMessage"/>
 < container name="approvalInfo" messageType="apns:approvalMessage"/>
 < container name="riskAssessment" messageType="asns:AssessMessage"/>
 </containers>
 <sequence>
 < receive name="receive1" partner="customer" portType="apns:loanApprovalPT"
 operation ="approve" container="request" createInstance="yes">
 < /receive>
 < invoke name="invokeassessor" partner="assessor" portType="asns:riskAssessmentPT"
 operation ="check" inputContainer="request" outputContainer="riskAssessment">
 < /invoke>
 ...
 < invoke name="invokeapprover"partner="approver" portType="apns:loanApprovalPT"
 operation ="approve" inputContainer="request" outputContainer="approvalInfo">
 < /invoke>
 < reply name="reply" partner="customer" portType="apns:loanApprovalPT"
 operation ="approve" container="approvalInfo">
 < /reply>
 </sequence>
</process>

Fig. 3.1 A simplified BPEL4WS document for the loan approval process

this process, the customer and two web services, namely assessor and approver, are
all represented as partners. The technical details of each activity are as follows:

• receive: allows the business process to do a blocking wait for a matching message
to arrive, e.g., customer.

• invoke: allows the business process to invoke a one-way or request-response op-
eration on a portType offered by a partner, e.g., assessor and approver.

• reply: used to send a response to a previous request accepted through a receive
activity.

The disadvantage of manual composition is that the professional persons would be
required to finish the service composition, which cannot be finished automatically
according to the customers requirements. Thus, the efficiency of the manual way is
very low in a complex business process.

Automatic composition is automatically generated based on requirements from
customers. To increase the automatic degree of service composition, the machine
should understand and deal with the information on services. Semantic Web Services,
which is a combination of semantic web techniques and web service techniques,
can make use of some existing methods in the field of artificial intelligence or log-
ical inference to generate a new composite service according to the requirements
automatically. In general, semantic web enabled automatic approaches consists of
three conceptual phases: specification, matchmaking and generation [16]. The spec-
ification phase enables high-level and customized descriptions of the desired com-
positions. The specifications of the composers include constructs for the orches-
tration and semantic descriptions of composition sub-requests. The matchmaking
phase uses the composability model to generate composition plans conforming to

3 Multi-Agent Coordination for Service Composition 51

requirements from composers. Because services are described semantically, the ma-
chine could understand which services could contribute to the composition and
how these participant services could interact with each other. A set of algorithms
are developed for checking the composability and matching services to generate
composition plans automatically. The generation phase returns detailed composite
service descriptions. Such descriptions include the orchestration (composer-defined
and system-generated) of participant services.

3.2.1.2 Proactive Composition Versus Reactive Composition

Proactive composition is an offline process that gathers available component ser-
vices to constitute a composite service in advance. The composite service is precom-
piled and ready to be triggered upon customers requests. In a proactive composition,
the component services are usually stable and may be running on the resource-
rich platforms. In enterprise computing, the storage resources and the computing
resources are sufficient as to guarantee running of participant services. Moreover,
enterprise applications are solid. Consequently, such a composition is designed and
deployed in advance, and its QoS is stable.

Reactive composition is the process of creating a composite service on-the-fly.
A composite service is devised on a request-basis from customers. Because of the
on-the-fly property, a component manager is required and ensures the identification
and collaboration of component services. Despite a certain complexity of reactive
composition, it has several advantages over proactive composition, for instance, the
possibility of tracking the status of the composition process to take correct actions
promptly and the possibility of optimizing run-time parameters, such as bandwidth
use, data transfer routes, and execution charges. This kind of composition is suitable
to a dynamic Internet environment.

3.2.1.3 Mandatory Composite Service Versus Optional Composite Service

A mandatory composite service corresponds to the compulsory participation of all
the component services in the execution process. Under this situation, the partici-
pant has no substitution and no requirements for selecting an appropriate candidate
service from a service class. Because it is expected that the component services will
be spread over the network, QoS of the execution process of each component service
affects the whole QoS of the composite service. Due to no substitution, the QoS of
each component service must be guaranteed as much as possible.

An optional composite service does not necessarily involve all of the component
services. Some component services can be skipped during the course of execution
due to various reasons, such as the possibility of substitution or unavailability. For
example, in some high-reliability required situations, such as emergency response
applications, some service replicas will be deployed to ensure load balancing, fault-
tolerance, etc. A composite service only chooses a “free” and “healthy” replica.

52 Junzhou Luo, Wei Li, Bo Liu, Xiao Zheng and Fang Dong

3.2.2 QoS Attributes and User Satisfaction Degree of Service

QoS is a combination of several qualities or properties of a service, which is used
to measure a satisfaction degree of the service to customers. This chapter considers
multiple QoS attributes consisting of the response time, the service availability and
the service cost. The response time is the interval between a customer sending a
request to and receiving results from a service provider, which includes the total
time for the service and the round-trip communication delay. The service availability
is the probability that the service can be used. The service cost is the spending of
the customer in acquiring a certain service. In a general way, the range of each QoS
criterion value is different and its meaning is also not the same. Some of the criteria
such as the response time and the service cost could be negative, e.g., the higher the
value is, the lower the quality is. Other criteria are positive, e.g., the higher the value
is, the higher the quality is.

In order to measure the overall quality of a service, its QoS attributes should
be scaled by a uniform standard and considered in the round. In this chapter, the
concepts of user satisfaction degree and user satisfaction function, which are our
early work [26] and suit the dynamic environment, are adopted and a utility function
is suggested as the objective function of selecting a candidate service during the
course of service composition.
Definition 1: User satisfaction degree of a service is a real number d ∈ [0,1]. As
its value increases, customers are more satisfied with the service. When the value
reaches 1, customers are satisfied perfectly whereas 0 means customer requirements
are not satisfied.
Definition 2: User satisfaction function for the i-th service si j represents the map-
ping from the j-th QoS criterion of the i-th service to user satisfaction degree.

User satisfaction degree is a subjective concept. It varies with the different cus-
tomers preference and the application. User satisfaction function describes the re-
lation between a given QoS criterion and user satisfaction degree for the service.
It is defined by customers and submitted to a service composition mechanism with
the requirements. Figure 3.2 shows examples of user satisfaction function. In Fig-
ure 3.2(a), t1 and t2 are two thresholds. When the response time is higher than t2,
user satisfaction degree is zero, whereas the value is 1 when the time is less than
t1. The curve of the service cost in Figure 3.2(b) is the same as that of the response
time. The curve in Figure 3.2(c) is a function which is f (x) = x where x ∈ [0,1].
Definition 3: Utility function for the i-th service ui is:

ui = ∑
j
(w j.si j) (3.1)

where w j ∈ [0,1] and ∑ j w j = 1. w j represents the weight of the criterion j, which is
used to reflect customers preferences, and si j is user satisfaction function depicted
in definition 2.

It is well known that the end-to-end QoS of a composite service is dependent on
the QoS of each component service. How to calculate the QoS criteria of a com-

3 Multi-Agent Coordination for Service Composition 53

 

t1

1

Response Time
(a)

U
se

r S
at

is
fa

ct
io

n
D

eg
re

e

t2 c1

1

Service Cost
(b)

U
se

r S
at

is
fa

ct
io

n
D

eg
re

e

c2

1

Service Availability
(c)

U
se

r S
at

is
fa

ct
io

n
D

eg
r e

e

1

Fig. 3.2 Examples of the user satisfaction function

posite service according to that of component services is introduced in [17]. Once
getting the QoS criteria of the composite service, its utility function could be calcu-
lated based on formula 3.1. Since customers always want to maximize the benefits
received by them, the service composition plan with the maximum value of utility
function will be selected.

3.2.3 Task Graph

As introduced above, a composite service is to execute a complex task correspond-
ing with the requirements from a customer, which could be partitioned into several
subtasks implemented by single services. These subtasks and their dependencies
are represented by a task graph, which is a directed acyclic graph. Each subtask is
represented with a rectangle and connected via directed arrows, which represent the
control-flow or data-flow dependencies among subtasks. There are three kinds of
dependencies among subtasks, namely selection dependency, concurrence depen-
dency and mixture dependency.

• Selection dependency is that only one of the successor subtasks can be selected.
• Concurrence dependency is that all of the successors of a subtask can be executed

concurrently.
• Mixture dependency is that there are the two above-mentioned relations simulta-

neously.

As shown in Figure 3.3, a whole task could be partitioned into nine subtasks,
namely st1, st2, etc. Subtask “+” denotes the selection dependency and “*” denotes
the concurrence dependency. st4 and st5 must be executed concurrently whereas one
of st2 and st3 would be selected to be executed.

This chapter does not consider how to decompose a task and generate a task
graph, which is one of our future works. It is assumed that the task has been decom-
posed to several subtasks, and each subtask could be implemented by any one of a
group of candidate services with a same function but different QoS properties.

54 Junzhou Luo, Wei Li, Bo Liu, Xiao Zheng and Fang Dong

 

st
1

st
2

st
3

st
4

st
5

st
7

+

*

st
6

st
8

st
9

Fig. 3.3 An example of a task graph

3.2.4 Service Composition Graph

In order to research the problem of service composition, how to model service com-
position should be considered. So the Service Composition Graph (SCG) is pre-
sented as a modeling tool.
Definition 4: Formally, a SCG is a triple (V,E,Q), where:

1. V = Vor ∪Vand ∪Vend . V is the set of vertexes denoting services. Vor, called OR-
Vertex, is the set of vertexes which denote the selection dependency, Vand , called
AND-Vertex, is the set of vertexes which denote the concurrence dependency,
and Vend is a set of vertexes which have no successors and do not denote any
dependency.

2. E = {(i, j)|i, j ∈V} is the edge set. And if (i, j) ∈ E, then (j, i) /∈ E.
3. Q = {q(i, j)|(i, j) ∈ E} is the weight set associated with E. q(i, j) = (t,a,c),

where t,a,c ∈ R+∪{0} and a ∈ [0,1].
4. There is no path from r to itself, where r ∈V .
5. There is a single vertex called the source vertex, which has no predecessors and

belongs to Vor, and there is a single destination vertex, which has no successors
and belongs to Vend .

Therefore, the SCG is a kind of the directed acyclic graph, which has a single source
vertex and a destination vertex. Except the source vertex and the destination vertex,
it contains two types of vertexes, namely OR-Vertex and AND-Vertex, which repre-
sent services involved in the composition. An edge represents a dependency, whose
weight is a triple (t,a,c), where t is the response time of the invoked service, a is
the service availability, and c is the service cost of the invocation. A SCG represents
all possible compositions of services.
Definition 5: A service executable plan of a SCG is a sequence of vertexes, namely
[s1,s2, . . . ,sn], where s1 is the source vertex, sn is the destination vertex, and for
every si(1 < i < n):

1. si is a direct successor of one of the vertexes in [s1, . . . ,si−1].
2. si is not a direct successor of any of the vertexes in [s+ i+1, . . . ,sn].
3. There is no s j in [s1, . . . ,si−1] such that s j and si belong to two alternative

branches of the SCG.
4. If si is the AND-Vertex, then all si’s successors will be include in [s1,s2, . . . ,sn].

In other words, if an AND-Vertex is entered, all of its concurrent branches will
be executed.

3 Multi-Agent Coordination for Service Composition 55

Definition 6: An optimal service executable plan is a service executable plan with
the maximum utility.

There are many different service executable plans in a SCG. A service executable
plan denotes a composition plan of services and different plans may have different
end-to-end QoS. The objective of QoS-aware service composition is to find all the
service executable plans from the source vertex to the destination vertex and choose
an optimal service executable plan from them.

3.2.5 From Task Graph to Services Composition Graph

In a task graph, each subtask can be mapped to a collection of services with the
same function. So a task graph can be translated into a directed acyclic graph only
composed of services, namely a SCG. Figure 3.4 illustrates a service composition
scenario, which is a part of Figure 3.3 including st1, st2 and st3. Without loss of
generality, suppose that each subtask corresponds to two candidate services. In Fig-
ure 3.4, each service is represented with an oval and connected via directed arrows.
An arrow from service A to service B indicates that A executes before B. The sub-
script in the label of the oval includes two numbers separated by a comma. The for-
mer denotes which subtask the service belongs to, and the latter denotes the index
of the service in the same subtask. For example, S1,1 and S1,2 respectively represent
two different services implementing the subtask st1 in Figure 3.3. The index of S1,1
is 1 and that of S1,2 is 2.

 

+
S1,1

S1,2

S2,1

S2,2

S3,1

S3,2+

Fig. 3.4 A service composition scenario

There are the same dependencies as subtasks between services. But in Definition
4, there are only two types of vertexes except the source vertex and the destination
vertex in a SCG, namely AND-Vertex and OR-Vertex. So, how can we represent the
mixture relation? The transition rules from the mixture mode to the other modes are
presented as follows. Suppose that s is a service of the mixture mode, and it invokes
n groups of concurrent successors.

1. For each group of concurrent successors csi, an extra vertex vsi is added to invoke
them, where i ∈ [1..n].

2. Cancel the original arrows from s to services in csi, and add a arrow from s to
vsi, where i ∈ [1..n].

56 Junzhou Luo, Wei Li, Bo Liu, Xiao Zheng and Fang Dong

3. Finally, s invokes vsi by the selection mode and the latter invokes each service in
csi by the concurrence mode, where i ∈ [1..n].

This method reduces the complexity of the graph and makes the graph only in-
clude the selection relation and the concurrence relation. Figure 3.5 shows the sub-
stitution method. By adding an extra vertex vs, called virtual service, the mixture
mode could be expressed by only using the selection mode and the concurrence
mode. In addition, a source vertex and a destination vertex are added. The source
vertex is connected to every vertex that denotes the services belonging to the ini-
tial subtasks by directed arrows. Similarly, all the vertexes that denote the services
belonging to the last subtasks are connected to the destination vertex.

 

s1

s2

s3

s4

+

*
s1

s2

s3

s4

+

*vs

Fig. 3.5 A service composition scenario

In a conclusion, there are three steps from a task graph to a SCG.

1. Every subtask in the task graph is replaced by its candidate services, and then the
services are connected according to the relations between the subtasks.

2. The graph is reduced with the substitution method of the mixture mode.
3. A source vertex and a destination vertex are added.

3.2.6 The Fundamentals of the Ant Algorithm

In Section 3.5, the mechanism for the autonomous search and selection of suitable
services within service composition is inspired by ant colony intelligence. There-
fore, the fundamentals of ant algorithm are introduced in advance below.

In nature, ants always find the shortest path between their nest and the food
source. Scientists found a special substance, called the pheromone, which plays a
key role in the path selection. While walking, ants always deposit the pheromone
on the ground and follow the pheromone previously deposited by other ants prob-
abilistically. The probability of choosing a path is decided by the amount of the
pheromone on the path. In other words, ants prefer to visit a path owning the more
pheromone. Furthermore, the pheromone can fluctuate over time. This effect can
enable ants to find the shortest path.

3 Multi-Agent Coordination for Service Composition 57

The Ant System (AS) algorithm, based on the behaviors of the real ants, is first
applied to Traveling Salesman Problem (TSP). In the AS, there are some artificial
ants deployed on the vertexes in a graph. The artificial ants imitate real ants behav-
iors to find a shortest path. The algorithm is suitable for small instances of the TSP
(up to 30 cities) [7]. The Ant Colony System (ACS)Ant Colony System (ACS) is
an algorithm based on the AS. It is feasible for larger problems. The ACS differs
from the previous AS because of three main aspects. Firstly, the state transition rule
provides a direct way to balance between the exploration of new edges and the ex-
ploitation of a prior edge to accumulate knowledge about the problem. Secondly,
the global updating rule is only applied to edges that belong to the optimal ant tour.
Finally, while ants construct a solution, a local pheromone updating rule is applied.

3.3 Related Work

There are several research initiatives in the field of service composition. This section
introduces some representative work in four areas of service composition respec-
tively, which are the framework of service composition, service composition plan
generation, service selection and plan optimization, and multi-agent based service
composition.

3.3.1 Framework of Service Composition

In survey [10], three approaches of building a composite service are discussed,
namely peer-to-peer approach, mediated approach and brokered approach.

Peer-to-peer is the most general situation in which all services are essentially
equal and any pair of peers can communicate with each other directly. Mediated ap-
proach is based on a “hub-and-spoke” topology, where one service plays a special
role called the process mediator and the other services can communicate with the
mediator but not with each other in terms of both the control and the data sharing.
The mediator coordinates the activities of other services. The widely used languages
such as BPEL4WS are designed for specifying the behaviors of the mediator. In the
topology of the mediated approach, all “leaves” are atomic services. Some or all
of the leaves can be composite services mediated. Assuming that the new mediator
is linked to exactly one service from each of the existing composite services, this
will lead in most practical cases to a composite service whose topology is a tree.
A variation of the mediated approach is the brokered approach, where the process
control is centralized but the data can be passed between any pair of the peers di-
rectly. QBroker, suggested in [27], is a broker-based architecture, which provides the
end-to-end QoS management for distributed services and some functions including
service discovery, planning, selection and adaptation.

58 Junzhou Luo, Wei Li, Bo Liu, Xiao Zheng and Fang Dong

3.3.2 Service Composition Plan Generation

The service composition plan should include details such as the list of participant
services, their execution order, the way they are interconnected and the mappings
between their messages. How is a service composition plan generated? There are
two types of method [22]: business-flow-based and semantics-based. The first ap-
proach is primarily syntactical: web service interfaces are like remote procedure
calls and the interaction protocols are manually written. The semantic web commu-
nity focuses on reasoning about web resources by explicitly declaring their precon-
ditions and effects with terms precisely defined in the ontology. For the composition
of web services, they draw on goal-oriented inference from planning. So far, both
approaches have been developed rather independently from each other.

Service composition based on the business flow is adopted by industry. This
method uses Web Service Definition Language (WSDL) to describe the interface
of web service. The interactions and message exchanges between the services are
described in a business protocol specification language, which specifies the roles of
each of the partners and the logical flow of the message exchanges. The language
includes BPEL4WS proposed by IBM and Microsoft. The most difficult task for an
IT specialist is to specify the logic of the message flow. For this purpose, BPEL4WS
provides programming-language like constructs (sequence, switch, while, pick) as
well as graph-based links that represent additional ordering constraints on con-
structs.

Semantics-based service composition uses the concepts of service ontology to
describe the meaning of services and identify the synonyms. For example, the laptop
service and the notebook service are of the same semanteme. Consequently, they
may provide the same service. Service ontology consists of a common language
agreed by a domain. It defines a terminology that is used by all participants in that
domain. Within a domain, service providers describe their services using the terms
of the domains ontology, while service customers use the terms of the ontology to
formulate queries over the registry of the domain. Ontologies described in languages
such as OWL [21] and DAML [9] can be completely interpreted by machine. In the
condition that the machine can understand services, it can make use of artificial
intelligence approaches to compose services in terms of the service composition
plan.

3.3.3 Service Selection and Plan Optimization

Requirements for a composite service from customers are important for most practi-
cal distributed applications. For example, a customer may need a real-time response
while another customer may prefer cost to the execution time. Therefore, besides
functional properties, the end-to-end QoS of a composite service should be consid-
ered. In general, services with similar and compatible functions may be offered at
different QoS levels. Thus, the decision must be made to select component services

3 Multi-Agent Coordination for Service Composition 59

at appropriate QoS levels in service composition [28] and a QoS-aware algorithm
to select services is needed to optimize the service composition plan. A variety of
approaches are suggested to solve the problem of service selection. Representative
works include using heuristic algorithms [19, 28], integer programming [29] and
genetic algorithms [13, 30].

In [28], Yu et al. design a broker-based architecture called Qbroker to facilitate
the selection of QoS-based services. The objective of service selection is to maxi-
mize an application-specific utility function under the end-to-end QoS constraints.
The problem is modeled in two ways: the combinatorial model and the graph model.
The combinatorial model defines the problem as a Multi-dimension Multi-choice
0–1 Knapsack Problem (MMKP). The graph model defines the problem as a Multi-
Constraint Optimal Path (MCOP) problem. Efficient heuristic algorithms for service
processes of different composition structures are presented in this chapter.

In [29], AgFlow is presented as a middleware platform that enables the QoS-
driven composition of web services. In AgFlow, the QoS of web services is eval-
uated by means of an extensible multi-dimensional QoS model, and the selection
of component services is performed in such a way as to optimize the QoS of the
composite service. Furthermore, AgFlow adapts to changes that occur during the
execution of a composite service by revising the execution plan in order to conform
to the customers constraints on QoS. The salient features of AgFlow include two
alternative QoS-driven service selection approaches for the composite service exe-
cution: one is based on the local (task-level) selection of services and the other is
based on the global allocation of tasks to services using integer programming.

3.3.4 Multi-Agent Based Service Composition

Up to now, multi-agent based service composition also appears in the literature.
Agent based systems facilitate the deployment of a widely distributed architec-
ture, with high capabilities for communication and negotiation among all the com-
ponents. Because the agent characterizes autonomy, social ability, reactivity, pro-
activeness and mobility, it has been introduced to build a composite service. During
the composition process, agents engage in conversations with their peers to agree
on the services that participate in this process. Mobile agents can represent the cus-
tomer or the main web service, and navigate around the network to contact interest-
ing services.

Maamar et al. [14] put forward an approach for service composition based on
agents and context. In their paper, three types of agents have been suggested, namely
composite-service-agent associated with composite services, master-service-agent
associated with web services and service-agent associated with service instances.
The different agents are aware of the context of their respective services in the ob-
jective to devise composite services on-the-fly. LEAP is a project supported by Eu-
ropean Commission, in which a multi-agent based architecture model for service
composition is developed [2]. Its main feature is a set of generic services that are

60 Junzhou Luo, Wei Li, Bo Liu, Xiao Zheng and Fang Dong

implemented independently of agents and can be installed into agents by the appli-
cation developer in a flexible way. Therefore, services plugged into agents can be
composed on the multi-agent platform. Moreover, two applications using this archi-
tecture model are also developed within the LEAP project. Their application domain
is the support of mobile, virtual teams for the German automobile club ADAC and
for British Telecommunications.

3.4 Architecture of MQSC

The process of service composition can be usually characterized by four phases:
task decomposition phase, service search phase, service selection phase and service
execution phase. Firstly, the task submitted by a customer can be decomposed into
several subtasks, which can be accomplished by each single service. Secondly, it is
necessary to search services and gain their information in order to map each subtask
to all corresponding candidate services with the same function. Thirdly, a suitable
service for each subtask needs be chosen to generate an optimal service executable
plan in order to satisfy the customers end-to-end QoS constraints. Finally, a com-
posite service is executed based on the optimal service executable plan. In order to
accomplish the service composition life-cycle, MQSC is presented in this chapter.
MQSC not only provides a mechanism for the dynamic service composition but
also can ensure the end-to-end QoS of the composite service by using a multi-agent
system. Figure 3.6 shows the architecture of MQSC. According to the role played
in service composition, agents in MQSC are divided into six classes: Portal Agent
(PA), Decision Agent (DA), Search Agent (SA), Registry Agent (RA), Management
Agent (MA) and Execution Agent (EA). They can work together in order to accom-
plish a complex task.

3.4.1 Portal Agent

The Portal Agent is the interface to the customers and provides them with the ca-
pability of the seamless access to a variety of complex services on the pervasive
network. There is one single PA in the whole system, which provides customers
with Web-based access. By adopting the Web browser as the Graphic User Interface
(GUI), a customer can download the hypertext pages with Java Applets from the PA
through HTTP and put forward the requirements (task) and the initial parameters.
Then the PA can automatically formalize the task submitted by the customer to gen-
erate a Task Graph, in which each node represents a subtask, and then send the Task
Graph to the Decision Agent. After the task is accomplished, the PA provides the
results from the DA to the customer.

3 Multi-Agent Coordination for Service Composition 61

 

Portal Agent

Decision Agent

Search
Agent

Register
Depository

Registry
Agent

Management
Agent

Search
Agent

Register
Depository

Registry
Agent

Service

EA

Service

EA

Service

EA

Service

EA

Fig. 3.6 Architecture of MQSC

3.4.2 Decision Agent

There is a single Decision Agent, which is a static intelligent agent. According to
the ontology domains of services in the Task Graph submitted by the PA, the DA can
dynamically create Search Agents and then send them to service register depository
nodes to search the suitable services. After receiving the information on services
from the SAs, the DA translates the Task Graph into the SCG and then executes the
service selection algorithm depicted in Section 3.5.2 to automatically generate an
optimal service executable plan, which satisfies end-to-end QoS constraints of the
customer. Finally, the DA creates a Management Agent to implement the optimal
service executable plan and sends the executable results to the PA.

3.4.3 Search Agent

A Search Agent is a mobile agent that is responsible for searching for services in
service register depositories over the network. The length of its lifecycle is related
to its search efficiency. In the normal situation, its life decays as time goes on. How-
ever, if the SA keeps on finding new services, its life will increase. When the life

62 Junzhou Luo, Wei Li, Bo Liu, Xiao Zheng and Fang Dong

value decreases to 0, it will kill itself. SAs are dynamically created by the DA and
only care about services related to them. For example, a SA focusing on books only
cares about information on books and has no interest in restaurant reservations. Each
SA belongs to one kind of the ontology domain and each ontology domain can also
generate many SAs. Since a SA will kill itself when its life is over, the DA only
needs to generate SAs and receive the messages from them.

3.4.4 Registry Agent

A Registry Agent resides in services register depository nodes. Its main function
is to help the SA to find the optimal path in order to get more new services. A
RA maintains a service routing table, which records the service ontology routings.
The items in the table include the desired service ontology, the next service register
depository node address and the pheromone amount. After RA receives messages
from SA, it will increase the pheromone amount on the corresponding routing item,
which denotes that more new services can be found there. The routing table needs
to be updated to decrease the pheromone amount regularly. These pheromones will
fluctuate and eventually disappear as there is no increment, which indicates that the
corresponding service may no longer exist or that there is no more demand for such
a service.

3.4.5 Management Agent

The Management Agent is dynamically created by the DA and is responsible for
implementing an optimal service executable plan. According to the optimal service
executable plan, the MA can create an EA assembled with the SCG and the specified
domain knowledge to implement the composite service. The MA can communicate
with the EA by messages. When an EA access to a web service fails, the EA will
send a message to the MA, and then the MA will dispatch a replicated EA to retry
the prior EAs work so as to make the prior EA to continue its composition plan.

3.4.6 Execution Agent

The Execution Agent is a mobile agent created by the MA dynamically. Compared
with the MA, the main function of the EA is to implement the composite service. So
EAs behaviors are related with the process of the services. Four basic behaviors are
important for the EA: cloning, messaging, service triggering and disposal. During
the course of the composite service implementation, one component services output
may be the other component services input. Under this condition, an EA can clone a

3 Multi-Agent Coordination for Service Composition 63

new EA to execute the following services. When an EA has finished its task, it will
terminate its execution and die.

3.5 Service Composition Generation

In this chapter, tasks submitted by customers are described by a Task Graph. As-
suming that Task Graph is given, the next step is how to get each candidate service
to form a SCG and how to get an optimal service executable plan by service selec-
tion. A service search algorithm and a service selection algorithm are introduced as
below, which are inspired by Ant Colony Systems.

3.5.1 Service Search and Composition Plan Generation

For mapping the subtask to corresponding candidate services, it is necessary to gain
information on the services. Services are usually maintained by the creator and in-
formation is deployed to a service register depository provided to the service com-
position organization. The service register depository can be either centralized or
distributed. The advantage of the centralized model is that it is easily implemented,
but it has a bottleneck. If the centralized register depository is corrupted, the running
of the system would be affected. The distributed model has many different service
register depositories, which are responsible for service registries in distinct domains.
These nodes compose an overlay network. There is a routing table in each service
register depository node, which is used to locate other nodes

There are two types of agents incorporated to query services in the register depos-
itory network: SA and RA. An algorithm is needed to guide a SA to search services
in order to reduce the total search time and improve efficiency. In this chapter, we
adopt the mechanism of ant colony algorithm and use a pheromone to label the path
to guide the search path of a SA. This is indirect coordination, which needs no direct
communication or message passing.

A SA roams in the service register depository network and queries services be-
longing to its own ontology domain. Its behaviors are shown as follows:

1. If a new service, which the SA never discovered before, is found in the service
register depository, a report about this service will be given to the DA. The report
contains information on the function, QoS attributes and the physical location of
this service. The life of the SA will be increased and it also informs the RA in
the last hop register depository node that a new service has been found.

2. If a SA cannot find a new service, its life value will be decreased.
3. If the life value of a SA is 0, it will kill itself.
4. If there is more than one service ontology in the table, an SA compares the

amount of pheromones and chooses the path that has the most pheromone.

64 Junzhou Luo, Wei Li, Bo Liu, Xiao Zheng and Fang Dong

5. If there is not any related service ontology, an SA will randomly choose any node
as next hop.

The RAs mainly maintain the service routing tables. Its behaviors are described as
follows:

1. Receive the reports from an SA. If there is no such service that a SA finds in the
table, a new item is added. Otherwise, the corresponding pheromone amount is
increased.

2. Regularly update the table to decrease the pheromone amount in all items. If an
items pheromone amount is 0, it will be discarded.

In the above method, the path that has the highest pheromone amount would be
chosen. The drawback of this method is the path which has the least pheromone will
never been chosen. So roulette wheel selection can be applied to improve it. Every
time, the wheel location is partitioned by the value of the pheromone in the route
table. The higher the pheromone is, the bigger the area in the roulette wheel. As
the area is bigger, the probability that the corresponding path is chosen is greater.
Then a point from roulette wheel is chosen randomly, and the corresponding path
is also chosen. After adopting this method, the paths with low pheromones also get
the chance to be chosen, even if the probability is smaller.

3.5.2 QoS-Aware Service Selection

Ant system algorithms have been applied to the shortest-path problem [12] and
the packet routing problem in communications networks [4] successfully. For these
complex combinatorial optimization problems, Ant system algorithms may provide
a good solution. The goal of our algorithm is to discover an optimal service exe-
cutable plan in a SCG. Different from the generic shortest-path problem, the service
executable plan includes parallel sub-paths, and the parallel execution part of that is
also a critical path problem. The difficulty of our solution is how to process parallel
paths.

Informally, the algorithm works as follows. In SCG, m ants are initially posi-
tioned on the source vertex. The task of each ant is to find a path from the source
to the destination. While finding the path, if the ant is in an OR-vertex, it will apply
a state transition rule to choose the successor. And if the ant is in an AND-vertex,
it will clone several new ants and each ant will choose one of the successors re-
spectively. The ant also modifies the amount of pheromone on the visited edges by
applying the local updating rule. Once all ants have terminated their tour, the ver-
texes visited by all ants, which belong to the same clone matrix, compose a service
executable plan. Then the amount of pheromone on edges of the optimal service
executable plan are modified by applying the global update rule. In the algorithm,
ants should be guided by both heuristic information and pheromones. An edge with
a higher amount of pheromone will have more chance to be chosen.

3 Multi-Agent Coordination for Service Composition 65

The key to the algorithm is the state transition rule, the ant clone rule, the global
updating rule and the local updating rule.

3.5.2.1 State Transition Rule

When an ant is at an OR-Vertex i, it will choose and move to a successor j by
applying the rule given by formula 3.2,

j =
{

arg maxu∈JK(i){[τ(i, j)][η(i,u)]β} ifq≤ q0
S otherwise

(3.2)

where q is a random number uniformly distributed in [0..1], q0 is a parameter (0≤
q0 ≤ 1), and S is a random variable selected according to the probability distribution
given in formula 3.3.

pk(i, j) =

{
[τ(i, j)][η(i, j)]β

∑u∈JK (i)[τ(i,u)][η(i,u)]β
if j ∈ Jk(i)

0 otherwise
(3.3)

pk(i, j) is the probability with which ant k at OR-Vertex i chooses and moves to
its successors.

In formulas 3.2 and 3.3, τ is the pheromone, Jk(i) is the successor set of i, and
β is a parameter which determines the relative importance of the pheromone versus
the heuristic information (β > 0). The heuristic function is η = u j, where utility
function u j is introduced as the heuristic information.

According to definitions 2 and 3,u j = wc.scost(j)+wi.stime(j)+wa.savai(j) where
scost(j) = scost(c(i, j)), stime(j) = stime(t(i, j)) and savai(j) = savai(a(i, j)).

3.5.2.2 Ant Clone Rule

When an ant is at an AND-Vertex, it will firstly clone n− 1 ants, where n equals
the number of this vertex’s successors. Then each ant will choose and move to a
successor vertex. The rule is that only one of successor vertexes belonging to the
same task will be chosen by each ant respectively according to the state transition
rule depicted above. In other words, an ant could only choose one of successor
vertexes belonging to the same task, and a different ant does not choose successors
from the same task.

3.5.2.3 Global Updating Rule

Just like ACS, this algorithm also has a global pheromone updating rule. It is exe-
cuted after all ants have arrived at the destination vertex. The amount of pheromone
is updated according to:

66 Junzhou Luo, Wei Li, Bo Liu, Xiao Zheng and Fang Dong

τ(i, j) = (1−α).τ(i, j)+α.∆τ(i, j) (3.4)

where

∆τ(i, j) =
{

U if(i, j) ∈ owsp
0 otherwise

0 < α < 1 is the pheromone decay parameter, owsp denotes the optimal ser-
vice executable plan and U = wc.scost(C) + wt .stime(T) + wa.savai(A) is a util-
ity function of owsp. In formula U , C = ∑(i, j)∈owsp c(i, j), T = max(Tk), and
A = ∏(i, j)∈Pathk

a(i, j) iff k = arg max(Tk) where Tk = ∑(i, j)∈Pathk
t(i, j) and Pathk

is the path that the k-th ant has passed by, which belongs to a clone group having
found owsp.

Formula 3.4 indicates that only pheromones on the edges belonging to the opti-
mal plan will be reinforced.

3.5.2.4 Local Updating Rule

While finding the plan, ants change the pheromone levels on the passing edges using

τ(i, j) = (1−ρ).τ(i, j)+ρ.∆τ(i, j) (3.5)

where ∆τ(i, j) = τ0, τ0 is the initial pheromone level, and ρ (0 < ρ < 1) is a
parameter.

The detailed algorithm is depicted as follows:

1. Set t = 0, and randomly set as a positive constant for all edges (i, j);
2. m ants are positioned at the source vertex;
3. If ant k is at an AND-Vertex, it executes the ant clone rule. Otherwise, if ant k is

at an OR-Vertex, it will choose a successor according to formulas 3.2 and 3.3;
4. Apply the local updating rule;
5. If ant k arrives at the destination vertex, goto (6), or else goto (3);
6. When all ants arrive at the destination vertex, a group of ants having the same

clone matrix will get a service executable plan;
7. Apply the global updating rule;
8. t = t +1;
9. If the optimal service executable plan satisfies the customer’s requirements, the

process is completed, otherwise goto (2).

3.6 Service Composition Deployment and Execution

There are typically two types of agents incorporated into the service composition
deployment. One is the MA, the other is the EA. Every optimal service composition
plan is submitted to the MA by the DA. The MA will create and dispatch an EA to

3 Multi-Agent Coordination for Service Composition 67

execute the plan, and then the EA with the plan information will visit the service
nodes according to a certain scheduling algorithm.

3.6.1 How to Manage the EA to Implement the Composite Plan for
the MA

The MA is responsible for creating and deploying the EA to implement the compo-
sition plan online. The major function of the MA includes:

• Preparing Agent: Because a composite service plan has a unique entry node, the
MA only needs to prepare an EA for one plan and the EA with the whole plan
will start to migrate from the entry node of the composite plan.

• Dispatching Agent: The entry node of the composite plan is the first site of the
EA’s migrating itinerary, so the EA is firstly dispatched by the MA to the entry
node of the plan.

• Monitoring Agent: If an exception happens during plan execution and the EA is
destroyed, it is desired to recover the EA to continue service processing. If the
executing time of one plan surpasses the defined threshold, the MA will dispatch
a new EA to execute the plan again.

3.6.2 The Plan Scheduling Algorithm of the EA

Every composite service plan transmitted to the EA is a Directed Acyclic Graph
(DAG), which has a unique entry node and a unique end node. Every node in the
graph corresponds to one service node and the service processing flow is the EA’s
migrating itinerary from the entry node to the end node.
Definition 7: Given two nodes T1 and T2, if there is an edge from T1 to T2, then T1
is the predecessor of T2 and T2 is the successor of T1.
Definition 8: Given two nodes T1 and T2, if there is a path from T1 to T2, then T1 is
an ancestor of T2 and T2 is a descendant of T1.

3.6.2.1 Basic Execution Patterns

In the DAG of the composite plan, every service node can be executed after all of
its predecessors have been finished. As shown in Figure 3.7, there are four basic
execution patterns for the EA and any complex execution process can be divided
into these patterns.

• Sequential Pattern. If ST1 is the unique predecessor of ST2, then one EA is allo-
cated to ST1 and ST2 to invoke services on them sequentially.

68 Junzhou Luo, Wei Li, Bo Liu, Xiao Zheng and Fang Dong

• Branched Pattern. If ST1 is a predecessor of ST2 and ST3, then one EA is allo-
cated to ST1. After EA reaches ST1 and finishes the subtask, it will clone itself to
dispatch the new EA to ST3, and then move to ST2.

• Joined Pattern. If ST1 and ST2 are the predecessors of ST3, then two EAs are allo-
cated to ST1 and ST2 respectively. After the two EAs reach ST3 and communicate
with each other, one of them destroys itself.

• Double Sequential Pattern. If ST1 and ST2 are the predecessors of ST3 and ST1 is
also the predecessor of ST2, namely there are two paths from ST1 to ST3, and then
one EA is dispatched to invoke services on ST1, ST2and ST3.

 

ST1

ST2

ST3

ST1 ST2

ST1

ST2

ST3

ST1

ST2

ST3

(a) Sequential Pattern (b) Branched Pattern

(c) Joined Pattern (d) Double Sequential Pattern

Fig. 3.7 Basic execution patterns for EA

Input: DAG of the Composite Plan (G)
Output: The Marked DAG (G′)
W : the working queue;
L: integer (layer number);
1. W = null, L = 1;
2. The entry node of G is marked with L and added into W ;
3. while W is not empty do

L := L+1;
Select the head node P from W ;
for each successor S of P in G do

if there is only one path from P to S then
S is marked with L;
Add S into the tail of W ;

end if
end for
Delete P from W ;

end while
Algorithm 1: Using Breadth First Search algorithm to traverse the DAG to
mark every node with the layer number.

3 Multi-Agent Coordination for Service Composition 69

Input: The Marked DAG (G′)
Output: Executing Report (Agent Message)
S: the work node;
1. S = the entry node of G’; L = the layer number of S;
2. EA executes migrate(S);
3. function migrate(S);

1. EA migrates to S;
2. if S has more than one predecessor in the (L−1) layer then

EA waits for other cloned EAs and gets their outputs;
Other cloned EAs are destroyed by themselves;

end if
3. if the service on S is available then

EA invokes the service on S and takes the output of the service;
else EA sends a fail message to MA and the algorithm is ended;

end if
4. U = the successors nodes of S in the (L+1) layer; m=the length of U ;
5. if m = 0 then

EA sends the final result to MA and the algorithm is ended;
else (m−1) EAs are cloned;

end if
6. for each node N in U do

One EA executes migrate(N);
end for

end function
Algorithm 2: The EA will start to work from the entry node of the marked DAG
according to the four basic execution patterns mentioned above. Multiple EAs
may be created to perform the tasks in parallel during the course of scheduling.

3.6.2.2 Scheduling Algorithm of the EA

Along with the DAG, the EA will execute the task according to the basic execu-
tion patterns mentioned above, and the directed edges in the DAG direct the EAs
migration. The scheduling algorithm of EA is divided into two parts: Algorithm 1
and Algorithm 2. Algorithm 1 makes the nodes of the DAG with the layer number
and Algorithm 2 gives the method of scheduling the EA, such as cloning a new EA,
disposing oneself, communicating with each other and so on.

3.6.3 An Example for the Scheduling Algorithm of the EA

To describe the algorithm controlling the behavior of the EA explicitly, an example
of the composite plan (shown in Figure 3.8) and its execution process are given
respectively.

When the MA receives the composite plan, Algorithm 1 is firstly executed to
mark every node in DAG with the layer number. The execution result is shown in
Figure 3.9. Then, the MA creates an EA named A1 with the marked DAG and A1

70 Junzhou Luo, Wei Li, Bo Liu, Xiao Zheng and Fang Dong

 

ST1 ST3

ST2

ST6

ST4

ST5

ST7

ST8 ST10

ST9

Fig. 3.8 An example of the composite plan

migrates to ST1 to invoke the service on ST1. After A1 finishes the task, it clones
itself to dispatch a new EA named A2 to ST3, and then itself moves to ST2. After A1
reaches ST2 and finishes the task, it clones itself to dispatch a new EA named A3 to
ST5 again, and then itself moves to ST4. When A1, A2 and A3 all reach ST10, A2 and
A3 transfer their outputs to A1 and then are destroyed by themselves. Because ST10
is the end node, A1 reports the final result to MA after it invokes the service on ST10.

 

ST1 ST3

ST2

ST6

ST4

ST5

ST7

ST8 ST10

ST9

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Fig. 3.9 The marked DAG

As shown in Figure 3.10, it is known there are three paths between ST1 and ST10.
They are (ST1,ST2,ST4,ST7,ST10), (ST1,ST2,ST5,ST8,ST10) and (ST1,ST3,ST6,ST9,
ST10) respectively. These three paths can be traveled by A1, A2 and A3 in parallel.
This menas that the composite service can be implemented with the most flexibility
by agents.

3 Multi-Agent Coordination for Service Composition 71

 

ST1 ST3

ST2

ST6

ST4

ST5

ST7

ST8 ST10

ST9

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Agent cloning

Agent disposing

Fig. 3.10 The execution process for EA

3.7 Case Study

While the outcomes of our research are generic enough to be applicable to a wide
range of applications, we use the area of e-traveling as a case study to ease the
understanding of our solution for service composition.

3.7.1 Case Scenario Description

The major concern of e-traveling is to provide a detailed travel schedule and accom-
plish the relevant e-business process to customers by using information and commu-
nication technologies. With the dev AgFlow elopment of Web Service techniques,
travel domain enterprises attempt to encapsulate their application processing into
web services. Previously, when establishing a travel schedule, customers may ac-
cess several different web services provided by the different enterprises; meanwhile
the enterprises also need to communicate with each other. It not only reduces the
burden on customers and enterprises but also improves the efficiency of travel plan-
ning. In the case study, four generic categories of services relevant to e-traveling,
which are used in the travel assistant application, are presented, as shown in Fig-
ure 3.11.
Housing service
This kind of generic service can provide house rental and hotel booking services
according to the users’ needs.

• Hotel booking: Aimed at short-term housing. This service provides the relevant
hotel booking service and its unit price is higher.

72 Junzhou Luo, Wei Li, Bo Liu, Xiao Zheng and Fang Dong

 

E-traveling
service

Transport
service

Housing
service

Attraction
service

E-banking
service

Intracity service

Intercity service

Flight Booking

Train Booking

Ship Booking

Car Rental

Bus Search

Hotel Booking

House Rental

Attraction Search

Cicerone Booking

Bank Payment

Loan Service

Fig. 3.11 The structure of four generic services

• House rental: Aimed at long-term housing. This service provides the relevant
house rental service. Its unit price is lower, but you must rent more than one
month.

Transport service
This kind of generic service can provide the transport search, vehicle rental and
tickets booking services according to the customers’ needs. Furthermore, in terms
of the location of departure and destination, it can be divided into intercity transport
and intracity transport.

1. Intercity transport. Mainly aimed at the different locations for departure and des-
tination, provides the ticket booking for long-distance transport, including three
special services:

• Flight Booking: Both the departure and the destination must have an airport.
• Train Booking: Both the departure and the destination must have a railway

station.
• Ship Booking: Needs an accessible sea route between the departure and the

destination.

2. Intracity transport. Mainly aimed at the same locations for departure and desti-
nation, provides car rental and intracity vehicle search, including:

• Car rental: Build a connection between users and the automobile leasing com-
pany, and provide users the convenient car rental operation.

• Bus search: According to the departure and the destination, this service pro-
vides the bus search operation.

Attraction service
This kind of generic service can provide the attraction search and the cicerone book-
ing services according to the users’ need.

3 Multi-Agent Coordination for Service Composition 73

• Attraction search: This service provides users an individual attraction search ser-
vice. It can search and find the recommended attractions in terms of the city and
the users’ preference.

• Cicerone booking: This service provides the cicerone booking operation to users.

E-banking service
This kind of generic service can provide users the relevant banking functions, in-
cluding bank payment and loan services.

• Bank payment: Providing users an e-business payment operation using the Inter-
net.

• Loan service: Providing users a loan-relevant operation

Let us consider the following typical scenario to the e-traveling application do-
main. Assume that John, a travel fan, wants to have a holiday in Beijing with his
family. Typically, he would have to communicate with flight or train tickets offices
to book and pay for the tickets. Then, he would book a hotel or search for attractions
by using Internet. Also, when he arrived at the destination, he would want to rent a
car or search for local travel passes. The resulting information is transmitted by dif-
ferent means of communication using different relevant single e-traveling services.
John may also have to visit some of the departments. The difficulties in collect-
ing the information and communicating with different services prevent consumers
from the convenient e-traveling self-service. To facilitate the use of e-traveling ser-
vices and expeditiously satisfy consumers’ needs, we organize these independent
services into a composite service called “Travel Assistant”, which can achieve the
whole business process, hide the underlying-details and provide a uniform access
method to users.

 

Request:
Departure: Nanjing;
Destination: Beijing;
Date: 2008-8-8 ~ 2008-8-18;
Expense: no more than $2000;
Payment method: e-banking;
Additional: Need attraction search; Need local traffic.

Fig. 3.12 Example travel request

In this case, John is planning to travel to Beijing from Nanjing, then he sends a
travel request to the Travel Assistant service, such as that shown in Figure 3.12

John’s travel request can be divided into several sub-requests. Each sub-request
would typically be performed by executing one or more web services relevant to e-
traveling. The detailed description of the service processing will be described later.
Our work is mainly about how these e-traveling services can be used to build up
one composite service to achieve users’ requirements by using a multi-agent based
service composition infrastructure.

74 Junzhou Luo, Wei Li, Bo Liu, Xiao Zheng and Fang Dong

3.7.2 Multi-Agent System for Service Composition

As shown in Figure 3.13, there are two service virtual domains denoted respectively
by two dashed line frames in the multi-agent system used by this case study. There
is one distributed service register depository and three workstations in every virtual
domain. In each service register depository, one Registry Agent has been deployed.
Also the services relevant to e-traveling have been deployed on each workstation.
Meanwhile, the system has one portal workstation C and there are two agents called
Portal Agent and Decision Agent respectively in it. In order to simplify the case
description, every kind of service has only two different services provided by dif-
ferent providers. The details of all services relevant to e-traveling, which have been
deployed on the workstations, are described as follows in Table 3.1.

 

Workstation B3

Workstation B1

Service
register B

Workstation A2

Workstation A1

Service
register A

Service CR1

Service AS1

Service CR2

Workstation A3

Service FB1

Service BP1

Service TB1

Service BP2
Service AS2

Service HB2

Service BS1

Workstation B2

Workstation C

Portal
Agent

Decision
Agent

Registry
agent 1

Registry
agent 2

Service FB2

Service BS2

Service HB1

Service TB2

Fig. 3.13 The multi-agent system for service composition

Table 3.1 The services relevant to e-traveling in the system

Service name Short name Category Location
Flight booking 1 FB1 Transport service Workstation B1
Flight booking 2 FB2 Transport service Workstation A1
Train booking 1 TB1 Transport service Workstation B1
Train booking 2 TB2 Transport service Workstation B2
Bank payment 1 BP1 E-banking service Workstation B1
Bank payment 2 BP2 E-banking service Workstation B3
Hotel booking 1 HB1 Housing service Workstation A2
Hotel booking 2 HB2 Housing service Workstation B2

Attraction search 1 AS1 Attraction service Workstation A3
Attraction search 2 AS2 Attraction service Workstation B3

Car rental 1 CR1 Transport service Workstation A2
Car rental 2 CR2 Transport service Workstation A3
Bus search 1 BS1 Transport service Workstation B2
Bus search 2 BS2 Transport service Workstation A1

3 Multi-Agent Coordination for Service Composition 75

3.7.3 Travel Assistant Service Compositing

According to the multi-agent system and the case study scenario mentioned above,
the processing sequences of the service composition for the travel assistant service
can be denoted by the sequence numbers in Figure 3.14. The details of the process
are as follows.

 

Portal Agent
Customer

Decision
Agent

_

_

_

_

Search
agent

_

Management
agent Execution

agent

Workstation A2

Workstation A1

Service
register A

Service CR1

Service AS1

Service CR2

Workstation A3

Registry
agent 1

Service FB2

Service BS2

Service HB1

Workstation B3

Workstation B1

Service
register B

Service FB1

Service BP1

Service TB1

Service BP2
Service AS2

Service HB2

Service BS1

Workstation B2

Registry
agent 2

Service TB2

_

Fig. 3.14 The processing of travel assistant service composing

Step1. The customer (John) submits the request to the Portal Agent. The request
can be denoted by XML as shown in Figure 3.15.

 

<Request>
 < Departure>Nanjing</Departure>

<Destination>Beijing</Destination>
 < Date>
 < Begin>2008-8-8</Begin>
 < End>2008-8-18</End>
 </ Date>
 < Expense><= $2000</Expense>
 < Payment method>e-banking</Payment method>
 < Additional>
 < A>Need attraction search
 < B>Need local traffic
 </ Additional>
</Request>

Fig. 3.15 The XML format of John’s request

76 Junzhou Luo, Wei Li, Bo Liu, Xiao Zheng and Fang Dong

Step2. The Portal Agent decomposes John’s request into several subtasks and
submits the service composition processing to the Decision Agent. According to
the departure and the destination, flight and train are two possible travel methods.
So the flight booking service and the train booking service are chosen, but they are
alternatives. Whichever ticket booking service is chosen, the e-banking service is
necessary. After the payment for the ticket, two kinds of services, hotel booking
and attraction search, can be executed synchronously. At last, according to the lo-
cation of the hotel and the attraction, the car rental service or the bus search service
should be chosen alternatively. Therefore, the processing of Travel Assistant can be
described as shown in Figure 3.16.

 

John

OR

Flight Booking

Train Booking

Bank Payment

Hotel Booking

AND

Attraction Search

OR

Car Rental

Bus search

Fig. 3.16 The processing of e-traveling composite service

Step3. Decision Agent generates one Search Agent dynamically and transfers
the information about every kind of service in the composition processing to it. Af-
terwards, the Search Agent makes a conversation with Registry Agents located at
domain-A and domain-B respectively in order to discover all available services and
get the relevant QoS parameters from them, which are located at every workstation,
that satisfy the demands of the travel assistant service. Meanwhile, according to the
dynamical change of the network topology, every Registry Agent maintains the po-
sition of the neighbor domain’s Registry Agent. In this scenario situation, the details
and QoS parameters of the services relevant to e-traveling, which are obtained by
the Search Agent, are denoted in Table 3.2. In order to simplify the discussion, the
QoS of every service is denoted by three parameters described in the third column
of Table 3.2, including the response time, the service availability and the service
cost. The fourth column of Table 3.2 denotes the QoS benefit value of the service,
which can be calculated by user satisfaction function and utility function defined as
follows.

stime =

1 t ∈ [0,50]
1/(t−50) t ∈ (50,150)
0 t ∈ [150,+∞)

(3.6)

sexpensive =

1 e ∈ [0,40]
1/(e−40) e ∈ (40,120)
0 e ∈ [120,+∞)

(3.7)

3 Multi-Agent Coordination for Service Composition 77

Table 3.2 The details of all the available services
Service name Location QoS parameters (Response Benefit value

time/cost/availability) of the service
Flight booking 1 B1 40/60/0.99 0.711
Flight booking 2 A1 50/50/0.94 0.706
Train booking 1 B1 80/100/0.94 0.391
Train booking 2 B2 90/80/0.97 0.403
Bank payment 1 B1 80/140/0.96 0.397
Bank payment 2 B3 100/120/0.98 0.402
Hotel booking 1 A2 70/100/0.98 0.412
Hotel booking 2 B2 80/90/0.97 0.404

Attraction search 1 A3 110/130/0.98 0.400
Attraction search 2 B3 130/100/0.97 0.397

Car rental 1 A2 120/40/0.92 0.672
Car rental 2 A3 90/80/0.97 0.403
Bus search 1 B2 70/50/0.98 0.437
Bus search 2 A1 50/60/0.96 0.699

savai = a a ∈ [0.8,1] (3.8)

u = 0.3.stime +0.3.sexpensive +0.4.savai (3.9)

For example, three QoS parameters of Flight Booking 1 are X, Y and Z respec-
tively. In term of formulas 3.6, 3.7, and 3.8, the benefit value of every QoS parameter
is 1, 0.05 and 0.99 respectively. Using formula 3.9, the benefit value of Flight Book-
ing 1 can be calculated as follows: u = 0.3∗1+0.3∗0.05+0.4∗0.99 = 0.711.

Step4. According to the scheduling algorithm mentioned above, the Decision
Agent accomplishes the service selection of the travel assistant composite service.
The final composition plan is denoted in Figure 3.17. The optimal selection of ser-
vices, which maximized the sum of all service utilities, is {F1, B2, H1, A1, B2}with
a total utility of 823, an execution time of 300, an expense of 480 and an availability
of 91.28%.

 

FB1 CR1

AS1

HB2

BP2

Fig. 3.17 Final composition plan of travel assistant service

Step5. Subsequently, the Decision Agent generates a Management Agent dy-
namically and transfers the optimal composition plan to the MA.

Step6. Finally, the Management Agent creates an Execution Agent with the op-
timal composition plan dynamically. Then, the EA should call the services in the

78 Junzhou Luo, Wei Li, Bo Liu, Xiao Zheng and Fang Dong

proper sequence according to the optimal composition plan. Firstly, the EA moves
to the entry service FB1 located at workstation B1 in domain B. After calling FB1
and obtaining its result, EA moves to workstation B3 to call the service BP2. Af-
ter BP2 is executed, HB2 and AS1 can be executed synchronously. Therefore, EA
should be cloned and takes the remnant plan to HB2 and AS1 located at workstation
B2 and A3 respectively. When both of them are executed successfully and move to
the final service CR1, only one EA is needed and the cloned EA should be destroyed.
Finally, after all the services of the travel assistant are executed successfully, the fi-
nal result of the composite service will be transferred to the MA, and then John will
receive all the Nanjing-Beijing travel information about the flight ticket booking,
hotel booking, the relevant attractions and car rental.

3.8 Conclusion and Future Work

Service composition offers a way to expand the ability of the single service and im-
plement service reuse. It allows a distributed application to be constructed through
the combination of other existing services, and this composition offers added value
to the original services. However, the service discovery and selection mechanisms
are static and not flexible in existing approaches to service composition, and the end-
to-end QoS of a composite service can not always be ensured. This chapter puts for-
ward a Multi-agent based QoS-aware Service Composition solution (MQSC), which
not only provides a mechanism for dynamic service composition but also can ensure
the end-to-end QoS of the composite service. Compared with the existing methods
for using multi-agent systems in service composition [6, 8, 20, 25], our solution has
the following characteristics:

1. Executing automatically: Once the task is submitted to the PA, the process of
service composition including service search, service selection and service exe-
cution will be executed automatically.

2. Deciding dynamically: On the one hand, the DA decides the optimal service
composition plan dynamically based on the ACS. On the other hand, the EA
decides their behaviors dynamically according to the plan scheduling algorithm.

3. Fault recovering: The management function of the MA guarantees that the sys-
tem has fault tolerance.

4. Saving resources: The basic execution patterns make the system avoid creating
redundant agents so as to alleviate burdening the network.

5. Allowing distributed and parallel execution: If there are multiple parallel paths
in the SCG, multiple EAs will travel these paths in parallel without waiting. This
avoids the frequent communication between agents presented in [6].

In this chapter, we assume that the Task Graph has been given and focus on service
search, service selection and service execution. Thus, how to get the Task Graph
from the general requirements submitted by customers is one of our future works.

3 Multi-Agent Coordination for Service Composition 79

In addition, heuristic information could improve the performance of the ASC based
algorithm, so other heuristic methods would be also considered in our future work.

Acknowledgements

This work is supported by the National Natural Science Foundation of China under
Grants No. 90604004 and 90412014, Jiangsu Provincial Natural Science Foundation
of China under Grants No. BK2007708 and Jiangsu Provincial Key Laboratory of
Network and Information Security under Grants No. BM2003201.

References

1. B. Benatallah, Q. Z. Sheng and M. Dumas. The Self-serve Environment for Web Services
Composition. IEEE Internet Computing, 1:40–48, 2003.

2. M. Berger, M. Bouzid and M. Buckland. An Approach to Agent-Based Service Composition
and Its Application to Mobile Business Processes. IEEE Transaction on Mobile Computing,
2(3):197–206, 2003.

3. BPEL4WS Consortium. Business Process Execution Language for Web Services
http://www.ibm.com/Developerworks/library/ws-bpel, 2003.

4. G. D. Caro and M. Dorigo. AntNet: Distributed Stigmergetic Control for Communications
Networks. Journal of Artificial Intelligence Research, 9:317–365, 1998.

5. F. Casati, S. Ilnicki and L. J. Jin. Adaptive and Dynamic Service Composition in eFlow. In
Proceedings of CAiSE00, pages 13–31, 2000.

6. Y. Charif-Djebbar and N. Sabouret Dynamic Service Composition and Selection through an
Agent Interaction Protocol. In Proceedings of IEEE/WIC/ACM International Conference on
Web Intelligence and International Agent Technology Workshops, pages 105–108, 2006.

7. M. Dorigo, L. M. Gambardella. Ant Colony System: A Cooperative Learning Approach to the
Traveling Salesman Problem. IEEE Transactions on Evolutionary Computation, 1(1):53–66,
1997.

8. F. Ensan, M. Kahani and E. Bagheri. Web Service Composition based on Agent Societies and
Ontological Concepts. In Proceedings of IEEE International Conference on Computational
Cybernetics, pages 1–10, 2006.

9. J. Hendler and D. McGuinness. The DARPA Agent Markup Language. IEEE Intelligent
Systems, 15(6):72–73, 2000.

10. R. Hull, M. Benedikt and V. Christophides E-Services: A Look Behind the Curtain. In Pro-
ceedings of the 22nd ACM Symposium on Principles of Database Systems pages 1–14, 2003.

11. IBM. Business Process with BPEL4WS: Learning BPEL. http://www.128.ibm.com/-
developerworks/webservices/library/ws-bpelcol2/.

12. S. Liu, J. Lin and Z. Lin. A Shortest-path Network Problem Using an Annealed Ant System
Algorithm. In Proceedings of the 4th Annual ACIS International Conference on Computer
and Information Science, pages 245–250, 2005.

13. S. Liu, Y. Liu and F. Zhang. A Dynamic Web Services Selection Algorithm with QoS Global
Optimal in Web Services Composition. Journal of Software, 18(3):646–656, 2007.

14. Z. Maamar, S. K. Mostefaoui and H. Yahyaoui. Toward an Agent-Based and Context-Oriented
Approach for Web Services Composition. IEEE Transaction on Knowledge and Data Engi-
neering, 17(5):686–697, 2005.

15. S. McIlraith and T. C. Son. Adapting Golog for Composition of Semantic Web Services. In
Proceedings of KR02, pages 482–496, 2002.

80 Junzhou Luo, Wei Li, Bo Liu, Xiao Zheng and Fang Dong

16. B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid. Composing Web services on the Se-
mantic Web. The International Journal on Very Large Data Bases, 12(4):333–351, 2003.

17. D. A. Menasce. Composing Web Service: A QoS View. IEEE Internet Computing, 8(6):88–
90, 2004.

18. I. Muller and R. Kowalczyk. Service Composition through Agent-based Coalition Formation.
In Proceedings of the first workshop on Service Composition with Semantic Web Services,
pages 44–53, 2005.

19. S. C. Oh, B. W. On and E. J. Larson. Web Services Discovery and Composition as Graph
Search Problem. In Proceedings of EEE05, pages 784–786, 2005.

20. Z. Qian, S. Lu and L. Xie. Mobile-Agent-Based Web Service Composition LNCS 3795, pages
35–46, 2005.

21. M. K. Smith, C. Welty and D. McGuinness. Owl Web Ontology Language Guide.
http://www.w3.org/TR/owl-guide/, 2003.

22. B. Srivastava and J. Koehler. Web Service Composition—Current Solutions and Open Prob-
lems. In Proceedings of ICAPS03, pages 28–35, 2003.

23. H. Sun, X. Wang and B. Zhou. Research and Implementation of Dynamic Web Services
Composition. In Proceedings of APPT03, pages 457–466, 2003.

24. P. Traverso and M. Pistore. Automated Composition of Semantic Web Services into Exe-
cutable Processes. In Proceedings of ISWC04, pages 380–394, 2004.

25. J. R. Velascol and S. F. Castillo. Mobile Agents for Web Service Composition. In Proceedings
of EC-Web03, pages 135–144, 2003.

26. Z. Wu, J. Luo and A. Song. Qos-Based grid resource management. Journal of Software,
17(11):2264–2276, 2006.

27. T. Yu and K. J. Lin. A Broker-Based Framework for QoS-Aware Web Service Composition.
In Proceedings of EEE05, pages 22–29, 2005.

28. T. Yu, Y. Zhang and K. J. Lin. Efficient Algorithms for Web Services Selection with End-to-
End QoS Constrains. ACM Transactions on the Web, 1(1), 2007.

29. L. Zeng, B. Benatallah and A. H. H. Ngu. QoS-aware Middleware for Web Services Compo-
sition. IEEE Transaction on Software Engineering, 30(5):311–327, 2004.

30. L. Zhang, B. Li and T. Chao. On Demand Web Services-based Business Process Composition.
In Proceedings of the IEEE International Conference on System, Man, and Cybernetics, pages
4057–4064, 2003.

Chapter 4
Flexible Workflow Management in Service
Oriented Environments

Birgit Hofreiter and Christian Huemer

Abstract Ever faster changing market conditions require businesses to frequently
adapt their business processes and the underlying workflow systems. Service-
oriented architectures are said to deliver this flexibility by loose coupling. In this
chapter we provide a survey on realizing flexible workflows on top of service ori-
ented architectures. We show how orchestrations and choreographies may be imple-
mented by state-of-the-art web services technology. The role of agents in realizing
workflows among services is discussed. Furthermore, we discuss service provision
in dynamic environments, when partners are dynamically bound to the workflow
and when changes to the workflow schema happen.

4.1 Introduction

In the 1990s the work of Hammer and Champy on business process reengineer-
ing [10] attracted a lot of attention and companies started to rethink their business
processes. Hammer and Champy define a business process as an organized group
of related activities that together create customer value. It is the goal to optimize
business processes in a way to meet a company’s business goals, such as financial
targets. Accordingly, the activities of a business process must be arranged to op-
timize a company’s output. This arrangement defines which activities have to be
executed in which order, under which conditions, by whom and by using which re-
sources. The result is described in a business process model. Over the last decade a
lot of different approaches to business process modeling have been developed, such

Birgit Hofreiter
Institute of Information Systems, University of Liechtenstein, Vaduz 9490, Liechtenstein
e-mail: Birgit.Hofreiter@hochschule.li

Christian Huemer
Vienna University of Technology, Favoritenstrasse 9-11/188-3, Vienna 1040, Austria
e-mail: huemer@big.tuwien.ac.at

N. Griffiths, K.-M. Chao (eds.), Agent-Based Service-Oriented Computing, 81
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-041-0 4, c© Springer-Verlag London Limited 2010

82 Birgit Hofreiter and Christian Huemer

as [2, 34, 40]. Today, business process modeling is supported by a lot of different
analysis, design and implementation tools.

Once the business process has been modeled and optimized, it must be executed
as defined. The correct and model-compliant execution is guaranteed by a workflow
system [21]. Workflow systems already started in the 1970s to automate office paper
processing. However, in the 1990s the focus shifted towards elevating the abstrac-
tions of IT to a level that these abstractions are directly understood and manipulated
by business users to optimize their business processes and to achieve competitive
advantage [14].

In the last decade new business challenges have a significant impact on workflow
systems. Shorter life cycles of products and services require faster changing business
models and business process models. Information systems must quickly adjust to the
adapted business processes. It is necessary that the following changes in a business
process are directly reflected in an underlying workflow system [45]: changing the
flow of activities of a business process, changing the actors who are performing
these activities, changing the tools that support these activities, etc.

The ever increasing speed of changes in business and, consequently, in the IT
infrastructure require a very flexible architecture. Service-oriented architectures are
the current state-of-the-art providing this flexibility by a loose coupling between
a service and the consumer of this service. Loose coupling does not mandate any
knowledge about platforms, implementations, format protocols neither on the re-
quester nor on the provider side. Precluding this knowledge facilitates changing ser-
vices and their providers. Also, services within a composite service may easily be
replaced by other ones. Since a workflow may be seen as a composite service defin-
ing an orchestrated set of services, it seems to be beneficial to realize a workflow
by web services [15]—the current state-of-the-art technology for service oriented
architectures.

This chapter provides a survey of realizing workflows in service oriented envi-
ronments. Conceptually, we distinguish between orchestrated and choreographed
flows. Section 4.2 introduces the concepts of orchestration and choreography. Or-
chestrated workflows are under control of a single workflow engine, whereas chore-
ographed workflows describe how autonomous workflow engines interact with each
other in an inter-organizational workflow. Choreographies may be described from
the local view of one engine or from a neutral, global view. The concepts of orches-
tration as well as of local and global choreography are introduced by means of a
simple order management example. Furthermore, we refer to approaches realizing
transformations between orchestrations and choreographies.

In Section 4.3 we show how workflows are realized in web services. We start
with an introduction to web services standards for specifying workflows. From
these standards we select the most promising one—the business process execution
language (BPEL)—to demonstrate the specification of a workflow among web ser-
vices. This demonstration uses the same example as in Section 4.2. Additionally,
BPEL is checked against the workflow patterns from Aalst et al. [39] to analyze its
expressiveness.

4 Flexible Workflow Management in Service Oriented Environments 83

Section 4.4 deals with the role of agents in realizing flexible workflows in service
oriented environments. We have a look at useful agents in orchestrations, which are
search agents, selection agents and composition agents. Furthermore, agents may
also be used in establishing choreographies between business partners. Here we
discuss the role of agents in two different approaches: a bottom-up approach starting
from an existing local choreography of a partner and a top-down approach in which
a global choreography is agreed before deriving the local choreographies of each
partner.

The service provision in dynamic environments is discussed in Section 4.5. We
concentrate on meeting service constraints in environments where the characteristics
of the services of a workflow may change. In the beginning, we analyze the require-
ments of such dynamic workflows. Following these requirements we focus on two
major aspects: Firstly, we concentrate on the dynamic selection of services being
part of a workflow. Secondly, we focus on unplanned situations that have not been
considered in the design of a workflow. Accordingly, the workflow has to undergo
modifications leading to a workflow schema evolution which may affect running
instances of the workflow. Hereby, we differ between the dynamic evolution of lo-
cal processes and the one of inter-organizational processes. Again, we will use the
order management example of Section 4.2 to demonstrate the dynamic workflows.
Finally, a summary and outlook in Section 4.6 concludes this chapter.

4.2 Orchestration and Choreography

4.2.1 Motivation and Definitions

Hammer and Champy’s definition of a business process [10] targets at (re-)structur-
ing the business processes from a single company’s perspective optimizing its out-
come. Over the last few years supply chain management involving multiple parties
became more and more popular, leading to an inter-organizational focus of business
process management. In this context the above given definition of a business pro-
cess of Hammer and Champy toward creating customer value does not fit anymore,
because a supply chain includes many seller—customer relationships. An inter-
organizational business process is an organized group of related activities carried
out by multiple organizations to accomplish a common business goal. An inter-
organizational business process does not focus on the internal tasks of an individual
organization, it rather focuses on the tasks carried out between the actors in the
network of organizations.

A service oriented architecture and its realization by web services, may be used
to describe and implement the workflow of both kinds of business processes de-
scribed above. In the area of web services two terms have emerged to distinguish
the two kinds of business processes: orchestration and choreography. These terms
describe closely related, but well distinguished concepts [28]. Orchestration deals

84 Birgit Hofreiter and Christian Huemer

with the sequence and conditions in which one business process calls its components
to realize a business goal. Choreography describes business processes in a peer-to-
peer collaboration. It describes the flow of interactions between the participating
business partners that interlink their individual processes. We distinguish local and
global choreographies. A local choreography describes the flow from a participating
partner’s point of view. It makes the public parts of its local process visible to oth-
ers. A global choreography defines the inter-organizational process from a neutral
perspective. A global choreography has the potential to achieve an agreement be-
tween the partners. Local choreographies enable the configuration of each partner’s
system.

4.2.2 Orchestration

In order to illustrate the differences between orchestration and choreography we use
the following example that is used throughout this chapter: we take a detailed look
on a simplified order management processes at the sales department of the seller
which interfaces with the processes of a buyer and a carrier. Once the seller receives
an order from the buyer, the seller checks compliance of the order against an offer
he made before. In order to fulfill the order the seller reserves necessary products
from the stock as well as the resources of the production line. Once these tasks
are accomplished he is able to calculate a delivery date for the order. Knowing the
delivery date, the seller reserves transport at the carrier. Now the seller is able to
accept (or reject) the order of the buyer. Once the order is accepted, the buyer may
(repeatedly) ask for the status of the order. The buyer may cancel the order until the
goods are shipped. In this case the seller has to clear the reservation of the stock and
the reservation of the production line. If the buyer does not cancel the order and the
goods are ready to ship the seller sends a notification of shipment to the buyer—this
indicates also that he is not able to cancel the order anymore and that status request
is not possible anymore since the “final” status shipped is reached. After shipping
takes places, the sales department of the seller hands over the case to the accounting
department.

A service-oriented model of the example process described above is presented in
Figure 4.1. This example process focuses on the orchestration of the seller’s tasks
in the middle lane of Figure 4.1. We do not detail the orchestrations of the buyer
and the carrier, but show their choreographies in the left lane and in the right lane,
respectively. Each node in Figure 4.1 represents a service executing a specific task.
The abbreviation within the node shows who is offering the service: the seller’s sales
department (Ss), the seller’s production department (Sp), the seller’s accounting de-
partment (Sa), the buyer (B), or the carrier (C). A new process instance is created
when the seller’s sales department receives a call of the order product service. The
fact that this is an asynchronous incoming call is denoted by the little incoming
arrow above the node order product. Afterwards, the seller’s department uses the
service check against offer from the accounting department which is a synchronous

4 Flexible Workflow Management in Service Oriented Environments 85

Order Product

SellerBuyer Carrier

Order Product

SsSs

Check against Offer
SA

SP
SP

Reserve Stock Reserve Production Line

Calculate Delivery Date

SP P

SP

Reserve Transport

Confirm Transport

Reserve Transport

Confirm Transport

Ss Ss

CC

Confirm Transport

Response To OrderResponse To Order

Confirm Transport

Legend:

Publically visible service

B B

Get Status

Inform on Status

Get Status

Inform on Status
Asyncronous,
outgoing call

Publically visible service

Privat internal service

Asyncronous,

Ss

B
B

Ss

Cancel order Ready to shipCancel order

Synchronous call

Asyncronous,
incoming call

Control Flow

SsSs SS

BB

AA A = Actor hosting
the service

Clear Ressources

Deallocate Production Line

Notify Shipment

Transfer to
accounting

Notify Shipment

Control Flow

Parallel Split, Synchronization

Exclusive Choice, Merge

Inter-organizational call
SP

SP

SA

BB

Fig. 4.1 Seller’s orchestration of the order management

86 Birgit Hofreiter and Christian Huemer

call that returns the result of the check. The synchronous call is indicated by the
outgoing and incoming arrow above the service check against offer. Note, in or-
der to keep the example simple, we only show the regular path and omit to show
any exceptions. Consequently, we only show the path following a successful check,
which continues by calling the services reserve stock and reserve production line
both offered by the seller’s production department in parallel. Since both services
are asynchronous outgoing calls a little outgoing arrow is mentioned above each of
the nodes.

Having completed the reservation, the synchronous calculate delivery date ser-
vice of the production department is executed. Knowing the delivery data, the seller
is able to use the carrier’s service reserve transport. This asynchronous outgoing
call, is followed by an asynchronous incoming call of the confirm transport ser-
vice at the seller’s side. Note, that in an economic context one might argue that
confirming a transport is an economic service offered by the carrier. However, in
an IT context it is always the receiver of an incoming call who has to provide the
service. Inasmuch, the seller’s sales department has to provide a confirm transport
service to receive the confirmation from the carrier. One might further argue that it
is possible to group the reserve transport and the confirm transport services into a
single service. In order to be consistent and to simplify the overall example we use
just asynchronous calls for the inter-organizational services. Following this design
decision, the confirm transport is followed by an asynchronous outgoing call of the
response to order service of the buyer which represents the answer on the initiating
order product service.

After the order is accepted, the seller’s sales department may receive an asyn-
chronous incoming get status call which is answered by an asynchronous outgoing
call of the buyer’s inform on status. The sequence of these two services is on the
one hand optional, but may also be repeated many times until the order is either
canceled or shipped. This means either an asynchronous incoming call of cancel or-
der invoked by the buyer or an asynchronous incoming call ready to ship issued by
the production department will end the status information loop. In case of receiving
cancel order, it is necessary to call both clear resources and deallocate production
line of the production department. In contrary, if a ready to ship is received from
the production department, it is required to send an asynchronous outgoing call of
the buyer’s notify shipment service. Afterwards, an asynchronous outgoing call of
transfer to accounting provided by the accounting department ends the successful
case.

4.2.3 Local Choreography

In Figure 4.2 we show the local choreographies of the seller, the buyer, and the car-
rier. Since we did not detail the internals of the buyer and the carrier in Figure 4.1,
their local choreographies remain unchanged in Figure 4.2. In contrary, Figure 4.1
shows the seller’s orchestration. It includes services visible to the outside world,

4 Flexible Workflow Management in Service Oriented Environments 87

Order Product

SellerBuyer Carrier

Order Product

SsSs

Reserve Transport

Confirm Transport

Reserve Transport

Confirm Transport

Ss Ss

CC

Response To OrderResponse To Order

p

B B

S

Get Status

Inform on Status

Get Status

Inform on Status

Ss

B
B

Ss

Cancel orderCancel order

SsSs

BB

Notify ShipmentNotify Shipment
BB

Fig. 4.2 Local choreographies

which are shown as gray nodes, and services visible only within the seller, which
are presented as white nodes. By calculating the local orchestration of the seller
we have to eliminate the white nodes of the internal services. In other words, we
produce a projection of the orchestration including only the gray nodes of the exter-
nally visible services. Eliminating some nodes results also in eliminating transitions
to/from these nodes. Accordingly, this leads to some tangling nodes that have to be
connected in order to complete the graph of a local choreography. Approaches that
deal with such transformations are introduced in 4.2.5.

The elimination of the internal white nodes ends up in the local choreography of
the seller in the middle lane of Figure 4.2. This local choreography is a multi-party
choreography, since it comprises interactions between the seller and the buyer as
well as interactions between the seller and the carrier. In Figure 4.2 we have marked
the regions of the bilateral interactions by dotted line borders.

88 Birgit Hofreiter and Christian Huemer

If two business partners want to collaborate they must have complementary local
choreographies. Accordingly, we have to compare their local choreographies in the
context of their bilateral collaboration independent of collaborations with any other
partners. In our example, the local choreography of the buyer does not show any
interactions with other partners. Accordingly, it stays as it is. In the seller’s local
choreography the nodes representing interactions with the carrier have to be elim-
inated. The task of calculating a bilateral local choreography from a given multi-
party one is the same as calculating a local choreography from a given orchestration.
We omit to show the result in Figure 4.2 , because it is easy to recognize that the
bilateral local choreography of the seller with the buyer will include a direct transi-
tion from order product to response to order eliminating the two nodes representing
interactions with the carrier.

When comparing the bilateral local choreographies of the buyer and seller it is
easy to recognize that both of them are composed by exactly the same services. Also
the control flow among these services is the same in both local choreographies. The
major difference between the two local choreographies, is the fact that a certain ser-
vice is called by one partner in one choreography, and the other partner receives the
call of this service in the other choreography. For example, the first service in both
local choreographies is order product which is provided by the seller’s sales depart-
ment. The buyer calls this service which is indicated by an outgoing arrow above
the node. In contrary, the seller receives a call of this service which is notated by an
incoming arrow above the node. Accordingly, the little arrows indicating incoming
and outgoing calls are always in the reverse direction in a partner’s local choreog-
raphy. Accordingly, we define a complementary choreography as a local bilateral
choreography that uses exactly the same services in the same order, but the call of
the service is in the opposite direction.

4.2.4 Global Choreography

In the previous subsection we learned that each business partner describes its local
choreography from its own perspective. This means if two business partners col-
laborate, there will be two local choreographies—one for each business partner. In
order to negotiate the collaboration, the business partners have to adjust their own
local choreographies in a way that they are complementary to each other. In or-
der to reach agreement and commitment between the business partners, it is more
convenient to discuss the choreography between them from a common neutral per-
spective. This means that a single global choreography describes the services that
are involved in the interaction and the order in which the services are executed. For
each of the services being part of the steps of a global choreography it is fixed who
calls the service and who receives the call of the service.

Figure 4.3 shows the global choreography between buyer and seller for our ex-
ample process. The control flow of the services remains the same as in Figure 4.2.
However, instead of having two local choreographies assigned to the corresponding

4 Flexible Workflow Management in Service Oriented Environments 89

Fig. 4.3 Global choreography
between buyer and seller

Order Product

Ss

B

Out: buyer
In: seller

Out: seller
In: buyer

Response To Order

Get Status

Ss

y

Out: buyer
In: seller

Inform on Status
B

Out: seller
In: buyer

O b

Cancel order

Notify Shipment

Ss

B
Out: seller
In: buyer

Out: buyer
In: seller

lanes of the buyer and the seller, respectively, the global choreography uses just a
single description of this control flow and mentions for each service the outbound
and the inbound role. Having reached an agreement on the global choreography it
is an easy task for the buyer and the seller to derive their local choreographies.

4.2.5 Approaches to Transform Between Orchestration
and Choreography

There exist some approaches that take care of the relationship between orchestra-
tion, local choreography, and global choreography. In particular, the different per-
spectives can be transformed into each other. The global choreography can be trans-
formed into the local choreography, and the local choreography can be transformed
into an orchestration. The basic idea of transforming a global choreography into a
local choreography is partitioning the global choreography in a way that the mes-
sages used in the resulting local choreographies are matched to the corresponding
party. This partitioning is achieved by eliminating messages which are not related to
the particular party. Such an approach is described by Aalst in [41]. The transforma-
tion of a local choreography into a global choreography can be realized by relating
message exchanges of different local choreographies that semantically complement
one another. An approach based on workflow nets is proposed by Aalst [36, 37].

90 Birgit Hofreiter and Christian Huemer

Piccinelli et al. [29] propose another transformation approach in particular for peer-
to-peer collaborations.

4.3 Workflow and Web Services

4.3.1 Web Services Standards for Business Processes

The growing importance of web services triggered a lot of efforts towards XML-
based process modeling languages. These languages usually have no standardized
graphical notation, but the XML-based notation may be interpreted by software al-
lowing the tracking or even execution of the business process. The Business Pro-
cess Execution Language for Web Services (BPEL4WS or BPEL for short) [22,27]
became the most popular language in this area. BPEL is a successor of both IBM’s
Web Services Flow Language (WSFL) [16] and Microsoft’s XLANG [25]. Thereby,
BPEL combines WSFL’s petri net based approach and XLANG’s pi calculus ap-
proach. With BPEL it is possible to describe the orchestration of executable busi-
ness processes, but also the message exchanges in a local choreography. Other
XML-based languages for describing orchestrations are the XML Process Defini-
tion Language (XPDL) [49] and the Petri Net Markup Language (PNML) [17].
Languages based on XML for describing local choreographies are the Web Services
Choreography Interface (WSCI) [42] and the Web Services Conversation Language
(WSCL) [43].

With regard to modeling global choreographies, the Web Services Choreography
Description Language (WS-CDL) [44] is the choice in the area of web services.
However, WS-CDL uses its own set of control flow constructs which are hard to
map to those of BPEL. In order to overcome this limitation, BPEL4chor [8] has
recently been proposed to extend BPEL for describing global choreographies. An-
other XML-based language for describing global choreographies is ebXML’s Busi-
ness Process Specification Schema (BPSS) [26].

4.3.2 Specifying a Business Process by Means of BPEL

As mentioned above, the Business Process Execution Language (BPEL) has become
the most dominant language for specifying workflows in the area of web services.
Thus, we concentrate on BPEL for specifying workflows in a service-oriented envi-
ronment and do not further detail any of the other orchestration and choreography
languages. In this subsection we introduce the main concepts of BPEL. Furthermore,
we demonstrate how the examples of Section 4.2 are represented in BPEL.

BPEL specifies a business process among web services. To be more precise, it
is a flow among web services operations that are provided by one or more business

4 Flexible Workflow Management in Service Oriented Environments 91

partners. These operations are defined as part of port types in one or more WSDL
files. In order to keep our example simple, we assume that all port types are defined
in a single WSDL file shown in lines 001–078. In reality, the port types of different
business partners are more likely to be defined in different WSDL files.

In our order management process as depicted in Figure 4.1 five organizations
are involved. Accordingly, we define five port types for the following organizations:
buyer (B) in lines 003–012, carrier (C) in lines 013–017, seller sales department (Ss)
in lines 018–034, seller accounting department (Sa) in lines 035–043, and seller pro-
duction department (Sp) in lines 044–061. Each of the nodes in Figure 4.1 represent
an operation. These nodes are already marked with organization (B, C, Ss, Sa, Sp) or
the port type, respectively, which provides the operation. Consequently, we assign
these operations to the respective port type in the WSDL file. Most of these oper-
ations are asynchronous message exchanges. It follows that most of these services
only have an input message. The exceptions are the operations check against offer
and calculate delivery date which are synchronous message exchanges comprising
an input and an output message. All the input and output messages refer to mes-
sages declared in the same WSDL file. Due to space limitations we have skipped
the message definitions and only highlight the need for message declarations in line
002.

001 <wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://new.webservice.namespace"
xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
targetNamespace="http://new.webservice.namespace" ...>

002 <wsdl:message name="..."/>

003 <wsdl:portType name="B">
004 <wsdl:operation name="responseToOrder">
005 <wsdl:input message="tns:OrderResponse"/>
006 </wsdl:operation>
007 <wsdl:operation name="informOnStatus">
008 <wsdl:input message="tns:Status"/>
009 </wsdl:operation>
010 <wsdl:operation name="notifyShipment">
011 <wsdl:input message="tns:NotificationOfShipment"/>
010 </wsdl:operation>
012 </wsdl:portType>

013 <wsdl:portType name="C">
014 <wsdl:operation name="reserveTransport">
015 <wsdl:input message="tns:TransportRequest"/>
016 </wsdl:operation>
017 </wsdl:portType>

018 <wsdl:portType name="Ss">
019 <wsdl:operation name="orderProduct">
020 <wsdl:input message="tns:PurchaseOrder"/>
021 </wsdl:operation>
022 <wsdl:operation name="confirmTransport">
023 <wsdl:input message="tns:TransportConfirmation"/>
024 </wsdl:operation>
025 <wsdl:operation name="getStatus">
026 <wsdl:input message="tns:StatusRequest"/>
027 </wsdl:operation>
028 <wsdl:operation name="cancelOrder">
029 <wsdl:input message="tns:OrderCancellation"/>
030 </wsdl:operation>

92 Birgit Hofreiter and Christian Huemer

031 <wsdl:operation name="readyToShip">
032 <wsdl:input message="tns:NotificationOfShipment"/>
033 </wsdl:operation>
034 </wsdl:portType>

035 <wsdl:portType name="Sa">
036 <wsdl:operation name="checkAgainstOffer">
037 <wsdl:input message="tns:PurchaseOrder"/>
038 <wsdl:output message="tns:CheckResult"/>
039 </wsdl:operation>
040 <wsdl:operation name="transferToAccounting">
041 <wsdl:input message="tns:OrderInformation"/>
042 </wsdl:operation>
043 </wsdl:portType>

044 <wsdl:portType name="Sp">
045 <wsdl:operation name="reserveStock">
046 <wsdl:input message="tns:ListOfProducts"/>
047 </wsdl:operation>
048 <wsdl:operation name="reserveProductionLine">
049 <wsdl:input message="tns:ProductionLineRequest"/>
050 </wsdl:operation>
051 <wsdl:operation name="calculateDeliveryDate">
052 <wsdl:input message="tns:ProductionInformation"/>
053 <wsdl:output message="tns:DeliveryDate"/>
054 </wsdl:operation>
055 <wsdl:operation name="deallocateProductionLine">
056 <wsdl:input message="tns:ProductionLineRequest"/>
057 </wsdl:operation>
058 <wsdl:operation name="clearRessources">
059 <wsdl:input message="tns:ListOfProducts"/>
060 </wsdl:operation>
061 </wsdl:portType>

062 <plnk:partnerLinkType name="B2SsLT">
063 <plnk:role name="buyer" portType="tns:B"/>
064 <plnk:role name="seller" portType="tns:Ss"/>
065 </plnk:partnerLinkType>

066 <plnk:partnerLinkType name="Ss2CLT">
067 <plnk:role name="seller" portType="tns:Ss"/>
068 <plnk:role name="carrier" portType="tns:C"/>
069 </plnk:partnerLinkType>

070 <plnk:partnerLinkType name="Ss2SaLT">
071 <plnk:role name="sales" portType="tns:Ss"/>
072 <plnk:role name="accounting" portType="tns:Sa"/>
073 </plnk:partnerLinkType>

074 <plnk:partnerLinkType name="Ss2SpLT">
075 <plnk:role name="sales" portType="tns:Ss"/>
076 <plnk:role name="production" portType="tns:Sp"/>
077 </plnk:partnerLinkType>
078 </wsdl:definitions>

In a BPEL process, partners always interact in a bilateral manner, i.e., one part-
ner invokes an operation and the other partner receives a call of this operation. In
order to reflect the bilateral collaborations, the WSDL file is extended by the con-
cept of partner link types. Owing to its bilateral nature, a partner link type always
includes two roles representing the two collaborating partners. Each role references
the port type that has to be provided by the corresponding role. In our order man-
agement example, the seller sales department acts as a hub which has bilateral col-
laborations with the four other organizations, whereas the other organizations do not

4 Flexible Workflow Management in Service Oriented Environments 93

directly interact with each other. Accordingly, the WSDL file includes four partner
link types representing the interactions of the sellers sales department (i) with the
buyer (B2SsLT) in lines 062–065, (ii) with the carrier (Ss2CLT) in lines 066–069,
(iii) with the seller accounting department (Ss2SaLT) in lines 070–073, and (iv) with
the seller production department (Ss2SpLT) in lines 074–077.

A BPEL process is built by nested scopes, where the outermost scope is the pro-
cess definition itself. It contains partner links that define the relationships to other
business partners, declaration of process data, handlers for various purposes and the
activities that are orchestrated/choreographed. We distinguish between basic activ-
ities and structured activities. Basic activities are incoming and outgoing operation
calls as well as activities for data manipulation. Structured activities cover other
activities and define the process logic amongst them.

The most important basic activities are the following: Invoke is used to call an
operation. Receive is an activity that receives an operation call. Reply is used to re-
turn the response of an operation which was previously called by a receive activity.
Pick waits for the first event of a set of alternative events to happen and executes the
activity associated with this event. Each pick must include at least one onMessage
event. The onMessage event is semantically equivalent to a receive activity. Other
basic activities are empty rendering of a no-operation, wait interrupting the execu-
tion of a process for some time, exit immediately stopping the process, and throw
generating a fault. The following structured activities are considered as the most im-
portant ones. Sequence specifies a sequential execution of activities. Switch provides
a multi-branch decision construct. While allows the definition of loops. Flow is in
general used for specifying parallel execution. However, conditional control links
may be used to define a partial acyclic order of the activities within a flow. Most of
these activities will be further illustrated in the example below.

In the lines 079–128 we present the BPEL process of the seller sales department
as illustrated in Figure 4.1. This BPEL process imports in line 080 the WSDL file
as illustrated in the lines 001–078. The partner links in the lines 081–086 define
the bilateral collaborations of the seller sales department with the other organiza-
tions. At first sight, one may think that this was already done in the partner link
types of the WSDL file. However, the partner link types are defined from a some-
what neutral position defining two roles. The BPEL process is always described
from the perspective of a specific role—in our case from the perspective of the
seller sales department. Consequently, a partner link references a partner link type
and defines which role is played by the process owner and which by the collabo-
rating organization. For example, the partner link in line 082 reflects the collabo-
ration between the buyer and the seller sales department (B2Ss). The partnerLink-
Type attribute references the corresponding partner link type (B2SsLT) as defined
in lines 062–065. The myRole attribute is set to seller, and the partnerRole attribute
to buyer—which correspond to the roles defined in the partner link type in lines 063
and 064.

A business process defined in BPEL describes the exchange of messages by
means of operations. These messages, or at least some of them are relevant for the
correct execution of the business process. Thus, these messages have to be included

94 Birgit Hofreiter and Christian Huemer

in the business context of the business process. This is realized by variables that
serve as data manipulation containers for incoming and outgoing messages. The
declaration of variables is highlighted in lines 087–089. However, we omit to show
the declaration of all variables that relate to message exchanges. We just demon-
strate the declaration by means of the variable for the purchase order in line 088.

079 <bpws:process name="sellersOrderManagement"
targetNamespace="http://new.process.namespace"
xmlns:bpws="http://docs.oasis-open.org/wsbpel/2.0/process/executable"
xmlns:ns="http://new.webservice.namespace"
xmlns:tns="http://new.process.namespace">

080 <bpws:import importType="http://schemas.xmlsoap.org/wsdl/"
location="OrderManagement.wsdl"
namespace="http://new.webservice.namespace" />

081 <bpws:partnerLinks>
082 <bpws:partnerLink myRole="seller" name="B2Ss"

partnerLinkType="ns:B2SsLT" partnerRole="buyer" />
083 <bpws:partnerLink myRole="sales" name="Ss2Sp"

partnerLinkType="ns:Ss2SpLT" partnerRole="production" />
084 <bpws:partnerLink myRole="sales" name="Ss2Sa"

partnerLinkType="ns:Ss2SaLT" partnerRole="accounting" />
085 <bpws:partnerLink myRole="seller" name="Ss2C"

partnerLinkType="ns:Ss2CLT" partnerRole="carrier" />
086 </bpws:partnerLinks>

087 <bpws:variables>
088 <bpws:variable messageType="ns:PurchaseOrder" name="purchaseOrder" />

...
089 </bpws:variables>

090 <bpws:sequence>
091 <bpws:receive createInstance="yes" operation="orderProduct"

partnerLink="B2Ss" portType="ns:Ss" variable="purchaseOrder" />
092 <bpws:invoke inputVariable="purchaseOrder"

operation="checkAgainstOffer" outputVariable="checkResult"
partnerLink="Ss2Sa" portType="ns:Sa" />

093 <bpws:flow name="Flow">
094 <bpws:invoke inputVariable="listOfProducts"

operation="reserveStock" partnerLink="Ss2Sp" portType="ns:Sp" />
095 <bpws:invoke inputVariable="productLineRequest"

operation="reserveProductionLine" partnerLink="Ss2Sp"
portType="ns:Sp" />

096 </bpws:flow>
097 <bpws:invoke inputVariable="productionInformation"

operation="calculateDeliveryDate" outputVariable="deliveryDate"
partnerLink="Ss2Sp" portType="ns:Sp" />

098 <bpws:invoke inputVariable="transportRequest"
operation="reserveTransport" partnerLink="Ss2C"
portType="ns:C" />

099 <bpws:receive name="confirmTransport" partnerLink="Ss2C"
portType="ns:Ss" variable="transportConfirmation" />

100 <bpws:invoke inputVariable="orderResponse"
operation="responseToOrder" partnerLink="B2Ss" portType="ns:B" />

101 <bpws:while>
102 <bpws:condition><![CDATA[true()]]></bpws:condition>
103 <bpws:pick name="Pick">

104 <bpws:onMessage operation="getStatus" partnerLink="B2Ss"
portType="ns:Ss" variable="statusRequest">

105 <bpws:sequence name="Sequence">
106 <bpws:invoke inputVariable="status"

operation="informOnStatus" partnerLink="B2Ss"

4 Flexible Workflow Management in Service Oriented Environments 95

portType="ns:B" />
107 </bpws:sequence>
108 </bpws:onMessage>

109 <bpws:onMessage operation="cancelOrder" partnerLink="B2Ss"
portType="ns:Ss" variable="orderCancellation">

110 <bpws:sequence>
111 <bpws:flow>
112 <bpws:invoke inputVariable="productLineRequest"

operation="deallocateProductionLine"
partnerLink="Ss2Sp" portType="ns:Sp" />

113 <bpws:invoke inputVariable="listOfProducts"
operation="clearRessources" partnerLink="Ss2Sp"
portType="ns:Sp" />

114 </bpws:flow>
115 <bpws:exit/>
116 </bpws:sequence>
117 </bpws:onMessage>

118 <bpws:onMessage operation="readyToShip" partnerLink="Ss2Sp"
portType="ns:Ss" variable="notificationOfShipment">

119 <bpws:sequence>
120 <bpws:invoke inputVariable="notificationOfShipment"

operation="notifyShipment" partnerLink="B2Ss"
portType="ns:B" />

121 <bpws:invoke inputVariable="orderInformation"
operation="transferToAccounting"
partnerLink="Ss2Sa" portType="ns:Sa" />

122 <bpws:exit/>
123 </bpws:sequence>
124 </bpws:onMessage>

125 </bpws:pick>
126 </bpws:while>
127 </bpws:sequence>
128 </bpws:process>

The definition of the control flow of the seller’s order management process is de-
fined in a block structure in lines 090–127. Its outermost scope defines a sequence
of basic and structured activities. Before going into the details of the process struc-
ture, we describe the basic notation to invoke/receive service calls by examples. In
line 092 the seller sales department calls the operation check against offer from the
seller accounting department. This is realized by an invoke activity. Its attributes pro-
vide the necessary details: The operation being called is check against offer which
belongs to the partner link between the seller sales department and its accounting
department (Ss2Sa) and is part of the port type of the seller accounting department
(Sa). According to the WSDL file this operation defines a synchronous message
exchange (lines 036–039), the input variable for the call is purchase order and the
output variable is check result. In the case of an asynchronous message call that
does not get a return, there will be no output variable—such as the invocation of
reserve stock in line 094.

In line 091 the buyer calls the operation order product from the seller sales de-
partment. From the seller’s perspective it is a receive activity. Again the the attributes
provide the details: The operation called is order product which belongs to the part-
ner link between the buyer and the seller sales department (B2Ss) and is part of the
port type of the seller sales department (Sa). The incoming message is stored in the
variable purchaseOrder. A variable in a receive activity is always an input, because

96 Birgit Hofreiter and Christian Huemer

a receive activity does not output anything. If the receive activity refers to an incom-
ing synchronous operation call, the return of the output message must be defined by
a following reply activity which uses the same values for operation, partner link and
port type as the receive activity, but specifies the output to be sent in the attribute
variable. In our example, there is no reply activity at the seller sales department.
The receive activity order product in 091 is special in the case that it marks the
beginning of a new process instance. Therefore, the Boolean value of the attribute
create instance is set to yes.

The second kind of activity that refers to an incoming operation call is the on
message activity. It is always used in conjunction with a pick activity in order to
specify that this incoming operation call is one of more alternative events that ap-
pear next within a pick. The attributes of an on message activity are exactly the same
as the ones for the receive activity. As an example, line 104 shows the on message
activity that receives a call of the get status operation on the seller sales depart-
ment (Ss) port type as part of the partner link with the buyer (B2Ss). The incoming
message is captured in the status request variable.

The block structure in the lines 090–128 describes the orchestration among the
incoming and outgoing operation calls of the seller sales department as depicted in
the middle lane of Figure 4.1. The outermost scope of this block structure is a se-
quence. After the first two activities of this sequence namely order product (091)
and check against offer (092), a flow activity follows. The flow activity (093–096) is
used for parallel execution of the activities reserve stock (094) and reserve produc-
tion line (095). After completion of the two activities within the flow, the sequence
continues with calculate delivery date (097), reserve transport (098), confirm trans-
port (099), and response to order (100).

Looking at the remaining activities in Figure 4.1, it follows that a block of getting
status information is optional, but may be repeated until either a block marking the
shipment of the goods or a block for canceling of the order starts. This business fact
is represented within a while loop (101–126), which is the last activity in the overall
sequence. The condition of the while loop is permanently set to true in line 102—
it is stopped by an exit either in line 115 or in 122, which terminates the overall
process. The only activity within the while loop is a pick activity (103–125). The
pick activity reacts on one of three possible incoming calls of operations: get status
(104), cancel order (109), or ready to ship (118). In case of a call of get status, the
process continues with a sequence (105–107) that consists of an inform on status
(106) only. Having executed the specified action after picking the get status event,
the while loop restarts again.

If the cancel order operation is picked, it results in a sequence (110–116) of two
activities. The first one is a flow (111–114) for the parallel execution of deallocate
product line (112) and clear resources (113). The second activity of the sequence is
an exit in line 115 which terminates the whole process. Finally, if a ready to ship
operation is picked, it results in a sequence (119–123) of notify shipment (120),
transfer to accounting (121) and again in an exit (122) stopping the process.

4 Flexible Workflow Management in Service Oriented Environments 97

4.3.3 Analyzing BPEL by Workflow Patterns

Having introduced BPEL as the de-facto language for specify workflows in web
services, it is important to illustrate which of the concepts known from workflow
products are also supported by BPEL. Aalst et al. [39] propose a pattern based ap-
proach for the comparison of the capabilities and limitations of commercial work-
flow management systems. These patterns are also used in their work on the evalu-
ation of BPEL [46]. In the following we highlight those patterns that are supported
by BPEL, but do not concentrate on the other ones.

The first class of patterns covers the basic control-flow patterns. These patterns
are sequence, parallel split, synchronization, exclusive choice, and simple merge.
The sequence pattern means that an activity starts after the completion of its prede-
cessor. This is the most simple case. The parallel split pattern specifies the behavior
of an AND-fork. This means a single activity has multiple successors that occur in
parallel. The synchronization pattern forms an antithesis to the parallel split pattern.
A successor starts only if all its predecessors are completed. The exclusive choice
pattern chooses only one transition from several alternatives based on a decision.
The simple merge pattern makes an antithesis of the exclusive choice pattern. Mul-
tiple branches of which only one can be active due to a previous exclusive choice
are merged into a single activity. There is no need for synchronization.

The second category addresses the advanced branching and synchronization pat-
terns. The multi-choice pattern allows one or more threads to continue according to
given conditions. Conditions must guard the transitions from the fork to a successor.
The structured synchronizing merge pattern is the antithesis of the multiple choice.
Those branches which fulfilled the conditions of the multi choice converge into one
continuing activity.

The third class of patterns are the structural patterns. Only one pattern of this
class is supported by BPEL: The implicit termination pattern implies that no activity
is performed anymore, although no deadlock exists and no end state is reached. The
forth category addresses the patterns involving multiple instances. BPEL supports
only the multiple instances without synchronization pattern of this family of pat-
terns. This pattern allows multiple instances to be created and the resulting threads
remain independent of each other. As the pattern’s name indicates, there is no need
to synchronize these threads.

If the execution of one activity depends on the state of another activity, the pattern
is categorized into the class of state-based patterns. The BPEL supported patterns in-
clude deferred choice, and interleaved parallel routing. The deferred choice pattern
selects only one continuing activity from several candidates like exclusive choice,
but the decision is implicit. The interleaved parallel routing pattern defines the exe-
cution of a set of activities in an arbitrary order. Each activity of the set is executed
once. At a given point in time only one activity is executed. The execution order is
fixed at run time. This pattern is supported by BPEL only for activities within the
same scope.

98 Birgit Hofreiter and Christian Huemer

The sixth and final class of patterns are the cancellation patterns. The cancel ac-
tivity pattern disables an enabled activity, whereas the cancel case pattern terminates
a workflow instance even in the case that parts of the process have been instantiated.

4.4 The Role of Agents in Service-Based Business Processes

In the previous subsections we introduced the concepts of orchestration and chore-
ography as well as their presentation by means of BPEL. We learned that both or-
chestrations and choreographies may be built by services that are provided by dif-
ferent organizations. A key argument for using a service based approach towards
workflow management is its flexibility. Flexibility may be needed for a few reasons
in workflow management: Some services within a workflow may be outsourced to
a different partner. Furthermore, some services in a workflow may be delivered by
different, competing partners and the best service should be selected, possibly on
the fly. Changing business needs may require a change in the flow of services. New
business requirements may lead to establishing contacts with new business partners,
which requires a matching of the choreographies.

These flexible adaptations may be made manually or one may use agents to per-
form these adaptations. Flexible adaptations to an orchestrated workflow relate very
much to the topics of semantic techniques for service description, service selection
and composition of services, which are all addressed in separate chapters in this
book. On an abstract level one may think of the following kind of agents: search
agent, selection agent, and composition agent. A search agent is responsible for
finding possible services that are able to fulfill a certain task in a workflow. A se-
lection agent is responsible for selecting the most appropriate service among those
found by the search agent. This selection may be performed at design time or at run-
time. In case of design time, the service selected by the agent becomes part of the
set of orchestrated services, e.g., a call of this service becomes a BPEL activity. If
the selection is performed at runtime time, a static binding of an activity to a specific
service does not work. In this case the corresponding activity in the workflow may
bind to the service that itself performs the search and the selection agent and, further,
calls the selected service and returns the result back to the workflow. Another option
would be that a call to the workflow only calls the search/selection agent, which re-
turns the parameters of the selected service to the workflow. In a next step the work-
flow continues with a parameterized service using these parameters to dynamically
link to the selected service. It is commonly agreed that the search and selection of
web services by agents cannot be limited to a pure syntax based approach, rather
it needs an approach that is based on semantic web services [3, 24]. An overview
of the major relevant semantic web service frameworks IRS-II, OWL-S and WSFM
is provided in [5]. A composition agent may be used to semi-automatically define
the control flow between the services based on semantic descriptions. Approaches
to the semantically based composition of orchestrations are found in [6, 35]. Due to
space limitations we are not able to discuss all the approaches to semantic search,

4 Flexible Workflow Management in Service Oriented Environments 99

selection and composition of services discussed in the literature, but refer to the
more specific chapters of this book on these topics.

In addition to specifying the orchestration of a business process, agents may also
be used in the definition of a choreography. In Section 4.2 we defined that a choreog-
raphy describes the flow of interactions between business partners that interlink their
individual processes. It follows that business partners wishing to collaborate must
have complimentary local choreographies. In principle, we distinguish a bottom-up
approach and a top-down approach in order to come to an agreement on the chore-
ography between business partners.

The bottom-up approach starts off from the local choreography of one of the par-
ticipating business partners. This business partner announces his local choreography
in a registry. Another business partner wants to establish a new business contact. For
this purpose he searches for potential business partners in the registry. This search
may be supported by a search agent that works similar to one in the orchestration
case based on semantic descriptions. However, there is another challenge in the case
of choreographies. Not only, the found business partner must provide the business
functionality a business partner is requesting, but also the found local choreography
of the business partner must be complimentary to one’s own local choreography.
This means a match making of the local choreographies is required for all poten-
tial business partners found. An approach for the comparison of choreographies is
described by Wombacher et al. [47] based on annotated deterministic finite state
automata [48].

If two local choreographies have been developed in isolation from each other it
is rather unlikely that they will be complementary—but this is required to do busi-
ness with each other. Accordingly, a process must start to align the local choreogra-
phies. One option would be that the searching business partner—knowing what the
found business partner expects—accommodates its own local choreography. Since
the local choreography is nothing else than a projection of the publicly visible ser-
vices of the orchestration of the business process of this partner, this means rear-
ranging one’s own business process. Again, one may think of an agent that semi-
automatically supports the adoptions of the local choreography / orchestration ac-
cording to a given partner’s local choreography. Work on such kind of agents is
still subject to future research work. If a business partner cannot accept or does not
want to accept another partner’s choreography, there is no other option than get-
ting to a common agreement on the choreography with the other business partner.
This negotiation process may be supported by a negotiation agent. Although this
idea is similar to creating an ebXML business collaboration protocol agreement
(CPA). (Cf. our work in [12], no research papers on the semi-automatic alignment
of choreographies exist. Such future work may take advantage of the literature on
electronic negotiation [4], which may be adopted to the special goal of negotiating
choreographies).

A top-down approach provides an alternative to the previously described sce-
nario for establishing complementary local choreographies. An analysis may start
with the economic drivers for the electronic partnerships. This means describing the
economic values that are exchanged between the business partners. The e3-value

100 Birgit Hofreiter and Christian Huemer

ontology [9] serves this purpose. In order to guarantee that each partner deserves
his economic value, the value model must be transformed semi-automatically into
a global choreography. This resulting global choreography becomes a kind of con-
tract guiding the business partnership. As project team leads, we have delivered the
UN/CEFACT modeling methodology (UMM) [13] for the unambiguous definition
of global choreographies. The semi-automatic transformation from business models
to choreographies in general, and from e3-value to UMM in particular, is open to
future research work. In order to implement the global choreography, it is important
to transform it into local choreographies—one for each partner. This is done fully
automatically—we provide a mapping from UMM to BPEL [11].

The top-down approach may be used on a bilateral basis to establish a chore-
ography between a specific set of business partners. However, it reaches its full
potential when it is used to define popular, commonly supported business scenarios.
In this case a business partner has to adapt his approach to bind the orchestration
of his own business process only once to the choreography, in order to collaborate
with many business partners. Also the effort for searching for potential business
partners is considerably reduced. We assume that the global choreography is stored
in a registry. Furthermore, business partners not only register their local choreog-
raphy, but also reference the public choreography and declare the role which they
support in the choreography. Accordingly, a search agent is much simpler to re-
alize. Firstly, the search agent searches for a public choreography that fulfills the
expected business functionality. Having found an appropriate public choreography,
the search agent queries the registry for business partners that have established a link
to the public choreography and have declared that their local choreography supports
the complementary role in the choreography. Using this approach, the complex and
time-consuming match making of local choreographies is eliminated.

4.5 Dynamic Workflows

In this section we focus on service workflows in a dynamic environment, where
changes to the workflow happen. We mainly concentrate on two different kinds of
dynamic aspects. The first is about dynamically selecting a provider for a specific
task within the workflow. The second is about changing the schema of the workflow
and the consequences on running instances of this workflow.

4.5.1 Dynamic Selection of Best Service Providers

In a web services environment a workflow specifies a control flow among services.
These services may be provided by different providers—in-house and by different
partners. By looking at our order management example of Section 4.2 and its BPEL
representation in Section 4.3 it becomes evident that all these services are bound

4 Flexible Workflow Management in Service Oriented Environments 101

statically. This means that each service is called from a fixed provider. There is no
dynamic selection of the best provider. However, there may be the desire to bind the
services or at least some of them to the best provider. In our example, we assume
that all the services provided in-house, i.e., the services of the different departments
of the seller, remain fixed. However, there may be different partners providing the
transport. In the example, the booking of transport is defined as shown in Figure 4.4
and the following BPEL code:

Fig. 4.4 Static binding of the
transport service

R T t Reserve Transport

CC

Seller Carrier

Reserve Transport

Confirm Transport

Reserve Transport

Confirm Transport

Ss Ss

098 <bpws:invoke inputVariable="transportRequest"
operation="reserveTransport" partnerLink="Ss2C" portType="ns:C" />

099 <bpws:receive name="confirmTransport" partnerLink="Ss2C"
portType="ns:Ss" variable="transportConfirmation" />

One option to overcome the current limitations in BPEL is to indirectly call the
dynamic services by a special dynamic invocation service. As a result, all activities
that are currently static bound must be replaced by a call to the dynamic invoca-
tion service. This dynamic invocation service acts as a search and selection agent,
as described in Section 4.4. This means, the dynamic selection service dynamically
discovers potential providers of the service and selects the best one. Furthermore, the
dynamic invocation service has to bind to the selected service, issue the correspond-
ing call, and receive a potential result. The result received from the dynamically
invoked service is then returned to the main workflow. Figure 4.5 presents this sce-
nario for dynamically selecting the transport in our order management example. In
this case we assume that a dynamic invocation service offers an operation dynam-
ically invoke transport on its port type D. Note, another option would be that the
dynamic invocation service offers just one general operation and the kind of service
to be dynamically invoked is semantically described in the parameters. Once the
dynamic invocation service has received the call of dynamically invoke transport, it
searches the registry for potential providers. In our case it finds services of carrier
1 and carrier 2. From these services it selects the best one—lets say the one of car-
rier 2. Next, it calls the synchronous operation enquire transport from carrier 2 that
returns a confirmation of booking. Having received this confirmation the dynamic
invocation service is able to confirm the transport to the seller.

Kuestner et al. [19] propose the Diane middleware to dynamically bind ser-
vices to BPEL activities. The Diane middleware uses predefined templates to is-

102 Birgit Hofreiter and Christian Huemer

D i ll Dynamically

DD

Seller Carrier 1

Reserve Transport

C
Dynamically
discovered &Dynamically

Invoke Tranport
Dynamically

Invoke Transport

D

Carrier 2

C

Dynamic
Invocation

Service

discovered &
bound

Confirm
Transport

Ss Ss
Enquire Transport

C
Dynamically
discovered &

bound

Fig. 4.5 Dynamic binding of the transport service

sue semantic requests to the middleware. A similar approach is described by [23].
This paper proposes a dynamic service discovery and its binding into BPEL pro-
cess. The discovery and matchmaking is performed by querying a knowledge base
of DAML-S service profiles with requests expressed in DAML Query Language. In
the METEOR-S project [1] developers create abstract processes that contain service
templates as semantic requests. At runtime a configuration module binds these to
concrete services using semantic discovery. Furthermore, an execution environment
is introduced that handles their invocation. Lemcke and Drumm [20] create a single
business process for each of a set of alternative service providers. At runtime they
use semantic technology to pick and instantiate the most appropriate process.

All the above mentioned approaches take BPEL as it is. They just bind some
BPEL activities to some kind of dynamic invocation service. Karastoyanova et al.
present an approach [18] to extend BPEL by concepts allowing dynamic invoca-
tions. They suggest so-called parameterized BPEL processes which eliminate the
dependency of invocations of operation names, port types, and partner links. The
idea is that processes are executable if all partner endpoints are known at runtime.
However, this information is not necessarily needed at design time, if it can be cal-
culated. Since this information is required in BPEL at design time, it is proposed to
add another element to BPEL that allows substituting the port types and operations.
This element is called evaluate. Its syntax is defined as follows:

<invoke name=" " ...>
<evaluate activated="yes|no" changeType =

"static|prompt|query|fromVariable" substitute="value"/>
</invoke>

The evaluate element is nested into an invoke element, if the operations and port
types of this invoke statement are subject to substitution. The Boolean activated
attribute is used to turn on/off the substitution. The change type attribute allows for
four different kinds of substitution: (1) static: substitution by another static service,
(2) prompt: substitution according to user input, (3) query: substitution by a result
of an issued query, and (4) from variable: substitution by information stored in a

4 Flexible Workflow Management in Service Oriented Environments 103

variable. The input for the parameter evaluation strategy is a proper value of the
substitute attribute. The solution proposed by the evaluate element is independent
of any semantic web services technology.

4.5.2 Changes to the Workflow Schema

Businesses must react quickly on changing market conditions. This means that they
have to change their business processes to meet changing business requirements.
Changing business processes must be reflected in the underlying workflow systems.
New activities may be added, old activities may be removed, the control flow (i.e.,
order and conditions) of the activities may change, and the data dependencies be-
tween the activities due to changing input and output of activities may change. In
summary, this means changing the workflow structure or, in other words, changing
the workflow schema.

Changing the workflow schema requires operations for inserting and deleting
activities as well as control/data dependencies between them [31]. The characteristic
of completeness refers to the provision of such operations to transform a workflow
schema into another one without restricting the user to specify the required changes
[7, 31]. It is the goal to provide completeness by a minimal set of operations.

Once a workflow schema is changed it must be guaranteed that the changes do
not result in compile-time and run-time errors. The correctness of changes concerns
both the workflow schema and the workflow instances. According to these two lev-
els, Casati et al. [7] distinguish between structural consistency and behavioral con-
sistency. Structural consistency refers to the schema level changes. It implies that
after modifications to a schema the resulting schema is valid. Behavioral consis-
tency refers to the instance level changes. This addresses the problem of changing a
schema at a point in time when instances of that schema are still running. Behavioral
consistency implies that applying a set of operations to a running instance of the old
schema results in a valid execution of this instance under the new schema. This
means the instance evolves without causing run-time errors. Different approaches
to reach behavioral consistency have been developed that sometimes differ signifi-
cantly in their principal approach and solution. A survey of the different approaches
towards consistency of workflow evolutions ensuring its correctness is provided by
Rinderle et al. [31].

If a change to the workflow schema of an orchestration O happens resulting in
the new workflow schema O’ the following principle approaches may be taken.

• All running instances of O are aborted, and all new instances are started following
the schema O’.

• All running instances of O have to terminate following the schema O. No new
instances are started until all the running instances of O are completed. Once they
are completed, new instances are able to start following the schema O’.

104 Birgit Hofreiter and Christian Huemer

• Running instances of O will complete following the schema O, new instances
will start immediately following the schema O’. This requires that both schema
versions O and O’ must be supported by the workflow engine at the same time.

• Running instances of the workflow O are transformed according to correctness
criteria to become valid instances of O’ and continue running following schema
O’.

In the above mentioned case 4, an instance I of schema O must correctly be
transformed into an instance I of schema O’. An instance of schema O is also a
valid instance of O’ if its resulting state could also have been produced by following
schema O’. This is always the case when the running instance of O is still in a phase
that was not affected by the change to O’. In other words, the running instance has
only passed activities where O and O’ are identical. In case that the running instance
has already passed the position of the change, it is necessary to check the execution
history of the running instance. If the execution history describes a flow that is a
valid flow instance of schema O’, then the instance is compliant and is migrated.
In [30] Rinderle et al. this approach is described—also using a reduced execution
history—in more detail.

The previously described situation—where a running instance I of schema O is
also a valid instance of O’—is preferred, but not always given. If the instance of
I is not a valid instance of O’, the running instance must not be migrated in its
current state to the new schema O’. The running instance must first undergo some
modifications that guarantee that the instance is compliant to schema O’ [7, 33].
In general, it is necessary to undo some activities that have already been executed
by the instance I. The undo may or may not require compensation. Following the
reverse execution history one activity is undone after the other until the instance is
compliant to schema O’. In the worst case scenario all activities must be undone and
the instance starts from the beginning following schema O’.

In order to demonstrate the dynamic schema evolution we assume the following
change to the order management example: Given the fact that the seller experiences
the fact that some of the buyers get bankrupt, the seller decides to perform a credibil-
ity check with a financial institution (F) for purchase orders that exceed an amount
of 10,000 Euro. Figure 4.6 displays the change in the order management process.
In the seller’s orchestration a change is made after check against offer. A decision
checks whether the amount of the purchase order is above 10,000 by an XPath ex-
pression on the variable purchase order (which was instantiated by the previous
received call of order product). If so, the sequence of invoking check credibility
and receiving get credit check is executed. If not, no new activities are executed.
After merging the two alternative paths again, the orchestration continues like in the
old schema with the parallel execution of reserve stock and reserve production line.

In the following we are going to exemplify the different cases of running in-
stances of the purchase order management process at the seller:

• All running instances that are in a state up to check against offer and have not
started reserve stock or reserve production line are transformed into the new

4 Flexible Workflow Management in Service Oriented Environments 105

Order Product

SellerBuyer

Order Product

SsSs

Check against Offer
SA

F F

[else] […/Amount > 10000] Financial Institution

Check credibility

Get Credit Check
Ss

Check credibility

Get Credit Check

Ss

Reserve Stock Reserve Production Line
SP

SP

Calculate Delivery Date

Reserve Transport

SP

C

Reserve Transport

C

Carrier

Confirm Transport

Response To OrderResponse To Order

Ss

B B

Confirm Transport

Ss

Response To Order

Get Status

p

Get Status
Ss

Ss

Inform on Status
Inform on Status

B
B

Fig. 4.6 Changing the order management process

106 Birgit Hofreiter and Christian Huemer

process schema. Since they are in a state before the schema change is effective,
they are compliant to the new schema.

• Running instances that have already started reserve stock or reserve production
line passed the area of change. If a process instance handles a purchase order
up to an amount of 10,000 Euro, the change does effect the instance. In other
words, the flow of activities in the old schema and in the new schema are equiv-
alent. No matter in which state the running instance is at the time of the change,
the instance is compliant with the new schema and may execute following the
new schema. Even if this is trivial in our case, because the remaining steps are
identical for the old and the new schema.

• More complicated is the case where a process instance handling an order above
10,000 Euro has already passed the area of change. Assume that a running in-
stance has already passed the parallel execution of reserve stock and reserve
production line as well as the calculate delivery date operation. In this case it is
necessary to undo the mentioned operations. The undo of calculate delivery date
does not require any measures to be taken—the new delivery date will be cal-
culated anyway when the instances executes this operation again. However, the
undo of reserve stock and reserve production line requires compensation. Thus,
compensation handlers must be defined to execute the operations clear resources
and deallocate production line, respectively. Note, both compensating operations
have already been introduced in Section 4.2 as part of the regular flow. Due to
space limitations we do not depict the compensation handlers in Figure 4.6. Hav-
ing performed the undo of the three operations, the instance is compliant with
the new schema. It now continues following the new schema by the invocation
of check credibility.

So far we concentrated on changes to the orchestration of a process. In Sec-
tion 4.2 we already introduced the inter-dependencies between orchestrations and
choreographies. Some of the activities within an orchestration may also be part of
one or more choreographies involving interactions with business partners. In the
discussion up to now we focused on changes that affect only the owner of an orches-
tration. However, not all changes may be kept local to the owner of an orchestration.
Some changes in an orchestration may also affect the interactions with partners in a
choreography. This is usually the result of adding, removing, or changing the flow
of activities that are provided on the partner’s port which is part of a partner link in
a choreography. The evolution of process choreographies is discussed in [32]. The
paper provides an approach to calculate the consistency of two local choreographies
once one of them is changed. In case of inconsistency the second local choreography
must be changed as well. Since business partners interacting in a choreography must
be considered as autonomous, an automatic adaptation of the second local choreog-
raphy is not envisioned. Nevertheless, the adaptation may be assisted by suggesting
respective adaptations—but this is not detailed in the paper.

Furthermore, we see problems in the case of undoing operations in an orches-
tration that are part of a choreography. Undoing such operations may require com-
pensations that are not part of the agreed choreography with a business partner. In
the schema evolution example of our order management process we have stated that

4 Flexible Workflow Management in Service Oriented Environments 107

all running instances for purchase orders above 10,000 Euro must be undone to get
to an state of check against offer to be able to continue with check credibility. As-
sume that a running instance has already past the response to order operation. From
a business point of view, this means that the order has been accepted and that a
contract has been established. Also a transport for delivering the order has already
been reserved. In this case an undo is rather problematic, it requires interactions
with the buyer and the carrier. However, these interactions have not been defined
in the choreography with the buyer nor with the carrier. Accordingly, there is no
cancellation of an order possible from the seller’s side once the order is accepted by
response to order. Only the buyer may cancel the order. Also the cancellation of a
transport reservation is not detailed with the carrier.

Unless the choreography agreement with the buyer and the carrier, respectively,
is changed, the instances of the seller’s orchestration must not undo the the response
to order and reserve transport operation. Otherwise the changes to running instances
will violate contracts with business partners. So far there does not exist any work that
elaborates on the undos of orchestrations and its effects on choreographies. In order
to avoid contractual conflicts, we propose to mark those operations which result in
contractual obligations and must not be undone without changing the choreography
as well. We have developed the UN/CEFACT modeling methodology (UMM) [13]
that uses six business transaction patterns classifying the basic interactions between
business partners. Among these the one-way notification pattern, and the two-way
patterns commercial business transaction and request/confirm have contractual con-
sequences. Following the definition of the three mentioned patters, undo operations
must never cross the boundaries of these business transactions.

4.6 Summary and Outlook

In this chapter we provided a survey of the most important topics regarding flexible
workflow management in service-oriented environments. Flexibility in workflow
management becomes more and more important due to shorter product life-cycles.
Companies are required to adapt their business processes in shorter time cycles. This
implies that the supporting IT-infrastructure must quickly adapt itself to changing
business processes. The concept of loose coupling in service-oriented architectures
provides a means to cope with the required flexibility to adapt to changing business
requirements.

Flexible business process support is required for both internal processes deliv-
ering customer value and inter-organizational processes co-ordinating the interac-
tions with business partners. These two views on business processes are addressed
in service-oriented environments by the concepts of orchestration and choreogra-
phy. Accordingly, we demonstrated how orchestration and choreography are sup-
ported in service-oriented architectures. Furthermore, we explicitly show the inter-
dependencies between orchestrated and choreographed processes.

108 Birgit Hofreiter and Christian Huemer

Orchestration and Choreography are abstract concepts to describe business pro-
cesses. These concepts are independent of the underlying IT-systems. We briefly
discussed relevant standard languages in the web services world used to describe
orchestrations and choreographies in a machine-readable way to be processed by
workflow systems. Currently, the business process execution language (BPEL) is
the most commonly supported language by tools and workflow systems. Accord-
ingly, we used BPEL to show how orchestrations and choreographies are presented
in a language that is compatible to the web services approach.

Today, orchestrations and choreographies are specified at design time and in-
stances at run time have to follow the specifications made at design time. In order
to increase the flexibility in web services-based workflows agents may assist in the
construction of workflows at design time and to cope with dynamic adjustments
at run time. We discussed agent-based approaches to search and select services
being part of an orchestration as well as to construct the execution order within
the orchestration. Furthermore, we highlighted agent-based approaches to establish
choreographies between business partners that have not conducted electronic busi-
ness processes before.

We elaborated on the need to dynamically support the execution of web services
workflows. Since the current approach taken by BPEL describes a static binding to
operations, port types, and partner links, dynamically bindings to the best service
provider are not supported. We introduced two major approaches found in the lit-
erature overcoming this problem. One is based on redirecting the call of services
requiring these dynamics to a special service that performs the dynamic binding.
The other one is based on extensions to BPEL allowing dynamic bindings.

Frequently adapting business processes to changing requirements results in mul-
tiple schema versions of a workflow. Accordingly, we discussed approaches to
schema evolution. This covers solutions to dynamically adapting running instances
of an orchestration to an updated schema version. In addition, we focused on the ef-
fect of schema evolution in orchestrations of private processes on the choreography
of dependent inter-organizational processes.

This survey highlights the different aspects to be considered in flexible workflow
management. However, solutions for the different aspects have been developed in
isolation from each other. Consequently, these solutions are not well aligned to each
other. This requires a fine tuning of the referenced approaches to become comple-
mentary to each other. Thus, this survey may serve as a starting point to deliver a
well-aligned framework to implement a flexible workflow management by means
of web services.

References

1. Rohit Aggarwal, Kunal Verma, John A. Miller, and William Milnor. Constraint driven web
service composition in meteor-s. In IEEE SCC, pages 23–30. IEEE Computer Society, 2004.

2. Jörg Becker, Michael Rosemann, and Christoph von Uthmann. Guidelines of business process
modeling. In van der Aalst et al. [38], pages 30–49.

4 Flexible Workflow Management in Service Oriented Environments 109

3. Christoph Bussler, Dieter Fensel, and Alexander Maedche. A conceptual architecture for
semantic web enabled web services. SIGMOD Record, 31(4):24–29, 2002.

4. Ricardo Büttner. The state of the art in automated negotiation models of the behavior and
information perspective. International Transactions on Systems Science and Applications
(ITSSA), 1(4):351–356, 2006.

5. Liliana Cabral, John Domingue, Enrico Motta, Terry R. Payne, and Farshad Hakimpour. Ap-
proaches to semantic web services: an overview and comparisons. In Christoph Bussler, John
Davies, Dieter Fensel, and Rudi Studer, editors, ESWS, volume 3053 of Lecture Notes in Com-
puter Science, pages 225–239. Springer, 2004.

6. Jorge Cardoso and Amit P. Sheth. Semantic e-workflow composition. Journal of Intelligence
and Information Systems, 21(3):191–225, 2003.

7. Fabio Casati, Stefano Ceri, Barbara Pernici, and Giuseppe Pozzi. Workflow evolution. In
Bernhard Thalheim, editor, ER, volume 1157 of Lecture Notes in Computer Science, pages
438–455. Springer, 1996.

8. Gero Decker, Oliver Kopp, Frank Leymann, and Mathias Weske. Bpel4chor: Extending bpel
for modeling choreographies. In ICWS, pages 296–303. IEEE Computer Society, 2007.

9. Jaap Gordijn and Hans Akkermans. Designing and evaluating e-business models. IEEE Intel-
ligent Systems, 16(4):11–17, 2001.

10. Michael Hammer and James Champy. Reengineering the Corporation: A Manifesto for Busi-
ness Revolution. Harper Business, 1993.

11. Birgit Hofreiter and Christian Huemer. Transforming umm business collaboration models to
bpel. In Robert Meersman, Zahir Tari, and Angelo Corsaro, editors, OTM Workshops, volume
3292 of Lecture Notes in Computer Science, pages 507–519. Springer, 2004.

12. Birgit Hofreiter, Christian Huemer, and Wolfgang Klas. ebxml: Status, research issues, and
obstacles. In RIDE, pages 7–16, 2002.

13. Birgit Hofreiter, Christian Huemer, Philipp Liegl, Rainer Schuster, and Marco Zapletal.
Un/cefact’s modeling methodology (umm): A uml profile for b2b e-commerce. In John F.
Roddick, V. Richard Benjamins, Samira Si-Said Cherfi, Roger H. L. Chiang, Christophe Clara-
munt, Ramez Elmasri, Fabio Grandi, Hyoil Han, Martin Hepp, Miltiadis D. Lytras, Vojislav B.
Misic, Geert Poels, Il-Yeol Song, Juan Trujillo, and Christelle Vangenot, editors, ER (Work-
shops), volume 4231 of Lecture Notes in Computer Science, pages 19–31. Springer, 2006.

14. Meichun Hsu. Letter from the special issue editor on workflow and extended transaction
systems. IEEE Data Engineering Bulletim, 16(2):3, 1993.

15. Patrick C. K. Hung and Dickson K. W. Chiu. Workflow-based information integration in a
web services environment. In Liang-Jie Zhang, editor, ICWS, pages 10–16. CSREA Press,
2003.

16. IBM. Web Services Flow Language, May 2001. http://xml.coverpages.org/XLANG-C-
200106.html.

17. ISO/IEC. Software and Systems Engineering – High-level Petri Nets, Part 2: Trans-
fer Format, June 2005. ISO/IEC 15909-2 Working Draft Version 0.9, http://wwwcs.uni-
paderborn.de/cs/kindler/publications/copies/ISO-IEC15909-2.WD.V0.9.0.pdf.

18. Dimka Karastoyanova, Frank Leymann, Jörg Nitzsche, Branimir Wetzstein, and Daniel
Wutke. Parameterized bpel processes: Concepts and implementation. In Schahram Dust-
dar, José Luiz Fiadeiro, and Amit P. Sheth, editors, Business Process Management, volume
4102 of Lecture Notes in Computer Science, pages 471–476. Springer, 2006.

19. Ulrich Küster and Birgitta König-Ries. Dynamic binding for bpel processes—a lightweight
approach to integrate semantics into web services. In Dimitrios Georgakopoulos, Norbert Rit-
ter, Boualem Benatallah, Christian Zirpins, George Feuerlicht, Marten Schönherr, and Hamid
R. Motahari Nezhad, editors, ICSOC Workshops, volume 4652 of Lecture Notes in Computer
Science, pages 116–127. Springer, 2006.

20. Jens Lemcke and Christian Drumm. Semantic business automation. In 3rd European Semantic
Web Conference, 2006.

21. Frank Leymann and Dieter Roller. Production Workflow: Concepts and Techniques. Prentice
Hall, 2000.

110 Birgit Hofreiter and Christian Huemer

22. Frank Leymann, Dieter Roller, and Marc-Thomas Schmidt. Web services and business process
management. IBM Systems Journal, 41(2):198–211, 2002.

23. Daniel J. Mandell and Sheila A. McIlraith. Adapting bpel4ws for the semantic web: The
bottom-up approach to web service interoperation. In Dieter Fensel, Katia P. Sycara, and John
Mylopoulos, editors, International Semantic Web Conference, volume 2870 of Lecture Notes
in Computer Science, pages 227–241. Springer, 2003.

24. Sheila A. McIlraith and David L. Martin. Bringing semantics to web services. IEEE Intelligent
Systems, 18(1):90–93, 2003.

25. Microsoft. XLANG—Web Services for Business Process Design, June 2001. Version 1.0,
http://xml.coverpages.org/WSFL-Guide-200110.pdf.

26. OASIS. ebXML Business Process Specification Schema Technical Specification, Decem-
ber 2006. Version 2.0.4, http://docs.oasis-open.org/ebxml-bp/2.0.4/OS/spec/ebxmlbp-v2.0.4-
Spec-os-en.pdf.

27. OASIS. Web Services Business Process Execution Language, April 2007. Version 2.0,
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

28. Chris Peltz. Web services orchestration and choreography. IEEE Computer, 36(10):46–52,
2003.

29. Giacomo Piccinelli, Wolfgang Emmerich, Christian Zirpins, and Kevin Schütt. Web service
interfaces for inter-organisational business processes: An infrastructure for automated recon-
ciliation. In EDOC, pages 285–292. IEEE Computer Society, 2002.

30. Manfred Reichert and Stefanie Rinderle. On design principles for realizing adaptive service
flows with bpel. In Mathias Weske and Markus Nüttgens, editors, EMISA, volume 95 of LNI,
pages 133–146. GI, 2006.

31. Stefanie Rinderle, Manfred Reichert, and Peter Dadam. Correctness criteria for dynamic
changes in workflow systems—a survey. Data and Knowledge Engineering, 50(1):9–34, 2004.

32. Stefanie Rinderle, Andreas Wombacher, and Manfred Reichert. On the controlled evolution of
process choreographies. In Ling Liu, Andreas Reuter, Kyu-Young Whang, and Jianjun Zhang,
editors, ICDE, page 124. IEEE Computer Society, 2006.

33. Wasim Sadiq, Olivera Marjanovic, and Maria E. Orlowska. Managing change and time in
dynamic workflow processes. International Journal of Cooperative Information Systems, 9(1–
2):93–116, 2000.

34. August-Wilhelm Scheer and Markus Nüttgens. Aris architecture and reference models for
business process management. In van der Aalst et al. [38], pages 376–389.

35. Evren Sirin, James A. Hendler, and Bijan Parsia. Semi-automatic composition ofweb services
using semantic descriptions. In Jean Bézivin, Jiankun Hu, and Zahir Tari, editors, WSMAI,
pages 17–24. ICEIS Press, 2003.

36. W. M. P. van der Aalst. Interorganizational workflows: An approach based on message
sequence charts and petri nets. Systems Analysis—Modelling—Simulation, 34(3):335–367,
1999.

37. Wil M. P. van der Aalst. Inheritance of interorganizational workflows to enable business-to-
business. Electronic Commerce Research, 2(3):195–231, 2002.

38. Wil M. P. van der Aalst, Jörg Desel, and Andreas Oberweis, editors. Business Process Manage-
ment, Models, Techniques, and Empirical Studies, volume 1806 of Lecture Notes in Computer
Science. Springer, 2000.

39. Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski, and Alistair P.
Barros. Workflow patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

40. Wil M. P. van der Aalst and Kees M. van Hee. Framework for business process redesign. In
WETICE, pages 36–45. IEEE Computer Society, 1995.

41. Wil M. P. van der Aalst and Mathias Weske. The p2p approach to interorganizational work-
flows. In Klaus R. Dittrich, Andreas Geppert, and Moira C. Norrie, editors, CAiSE, volume
2068 of Lecture Notes in Computer Science, pages 140–156. Springer, 2001.

42. W3C. Web Service Choreography Interface (WSCI), August 2002. Version 1.0,
http://www.w3.org/TR/wsci/.

43. W3C. Web Services Conversation Language (WSCL), March 2002. Version 1.0,
http://www.w3.org/TR/wscl10/.

4 Flexible Workflow Management in Service Oriented Environments 111

44. W3C. Web Services Choreography Description Language, November 2005. Version 1.0,
http://www.w3.org/TR/ws-cdl-10/.

45. Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, Tony Storey, and Donald F. Fergu-
son. Production Workflow: Concepts and Techniques. Prentice Hall, 2000.

46. Petia Wohed, Wil M. P. van der Aalst, Marlon Dumas, and Arthur H. M. ter Hofstede. Analysis
of web services composition languages: The case of bpel4ws. In Il-Yeol Song, Stephen W.
Liddle, Tok Wang Ling, and Peter Scheuermann, editors, ER, volume 2813 of Lecture Notes
in Computer Science, pages 200–215. Springer, 2003.

47. Andreas Wombacher, Peter Fankhauser, Bendick Mahleko, and Erich J. Neuhold. Matchmak-
ing for business processes based on choreographies. In EEE, pages 359–368. IEEE Computer
Society, 2004.

48. Andreas Wombacher, Peter Fankhauser, and Erich J. Neuhold. Transforming bpel into anno-
tated deterministic finite state automata for service discovery. In ICWS, pages 316–323. IEEE
Computer Society, 2004.

49. Workflow Management Coalition. Process Definition Interface—XML Process Defi-
nition Language, October 2005. Version 2.0, http://www.wfmc.org/standards/docs/TC-
1025 xpdl 2 2005-10-03.pdf.

Chapter 5
Semantics for Service-Oriented Architectures

Michael Stollberg and Dieter Fensel

Abstract The concept of Service-Oriented Architectures (SOA) is the latest de-
sign paradigm for IT systems. The aim is to use Web services as the basic building
blocks, which provide reusable functionalities that are invokable over the Internet.
The initial Web service technology stack around WSDL, SOAP, and UDDI enables
the technical provision and usage of Web services. However, the support for the
detection of the suitable Web services for a specific client application is limited
to manual inspection. To better support this for SOA applications with the larger
numbers of available Web services that can be expected in real-world scenarios, the
emerging concept of Semantic Web services (SWS) develops inference-based tech-
niques for the automated discovery, composition, and execution of Web services.
This chapter provides an overview on the SWS approach as well as the latest tech-
nology developments.

5.1 Introduction

The concept of Web services as been invented by a consortium of leading IT vendors
in the late 1990s. Essentially, a Web service is a program that can be invoked over the
Internet. It is accessible via an interface that specifies the physical address as well
as the messages via which a client can consume the Web service. The actual con-
sumption is realized by the exchange of XML data over the Web via SOAP. Remain-
ing independent of the actual implementation, this technology facilitates computing

Michael Stollberg
SAP Research CEC Dresden, SAP AG, Dresden D-01187, Germany
e-mail: michael.stollberg@sap.com

Dieter Fensel
Semantic Technology Institute (STI), University of Innsbruck, Innsbruck Austria
e-mail: dieter.fensel@sti2.at

N. Griffiths, K.-M. Chao (eds.), Agent-Based Service-Oriented Computing, 113
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-041-0 5, c© Springer-Verlag London Limited 2010

114 Michael Stollberg and Dieter Fensel

over the Web as well as seamless information exchange and reuse functionalities
within and between organizations.

Because of this, Web services have been proclaimed as the core technology for
Service-Oriented Architectures (SOA). In the future, IT systems shall be composed
of Web services as the basic building blocks instead of proprietary solutions. The
aim is to exploit the potential of the World Wide Web (WWW) as an infrastruc-
ture for computation, and also to reduce the development and maintenance costs for
IT systems. The adaptation of Web services and the SOA paradigm within indus-
try as well as by non-profit software developers has been facilitated by the early
standardization of the necessary technologies. Commonly referred to as the initial
Web service technology stack, these are (1) the Web Service Description Language
(WSDL) for specifying the technical information, as well as the messages for in-
voking and consuming a Web service, (2) SOAP as a messaging technology for
exchanging XML data over the Web, and (3) the Universal Description, Discov-
ery and Integration Protocol (UDDI) which provides a registry technology for Web
services.

This allows service providers to offer functionalities as Web services, and also
supports the technical usage of Web services by clients. However, the descriptions
remain on a syntactic level which limits the Web service usage to manual inspection:
the developer of a client application needs to search for a suitable Web service within
a UDDI repository, then inspect the WSDL description in order to determine how
and in which order the necessary messages shall be exchanged, and finally integrate
the Web service invocation into the application.

In order to overcome these deficiencies, the emerging concept of Semantic Web
services (SWS) develops techniques for better supporting the detection and usage
of Web services on the basis of semantic descriptions. The aim is to better sup-
port and eventually automate the Web service usage process, and to facilitate the
dynamic detection and execution of the necessary Web services for solving a par-
ticular client request within SOA systems. For this, inference-based techniques for
automated discovery as the detection of suitable candidates out of the available Web
services, composition as the automated combination of several Web services, and
the automated execution of Web services are developed. The SWS approach uses
ontologies as the underlying data model, which are formally specified knowledge
models propagated as the base technology for the Semantic Web—another promi-
nent amendment of the existing Web.

This chapter provides an overview of the SWS approach as well as the latest
technology developments for this. Firstly, Section 5.2 recalls the initial Web service
technologies and the vision of Service-Oriented Architectures. Then, Section 5.3
introduces the concept and the most prominent frameworks for Semantic Web ser-
vices, and Section 5.4 presents recent developments on SWS techniques for au-
tomating the detection, usability analysis, and execution of Web services. Finally,
Section 5.5 summarizes the chapter and outlines perspectives for the future devel-
opment and standardization of semantic SOA technologies.

5 Semantics for Service-Oriented Architectures 115

5.2 Web Services and SOA

The following recalls the concept of Web services and the basic technologies, and
depicts the intended usage of Web services as the base technology for Service-
Oriented Architectures (SOA). We also identify the deficiencies for supporting Web
service usage in SOA environments in order to motivate the need for semantic tech-
nologies to enhance the quality of SOA systems.

5.2.1 Web Services

The concept of Web services has been invented in the late 1990s by a mostly
industry-driven initiative. The aim was to define a new technology that on the one
hand makes use of the WWW as an infrastructure for computation, and, on the other
hand, allows to effectively tackle the intra- and inter-organizational integration of in-
formation and services. For this, three contiguous technologies have been specified
which are commonly referred to as the initial Web service technology stack: WSDL
as the language for describing the interface of a Web service, SOAP as a messaging
protocol for exchanging XML data over the Web, and UDDI as a registry technol-
ogy for Web services. These have been published by the World Wide Web Consor-
tium W3C (www.w3.org), and respectively by OASIS as a mostly industry-driven
standardization body (www.oasis-open.org). The standardized specifications
have been first released in the years 2000–2002; the latest versions have been pub-
lished in 2007.

The following explains the basics of the central Web service technologies. We
refer to the technical specifications as well as to extensive secondary literature for
details, e.g., [5, 25, 45].

5.2.1.1 Web Service Description Language (WSDL)

As the heart of Web service technology, this is an XML-based language for describ-
ing the interface of a Web service [11]. Essentially, a WSDL description specifies
the supported operations for invoking and consuming the Web service, its physical
location, and it supports bindings to several transport protocols and formats for the
actual information exchange between the Web service and the requester.

The WSDL description of a Web service is defined as an XML document that
consists of the following elements: the service element describes the name and the
physical location of the Web service, mostly in form of a URI. A Web service can
have several physical endpoints. These are called ports, for which a binding defines
the supported transport protocols and formats. While this specifies how to carry
out the actual information exchange, the port type element specifies the set of op-
erations that are supported by the Web service. An operation consists of a set of
messages and their direction (i.e., in- or out-going). A message describes the data

116 Michael Stollberg and Dieter Fensel

being communicated between the requester and the provider. The message content
is described in terms of XML Schemas; the type element allows the specification of
the complex data types used in the WSDL description.

The main merit is that WSDL is independent of the technologies used for the
actual implementation of a Web service. Thus, in principle any program can be
provided as a Web service by defining a WSDL description. This is supported by
existing development environments, e.g., the Java2WSDL tool from the Apache
Axis tool kit which allows the automatic generation of the WSDL description for a
Java program (see http://ws.apache.org/axis/).

5.2.1.2 SOAP

Formerly the abbreviation for Simple Object Access Protocol, this is a messaging
technology for exchanging XML data over the Web [52]. Although SOAP is not
restricted to the context of Web services, it has become the standard communication
protocol for consuming Web services by the exchange of messages over the Internet.

Every operation in a WSDL description is associated with one or more messages.
To consume a Web service, these need to be instantiated with concrete values and
then are exchanged between the endpoints via a specific transport protocol. A SOAP
message is a XML document which consists of a header with technical information,
and a body that carries the actual content in the form of XML data. This is wrapped
into an envelope, which then can be bound to a transport protocol for conducting
the actual information exchange. In the context of Web services, SOAP is mostly
bound to HTTP in order to enable document exchange over the WWW; however, it
can also be bound to other transport protocols.

5.2.1.3 Universal Description Discovery and Integration Protocol (UDDI)

This is a registry technology intended to support the publishing, management, and
discovery of Web services. It defines a generic data model for describing Web ser-
vices with respect to the providing business entity, the technical access information,
a natural language description, and a keyword-based classification scheme [18]. In
addition, the detailed specification of Web services can be bundled in so-called tech-
nical models. The specification comes along with an API in order to support pro-
grammatic access to UDDI registries.

The purpose of a UDDI registry is to allow service providers to publish and ad-
vertise their Web services, and also to facilitate the search and inspection of suitable
Web services by clients. Initially, big vendors such as Microsoft, SAP, and IBM
maintained the UDDI Business Registry (UBR) as a single repository for publicly
available Web services. However, this effort has been abandoned because the catego-
rization scheme used as well as the UDDI support for publishing and searching Web
services proved to be insufficient. Nowadays, most SOA systems employ registry
techniques that are specialized for the specific application scenario. Nevertheless,

5 Semantics for Service-Oriented Architectures 117

these proprietary registries follow the principles of UDDI—i.e., describing and or-
ganizing Web services in a classification scheme to support clients in the detection
of the suitable Web services.

Concluding, the initial Web service technology stack is comprised of three cohesive
technologies standardized by the W3C, and respectively by OASIS:

1. WSDL as the standardized description language for Web services
2. SOAP as the communication protocol for executing Web services
3. UDDI as a registry technology for publishing and searching Web services.

In addition, several accessory technology standards have been specified, which are
concerned with usage policies, addressing schemes, security, and other aspects that
occur to be relevant for real-world applications [72]. A reliable indicator for the
thorough adaptation and success of Web services is that essentially all big software
vendors are committed to this technology.

5.2.2 Service-Oriented Architectures

The invention of Web services and the standardization of necessary technologies has
initiated the concept of Service-Oriented Architectures (SOA) as a new IT system
design paradigm [25]. The idea is to use Web services as the basic building blocks
of software systems in order to exploit the potential of this new technology. The
motivation for this is twofold:

• Software fragments from distributed locations that are offered as Web services
can be seamlessly integrated, which eases the aggregation of services from dif-
ferent providers [5].

• Web services can help to reduce the development and maintenance costs of IT
systems by reuse of existing services and by flexible replacement [45].

• Web services allow us to tackle the integration problem, i.e., the exchange of data
and services between business partners that use different technologies: if two
businesses agree on a common data model and provide their public processes
as Web services, then the relevant information can be interchanged while the
internal processes remain unchanged [13].

The initial Web service technology stack as explained above provides the tech-
nical basis for realizing the SOA vision, and the standardization has triggered ma-
jor research and development efforts in industry as well as in academia. Existing
SOA technologies range from freely available tools (e.g., the Methods Web ser-
vice browser) and open source development kits (e.g., AXIS from Apache) to ex-
haustive development and management environments from the major software ven-
dors, e.g., the Microsoft’s .NET framework, IBM’s WebSphere, Oracle’s SOA Suite,
NetWeaver (SAP), or Crossvision (Software AG). Moreover, the rising interest in
Web services and SOA has led to further developments such as the integration into

118 Michael Stollberg and Dieter Fensel

business process management technology (e.g., BPEL4WS, [6]) as well as to service
orientation as a new business model [4].

However, the development of sophisticated SOA technologies is an immense
challenge. A central challenge is the adequate support for the detection of suitable
Web services for a concrete client application. This requires an appropriate descrip-
tion that allows clients to determine whether a Web service is actually suitable for
the given problem, and SOA systems should support this in an adequate manner.
We discuss the deficiencies of the basic Web service technologies for the usability
analysis in more detail, which will reveal the motivation for Semantic Web services
that we shall discuss in the next section.

Figure 5.1 illustrates the procedure of Web service usage by clients on the ba-
sis of WSDL, SOAP, and a registry technology like UDDI. The client—which in
most cases is the developer of an application wherein Web services shall be used—
wants to find a suitable Web service for a certain problem setting. As the first step,
the client searches the UDDI registry of the available Web services. When a can-
didate has been found, its actual usability must be determined. This means that the
client needs to figure out in what order which messages with what content and under
which transport binding must be exchanged with the Web service in order to con-
sume the desired functionality. The relevant information for this is available in the
WSDL description of a Web service. However, the client needs to manually analyze
the supported operations as well as the required data in order to determine how to
invoke the Web service in a way such that it will solve the given task. This problem
remains when using automatically generated client stubs for WSDL descriptions,
because the generated code merely reflects the description in a programmatic en-
vironment. Once the usability analysis is completed successfully, the Web service
can be invoked and consumed over the specified binding (which usually is SOAP as
explained above).

Fig. 5.1 Web service usage procedure

Obviously, the outlined procedure can not be considered to provide sophisticated
support for the detection of suitable Web services, because most of the usability
analysis tasks are left to manual analysis by the client. Moreover, several problems
may occur during the analysis, e.g., that the classification scheme in the repository

5 Semantics for Service-Oriented Architectures 119

is too inexpressive so that the candidate search result is imprecise, or that the data
of the client and the Web service are incompatible. Thus, more appropriate tech-
nologies are needed for supporting Web service detection and the usability analysis,
which is at least as important for realizing the SOA vision as the technical infrastruc-
ture for the publication and consumption of Web services. One prominent approach
that addresses this problem is the emerging concept of Semantic Web services that
we will explain in the following.

5.3 Semantic Web Services

The aim of Semantic Web services (SWS) is to overcome the deficiencies of the
initial Web service technologies, especially for the service detection and usability
analysis as discussed above. The approach is to extended Web service descriptions
with sufficiently rich semantic annotations and, upon these, provide inference-based
techniques for automating the detection and usage of Web services [28,50]. Several
research and development efforts work on SWS technologies, and there is a wealth
of work on this. We here provide a concise overview, referring to more exhaustive
literature for further details (e.g., [15, 29, 66]).

Essentially, SWS technologies apply reasoning techniques on formalized de-
scriptions in order to better support the usability analysis of Web services and also
to handle the integration problem on a semantic level. The primary tasks that can
beneficially be supported by SWS technologies are discovery as the detection of
suitable Web services for a given task, composition as the combination of several
Web services to solve a more complex task, and mediation as the handling of het-
erogeneities that may occur between the requester and the provider. For this, the
SWS approach extends Web service descriptions as follows (Figure 5.2).

1. Instead of XML, ontologies are used as the data model for describing Web ser-
vices. These provide formalized knowledge models of a domain that allow ad-
vanced information processing. Moreover, this pursues the alignment of Web
service technology with the Semantic Web for which ontologies are considered
as the base technology (see below).

2. Apart from non-functional aspects such as the owner, usage rights, quality-of-
service and financial information, also the provided functionality of a Web service
is formally described. The primary purpose is to support semantic matchmaking
techniques for more precise Web service discovery.

3. The Web service interface for consumption, i.e., the WSDL description, is for-
mally described in order to support automated compatibility analysis of the com-
munication behavior supported by the client and the Web service.

4. In addition, the aggregation of Web services describes how a complex Web ser-
vice achieves its functionality by combining several other Web services. This
aims at automated techniques for analyzing the executability of Web service ag-
gregations in more complex SOA applications.

120 Michael Stollberg and Dieter Fensel

Fig. 5.2 From web services to semantic web services

The following explains the foundations of the SWS approach in more detail. We
commence with the Semantic Web and ontologies, and then present the most promi-
nent SWS frameworks that have been developed in the last years. We shall discuss
the state-of-the-art in the development of SWS techniques for automating the detec-
tion and execution of Web services in the next section.

5.3.1 Ontologies and the Semantic Web

Ontologies are a modern AI knowledge representation technique. They have been
identified as the base technology for the Semantic Web—the grand vision for the
further evolution of the WWW [9]—and they are used as the formalized domain
knowledge specifications for SWS descriptions. The following explains the defini-
tion and the benefits of ontologies as formalized knowledge models, and depicts the
status of Semantic Web technology developments.

Adopting the denotation from the philosophical study of being and existence, an
ontology is defined as a “formal, explicit specification of a shared conceptualiza-
tion” [31]. This means that an ontology defines a conceptual model of a domain
that ideally represents an agreed consensus among involved parties. The conceptual
model is defined in terms of concepts that denote the entities in the domain of dis-
course. These are associated with attributes that describe specific properties, and
relations that specify the relationships among the concepts. The subsumption and
membership relations define the taxonomic backbone of the ontology. In addition,
further knowledge on the domain can be specified in terms of logical statements re-
ferred to as axioms. Individuals in the domain are represented as instances of a con-
cept. The conceptual model is then represented in a formal, machine-processable
language upon which reasoning techniques can be employed for advanced informa-
tion processing. The major merit is that ontologies provide a technology indepen-
dent model of the domain of discourse, which allows us to better bridge the gap

5 Semantics for Service-Oriented Architectures 121

between the real world and IT systems [27]. Furthermore, ontologies allow us to
integrate heterogeneous data on the semantic level by defining mappings between
ontologies [3].

The Semantic Web envisions that Web resources are described on the basis of
ontologies, so that their potential for advanced and meaning-preserving information
processing can be exploited for processing Web-content. Proposed by Tim Berners-
Lee—inventor of the WWW and director of the W3C—this is embedded in a larger
vision for subsequently augmenting the current WWW with additional languages
and technologies that shall be standardized by the W3C. Figure 5.3 shows the so-
called Semantic Web Layer Cake that illustrates the overall vision: the bottom layers
are the already existing WWW technologies (URI, XML, Namespaces). Upon this,
several ontology languages are defined that are the current focus of standardization
work. On top of this, languages for proof and trust on the Web are targeted as future
work.1

The Semantic Web has received high interest in academia and industry, resulting
in a steadily growing, international research community. This has produced a wealth
of work that mainly covers the following areas.

1. Formal ontology languages [21] and efficient reasoning techniques (e.g., [54]).
2. Ontology management technologies [35], i.e., methodologies and tools for on-

tology engineering [30], scalable ontology repositories (e.g., [34]), and ontology
evolution support (e.g., [23]).

3. Ontology-based data integration techniques (e.g., [57]).
4. Applications that demonstrate the benefits of Semantic Web technologies [20].

Fig. 5.3 The semantic web
layer cake (revised version,
2005)

1 Figure 5.3 is taken from a keynote talk by Tim Berners-Lee, see http://www.w3.org/
2005/Talks/0511-keynote-tbl/. At the time of writing, W3C standard recommenda-
tions exist for the Resource Description Framework RDF (see www.w3.org/RDF/), the Web
Ontology Language OWL [49], and the RDF query language SPARQL [44]; standardization work
on a rule language is ongoing, e.g., in the RIF working group (see http://www.w3.org/
2005/rules/wg).

122 Michael Stollberg and Dieter Fensel

5.3.2 SWS Frameworks

We now present SWS frameworks that define comprehensive specifications for se-
mantically describing Web services, in general following the approach as outlined
above. The following provides an overview of the conceptual frameworks that most
of the research on Semantic Web services is based upon. As the most relevant ones,
we here depict the approaches that have been submitted to or published by acknowl-
edged standardization bodies.

5.3.2.1 OWL-S

As the chronologically first approach for SWS, OWL-S defines an upper ontology
for semantically annotating Web services [47]. This has been developed in the years
2003–2005, driven by a mostly US-based consortium under the DAML programme
(see www.daml.org).

The OWL-S model defines three elements for describing Web services as shown
in Figure 5.4 (taken from [47]). Every description element is defined on the basis of
domain ontologies, and OWL as the standard ontology language currently recom-
mended by the W3C is used as the specification language.

1. The Service Profile holds information for Web service advertisement, containing
the name of the service, its provider, a natural language description, and a formal
functional description defined in terms of the inputs and outputs, preconditions
and effects (short: IOPE).

2. The Service Model describes how the Web service works whereby the service is
conceived as a process. The description model defines three types of processes
(atomic, simple, and composite processes), in which each construct is described
by IOPE along with basic control and data flow constructs.

3. The Service Grounding gives details of how to access the service, which is real-
ized as a mapping from the abstract descriptions to WSDL.

Fig. 5.4 Overview OWL-S

5 Semantics for Service-Oriented Architectures 123

The intended usage of an OWL-S description is as follows. The service profile
relates to the information stored in UDDI repositories. While the natural language
descriptions are for human consumption, the formal functional description is used
for automated Web service discovery by semantic matchmaking (see Section 5.4
below). The service model formally describes the external visible behavior of a
Web service, i.e., how to invoke and consume the service and what happens when it
is executed. This is used to determine whether the communication between a client
and the Web service as well as with other aggregated Web services can be carried out
successfully. Finally, the service grounding maps the abstract, semantic descriptions
to conventional Web service technologies in order to conduct the actual message
exchange for execution. Although being criticized especially on the inadequacy of
the process description language [41], OWL-S has served as the basis for various
SWS research and development activities.

5.3.2.2 WSMO

The Web Service Modeling Ontology WSMO is developed by a European initiative
since 2004 (see www.wsmo.org) [42]. It takes a broader approach than OWL-
S, aiming at a comprehensive framework for semantically enabled SOA technolo-
gies [12]. For this, it defines four top-level notions: ontologies that define formalized
domain knowledge, goals that describe objectives that clients want to achieve by us-
ing Web services, semantically described Web services, and mediators for handling
potentially occurring heterogeneities (see Figure 5.5).

Fig. 5.5 WSMO top level notions

In contrast to the other frameworks, WSMO does not only cover the semantic
annotation of Web services but propagates a goal-based approach for Semantic Web
services along with mediation as an integral part. The idea is that a client formulates
requests in terms of a goal, which formally describes the objective to be achieved
while abstracting from technical details; the system then automatically detects and
executes the suitable Web services in order to solve the goal [65]. The notion of

124 Michael Stollberg and Dieter Fensel

goals provides an explicit element for the client side of SOA applications that facil-
itates the lifting of Web service usage by clients to the level of problems that can be
solved. In addition, integrated mediators allow us to handle and resolve potentially
occurring heterogeneities that can be expected in open and decentralized environ-
ments like the Web and may hamper the successful interaction between clients and
Web services [17].

The WSMO framework defines description models for all four elements along
with an own specification language. Analogous to Figure 5.2 above, Web services
in WSMO are described by non-functional properties, a capability that specifies the
provided functionality in terms of preconditions, assumptions, postconditions and
effects, a choreography interface that describes how a client can invoke and con-
sume a Web service, and an orchestration interface that describes how the Web ser-
vice interacts with other Web services to achieve its functionality. WSMO provides
an own specification language called WSML [22], which is a conceptual language
for the WSMO elements along with five variants of logical languages that corre-
sponds to the ontology languages developed for the Semantic Web (cf. Figure 5.3).
Several tools are provided for WSMO, including a suite of reasoners for the dif-
ferent variants and an API for the programmatic management of WSMO elements
and definitions. Moreover, there are implementations of execution environments for
Semantic Web services, namely WSMX as the WSMO reference implementation
(see www.wsmx.org) and the IRS system that provides a broker for Semantic
Web services [14].

5.3.2.3 SWSF

The Semantic Web Services Framework (SWSF) has been developed by a joint
working group of industrial and academic researchers [7]. Essentially, it provides
an extension of OWL-S that aims at replacing the initial, insufficient specification
model and language for the Service Model with an appropriate formal process lan-
guage. The major contribution of SWSF is a rich behavioral process model based on
the Process Specification Language (PSL) [32]. SWSF provides two axiomisations:
(1) FLOWS is based on first-order logic with extensions form situation calculus to
model changes of the world; (2) SWSLRules is a logic programming language that
serves as both a specification and implementation language and provides support for
tasks like discovery, contacting, and policy specification for Semantic Web services.

5.3.2.4 WSDL-S

The WSDL-S approach has been defined in a joint effort by IBM and the University
of Georgia [1]. Instead of a comprehensive framework for semantically describ-
ing Web services, WSDL-S defines extensions to WSDL in order to semantically
annotate the XML data types as well as the messages and operations in a WSDL de-
scription. For this, a WSDL document is augmented with additional tags that refer

5 Semantics for Service-Oriented Architectures 125

to an external domain ontology. While not fixing the ontology language, WSDL-S
proposes three types of annotations:

1. WSDL types (i.e., XML data elements) are referenced to concepts in the domain
ontology,

2. WSDL operations can be described by preconditions and effects that refer to
respective axioms, and

3. a categorization of Web services can be defined on the basis of the ontology
taxonomy.

5.3.2.5 SAWSDL

While the previous approaches are merely W3C member submissions, Semantic An-
notations for WSDL and XML Schema (short: SAWSDL) is the only official W3C
technology recommendation for Semantic Web services existing at this point in
time [26]. It essentially follows the idea of WSDL-S, i.e., the annotation of WSDL
documents with additional tags that reference a domain ontology. SAWSDL con-
sists of two parts as illustrated in Figure 5.6 (taken from [40]): (1) mappings of
XML schema definitions to ontology concepts which allow the definition of the
correspondence of SOAP message contents to ontology data, and (2) the semantic
annotation of WSDL operations. For the latter, SAWSDL limits the annotation by
referring to ontology concepts but does not support the definition of preconditions
and effects, which limits the annotations to merely consists of keywords associated
with a domain ontology.

Fig. 5.6 SAWSDL overview

126 Michael Stollberg and Dieter Fensel

A comparison of the SWS frameworks reveals the following commonalities and dif-
ferences. OWL-S as the first approach defines a description model for Web services
that covers all aspects of the SWS approach as described above, i.e., non-functional
aspects, a formal functional description, and formal descriptions of the interfaces
for consumption and aggregation of Web services. It uses OWL as the specification
language, thus is compliant with the W3C standards for the Semantic Web. SWSF
extends this model with a more sophisticated process description language. WSMO
is a more exhaustive framework that propagates a goal-driven approach along with
integrated mediation facilities. Going beyond the idea of merely annotating Web
services, this aims at an all-embracing framework for semantically enabled SOA
technology. WSMO defines its own specification language that covers all ontology
languages that are considered for the Semantic Web, and provides reasoners for
this along with a set of development tools as well as reference implementations.
WSDL-S only partially realizes the SWS approach, and therefore can be considered
a light-weight framework. However, it follows the W3C tradition of extending ex-
isting standards, and it has served as the conceptual basis for SAWSDL as the only
approach for the semantic annotation of Web services that is recommended by a
standardization body as of today. Recent works take over this approach, e.g., [48].

5.4 Semantic Techniques for Automating SOA

After explaining the motivation and prominent approaches for Semantic Web ser-
vices, we now turn towards the techniques for automated support of Web service
detection and execution. The following first identifies the central techniques, and
then presents the state-of-the-art in research and development.

As outlined above, the ultimate aim of the SWS approach is to automate the
complete Web service usage process with inference-based techniques that expose
a sophisticated processing quality. Figure 5.7 illustrates the workflow of SWS en-
vironments for this, which has been defined in early works on SWS system archi-
tectures [61] and is currently being specified in detail by a OASIS standardization
working group [56]. The input is a concrete client request that shall be solved by
detecting and executing the suitable Web services; the gray boxes denote the neces-
sary techniques for this. The first processing step is discovery, which is concerned
with the detection of suitable candidates out of the available Web services. This
commonly is realized by semantic matchmaking of formal functional descriptions.
Then, the usability of the discovered candidates is inspected in more detail. The se-
lection and ranking component either selects one of the candidates or determines a
priority list for the further processing with respect to quality-of-service criteria as
well as other non-functional aspects, and the behavioral compatibility component
checks whether the communication between the requester and the Web services can
be carried out successfully. If this is given, then the executor automatically invokes
the Web service in order to solve the client request. If a single suitable Web service
does not exist, then the composer is invoked which tries to construct a combination

5 Semantics for Service-Oriented Architectures 127

of several Web services for solving the request; this utilizes the previously men-
tioned components. In addition, mediation facilities can be employed in order to
handle potentially occurring mismatches that hamper the successful interaction be-
tween the requester and the provider. In the following, we explain each of the tech-
niques in more detail and depict the latest research works on this.

Fig. 5.7 SWS techniques for automated web service usage

5.4.1 Discovery

Web service discovery is concerned with the detection of the suitable Web services
for a given request out of the available ones. This is a central operation in SOA
systems for which a significant quality increase can be achieved by SWS techniques:
on the basis of more precise Web service descriptions, discovery techniques can be
developed that expose a higher precision and recall than the syntactic keyword-
based search supported by UDDI.

A wealth of work exists on semantically enabled Web service discovery. Most
approaches address this by semantic matchmaking of formally described requested
and provided functionalities, i.e., OWL-S service profiles or WSMO capabilities
as explained above. This is commonly referred to as functional discovery that de-
termines whether a Web service can solve the given request with respect to the
preconditions and effects. Prominent works for this are [37, 43, 60]. In addition to
the basic matchmaking, techniques have been developed for handling cases where
a match is not given but can be established by relaxing requirements in the request
(e.g., [19]), and also approaches that integrate other techniques for the discovery
task (e.g., [38, 55]).

128 Michael Stollberg and Dieter Fensel

In principle, semantically enabled Web service discovery techniques can achieve
a very high retrieval accuracy. On the basis of sufficiently rich functional descrip-
tions with expedient formal semantics and an exhaustive domain ontology, one can
specify semantic matchmaking techniques that allow us to very precisely determine
whether a Web service can be used for the given client request or not. This appears
to be desirable in comprehensive SWS environments as outlined above. However,
such techniques require a considerable effort in the creation and validation of the
necessary formal descriptions. Thus, also more light-weight techniques are devel-
oped that can merely achieve a lower retrieval accuracy but require significantly less
effort for the employment in a SOA system.

With respect to this, we can distinguish six categories of semantic discovery
techniques. The following explains them in an ascending order with respect to the
achievable retrieval accuracy, and Table 5.1 illustrates which of the discovery tech-
niques are supported by the SWS frameworks presented in Section 5.3.

Table 5.1 Support for automated web service discovery

OWL-S WSMO WSDL-S SAWSDL
Goal-based x

Precond. / effect heavy x x
Precond. / effect light x x x

Input / output x x x x
Categorization x x x x
Keyword-based x x x x

1. Keyword-based: the simplest techniques perform discovery on the basis of key-
words. For example, the flight booking Web service from United Airlines is an-
notated with the keyword “flight, booking, UA”. Usually, the keywords are based
on a domain ontology, e.g., by the referencing mechanism defined in WSDL-S
and SAWSDL. This is relatively easy to realize, but only a very low retrieval
accuracy can be achieved.

2. Categorization: this refers to techniques that perform discovery on the basis of
a categorization. Mostly, the Web services are annotated with concepts of a do-
main ontology, and the taxonomic structure of the ontology serves as the cate-
gorization scheme—e.g., all the Web services annotated with the concepts car,
train, and plane are organized in the category vehicle as the common
super-concept in the ontology. Although the actual retrieval accuracy is simi-
lar to the keyword-based techniques, the categorization allows us to browse and
pre-filter potential candidates for a more detailed inspection. A SWS system that
realizes this approach is presented in [68].

3. Matchmaking input/output: this refers to techniques that consider the compati-
bility of the inputs and outputs. In principle, a Web service is considered to be
usable if (1) the requester can provide all required inputs, and (2) if the outputs
of the Web service satisfy those expected by the requester. This can achieve a

5 Semantics for Service-Oriented Architectures 129

significantly higher retrieval accuracy than the above approaches, and thus is the
most commonly used discovery technique in SWS systems.

4. Matchmaking precondition/effect: the next group of discovery techniques does
not only consider the inputs and outputs but also further conditions that are de-
fined in terms of preconditions and effects. We here need to further distinguish
light-weight techniques wherein the pre- and post-execution constraints are con-
sidered as isolated logical formulae, and heavy-weight techniques wherein the
functional descriptions are considered as a coherent formal specification. Natu-
rally, the latter can achieve a higher retrieval accuracy because the relationship
between preconditions and effects is considered as well. An exhaustive discus-
sion on this is provided in [37].

5. Goal-based: the last group of automated Web service discovery techniques fol-
lows the goal-based approach promoted by the WSMO framework (see above).
Therein, client requests are associated to generic goal descriptions. Apart from
a high retrieval accuracy, this allows the development of efficient and scalable
discovery techniques by separating design-time and runtime operations [64].

5.4.2 Selection and Ranking

This encompasses semantically enabled techniques for determining the usability
of Web services with respect to non-functional aspects, which includes quality-of-
service information, and in particular data security and usage rights. The benefit of
semantic techniques for this is that—on the basis of respective ontologies—a more
precise and serviceable processing of quality requirements and usage policies can
be achieved than with conventional techniques.

While Web service discovery as discussed above is concerned with what a Web
service does, the techniques that we consider here are concerned with quality and
usage conditions. The former aspect relates to the operational reliability of a Web
service as a software artifact (i.e., regarding the availability, robustness, and exe-
cution performance) as well as the quality of the provided business service. These
parameters are usually described in terms of respective time and quality measure-
ments. The latter aspect is concerned with access rights and data security, which be-
comes particularly relevant when Web services are applied in IT systems for intra-
and inter-organizational communication.

The approach for handling both quality-of-service as well as usage rights of Web
services by semantic techniques is to reason upon policies that are defined on the ba-
sis of respective domain ontologies [58]. For example, if the access to an electronic
journal might only be granted for members of a specific department of a university,
this can be checked by the user profile of a requester; moreover, the specification
of such conditions in an ontology makes the usage rights more transparent for the
involved parties. Upon this, techniques are developed for automatically selecting a
Web services which conforms with the relevant policies, or to determine a priority
list of the usable candidates with respect to the client requirements (e.g., [70, 71]).

130 Michael Stollberg and Dieter Fensel

5.4.3 Behavioral Compatibility

The third group of SWS techniques is concerned with determining whether the com-
munication between the requester and the provider can be conducted successfully.
This is necessary in order to ensure that the actual consumption of the Web service
can be carried out successfully.

This problem does not occur within conventional Web service technologies, be-
cause the client needs to explicitly trigger every outgoing SOAP message. However,
in order to do this the developer of a client application must manually implement the
correct communication behavior before the Web service can be used. In the context
of Semantic Web services, the aim is to automatically execute the suitable Web ser-
vices after they have been detected. For this, the communication behavior expected
by the client and the one supported by the Web service must be compatible.

This can be checked automatically on the basis of the formally described inter-
faces, i.e., the OWL-S service model or the choreography and orchestration inter-
faces in WSMO (see above). Although this problem has only received little attention
in the research community so far, existing approaches apply conformance testing
techniques from the field of formal process management (e.g., [46, 69]). In a nut-
shell, the behavioral compatibility is considered to be given if (1) the incoming and
outgoing messages of the requester and the provider are compatible, and (2) there
exists at least one possible sequence of message exchange that can be carried out
between the involved parties.

5.4.4 Composition

The aim of Web service composition is to automatically combine several Web ser-
vices in order to obtain a more complex functionality. The surplus value of semanti-
cally enabled composition techniques is that new functionalities can be created that
are not provided by the actually existing Web services, which is hardly achievable
without any automation support.

The overall task for Web service composition is as follows: given a client re-
quest that can not be solved by a single Web services, an executable combination
of several Web services that can solve the client request shall be constructed. A
lot of research works address this challenge, applying different techniques for the
composition problem. In general, we can distinguish composition techniques on two
levels. The first one considers the functionalities of the Web services for determining
a suitable execution order, hence referred to as functional composition. The respec-
tive techniques work on the formal functional descriptions—i.e., OWL-S service
profiles or WSMO capabilities—and mostly apply AI planning techniques for the
composition task (e.g., [36, 51, 73]). The second level is concerned with the com-
munication behavior in a composition of Web services. The aim is to ensure that
the interaction between the client and the composed Web services can be conducted
successfully, i.e., the problem of behavioral compatibility as discussed above for a

5 Semantics for Service-Oriented Architectures 131

composition of Web services. This is commonly referred to as behavioral compo-
sition, and most approaches apply formal workflow or process management tech-
niques for this (e.g., [2, 8]).

To leverage automated Web service composition within SWS environments, both
types of composition techniques need to be integrated in order to attain executable
compositions of Web services for solving a given client request. For this, [67]
presents an approach wherein at first functional composition is applied to create
a skeleton of a composition that is suitable for solving the client request, and in
the second step its executability is verified by behavioral composition techniques.
Besides, recent approaches consider Web service discovery and composition as in-
terleaved operations: composition is only needed if a directly usable Web service
cannot be discovered, and discovery techniques are used to find the candidates dur-
ing the composition procedure (e.g., [10]).

5.4.5 Mediation

In the context of Semantic Web services, mediation refers to handling and resolv-
ing potentially occurring heterogeneities which may hamper the interoperability be-
tween a requester and a provider. This becomes particularly important within open
and distributed environments like the Web where requesters and providers can be
expected to use different data representation formats, incompatible terminologies,
or expose business processes that are not compatible a priori. The main merit of
SWS technologies is that such heterogeneities can be handled on the semantic level,
i.e., by domain independent mediation techniques that allow us to properly resolve
and handle the mismatches [28].

WSMO is the only SWS framework that encompasses mediation as an integral
part. It defines specific mediators for handling different types of heterogeneities,
provides respective mediation techniques, and defines an integrated architecture
for the specification and usage of mediators within SWS environments [63]. The
most relevant mediation techniques are (1) data level mediation that is concerned
with mismatch handling on terminologies, domain knowledge, and representation
formats [53], and (2) process level mediation that is concerned with handling in-
compatible communication behaviors and business processes of requesters and
providers [16]. The other SWS frameworks presented in Section 5.3 do not con-
sider mediation; in fact, they are merely concerned with the semantic description
of Web services while remaining orthogonal to all other aspects that occur to be
relevant for the employment of semantic technology in SOA systems. However, ex-
isting techniques for heterogeneity handling can be employed, e.g., ontology-based
data integration techniques that have been developed for the Semantic Web in order
to handle data-level mismatches [57].

132 Michael Stollberg and Dieter Fensel

5.4.6 Automated Execution

The final aspect of SWS technology is the automated execution of Web services.
Once the suitable Web services for solving a given request have been detected and
all other relevant aspects have been checked, they should be executed automatically
in order to minimize the need for human intervention.

For this, the semantic descriptions of the Web services need to be mapped to
technologies that support the actual information interchange. Commonly, this is
achieved by mapping the semantic annotations to a WSDL description, upon which
the Web services can actually be invoked and consumed by exchanging SOAP mes-
sages as explained in Section 5.2. This usually also includes an explicit mapping
between the XML data types used within SOAP messages and domain ontologies
used for the semantic descriptions in order to facilitate the processing of the inter-
changed data on the semantic level.

This is supported by all SWS frameworks presented above. OWL-S and SWSF
define the mappings in the service grounding element, which specifies the mapping
of the domain ontology to an XML Schema definition and maps the service model
definitions to WSDL operations. This can be processed by the OWL-S Virtual Ma-
chine for automated execution [59]. The same approach is realized in WSMO: the
mappings from the ontology definitions to XML as well as the mapping to WSDL
operations is defined within the WSMO choreography interface description, and the
WSMX execution component invokes the Web services via WSDL [39]. Within
WSDL-S and SAWSDL, the mappings are defined explicitly by the references to
a domain ontology within additional tags in the WSDL document, which can be
processed by respective execution environments.

Summarizing, we have shown that there is a wealth of work on SWS techniques
for the automated detection, usability analysis, composition, and execution of Web
services. The individual solutions vary in the achievable quality and the necessary
efforts for their employment. Next to the theoretic foundations, several open-source
tools and even comprehensive development and execution environments are pro-
vided for Semantic Web services. The most prominent are the OWL-S IDE [62], the
WSMX system as the reference implementation of the WSMO framework [33], and
the IRS system that provides a broker for Semantic Web services [24]. However,
most of the currently existing SWS technologies have been developed in the course
of academic research, and their employment in real-world applications requires ad-
ditional software development.

5.5 Conclusions and Outlook

This chapter has provided an overview of the emerging concept of Semantic Web
services (SWS) and the state-of-the-art in respective technology developments. The

5 Semantics for Service-Oriented Architectures 133

following summarizes the chapter, and discusses the potential as well as the chal-
lenges for the future developments of semantic SOA technologies.

5.5.1 Summary

The idea of Service-Oriented Architectures (SOA) is to employ Web services as the
basic building blocks of future IT systems. For this, the initial Web service technol-
ogy provides a standardized description language for the technical accessibility and
the interfaces of Web services (WSDL), a communication protocol for the consump-
tion of Web services by exchanging messages over the Web (SOAP), and a registry
technology that allows us to publish and search Web services (UDDI).

Although this allows the technical use of Web services, the detection and usabil-
ity analysis of suitable Web services for a specific client application is limited to
manual inspection. To overcome this, the SWS approach develops techniques for
the automated discovery, usability analysis, composition, mediation, and execution
of Web services. These techniques work on rich formal descriptions of Web services
that are defined on the basis of domain ontologies, i.e., formal knowledge models
which are propagated as the base technology for the Semantic Web.

We have explained the most prominent frameworks for Semantic Web services
that have been submitted to, and respectively published as recommendations by the
W3C. The chronologically first approach is OWL-S, which semantically describes
Web services by a service profile (the “who” and “what”), a service model (the
“how”), and a grounding to WSDL for the execution. This has later been extended
by the SWSF initiative wherein a more sophisticated formal process language for
describing Web services has been developed. The second important framework is the
Web Service Modeling Ontology WSMO that defines a comprehensive framework
for semantically enabled SOA technology. Going beyond the semantic annotation
of Web services, WSMO propagates a goal-driven approach for Semantic Web ser-
vices wherein clients request and consume Web services on the basis of goals that
abstract from technical details, and it considers mediation facilitates for the handling
and resolving potentially occurring mismatches as an integral part. The third ap-
proach is the WSDL-S model which—in contrast to the other frameworks—defines
the semantic annotation of Web services by extending WSDL descriptions with ref-
erences to a domain ontology. A light-weight version of this approach is SAWSDL
which supports the annotation of XML Schemas and WSDL descriptions with on-
tology concepts. Although the obtainable support for the automated detection and
usability analysis is fairly limited, SAWSDL is the only existing W3C technology
recommendation for Semantic Web services at this point in time.

We then considered the central SWS techniques for automating the Web service
usage process by clients. The usual first processing step is discovery, i.e., the de-
tection of the suitable Web services for a given client’s requests. This is commonly
performed by matchmaking of the requested and the provided functionalities, and
we have depicted several techniques for this. Next, the usability of the discovered

134 Michael Stollberg and Dieter Fensel

candidates is inspected with respect to non-functional aspects such as quality-of-
service criteria, data security, and usage rights, and finally the behavioral compat-
ibility is tested in order to ensure the successful interaction between the client and
the Web service. Techniques for automated composition allow the combination of
several Web services into more complex functionalities, and mediation techniques
can be employed as auxiliary facilities to handle possibly occurring mismatches
that may hamper the successful interaction. When the Web services for solving a
client request have been detected, they are executed automatically by lowering the
semantic descriptions to WSDL and XML.

5.5.2 Future Challenges

So far, we have explained the motivation and state-of-the-art in SWS technologies.
We also have shown that significant improvements for both the quality of the us-
ability analysis and the degree of automation can be achieved. However, the ex-
isting SWS technologies are mostly academic developments. With respect to this,
the following discusses challenges for future developments in order to make SWS
techniques employable in real-world SOA applications.

The pre-requisite for SWS techniques is the existence of appropriate semantic de-
scriptions for the available Web services and all other related resources. Most of the
existing SWS techniques focus on new functionalities and the achievable benefits
under the assumption that the necessary resource descriptions are given. However,
this may not be the case, in particular when SWS technology shall be applied within
existing systems. Thus, techniques for the semantic annotation of legacy systems ap-
pear to be essential in order to assure the applicability of SWS technologies in real-
world settings. This challenge has only received very little attention in the research
community so far. It seems to be possible to adopt techniques for the ontology-based
annotation of natural language texts for this; however, in general this can only be
supported in a semi-automated manner due to the gap between syntactic and ade-
quate semantic descriptions, and also the annotation of Web services is expectably
much more complex.

Another concern related to the general applicability of SWS techniques is the ex-
tent to which they shall be employed such that a substantial benefit can be achieved
while the effort and costs remain moderate. The initial Web service technologies are
not sufficient because they limit the Web service usage to manual inspection. The
SAWSDL approach seems to be only a little bit better: the semantic annotation by
additional tags in WSDL documents is relatively easy to realize, but on the other
hand the obtainable benefits are only marginal. The OWL-S approach requires ex-
haustive descriptions of Web services on which significant quality improvements
can be achieved; however, the employment an existing system is very expensive.
The WSMO approach can achieve the highest benefits because it encompasses the
goal-based approach and integrated integrated mediation facilities, but its employ-
ment requires a comprehensive re-design of a SOA system. With respect to this, the

5 Semantics for Service-Oriented Architectures 135

aim for future research should be to identify the degree of employment for which
the cost-benefit relation is optimal and then initiate respective technology standard-
isations.

A further aspect for the employment of SWS technology in real-world applica-
tions is the provision of adequate tooling support. Although a remarkable number of
graphical editors, APIs, and execution environments already exist, they are still not
sufficient in order to properly support users in real SOA applications. In particular,
expedient graphical user interfaces for managing Web services and their semantic
descriptions, as well as sophisticated validation services for the formal specifica-
tions, are desirable in order to better support end-users and system administrators.
However, this can be considered as supplementary development efforts once the
underlying technologies exist.

To conclude, semantic techniques for the automated detection and usage of Web
services, as explained in this chapter, are capable and eligible to effectively support
the idea of Service-Oriented Architectures. In fact, some “intelligence” seems to be
necessary in order to prosperously realize the SOA vision, and the employment of
semantic technologies seems to be a suitable promising approach for this. However,
in order to leverage a successful deployment of such techniques within future SOA
technology, it appears to be evident to properly address the mentioned challenges.

Acknowledgements

The presented work has been supported by the European Commission under the
projects SUPER (FP6-026850) and by the Austrian BMVIT/FFG under the FIT-IT
project myOntology (Grant no. 812515/9284).

References

1. R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M.-T. Schmidt, A. Sheth, and K. Verma. Web
Service Semantics—WSDL-S. W3C Member Submission 7 November 2005, 2005.

2. P. Albert, L. Henocque, and M. Kleiner. Configuration-Based Workflow Composition. In Proc
of 3rd International Conference on Web Services (ICWS-05), Orlando, Florida, 2005.

3. V. Alexiev, M. Breu, J. de Bruijn, D. Fensel, R. Lara, and H. Lausen. Information Integration
with Ontologies. Wiley, West Sussex, UK, 2005.

4. P. Allen. Service Orientation: Winning Strategies and Best Practices. Cambridge University
Press, 2006.

5. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Architectures and
Applications. Data-Centric Systems and Applications. Springer, Berlin, Heidelberg, 2004.

6. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process Execution Language
for Web Services version 1.1. Specification, IBM, BEA Systems, Microsoft, SAP AG, Siebel
Systems, May 2003.

7. S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull, M. Kifer, Martin. D.,
McIlraith. S., D. McGuinness, J. Su, and S. Tabet. Semantic Web Services Framework
(SWSF). W3C Member Submission 9 September 2005, 2005.

136 Michael Stollberg and Dieter Fensel

8. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Automatic Com-
position of e-Services that Export their Behavior. In Proc. of First Int. Conference on Service
Oriented Computing (ICSOC), 2003.

9. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. A new form of Web content that
is meaningful to computers will uleash a revolution of new possibilities. Scientific American,
284(5):34–43, May 2001.

10. P. Bertoli, J. Hoffmann, F. Lecue, and M. Pistore. Integrating Discovery and Automated Com-
position: from Semantic Requirements to Executable Code. In Proc. of the IEEE 2007 Inter-
national Conference on Web Services (ICWS’07), Salt Lake City, USA, 2007.

11. D. Booth and C. K. Liu. Web Services Description Language (WSDL) Version 2.0 Part 0:
Primer. Recommendation 26 June 2007, W3C, 2007.

12. M. Brodie, C. Bussler, J. de Brujin, T. Fahringer, D. Fensel, M. Hepp, H. Lausen, D. Roman,
T. Strang, H. Werthner, and M. Zaremba. Semantically Enabled ServiceOriented Architec-
tures: A Manifesto and a Paradigm Shift in Computer Science. Technical Report TR-2005-
12-26, DERI, 2005.

13. C. Bussler. B2B Integration: Concepts and Architecture. Springer, Berlin, Heidelberg, 2003.
14. L. Cabral, J. Domingue, S. Galizia, A. Gugliotta, B. Norton, V. Tanasescu, and C. Pedrinaci.

IRS-III—A Broker for Semantic Web Services based Applications. In Proc. of the 5th Inter-
national Semantic Web Conference (ISWC 2006), Athens(GA), USA, 2006.

15. J. Cardoso and A. Sheth. Semantic Web Services, Processes and Applications. Semantic Web
and Beyond. Springer, 2006.

16. E. Cimpian and A. Mocan. WSMX Process Mediation Based on Choreographies. In Proceed-
ings of the 1st International Workshop on Web Service Choreography and Orchestration for
Business Process Management at the BPM 2005, Nancy, France, 2005.

17. E. Cimpian, A. Mocan, and M. Stollberg. Mediation Enabled SemanticWeb Services Usage.
In Proc. of the 1st Asian Semantic Web Conference (ASWC 2006), Beijing, China, 2006.

18. L. Clement, A. Hately, C. von Riegen, and T. (eds) Rogers. UDDI Version 3.0.2. UDDI Spec
Technical Committee Draft, OASIS, 2004.

19. S. Colucci, T. Di Noia, E. Di Sciascio, F. M. Donini, and M. Mongiello. Concept abduc-
tion and contraction for semantic-based discovery of matches and negotiation spaces in an
e-marketplace. Electronic Commerce Research and Applications, 4:345–361, 2005.

20. J. Davis, R. Studer, and P. Warren. Semantic Web Technology. Trends and Research in
Ontology-based System. Wiley & Sons, 2006.

21. J. de Bruijn. Logics for the Semantic Web. In J. Cardoses, editor, Semantic Web: Theory,
Tools and Applications. Idea Publishing Group, 2006.

22. J. de Bruijn, H. Lausen, R. Krummenacher, A. Polleres, L. Predoiu, M. Kifer, and D. Fensel.
The Web Service Modeling Language WSML. Deliverable D16.1 final draft 05 Oct 2005,
WSML Working Group, 2005.

23. P. de Leenheer and T. Mens. Ontology Evolution: State of the Art and Future Directions. In
M. Hepp, P. De Leenheer, A. de Moor, and Y. Sure, editors, Ontology Management. Springer,
2006.

24. J. Domingue, L. Cabral, S. Galizia, V. Tanasescu, A. Gugliotta, B. Norton, and C. Pedrinaci.
IRS-III: A Broker-based Approach to Semantic Web Services. Journal of Web Semantics,
2008.

25. T. Erl. Service-Oriented Architecture (SOA). Concepts, Technology, and Design. Prentice Hall
PTR, 2005.

26. J. Farrell and H. Lausen. Semantic Annotations for WSDL and XML Schema. W3C Recom-
mendation 28 August 2007, 2007.

27. D. Fensel. Ontologies: A Silver Bullet for Knowledge Management and E-Commerce.
Springer, Berlin, Heidelberg, 2 edition, 2003.

28. D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF. Electronic Com-
merce Research and Applications, 1(2), 2002.

29. D. Fensel, H. Lausen, A. Polleres, J. de Bruijn, M. Stollberg, D. Roman, and J. Domigue.
Enabling Semantic Web Services. The Web Service Modeling Ontology. Springer, Berlin,
Heidelberg, 2006.

5 Semantics for Service-Oriented Architectures 137

30. A. Goméz-Peréz, O. Corcho, and M. Fernandez-Lopez. Ontological Engineering. With Ex-
amples from the Areas of Knowledge Management, E-Commerce and Semantic Web. Series of
Advanced Information and Knowledge Processing. Springer, Berlin, Heidelberg, 2003.

31. Thomas R. Gruber. A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, 5:199–220, 1993.

32. M. Gruninger and C. Menzel. The Process Specification Language (PSL) Theory and Appli-
cations. AI Magazine, 24(3):63–74, 2003.

33. A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler. WSMX—A Semantic Service-
Oriented Architecture. In Proceedings of the International Conference on Web Service (ICWS
2005), Orlando, Florida, 2005.

34. A. Harth and S. Decker. Optimized Index Structures for Querying RDF from the Web. In
Proc. of 3rd Latin American Web Congress, Buenos Aires, Argentina, Oct 31–Nov, 2005.

35. M. Hepp, P. de Leenheer, A. de Moor, and Y. Sure. Ontology Management. Semantic Web,
Semantic Web Services, and Business Applications. Semantic Web and Beyond. Springer,
2007.

36. J. Hoffmann, P. Bertoli, and M. Pistore. Service Composition as Planning, Revisited: In Be-
tween Background Theories and Initial State Uncertainty. In Proc. of the 22nd National Con-
ference of the American Association for Artificial Intelligence (AAAI’07), Vancouver, Canada,
2007.

37. U. Keller, R. Lara, H. Lausen, and D. Fensel. Semantic Web Service Discovery in the WSMO
Framework. In J. Cardoses, editor, Semantic Web: Theory, Tools and Applications. Idea Pub-
lishing Group, 2006.

38. M. Klusch, B. Fries, and K. Sycara. Automated Semantic Web Service Discovery with OWLS-
MX. In Proc. of the 5th International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2006), Hakodate, Japan, May 8–12, 2006.

39. J. Kopecký, D. Roman, M. Moran, and D. Fensel. Semantic Web Services Grounding. In Proc.
of the International Conference on Internet and Web Applications and Services (ICIW’06),
Guadeloupe, French Caribbean, 2006.

40. Jacek Kopecky. Semantic Annotations for WSDL and XML Schema. Talk at W3C track in
the WWW 2007 Conference, Banff, Canada, 2007.

41. L. Lara, D. Roman, A. Polleres, and D. Fensel. A Conceptual Comparison of WSMO and
OWL-S. In Proc. of the European Conference on Web Services (ECOWS 2004), Erfurt, Ger-
many, 2004.

42. H. Lausen, A. Polleres, and D. Roman (eds.). Web Service Modeling Ontology (WSMO).
W3C Member Submission 3 June 2005.

43. L. Li and I. Horrocks. A Software Fframework for Matchmaking based on Semantic Web
Technology. In Proceedings of the 12th International Conference on the World Wide Web,
Budapest, Hungary, 2003.

44. F. Manola and E. Miller. SPARQL Query Language for RDF. W3C Candidate Recommenda-
tion 14 June 2007.

45. E. A. Marks and M. Bell. Service-Oriented Architecture (SOA): A Planning and Implementa-
tion Guide for Business and Technology. Wiley, 2006.

46. A. Martens. On Compatibility of Web Services. Petri Net Newletter, 65:12–20, 2003.
47. D. Martin. OWL-S: Semantic Markup for Web Services. W3C Member Submission 22

November 2004.
48. D. Martin, M. Paolucci, and M. Wagner. Towards Semantic Annotations of Web Services:

OWL-S from the SAWSDL Perspective. In Proc. of the ESWC 2007 workshop OWL-S: Expe-
riences and Directions, Innsbruck, Austria, 2007.

49. D. McGuinness and F. van Harmelen. OWL Web Ontology Language—Overview. W3C
Recommendation 10 February 2004.

50. S. McIlraith, T. Cao Son, and H. Zeng. Semantic Web Services. IEEE Intelligent Systems,
Special Issue on the Semantic Web, 16(2):46–53, 2001.

51. S. McIlraith and T. C. Son. Adapting Golog for Composition of Semantic Web Services. In
roc. of the 8th International Conference on Knowledge Representation and Reasoning (KR
’02), Toulouse, France, 2002.

138 Michael Stollberg and Dieter Fensel

52. N. Mitra and Y. Lafon. SOAP Version 1.2 Part 0: Primer (Second Edition). Recommendation
27 April 2007, W3C, 2007.

53. A. Mocan and E. Cimpian. An Ontology-based Data Mediation Framework for Semantic
Environments. International Journal on Semantic Web and Information Systems (IJSWIS),
3(2):66–95, April–June 2007.

54. B. Motik, R. Shearer, and I. Horrocks. Optimized Reasoning in Description Logics using
Hypertableaux. In Proc. of the 21st Conference on Automated Deduction (CADE-21), Bremen,
Germany, July 17–20, 2007.

55. T. Di Noia, E. Di Sciascio, F. Donini, and M. Mongiello. A System for Principled Matchmak-
ing in an Electronic Marketplace. In Proc. of the 12th International Conference on the World
Wide Web (WWW’03), Budapest, Hungary, 2003.

56. B. Norton and A. Mocan. Reference Model for Semantic Service Oriented Architecture.
Working Draft, 21 March 2007, OASIS, 2007.

57. N. Noy. Semantic Integration: a Survey of Ontology-based Approaches. ACM SIGMOD
Record, 33(4):65–70, 2004.

58. D. Olmedilla, R. Lara, A. Polleres, and H. Lausen. Trust Negotiation for Semantic Web
Services. In Proc. of the 1st International Workshop on Semantic Web Services and Web
Process Composition at the ICWS 2004, SanDiego, California (USA), 2004.

59. M. Paolucci, A. Ankolekar, N. Srinivasan, and K. Sycara. The DAML-S Virtual Machine.
In Proc. of the 2nd International Semantic Web Conference (ISWC),Sandial Island, Florida,
2003.

60. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic Matching of Web Services
Capabilities. In Proc. of the 1st International Semantic Web Conference, Sardinia, Italy, 2002.

61. C. Preist. A Conceptual Architecture for Semantic Web Services. In Proc. of the 2nd Interna-
tional Semantic Web Conference (ISWC 2004), 2004.

62. N. Srinivasan, M. Paolucci, and K. Sycara. CODE: A Development Environment for OWL-S
Web services. In Demonstration at 3rd International Semantic Web Conference (ISWC 2004),
Hiroshima, Japan., 2004.

63. M. Stollberg, E. Cimpian, A. Mocan, and D. Fensel. A Semantic Web Mediation Architec-
ture. In Proceedings of the 1st Canadian Semantic Web Working Symposium (CSWWS 2006),
Quebec, Canada, 2006.

64. M. Stollberg, M. Hepp, and J. Hoffmann. A Caching Mechanism for Semantic Web Service
Discovery. In Proc. of the 6th International Semantic Web Conference (ISWC 2007), Busan,
South Korea, 2007.

65. M. Stollberg and B. Norton. A Refined Goal Model for Semantic Web Services. In Proc.
of the 2nd International Conference on Internet and Web Applications and Services (ICIW
2007), Mauritius, 2007.

66. R. Studer, S. Grimm, and A. Abecker. Semantic Web Services. Concepts, Technologies, and
Applications. Springer, 2007.

67. P. Traverso and M. Pistore. Automatic Composition of Semantic Web Services into Exe-
cutable Processes. In Proc. of the 3rd International Semantic Web Conference (ISWC 2004),
Hiroshima, Japan, 2004.

68. K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, and J. Miller. METEOR-S
WSDI: A Scalable P2P Infrastructure of Registries for Semantic Publication and Discovery of
Web Services. Journal of Information Technology and Management, 6(1):17–39, 2005.

69. T. Vitvar, M. Zaremba, and M. Moran. Dynamic Service Discovery through Meta-Interactions
with Service Providers. In Proc. of the 4th European Semantic Web Conference (ESWC 2007),
Innsbruck, Austria, 2007.

70. L.-H. Vu, M. Hauswirth, and K. Aberer. QoS-Based Service Selection and Ranking with Trust
and Reputation Management. In Proc. of the OTM Confederated International Conferences
CoopIS, DOA, and ODBASE 2005, Cyprus, pages 466–483, 2005.

71. X. Wang, T. Vitvar, M. Kerrigan, and I. Toma. A QoS-aware Selection Model for Semantic
Web Services. In Proc. of the 4th International Conference on Service Oriented Computing
(ICSOC), December, 2006, Chicago, USA, 2006.

5 Semantics for Service-Oriented Architectures 139

72. S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson. Web Services Platform
Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging,
and More. Prentice Hall PTR, 2005.

73. D. Wu, B. Parsia, Sirin E., J. Hendler, and D. Nau. Automating DAML-S Web Services
Composition Using SHOP2. In Proceedings of 2nd International Semantic Web Conference
(ISWC 2003), Sanibel Island, Florida, 2003.

Chapter 6
Dependability in Service-Oriented Computing

Arshad Jhumka

Abstract Service-oriented computing (SOC) is emerging as a new approach to de-
veloping extensible computing systems, including distributed systems. This new
paradigm is based on the interoperability and the loose coupling among the comput-
ing elements involved. The loose coupling property among the computing elements
allows for the development of adaptive systems, however, it also introduces the pos-
sibilities for failures to occur at various levels. In this chapter, we investigate the
various dependability issues involved in service-oriented computing. Specifically,
we look at the various faults that can occur in the system. We then look at various
dependability approaches to handle the faults identified. We further propose how to
estimate the dependability of an application. We conclude by providing two case
studies to highlight aspects of dependability in service-oriented computing.

6.1 Introduction

The design and implementation of computer systems are becoming increasingly
complex and error-prone. In turn, these systems are becoming increasingly hard to
maintain. Issues such as reliability, performance, and security only exacerbate the
design problem. One potential solution that has been advocated to conquer the com-
plexity of designing such systems is the use (or reuse) of components that provide
services. In fact, the areas of component-based software engineering and service-
oriented computing are rapidly growing. Both advocate the use of artefacts (soft-
ware, hardware, middleware) that provide services to others. Both areas are similar,
however, for service-oriented computing an additional requirement tends to be that
parts of the process need to be automated. Henceforth, we will use the terms compo-
nents and services interchangeably, depending on the context. In component-based

Arshad Jhumka
Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
e-mail: H.A.Jhumka@warwick.ac.uk

N. Griffiths, K.-M. Chao (eds.), Agent-Based Service-Oriented Computing, 141
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-041-0 6, c© Springer-Verlag London Limited 2010

142 Arshad Jhumka

software engineering and service-oriented computing, two components may provide
the same functionality, but each component can have different resource requirements
and also they can guarantee different non-functional properties. A component A may
provide a functionality F using a set of resources R, whereas component B provides
the same functionality F but using resources R′. For example, consider a sorting
procedure. The component A may provide a sorting procedure through insertion
sort, whereas component B sorts a list according to quicksort, and thus components
A and B give different performance guarantees.

To enable the component-based approach, a new design methodology needs to
be adopted. The methodology needs to be able to allow the design of systems based
on smaller subsystems that are composed together. In other words, it should be pos-
sible to realize a system based on the behaviour of smaller subsystems. For this
methodology to work, two important constraints need to be satisfied: (i) compo-
nents need to be able to work with each other, i.e., they are interoperable, and (ii)
the working of one component should not be based on the implementation details
of another component, i.e., the components need to be loosely coupled. The inter-
operability property ensures that when a component A makes a request to another
component B, then component B is able to interpret A’s request, and that compo-
nent A is also able to interpret B’s response. Further, the loose coupling property
ensures that, even if B’s implementation is changed, the change will not impact on
A’s functionality. For example, using the sorting procedure example, the behaviour
of a component should be the same irrespective of whether quicksort or insertion
sort is used, excluding non-functional properties.

In such a scenario, we say that a component provides services to another com-
ponent. In the sorting example, component provides a sorting service. As such, ser-
vices can be search, mathematical operations, IO operations etc. Once the notion of
a component providing some services is reached, a service-oriented architecture be-
comes important. An architecture [19] is a formal description of a system, defining
its purpose, functions, externally visible properties, and interfaces. It also includes
the descriptions of the system’s internal components, and their relationships, along
with the principles governing its design, operation and evolutions. In brief, the ar-
chitecture contains all the artefacts, and rules that will enable the development of
software systems. A service-oriented architecture is, thus, an architecture that has
services at its core. A service-oriented architecture will have a set of components
that provide services, and will also contain rules that govern how these components
will relate to each other. For example, there will be rules that govern the syntac-
tic compatibility of some components, whereas others may govern their semantic
capability, yet another rule can refer to dependability properties and so on.

Unfortunately, the flexibility of being able to build systems out of services brings
about several problems. For example, incomplete interface descriptions may re-
sult in one component requesting a service from the wrong service provider. An-
other problem can be that a service provider is not able to process a request be-
cause the request has been wrongly formatted. Thus, the design flexibility afforded
by service-oriented architectures introduces several dependability problems. It be-

6 Dependability in Service-Oriented Computing 143

comes important therefore to be able to firstly analyse and understand the various
dependability threats, and then to assess the overall dependability of the system.

6.2 Service-Oriented Architecture

As previously argued, components and services (component-based software engi-
neering and service-oriented computing) are being viewed as potential solutions in
conquering the complexity of developing reliable computing systems, including dis-
tributed systems. Component-based designs are centred around individual compo-
nents exposing their interfaces (and associated meta-data) via which they interact. A
component A can only request a service from component B via B’s interface, while
B responds via its own interface.

In its broadest interpretation, a service-oriented architecure is an architectural
style that has services as first class citizens. It refers to the design of a system,
rather than its implementation [19]. The design consists of a set of components
linked together via their interfaces. Sometimes, incompatibilities may exist between
the components’ interfaces, and connectors are needed to connect these compo-
nents [8,19]. The linking up process is done according to some specific rules. Some-
times, a syntactic link-up is sufficient, while at other times, semantic information is
needed before the linking-up process is performed. This linking-up process is what
is generally known as composition. A service-oriented architecture emphasises the
development of a system in a modular fashion, i.e., a component A implements a
service SA, and can be composed with a component B that implements a service SB
to provide an overall service SAB. In other words, in service-oriented computing, an
application is built as a composition of components and services.

To enable the composition process, a component needs to export (or publish) a
description of the services it provides. The services that it exports can be viewed as
its export interface. Further, a component needs to also publish its import interface,
i.e., the set of services that it requires from other components. Other information
that a component needs to provide is any resource requirement or other constraints
that can prevent it from providing its exported services. All of this information is
needed for a correct matching between offered and provided services. For example,
consider a component that provides the following two services. (i) multiplication,
and (ii) division. The component’s export interface is: (i) multiply(a:int, b:int), and
(ii) div(a:int, b:int). However, for the div service, the component has to mention
that the parameter b needs to be non-zero (a constraint that needs to be satisfied
whenever the service is used). If the constraints defined by the component are sat-
isfied, then the component will provide the required service, i.e., if the service is
used appropriately, then the component will provide correctness guarantees as to
the service it is providing. This resembles the design-by-contract paradigm [13,14],
where the client request satisfies the preconditions specified for the service and, in
turn, the component guarantees the correctness condition, i.e., the service’s output
will satisfy a specified postcondition.

144 Arshad Jhumka

In general, these components (and services) need to be discovered, i.e., when
a service is needed, the client requesting the service has to determine a potential
service provider. In domain areas where automation is required, such as in service-
oriented computing, these services are published at a service registry, residing at a
service broker. Figure 6.1 shows the process of service discovery and binding in a
distributed system. The registry is located on a dedicated server (service broker),
which can be possibly replicated, to handle crashes. The client requests a service
from the service broker, which in turn returns the identity of a known provider of the
service [3]. The client then agrees on the semantics with the provider. The client then
binds itself to the provider, and uses the service. In other areas, where automation
is not important, these services still need to be published and discovered. However,
there are no dedicated service registry available. On the other hand, these services
are possibly kept in a centralised service library. However, the architecture is similar
to that of Figure 6.1. In an adaptive distributed system that supports web-based
applications, these services can be discovered at run-time, whilst in single process-
based applications, these services can be discovered at design and/or compile-time.

Service registry

Customer/client Service provider

Fig. 6.1 Service interaction in a service-oriented distributed system

There are five basic steps required in a service-oriented architecture [3]. These
are:

• publishing,
• discovery,
• composition,
• binding, and
• execution.

6 Dependability in Service-Oriented Computing 145

Publishing.

Service providers offer services and, in order for these to be used, their descrip-
tions need to be provided. All services descriptions are kept in a service registry,
whereas the actual services reside on different servers. All services have to be self-
descriptive. The service description needs to be complete, i.e., the description needs
to include the service being provided itself, its semantics, the constraints, and the re-
sources needed for successful execution. Very often, this description will be done in
a given language, e.g., logic, so that it can be easily understood. For example, web
services are described using WSDL documents [18]. However, for web services,
WSDL cannot be adequately used to describe non-functional properties.

Discovery.

When a client needs a desired service to perform a given task, it will have to discover
the required service. To do so, the client has to have a clear understanding of the
service that is required in the form of a description as offered by service providers.
Once an offered service has been identified that matches the required service, we
have a successful discovery.

Composition.

It may be the case when there is no successful discovery of a service. In this in-
stance, smaller services may be composed together to provide a more complex ser-
vice, which hopefully will match the service that is required. When doing so, both
functional and non-functional properties need to be taken into consideration. If there
is a mismatch, connectors may be used to link the two services. Two techniques are
usually used, namely, service choreography [3] and service orchestration [3].

Both techniques yield the same result, however the approaches are different.

Binding.

Once an appropriate service has been discovered that offers the required functional-
ity, the client binds itself to the service for execution. At this point, side aspects of
the service can be set, such as security, authentication and so on. In service-oriented
architectures such as web services, the binding takes place late in the process, al-
lowing for dynamic adaptation when needed.

146 Arshad Jhumka

Execution.

Once the service is bound to the client, the service (single or composed) can be
executed. The input parameters to the service are transmitted to the service provider
which, upon receipt, executes the service. At the end of the execution, the result is
returned to the client.

6.2.1 Dependability Issues in Service-Oriented Architectures

However, several problems can occur in a service-oriented architecture. For exam-
ple, a given service may be requested with the wrong number of parameters during
the execution phase. Another problem can be that the service is no longer available
during the binding phase. Overall, this indicates that faults can occur at every step
in the system. Before the development of a dependable system, it is of utmost im-
portance to be able to predict the nature of the faults [17] that can affect the system.
Once the possible faults are identified, remedial actions can be identified that will
correct any problem in the system. Further, depending of the type of application and
the service requested (whether it is stateful or stateless), the type of dependability
mechanisms used will be different.

Overall, dependability can be addressed in four main ways, namely:

• fault avoidance,
• fault removal,
• fault forecasting, and
• fault tolerance.

Fault avoidance approaches are those that minimise the chance of faults occurring
in the system. Fault removal approaches, on the other hand, look at removing faults
that occur in the system. Fault forecasting approaches try to predict the number
and impact of any residual faults on the system. Lastly, fault tolerance approaches
work on the basis that faults are inevitable, and work by detecting and correcting
the faults. We will look at each approach in more detail in Section 4.

The chapter is structured as follows. In Section 2, we provide an overview of the
main steps involved in the setting up of a service-oriented architecture. In Section 3,
we develop the system model, as well as the fault model. The fault model is devel-
oped by closely looking at the main steps in the service-oriented architecture, and
looking at possible failure modes. In Section 4, we analyse the different ways of
imparting dependability to a system, and then provide an overview of several pos-
sible approaches in each category. In Section 5, we discuss dependability metrics,
and dependability evaluation. We explain the various concepts in two case studies
developed in Section 6, and summarise and conclude the chapter in Section 7.

6 Dependability in Service-Oriented Computing 147

6.3 Models

In this section, we explain the various models that are relevant. We will first discuss
system models, followed by fault models.

6.3.1 System Models

Using a software architecture approach, an application can be seen as a collection
of components that offer and require services [19]. A component is an artefact (soft-
ware, hardware, middleware) that implements a set of services. A service is an ab-
straction of a given functionality. It can be regarded as a unit of work. The set of
services is partitioned between exported and imported services. A service exported
by a component is one that is provided by the component to other components,
while a service imported by a component is one that is used by the component
and is provided by another component. Some components do not need to import
other services to provide their own services, e.g., a time server/clock. Figure 6.2
represents a component. In general, a component publishes both its imported and
exported services.

���������

Input 1

Input 2

Input 3

Output 1

Output 2
����	��
�
	���	�
�
��	�����

����	��
�
����	�
�
��	�����

Fig. 6.2 A component with three imported services and two exported services. The imported ser-
vices can be provided by different components. Similarly, the two exported services can be to
different components

There exists a special class of components, called connectors, that enable the
interconnection of non-connector components. Specifically, the tasks of the con-
nectors can range from basic information transmission between components to pro-
viding the necessary security and fault tolerance guarantees necessary during data
transmission. Owing to the fact that services can be provided by different third par-

148 Arshad Jhumka

ties, incompatibilities between offered and required services will exist. To redress
this problem, connectors are used to bridge the gap. At its simplest, i.e., where ser-
vices match, a connector can just relay information from one component to another.
However, when incompatibilities exist, connectors are used to provide the required
functionality to enable the composition of the two non-connector components. For
example, if a component makes a service request without any security guarantee,
which is in turn required by the service provider, a connector can be used to provide
the necessary security clearance before relaying the request to the provider. The
modularisation of a system into components and services provides a very elegant
approach to system design.

Although it can be beneficial to access a given service through a semantically
well-defined interface, a greater value is obtained when higher-level services are
provided, made up from lower-level services. This can be achieved through the
composition of components, possibly via the use of connectors. Composition (of
services or components) then means that the output of a service is fed into the in-
put of another component, which in turn may need input from services from more
than one component. In a distributed system, such as the Web, a component can use
different connectors as appropriate for the network conditions and requirements of
the end-user. For dependability purposes, the separation of concern between com-
ponents/services and connectors allows failures due to the network to be handled
cleanly and differently from failures due to computational (component/service) er-
rors.

6.3.2 Fault Models

When developing a dependable system, it is very important to determine, in advance,
the classes of faults that can affect the system. This can be a very difficult, and
error-prone process. To help mitigate the problems, which may sometimes have
catastrophic consequences, associated with an incomplete fault model, the concept
of multitolerance has been advocated [1,16]. However, to help ease the development
of a fault model, it becomes important to adopt a systematic approach to determine
the various faults that can occur at various levels.

From Figure 6.1, there are several levels at which faults can occur. For example,
faults can occur during the service publishing phase. Faults can also occur during
service discovery. Overall, in a service-oriented architecture, any of the following
service-oriented architecture-specific faults can occur [3]:

• publishing fault,
• discovery fault,
• composition fault,
• binding fault, and
• execution fault.

6 Dependability in Service-Oriented Computing 149

In addition to these faults, a number of other failures can occur in a system,
including distributed systems. These can be network failures, hardware crashes, or
middleware (such as OS) failures. However, we will focus on the failures specific to
service-oriented architectures.

Publishing faults.

During the publishing phase, the service is deployed on a server so it can be exe-
cuted, and the service description is made public. Faults that can occur at this level
are service description faults and service deployment faults.

A service description fault occurs when problems arise when describing the ser-
vice. Either the service is not completely described, or the service is wrongly de-
scribed. These faults can lead to problems during the discovery phase, or during the
execution phase, which we will detail in later sections. On the other hand, service
deployment faults occur when any aspect during the deployment is incorrect. For
example, a service deployment fault can occur when the service is deployed without
the required resources.

Discovery faults.

In the discovery phase, three possible failures can occur, namely:

• the service is not found,
• wrong service is found, and
• timed out, in a distributed setting.

However, these failures can be brought about by problems occurring in other
parts of the system or process. To be able to identify the potential sources of these
problems, we build a fault tree [21]. A fault tree analysis is a logical, structured
process that can help in identifying potential causes of system failure before the ac-
tual failure occurs. It is performed using a top-down approach, i.e., starting from a
top-level system failure, fault tree analysis is performed by working down to eval-
uate all contributing events that may ultimately cause the top-level system failure.
Fault tree analysis helps determine the possible combinations of software and hard-
ware failures that can lead to the overall system failure. At the core of fault tree
analysis is a structure called the fault tree. The root of the tree is a top-level sys-
tem failure, for which we want to determine its possible sources. Nodes in the tree
represent intermediate component failures. Basic failure events are the leaves of the
tree. One additional component in the structure is the use of boolean connectives to
connect lower-level failure events into a higher-level failure event. For example, a
fully functional CD-player will not work (top-level failure) if there is no battery (1st
lower level failure) AND the player is not connected to the mains (2nd lower level
failure).

150 Arshad Jhumka

Service not found

OR

OR

Search incorrectService not
published

Service does
not exist

Wrong service
search Publishing

fault

Fig. 6.3 A fault tree showing the possible failure sources for “Service not found” system failure

Figure 6.3 depicts a fault tree for the system failure “Service not found”. Events
leading to such a failure can be one of the following.

1. No such service exists. If no such service exists, then the system will always fail
whenever the service is required.

2. Service not published in registry. It can be the case that a service exists within the
system, but has not yet been published. In such cases, until the service appears in
the registry, the system will fail.

3. Incorrect search has been performed. It can be the case that a service search is
performed with the wrong number of parameters, or with the wrong functional or
non-functional requirements, leading to a failure in discovering the correct ser-
vice. Or still, the correct search has been performed, however, because of pub-
lishing faults, no service is found.

The events in ovals represent basic events, while events in diamonds represent
undeveloped events. Undeveloped failure events are those whose sources are not
further investigated, i.e., the failure in itself is more important than its sources (for
the given system failure). However, for another system failure, it may be possible to
investigate the failure sources further. In Figure 6.3, an incorrect search can occur
if either (i) a wrong service search has been performed, or (ii) a seemingly correct
search has been performed, however, publishing faults exist.

Further, it can be argued that, if a service does not exist or has not yet been
published, several services can be composed to obtain the required one. However,
problems can still occur during the composition phase. Problems occurring at that
level will be classified under composition failures. Unless compatible services are
found, a failure will occur.

6 Dependability in Service-Oriented Computing 151

Composition faults.

When an exact service match cannot be found, it is possible to compose different
services so as to provide the required functionality. However, failures can occur in
this phase too. Three types of failures can occur. These are:

• timed out, in a distributed system environment,
• no valid composition, and
• composition faults.

When a composition fault occurs, this indicates that contracts between compo-
nents are not being respected. On the other hand, if there exists no compatible ser-
vice, then a “no valid composition” fault occurs.

OR

No valid composition

Incompatible
components

Components
missing

Fig. 6.4 A fault tree showing the possible failure sources for “No valid composition” system failure

In Figure 6.4, when either of the two faults (incompatible components, or compo-
nents missing) occurs, a “no valid composition” fault occurs during the composition
phase.

Binding faults.

During binding, the client and the service provider negotiate conditions to execute
the service. The following binding failures can occur:

• timed out, in a distributed system environment,
• bound to the wrong service, and
• binding denied.

152 Arshad Jhumka

During binding, one fault that can occur is “bound to wrong service”. This can
occur when there has been a “service description” fault during the publishing phase.
A “binding denied” fault occurs when some authorisation has not been granted by
the authorisation component.

Execution faults.

Execution faults occur when the outcome of a service does not match the result
expected by the client. The following failures can occur:

• timed out, in distributed systems,
• service crashed, in distributed systems, and
• incorrect result.

An incorrect result can occur if the wrong service has been selected. It can also
occur if a transient fault occurs in the service provider. On the other hand, a service
provider can crash, causing the service to be unavailable.

However, to be able to recover from an erroneous situation (error state), one
needs to be able to detect that a fault has occurred. However, some faults may not be
detected during the same phase where they occurred. For example, it may not always
be possible to detect a “service description” fault during the service publishing phase
until an “incorrect result” fault occurs during the execution phase.

6.4 Dependability Enhancement in a Service Oriented
Architecture

When developing a dependable system, there are a number of ways by which de-
pendability can be imparted. These are:

• fault prevention,
• fault tolerance,
• fault removal, and
• fault forecasting.

Not every method is applicable in every stage in a service-oriented architecture.
For example, during service discovery, a “time-out” cannot be guaranteed using
fault removal techniques, since the fault is brought about at runtime.

6.4.1 Fault Prevention

Fault prevention is the process of preventing faults from occurring in the first in-
stance. In other words, fault prevention represents the set of actions that can be taken

6 Dependability in Service-Oriented Computing 153

to minimise the number of bugs that are inserted in a given application. One popular
fault prevention technique is the use of high-level programming languages such as
Java [11]. Another important fault prevention technique is the use of formal meth-
ods [4] to ascertain certain guarantees provided by a system. In a service-oriented
architecture, formal methods can be used in different ways. For example, formal
methods can be used for the specification and verification of service description
and discovery [22]. The mathematical notation employed, together with verification
can enable the detection of mismatching assumptions between service provider and
clients. Another important line of work in formal specification and verification in
service-oriented computing is the verification of service composition [20].

6.4.2 Fault Tolerance

Fault tolerance is the ability of a system to satisfy its specification, in spite of faults
that can perturb its execution. When designing a fault-tolerant system, the function-
ality of the fault tolerance mechanisms needed can be factored along two dimen-
sions [2], namely detection, and correction.

Detection is needed before triggering the correction part. Detection is achieved
using predicates, called detection predicates. A detection predicate captures the con-
ditions that indicates failures in some part of the system. For example, a well-known
predicate is the timeout predicate. When a timeout expires, it indicates that a mes-
sage had not been reliably delivered. On the other hand, correction mechanisms
attempt to impose a given predicate on the system. A popular correction mecha-
nism is message retransmission, whereby a lost message is retransmitted so as the
predicate (that captures correct system operation) can be reinstated. The use of de-
tection and/or correction mechanisms gives rise to different levels of fault tolerance.
Specifically, the levels of fault tolerance are.

• Fail-safe fault tolerance [2]. It is necessary and sufficient to add detectors to
ensure fail-safe fault tolerance. A fail-safe fault-tolerant system is one where the
safety of the system is more important than liveness. Several web applications
adopt a fail-safe approach in their design.

• Non-masking fault tolerance [2]. It is necessary and sufficient to use correctors to
ensure non-masking fault tolerance. A non-masking fault-tolerant system is one
where liveness is more important than safety.

• Masking fault tolerance [2]. It is necessary and sufficient to use both detectors
and correctors to ensure masking fault tolerance. In masking fault tolerance, both
safety and liveness are important. In the domain of web services, masking fault
tolerance is important especially if some services become unavailable. Specif-
ically, when a service discovery process times out (detector), another service
discovery process can be initiated (corrector). The number of possible retries can
be specified as a service parameter.

154 Arshad Jhumka

Detectors and correctors can be implemented through connector components.
Given that a connector component can be viewed as a service provider, it needs
to export the detection or correction predicate it is implementing. The connector
components can be published in a similar way to normal services, and the connectors
can be discovered likewise.

6.4.3 Fault Removal

During the development process, design faults (also known as bugs) could have been
inserted into the system. These bugs, when activated, can cause the system to violate
its specification. Thus, it becomes imperative to remove these faults. Fault removal is
the process through which these faults are removed. The most popular fault removal
technique is testing. During testing, the system is subjected to a range of test cases.
Each test case is designed such that it helps to uncover some bug. The test cases,
in general, need to help achieve some test coverage [7]. However, for a carefully-
developed system, the number of bugs may be very small, making it very difficult
to uncover the bugs, even though the system may have been rigorously tested. In
other words, it means that the mean time to failure (MTTF) of such a system is
high. The high MTTF then translates into an inability to guarantee a certain level of
dependability of the system. What is then needed is to be able to reduce the MTTF of
the system by artificially introducing faults in the system. This is achieved through
a process called fault injection [15], which we will discuss in the next section. Fault
injection introduces artificial faults in the system with the intention of mimicking
software bugs. If the program cannot handle the effect of the artificial bug, then
it means, if the bug does exist, the program will not be able to handle its effect.
Hence, it is important to be able to introduce faults that are representative of bugs in
the system under test.

6.4.4 Fault Forecasting: Fault Injection

Fault forecasting is the process during which (i) the number of any residual faults
in the system is estimated, and (ii) their impact is analysed. However, in systems
where the runtime execution can be affected by perturbations in the environment,
such as embedded systems, the impact of environmental problems needs to be also
assessed. However, because the Mean Time to Failure (MTTF) of a system may be
very long, it becomes very difficult to have a statistically significant confidence in
the ability of the system to deliver the required services. Hence, faults have to be
artificially introduced to lower the MTTF of the system, which in turn will allow
us to assess the impact of bugs on the system. Various fault injection techniques
and tools have been introduced over the years, and the techniques can generally be
divided into three categories:

6 Dependability in Service-Oriented Computing 155

• simulation-based fault injection,
• physical fault injection, and
• software implemented fault injection (SWIFI).

In this chapter, we will focus on software implemented fault injection. We refer
the interested reader to [15] for an in-depth discussion about fault injection.

6.4.4.1 Software-Implemented Fault Injection (SWIFI)

Software-implemented fault injection (SWIFI) is by far the most versatile, and pos-
sibly the most popular form of fault injection. The approach uses software to inject
faults into physical, and sometimes simulated, systems. Further, it can also be the
case that errors (a runtime consequence of a fault execution) can be injected, in
which the state of the system is perturbed at runtime. However, for historical rea-
sons, the process is called fault injection (rather than error injection). There are both
advantages and disadvantages of using SWIFI for system validation. In order to gen-
erate readouts, and inject faults and errors, a target system has to be instrumented.
The instrumentation process consists of inserting probes for logging variables and
events, as well as inserting injection locations for faults and errors. Once faults or
errors are injected, data is collected, and later analysed and interpreted for depend-
ability analysis of the system.

In the context of service-oriented architectures, faults can occur at several levels,
as discussed in Section 6.3.2. Thus, during fault injection, faults that are injected
need to mimic problems that will lead to failures such as “wrong service called”
and “incorrect results”. During the fault injection process, in a distributed system,
not only are faults injected to corrupt variables, but faults need to be injected at the
network level too. For example, faults can be injected by corrupting, dropping or
reordering the network packets at the network interface [18]. One way of injecting
faults is to instrument the network protocol stack, however the problem is that the
receiver’s network stack may detect this and then reject the packet. Another way
is to inject faults at the application level [9, 10], where the types of faults being
injected are corruption of packet header information, injecting random byte errors
into packet payloads.

6.5 Dependability Evaluation

When developing a service-oriented application, it becomes important that the
service selection is based not only on functional requirements, but also on non-
functional requirements such as performance, dependability and real-time proper-
ties. Thus, the service discovery and composition aspects need to pay particular
attention to such non-functional properties. For example, in the service discovery
part, a required service can be specified in terms of its functionality, as well as its
dependability, where it can be specified that the service has a dependability factor of

156 Arshad Jhumka

say 0.95. Thus, it becomes important to have a way to specify the various depend-
ability aspects that are important in a given application. Since several services may
be reused across different applications, it becomes even more important to capture
several dependability aspects that may be important in various applications.

For example, two important attributes that are commonly used to capture depend-
ability properties are coverage [6] and latency [6].

Coverage relates to the proportion of faults that a service can successfully handle.
Given that detection is an important step in the design of dependable systems, the
term detection coverage is often used. The higher the detection coverage, the higher
the chance of successful recovery. On the other hand, the latency metric relates
to the time taken to detect an error. A low detection latency is preferable since
error propagation is limited. This means that only a small number of components,
and services will be affected, hence increasing the chance of a successful recovery.
Therefore, it becomes important to annotate services with dependability information
such as coverage and latency. Specifically, when a service is being published, it
needs to be published together with its dependability attributes such as coverage,
latency and so on. The service search is then performed on both the functionality of
the services and on their dependability attributes.

Evaluation of the dependability attributes of a service is usually achieved by
performing fault injection experiments (see Section 6.4.4). Because it is impossible
to obtain the absolute value for these attributes, for a given service, the value of
these attributes only represents an average. For example, to evaluate the detection
coverage of a given service, a certain number of faults, say n, will be injected in the
service, at its interface. Assume further that the service fails on f of these injections.
This means that, on n− f injections, the service was able to handle the faults. Thus,
the coverage of the service is n− f

n . Similarly, the latency for a given fault model can
be averaged out. However, it can also be the case that the fault model is broken down
into smaller fault classes, and a coverage or latency value associated with each fault
class. This will allow for finer-grained composition.

There are several other dependability metrics that can be used to capture various
properties. For example, one such metric, error permeability [9], captures the case
where an error can propagate from an input to an output, i.e., if the parameters
passed to a service provider are corrupted, then the results passed back to the client
are incorrect. Thus, during service composition, it becomes more beneficial to look
for services with a low error propagation. Services with low error permeability have
better dependability properties.

Further, if failure rates of the various services are known, then it becomes pos-
sible to predict the reliability of services, both basic and composite [8]. A basic
service is one that does not need other services to function. A composite service is
one that depends on other services to work properly. Service composition can be
performed using some reliability equation for overall service reliability.

6 Dependability in Service-Oriented Computing 157

6.6 Case Studies

In this section, we will develop two examples. The idea is to show that service-
oriented computing does not lend itself exclusively to web services, but to other
applications too. On the other hand, it is safe to say that web services are very-well
suited for service-oriented architectures.

6.6.1 A Web-Based Application

Home Interior
Decoration

Kitchen
Service

Bedroom
Service

Lounge
Service

Lounge Furniture
Company 1

Payment 1

Fig. 6.5 Example of a home interior decoration agency

The first example is a web-based application, based on a home interior decoration
agency (see Figure 6.5), similar to the one developed by Brüning et al in [3]. It is
a typical example of a home interior decoration agency, where a customer chooses
furniture and accessories for his home and then purchases them. This home inte-
rior decoration agency service will make use of three different services, namely a
kitchen service, a bedroom furniture service service and lounge furniture service
(see Figure 6.6). In this section, we will focus on a customer who wants to purchase
only some lounge furniture, such as sofas, coffee tables etc. However, the same will
apply for customers who want to purchase kitchen or bedroom furniture and acces-
sories. Suppose a customer wants to purchase a three-seater and a two-seater sofa.
He first has to find the appropriate sofas, specify a suitable delivery date, and then
has to pay for the article(s). He inputs the required description of the sofas, such as
colour, size etc.), and the lounge service will then try different companies specialis-
ing in sofas until it finds a sofa that matches the description which can be delivered
on the specified date. Then, a payment service will be called once the correct arti-
cle(s) and the delivery date have been agreed upon.

158 Arshad Jhumka

Home interior
Decoration Service

Service discovery

A1

A2

A3

P1

P2

P3

Size
conflict

Format
conflict

Lounge services

Payment services
security

Date Format
conflict

Fig. 6.6 Lounge furniture and accessories services

To start the process, the user fills in a web form with his furniture details, viz.
type of furniture (e.g., 2-seater sofa, coffee table), colours (e.g., brown, oak etc.),
sizes, and other details such as leather sofa and type of material for the coffee table
etc. He also enters a suitable date for delivery of the furniture. Using this data, the
lounge service has to find the appropriate furniture and delivery date. Assume that
the discovery service returns three different lounge furniture companies A1,A2 and
A3.

Since we are interested in dependability aspects, the example will highlight the
type of problems that need to be handled before service-oriented computing can be
successfully deployed. From Figure 6.6, the first service A1 seems to have been ex-
ecuted correctly but, unfortunately, does not return any furniture, though A1 seems
to have the specified furniture and can also be delivered on the requested date. Since
A1 can satisfy the customer’s requirements (both furniture and date), it means that
services supplied by A1 has failed, for some reason. Closer inspection may reveal
some potential problem. For example, as seen in Figure 6.6, the problem was due to
a size conflict. This fault was caused by an incorrect unit being used to specify the
size of the sofa. This could have occurred due to the fact that the service specified
the size in millimetres, whereas the implementation required the format as inches.
This corresponds to a service/description mismatch fault. If a fault injection exper-
iment had been performed before deploying these services, such a problem would
have been detected. This shows that validation (using fault injection) should be an
important part of the validation process before services are being deployed.

For the second company A2, the problem is a formatting problem, arising possi-
bly due to a date conflict. The problem may arise as follows: the user, when speci-
fying the delivery date, provides the date in a DDMMYY format. whereas the ser-
vice expects a DD/MM/YY date format. This problem is again due to a service
description fault. This problem would also have been detected during fault injection
experiments.

6 Dependability in Service-Oriented Computing 159

On the other hand, there was no problem with the third company A3, which
promised to deliver the ordered furniture on the specified date. Now, the furniture
need to be paid for. Again, three services are returned, namely P1,P2 and P3. As
shown in Figure 6.6, there are problems occurring with some of the payment ser-
vices. For example, there are security problems, preventing the binding phase to
complete with payment service P1, and a date format problem arising when the user
enters his credit card expiry date in the wrong format with service P2.

6.6.2 Service-Oriented Computing in Ubiquitous Systems

In the previous case study, we provided an example of a web-based application. In
fact, web services tend to be the most popular implementation of service-oriented
architectures. To illustrate the fact that service-oriented computing is not exclusively
used in web-based systems, we present a case study for service-oriented computing
in ubiquitous systems. This example is similar to the one provided in [5].

In a ubiquitous system, a client device needs to connect to a server device for
some service. First, the client needs to discover the infrastructure using, say, Blue-
tooth [12], by identifying the available entry points to the service provision infras-
tructure. Once the infrastructure has been discovered, there is a need for the client
to authenticate himself to the system. He needs to log in for registration. He may do
so by providing a description of his own characteristics. Once the client has been
authenticated, he looks up the services registry for the appropriate service. Once
the right service, satisfying both functional and non-functional requirements, has
been chosen, the server proceeds to deliver the service. Once the service has been
delivered, the client may request for more services.

Similar to the case of web services, failures in a ubiquitous system can occur at
various levels. For example, faults can occur at the infrastructure discovery phase
(system may time out), at the client registration phase (thus, the binding phase fails),
or at the service look up phase etc. Similarly, faults can occur in specific service
parameters that identify the state of the particular service involved in the failure. For
example, the state can be one of correct, degraded or incorrect. Different domains
will have different failure models.

6.7 Conclusions

In this chapter, we have provided an overview of the issues to be addressed when in-
tegrating dependability with service-oriented computing. We introduced a selection
of the different types of faults that can affect a service-oriented application

160 Arshad Jhumka

References

1. Anish Arora and Sandeep S. Kulkarni. Component based design of multitolerant systems.
IEEE Transactions on Software Engineering, 24(1):63–78, January 1998.

2. Anish Arora and Sandeep S. Kulkarni. Detectors and correctors: A theory of fault-tolerance
components. In Proceedings International Conference on Distributed Computing Systems,
May 1998.

3. S. Brüning, S. Weissleder, and M. Malek. A fault taxonomy for service-oriented architecture.
In Proceedings of the IEEE High Assurance Systems Engineering, 2007.

4. E. Clarke and J. Wing. Formal methods: State of the art and future directions. ACM Computing
Surveys, 28(4):626–643, 1996.

5. D. Cotroneo, C. Di Flora, and S. Russo. Improving dependability of service-oriented architec-
tures for pervasive computing. In Proceedings Workshop on Object-Oriented Real-time and
Dependable Systems (WORDS), 2003.

6. D.Powell, E.Martins, J.Arlat, and Y.Crouzet. Estimators for fault tolerance coverage eval-
uation. In Proceedings of the 23rd International Symposium on Fault-Tolerant Computing,
1993.

7. M. C. Gaudel. Formal methods and testing: Hypotheses and correctness approximation. In
Proceedings of Formal Methods (FM), pages 2–8, 2005.

8. V. Grassi. Architecture-based dependability prediction for service-oriented computing. In
DSN 2004 Workshop on Architecting Dependable Systems, 2005.

9. M. Hiller, A. Jhumka, and N. Suri. An approach for analysing the propagation of data errors
in software. In Proceedings International Conference on Dependable Software and Networks
(DSN), pages 161–170, 2001.

10. M. Hiller, A. Jhumka, and N. Suri. Propone: An environment for examining the propagation of
errors in software. In Proceedings International Symposium on Software Testing and Analysis
(ISSTA), pages 81–85, 2002.

11. @http://java.sun.com.
12. @http://www.bluetooth.com.
13. @http://www.eiffel.com.
14. @http://www.javaworld.com.
15. R.K. Iyer and D. Tang. Experimental Analysis of Computer System Dependability, Chapter 5.

Prentice Hall, 1996.
16. A. Jhumka and N.Suri. Design of efficient fail-safe multitolerance. In Proceedings Formal

Techniques in Networked and Distributed Systems (FORTE), 2005.
17. J. C. Laprie. Dependable computing and fault tolerance: concepts and terminology. In Fault-

Tolerant Computing, pages 2–11, June 1985.
18. N. Looker, B. Gwynne, J. Xu, and M. Munro. An ontology-based approach for determining the

dependability of service-oriented architectures. In Proceedings Workshop on Object-Oriented
Real-Time Dependable Systems (WORDS), 2005.

19. Z. Mao, E. Brewer, and R. Katz. Fault-tolerant, scalable, wide-area internet service composi-
tion. Technical Report UCB/CSD-1-1129, CS Division, UC Berkeley, 2001.

20. S. Pokraev, D. Quartel, M. W. A. Steen, and M. Reichert. A method for formal verificatipn
of service interoperability. In Proceedings International Conference on Web Services (ICWS),
pages 895–900, 2006.

21. D. K. Pradhan, editor. Fault-Tolerant Computer System Design. Prentice Hall, 1996.
22. M. Rouached, O. Perrin, and C. Godart. Towards formal verification of web service com-

position. In Proceedings International Conference on Business Process Management, pages
257–273, 2006.

Chapter 7
Consensus Issues for Service Advertisement and
Selection

Ping Wang, Chi-Chun Lo and Leon Smalov

Abstract Several commercial service providers are offering analogous functional
features in the advertisements of their services which lead to the problem of efficient
selection for the potential service consumers. Generally, the service consumers and
providers would have different views on the content of the services. How to reach
consensus between the service consumers and providers is an interesting practical
aspect of web service selection. This chapter proposes a Quality of Services (QoS)
aware web service selection model based on fuzzy linear programming (FLP) tech-
nologies, in order to identify their differences on service alternatives, assist service
providers and consumers in selecting the most suitable services with consideration
of their expectations and preferences. By extending the LINMAP method (LINear
programming techniques for Multidimensional Analysis of Preferences), developed
by Srinivasan and Shocker, we can offer the optimal solution of consensual weight
of QoS attribute and fuzzy positive ideal solution. Finally, two numerical examples
are provided to illustrate the solution process.

7.1 Introduction

With the increasing acceptance of e-commerce, various applications over the Inter-
net are becoming part of everyday life. For example, Google research applications

Ping Wang
Department of MIS, Kun Shan University, Yung-Kang, Taiwan
e-mail: pingwang@mail.ksu.edu.tw

Chi-Chun Lo
Institute of Information Management, National Chiao Tung University, Hsinchu, Taiwan
e-mail: cclo@faculty.nctu.edu.tw

Leon Smalov
Faculty of Engineering and Computing, Coventry University, Coventry, CV1 5FB, UK
e-mail: csx211@coventry.ac.uk

N. Griffiths, K.-M. Chao (eds.), Agent-Based Service-Oriented Computing, 161
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-041-0 7, c© Springer-Verlag London Limited 2010

162 Ping Wang, Chi-Chun Lo and Leon Smalov

are accepted as web services and integrated with other services, such as Gmail, to
provide an integrated environment for service consumers. Tim Berners-Lee, inven-
tor of the World Wide Web, offered insights to understand the potential impact of
web technologies, which change the way people do business, entertain themselves,
exchange ideas, and socialize with one another [4]. Two “futuristic” dreams have
been depicted by Berners-Lee: one was everyone receiving and sharing the infor-
mation through the Internet; the other was people communicating with computers
in natural language through the Internet. The former became a norm in every-day
life; the latter is being partially enabled by Semantics Web Services (SWS). SWS
technology aims to add enough semantics to the specifications and implementations
of Web Services (WS) to make possible the automatic integration of distributed au-
tonomous systems, with independently designed data and behavior models [19].

An efficient web service can bring a serious competitive advantage to service
providers as well as giving social welfare to the consumers. An application assist-
ing in service selection based on certified QoS can bring essential benefits to the
service consumers along with reducing the search redundancy. It will also gener-
ate advantages for service providers who deliver valuable services. Practically, the
service providers are supposed to guarantee QoS of WS, which are advertised on
the Internet for service consumers. When service providers announce their avail-
able services, current advertising approaches of web services create a WSDL or
OWL-S document to subscribe the web service profile and service grounding, and
then promote it through UDDI registration, or other web services registries such as
ebXML [45]. However, many available web services exhibit overlapping or identical
services in terms of functionality, e.g. flight booking and digital music download,
but they exhibit divergent Quality of Services (QoS). This multiplicity can lead to a
complex problem of service selection. It is inevitable that a suitable mechanism for
service selection is needed. As the similar functions in service-oriented applications
expand, service selection becomes a crucial issue for both service consumers and
providers. Two important issues of service discovery and selection of available web
services, namely (i) the semantic confusion problem [6] and (ii) reaching a consen-
sus in web service selection process [16] have been widely discussed as described
below.

7.1.1 Semantic Confusion

The semantic confusion problem could be effectively solved by semantic registra-
tion and discovery by defining the appropriate meaning of the service’s functional-
ity using an ontology. An ontology is a representation of resources on the web by
a set of well-defined classes to describe a data model which can be specified us-
ing toolkits such as Resource Description Framework (RDF), DAML+OIL or Web
Ontology Language (OWL) [34]. OWL, proposed by the World Wide Web Consor-
tium (W3C), is not only for representing information on the web, but also improves
the capability of processing information, and increases the interoperability among

7 Consensus Issues for Service Advertisement and Selection 163

software agents [30]. A number of works [2, 6, 12, 14, 22, 28, 29, 31, 35, 36, 44, 45]
on semantic service discovery and selection have been carried out via SWS tech-
nologies to locate the required services and compose them to meet requirements.
The “Semantic Web” approach advocates the vision that will bring structure to the
meaningful content of web pages, creating an environment where software agents
roaming from page to page can readily carry out sophisticated tasks for users. The
Semantic Web makes it possible to automatically locate, discover, compose, and ex-
ecute services [5]. The aim of the Semantic Web initiative is to provide technologies
that will enable heterogeneous systems to collaborate in the execution of an activity.
For web services description, the introduction of OWL-S is a significant factor in
matching service providers and service consumers [31]. OWL-S is an ontology of
services for providing richer web service description, and has the following three
components.

1. ServiceProfile: describes what the service does, its inputs and outputs and its
preconditions and effects, or IOPE. (This is equivalent to UDDI content.)

2. ServiceModel: describes how the service works, its control and dataflow in use.
(This is similar to BPEL4WS [1].)

3. ServiceGrounding: describes how the service is implemented and provides a
mapping from OWL-S to WSDL.

Using semantic web techniques, can help customers to judge distinct Web Service
Levels (WSL) on available services with QoS reports using ontologies, as illustrated
in Figure 7.1.

Fig. 7.1 Semantic service discovery, selection and execution using ontology

An agent is a goal-oriented software entity. It possesses a number of prop-
erties such as pro-activeness, sociability, autonomy, and reactivity to collaborate
with other agents in order to achieve their common goals. There is a gap between

164 Ping Wang, Chi-Chun Lo and Leon Smalov

software agents and web service technologies, since web services lack semantic
descriptions to the interfaces. The semantic gap between XML-based constructs
and agents can be bridged by use of Semantic Web technologies, such as OWL-S.
Agents have mental states that are often expressed using the notions of BDI (Be-
liefs, Desires, and Intentions). Agents are suitable for highly dynamic environments
and operate at a conceptual level, since they adopt partial planning to reason over
their knowledge (or beliefs) and are able to perceive and respond to the environment
in which they are situated. So, agents can be designed as delegates to web service
consumers and providers to form a community for service discovery and selection.
Agents can automatically select services if they are assigned to collect and aggre-
gate the rank information based QoS assessed by consumers as shown in Figure 7.1
above.

After defining the semantics about service specifications, fuzzy matchmaking
techniques can be employed to match the requirements between customers and
providers. The fuzzy matchmaking scheme uses fuzzy semantics on terms and han-
dles the problem via fuzzy theory. For example, the moderated fuzzy discovery
method [15], measures the similarity between services in terms of capabilities, syn-
tax and semantics through a moderator to minimize the differences among service
consumers and providers.

7.1.2 Reaching Consensus

For consumer consensus of WS selection, service consumers and providers may
have different expectations, experiences, and preferences about services. Service
selection can be regarded as a group decision making (GDM) process made by cus-
tomer’s cognitive processes to select an appropriate service among several service
alternatives. In practice, consumers’ preferences often remain imprecise, uncertain
or ambiguous in relation to similar services. The objective of group decision making
is to solve conflicts on QoS criteria and obtain a final compromised solution on the
basis of group consensus. Furthermore, consumer preferences often remain impre-
cise, uncertain or ambiguous on service QoS terms; the preferences over the QoS
attributes are hard to quantify, especially in distinguishing the importance among
these service attributes. Therefore, the adoption of fuzzy terms such as reasonable
price, reliable service, etc. in the requests becomes inevitable. Moreover, consumers
usually have distinct view from providers for service terms, such as “cheap flight
ticket”, “comfortable leg-room” or “flight time”, simply because they have divergent
perceptions of these terms. Traditionally, consensus has a well-established meaning
of a full and unanimous agreement. During the process of service selection, reaching
a full and unanimous agreement in a large group is often not easy task. Since a unan-
imous agreement in a large group is rarely reached, soft consensus method [20] is
developed for solving partial agreements among customers on service alternatives.

From the consumers’ point of view WS providers usually advertise on the Inter-
net the features of web services that appeal to customers, which might lead to mis-
understanding or confusion about the service terms for WS consumers. In addition,

7 Consensus Issues for Service Advertisement and Selection 165

providers prefer to advertise their services to customers in subjective terms, which
might be short of considering the consumers’ expectations and preferences. Ex-
amples of some dissimilar views of related issues between service consumers and
providers are shown in Table 7.1.

Table 7.1 Respective views between service consumers and providers on web service advertise-
ments

Web service issues Service consumers Service providers
Price Affordable price Low cost

Quality More stable functions Service level refer to price
Information disclosure Sufficient right Information Exaggeration of the features

Hence, it is imperative to reach consensus for service consumers on the spe-
cific specification terms (i.e., QoS), when they find and search WSDL documents
in the service discovery process. Based on these requirements, the W3C working
group has defined various QoS attributes for WS [20]. These comprise a number
of generic and specific items for cross-referencing between the possible needs of
service consumers and the functions supported by web services [23].

Although regular QoS attributes have been listed, some unclear problems are yet
to be clarified in the selection of WS process. For example, the perception of QoS at-
tributes importance is generally different from consumers and providers preferences.
It is widely accepted that consumers have been taking an active role in the expansion
of e-commerce. Hence this leads to a need to develop a consensus-centric approach
to investigate QoS attribute preferences. Furthermore, obtaining a consensus-based
ranking order of alternatives in the services selection process is critically impor-
tant. In this chapter, we propose a fuzzy linear programming (FLP) model based
on consistence and inconsistence measurement of group preferences on service al-
ternatives to obtain consensus-based weights of QoS attributes, and determine the
ranking order of service alternatives according to the distance from the positive ideal
solution under group consensus. Consequently, a service consumer is able to reduce
redundancy in search, and the service provider can improve the quality of services.

The remainder of the chapter is organized as follows. Section 7.2 describes the
existing QoS-aware methods for the selection of web services. Section 7.3 describes
proposed method. Section 7.4 reports on two illustrational examples of selection
of service alternatives. Finally, Section 7.5 contains the concluding remarks and
proposes future work.

7.2 Existing Solutions for Web Service Selection

A number of studies for web service selection have been carried out. One of the most
well known techniques is “matchmaking”. It is employed in the situation where ser-
vices with semantic descriptions for their functional attributes are available from an

166 Ping Wang, Chi-Chun Lo and Leon Smalov

Internet search. Several service matchmaking techniques [7,15,42] have been devel-
oped to meet the needs of both consumers and providers as illustrated in Figure 7.2.

Fig. 7.2 Requirements matchmaking between service customer and service provider

Ran [33] proposed a new QoS-based service registration and discovery model via
exchanging SOAP messages [37] to explore the possibility of QoS being involved in
UDDI registry information [39]. In this model, service providers have to send QoS
claims to QoS certifiers, responding to third party or forum web services, for certi-
fication. The service customer is responsible for verifying QoS claims. The QoS in-
formation finally will be registered in the UDDI registry associated with the function
description, once QoS claims have passed QoS certifier verification. However, QoS
of certified services generally are dynamic in nature on the Internet. This might be
taken into account through continuous monitoring and checking. Hence we involve
adding two checking items, QoS monitoring and opinions feedback from customers
into Ran’s model, and the original model is modified as shown in Figure 7.3.

The new UDDI registration mechanisms help customers to discover and locate
the required service by looking up a WSDL document as well as certified QoS [32].
Moreover, consensus of service consumers on QoS attributes has to be considered
for the web service QoS certifier in the QoS computation process. Balke and Wag-
ner [3] introduced the “cooperative discovery” concept for evaluating web services
in detail which comprises three phases of interaction with services, namely, (i) ser-
vice discovery, (ii) service selection, and (iii) service execution. Based on Figure 7.1,
we reorganized the three phases as shown in Table 7.2, which specifies the extensive
definition for selection of QoS-aware web services provisioning.

7 Consensus Issues for Service Advertisement and Selection 167

  QoS 
computation 

Serach and 
find and  

QoS monitoring 

Vertify QoS 

QoS ranking 

Request and 
respond 
SOAP and XML 

WSDL,certified QoS 

Register  

WSDL,certified QoS 

Opinion feedback 

Certifty QoS 
Web service 
QoS certifier 

New UDDI
registry

Web service
consumer

Web service
provider

Fig. 7.3 QoS-centric web registration and discovery model

Table 7.2 QoS-aware web services discovery and selection

Phases Tasks Task description Support tools Dealer
Service Function definition Specify the terms of WS WSDL, OWL-S WS provider
registry functionalities using ontology

language or WSDL
Service registry Register and receive a official UDDI database WS provider

ID for applied service to
publish to the Internet

Service QoS certification Accept and certify the QoS assessment QoS certifier
discovery application of service model

QoS attributes
Service Announce the features of WS Business portal WS provider
advertisement
Service discovery Perform and find the related Browser WS consumer

services based on a user’s
request

Service selection Select one of the desired service Browser WS consumer
Service Service execution Carry out service binding Browser and WS consumer,
execution and execution service WS provider

QoS Collect customer opinions to Browser and WS consumer
monitoring QoS certifier for reflecting QoS opinion

user expectation database

168 Ping Wang, Chi-Chun Lo and Leon Smalov

For emerging B2B businesses, selected services are aggregated to form compos-
ite services. A composite service is a service produced by a composition of other
services to complete the desired service activities. For example, a consumer may
wish to discover a composite service containing flight booking, restaurant reserva-
tion, and renting a car. Zeng et al. [42, 43] addressed the issue of selecting web
services by maximizing user satisfaction expressed as utility functions over QoS
attributes; this selection model considered multiple criteria such as price, duration,
reliability in which budget constraints and preferences set by the user. This approach
is a global planning method so it can optimally select component services by lin-
ear programming techniques. For the example of a composite service as a travel
planner, it aggregates multiple component services for flight booking, travel insur-
ance, accommodation booking, and car rental, which can be executed sequentially
or concurrently, as illustrated in Figures 7.4 and 7.5.

 

 

Customer 
Requirements 

 

 

 

Hotel Services (S8~ S15) 

Insurance  Services  (S3~ 
S7) 

Flight Services(S1~ S2) 

Car Rental Services (S16~ S17) 

Fig. 7.4 The discovery and selection of composite services

  S4  S11  S16 
S1 

S5 

S7 

S15  S17 start  end 

Fig. 7.5 A possible plan of selected composite services

Sirin et al. [36] developed a goal-oriented and interactive composition approach
that uses matchmaking algorithms to help users filter and select services while build-
ing their composition service. The matches are filtered using ontological reasoning
on the semantic descriptions of the services. They developed a prototype on the ba-
sis of these ideas to test the system by generating OWL-S descriptions for some

7 Consensus Issues for Service Advertisement and Selection 169

of the common web services. Each composition the user generates via the existing
prototype will be realized as an OWL-S Composite Process, meaning that it can
also be advertised, discovered, and composed with other services. They adopted
a quality model considering five generic quality criteria for elementary services:
(1) execution price, (2) execution duration, (3) reputation, (4) reliability, and (5)
availability. The global service selection is executed with a set of execution plans,
P = (p1, p2, . . . , pn), where n is the number of plans. After a set of execution plans
is generated, the scheme selects an optimal execution plan using Simple Additive
Weighting (SAW). This work pointed out that the accuracy of the matches found by
the inference engine depends on how detailed the ontologies are. Richer ontologies
with more specific descriptions for sensors and their nonfunctional properties will
help the engine find better answers to the queries.

Zhou et al. [45] discriminated between functional and non-functional QoS prop-
erties of web services, where functional properties can be measured in terms of
throughput, latency, response time; non-functional properties address of various is-
sues including integrity, reliability, availability and security of web services. Well-
defined metrics are utilized by measurement organizations to monitor and evalu-
ate the promised service level objectives. A match-making prototype is designed to
prove the feasibility of the approach. For the match between request and advertise-
ment, there are five types of match possibilities: subsume, exact, plugin, intersection,
and disjoint ranging from the best matching degree to the worst matching degree,
respectively. When the service provider publishes their service QoS profile through
the publish interface, the ontology will be parsed. If the parsing process ends suc-
cessfully, the ontology is stored in the server’s repository and then is rendered into
a description kept in the knowledge base. By classifying on its knowledge base, the
Racer engine organizes the ontologies’ taxonomy. When the service requester sub-
mits an inquiry, the matchmaker will return the subsume, exact, plugin, and intersec-
tion matching list respectively. The prototype demonstrated that the matchmaking
is suitable for small or middle sized advertisement repositories.

Lin et al. [25] and Liu et al. [27] treated the selection of QoS-driven web services
with dynamic composition as a fuzzy constraint satisfaction problem and applied
an optimal search approach with adjustments to service composition. They consider
three generic quality criteria which can be measured objectively for elementary ser-
vices: (i) execution price, (ii) execution duration, and (iii) reputation. Compared
to Sirin et al.’s approach [36], criteria such as availability and reliability are not
included in the model, due to the use of active user feedback and execution mon-
itoring. The reputation of a service is a measure of its trustworthiness. It mainly
depends on end user’s experiences of using the service. To demonstrate the pro-
posed QoS model, they implemented a QoS registry within a hypothetical phone
service (UPS) provisioning market place that is implemented using BEA Weblogic
Workshop toolkit. It consists of various service providers who can register to pro-
vide various types of phone services such as long distance and local phone services,
wireless and broadband. The UPS marketplace has web interfaces which allow a
customer to login and search for phone services based on his/her preferences. For

170 Ping Wang, Chi-Chun Lo and Leon Smalov

example, the customer can specify whether the search for a particular type of service
should be price or service sensitive.

In summary, service selection approaches [15, 27, 36, 43, 45] can be mainly di-
vided into two categories: Multiple Attribute Decision Making (MADM) [8,41] and
mathematical programming. MADM methods [15, 27, 45] concentrate on that QoS
attributes can be collected and enforced objectively, then the traditional MADM the-
ory can be applied to obtain a consistent ranking of service alternatives. Mathemati-
cal programming methods [36,43] comprise linear programming (a single objective
function) and multiple goal programming. It concerns about interactive composition
selection that uses preset planning to optimally select component services during the
execution of a composite service.

The “matchmaking” approach, however, relies on the advertisements from ser-
vice providers’ subjective views that could lead to divergent perception between
consumers and providers. Consumer expectations and their common preferences
(i.e., consensus) on QoS should be considered in the process of service selection.
To ensure the consensus between consumers and providers, Lin et al. [26] proposed
a QoS Consensus Moderation Approach (QCMA) in order to perform QoS ratings
based on [13, 21] in order to alleviate the differences in QoS characteristics.

The aforementioned methods advanced knowledge in QoS-aware service discov-
ery and selection, but nevertheless, there remains the following significant issues for
debate: (i) the perception of QoS attributes needs to adjust according to consumers’
preferences, (ii) how to determine weights (importance) of QoS attributes, and (iii)
the ranking order of service alternatives should be decided on the basis of group
consensus. To enable effective QoS-aware service selection, a new web service se-
lection model is proposed, which includes the following important aspects.

• Imprecise preference: this model should be able to handle vague preferences or
linguistic opinions for QoS attributes expressed by service consumers in the pro-
cess of selecting web services.

• Be able to explore the optimal solution weighting of QoS attributes.
• Consensus-centric service ranking: the approach should be capable of realisti-

cally gaining a consensual ranking on web service alternatives according to con-
sistence and inconsistence measurements of performance ratings.

• Inspired by Li and Yang’s work [24], we extend our previous work [40], to select
QoS-aware web services using fuzzy linear programming techniques by min-
imizing the inconsistency measurement. More detailed information about this
model is described in the next section.

7.3 The Proposed QoS-Aware Services Selection Model

In this section, we introduce a new fuzzy group consensus-aware service selection
model, which extends the LINMAP (LINear programming techniques for Multi-
dimensional Analysis of Preferences) method [38], developed by Srinivasan and

7 Consensus Issues for Service Advertisement and Selection 171

Shocker (1973). In LINMAP, the decision maker gives the performance ratings ma-
trix of alternatives with a pair wise comparison to obtain the best solution that has
the shortest distance to the positive ideal solution (PIS). The aim of the model is to
find the optimal weighting of QoS attributes for a set of web services and locate the
fuzzy positive ideal solution (FIPS) considering group consensus, and determine a
rational ranking order of web service alternatives.

7.3.1 Basic Definitions and Notations

In this section, we review some arithmetic operations on fuzzy numbers for the
purpose of representing the proposed algorithm in Section 7.3.2.
Definition 1: Triangular fuzzy number (TFN). A triangular fuzzy number Ã can be
defined by (a.b.c). The membership function is defined as follows.

uA(x) =

0 f or x > a
x−a
b−a f or a≤ x < b
c−x
c−b f or b < x≤ c
0 f or x < c

(7.1)

Definition 2: Fuzzy arithmetic operations. The arithmetic operations on the positive
fuzzy numbers described by the interval of confidence are expressed below.

Addition ⊕ : (a1,b1,c1)⊕ (a2,b2,c2) = (a1 +a2,b1 +b2,c1 + c2) (7.2)
Subtraction − : (a1,b1,c1)− (a2,b2,c2) = (a1−a2,b1−b2,c1− c2)

Multiplication ⊗ : Ã⊗ B̃ = (a1,b1,c1)⊗ (a2,b2,c2) = (a1a2,b1b2,c1c2)
Multiplication ⊗ : k⊗ Ã = k⊗ (a1,b1,c1) = (ka1,kb1,kc1),∀k ∈ R

Division / : Ã/B̃ = (a1,b1,c1)/(a2,b2,c2) = (a1/a2,b1/b2,c1/c2)

Definition 3: The normalized Euclidean distance between two triangular fuzzy
numbers. If Ã and B̃ are two TFNs, then the normalized Euclidean distance between
Ã and B̃ can be calculated as follows.

e(Ã, B̃) = (1/3[(a1−b1)2 +(a2−b2)2 +(a3−b3)2])1/2 (7.3)

7.3.2 Consistence and Inconsistence Measurements

Consider the problem of ranking WS alternatives ai(i = 1, . . . ,m). A group of de-
cision makers (dp, p = 1, . . . ,q) is formed to identify n QoS attributes, say c j(j =
1, . . . ,n. Each decision maker has to assign a performance rating x̃i j(dp) to service
alternatives, x̃i j(dp) represents the rating of web service si with respect to criterion

172 Ping Wang, Chi-Chun Lo and Leon Smalov

c j evaluated by dp. If x̃i j(dp) is a fuzzy data item expressed by linguistic terms, then
it must be converted to a triangular fuzzy number (TFN) of the form (ai j,bi j,ci j)
defined in Definition 1, where ai j,bi j,ci j are real numbers and ai j ≤ bi j ≤ ci j. The
performance rating matrix X̃ assessed by decision maker dp is shown in Equation
7.4.

X̃(dp) = [x̃i j(dp)] =

s1
s2
. . .
sm

c1 c2 . . . c3
x̃11 x̃12 . . . x̃1n
x̃21 x̃22 . . . x̃2n
. . .
x̃m1 x̃m2 . . . x̃mn

 (7.4)

where ⊕ and ⊗ represent fuzzy additive and multiplication operations as defined
in Definition 2, respectively. x̃i j(dp) might be in crisp (nonfuzzy) or fuzzy form de-
pending on the nature of the QoS attributes. When x̃i j(dp) is a nonfuzzy datum, it
should be converted from the distinct scales of ratings to a numerically comparable
scale. In contrast, if x̃i j(dp) is in fuzzy form then it has to be normalized by using
Equation 7.7 to rank the web services compatibly between evaluation of QoS at-
tributes. For QoS attributes, two types simultaneously exist : benefit- oriented and
cost-oriented. These are sometimes mutually conflict and are inconsistent so there
exists a trade-off. To avoid generating an outbound condition, when r̃i j exceeds the
value 1, it needs to be constrainted by upper bound 1. The linear scale transforma-
tion is used for forming the normalized fuzzy matrix R̃ as [9]:

R̃ = [r̃i j]mxn (7.5)

r̃i j =
x̃i j

x̃∗j
=

(
ai j

c∗j
,

bi j

c∗j
,

ci j

c∗j
∧1

)
,∀ j, x̃ j ∈ B

r̃i j =
x̃i
x̃∗i j

=

(
a j

c∗i j
,

b j

c∗i j
,

c j

c∗i j
∧1

)
,∀ j, x̃ j ∈C

where a∗j = maxi ai j,b∗j = maxi bi j,c∗j = maxi ci j if j ∈ B, a j = mini ai j,b j =
mini bi j,c j = mini ci j if j ∈C, and where B, C represent a set of benefit-based and
cost-based QoS attributes, respectively.

Studies regarding distance-based consensus methods have been carried out by
Cook and Seiford [10,11], with focus on solving nonfuzzy ranking order problems.
Cook and Seiford [10] investigated two specific cases (i.e., s = 1;s = 2) to solve the
consensus degree of a group on ordinal rankings. The general form of consensus
measurement function is constructed by minimizing a normalized weighted metric
distance, Di, that is:

MinDi =
n

∑
j=1

(w j|ri j− r∗j |s)1/s, i = 1,2, . . . ,m (7.6)

7 Consensus Issues for Service Advertisement and Selection 173

where w j is the weighting of QoS attribute j, (|ri j − r∗j |s)1/s is the Minkowski
metric, s is the metric number. For example, if s = 2 then Di becomes as:

di =
n

∑
j=1

(w j|ri j− r∗j |2)1/2 (7.7)

In this chapter, we address the consistence measurement of service customers
by aggregated difference between fuzzy performance ratings of each alternative and
the fuzzy positive ideal solution (FPIS). Then the square distance, si, defined in
LINMAP, is used for assessing the weights of QoS attributes, that is:

si =
n

∑
j=1

w j(r̃i j− r̃∗j)
2, i = 1,2, . . . ,m (7.8)

Suppose Ω = {(k, l)|akPal ,k, l = 1, . . . ,m} denotes a set of preference relations
which is composed of the ordered pairs (k, l) for service alternatives, where P repre-
sents a preference relation given by decision maker. There are n(n−1)/2 elements
in Ω . Member akPal represents that decision maker prefers ak to al . Furthermore,
analogous to si, the fuzzy form of square distance between a pair of alternative (k, l),
Sk and Si, is defined by square distance using the normalized Euclidean distance, de-
fined in Defination 7.3, as follows.

Sk =
n

∑
j=1

w j[e(r̃k j, r̃∗j)]
2 (7.9)

Sl =
n

∑
j=1

w j[e(r̃l j, r̃∗j)]
2

By definition of inconsistence measurement in [38], inconsistence index, (Sl =
Sk)−, measuring the discrepancy between Sl and Sk, is given by:

(Sl−Sk)− =
{

0, i f (Sl ≥ Sk)
Sk−Sl , i f (Sl < Sk)

= max{0,(Sk−Sl)} (7.10)

Then, the inconsistence measurement for all the ordered pairs (k, l) for all service
alternatives in Ω can be computed by:

B = ∑
(k,l)∈Ω

(Sl−Sk)− = ∑
(k,l)∈Ω

max{0,(Sk−Sk)} (7.11)

Similar to Equation 7.10, the consistence measurement between Sl and Sk, (Sl−
Sk)+, is given by:

(Sl−Sk)+ =
{

Sl−Sk, i f (Sl ≥ Sk)
0, i f (Sl < Sk)

(7.12)

The consistence measurement for all the ordered pairs (k, l) in Ω is given by:

174 Ping Wang, Chi-Chun Lo and Leon Smalov

G = ∑
(k,l)∈Ω

(Sl−Sk)+ (7.13)

7.3.3 Problem Formulation

To avoid obtaining a trivial solution with w j = 0, we add two additional constraints,
G−B = h, where h is also an arbitary positive number, and w j ≥ δ , where δ may be
zero or a sufficient positive number. Our goal is to obtain the optimal soloution of
weight of QoS attribute and fuzzy positive ideal solution (FIPS), (w, r̃∗), in terms of
mimimizing the inconsistence measurement B. The constraint, G−B = h, is needed
to ensure the tolerance (h) between G and B. The problem of finding the optimal
consensual weights and positive ideal values of the solution can be formulated as a
linear programming model as follows.

Min B (7.14)

s.t.
{

G−B = h,
w j ≥ δ , j = 1, . . . ,n

By the definition of the Equations 7.11 and 7.13, we have:

(Sl−Sk)+− (Sl−Sk)− = Sl−Sk (7.15)

Substituting Equation 7.15 into Equation 7.14, then it can be rewritten as:

G−B = ∑
(k,l)∈Ω

(Sl−Sk) = h (7.16)

Therefore, the optimal soloution (w, r̃∗) can be obtained by solving the con-
strained optimized problem of:

Min ∑
(k,l)∈Ω

max{0,(Sk−Sl)} (7.17)

s.t.
{

∑(k,l)∈Ω (Sl−Sk) = h
w j ≥ δ , j = 1, . . . ,n

Let zkl = max{0,(Sk− Sl)}, we have zkl ≥ 0 and zkl ≥ (Sk− Sl), then the third
and the fourth constraints are obtained. zkl ≥ (Sk−Sl) can be rewritten as:

zkl +(Sk−Sl)≥ 0 (7.18)

Adding two constraints, then we get:

7 Consensus Issues for Service Advertisement and Selection 175

Min ∑
(k,l)∈Ω

zkl (7.19)

s.t.

∑(k,l)∈Ω (Sl−Sk) = h, for(k, l) ∈Ω

zkl +(Sl−Sk)≥ 0, for(k, l) ∈Ω

zkl ≥ 0, for(k, l) ∈Ω

w j ≥ δ , j = 1, . . . ,n

In the following, substituting Equations 7.9, 7.10, 7.11, 7.12, 7.13, 7.14, 7.15,
7.16, 7.17, 7.18, and 7.19, then we have:

Min ∑
(k,l)∈Ω

zkl (7.20)

s.t.

∑(k,l)∈Ω ∑

n
j=l w j[e(r̃l j, r̃∗j)− e(r̃k j, r̃∗j)] = h, for(k, l) ∈Ω

zkl +∑
n
j=l w j[e(r̃l j, r̃∗j)− e(r̃k j, r̃∗j)]≥ 0, for(k, l) ∈Ω

zkl ≥ 0, for(k, l) ∈Ω

w j ≥ δ , j = 1, . . . ,n

Obviously, item r̃∗2j will be omitted in the computation process of the first con-
straint. Hence a new variable ṽ j is introduced to replace w j r̃ j for the simplification
of computation, that is:

ṽ j = w j r̃ j = [av j,bv j,cv j] (7.21)

By using Definitions 1 and 2, Equation 7.20 can be transformed into the follow-
ing form:

Min ∑
(k,l)∈Ω

zkl (7.22)

s.t.

1
3 ∑(k,l)∈Ω ∑

n
j=l w j[(a2

rl j
−a2

rk j
)+(b2

rl j
−b2

rk j
)+(c2

rl j
− c2

rk j
)]

− 2
3 ∑(k,l)∈Ω ∑

n
j=l w j[av j(arl j −ark j)+bv j(brl j −brk j)

+cv j(crl j − crk j)] = h, for(k, l) ∈Ω

zkl + 1
3 ∑(k,l)∈Ω ∑

n
j=l w j[(a2

rl j
−a2

rk j
)+(b2

rl j
−b2

rk j
)+(c2

rl j
− c2

rk j
)]

− 2
3 ∑(k,l)∈Ω ∑

n
j=l w j[av j(arl j −ark j)+bv j(brl j −brk j)

+cv j(crl j − crk j)]≥ 0, for(k, l) ∈Ω

zkl ≥ 0, for(k, l) ∈Ω

w j ≥ δ , j = 1, . . . ,n
0≤ av j ≤ bv j ≤v j≤ 1, j = 1, . . . ,n

We solve the linear programming using Simplex method, and then the optimal
solution of (w, r̃∗) using linear programming is provided. Once the optimal weights
of QoS attributes (w j, j = 1, . . . ,n) and fuzzy positive ideal solution (FPIS) of web
service i are obtained, one can easily decide a ranking order by distance from FPIS.
It means that the shortest distance from FPIS is the best solution. From Figure 7.2,

176 Ping Wang, Chi-Chun Lo and Leon Smalov

we can judge the ranking order of service alternatives by the square distance of
service alternatives from FPIS (ã∗), that is, ã3 is the best solution (Figure 7.6).

 Fig. 7.6 The square distance of all service alternatives from FPIS ã∗

7.4 Two Numerical Cases

In this section, two examples for selecting an appropriate web service are used as
an illustration of the application of the proposed model. To illustrate the process
of solutions, the first example is a case which emphases the selection of service
alternatives using the traditional LINMAP method, in which QoS attributes are crisp
data decided by a single decision maker. The second example is regarded as a group
decision problem (GDP) where the rating format is a fuzzy form given by a set of
decision makers.

7.4.1 Numerical Case I

Four service alternatives, ai(i = 1, . . . ,4), are assessed by decision makers dp based
on QoS attributes c j(j = 1, . . . ,6)—maximum baggage allowance (c1), seat size
(c2), multimedia (c3), payment when package lost (c4), satisfaction on ticket price
(c5), and food rating (c6). The seat size is a scale for the available space of the seat.
For the rating of multimedia, we use basic addition to count the following items:

7 Consensus Issues for Service Advertisement and Selection 177

(1) video (2) music (3) games (4) shopping information (5) flight information, to
decide the availability of multimedia. Each item is assigned one point. As ticket
price is a cost-based attribute, has to take the negative value with respect to benefit
attribute. The decision makers assign the performance ratings to all service candi-
dates and determine the ranking order of four candidates. The proposed model is
applied to solve this problem according to the following procedures.
Step 1: Three decision makers assess the performance rating of each service can-
didate and generate the individual performance rating matrix as shown in Table 7.3.
In addition, service consumer gives the ranking order between service candidates as
follows:

Ω(d) = {(1,2),(1,3),(4,1),(3,2),(2,4),(3,4)}

Table 7.3 Performance ratings of service alternatives

Airline QoS attributes
c1(lb) c2(cm) c3(items) c4($) c5($) c6(1–5)

a1 40 110 3 120 −400 4.0
a2 55 125 5 150 −450 5.0
a3 85 90 4 100 −350 2.0
a4 35 105 3 90 −300 4.0

Step 2: The performance ratings matrix is converted from the distinct scales of
ratings into a numerically comparable scale in [10,−10] as:

R(d) = [ri j] =

4.00 1.10 3.00 1.20 −4.00 4.00
5.50 1.25 5.00 1.50 −4.50 5.00
8.50 0.90 4.00 1.00 −3.50 2.00
3.50 1.05 3.00 0.90 −3.00 4.00

Step 3: Let h = 1, and δ = 0.0. We can model the linear programming problem
using the crisp form v j to replace ṽ j = [av j ,bv j ,cv j] and substituting ri j to r̃i j in
Equation 7.22, as follows:

178 Ping Wang, Chi-Chun Lo and Leon Smalov

Min {z12 + z13 + z41 + z32 + z24 + z34}

s.t.

−53.25w1 +0.43w2 +9.0w3−0.64w4−13.0w5 +21.0w6
+9.0v1−0.40v2−2.0v3 +0.8v4−4.0v5−6.0v6 = 1,

z12 +14.25w1 +0.353w2 +16.0w3 +0.81w4 +4.25w5 +9.0w6
−3.0v1−0.3v2−4.0v3−0.6v4 +1.0v5−2.0v6 ≥ 0,

z13 +56.25w1−0.4w2 +7.0w3−0.44w4−3.75w5−12.0w6
−9.0v1 +0.4v2−2.0v3 +0.4v4−1.0v5 +4.0v6 ≥ 0,

z41−3.75w1−0.108w2−0.63w4−7w5
1.0v1 +0.10v2 +0.60v4−2.0v5 ≥ 0,

z32−42.0w1 +0.750w2 +9.0w3 +1.25w4 +8.0w5 +21.0w6
+6.0v1−0.70v2−2.0v3−1.0v4 +2.0v5−6.0v6 ≥ 0,

z24−18.0w1−0.46w2−16.0w3−1.44w4−11.25w5−9.0w6
+4.0v1 +0.4v2 +4.0v3 +1.2v4−3.0v5 +2.0v6 ≥ 0,

z34−60.0w1 +0.294w2−7.0w3−0.19w4−3.25w5 +12.0w6
+10.0v1−0.30v2 +2.0v3 +0.2v4−1.0v5−4.0v6 ≥ 0,

z12 ≥,z13 ≥ 0,z41 ≥ 0,z32 ≥ 0,z24 ≥ 0,z34 ≥ 0,
w j ≥ 0, j = 1, . . . ,6

Step 4: Solve the optimal solution using the Simplex method. This step produces
(w, ṽ∗) as follows:

z∗ = (z12,z13,z41,z32,z24,z34) = (0.0,0.0,0.0,0.0,0.0,0.0)
w∗ = (w1, . . . ,w6) = (0.086,0.0,0.046,0.0,0.0,0.0)T

v∗ = (v1, . . . ,v6) = (0.571,0.0,0.0,0.0,0.0,0.0)

The fuzzy positive ideal solution (FIPS) is located using Equation 7.21 as fol-
lows:

r∗ =
v∗

w
= (r1, . . . ,r6) = (6.64,0.0,0.0,0.0,0.0,0.0)

Step 5: Outrank the ranking of web services The square distance of service alter-
natives from FPIS can be calculated using Equation 7.9:

si = w∗1(ri1− r∗1)
2, i = 1, . . . ,4, j = 1

s1 = 0.599,s2 = 0.112,s3 = 0.298,s4 = 0.848

So the ranking order of service alternatives is generated as following:

a2 > a3 > a1 > a4

7 Consensus Issues for Service Advertisement and Selection 179

7.4.2 Numerical Case II

The second example exhibits the selection of service alternatives for GDPs where
the rating format is in a fuzzy form. The problem is described as follows: a set of
decision makers dp(p = 1, . . . ,3) have to assess service alternatives based on QoS
attributes c j(j = 1, . . . ,3) acceptable price of ticket (c1), taste of food (c2), service
of crew (c3). The service customers have their different subjective preferences on
the definition of the index of satisfaction.
Step 1: We define the QoS term, satisfaction, to illustrate the preferences of a con-
sumer. It is assumed that the QoS term: satisfaction denoted as (Q̃) is combined
from the following three primitive fuzzy terms, (i) acceptable price: as the ticket
price always varies in different seasons, an acceptable price range is judged by the
perception of the customer, denoted as Ã for short, (ii) service of crew: is the satis-
faction degree of flight service crew represented as S̃ for short, (iii) service of food:
is the satisfaction degree of food taste, quality and diversity denoted as F̃ for short.
So, the degree of satisfaction can be formulated by a simple fuzzy additive weight-
ing rule, i.e. Q̃ = (w1⊗ Ã)⊕ (w2⊗ S̃)⊕ (w3⊗ F̃). The weightings will be evolved
to reflect the situation after a number of consumers’ preferences. Then, acceptable
price, expressed by x̃i j = (ai,bi,ci), j = 1, can be represented as Figure 7.7. Deci-
sion makers assign acceptable price to five service candidates as the first column of
Table 7.5.

USD ($)

1

X

160

)(~ xu
A

200
240

280
320

360
400

)(~

1

xu
A

440
460

480
500

520

)(~

2

xu
A

)(~

3

xu
A

)(~

4

xu
A

)(~

5

xu
A

)(~

1

xu
A

)(~

2

xu
A

)(~

3

xu
A

)(~

4

xu
A

)(~

5

xu
A

Fig. 7.7 Five different fuzzy sets for acceptable price

Step 2: In the following, each decision maker has to assign a performance rating
x̃i j(dp) on service of crew and service of food with linguistic terms, defined in Ta-
ble 7.4, to service alternatives. In Table 7.4, the membership function of linguis-
tic terms for the rating of each service alternative is given by (x− 2,x,x + 2) for
x̃i j = (3,5,7) except (0,1,3) for x̃i j is “very poor” and (7,9,10) for x̃i j is “very

180 Ping Wang, Chi-Chun Lo and Leon Smalov

good”. The decision makers assign acceptable prices to five service candidates as
the first column of Tables 7.5, 7.6, and 7.7. The individual fuzzy performance rating
matrix is shown in Tables 7.5, 7.6, and 7.7.

Table 7.4 Linguistic terms for the rating of service alternatives

Linguistic terms Triangular fuzzy number
Very poor (VP) (0,1,3)
Poor (P) (1,3,5)
Fair (F) (3,5,7)
Good (G) (5,7,9)
Very good (VG) (7,9,10)

Table 7.5 Ratings assigned by service customer d1

Airliner QoS Attributes
c1($) c2 c3

a1 (200,280,320) Poor Good
a2 (400,450,500) Good Very good
a3 (200,300,400) Very good Poor
a4 (260,300,320) Good Fair
a5 (280,300,320) Fair Good

Table 7.6 Ratings assigned by service customer d2

Airliner QoS Attributes
c1($) c2 c3

a1 (280,320,380) Good Fair
a2 (300,360,440) Fair Fair
a3 (300,400,440) Good Fair
a4 (280,300,340) Good Fair
a5 (320,340,380) Good Fair

Table 7.7 Ratings assigned by service customer d3

Airliner QoS Attributes
c1($) c2 c3

a1 (200,220,240) Good Fair
a2 (220,240,280) Good Good
a3 (300,340,360) Poor Good
a4 (280,320,400) Good Poor
a5 (260,300,320) Fair Good

In addition, three service consumers give their ranking order among six service
candidates as follows:

7 Consensus Issues for Service Advertisement and Selection 181

Ω(d1) = {(1,2),(2,3),(2,4),(2,5),(3,1),(3,5),(4,1),(4,3),(4,5),(5,1)}
Ω(d2) = {(1,5),(2,1),(3,1),(2,3),(2,4),(2,5),(4,3),(5,3),(5,4)}
Ω(d3) = {(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(3,4),(5,4)}

Step 3: By applying Equation 7.7, the normalized performance ratings matrix as-
sessed by decision maker d1 is formed as:

R̃(d1) = [r̃i j] =

(0.40,0.62,0.80) (0.10,0.30,0.50) (0.50,0.70,0.90)
(0.52,0.71,0.95) (0.50,0.70,0.90) (0.70,0.90,1.00)
(0.80,1.00,1.00) (0.70,0.90,1.00) (0.10,0.30,0.50)
(0.40,0.67,1.00) (0.50,0.70,0.90) (0.30,0.70,0.70)
(0.52,0.67,0.80) (0.30,0.50,0.70) (0.50,0.70,0.90)

Similarly, the normalized performance ratings matrix assessed by decision mak-

ers d2 and d3 can be obtained, respectively.
Step 4: Let h = 1, and δ = 0.0. Using Equation 7.22, we can formulate the linear
programming problem as follows:

182 Ping Wang, Chi-Chun Lo and Leon Smalov

Min {z12 + z31 + z41 + z51 + z23 + z24 + z25 + z35 + z45 + z43}

s.t.

−0.49w1−1.28w2−0.02w3 +(0.119bv1 +0.467cv1)
+(0.80av2 +0.80bv2 +0.80cv2)− (0.1333cv3) = 1

z12 +0.164w1 +0.4w2 +0.25w3− (0.008av1 +0.059bv1 +0.10v1)
−(0.267av2 +0.267bv2 +0.267cv2)
−(0.133av3 +0.133bv3 +0.067cv3)≥ 0,

z31−0.483w1−0.65w2 +0.4w3− (0.267av1 +0.252bv1 +0.133cv1)
+(0.4av2 +0.4bv2 +0.333cv2)
−(0.267av3 +0.267bv3 +0.267cv3)≥ 0,

z41−0.139w1−0.4w2 +0.24w3 +(0.0296bv1 +0.133cv1)
+(0.267av2 +0.267bv2 +0.267cv2)
−(0.1333av3 +0.1333bv3 +0.1333cv3)≥ 0,

z51−0.0559w1−0.16w2 +(0.08av1 +0.0296bv1)
+(0.133av2 +0.133bv2 +0.133cv2)≥ 0,

z23 +0.3205w1 +0.25w2−0.65w3− (0.187av1 +0.193bv1 +0.033cv1)
−(0.133av2 +0.133bv2 +0.067cv2)
+(0.4av3 +0.4bv3 +0.333cv3)≥ 0

z24−0.0247w1−0.49w3 +(0.08av1 +0.0296bv1−0.033cv1)
+(0.2667av3 +0.2667bv3 +0.2cv3)≥ 0,

z25−0.1079w1−0.24w2−0.25w3 +(0.0296bv2 +0.1cv2)
+(0.133av3 +0.133bv3 +0.133cv3)
+(0.133av4 +0.133bv4 +0.0667cv4)≥ 0,

z35−0.428w1−0.49w2 +0.34w3 +(0.187av1 +0.222bv1 +0.133cv1)
+(0.267av2 +0.267bv2 +0.2cv2)
−(0.267av3 +0.267bv3 +0.267cv3)≥ 0,

z45−0.0832w1−0.24w2 +0.24w3− (0.08av1 +0.133cv1)
+(0.133av2 +0.133bv2 +0.133cv2)
−(0.133av3 +0.133bv3 +0.133cv3)≥ 0,

z43 +0.345w1 +0.25w2−0.16w3− (0.267av1 +0.222bv1)
−(0.133av2 +0.133bv2 +0.067cv2)
+(0.133av3 +0.133bv3 +0.133cv3)≥ 0,

z12 ≥ 0,z31 ≥ 0,z41 ≥ 0,z51 ≥ 0,z23 ≥ 0,
z24 ≥ 0,z25 ≥ 0,z35 ≥ 0,z45 ≥ 0,z43 ≥ 0,
w j ≥ 0.0, j = 1, . . . ,3
av j,bv j,cv j ≥ 0, j = 1, . . . ,3

Step 5: Solve the optimal solution using Mathematica software. This step produces
(w, ṽ∗) as follows:

z∗ = (z12,z31,z14,z51,z23,z24,z25,z43,z35,z45)
= (0.41,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)

w∗ = (w1,w2,w3)T = (0.0,0.0,1.0)
v∗ = (v1,v2,v3) = ((0.0,0.0,0.0),(0.0,0.0,0.0),(0.95,0.95,0.95))

The fuzzy positive ideal solution (FIPS) is located using Equation 7.21:

7 Consensus Issues for Service Advertisement and Selection 183

r̃∗(d1) = ṽ∗/w∗ = (r̃1, . . . , r̃3)T = ((0.0,0.0,0.0),(0.0,0.0,0.0),(0.95,0.95,0.95))

Step 6: Outrank the ranking of WS. The square distance of service alternatives
from FPIS can be computed by using Equation 7.9:

S1(d1) = 0.386,S2(d1) = 0.136,S3(d1) = 0.786,S4(d1) = 0.626,S5(d1) = 0.386

So the ranking order of service alternatives is generated as follows

a2 > a1 > a5 > a4 > a3

Similarly, the optimal solution of (w, ṽ∗) is obtained using Steps 1–5 for decision
makers d2 and d3.

z∗ = (z15,z21,z31,z23,z24,z25,z43,z53)
= (0.333,0.0,0.0,0.0,0.0,0.0,0.0,0.0)

w(d2) = (w1,w2,w3)T = (0.0,1.0,0.0)
ṽ∗(d2) = (ṽ1, ṽ2, ṽ3)

= ((0.0,0.0,0.0),(0.21,0.21,0.21),(0.0,0.0,0.0))
r̃∗(d2) = (r̃1, r̃2, r̃3)T

= ((0.0,0.0,0.0),(0.21,0.21,0.21),(0.0,0.0,0.0))
z∗ = (z21,z15,z13,z23,z24,z35,z43,z54)

= (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
w(d3) = (w1,w2,w3)T = (0.187,0.813,0.0)
ṽ∗(d3) = (ṽ1, ṽ2, ṽ3)

= ((0.0,0.0,0.9),(0.016,0.016,0.016),(0.0,0.0,0.0))
r̃∗(d3) = (r̃1, r̃2, r̃3)T

= ((0.0,0.0,0.48),(0.20,0.20,0.20),(0.0,0.0,0.0))

The square distance of service alternatives from FPIS for decision makers d2 and
d3 can be calculated:

S1(d2) = 0.520,S2(d2) = 0.328,S3(d2) = 0.507,S4(d2) = 0.525,S5(d2) = 0.514

S1(d3) = 0.064,S2(d3) = 0.179,S3(d3) = 0.179S4(d3) = 0.224,S5(d2) = 0.179

Comparing the distance from FPIS using Equation 7.9, the ranking order of five
service alternatives for the three decision makers is shown as, respectively.

a2 > a1 > a5 > a4 > a3

a2 > a3 > a1 > a5 > a4

184 Ping Wang, Chi-Chun Lo and Leon Smalov

a1 > a2 ∼= a5 ∼= a3 > a4

Step 7. Using the Borda function [18], the scores of all service alternatives as-
sessed by the three decision makers are listed in Table 7.8.

Table 7.8 Synthetic judgment matrix

Airliner Service customers
d1 d2 d3 Borda’s scores

a1 2 2 2 6
a2 3 4 1 8
a3 0 3 1 4
a4 1 0 0 1
a5 2 1 1 4

From Table 7.8, the final ranking order of service alternatives is decided as:

a2 > a1 > a5 ∼= a3 > a4

7.5 Discussion

Although the optimal solution is obtained, two significant issues for debate remain.
First, the normalization process. A normalization of the attributes is not always nec-
essary for solving MADM problems, but it may be essential for some methods,
like Maxmin, simple additive weighting (SAW), ELECTRE, etc., to facilitate the
computational problems inherent in the presence of the distinct scales of the per-
formance rating matrix [17]. The aim of normalization is to obtain a comparable
scale. Obviously, normalization is necessary in the processing of fuzzy data, to rank
the web services compatibily, whose performance rating needs to be located in the
interval [0,1]. In the traditional LINMAP method, users constantly convert from the
distinct scales of ratings to a numerically comparable scale only, where the data of
decision matrix is in nonfuzzy form. For instance, we translate all the ratings into
the interval [−10,10] as in case I for benefit and cost attributes.

Second, a reliable solution. From the solution process of the two cases, one could
note that when the number of attributes exceeds the number of service alternatives,
then it is not easy to yield a reliable solution of weight by the LIMAP. For example,
in case II, three attributes are used for assessing five alternatives that is, i = 5 and
j = 3, then the proposed model can gain a consistent solution when i>j according
to suggestions in [17].

Moreover, it may set w j,δ , intending to stimulate the feasible solutions for ob-
taining a non-trivial solution of the weight of QoS attributes by adjusting δ . The tar-
get of consensus-based weighting is to obtain a compromise solution of weight vec-
tors among items of QoS attributes in the LINMAP method. From the two distinct
cases and trial and error examples, we knew that the optimal solution sometimes

7 Consensus Issues for Service Advertisement and Selection 185

tends towards converging to a single item of weight of QoS attributes, except that
the value of specific attributes are distributed equally or scattered in an average way.

7.6 Conclusion

This work presents a new approach to obtaining a consensual weight of QoS at-
tributes using a fuzzy linear program for QoS-aware service selection, which allows
service consumers to reach consensus on the contents of services, even though they
have different opinions and preferences. In addition, it can effectively alleviate the
differences of QoS characteristics by minimizing the inconsistence measurement in
the WS selection, find the optimal solution of weights of QoS attribute alternatives
as well as the fuzzy positive ideal solution. Future work will focus on the investiga-
tion of other intelligent approaches such as genetic algorithms, simulated annealing
and evolutionary computation in order to seek an efficient solution by improving the
search effectiveness of feasible solutions.

References

1. R. Anane, K.-M. Chao, and Y. Li Hybrid Composition of Web Services and Grid Services.
In Proceedings of 2005 IEEE International Conference on e-Technology, e-Commerce and
e-Service (EEE-05), pages 426–431, 2005.

2. A. Ankolenkar, M. Burstein, J. Hobbs, et al. DAMLS: Web Service Description for the Se-
mantic Web. In Proceedings of the International Semantic Web Conference (ISWC02), LNCS
2342, Springer, (2002).

3. W.-T. Balke and M. Wagner. Cooperative Discovery for User-centered Web Service Provi-
sioning, 2002.

4. T. Berners-Lee. Weaving the Web. Harper San Francisco, 1999.
5. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, 2001
6. J. Borenstein and J. Fox. Semantic Discovery for Web Services. Web Services Journal, 3(4),

2003.
7. K.-M. Chao, M. Younas, C.-C. Lo, and T.-H. Tan. Fuzzy Matchmaking for Web Services. In

Proceedings of the 19th IEEE Conference on Advanced Networks and Information Applica-
tions, IEEE CS, pages 721–726, 2005.

8. S.-H. Chen and C. L. Hwang. Fuzzy Multiple Attribute Decision Making Methods and Ap-
plications. Springer-Verlag, pages 90, 292–323, 1992.

9. C.T. Chen. Extensions of the TOPSIS for Group Decision-Making under Fuzzy Environment.
Fuzzy set and Systems 114:1–9, 2000.

10. W. D. Cook, M. Kress, and L. M. Seiford. A General Framework for Distance-based Consen-
sus in Ordinal Ranking Models. European Journal of Operational Research, 96(2):392–397,
1997.

11. W. D. Cook. Distance-based Consensus Models in Ordinal Preference Ranking. European
Journal of Operational Research 172:369–385, 2006.

12. A. Dan et al. Web Services on Demand: WSLA Driven Automated Management. IBM Systems
Journal, 43:136–158, 2004.

13. E. Herrera-Viedma, F. Herrera, and F. Chiclana. A Consensus Model for Multiperson Deci-
sion Making With Different Preference Structures IEEE Transactions on Systems, Man and
Cybernetics 32:394–402, 2002.

186 Ping Wang, Chi-Chun Lo and Leon Smalov

14. K. Hogg, P. Chilcott, M. Nolan, and B. Srinivasan. An Evaluation of Web Services in the De-
sign of a B2B Application. In Proceedings of the 27th Conference on Australasian Computer
Science, pages 331–340, 2004.

15. C.-L. Huang, K.-M. Chao, and C.-C. Lo. A Moderated Fuzzy Matchmaking for Web Ser-
vices. 2 In Proceedings of the Fifth International Conference on Computer and Information
Technology (CIT05), IEEE CS, pages 1116–1122, 2005.

16. C.-L. Huang, C.-C. Lo, and K.-M. Chao. Service Discovery through Multi-agent Consen-
sus. In Proceedings of IEEE International Workshop on Service-Oriented System Engineering
(SOSE 2005), pages 37–44, 2005.

17. C.L. Hwang and K. Yoon. Multiple Attribute Decision Making: Methods and Applications In
Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, 1981.

18. C.-J. Hwang and M.J. Lin. Group Decision Making under Multiple Criteria: Methods &
Applications. In Lectures notes in economics & mathematical systems, 281:36–45, 1987.

19. C. Jorge and S. Amit P. (Eds.). Semantic Web Services, In Processes and Applications,
Springer, 2006.

20. J. Kacprzyk and M. Fedrizzi. A “soft” measurement of consensus in the setting of partial
(fuzzy) preference. European Journal of Operational Research 34:316–326, 1988.

21. A. Kaufmann and M. M. Gupta. Introduction to Fuzzy Arithmetic Theory and Application
Van Nostrand Reinhold, New York, pages 2–35, 69–72, 1991.

22. M.-R. Koivunen and E. Miller. W3C Semantic Web Activity. In Proceedings of the Semantic
Web, 2001.

23. K. C. Lee and J. H. Jeon, et al. QoS for Web Services: Requirements and Possible Approaches.
W3C Working Group Note, http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/, 2003

24. D. F. Li and J. B. Yang. Fuzzy Linear Programming Technique for Multiattribute Group
Decision Making in Fuzzy Environments. Information Sciences, 158:263–275, 2004.

25. M. Lin, J. Xie, and H. Guo. Solving QoS-Driven Web Service Dynamic Composition as
Fuzzy Constraint Satisfaction. In Proceedings of 2005 IEEE International Conference on
e-Technology, e-Commerce and e-Service (EEE-05), IEEE CS, pages 9–14, 2005.

26. W.-L. Lin, C.-C. Lo, K.-M. Chao, and M. Younas. Fuzzy Consensus on QoS in Web Services
Discovery. In Proceedsings of the 20th International Conference on Advanced Information
Networking and Applications (AINA 2006), pages 791–798, 2006.

27. Y. Liu, H. H. Ngu and L. Zeng. QoS Computation and Policing in Dynamic Web Service
Selection. In Proceedings of 13th Int Conference World Wide Web 2004 pages 65–73, 2004.

28. H. Ludwig, A. Keller, et al. Web Service Level Agreement (WSLA) Language Specification
v1.0. http://www.research.ibm.com/wsla/ WSLASpecV1-20030128.pdf, 2003.

29. A. Mani and A. Nagarajan. Understanding Quality of Service for Web Services. IBM Devel-
oper works, http://www-128.ibm.com/library/ developerworks/ws-quality.html, 2002.

30. D. L. McGuinness and F. Van Harmelen. OWL Web Ontology Language Overview.
W3C World Wide Web Consortium, from http://www.w3.org/TR/2OO3/PR-owl-features-
20031215/, 2003.

31. OWL Services Coalition. OWL-S: Semantic Markup for Web Services, OWL-S v. 1.1. White
Paper. http://www.daml.org/services/owl-s/1.1/, 2004.

32. M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. Importing the Semantic Web in UDDI.
In Proceedings of the International Workshop on Web Services, E-Business, and the Semantic
Web, LNCS Vol. 2512, pages 225–236, 2002.

33. S. Ran A Model for Web Services Discovery with QoS. ACM SIGecom Exchanges 4:1–10,
2003.

34. M. Reformat, D.-M. Li, and C. Ly. Approximate reasoning and Semantic Web Services. In
Proceedings of the IEEE Annual Meeting of the Fuzzy Information (NAFIPS’04), pages 413–
418, 2004.

35. A. Sahai, A. Durante, and V. Machiraju. Towards Automated SLA Management for Web
Services. http://www.hpl.hp.com/techreports/2001/HPL-2001-310 R1.pdf, 2001.

36. E. Sirin, B. Parsia, and J. Hendler. Filtering and Selecting Semantic Web Services with Inter-
active Composition Techniques. IEEE Intelligent Systems, 42–49, 2004.

7 Consensus Issues for Service Advertisement and Selection 187

37. SOAP Protocol. http://www.w3.org/2000/xp/Group.
38. V. Srinivasan and A. D. Shocker. Linear Programming Techniques for Multidimensional Anal-

ysis of Preference. Psychometrika, 38:337–369, 1973.
39. UDDI. The UDDI Technical White Paper. http://www.uddi.org, 2002.
40. P. Wang, K.-M. Chao, C.-C. Lo, C.-L. Huang, and Y. Li. A Fuzzy Model for Selection of

QoS-Aware Web Services. In Proceedings of ICEBE 2006, pages 585–593, 2006.
41. M. Zeleny. Multiple Attributes Decision Making Mcgraw-Hill, 1982.
42. L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z. Sheng. Quality Driven Web

Service Composition. In Proceedings of WWW2003, pages 411–421, 2003.
43. L. Zeng, B. Benatallah, A. H. H Ngu, M. Dumas, J. Kalagnanam, and H Chang. Qos-Aware

Middleware for Web Service Composition. IEEE Transactions on Software Engineering
30:311–327, 2004.

44. C. Zhou, L.T. Chin, and B.S. Lee. DAML-QoS Ontology for Web Services. In International
Conference on Web Services (ICWS 2004), pages 472–479, 2004.

45. C. Zhou, L.-T. Chia, and B-S Lee. Semantics in Service Discovery and QoS measurement. IT
Professional, 7: 29–34, 2005.

Chapter 8
Trust and Reputation

Sarah N. Lim Choi Keung and Nathan Griffiths

Abstract Trust and reputation have become standard approaches for supporting
the management of interactions in distributed environments. Several alternative ap-
proaches have been proposed that take a wide range of approaches, including socio-
cognitive, computational, and reputational mechanisms. In this chapter we introduce
the various approaches to trust and reputation, and discuss how they relate to agents
in a service-oriented computing context.

8.1 Introduction

In this chapter we consider service-oriented computing (SOC) from an agent per-
spective. Service advertisement, discovery and selection can be seen as processes
carried out by agents. The agent view of SOC holds for the various settings in which
SOC is used, including peer-to-peer systems, Grid computing and e-commerce.
Trust and reputation are useful in all these settings. As we progress from simple
to complex settings the issues change, and we need more complex trust and reputa-
tion mechanisms.

Sarah N. Lim Choi Keung
Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
e-mail: S.N.Lim.Choi.Keung@dcs.warwick.ac.uk

Nathan Griffiths
Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
e-mail: nathan@dcs.warwick.ac.uk

N. Griffiths, K.-M. Chao (eds.), Agent-Based Service-Oriented Computing, 189
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-041-0 8, c© Springer-Verlag London Limited 2010

190 Sarah N. Lim Choi Keung and Nathan Griffiths

8.2 Trust and Reputation

Trust has gained interest with the development of Internet and electronic commerce,
due to its importance for security, privacy and also in maintaining customer loy-
alty [18]. The notion of trust has then been explored in other areas, including multi-
agent systems (MAS). In open distributed MAS, autonomous agents want to achieve
their own goals, but they often need to interact with other agents in their environment
to succeed. For agents to conduct successful interactions and behave optimally over
the long term, they require information about important aspects of agent behaviour
relevant to decision making. An agent needs to know which interaction partners to
trust and how to select them. Additionally, during interactions, an agent wants to
be able to control its own behaviour, in deciding whether to provide reputation in-
formation to others, making inferences from the information obtained from others,
and from the outcomes of previous interactions with those interaction partners. Con-
sequently, the adoption of the concept of trust to support cooperation in MAS has
led to an increasing amount of research in the area of trust and reputation models.
These models take into consideration many different characteristics of the agents
themselves and the environment in which they evolve.

8.2.1 Trust

The concept of trust is defined as a measurable level of risk, through which an agent
X assesses the likelihood that another agent Y will successfully perform a particular
action, both before X can monitor such action and in a context in which it affects
its own actions [27]. We view the notion of trust to represent the assessment of
risk when an agent directly interacts with another agent and thus trust is based on its
own experience. Research in trust has long been focused on the positive side of trust.
However, as indicated by Marsh [49], negative trust, distrust is also a motivational
force which needs to be considered. Similarly, Marsh introduces the concepts of
untrust and mistrust that lie within the continuum between trust and distrust. Untrust
is a measure of how little an agent is trusted; it is a positive value but insufficient for
cooperation to take place between two agents. Next, distrust is regarded as negative
trust and it is a measure of how much an agent believes another agent will work
against its interests in a given situation. Finally, mistrust is defined as misplaced
trust, a former trust that has been betrayed or healed.

Research in trust in the agents field has brought about many different approaches.
Castelfranchi and Falcone [16, 24] view trust as composed of beliefs, such as com-
petence, disposition, dependence and fulfilment. The approach by Marsh [47] looks
at basic, general and situational trust, which considers trust with regards to the agent
itself, other agents and particular contexts respectively. Griffiths [29] introduces the
multi-dimensional trust (MDT) approach, which allows agents to model the trust-
worthiness of others according to various criteria. The approach decomposes be-
liefs about trust, as viewed by Castelfranchi and Falcone, according to the different

8 Trust and Reputation 191

dimensions of an interaction. Agents can model trust along any number of dimen-
sions, according to their preferences and motivations. For the purposes of illustrating
MDT, the author uses four dimensions of success, cost, timeliness and quality.

8.2.2 Reputation

Reputation, a closely related notion to trust, is defined as the information received
from third parties by agents about the behaviour of their partners, and this can be
used to decide how they are going to behave themselves [14]. Due to its impor-
tance in social and commercial relations, the study and modelling of reputation
has attracted a lot of interest from researchers in different fields: sociology, eco-
nomics [42], psychology and computer science, particularly, the areas of multi-agent
systems and online communities. We consider reputation to include recommenda-
tions from agents who have directly interacted with the agents we are interested in,
as well as indirect recommendations, based on the propagation of reputation among
agents.

8.2.3 The Multiple Approaches to Trust and Reputation Models

The interest in trust and reputation has resulted in many models being developed
for the implementation and management of these notions in multi-agent systems.
Researchers have adopted approaches from different disciplines to support the de-
velopment of their models. The notions of trust and reputation have their roots in
sociology, economics and biology and have been applied in domains as diverse as
Game Theory, business ethics and politics. Hence, to model them in agent-based
systems, techniques from many of the mentioned fields have been used. The main
approaches are socio-cognitive, numerical and reputational views.

8.2.3.1 Socio-Cognitive View

The term cognitive is defined in the Cambridge Dictionaries Online as “connected
with thinking or conscious mental processes” [15]. Thus, models following the
socio-cognitive approach are based on underlying beliefs about a society and its
members and trust is a function of these beliefs [22]. Additionally, this approach
involves the mental states of an agent in relying on another agent and also the con-
sequences of the actual decision of reliance [24]. It is important to understand the
mental ingredients of trust in order to explain and predict the perception and deci-
sion about an agent’s risk. A cognitive analysis of trust also forms the base to the
notions of reputation, deception, persuasion and trust signs [17].

192 Sarah N. Lim Choi Keung and Nathan Griffiths

In the literature, only a few trust and reputation models are based on the socio-
cognitive view. The main model dealing with cognitive approach to trust is that of
Castelfranchi and Falcone [16, 24], in which they define the different beliefs that
an agent must hold to build up trust. The beliefs are the properties that an agent
expects another agent to have in order to be suitable to be relied on. Other models
use the social aspect of MAS to closely represent interactions in real situations.
Mezzetti [50] stresses the ideas of trust variation with time and context and the
modelling of the properties that cause a reputation value to be low or high.

8.2.3.2 Computational View

In this view, trust and reputation are not reflective of the mental state of an agent, but
use numbers and mathematical techniques to represent the trust value, in the form
of probabilities and numerical aggregations and strategies. Within this view, models
can be roughly categorised as decision-theoretical or game-theoretical.

Decision-Theoretical View

Classical decision theory consists of a set of mathematical techniques for making
decisions about which action to take when the outcomes of various actions are not
known. Probability theory is a subset of these techniques, where some aspect of
the current state of the environment is captured as a probability. Marsh [47] repre-
sents trust as a probability between −1 and +1. All the three aspects of trust: basic,
general and situational lie within this range and he proposes a formula to calculate
the situational trust. Mui et al. [51] also propose a mathematical model based on
probability to show the link between trust, reputation and reciprocation. Models by
Witkowski et al. [75, 76] and Sen et al. [65, 66] also fall into this category.

Other models place trust values and agent behaviour into categories to make them
more meaningful in their utilisation. Fuzzy set theory is a means of specifying how
well an object satisfies a vague description [57]. Zadeh [81] defines a fuzzy set to be
a class of objects with a continuum of grades of membership. Many objects in the
real world do not have precisely defined criteria for membership and although they
are ambiguous, they are important in human thinking, pattern recognition, commu-
nication and abstraction. Fuzzy logic has emerged from fuzzy sets and is a method
for reasoning with logical expressions describing membership in fuzzy sets. It al-
lows intermediate values to be defined between conventional evaluations, such as
yes or no, late or on time, in terms of the degree of truth. Notions like rather warm
or slightly late can be formulated mathematically and processed by computers in an
attempt to more accurately represent the way systems behave in the real world.

Wu and Sun [77] classifies a seller’s behaviour in a bidding environment as Ran-
dom, Nice, Tit-for-Tat and Nasty, where each strategy outlines the way the seller be-
haves in an interaction. Abdul-Rahman and Hailes [1] also use classification in the
case of trust and for the adjustment of experiences. Trustworthiness is categorised

8 Trust and Reputation 193

into four categories, from Very Untrustworthy to Very Trustworthy, while experi-
ences also exist in four types, from Very Bad to very Good.

The fuzzy approach is also adopted by Falcone et al. [25] for an implementa-
tion of the socio-cognitive model of trust they have developed [16, 24]. Fuzzy logic
has been chosen for their model because trust is a graded phenomenon that can be
difficult to estimate experimentally. The implementation is based on Fuzzy Cogni-
tive Maps (FCM) [41], that allow the value of truthfulness to be computed from
the belief sources. An FCM is well suited for representing a dynamic system with
cause-effect relations, where nodes represent the causal concepts of belief sources
for instance, and edges represent the causal power of one node over another. Other
work using fuzzy logic includes that of Griffiths et al. [31], used in the context of
Peer-to-Peer (P2P) systems to select interaction partners.

Game-Theoretical View

Within the computational or numerical models, there is a sub-category of models
and mechanisms which are based on Game Theory, thus making use of utility func-
tions and strategies. Game theory originated with the work of John von Newmann
and Oscar Morgenstern [71], where they define a game as any interaction between
agents that is governed by a set of rules specifying the possible moves for each par-
ticipant and a set of outcomes for each possible combination of moves. A theory
of games promises to apply to almost any social interaction where individuals have
some understanding of how the outcome for one is affected not only by its own
actions but also by the actions of others [34].

The Prisoners’ Dilemma (PD) problem in game theory was described by Al-
bert Tucker while addressing an audience of psychologists, to explain the puzzles
devised by Merrill Flood and Melvin Dresher in 1950, as part of the Rand Corpo-
ration’s investigations into game theory due to its possible applications to global
nuclear strategy [43]. As illustrated by Tucker, two prisoners are held for the rob-
bery of a bank. They are placed in separate cells and the prosecutor makes an offer
to each of them while explaining what is likely to happen. Table 8.1 summarises the
options and payoffs proposed to the prisoners, where the number pair represents the
number of years in prison for prisoners A and B respectively. Cooperation means
staying quiet and not giving the prosecution information, i.e. cooperating with the
other prisoner. Defection means assisting the prosecution with information thus de-
fecting with respect to the other prisoner.

Table 8.1 Options and payoffs

Prisoner A cooperates Prisoner A defects
Prisoner B cooperates 1,1 0,5
Prisoner B defects 5,0 3,3

194 Sarah N. Lim Choi Keung and Nathan Griffiths

There is enough evidence to convict each of a minor offence, but there is not
enough evidence to convict either of them of a major crime unless one of them
defects, and thus acts as an informer. If both defect (i.e., confess), they will each be
given three years in prison, due to their being no doubt over their guilt. If only one
of them confesses, that prisoner will be freed and used as a witness against the other,
who will spend five years in prison. If both cooperate and stay quiet, each will be
convicted of the minor offence and spend one year in prison. Given the assumption
that each prisoner cares only to avoid spending time in prison, the dominant strategy
of each will be to defect. Yet, it yields a paradoxical result of making each worse off
than they might have been had they each chosen to cooperate and stay quiet and so
to spend only one year in prison [34].

Tit-for-Tat is a fairly efficient and very simple strategy in Game Theory for the
iterated Prisoners’ Dilemma. The strategy is one of cooperating on the first move
and then doing whatever the other agent did on the preceding move. It is thus a
strategy of cooperation based on reciprocity [9].

TrustNet [62, 63] uses an extension to the Prisoner’s Dilemma for the selection
of interaction partners. Wu and Sun’s [77] technique makes use of the Tit-for-Tat
strategy for the behaviour of its seller agent.

8.2.3.3 Reputational View

In the evaluation of trustworthiness, many models make use of reputation, in the
form of recommendations from other agents. Direct interactions with the agents of
interest are not always available as sources of information, especially when there
have been no previous interactions or past interactions have occurred a long time
ago. Many models take into account reputation as a complement of trust in evalu-
ating trustworthiness. Models by Abdul-Rahman and Hailes [1], Regret [60], Trust-
Net [62, 63], FIRE [35] and TRAVOS [70] all make use of reputation.

The reputation mechanism by Braynov and Sandholm [12, 13] and FIRE use a
form of reputation mechanism used by an agent for itself. It consists of revealing
their reputation value to other agents with whom they want to interact. Most of the
models mentioned use direct recommendations, that is, an agent requests the opinion
of other agents who have interacted with the agent of interest. Indirect recommen-
dations, that is the opinions of other agents about an agent of interest even if they
have not themselves interacted with it, are used by Regret and FIRE. The trust-based
recommendation system proposed by Water et al. [73] also makes use of direct and
indirect recommendations from the agents’ neighbours in decision making.

8.2.4 Review of Trust and Reputation Models

A selection of trust and reputation models from the different approaches mentioned
are reviewed in this section.

8 Trust and Reputation 195

8.2.4.1 Castelfranchi and Falcone

The model proposed by Castelfranchi and Falcone [16, 24] is general and domain-
independent, and is based on the mental state of trust. It suggests that an agent can
trust another if it has a suitable set of goals and beliefs. Trust is defined as com-
prising of three elements: “core trust”, which is a simple evaluation of the trustee,
“reliance”, the decision to rely on the trustee and “delegation”, the actual action
of trusting the trustee. To build trust in another agent Y , an agent X requires to
have certain beliefs corresponding to these three components of trust. The cognitive
analysis of trust is fundamental in the distinction between the internal and external
attribution, which predicts different strategies for building trust. Internal attribution
concerns the characteristics of willingness, persistence, engagement and compe-
tence, while external attribution involves the conditions of the environment, such as
opportunities, resources and interference.

The trusting agent X with core trust must have two basic beliefs:

• Competence belief is a positive evaluation of agent Y ’s usefulness in producing
the expected result.

• Disposition belief, when X believes that Y will do the task that is required.

For core trust and reliance to exist, agent X must have an additional belief to
support the previous two:

• Dependence belief is necessary for the X to rely on Y to do a task, out of lack of
alternatives or as the more advantageous option in comparison to not relying on
Y .

Supported by the previous beliefs, another important belief arises:

• Fulfilment belief drives agent X to think that the goal will be pursued and
achieved.

Delegation, the last element of trust, can occur in two ways: weak or strong
delegation. In weak delegation, there is no agreement and no bilateral awareness of
the delegation, while in strong delegation, the trustee Y is aware of the truster X’s
intention to exploit its action.

The following beliefs apply in weak delegation, in addition to the other beliefs
previously mentioned:

• Willingness belief models Y ’s mind in its intention to work towards a certain
goal.

• Persistence belief where X believes that Y is serious in its intention in doing a
task.

• Self-confidence belief that Y knows that it can do the task.

In addition to the beliefs in weak delegation, strong delegation requires one more
belief:

• Motivation belief; X believes that Y has some motives to help adopt its goal.

196 Sarah N. Lim Choi Keung and Nathan Griffiths

The authors present the concept of reciprocal trust [23], which is a mutual un-
derstanding and communication between two agents that they will help each other,
at different points in time. They claim that the reciprocal trust is different to bilat-
eral trust, which occurs between two agents at the same time, but the agents are
not explicitly aware of this. They argue that the opposite is also true: agent X’s
distrust in agent Y induces distrust in Y towards X . Another concept touched upon
is that of the diffusion of trust. The authors suggest that the trust agent X has in
agent Y can influence agent Z to trust Y . The mechanisms suggested for this dif-
fusion are pseudo-transitivity and conformism. Pseudo-transitivity depends on the
cognitive conditions that are present and diffusion of trust will most likely occur if
the agent whose trust decisions are followed is a figure of authority in the domain.
Conformism, on the other hand, is not based on any special expertise and is based
on copying another agent’s actions or decisions.

In their socio-cognitive model, the authors do not make any reference to the pos-
sibility of having dishonest agents (with respect to their provision of recommenda-
tions) or the potential problem of collusion in the system. An overall framework of
trust using the various concepts introduced has also not been fully defined.

8.2.4.2 SIR (Socially-Inspired Reputation Model)

Mezzetti [50] proposes a reputation model with a social nature. The model intro-
duces a jurisdiction sub-context, implying that an agent having authority in a par-
ticular context or situation, can be trusted in providing reliable recommendations
about other agents within that context. The strength of the trust binding between
two agents is represented as real value from 0 to 1, where 0 means the absence of
trust, while 1 means full trust. These trust degrees serve several functions, namely in
deciding whether or not to interact with another agent, and to determine the security
mechanisms that are required for the interaction to take place.

Trust is taken to be dynamic in both time and interaction, and this can impact on
the trust degree. Moreover, the model considers only the more recent information.
This is incorporated into the model as a decay rate for the trust degrees, with the
rate varying depending on the level of risk associated with the context. The social
reputation model updates trust and reputation values dynamically as a result of the
interaction outcomes. Both direct and indirect trust through recommendations are
expressed in the model. The model also utilises an attribute to incorporate the prop-
erty that is relevant within the context. For instance, a low reputation value of 0.2
does not allow an agent to know the cause of unreliability. Hence, with an attribute
representing the property of low availability of service, for example, the cause of
unreliability is more comprehensible.

SIR takes into account the social characteristics in a multi-agent system. It incor-
porates different attributes to improve the expressiveness of the model. For example,
an attribute for defining the effective property in a particular context helps to under-
stand the reputation value of an agent. The model however, does not handle the
possibility of having dishonest agents and ways to deal with them.

8 Trust and Reputation 197

8.2.4.3 Marsh’s Formalism

In the trust model proposed by Marsh [47], trust is viewed as three different aspects,
as a result of direct interactions with other agents:

• Basic trust, which is derived from all the past experiences of an agent. This rep-
resents the trusting disposition of the agent itself. The basic trust of an agent x is
denoted as Tx. This value is in the range [−1,1), that is, −1 ≤ Tx < +1, where
good experiences increase the disposition of the agent to trust.

• General trust is the trust an agent has in another agent, irrespective of the situ-
ation in which they are found. This is denoted as Tx(y) and the range of general
trust values is [−1,1), that is, −1 ≤ Tx(y) < +1, where −1 is negative trust or
complete distrust and +1 is complete trust, while 0 means no trust.

• Situational trust is the amount of trust an agent has in another agent in a spe-
cific situation. Thus, the notation for “x trusts y in situation α” is Tx(y,α). The
importance and utility of the situation, together with the general trust value, all
determine the situational trust value, which is also in the interval [−1,1).

The understanding of trust and the trust values obtained allows agents to make
more informed decisions about which agents are trustworthy and who to cooperate
with. Based on the situation, its importance and risk involved, the competence of
the potential interaction partner is thus assessed. The basic formula to calculate
situational trust is

Tx(y,α)t = Ux(α)t × Ix(α)t × T̂x(y)t

where Ux(α)t represents the utility x gains from the situation α , Ix(α)t is the im-
portance of the situation α for agent x and T̂x(y)t is an estimate of the general trust
after taking into account all the relevant data with respect to situational trust in past
interactions. In order to calculate this estimate, the author proposes three statisti-
cal methods: the mean, the maximum and the minimum. These are translated into
realism, optimism and pessimism respectively.

These notions of agent dispositions [47,48] give an indication of how agents will
act in a given situation. Along a continuum, agents can range from optimists to pes-
simists. Optimists are those agents who look for the best in those with whom they
interact, they are forgiving and their trust in another does not decrease by much,
even after being exploited by another agent. On the other extreme, pessimists see
the worst in the agents they interact with and are always in doubt of the resulting
situation. Even a small exploitation will result in drastic loss in trust, while con-
tinued cooperative behaviour will not greatly increase trust. In between these two
extremes lie the realists, acting as a control point in studying the agent behaviours.

The formalism proposed also takes into account the notion of reciprocation,
where favours are returned to those who offered them. Reciprocation is used to
modify trust; if an agent x accepts help from another agent y, x’s trust in y is likely
to increase, while if y defects, x’s trust in y is likely to decrease.

Marsh’s formalism does not model reputation and thus does not consider third
party recommendations in the evaluation of an agent’s trustworthiness. This may

198 Sarah N. Lim Choi Keung and Nathan Griffiths

limit the amount of information for trust evaluation in cases where there is insuffi-
cient or no direct interactions with the agents of interest. The author also does not
specifically cater for the trust evaluation of new entrants who have have not inter-
acted before.

Abdul-Rahman and Hailes [1] observe that Marsh’s model incorporates too many
aspects of social trust and the large number of variables considered make the model
large and complex. Furthermore, they consider the notions of risk and competence to
be abstract and thus difficult to represent as numbers, especially continuous values.

8.2.4.4 Ntropi

Abdul-Rahman and Hailes [1] propose a trust and reputation model, which is ap-
plicable to virtual communities. It is a numerical model with degrees of trust and
is based on social characteristics and reputation. Both direct experiences and rec-
ommendations are used to form a trust opinion. Many properties of social trust are
supported, as follows.

• Positive and negative degrees of belief are supported through a four-value scale.
• Prior experiences are taken into account so that agents can identify similar expe-

riences.
• Reputational information is exchanged among agents though recommendations.
• Non-transitivity of trust is considered and all the evaluations of recommendations

take into account their source.
• Subjectivity of trust represents the varying perceptions of different observers with

regard to the same agent’s trustworthiness.
• Dynamism allows the level of trust in another agent to increase or decrease, ac-

cording to the experiences and recommendations obtained by the trusting agent.
• Support for Interpersonal Trust, which is the direct and contextual trust an agent

has for another agent.
• Context dependence of trust is not clearly described by the authors.

The term “belief” is used in a different sense to that of Castelfranchi [16]. The
model deals with beliefs about trustworthiness, without considering the risk, utility,
and beliefs about motivation. Here, the belief that an agent is trustworthy in giv-
ing a recommendation is taken into account. Four degrees of direct trust are used:
“Very Trustworthy”, “Trustworthy”, “Untrustworthy” and “Very Untrustworthy”.
A similar rating is used for experience adjustments: “Very Good”, “Good”, “Bad”
and “Very Bad”. Using evaluations of direct trust, recommender trust, semantic dis-
tance and the update of experiences, all these contribute to computing the final trust
degree. Semantic distance is used as a similarity measure between an agent X’s
perception and another agent Y ’s recommendation. If there are differences, X will
adjust future recommendations from Y accordingly. The model is thus intended to
obtain trust on the information given by recommenders. Direct experiences are used
for comparison and adjustment [61].

8 Trust and Reputation 199

The authors recognise that the model is not recommended for agents without
any prior experience nor trusted recommenders. This is due to the high level of
uncertainty faced by new entrants who do not know whom to trust or distrust and
they can thus become the victims of malevolent agents. With this bootstrapping
limitation, the model also does not address the situations when agents lie or collude.
It is also not possible to differentiate between truthful and lying agents on the basis
that they have different reasoning mechanisms [61].

In addition, the authors concede that some aspects of their models, notably the
trust degrees and the weightings used are of ad hoc nature and do not represent these
metrics concretely.

8.2.4.5 Regret

The Regret system proposed by Sabater and Sierra [58–60] is a trust and reputation
mechanism based on the following three dimensions of reputation.

• Individual dimension models the direct interactions between two agents. It is
considered to be the most reliable dimension of reputation. From an interaction
between two agents, the outcome consists of an initial contract of a course of
action and the result of the actions taken, and of an initial contract to fix the
terms and conditions of the transaction and the values of these terms. The set
of outcomes stored in a database is used together with a selection of issues to
choose the right subset of outcomes when calculating an outcome reputation.
In this calculation, a weighted mean of the outcomes is used while giving more
relevance to more recent outcomes.

• Social dimension looks at indirect interactions, especially when information from
direct interaction is not available. Three types of social reputation are used in the
regret system.

– Witness reputation is based on information gathered from other agents who
have interacted with the agent of interest. There is the risk of false information
being provided in this case.

– Neighbourhood reputation considers links that are created through interac-
tions, as the behaviour of neighbours can give some indication about the pos-
sible behaviour of the target agent.

– System reputation makes use of common knowledge about the role played by
the target agent in society.

• Ontological dimension models a combination of reputational aspects relevant to
a particular situation. The properties give more information into the reasons why
a reputation is high or low. For example, the calculation of reputation using the
ontological dimension can consider two dimensions:the reputation of an agent in
delivering late, as well as that in over-pricing.

Regret also consists of a credibility module to evaluate the truthfulness of in-
formation received from third party agents. It also makes use of social network

200 Sarah N. Lim Choi Keung and Nathan Griffiths

analysis to improve the knowledge about the surrounding society, especially in the
absence of direct experiences. Social network analysis is described by Scott [64] as
having emerged as a set of methods for the analysis of social structures, methods
that specifically allow an investigation of the relational aspects of these structures.
Moreover, the Regret system provides a degree of reliability for the trust, reputation
and credibility values, that help an agent to decide whether it is sensible or not to
use them in its decision-making process. This model is based on the agent group
to which an individual belongs. In looking at agent groups, the model implies that
information comes from trustful agents, who would not deliberately manipulate in-
formation. However, the model does not consider agents that can belong to more
than one group at a time, where there may be potential issues of conflict of group
association and competition.

The authors also do not specifically describe how to bootstrap the model and how
to deal with new agents who have never interacted before. The Regret system makes
use of up to three dimensions in calculating the reputation of agents. The authors
however do not specify how the different reputation evaluations from the different
dimensions can be used together.

8.2.4.6 TrustNet

Schillo et al. [63] present a mechanism for trust evaluation that will allow an agent
to cope in environments where both selfish and cooperative agents evolve. The ap-
proach makes use of information from direct interactions, as well as from third party
observations. In relying on recommendations, there is the possibility of noise in the
information obtained, due to lying and biased agents. In their approach, the authors
deal with unreliable witnesses, by making an estimation of how often witnesses have
lied.

In order to evaluate trust, the model uses an extension of the Prisoner’s Dilemma
game, enhanced with a partner selection phase [62]. The disclosed prisoner’s dilemma
with partner selection consists of the following five steps.

• Each player agent pays a stake out of the limited amount of points it has.
• Pairs of agents are determined by negotiation and they declare their intentions.

Agents have the possibility to deceive others.
• The prisoner’s dilemma game is played while considering the previously declared

intentions.
• The results are published, each agent receives only the results of the players in

its neighbourhood.
• Agents receive prizes for their moves.

With this technique, an agent which chooses to diverge from its announced move
will be noticed by other agents in its neighbourhood. Even though this agent may
seem to gain from abusing the other agents, after a number of interactions, this agent
will no longer be trusted and will be excluded from the game.

8 Trust and Reputation 201

The model is, however, designed for specific simulation settings. Moreover, it
fails to frame direct interactions within the social setting [56].

8.2.4.7 Mui et al.

The model proposed by Mui et al. [51] has four main characteristics. Firstly, the
difference between trust and reputation is explicitly made. Secondly, reputation is
a quantity relative to the particular social network of the evaluating agent and its
encounter history. Thus, reputation is defined as a “perception that an agent cre-
ates through past actions about its intentions and norms”. The next characteristic
concerns trust, defined as “a subjective expectation an agent has about another’s fu-
ture behaviour based on the history of their encounters”. Trust is a dyadic quantity
between the truster and the trustee which can be inferred from the reputation data
of the trustee. Lastly, a probabilistic mechanism is proposed for inference among
trust, reputation and the level of reciprocity, to identify a threshold for the number
of encounters needed by an agent to achieve a reliable measure of another’s trust-
worthiness.

Reciprocity is closely linked to trust and reputation and suggests a mutual ex-
change of deeds. An increase in reputation expects an increase in trust. An increase
in trust in turn expects an increase in reciprocation, and an increase in reciproca-
tion expects an increase in reputation. The model handles the case of when two
agents have no previous encounters by introducing an ignorance assumption called
the Complete Stranger Prior Assumption.

The model models only dyadic encounters, those involving only two agents.
Other choices made in the model include the assumption that the environment in
which agents evolve is static, where no new agents join or leave. Moreover, the
binary actions of cooperation or defection restrict the action space of the agents.

8.2.4.8 Braynov and Sandholm

The approach adopted by Braynov and Sandholm [12] targets the context of non-
enforceable contracts between two agents, a buyer and a seller. They show that to
maximise gains, the seller should make a precise estimation of the trustworthiness
of the buyer. Underestimation of the buyer’s trustworthiness leads to an insufficient
allocation of resources and thus causes losses to both agents. To solve this problem,
the authors demonstrate that it is better for the buyer to reveal its actual level of
trustworthiness to the seller.

In their later work [13], the authors propose trust revelation as the solution to the
problem of learning and estimating trustworthiness. Trust assessment encounters
many obstacles, as follows.

• Trust learning requires long-term interactions and is costly for the learning agent
who risks being abused, in terms of information search costs and the costs of
obtaining guarantees from trusted third parties, for example.

202 Sarah N. Lim Choi Keung and Nathan Griffiths

• Trust learning is typically gradual but can be destroyed instantly by misfortune
or a mistake. Since trust-destroying events tend to be more noticeable, it can be
quite difficult and lengthy for trust to be re-built.

• Trust learning seldom produces complete and accurate trustworthiness value es-
timates. This can be a result of inaccurate beliefs which cause an agent not to
interact with another agent which is completely trustworthy.

• The trust learning mechanism can fail, as it is very likely that a learning agent
will encounter a run of bad encounters. This will lower the estimates made by
the agent and can discourage it from making any more encounters for learning.

• Trust leaning may be impossible in many cases, for example Internet transactions
with total strangers, for whom there is no history of past interactions.

The trust revelation mechanism involves the agents revealing their true level of
trustworthiness at the beginning of a transaction, even if they are untrustworthy.
This mechanism works on the assumption that the trustee depends on the truster
by a parameter, which will make it reveal its trustworthiness. It is suggested that
honest reporting informs the other agents about the risks involved so that they can
form realistic expectations of the outcomes. Moreover, the mechanism solves the
problem of inaccuracies of estimates as the actual values are used, thereby possibly
reducing the cost of trust management.

This approach is similar to the concept of certified reputation in FIRE [35], where
the agent reveals its trustworthiness as viewed by other agents who have interacted
with it. However, the model only uses this mechanism before interaction, which can
be problematic for new agents who have not interacted before.

8.2.4.9 Wu and Sun

Wu and Sun [77] propose a computational approach to explore the emergence of
trust between agents in a multi-agent bidding setting. In their work, a seller can
use four strategies: Random, Nice, Tit-for-Tat and Nasty. Each of these strategies
have been defined to reflect the type of behaviour adopted. The findings suggest
that interactions in a friendly climate do not necessarily ensure cooperation. Here, a
friendly climate is taken to mean where the sellers are using the Nice strategy. This
approach strictly deals with cooperation between self-interested parties and has also
not considered the utility loss during cooperation, which occurs in the short run [56].

The authors adopt the use of the four strategies: Random, Nice, Tit-for-Tat and
Nasty to describe the behaviour of the seller. However, these strategies are only
described using an example of price bidding with numbers and equations and have
not been explained in a more generalised terms to clearly convey the boundaries of
the different strategies.

8 Trust and Reputation 203

8.2.4.10 Witkowski et al.

In their approach, Witkowski et al. [75, 76] focus on direct experiences between
agents for obtaining information on trust, called “objective trust” by the authors.
They use a trading scenario to test and evaluate the objective trust-based agents. The
calculation of trust is simplified through equations that deal with measurable quanti-
ties of bandwidth allocation and bandwidth use. The trust functions are different for
two types of agents, that is, consumers and suppliers. From the experiments carried
out, it is shown that the objective trust-based agents tend to form strong partnerships
rapidly and these partnerships become more important as the demand and supply for
the commodity becomes mismatched. When demand exceeds supply, only the more
successful partnerships are sustained, with some customers failing to develop rela-
tionships with a sufficient number of suppliers to meet their needs. When supply
exceeds demand, less trusted supplier agents are discarded by trusted customers
first.

The evaluation of trust in this approach is only based on an agent’s direct per-
ception of its opponent’s reliability. Thus, problems arise for first time interactions
where there is no history to analyse. In this sense, the opinions of third parties can
be useful in helping to reinforce the objective trust obtained by the agent.

The approach does not take into account the time dimension when working with
the trust value. Therefore, there seems to be no indication of the use of the history
of interactions in terms of whether more recent interactions have more weight than
older ones, for example.

8.2.4.11 Sen et al.

Sen [65] proposes a probabilistic reciprocal mechanism to generate cooperative be-
haviour among self-interested agents. Reciprocity involves a predictive mechanism,
such that an agent who helps another agent will expect to get benefit from the latter
in the future. The probabilistic scheme used is different from a simple deterministic
Tit-for-Tat strategy in that an agent may decide to help another agent even if the
latter has refused to help it previously. The reciprocative agent uses the balance of
costs and savings to stochastically decide to accept a given request for cooperation.
From the experiments conducted, it has been shown that agents can use reciprocal
behaviour to adapt to the environment and improve their individual performance. In
the long run, it is better for agents to be reciprocative as their performance is better
than that of selfish agents.

The line of work described above, however, assumes that agents have fixed be-
haviours. More realistically, agents should be able to change their behaviours as ap-
propriate, based on observed performance. Research by Sen and Dutta [66] explores
this. Instead of working in groups of agents having up to two behaviour types, the
authors experimented with mixed groups of selfish, reciprocative and philanthropic
agents (who always help when asked). Different variants of these behaviours have
been used, as follows.

204 Sarah N. Lim Choi Keung and Nathan Griffiths

• Believing reciprocative agents use the balances reported by other agents, together
with their own when deciding on whether to help or not. Agents of this variant
can quickly identify and shun exploitative agents.

• Earned-trust based reciprocative agents consider only the balances of those
agents with whom they themselves have favourable balances, when they eval-
uate a request to help.

• Individual lying selfish agents reveal false impressions about other helpful agents
to ruin their reputation.

• Collaborative lying selfish agents tarnish the reputation of helpful agents and also
collaboratively boost that of other selfish agents.

Experimental results show that this work corroborates with Sen’s previous work
and improves it further by making the behaviour of the agents adaptive to more
closely represent a more realistic model.

This model does not, however, capture the dynamics of the evolution of an agent
population and the authors plan to incorporate a method to predict the behavioural
composition of the agent population over time.

8.2.4.12 SPORAS and HISTOS

Zacharia et al. [79, 80] believe that online communities have specific problems
which must be addressed by reputation mechanisms for these domains. In online
communities, it is relatively easy for agents to change their identity.

SPORAS is a reputation mechanism for loosely connected online communities.
In this system the trusting agent bases its opinion of the reputation of its interac-
tion partner on the feedback the latter gives on the trustworthiness of their latest
transaction. Only the most recent ratings are stored for agents who have repeated
interactions. A new user will have the minimum reputation which is gradually built
up as the agent interacts with others. However unreliable an agent may be, its repu-
tation value will nevertheless be higher than that of a new agent. With this strategy,
a user is always worse off when it switches identities.

While SPORAS provides a global reputation value to each agent in the online
community, HISTOS is a more sophisticated approach which takes into consider-
ation information about its peers when available. Agents in this system rely more
on recommendations given by agents they trust than those given by agents that they
have never interacted with previously. HISTOS builds a social network from the
pairwise ratings it has previously obtained. This is represented as a directed graph
with the nodes representing the agents and the weighted edges representing the most
recent reputation rating given by one agent to another. The transitive trust relation-
ships are thus applied where there are directed paths between two agents.

8 Trust and Reputation 205

8.2.4.13 Griffiths and Luck

Griffiths and Luck [32] consider an extension to a BDI agent architecture, partic-
ularly to enhance the process of plan selection. BDI agents are based around their
beliefs, about themselves and others in their environment, their desires of what they
want to achieve, and their intentions, made up of actions and subgoals which are rep-
resented as adopted plans. Cooperation among agents takes the form of interactions
with others and a plan can consist of the following three types of actions.

• Individual actions are those performed by an agent, without the help of any other
agent. They can be performed by the owner of the plan or by another agent on its
behalf.

• Joint actions are made up of individual actions that must be performed together
by a group of agents, such that each individual action contributes to the joint
action.

• Concurrent actions are parallel actions performed by different agents, where no
synchronisation is required.

Plan selection involves choosing the best plan, that is, the plan that is most likely
to succeed in terms of least cost of time and resources and least risk. The element of
risk is increased in the situation where there are other agents involved in an agent’s
plans. Besides assessing the likely cost of a plan, an agent also needs to assess
the likelihood of finding the agents for the actions that are required to execute the
plan, the likelihood that those agents, once found, are likely to cooperate and, once
committed, that those agents will actually fulfil their commitments. Four factors
have been identified for comparing plans with respect to risk.

• Agent capabilities: Knowing the capabilities of other agents helps to identify
which agents can perform the actions required. Even though this knowledge may
not not be fully representative, it is assumed to be stable enough to assess plans.

• Risk from others: The risks involved in interacting with the identified potential
partners are evaluated so that those who are more likely to be successful are
chosen to execute the plans.

• Risk from the view of self: The knowledge of how other agents view oneself is a
good measure of the likelihood that they will be likely to cooperate.

• Agent preferences: Plans can also be assessed in terms of the level of motivation
of the agents to cooperate.

In this approach, trust is used as a means for an agent to estimate the risks in-
volved in cooperating with others. The model of trust used is based on Marsh’s
model [47] and the work by Gambetta [27]. The authors utilise Marsh’s general
trust notion, which looks at the trust one agent has in another, without considering
the situation. They do not consider the details of how agents update their trust in
others.

When assessing a plan, an agent can use two types of ratings: standard and coop-
erative. The standard rating is based on standard domain-independent heuristics to
evaluate plans, with heuristics including the number of actions in a plan and the cost

206 Sarah N. Lim Choi Keung and Nathan Griffiths

of the actions it contains. However, the estimates of the risk linked with each action
of the plan that requires cooperation, need to be taken into account. A cooperative
rating is thus determined by summing the risk associated with each action in the
plan. Both the standard and cooperative ratings are then combined to form an over-
all measure of plan quality to enable the selection between alternative applicable
plans.

8.2.4.14 MDT-R

MDT-R [30] is a mechanism of Multi-Dimensional Trust and Recommendations.
Agents model the trustworthiness of others according to various criteria, such as
cost, timeliness or success, depending on which criteria the agent considers impor-
tant. Agents use their own direct experience of interacting with others, as well as
recommendations. Distinguishing trust and recommendations for individual charac-
teristics is valuable in identifying the service characteristics in which the providing
agents perform well, or less well. Trust information in multiple dimensions helps to
maintain the original interaction data. Trust values are represented numerically in
this approach due to the benefits of accuracy and the ease of comparison and update
of values. However, MDT-R stratifies trust into levels (à la Ntropi) for ease of com-
parison. The sharing of information among agents often suffers from subjectivity,
due to differences in interpretation. MDT-R deals with this by sharing summaries of
relevant past interactions, instead of explicit values for trust.

8.2.4.15 FIRE

Huynh et al. [35] propose FIRE, a trust and reputation model that integrates many
different information sources to produce a comprehensive assessment of an agent’s
likely performance. FIRE is designed for open multi-agent systems (MAS), where
agents can be owned by several stakeholders and can join and leave the system at
at time. Other characteristics of open MAS agents include the assumption that they
are unreliable and self-interested. The agents also know a limited amount about their
environment and there is no central authority that controls all the agents. Due to the
incomplete knowledge about their environment and other agents, trust can facilitate
the interactions between agents.

In order to meet the requirements of open MAS, the authors believe that a trust
model should possess the following properties.

• The model should take into account a variety of sources of trust information so
that the trust measure can be more precise, and to cater for cases when not all
sources are available.

• Every agent should be able to evaluate trust for itself.
• The model should be robust against possible lying agents.

8 Trust and Reputation 207

FIRE makes use of four different types of trust and reputation sources: interac-
tion trust, role-based trust, witness reputation and certified reputation. These vari-
ous sources are important in the model as they ensure a combination of available
information sources and that a trust measure is obtained whenever it is needed for
interaction.

Interaction trust models the trust that occurs as a result of direct interactions be-
tween two agents. The individual dimension of the Regret system [60] is adopted
as it meets all the requirements for handling direct experiences. Role-based trust
models the role-based relationships between two agents and rules are used to assign
values to this particular type of trust. One benefit of using rules is that users can add
new rules to customise their applications. The witness reputation of an agent X is
built on the observations of its behaviour by other agents, acting as witnesses. For
an agent Y to evaluate the witness reputation of agent X , Y must find witnesses that
have interacted with X . Agents keep a list of acquaintances and query a number of
them when a query needs to be made. If the acquaintances cannot answer, they will
send referrals pointing to other agents that they think will know the answer. The last
kind of information source is certified reputation, where ratings are presented by
the rated agent about itself which have been obtained from its partners in previous
interactions. An agent is allowed to choose which ratings to show and because ratio-
nal agents will always present their best ratings, it should be assumed that certified
reputation information is an over-estimate of the agent’s actual performance. This
type of information source is valuable due to its high availability and can hence be
used, even when the other three sources cannot provide a trust measure.

The four trust and reputation measures are combined to generate a single com-
posite value, representing an overall picture of an agent’s likely performance. Using
the weighted mean method, a composite trust value and its reliability are calculated.
Through empirical evaluation, the authors show how FIRE helps agents to select
more reliable partners for interaction. In a simulated open MAS, FIRE helps agents
to obtain better utility and to quickly adapt to a changing environment while main-
taining a high performance.

FIRE, however assumes that agents report their trust and reputation information
truthfully, thus the model does not yet deal with lying agents. This model is deemed
to be ad hoc due to the hand-crafted formulae used to calculate trust [70].

Even though the model differentiates between the concepts of trust and repu-
tation, it does not consider the further notions of untrust, distrust and mistrust, as
used by Marsh [49]. The authors are also not clear about how the different trust and
reputation measures are updated in the light of new information obtained.

8.2.4.16 TRAVOS

The Trust and Reputation model for Agent-based Virtual OrganisationS (TRAVOS)
models an agent’s trust in an interaction partner [70]. The model uses probability
theory to calculate trust from information about the past interactions between agents.
In addition, the model makes use of reputation information from third parties when a

208 Sarah N. Lim Choi Keung and Nathan Griffiths

lack of personal experience makes direct interaction information unavailable. Deal-
ing with third party information has the risk of inaccuracy and the model handles
this aspect.

The model aims to meet the following three requirements.

• A trust metric should be provided to represent the level of trust in an agent, both
in the presence or absence of personal experience. It will also be used to compare
the trustworthiness of different agents.

• An agent’s confidence in its level of trust in another agent should be reflected in
the model.

• The model should be able to cope with inaccurate information from other agents,
by discounting those opinions in the calculation of reputation.

For any two interacting agents, a history of interactions is recorded as the num-
ber of successful and unsuccessful interactions. From this, the variable Batr ,ate is
obtained, which is the probability that the trustee ate will fulfil its obligations dur-
ing an interaction with the truster atr. Thus, using the history of past interactions,
the expected value of Batr ,ate at a particular time t is calculated using a probability
distribution, and is defined as τatr ,ate . If the truster has a low confidence level in its
assessment of the trustworthiness of a partner, it can seek the opinions of third party
agents. Reputation is modelled as a combination of the true and reported opinions
of a source aop about a trustee ate. The authors claim that two conditions must hold
for the trust and confidence levels from third party observations to be the same as
they would be if all observations had been observed by the truster itself. The first
condition states that the behaviour of the trustee must be independent of the identity
of the truster with which it is interacting. Secondly, the reputation provider must
report its observations accurately and truthfully. However, in a range of situations,
these conditions cannot be expected to hold.

When either of the two conditions are broken, inaccurate reputation reports are
obtained, due to malicious agents or to inconsistent behaviour towards different
agents. In the literature, endogenous and exogenous techniques [37] have been used
to assess the reliability of reports. Endogenous methods attempt to identify unreli-
able reputation information by considering the statistical properties of the reported
opinions alone. Meanwhile, exogenous methods rely on other information to make a
judgement, for example using the reputation of the source or its relationship with the
trustee. TRAVOS proposes an exogenous method to filter out inaccurate reputation,
where a reputation provider is judged on the perceived accuracy of its past opinions.
In the first step, the probability that an agent will provide an accurate opinion is
calculated, given its past opinions and later observed interactions with the trustees
for which opinions were given. Secondly, based on this value, the distance is re-
duced between a rater’s opinion and the prior belief that all the possible values for
an agent’s behaviour are equally probable. In having all the opinions adjusted in
this way, the opinion provider’s influence on a truster’s assessment of a trustee is
reduced.

Empirical experiments demonstrate that TRAVOS allows reputation to signif-
icantly improve performance despite the negative effects of inaccurate opinions.

8 Trust and Reputation 209

However, the model assumes that the behaviour of agents does not change over
time, but in many cases this is not a suitable assumption. The representation of the
interaction ratings is considered to be oversimplified and limited for this model to
be suitable for a wide variety of applications in open MAS [36].

The model makes use of a truster atr’s estimate that a trustee ate will fulfil its
obligations and the confidence atr has in this value. The authors calculate the con-
fidence metric as the proportion of the probability distribution for the trust metric
that lies within the bounds of an error value estimate ε , that is, between (τatr ,ate−ε)
and (τatr ,ate + ε). It is however unclear how this error ε is determined and what is
considered to be an acceptable error margin.

Third party recommendations are obtained from those agents who have directly
interacted with the agent of interest. TRAVOS does not consider indirect recom-
mendations where an agent obtains the opinion of another agent, who has obtained it
from some other agent. This source of information could be useful when not enough
information is obtained from agents who have directly interacted with the target
agents.

8.2.4.17 Walter et al.

Walter et al. [73] propose a recommendation system on a social network, based
on trust. In their model, agents use their social network to gather information and
they use trust relationships to filter information they require. Agents get recommen-
dations from neighbours, which are agents directly or indirectly connected in the
network. Neighbours pass on queries to their own neighbours when they cannot
provide a recommendation themselves. Agents use trust in their decision making,
to choose the most appropriate recommendation from a set of recommendations
obtained from a query.

Agents are connected in a social network and each agent is linked to a set of
neighbours. For example, a group of people recommending books form such a net-
work. Objects are the subject of recommendations, and in the example books are
objects. Objects can belong to one or more categories, for instance, books can be in
the categories “Computer Science” or “History”. Agents are also associated with a
preference profile, which maps a rating to an object. Trust relationships exist among
agents when they keep trust values of their neighbours. The model considers that
trust is transitive and propagates along a path in the network, with the appropri-
ate discounting. The trust value along a path is the product of the trust values of
the links on that path. When an agent makes a query, it receives a set of responses
back from its neighbours. The agent must then choose the best recommendation
for its purposes from the set. The trust values provide a ranking of the recommen-
dations, and the selection mechanism in the model is random selection among all
the recommendations with probabilities assigned by a logic function. The higher
the trust of recommendations along a path, the higher its probability of being cho-
sen. Once the recommendation is chosen and an interaction occurs as a result of this

210 Sarah N. Lim Choi Keung and Nathan Griffiths

recommendation, the agent feeds the experience back into the trust relationship with
the recommender.

The authors claim that the system self-organises in a state with performance near
to optimum. Despite the fact that agents only consider their own utility function
and without explicit coordination, long paths of high trust develop in the network,
allowing agents to rely on recommendations from agents with similar preferences,
even when these are far away in the network.

8.2.5 Summary of Views of Trust and Reputation Models

The trust and reputation models discussed all attempt to provide solutions to accu-
rately represent these notions in cooperation among agents. Nevertheless, they are
limited and deal with only some of the important considerations necessary when
looking at open and distributed multi-agent systems.

8.2.5.1 Socio-Cognitive Models

The models based on the cognitive and social nature of trust among agents detail the
important aspects to consider, such as competence, willingness and motivation of the
agent in trust-building. However, they do not explicitly define how these aspects are
to be represented and used. Moreover, both models reviewed [16, 50] do not model
dishonest agents and ways to deal with lying or collusion.

8.2.5.2 Numerical Models

Numerical models allow trust and reputation to be explicitly represented as values,
which can be used for further analysis and decision-making. However, one concern
is that they tend to over-simplify those notions and the important considerations in
obtaining those values tend to be blurred and are no longer readily available once the
trust value has been calculated. The values used in the calculations and the formulae
also tend to be ad hoc in nature and there is often a lack of justification for the
choice of calculation methods. Furthermore, with information being increasingly
shared among agents, the trust values and their meanings can prove to be an obstacle
to the efficient propagation of trust and reputation for other agents to use. While a
particular number and formula can be perfectly satisfactory for an agent’s sole use,
their value on sharing can be very much reduced.

8 Trust and Reputation 211

8.2.5.3 Reputational Models

Most reputational models have used reputation as the complement of trust. In doing
so, they have reinforced the information from direct interaction with information
from third-party agents. Models like TRAVOS do not make use of indirect rec-
ommendations. This could be a problem when direct recommendations and direct
interactions are rare and the agent needs to get information about the trustworthiness
of another. Moreover, many reputational models do not handle lying and dishonest
agents or differentiate between mistakes in opinion and malevolent behaviour.

8.3 Agents and Service-Oriented Computing

Trust and reputation can be very useful concepts in establishing, managing and
maintaining cooperation, along with providing a mechanism to minimise the risk
associated with interacting with others. In this section we discuss how trust and rep-
utation can be integrated with two alternative views of SOC, namely peer-to-peer
and Grid computing.

8.3.1 Peer-to-Peer Architectures

A Peer-to-Peer (P2P) system can be defined as a self-organising system of equal, au-
tonomous entities, which aim for the shared usage of distributed resources in a net-
worked environment, avoiding central services [52,68]. Self-organisation expresses
properties, including the distribution of control, the locality of processing, and the
emergence of global structures from local interactions [3]. P2P systems are gen-
erally classified into two categories: structured and unstructured overlay networks.
Overlay networks construct a logical network on top of the physical network, to
help in application-specific organisation in P2P systems. Unstructured P2P systems,
such as Gnutella [7] use flooding techniques to discover other peers in the network,
as peers are randomly connected. Look-up queries are forwarded to all the neigh-
bouring peers and results are sent back until the required item or peer is found. In
contrast, structured P2P systems, such as Chord [69], use structures such as Dis-
tributed Hash Tables (DHTs) to achieve scalability, reliability and fault tolerance.
Structured systems organise peers in a clear logical way, which allows them to be
located and identified.

The issue of trust arises from the decentralisation characteristic of P2P systems.
In some dynamic environments, repeated interactions with the same peers might be
few and this makes the evaluation of risk associated with the transaction difficult.
Some other P2P applications, such as those involving file sharing, might involve the
peers needing to also evaluate the credibility of other peers to avoid interacting with
malicious ones. In the absence of a central point of control, trust needs to be built

212 Sarah N. Lim Choi Keung and Nathan Griffiths

into the P2P system to ensure that peers are treated fairly. However, information
about peer interactions is dispersed throughout the network and peers can only build
a partial view. Moreover, the trust information stored by peers cannot be considered
as entirely trustworthy. Several trust and reputation mechanisms have been proposed
in that respect and these are described below.

8.3.1.1 PeerTrust

PeerTrust [78] is a reputation-based trust supporting framework that consists of an
adaptive trust model for quantifying and comparing the trustworthiness of peers
based on a transaction-based feedback system, as well as a decentralised implemen-
tation of the model over a structured P2P network. The model uses five parameters
to evaluate the trustworthiness of a peer. The three basic trust parameters are the
feedback from other peers, the total number of transactions performed by a peer
and the credibility of the feedback sources. PeerTrust also uses two adaptive fac-
tors: a transaction context factor and a community context factor. The model also
defines a general trust metric to combine all these parameters. Two basic trust pa-
rameters (feedback and the number of transactions) can be collected automatically.
The third parameter—the credibility of feedback—needs to be computed from the
past behaviour of the peers who give feedback and the authors propose two credibil-
ity measures to determine the credibility factor and compute the credible amount of
satisfaction. The first measure is based on a function of the trust value of a peer as
its credibility factor. Therefore, feedback from more trustworthy peers are consid-
ered more credible. This is based on the assumptions that: (i) untrustworthy peers
are more likely to submit false feedback to hide their malicious behaviour, and (ii)
trustworthy peers are more likely to be honest about the feedback they provide. The
authors, however, argue that the second assumption may not hold in some cases, for
instance, when a peer maintains good reputation by providing a high quality of ser-
vice, but sends malicious feedback about its competitors. For such cases, a second
credibility measure is proposed and a peer uses a personalised similarity measure to
rate the credibility of another peer through its experience of the feedback given.

Srivatsa et al. propose TrustGuard [67] as an extension to PeerTrust. TrustGuard
is a framework for building dependable distributed reputation management systems
and proposes countermeasures against three vulnerabilities: strategic oscillation,
fake transaction and dishonest feedback.

8.3.1.2 Personalised Trust Model (PET)

PET [45] is a personalised trust model for P2P resource sharing, which aims to
build good cooperation among peers. It is an intermediate trust model and lies be-
tween the central and transitive models of trust. The central model has a central
trust point and every entity in the system uses that same trust opinion, such as in
eBay. This class of trust model works well when the central point is reliable and

8 Trust and Reputation 213

trustworthy and provides only one type of service. The other class of trust model,
the transitive model has a transitive trust chain where recommendations are used. In
PET, recommendation plays a moderate role and is only one of many factors used
to derive local trustworthiness values. PET models reputation as the accumulative
assessment of the long-term behaviour (reputation evaluation) and the opinion of the
short-term behaviour (risk evaluation). The model quantifies these two behaviours
and the weights of reputation and risk are adjustable, according to different environ-
ments and requirements.

PET is combined with M-CUBE, a multiple-currency based economic model, to
enable resource sharing in untrusted P2P environments [44]. The M-CUBE model
provides the infrastructure for building high-level resource management related ser-
vices and is made up of four main modules: (i) the Price Regulator, which decides
the price of the resources, (ii) the Ratio Regulator determines the exchange ratio of
the currency, based on the trustworthiness value computed by the PET model, (iii)
Service Discovery finds the resources provided by remote peers, and (iv) the Cur-
rency Exchange module enables bargaining among peers until an agreed currency
exchange is reached.

8.3.1.3 P2PRep and XRep

P2PRep [19] is an approach that allows a servent (a peer acting as both server and
client) in a P2P network to enquire about the reputation of providers before deciding
from where to download a resource, by polling its peers. After receiving responses
to its query when looking for a resource, the servent selects a provider or a set of
providers based on the quality of the offer and on its own past experience. It then
polls its peers asking for their opinion about the reputation of each of the selected
providers. The servent can then make a decision by using the opinions obtained
from the voters.

There are two approaches to P2PRep: the first one is called basic polling and
involves the servents responding to a poll to not provide their servent identity. The
second approach called enhanced polling, requires the voters to declare their servent
identity. This can be used by the servent, which is selecting a provider, to weigh the
votes it has received according to the level of credibility of the voters.

XRep [21] is a protocol for maintaining and exchanging reputations that can be
instantiated on existing P2P protocols. The aim is to provide a self-regulating sys-
tem that implements a robust reputation mechanism in the P2P network, to solve
the problem of user anonymity and the subsequent misuses and abuses of the net-
work. Compared to related work (e.g., [4, 19]), which associate reputation to the
servents, XRep combines resource-based and servent-based reputation to bring to-
gether advantages from both approaches. This approach thus provides more infor-
mative polling and also overcomes the limitations of servent-based only solutions.
Servent reputations are associated with the servent identity, which must be resistant
against tampering. Meanwhile, resource reputations are closely linked to the con-
tent of the resources, via a digest, and this prevents forging from malicious peers.

214 Sarah N. Lim Choi Keung and Nathan Griffiths

Resource-based reputation has the benefit of having votes that express the property
of the resource rather than the provider, making it more reliable. However, resource-
based reputation can only be applied when resources have a history and are known
to several servents. Thus, by using both reputations, XRep can efficiently protect
P2P networks against attacks such as self-replication, pseudospoofing and shilling.

X2Rep [20] is presented as an enhanced trust semantics algorithm that extends
the XRep protocol, to address the weaknesses of XRep in producing the correct trust
values when used against a range of strategies that can be employed by malicious
agents. The algorithm gives additional expressiveness to peers when giving their
opinions about resources and other peers. Whereas XRep uses a series of challenge
and response messages to ensure that a vote is provided by a genuine peers, X2Rep
eliminates this complex process by using voter credibility information, which helps
to assess the trustworthiness of a voter’s vote.

8.3.1.4 P-Grid

Aberer et al. [2,4] proposed a decentralised trust management model, called P-Grid,
that they implemented on a P2P system. Their aim was to find a solution to the
problems of search efficiency and resource allocation optimisation, by using a self-
organisation process to construct an overlay network that uses a DHT-like routing
infrastructure. P-Grid is a P2P look-up system, based on a virtual distributed search
tree, which is similar in structure to a standard DHT [2].

The model analyses past interactions among peers to make a probabilistic as-
sessment of whether any peer has cheated. It integrates trust management as well as
a scalable data management scheme, suitable for decentralised networks. The trust
management method models global trust as a binary value, that is whether an agent
is trustworthy or not. The reputations in this system arise from the dissemination
of information by peers about the malicious behaviour of others. Only malicious
behaviour is considered as relevant and this is expressed as complaints; the more
complaints a peer gets, the less trustworthy it could be. The reputation of an agent
p is calculated as the number of complaints p stored, multiplied by the number of
complaints about p stored by other agents. Higher values of this reputation indicate
that agent p is not trustworthy. The downside to this model is that since only com-
plaints are recorded, new peers are considered to be as trustworthy as peers who
have had many successful interactions.

8.3.1.5 Other P2P Applications of Trust and Reputation for Service-Oriented
Agents

Jurca and Faltings [38] propose a reputation-based mechanism that allows a P2P
service-oriented market to function efficiently, with the aim of maintaining a co-
operative equilibrium. The mechanism is based on averaging feedback and repeated
failures influence the price that the provider can charge in the future. This is different

8 Trust and Reputation 215

to other mechanisms, such as eBay, where repeated failures lead to the exclusion
of the provider from the market. Thus, the proposed reputation-based mechanism
works through flexible service level agreements (SLAs) in the form of incentives,
rather than social exclusion.

Gupta et al. [33] propose a reputation system for decentralised unstructured P2P
networks like Gnutella. The system comprises two schemes: debit-credit reputation
computation (DCRC), and credit-only reputation computation (CORC), that utilise
objective criteria for updating peer reputations. DCRC updates the reputation scores
based on the average query-response message size, the upload credit, the download
debit and the sharing credit. CORC differs from DCRC by not using the download
debit component, implying that the peer reputation scores only increase.

Farenholtz and Lamersdorf [26] propose a reputation management system, which
uses context-dependent feedback gathered in questionnaires and provides security
for peer transactions to ensure integrity, confidentiality and privacy.

Liau et al. [46] propose a completely decentralised reputation scheme for P2P
networks, based on the concept of Public Key Infrastructure (PKI). It is based on a
certificate RCert, which is a tamper resistant document that resides on a P2P node.
RCert contains the information ratings collected from past interactions with other
peers and simplifies the reputation request process, as the reputation is stored by
the owner. To ensure that the owner does not change any information, every update
to the certificate is digitally signed by the rating peer. The authors also present the
protocols RCertP and RCertPX to facilitate the updating of the RCert certificates.

Credence [72] is a decentralised object reputation and ranking system for large-
scale P2P filesharing networks. It allows honest peers to assess the authenticity of
online content through secure tabulation and management of endorsements from
other peers. Credence also enables peers to learn relationships even in the absence
of direct observations or interactions through a flow-based trust computation to dis-
cover trustworthy peers.

8.3.2 Grid Computing

A Grid can be considered to be a decentralised system that spans multiple admin-
istrative domains and provides a nontrivial quality of service where both the set
of users and the total set of resources can (and do) vary dynamically and continu-
ously [74]. It handles large numbers of hardware and software systems to perform
functions and computations on large volumes of data. Uniform and transparent ac-
cess to heterogeneous systems (again hardware and software) is provided to both
end users and their applications. In a grid computing system, autonomous domains
share resources among themselves. One primary goal of the grid environment is to
encourage domain-to-domain interactions and increase the confidence of domains
to use or share resources. One way to achieve this is to address the notion of trust,
to make the geographically distributed systems more attractive and reliable. Trust is
used to firstly verify the identity of an entity and what that entity is authorised to do

216 Sarah N. Lim Choi Keung and Nathan Griffiths

and secondly, to monitor and manage the behaviour of the entity and building a trust
level based on the behaviour.

8.3.2.1 Trust-Aware Resource Management System

Azzedin and Maheswaran [10, 11] present a trust-aware resource management sys-
tem, which includes a model of behaviour trust, based on trust from direct inter-
actions, as well as reputation. In this model, the Grid is viewed as a set of grid
domains and there are two virtual domains associated with each grid domain: re-
source domain and client domain. Behaviour trust consists of 6 trust levels and
these trust levels are built on past experiences and are context-specific and time-
specific. Each domain maintains trust level tables about its trust relationships with
other domains. The authors suggest that the efficient creation and maintenance of
the trust level tables is made possible due to three reasons. First, the division of the
grid into grid domains increases scalability as resources and clients inherit parame-
ters of the resource and client domains. Second, trust is considered to vary slowly,
thereby making the update overhead insignificant. Finally, the model limits the num-
ber of contexts to only the primary service types and this reduces the fragmentation
of the trust management space. This reduction of the number of contexts is seen
by Alunkal et al. [8] to be a limitation of this model as the Grid environment in-
volves many more contexts and the model should be able to include all the essential
features of a Grid infrastructure.

8.3.2.2 CONOISE-G

The CONOISE-G system [55] provides mechanisms to assure the effective opera-
tion of agent-based virtual organisations (VOs) in the face of disruptive and poten-
tially malicious entities in dynamic, open and competitive environments, such as
the Grid environment. The system uses three key technologies for the formation of
virtual organisations, namely agent decision-making, auctions for the allocation of
contracts and service discovery that includes the assessment of quality of service.
The issues of trust and reputation are important especially during the formation of
a virtual organisation, when there is a choice of various service providers to whom
tasks may be delegated. In such cases, trust serves as an indicator of which of the
possible partners are likely to carry out the task specified. The probabilistic view of
trust is considered and in the absence of a direct interaction history, reputation infor-
mation is used to establish the level of trust to place in another entity. CONOISE-G
makes use of the TRAVOS trust and reputation model [54,70] to establish trust and
reputation in the system.

8 Trust and Reputation 217

8.3.2.3 GridEigenTrust

The GridEigenTrust framework [8] is used to manage reputation for Grid-based
systems, to facilitate a distributed and efficient mechanism for resource selection.
The framework’s reputation management service includes a hierarchical resource
selection process, which addresses the complex arrangement of resources and ser-
vices among virtual organisations, institutions and entities. This selection process
is complemented with the past quantitative and qualitative experiences of resource
selection, as well as with a ranking of resources and services based on their reputa-
tion. GridEigenTrust uses trust and reputation as the dynamic and adaptive metrics
to support their quality of service requirements. The framework also introduces a
novel algorithm to evaluate Grid reputation on a more scalable level for large Grid
environments. The algorithm combines global trust with the use of eigenvectors,
which is based on the P2P EigenTrust algorithm [39]. Combining eigenvectors with
a global trust value addresses the problems related to scalability and multiple con-
texts as encountered in other models [10, 11].

8.3.2.4 PathTrust

PathTrust [40] is a reputation model proposed for member selection in virtual organ-
isations. The reputation model makes use of the relationships among the participant
members to form a web of trust, and views reputation as a function of the inquirer
and the queried. The algorithm used in PathTrust combines transitive trust with rep-
utation ratings. The use of trust relationships among participants helps to guard
against the faking of positive feedback. The trust relationship between two partic-
ipants is formed when they interact with each other and each leaves a feedback
rating after each transaction. The reputation can then be established as a function of
all the ratings left from the interactions each individual has made. Each participant
must register with the Enterprise Network Infrastructure (EN) to become a member
of a virtual organisation, by providing some credentials. The EN also provides a
centralised reputation service. When the VO dissolves, all members leave feedback
ratings with the reputation server for other members to use. In PathTrust, the system
is arranged as as fully connected graph among all the participants that are registered
with the EN. Each edge has an associated weight that provides a relative measure
of the trust one participant has in another. PathTrust also supports the growth of
the system. The algorithm has been evaluated against the EigenTrust algorithm [39]
and is shown to have benefits in attack resistance compared to models that view
reputation as a function of the queried only.

218 Sarah N. Lim Choi Keung and Nathan Griffiths

8.4 Trust Classes and Ontologies

Grandison and Sloman [28] present a classification of trust in Internet services, re-
lating to access to a trustor’s resources, provision of a service by the trustee, authen-
tication, delegation, or infrastructure. Josang et al. [37] also use this classification
of trust when specifying trust semantics.

Access trust

Trust comes into play when a trustor allows a trustee to use resources he owns or
controls, and these resources can be a software execution environment or an ap-
plication service [5, 6]. For different types of access and resources being accessed,
the trust level will be different. For instance, trusting an entity to read a file on the
trustor’s server is different from trusting the entity to execute code on the trustor’s
workstation. The latter case necessitates a higher level of trust in the trustee, since
issues such as damage to the trustor’s resources, as well as usage limits have to
be taken into account. Abrams and Joyce implicitly map trust decisions to access
control decisions. The resource access trust relationships can be used to specify au-
thorisation policies, which can then be implemented using an operating system, a
database access control mechanism, or firewall rules, among others. The authorisa-
tion policies specify the actions that a trustee can perform on the trustor’s resources
and the constraints that apply, such as the time periods when access is permitted.

Service provision trust

This form of trust involves the trustee in providing a service, that does not involve
access to the trustor’s resources. Examples where service provision trust needs to
be established include application service providers. Service provision can relate to
different trust attributes, as follows.

• Confidence—for example, trusting a web site to provide information which is
not offensive. This type of trust maps into a form of access control and can be
implemented by some Web browsers as a means to screen sites or content.

• Competence of the trustee—this differs from confidence trust, as confidence ap-
plies to entities that the trustor will use, while competence applies to entities that
perform some action on behalf of the trustee.

• Reliability or integrity of the trustee—for example in e-banking, the customer
trusts the bank to support mechanisms that will ensure that passwords are not
divulged.

8 Trust and Reputation 219

Identity trust

This type of trust relies on the certification of the trustworthiness of a trustee by a
third party. Certifications are often used to authenticate identity or membership in
Internet applications. This is a special case of service provision trust as the certifi-
cation authority is providing a trust certification service.

Delegation trust

This involves the trustor trusting a trustee to make decisions on its behalf, with
respect to a resource or service that the trustor owns or controls. For example, dele-
gation is also a special form of service provision: a trust decision making service.

Context trust

Grandison and Sloman [28] use the term infrastructure trust to describe that the
trustor must be able to trust the base infrastructure, namely himself (implicit trust)
and the workstation, network and servers he uses. These may implement security
and other services in order to protect the trustor’s infrastructure. Moreover, Josang
et al. [37] consider that besides infrastructures, insurance, the legal system, law
enforcement and social stability are factors that the trustor deems necessary to be in
place to support his transactions.

8.4.1 Trust Semantics

Josang et al. [37] classify trust semantics in a specificity-generality dimension and
a subjectivity-objectivity dimension, as shown in Table 8.2. The semantic charac-
teristics of ratings, reputation scores and trust measures are important in order for
participants to be able to interpret those measures.

Table 8.2 Classification of trust and reputation measures [37]

Specific, vector based General, synthesised
Subjective Survey questionnaires ebay, voting
Objective Product tests Synthesised general score from product tests, D&B rating

A specific measure relates to a particular trust aspect, such as the timeliness of
delivery, whereas a general measure represents an average of all the trust aspects.
A subjective measure means that the agent provides a rating based on a subjective
judgement, while an objective measure is determined using some formal criteria.

220 Sarah N. Lim Choi Keung and Nathan Griffiths

Subjective and specific measures are used, for example in survey questionnaires
where people are asked their opinions on a range of specific issues. Subjective and
general measures are used in eBay’s reputation system1 where buyers and sellers
leave feedback (1 for positive, 0 for neutral and −1 for negative).

Objective and specific measures are used, for example, in technical product tests
where the performance and quality of of the product can be objectively measured.
For instance, washing machines can be tested according to energy consumption,
noise, washing program features, among others. Meanwhile, objective and general
measures can be, for example, computed as a vector of objective and specific mea-
sures. A general score can be derived from a weighted average of the scores for each
characteristic considered. For example, the Dun and Bradstreet (D&B) credit rating
is derived from a vector of objectively measurable company performance parame-
ters. D&B is an international credit reporting service, which uses a two-part rating
code it its business reports, for example 5A 4 [53]. The first part of the rating, Finan-
cial Strength, reflects the the company’s tangible net worth, derived from the latest
available audited financial statements. The second part of the rating, the Composite
Credit Appraisal, indicates D&B’s calculation of the level of risk associated with
dealing with a firm. Codes range from 1 to 4, where 1 is the lowest risk. D&B uses
a scoring system based on 30 key company data elements to assign a risk factor.
These elements come from the payment data, financial data, other public records,
such as court judgements, and special events such as a press release that may affect
the company’s trading position.

8.5 Summary

In this chapter we have introduced some of the main approaches to trust and rep-
utation. The first half of this chapter discussed a variety of mechanisms developed
for general agent based systems. In the second half of the chapter we introduced
how the notion of trust and reputation have been used in P2P architectures and Grid
computing. Finally, we described generally applicable work on trust classes and
trust semantics that will be useful in applying trust and reputation in future SOC
systems.

References

1. A. Abdul-Rahman and S. Hailes. Supporting trust in virtual communities. In Proceedings
of the 33rd Hawaii International Conference on System Sciences (HICSS 2000), page 6007.
IEEE Computer Society, 2000.

1 http://www.ebay.com

8 Trust and Reputation 221

2. K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth, M. Punceva, and
R. Schmidt. P-Grid: a self-organizing structured P2P system. ACM SIGMOD Record,
32(3):29–33, 2003.

3. K. Aberer, A. Datta, and M. Hauswirth. P-grid: Dynamics of self-organizing processes in
structured peer-to-peer systems. In R. Steinmetz and K. Wehrle, editors, Peer-to-Peer Sys-
tems and Applications, volume 3485 of Lecture Notes in Computer Science, pages 137–153.
Springer-Verlag Berlin Heidelberg, 2005.

4. K. Aberer and Z. Despotovic. Managing trust in a peer-2-peer information system. In Pro-
ceedings of the tenth international conference on Information and knowledge management
(CIKM 2001), pages 310–317, New York, NY, USA, 2001. ACM.

5. M. D. Abrams and M. V. Joyce. New thinking about information technology security. Com-
puters and Security, 14(1):69–81, 1995.

6. M. D. Abrams and M. V. Joyce. Trusted computing update. Computers and Security,
14(1):57–68, 1995.

7. E. Adar and B. A. Huberman. Free riding on gnutella. First Monday, 5(10), 2000.
8. B. K. Alunkal, I. Valjkovic, G. von Laszewski, and K. Amin. Reputation-based grid resource

selection. Workshop on Adaptive Grid Middleware (AGridM 2003), September 28, 2003,
New Orleans LA, USA. To appear in Journal of Parallel and Distributed Computing Practices.

9. R. Axelrod and W. D. Hamilton. The evolution of cooperation. Science Magazine, 211(4489),
1981.

10. F. Azzedin and M. Maheswaran. Evolving and managing trust in grid computing systems.
In Proceedings of the IEEE Canadian Conference on Electrical & Computer Engineering
(CCECE 2002), volume 3, 2002.

11. F. Azzedin and M. Maheswaran. Integrating trust into grid resource management systems.
In Proceedings of the 2002 International Conference on Parallel Processing (ICPP 2002),
page 47, Washington, DC, USA, 2002. IEEE Computer Society.

12. S. Braynov and T. Sandholm. Contracting with uncertain level of trust. In Proceedings of the
1st ACM conference on Electronic commerce. ACM Press, 1999.

13. S. Braynov and T. Sandholm. Trust revelation in multiagent interaction. In Proceedings of
CHI 2002 Workshop on The Philosophy and Design of Socially Adept Technologies, 2002.

14. V. Buskens. Social networks and the effect of reputation on cooperation. ISCORE Paper No.
42, Utrecht University, 1998.

15. Cambridge University Press. Cambridge Dictionaries Online. Available online at
http://dictionary.cambridge.org.

16. C. Castelfranchi and R. Falcone. Principles of trust for MAS: Cognitive anatomy, social
importance, and quantification. In Proceedings of the International Conference of Multi-Agent
Systems (ICMAS 1998), pages 72–79, 1998.

17. C. Castelfranchi and R. Falcone. Socio-cognitive theory of trust. Deliverable report D1,
ALFEBIITE, 2001.

18. Cheskin Research and Studio Archetype/Sapient. eCommerce trust report. Technical report,
Cheskin Research, 1999.

19. F. Cornelli, E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. Choosing
reputable servents in a p2p network. In Proceedings of the 11th international conference on
World Wide Web (WWW 2002), pages 376–386, New York, NY, USA, 2002. ACM.

20. N. Curtis, R. Safavi-Naini, and W. Susilo. X2rep: Enhanced trust semantics for the xrep
protocol. In Applied Cryptography and Network Security (ACNS), volume 3089 of Lecture
Notes in Computer Science, pages 205–219. Springer-Verlag Berlin Heidelberg, 2004.

21. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati, and F. Violante. A
reputation-based approach for choosing reliable resources in peer-to-peer networks. In Pro-
ceedings of the 9th ACM Conference on Computer and Communications Security, Washing-
ton, DC, USA, November 2002.

22. B. Esfandiari and S. Chandrasekharan. On how agents make friends: Mechanisms for trust
acquisition. In Proceedings of the Fourth Workshop on Deception, Fraud and Trust in Agent
Societies, 2001.

222 Sarah N. Lim Choi Keung and Nathan Griffiths

23. R. Falcone and C. Castelfranchi. The socio-cognitive dynamics of trust: Does trust create
trust? In Proceedings of the workshop on Deception, Fraud, and Trust in Agent Societies held
during the Autonomous Agents Conference: Trust in Cyber-societies, Integrating the Human
and Artificial Perspectives. Springer-Verlag, 2000.

24. R. Falcone and C. Castelfranchi. Social trust: A cognitive approach. In Cristiano Castelfranchi
and Yao-Hua Tan, editors, Trust and Deception in Virtual Societies, pages 55–90. Kluwer
Academic Publishers, Netherlands, 2001.

25. R. Falcone, G. Pezzulo, and C. Castelfranchi. A fuzzy approach to a belief-based trust compu-
tation. In R. Falcone, S. Barber, L. Korba, and M. Singh, editors, Trust, Reputation and Secu-
rity: Theories and Practice, volume 2631 of Lecture Notes in Artificial Intelligence. Springer-
Verlag, 2003.

26. D. Farenholtz and W. Lamesdorf. Transactional security for a distributed reputation manage-
ment system. In Proceedings of the Third Interantional Conference on E-Commerce and Web
Technologies (EC-WEB 2002), volume 2455 of Lecture Notes in Computer Science, pages
214–223. Springer, 2002.

27. D. Gambetta. Can we trust trust? In Trust: Making and Breaking of Cooperative Relations,
pages 213–237. Department of Sociology, University of Oxford, 2000.

28. T. Grandison and M. Sloman. A survey of trust in internet applications. IEEE Communications
and Surveys, 3(4), Fourth Quarter 2000.

29. N. Griffiths. Task delegation using experience-based multi-dimensional trust. In Proceedings
of the 4th International Conference on Autonomous Agents and Multiagent Systems (AAMAS
2005), pages 489–496, New York, NY, USA, 2005. ACM Press.

30. N. Griffiths. Enhancing peer-to-peer collaboration using trust. International Journal of Expert
systems with Applications, 31(4):849–858, 2006.

31. N. Griffiths, K.-M. Chao, and M. Younas. Fuzzy trust for peer-to-peer systems. In Proceedings
of P2P Data and Knowledge Sharing Workshop (P2P/DAKS 2006), at the 26th International
Conference on Distributed Computing Systems (ICDCS 2006), 2006.

32. N. Griffiths and M. Luck. Cooperative plan selection through trust. In Proceedings of Multi-
Agent System Engineering: Proceedings of the Ninth European Workshop on Modelling Au-
tonomous Agents in a Multi-Agent World, volume 1647 of Lecture Notes in Artificial Intelli-
gence, 1999.

33. M. Gupta, P. Judge, and M. Ammar. A reputation system for peer-to-peer networks. In
Proceedings of the 13th International Workshop on Network and Operating Systems Support
for Digital Audio and Video (NOSSDAV 2003), pages 144–152. ACM, 2003.

34. S. P. Hargreaves-Heap and Y. Varoufakis. Game Theory: A Critical Introduction. Routledge,
London, UK, 1997.

35. T. D. Huynh, N. R. Jennings, and N. Shadbolt. Developing an integrated trust and reputation
model for open multi-agent systems. In Proceedings of the 7th International Workshop on
Trust in Agent Societies, pages 65–74, New York, USA, 2004.

36. T. D. Huynh, N. R. Jennings, and N. Shadbolt. An integrated trust and reputation model
for open multi-agent systems. Journal of Autonomous Agents and Multi-Agent Systems,
13(2):119–154, 2006.

37. A. Jøsang, R. Ismail, and C. Boyd. A survey of trust and reputation systems for online service
provision. Decision Support Systems, 43(2):618–644, 2007.

38. R. Jurca and B. Faltings. Reputation-based pricing of P2P services. In Proceedings of the
Third Workshop on Economics of Peer-to-Peer Systems (P2PECON 2005), Philadelphia, USA,
2005.

39. S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The Eigentrust algorithm for reputation
management in P2P networks. In Proceedings of the 12th international conference on World
Wide Web (WWW 2003), pages 640–651, New York, NY, USA, 2003. ACM.

40. F. Kerschbaum, J. Haller, Y. Karabulut, and P. Robinson. PathTrust: A trust-based reputation
service for virtual organization formation. In Proceedings of the 4th International Conference
on Trust Management, 2006.

41. B. Kosko. Fuzzy cognitive maps. International Journal Man-Machine Studies, 24, 1986.

8 Trust and Reputation 223

42. D. M. Kreps and R. Wilson. Reputation and imperfect information. Journal of Ecomonic
Theory, 27, 1982.

43. S. Kuhn. Prisoner’s dilemma. The Stanford Encyclopedia of Philosophy (Fall 2003 Edition),
Edward N. Zalta (ed.), available at http://plato.stanford.edu/archives/fall2003/entries/prisoner-
dilemma/, 2003.

44. Z. Liang and W. Shi. Enforcing cooperative resource sharing in untrusted P2P computing
environments. Mobile Networks Applications, 10(6):971–983, 2005.

45. Z. Liang and W. Shi. PET: A personalized trust model with reputation and risk evaluation for
P2P resource sharing. In Proceedings of the 38th Annual Hawaii International Conference
on System Sciences (HICSS 2005)—Track 7, page 201.2, Washington, DC, USA, 2005. IEEE
Computer Society.

46. C.Y. Liau, X. Zhou, S. Bressan, and K.-L. Tan. Efficient distributed reputation scheme for
peer-to-peer systems. In Proceedings of the 2nd International Human.Society@Internet Con-
ference (HSI 2003), volume 2713 of Lecture Notes in Computer Science, pages 54–63, Berlin
Heidelberg, 2003. Springer-Verlag.

47. S. Marsh. Formalising trust as a computational concept. PhD thesis, Department of Computer
Science, University of Stirling, 1994.

48. S. Marsh. Optimism and pessimism in trust. In H. Geffner, editor, Proceedings of IV Ibero-
American Conference on Artificial Intelligence (IBERAMIA 1994), pages 286–297. Addison-
Wesley, 1994.

49. S. Marsh and M. R. Dibben. Trust, untrust, distrust and mistrust – an exploration of the
dark(er) side. In P. Herrmann et al., editor, iTrust 2005, Lecture Notes in Computer Science,
volume 3477, pages 17–33, Berlin Heidelberg, 2005. Springer-Verlag.

50. N. Mezzetti. A socially inspired reputation model. In Proceedings of the 1st European PKI
Workshop (EuroPKI 2004). Springer-Verlag, 2004.

51. L. Mui, M. Mohtashemi, and A. Halberstadt. A computational model of trust and reputation
for e-businesses. In Proceedings of the 35th Annual Hawaii International Conference on
System Sciences (HICSS 2002), volume 7, page 188, Washington, DC, USA, 2002. IEEE
Computer Society.

52. A. Oram, editor. Peer-to-Peer: Harnessing the Benefits of a Disruptive Technology. O’Reilly,
Sebastopol, CA, USA, 2001.

53. R. A. Pagell and M. Halperin. International Business Information: How to Find It, How to
Use It. Greenwood Publishing Group, 1998.

54. J. Patel, W. T. L. Teacy, N. R. Jennings, and M. Luck. A probabilistic trust model for handling
inaccurate reputation sources. In Proceedings of the Third International Conference on Trust
Management, 2005.

55. J. Patel, W. T. L. Teacy, N. R. Jennings, M. Luck, S. Chalmers, N. Oren, T. J. Norman,
A. Preece, P. M. D. Gray, G. Shercliff, P. J. Stockreisser, J. Shao, W. A. Gray, N. J. Fid-
dian, and S. Thompson. CONOISE-G: Agent-based virtual organisations for the grid. In
Proceedings of the 1st International Workshop on Smart Grid Technologies, 2005.

56. S. D. Ramchurn, D. Huynh, and N. R. Jennings. Trust in multi-agent systems. The Knowledge
Engineering Review, 19(1):1–25, 2004.

57. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, New
Jersey, USA, second edition, 2003.

58. J. Sabater. Trust and Reputation in Agent Societies. PhD thesis, Universitat Aùtomata de
Barcelona (UAB), Spain, 2003.

59. J. Sabater. Evaluating the ReGreT system. Applied Artificial Intelligence, 18, 2004.
60. J. Sabater and C. Sierra. A reputation model for gregarious societies. In Fourth Workshop on

Deception Fraud and Trust in Agent Societies, pages 61–70, 2001.
61. J. Sabater and C. Sierra. Review on computational trust and reputation models. Artificial

Intelligence Review, 24:33–60, 2005.
62. M. Schillo. Trust and Deceit in Multi-agent Systems. PhD thesis, Department of Computer

Science, Saarland University, Germany, 1999.

224 Sarah N. Lim Choi Keung and Nathan Griffiths

63. M. Schillo, P. Funk, and M. Rovatsos. Using trust for detecting deceitful agents in artificial
societies. Applied Artificial Intelligence, Special Issue on trust, Deception, and Fraud in Agent
Societies, 14(8):825–848, 2000.

64. J. Scott. Social Network Analysis: a handbook. Sage Publications, London, UK, 2001.
65. S. Sen. Reciprocity: A foundational principle for promoting cooperative behavior among self-

interested agents. In Victor Lesser, editor, Proceedings of the First International Conference
on Multiagent Systems, pages 322–329. MIT Press, 1996.

66. S. Sen and P. S. Dutta. The evolution and stability of cooperative traits. In C. Caltelfranchi and
L. Johnson, editors, Proceedings of the First Intenational Joint Conference on Autonomous
Agents and Multiagent Systems, volume 3, pages 1114–1120. ACM Press, 2002.

67. M. Srivatsa, L. Xiong, and L. Liu. TrustGuard: Countering vulnerabilities in reputation man-
agement for decentralized networks. In Proceedings of the 14th World Wide Web Conference
(WWW 2005), pages 422–431. ACM, 2005.

68. R. Steinmetz and K. Wehrle. What is this “peer-to-peer” about? In R. Steinmetz and
K. Wehrle, editors, Peer-to-Peer Systems and Applications, volume 3485 of Lecture Notes
in Computer Science, pages 9–16. Springer-Verlag Berlin Heidelberg, 2005.

69. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications. In Proceedings of the 2001 Conference
on Applications, Technologies, Architectures, and Protocols for Computer Communications
(SIGCOMM 2001), pages 149–160, New York, NY, USA, 2001. ACM.

70. W. T. L. Teacy, J. Patel, N. Jennings, and M. Luck. TRAVOS: Trust and reputation in the
context of inaccurate information sources. Autonomous Agents and Multi-Agent Systems,
12(2):183–198, 2006.

71. J. von Newmann and O. Morgenstern. Theory of Games and Economic Behaviour. Princeton
University Press, 60th anniversary edition edition, 2004.

72. K. Walsh and E. Gün Sirer. Experience with an object reputation system for peer-to-peer
filesharing. In Proceedings of the 3rd conference on 3rd Symposium on Networked Systems
Design & Implementation (NSDI 2006), pages 1–14, Berkeley, CA, USA, 2006. USENIX
Association.

73. F. E. Walter, S. Battiston, and F. Schweitzer. A model of a trust-based recommendation system
on a social network. Journal of Autonomous Agents and Multi-Agent Systems, 16(1):57–74,
2008.

74. A. J. Wells. Grid Application Systems Design. Auerbach Publications, Boca Raton, FL, USA,
2008.

75. M. Witkowski, A. Artikis, and J. Pitt. Experiments in building experiential trust in a society of
objective-trust based agents. In R. Falcone, M. Singh, and Y. H. Tan, editors, Trust in Cyber
Societies, volume 2246 of Lecture Notes in Artificial Intelligence, pages 111–132. Springer-
Verlag, 2001.

76. M. Witkowski and J. Pitt. Objective trust-based agents: Trust and trustworthiness in a multi-
agent trading society. In Proceedings of the 4th International Conference on MultiAgent Sys-
tems (ICMAS 2000), 2000.

77. D. J. Wu and Y. Sun. The emergence of trust in multi-agent bidding: A computational ap-
proach. In Proceedings of the 34th Annual Hawaii International Conference on System Sci-
ences (HICSS 2001), volume 1, page 1041, Washington DC, USA, 2001. IEEE Computer
Society.

78. L. Xiong and L. Liu. PeerTrust: Supporting reputation-based trust for peer-to-peer electronic
communities. IEEE Transactions on Knowledge and Data Engineering, 16(7), 2004.

79. G. Zacharia and P. Maes. Trust management through reputation mechanisms. Applied Artifi-
cial Intelligence, 14(9):881–907, 2000.

80. G. Zacharia, A. Moukas, and P. Maes. Collaborative reputation mechanisms in electronic
marketplaces. In Proceedings of the Thirty-second Annual Hawaii International Conference
on System Sciences, volume 8, page 8026. IEEE Computer Society, 1999.

81. L. Zadeh. Fuzzy sets. Information and Control, 8, 1965.

Chapter 9
QoS-Aware Service Selection

James W. J. Xue and Stephen A. Jarvis

Abstract With the widespread use of the Internet, the number of web services that
can provide similar functionality has increased rapidly in recent years. Web service
selection has to be based on some non-functional attributes of the services, such as
the quality of service (QoS). In this chapter, we use a server switching service that
is commonly used in Internet hosting environments to explain how an agent can
use a performance model to evaluate services and select the most suitable services
among a number of functionally similar services returned by the service discovery.
The various criteria that can be used to assess QoS are introduced in this chapter,
including mean response time, throughput, system utilisation and others closely re-
lated to business such as revenue and operating costs. Service selection in the chosen
case study depends on the quality and suitability of various switching policies, in
other words, different switching policies can be selected depending on the QoS of
the services and the run-time system state. Since the system performance can be
evaluated using an analytic model, therefore, the QoS of services is assessed based
on the output of the performance model.

9.1 Introduction

There are two key challenges in Semantic Web services. One is service advertise-
ment and discovery, which has been discussed in a previous chapter. The second
key challenge is service selection and composition, which has attracted extensive
research in the literature [1, 9, 11, 12, 23, 24, 27, 29].

James W. J. Xue
Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
e-mail: W.J.Xue@warwick.ac.uk

Stephen A. Jarvis
Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
e-mail: S.A.Jarvis@warwick.ac.uk

N. Griffiths, K.-M. Chao (eds.), Agent-Based Service-Oriented Computing, 225
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-041-0 9, c© Springer-Verlag London Limited 2010

226 James W. J. Xue and Stephen A. Jarvis

Web services are usually described by WSDL [28] and published by registering
the service using UDDI [25]. Current approaches for service publication and reg-
istration rely on static description of web service interfaces. The static description
is sufficient for providing some information such as service functionality, service
URL and the service namespace. However, other attributes such as QoS can not be
accurately described as it is runtime environment dependent. A web service might
work well in one scenario, whereas it might be a bad choice for another scenario.
Therefore, it is crucial to select the most suitable service among many functionally
similar services.

The goal for service selection is to find the best set of services available at run-
time, taking into consideration end-user preferences and the execution context [23].
It is a challenge task as it is very difficult to predict the QoS of a given web service.
The challenge arises partly because you may not able to trust the other party who
could claim arbitrary QoS properties to attract interested parties, and partly because
you lack knowledge of the environment within which it is executing, especially in
some runtime contexts where many factors could affect the performance of the ser-
vice. Moreover, dynamic evaluation of service is usually required as the run-time
system state is changing. In addition, all customer system environments are differ-
ent, thus it is difficult for the service provider to test the service for all scenarios.
Therefore, it might be a good idea that the agents be able to evaluate the quality of
a service in different customised environments using a performance model.

In this chapter, we use a server switching service usually used in Internet hosting
centres to explain how an agent can use a performance model to evaluate and select
the most suitable services among a number of functionally similar services returned
by the service discovery. Service selection in the chosen case study depends on
the suitability and quality of various switching policies, that is different switching
policies can be selected depending on the QoS of the services and the run-time
system state. Since the system performance can be evaluated using a analytic model,
therefore, the QoS of services is assessed based on the output of the performance
model.

9.2 Service Selection Procedure

Figure 9.1 is an illustration of the service selection procedure. First, when a client
sends a service request, the agent searches for services that can provide the re-
quired capabilities in the registry and uses the matchmaker to match the user re-
quirements (in terms of the functionality required) with all available services. The
output from the service matchmaker is a number of functionally similar services.
The agent needs to choose the most suitable service among those services based
on some non-functional attributes such as the QoS of the services. As introduced
earlier, it is very difficult to present QoS using a static description in WSDL. There-
fore, the performance evaluation manager can play a important role in the service
selection process. Evaluation can be made through an analytical model, simulation

9 QoS-Aware Service Selection 227

Fig. 9.1 System diagram of service selection

or the hybrid approach. The evaluation manager takes the system data such as sys-
tem architecture configuration information, runtime workload demand, and feeds
the data into the performance model for evaluation. The main benefit of the use of
a performance model is that performance can be quickly evaluated without actual
invocation of the services. Performance metrics of each model depends on the de-
sign of the model, with common metrics including mean response time, throughput
and system utilisation. Some other performance metrics related closely to business
include operational cost and system revenue.

Based on the performance evaluation results, the agent can choose the most suit-
able service and compose it when it is needed. When a service is selected and prop-
erly composed, it then can be called by the client. After service invocation, the user
can give feedback of the service via a feedback (or recommendation) system. The
feedback component in the framework is used for the purpose—to adjust the perfor-
mance model and to dynamically adapt to user requirements.

In the next section, we use the server switching service as an example to explain
how performance evaluation can be done and how the results can be used to assist
web service selection.

9.3 Case Study—Selection of Switching Service

9.3.1 Server Switching in Internet Hosting Centres

Internet services are normally hosted in commercial hosting environments that are
run by Internet Service Providers (ISPs). Workload demand for Internet services is
usually very bursty [2,4,31], thus it is difficult to predict the workload level at a cer-
tain point in time. Therefore, fixed server configurations for a service are far from
satisfactory for an application when the workload level is high; whereas it is poten-
tially a waste of resource while the workload is light for the remaining applications

Service 1

Service 2

Service n

User
requirements

Service
matchmaker

Service selection/
composition

Service feedback

System
data

Evaluation
Manager

Service
invocation

228 James W. J. Xue and Stephen A. Jarvis

supported by the system. Therefore, it is desirable that server resources in a shared
hosting environment can be switched between applications to accommodate work-
load variation.

Fig. 9.2 Illustration of server switching in a multi-tier architecture

A server switching service is a service that can be employed by the ISPs to im-
prove the Internet service and optimise the resource usage in the server centres. To
employ a switching service, the ISPs need to assess the quality of the service, in
other words, to assess the benefits of using the switching service. The quality of the
switching service depends on the benefits it brings to the ISPs, thus, to assess the
quality of a switching service, one needs to assess the improvement of the Internet
services. There are a number of performance metrics to evaluate the quality of a
switching service. From a request sender’s perspective, mean response time is the
main performance metric; from the ISPs’ perspective, performance metrics include
throughput, system utilisation and total generated revenue during a certain period.

Figure 9.2 is an illustration of how server switching happens in a distributed e-
Business environment. The diagram assumes the ISP hosts two different Internet
services, both of which require a multi-tier system architecture. The typical system
configuration includes the presentation tier, application tier and data persistence tier.
In each tier, a cluster of servers is used for processing the requests. In Figure 9.2, the
cluster of servers in each tier is partitioned into two pools, each of which is respon-
sible for each Internet application. When there is a need, some portion of servers at
the same tier can be switched between pools to adapt to workload fluctuation.

Web
Servers

Application
Servers

Database
Servers

Web
Servers

Application
Servers

Database
Servers

Presentation
 Tier

Application
 Tier

Data Persistence
 Tier

Requests
Application

A

Requests
Application

B

Partition A

Web
Servers

Partition B

Application
Servers

Database
Servers

Partition APartition A

Partition B Partition B

9 QoS-Aware Service Selection 229

Fig. 9.3 Server switching procedure

9.3.2 Server Switching Procedure

Figure 9.3 shows how server switching works in a distributed e-Business environ-
ment. This diagram is a portion of Figure 9.1 and it corresponds to the evaluation
manager component of Figure 9.1. In this diagram, there are some key components,
including admission control, workload model, performance model, system moni-
toring and the switching engine. When requests arrive, they are controlled by the
admission control component, based on the system information (e.g., system utili-
sation) from the monitoring component. The workload model takes as the input the
allowed requests and builds a workload model based on the workload characteris-
tics. The performance model then takes as input the output of the workload model
and system architecture configuration and calculates the required performance met-
rics. These metrics are combined with system information from the monitoring fa-
cilities and fed into the switching engine, which then computes the benefits and
penalties of all possible switches before making the final switching decision. In the
following section, we show how to model the multi-tier Internet services using a
queueing network.

9.3.3 Modelling Multi-tier Internet Services

A multi-tiered Internet service can be modelled using a multi-class closed queue-
ing network [26, 30]. Figure 9.4 shows a model for a typical configuration of such
applications. In the model, C refers to the client; WS, AS and DS refer to the web
server, application server and database server respectively. The queueing network
is solved using the MVA (Mean Value Analysis) algorithm [19], which is based on
Little’s law [17] and the Arrival Theorem [19,22] from standard queueing theory. In
this section, we briefly describe how different performance metrics can be derived

Admission
Control

Enterprise System

System
Monitoring

Switching
Engine

Performance
Model

Workload

SLA

Workload
Model

230 James W. J. Xue and Stephen A. Jarvis

from the closed queueing network model. Table 9.1 summarises the notation used
throughout this chapter.

Table 9.1 Notation used in this chapter

Symbol Description
Sir Service time of job class-r at station i
vir Visiting ratio of job class-r at station i
N Number of service stations in QN
K Number of jobs in QN
R Number of job classes in QN

Kir Number of class-r job at station i
mi Number of servers at station i
φr Revenue of each class-r job
πi Marginal probability at centre i
T System response time
Dr Deadline for class-r jobs
Er Exit time for class-r jobs
Pr Probability that class-r job stays
Xr Class-r throughput before switching
X
′
r Class-r throughput after switching

Ui Utilisation at station i
ts Server switching time
td Switching decision interval time

Consider a product form closed queueing network with N load-independent ser-
vice stations. N = {1,2, · · · ,N} is the set of station indexes. Suppose there are K
customers and they are partitioned into R classes according to their service re-
quest patterns; customers grouped in a class are assumed to be statistically identical.
R = {1,2, · · · ,R} is the set of class indexes. The service time, Sir, in a multi-class
closed queueing network is the average time spent by a class-r job during a single
visit to station1 i. The service demand, denoted as Dir, is the total service require-
ment, which is the average amount of time that a class-r job spends in service at
station i during execution. This can be derived from the Service Demand Law [18]
as Dir = Sir · vir; here vir is the visiting ratio of class-r jobs to station i. Kr is the
total population of customers of class r. The total population of the network is thus
defined as K = ∑r Kr. The vector K = {K1,K2, · · · ,KR} is used to represent the pop-
ulation of the network.

In modern enterprise systems, clusters of servers are commonly used in each ap-
plication tier to improve server processing capability. Thus, when modelling those
applications, we need to consider both -/M/1-FCFS and -/M/m-FCFS in each sta-
tion. Suppose there are k jobs in the queueing network, for i = 1, . . . , N and r =
1, . . . , R, the mean response time of a class-r job at station i can be computed as
follows [5].

1 The terms station, centre and node have the same meaning, and are used interchangeably.

9 QoS-Aware Service Selection 231

C

C DS

WS

WS

C AS

AS

AS

Fig. 9.4 A model of a typical configuration of a cluster-based multi-tiered Internet service. C
represents customer machines; WS, AS and DS represent web servers, application servers and
database servers, respectively

T ir(k) =

Dir
[
1+∑

R
r=1 Kir (k−1r)

]
, mi = 1

Dir

mi

[
1+∑

R
r=1 Kir (k−1r)

+ ∑
mi−2
j=0 (mi− j−1)πi (j | k−1r)

]
, mi > 1

(9.1)

Here, (k−1r) = (k1, . . . ,kr−1, . . . ,KR) is the population vector with one class-r job
less in the system. The mean system response is the sum of mean response time of
each tier.

For the case of multi-server nodes (mi > 1), it is necessary to compute the
marginal probabilities. The marginal probability that there are j jobs (j = 1, . . . ,
(mi−1)) at the station i, given that the network is in state k, is given by [5].

πi (j | k) =
1
j

[
R

∑
r=1

vir

Sir
Xr (k)πi (j−1 | k−1r)

]
(9.2)

Applying Little’s law [17], the throughput of class-r jobs can be calculated,

Xr (k) =
kr

∑
N
i=1 virT ir (k)

(9.3)

Applying Little’s Law again with the Force Flow Law [18], we derive the mean
queue length Kir for class-r job at station i as below.

Kir (k) = Xr (k) ·T ir (k) · vir (9.4)

The starting point of this equation is Kir(0,0 . . . ,0) = 0,πi(0 | 0) = 1,πi(j | 0) = 0;
after K iterations, system response time, throughput and mean queue length in each
tier can be computed.

In multiclass product form queueing networks, per-class station utilisation can
be computed using the following equation [19].

Uir(k) =
krDir

∑i Dir[1+Ki(k−1r)]
(9.5)

232 James W. J. Xue and Stephen A. Jarvis

and the total station utilisation Ui(k) is the sum of per-class station utilisation,
Ui(k) = ∑

R
r=1 Uir(k).

The above is the exact solution for multiclass product form queueing networks.
The trade-offs between exact solutions and approximations are accuracy and speed.
We use exact solutions to guide server switching decisions as a higher degree of
accuracy is believed to be important here. However, a dedicated machine can be
used for the switching system itself, to solve speed and storage issues and to reduce
the interference with the servers themselves. In our model, job class switching is not
permitted.

9.3.4 Model Parameterisation

Once a performance model is built, it can be parameterised. The parameterisation
involves collection and manipulation of sample data. Sample data to be collected
includes service time Sir of each type of request, and the visiting ratio vir. Since
service demand Dir = Sir × vir, only service demand of each request needs to be
collected. Service demand of each request is difficult to measure, however, accord-
ing to the service demand law [18], Dir = Ui/Xir, here Ui is the utilisation of service
station i and Xir is the throughput of job class r at station i. Therefore, we can mea-
sure Ui and Xir (through monitoring utility or system logs) and calculate Dir using
the service demand law. In a real test-bed, we could drive the system utilisation to a
required level by sending a large number of requests that are of the same type, and
measure the resulting throughput. The service demand of each request can then be
computed based on the service demand law.

9.3.5 Bottleneck Identification of Multi-tier Architecture

Bottlenecks are a phenomenon where the performance or capacity of an entire sys-
tem is severely limited by a single component. This component is sometimes called
the bottleneck point. Formally, a bottleneck lies on a system’s critical path and pro-
vides the lowest throughput [6]. It has been shown in [3] that multi-class models can
exhibit multiple simultaneous bottlenecks. The dependency of the bottleneck set on
the workload mix is therefore derived. In an enterprise system there are normally
different classes of jobs and the class mix can change at run-time. This suggests that
there might be several bottlenecks at the same time and bottlenecks can shift from
tier to tier over time. Therefore, system designers need to study the best server con-
figuration to avoid bottlenecks during system capacity planning and provisioning,
and ideally provide schemes to support dynamic server allocation during run-time.

9 QoS-Aware Service Selection 233

9.3.5.1 Identification Methods

In [8], it is shown that the bottleneck for a single class queueing network is the sta-
tion i with the largest service demand Sivi, under the assumption of the invariance of
service time Si and visiting ratio vi and given routing frequencies. Considerable re-
search exists [3, 8, 15, 16, 21] which studies bottleneck identification for multi-class
closed product-form queueing networks as the population grows to infinity. For a
finite population, the results in [10, 14] can be used. In this chapter we use the ap-
proach developed in [7], which uses convex polytopes for bottleneck identification
in multi-class queueing networks. This method can compute the set of potential bot-
tlenecks in a network with one thousand servers and fifty customer classes in just a
few seconds.

silver class jobs (%)

gold class jobs (%)

100

53.8

38.5

0 46.2 61.5 100

 WS tier

 WS tier
 AS tier

 AS tier

Fig. 9.5 Bottleneck of the two-class queueing network in pool 1

gold class jobs (%)

silver class jobs (%)

100

50.0

25.0

0 50.0 100

 DS tier
 WS tier

 AS tier

 AS tier

 WS tier

 DS tier

 DS tier

75.033.316.7

66.7

83.3

Fig. 9.6 Bottleneck of the two-class queueing network in pool 2

Figures 9.5 and 9.6 are the bottleneck identification results using convex poly-
topes for our chosen configurations for pool 1 and pool 2. Figure 9.5 shows that in
pool 1, when the percentage of gold class jobs is less than 46.2%, the web server tier
is the bottleneck; when it is between 46.2 and 61.5%, the system enters a crossover
points region, where the bottleneck changes; when the percentage of gold class jobs
in pool 1 exceeds 61.5%, the application server tier becomes the bottleneck.

234 James W. J. Xue and Stephen A. Jarvis

Figure 9.6 shows the bottleneck identification in pool 2. It is more complex and is
a good example of multiple bottlenecks and bottleneck shifting. In this case, when
the percentage of silver class jobs is less than 16.7%, the web server tier is the
bottleneck; when it is between 16.7 and 33.3%, both the web server tier and the
database tier are in the crossover region; if the percentage of silver class jobs lies in
the region 33.3–50.0%, the database tier becomes the bottleneck; when it is between
50.0 and 75.0%, the system enters another crossover region, where the application
server tier and the database server tier dominate; and finally, if the percentage of
silver class jobs exceeds 75.0%, the application server tier is the bottleneck in the
system.

Figures 9.7 and 9.8 provide a clear picture as to how the utilisations correspond-
ing to the workload mix changes in both pools. The two figures can also be used to
verify the results in Figures 9.5 and 9.6.

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1

0 . 2 0
0 . 2 5
0 . 3 0
0 . 3 5
0 . 4 0
0 . 4 5
0 . 5 0
0 . 5 5
0 . 6 0
0 . 6 5
0 . 7 0
0 . 7 5
0 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5
1 . 0 0
1 . 0 5

ut
ili

sa
tio

n

w e i g h t o f g o l d c l a s s j o b s

 W S T I E R
 A S T I E R
 D S T I E R

Fig. 9.7 Utilisation in pool 1

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

1 . 1

ut
ili

sa
tio

n

w e i g h t o f s i l v e r c l a s s j o b s

 W S T I E R
 A S T I E R
 D S T I E R

Fig. 9.8 Utilisation in pool 2

9.3.6 Server Switching for Revenue Maximisation

As previously highlighted, the workload in enterprise systems can vary significantly.
It is therefore the case that one-time system configuration is no longer effective and
it is desirable that servers be able to switch from one pool to another, depending
on the load conditions. However, the server-switching operation is not cost-free,
since during the period of switching the servers being switched cannot serve jobs.
Therefore, a decision has to be made as to whether it is worth switching in terms of
revenue maximisation.

9.3.6.1 Revenue Function

For a typical Internet service, a user normally issues a sequence of requests (referred
to as a session) during a new visit to the service site. Intuitively, a request contributes

9 QoS-Aware Service Selection 235

full revenue if it is processed before the deadline2 Dr. When a request r misses
its deadline, it still waits for execution with a probability P(Tr) and credit is still
due for late, yet successful processing. As can be seen from Figure 9.9, when the
response time Tr < Dr, then P(Tr) = 1; which means that the request contributes
full revenue and the user will send another request. Suppose Er is some time point,
at which the request is dropped from the system. It is assumed in this chapter that
when Dr ≤ Tr ≤ Er, the request will quit the system with probability P(Tr), which
follows a uniform distribution (refer to Figure 9.10). If Tr ≥ Er, then P(Tr) = 0,
which means that the request quits the system without contributing any revenue.
The following equation is used for calculating Pr.

P(Tr) =

1, Tr < Dr
Er−Tr

Er−Dr
, Dr ≤ Tr ≤ Er

0, Tr > Er

(9.6)

The meaning of the above equation is that the longer the completion time of a
job r exceeds its deadline, the more likely it is that the client will quit the system,
thus approximating real-world client behaviour.

T
r

E
r

D
r

P(T
r
)

1

Fig. 9.9 Illustration of the relationship between job response time and the probability that the
customer will remain in the system

D
r

E
r

1

E
r
− D

r

T
r

f(T
r
)

Fig. 9.10 Illustration of the relationship between the probability density function and request re-
sponse time

2 Soft deadline in lieu of hard deadline is used in this chapter.

236 James W. J. Xue and Stephen A. Jarvis

9.3.6.2 Revenue Maximisation

Based on the revenue function, the revenue gained and lost by server switching
can be calculated. Suppose some servers need to be switched from pool i to pool
j. We use V i

loss to represent the revenue loss in pool i. From the time that switch-
ing happens, the service capacity offered by server pool i starts to degrade. From
Equation 9.7, the revenue loss in pool i can be derived.

V i
loss =

R

∑
r=1

X i
r(k

i)φ i
rP(Tr)td−

R

∑
r=1

X i′
r (ki)φ i

rP(Tr)td (9.7)

The server switching itself takes time, during which neither pool i nor pool j can
use the servers being switched. Only after switching time ts, does pool j then ben-
efit from the switched servers. During the switching decision interval time td , the
revenue gain V j

gain can be calculated as below.

V j
gain =

R

∑
r=1

X j′
r
(
k j)

φ
j

r P(Tr)(td− ts)−
R

∑
r=1

X j
r
(
k j)

φ
j

r P(Tr)(td− ts) (9.8)

Here, it is assumed the decision interval time td > ts.
Our goal in this chapter is to maximise the ISP’s total revenue contributed by both

pool i and pool j. In other words, when we decide whether to switch servers, we need
to compare the revenue gain and loss caused by server switching, and the switching
is done only when V j

gain > V i
loss. In this chapter, we only consider switching servers

between pools in the same tier (i.e., we switch web servers from pool i to the web
server tier in pool j), although given proper configuration, the switching is also
possible between tiers (i.e., switching web servers in pool i to the application tier in
pool j).

9.3.7 Switching Policies

In this section, we describe two different server switching policies namely the pro-
portional switching policy (PSP) and the bottleneck-aware switching policy (BSP).
In the real-world web service registry, there might be a large number of similar
services in terms of the switching functionality, however, the service selection pro-
cedure discussed in this chapter is the same for each of the services.

9.3.7.1 Proportional Switching Policy

First, we consider a näive policy called the proportional switching policy (PSP). The
policy switches servers between pools based on the workload proportion in both
pools. Performance criteria for server switching is computed using the queueing

9 QoS-Aware Service Selection 237

network model; if the performance of the new configuration is better than the current
one, then server switching is done, otherwise the server configuration remains the
same. Algorithm 3 describes how the policy operates.

Input: N, mi, R, Kir , Sir , vir , φr , ts, td
Output: Server configuration
1. for each i in N do
2. m1

i /m2
i = K1/K2

3. end for
4. calculate Vloss and Vgain using eq. 9.7 and eq. 9.8;
5. if Vgain > Vloss then
6. do switching according to the calculations;
7. Sir ← S

′
ir;

8. else
9. server configuration remains the same;
10. end if
11. return current configuration.

Algorithm 3: Proportional Switching Policy.

Algorithm 3 is simple as it only considers the workload proportion. In fact, work-
load mix and revenue contribution from individual classes in different pools can also
affect the total revenue. In the next section, we will introduce a new switching pol-
icy, which takes the above factors into account.

9.3.7.2 Bottleneck-Aware Switching Policy

Input: Nr , mi, R, Kir , Sir , vir , φr , ts, td
Output: new configuration
1. while bottleneck saturation found in one pool do
2. if found at same tier in the other pool then
3. return;
4. else switch servers to the bottleneck tier;
5. mi← m

′
i and Sir ← S

′
ir;

6. end if
7. end while
8. search configurations using Algorithm 5
9. return current configuration.

Algorithm 4: The Bottleneck-aware Switching Policy.

Here we describe a more sophisticated server switching policy called the bottleneck-
aware switching policy (BSP), as described in Algorithm 4. BSP works in two
phases: bottleneck identification and local search.

238 James W. J. Xue and Stephen A. Jarvis

Input: Nr , mi, R, Kir , Sir , vir , φr , ts, td
Output: best configuration
Initialisation: compute U1

i ,U2
i

1. while U1
0 > U2

0 do
2. if m2

0 > 1 then
3. m2

0 ↓, m1
0 ↑; S2

0r ← S2′
0r;

4. while U1
1 > U2

1 do
5. if m2

1 > 1 then
6. m2

1 ↓, m1
1 ↑; S2

1r ← S2′
1r;

7. while U1
2 > U2

2 do
8. if m2

2 > 1 then
9. m2

2 ↓, m1
2 ↑; S2

2r ← S2′
2r;

10. compute Vloss using eq. 9.7;
11. S1

2r ← S1′
2r;

12. compute Vgain using eq. 9.8;
13. if Vgain > Vloss then
14. store current configuration;
15. end if
16. compute new U1

i ,U2
i ;

17. end if
18. end while
19. similar steps for U1

2 < U2
2

20. S1
1r ← S1′

1r;
21. compute new U1

i ,U2
i ;

22. end if
23. end while
24. similar steps for U1

1 < U2
1

25. S1
0r ← S1′

0r;
26. compute new U1

i ,U2
i ;

27. end if
28. end while
29. similar steps for U1

0 < U2
0

30. return best configuration.

Algorithm 5: The Configuration Search Algorithm.

Bottleneck identification. It first checks for bottleneck saturation in both pools.
If both pools have bottlenecks at the same tier, two cases are considered: (a) if
both of them are saturated, then no server will be switched; (b) if a bottleneck is
saturated in one pool but not in the other, then the algorithm incrementally switches
servers to the bottleneck tier and compares the new revenue with the value from
the current configuration. If a potential switch will result in more revenue, then the
configuration will be stored. The process continues until no bottleneck saturation in
either pools or no more switching can be done from the other pool. Note that when
bottleneck saturation is found, server switching in other tiers has little or no effect,
thus it can be safely neglected.

Local search. If there is no bottleneck saturation in either of the pools, then the al-
gorithm computes the server utilisation at all tiers in both pools and switches servers
from low utilisation tiers to high utilisation tiers using a local search algorithm

9 QoS-Aware Service Selection 239

(Algorithm 5). In both algorithms, superscripts represent pools and subscripts 0,
1, 2 represent the web tier, application tier and database tier respectively.

Algorithm 5 uses nested loops to search for possible server switches, starting
from the web tier continuing to the database tier. It tries to explore as many possible
switching configurations as possible. However, the algorithm will not guarantee that
the best switching result (the global optimal) will be found, thus it is a best-effort
algorithm. If we use m0,m1,m2 to represent the total number of web servers, applica-
tion servers and database servers in both pools respectively, in the worst case, the to-
tal number of searches made by Algorithm 5 will be (m0−2)×(m1−2)×(m2−2),
therefore the time complexity is O(m0 ·m1 ·m2). For typical server configurations,
m0, m1 and m2 are not normally large, thus Algorithm 5 is feasible in practice. The
time for each search iteration depends on the complexity of the underlying queueing
network model, which in turn depends on the number of stations and the number of
job classes (the dominant factor as shown in [16]). Enterprise systems are normally
three-tiered (N = 3), and the number of job classes is normally small, depending on
the classification criteria. Therefore, solving such a multi-class closed queueing net-
work model is very quick, thus the same applies for each iteration in the searching
algorithm. As shown later in this chapter, for our configuration, the average runtime
of the algorithm is less than 200 ms on a 2.2 Ghz computer, which is considered
acceptable.

For complex multi-class closed queueing network models, with thousands of sta-
tions and hundreds of job classes, the storage requirement for solving the models
are very high. In our case, storage is also not an issue as the model is relatively sim-
ple. Moreover, using a dedicated machine for the switching engine can increase the
searching speed, and also relax the associated storage requirement.

9.3.8 Proactive and Reactive Switching

In our proposed switching system, two approaches to server switching can be used—
proactive switching and reactive switching. Proactive switching is motivated by
identifying similar workload patterns over time (hours, days, weeks etc). Most Inter-
net services have cyclical patterns. For instance, for real-time financial applications,
the peak load normally appears at the beginning and the end of the market, and
the load is lower during the remainder of the opening hours; it is also the case that
Monday and Friday are busier than other weekdays. Based on historical workload
patterns, and by applying some workload prediction techniques such as those in-
troduced in [20], the server switching engine can re-allocate resources before the
expected heavy workload arrives, and also, can save the costs of server switching
during a heavily loaded period. However, due to uncertainties, workload demand can
have huge variation and predictive inaccuracies can be introduced by the workload
predictor, which are then passed to the switching engine, stimulating inappropriate
or wrong decisions. Therefore, proactive switching is not perfect and it can at best
hope to improve the overall performance during long term periods.

240 James W. J. Xue and Stephen A. Jarvis

Reactive switching is more dynamic, based on run-time system parameters and
can respond to system state changes quickly. The run-time data is collected via sys-
tem monitoring tools, is reformatted, and is fed into the analytical model. The model
is then solved and alternative switching decisions are compared. The proactive and
reactive switching approaches can of course work together to optimise the overall
system performance.

9.3.9 Admission Control

As described in the literature, admission control (AC) is necessary for busy Inter-
net services in order to achieve the SLAs. When a system is overloaded, most ISPs
simply reject less important requests. ISPs may give their customers compensation
for the rejected requests, depending on the SLAs between themselves and their cus-
tomers.

In this work, we also use a simple admission control scheme, in addition to the
server switching policy, to maintain the number of concurrent jobs in the system at
an appropriate level. When the workload is high, which in turn makes the overall
system response time high, less important requests are rejected first. If requests in
this category are rejected, but the overall response time still remains high, the AC
scheme continues to reject jobs in the system, until the response time decreases to
an acceptable level.

9.4 Performance Evaluation

9.4.1 Experimental Setup

We design and develop a simulator to evaluate the server switching approach in
this chapter. Two applications are simulated, running on two logical pools (1 and
2). Each application has two classes of job (gold and silver), which represent the
importance of these jobs. Both applications are multi-tiered and run on a cluster of
servers. The service time Sir and the visiting ratio vir are chosen based on realistic
values or from those supplied in supporting literature.

Based on a real test-bed which we have access to, the application server switching
takes less than five seconds and web server switching is relatively straightforward.
Database server switching is more complex, however, it does not affect the switching
policy itself. In this chapter, we assume that the switching cost for web servers,
application servers and database servers is the same for simplicity. Experimental
parameters used for our evaluation can be found in Table 9.2.

9 QoS-Aware Service Selection 241

Table 9.2 Experimental parameters

Pool 1 Pool 2
Silver Gold Gold Silver

Number of servers
WS 4 5
AS 10 15
DS 2 3

Service time(sec)
WS 0.07 0.1 0.05 0.025
AS 0.03125 0.1125 0.01 0.06
DS 0.05 0.025 0.0375 0.025

Visiting ratio
WS 1.0 0.6 1.0 0.8
AS 1.6 0.8 2.0 1.0
DS 1.2 0.8 1.6 1.6

Deadline (sec) 20 15 6 8
Exit point (sec) 30 20 10 12
Revenue unit 2 10 20 4

9.4.2 Evaluation Results

Experiments have been conducted for a number of different workload scenarios
called mixed workload, cross load, random load and workload generated from real-
world Internet traces. For each of these cases, we compare the results from our
proposed bottleneck-aware server switching policy (BSP) with those from the pro-
portional server switching policy (PSP) and the non-switching policy (NSP).

9.4.2.1 Mixed Workload

As described in Section 9.3.7.2, even if the total workload remains the same, system
bottlenecks can shift among tiers depending on the workload mix. To study the sys-
tem behaviour of different workload mixes, we choose a few key evaluation points
illustrated in Figures 9.5 and 9.6. Two sets of experiments are run: 1) keeping the
workload mix constant in pool 1 and altering the workload mix in pool 2, as shown
in Figures 9.11, 9.12, and 9.13; 2) keeping the workload mix in pool 2 constant and
altering the workload mix in pool 1 as seen in Figures 9.14, 9.15, and 9.16. The
server switching time is set to 5 seconds and the switching decision is made every
30 seconds. We explain the impact of the workload mix on the total revenue for the
NSP, and compare the results against the PSP and BSP policies.

From Figures 9.11, 9.12, and 9.13, it can be seen that when the workload mix
in pool 1 is constant, Figures 9.11, 9.12 and 9.13 show similar patterns. The total
revenue from both pools from NSP and PSP decreases when the percentage of silver
class jobs in pool 2 increases from 10 to 40%. This is understandable as silver class
jobs contribute less to the total revenue. When the percentage increases to 50%,
there is a big increase in total revenue. Based on our observations, this is due to a
lower response time in pool 2, which is less than Er for gold class jobs in pool 2.
When the percentage of silver class jobs is over 50%, although the response time

242 James W. J. Xue and Stephen A. Jarvis

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0 0 0

1 0 0 0 0

1 1 0 0 0

1 2 0 0 0
re

ve
nu

e

% s i l v e r c l a s s j o b s

 N S P
 P S P
 B S P

Fig. 9.11 The ratio of silver class jobs to
gold class jobs in pool 1 is (80:20).The per-
centage of silver class jobs in pool 2 ranges
from 10 to 90%

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0 0 0

1 0 0 0 0

1 1 0 0 0

1 2 0 0 0

re
ve

nu
e

% s i l v e r c l a s s j o b s

 N S P
 P S P
 B S P

Fig. 9.12 The ratio of silver class jobs to
gold class jobs in pool 1 is (60:40). The per-
centage of silver class jobs in pool 2 ranges
from 10 to 90%

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0 0 0

1 0 0 0 0

1 1 0 0 0

1 2 0 0 0

1 3 0 0 0

1 4 0 0 0

re
ve

nu
e

% s i l v e r c l a s s j o b s

 N S P
 P S P
 B S P

Fig. 9.13 The ratio of silver class jobs to
gold class jobs in pool 1 is (20:80). The per-
centage of silver class jobs in pool 2 ranges
from 10 to 90%

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0 0 0

1 0 0 0 0

re
ve

nu
e

% g o l d c l a s s j o b s

 N S P
 P S P
 B S P

Fig. 9.14 The ratio of gold class jobs to sil-
ver class jobs in pool 2 is (80:20).The per-
centage of gold class jobs in pool 1 ranges
from 10 to 90%

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0 0 0

1 0 0 0 0

1 1 0 0 0

1 2 0 0 0

re
ve

nu
e

% g o l d c l a s s j o b s

 N S P
 P S P
 B S P

Fig. 9.15 The ratio of gold class jobs to sil-
ver class jobs in pool 2 is (60:40). The per-
centage of gold class jobs in pool 1 ranges
from 10 to 90%

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0 0 0

1 0 0 0 0

1 1 0 0 0

1 2 0 0 0

re
ve

nu
e

% g o l d c l a s s j o b s

 N S P
 P S P
 B S P

Fig. 9.16 The ratio of gold class jobs to sil-
ver class jobs in pool 2 is (20:80). The per-
centage of gold class jobs in pool 1 ranges
from 10 to 90%

9 QoS-Aware Service Selection 243

in pool 2 decreases, the total revenue again decreases due to the decreasing weight
of gold class jobs. It can also be seen that Figure 9.11 has the highest revenue and
Figure 9.13 has the lowest revenue among the three cases. This is due to the longer
response time (within deadline) in pool 1 as a result of the percentage increases
in gold class jobs in the pool. As we know, a longer response time results in less
throughput, which then results in less revenue contribution.

In the second set of experiments, the workload mix in pool 2 is constant and
the percentage of gold class jobs in pool 1 is altered. Figures 9.14, 9.15, and 9.16
also present similar patterns. The total revenue in all three cases decreases when the
percentage of gold class jobs in pool 1 increases from 10 to 50%. The difference
in revenue between BSP and the other two policies is smaller as the weight of gold
class jobs increases. When the percentage is greater than 50%, the total revenue
increases as the percentage of gold class jobs in pool 1 increases. We notice that the
total revenue in Figure 9.16 is significantly higher than that in the other two cases.
This is due to lower response time (below Er) of both classes of jobs in pool 2,
which can result in a significant increase in revenue.

In both sets of experiments, it can be seen that PSP and NSP have almost the same
impact on total revenue for the one-time switching. The total revenue from NSP is
always higher than those from the other two policies as the local search algorithm is
employed in BSP and switching is done only when a better configuration is found.

9.4.2.2 Alternative Workload

In a web hosting centre, it is not uncommon that during certain periods the workload
for one application is increasing while it is decreasing for another. This kind of
crossover in workload can affect overall system performance. In this section, we
conduct performance evaluation for two cases: (1) when the workload increases
in pool 1 and decreases in pool 2; (2) when the workload increases in pool 2 and
decreases in pool 1. In both cases, the workload mix for silver and gold class jobs in
both pools is constant. The total number of concurrent users is set to a fixed number
(200), which matches the value in Section 9.4.2.1. During evaluation, admission
control is applied when necessary. Both sets of experiments are run for 570 seconds,
during which 19 switching decisions are made. Tables 9.3 and 9.4 list the results for
both sets of experiments.

In Table 9.3, we see that the workload in pool 1 increases by 10 each time from
10 to 200, while it decreases by 10 from 200 to 10 in pool 2. The total revenue
from NSP is 88,093. If AC is not applied, the total revenue from PSP and BSP are
85,130 and 1,900,034, representing a −3.4% and a 115.7% improvement, respec-
tively. When AC is applied, the total revenue from PSP and BSP are 85,130 and
211,947, representing a −3.4% and a 140.6% improvement, respectively. The neg-
ative impact from PSP is reasonable as the PSP is a näive switching policy, which
simply allocates servers based on the workload proportion regardless of the perfor-
mance results. Moreover, for each server switching, there is also a cost associated
with it. Although during each run, the resulting revenue from PSP is higher than

244 James W. J. Xue and Stephen A. Jarvis

Table 9.3 Load in pool 1 increases while it decreases in pool 2

Workload NSP Without A/C With A/C
(P1, P2) PSP BSP PSP BSP
(20,190) 2,418 403 5,916 403 5,916
(30,180) 2,429 2,429 2,569 2,429 2,569
(40,170) 2,429 2,429 6,134 2,429 6,134
(50,160) 2,425 2,425 2,619 2,425 2,619
(60,150) 2,420 2,420 7,175 2,420 7,175
(70,140) 2,415 2,415 3,458 2,415 3,385
(80,130) 2,410 2,410 15,097 2,410 15,097
(90,120) 3,827 3,827 10,389 3,827 9,288

(100,110) 3,459 3,459 11,014 3,459 3,837
(110,100) 6,374 6,374 11,872 6,374 16,510
(120,90) 5,244 5,526 11,189 5,526 16,497
(130,80) 5,557 6,923 7,963 6,923 16,233
(140,70) 4,761 6,255 13,367 6,255 16,151
(150,60) 6,735 3,780 13,408 3,780 16,038
(160,50) 6,834 6,905 13,461 6,905 15,877
(170,40) 6,944 6,273 13,532 6,273 15,639
(180,30) 7,068 6,478 13,632 6,478 15,264
(190,20) 7,201 7,012 13,752 7,012 14,604
(200,10) 7,143 7,387 13,487 7,387 13,114

Total revenue 88,093 85,130 1,90,034 85,130 2,11,947
Improvement −3.4% 115.7% −3.4% 140.6%

from NSP, in the long term the overall improvement could be negative (note that
PSP does not switch servers in each run). In this set of experiments, there is also a
performance improvement when admission control is applied.

In Table 9.4, the workload in pool 1 decreases by 10 each time step from 200 to
10, while it increases in steps of 10 from 10 to 200 in pool 2. The total revenue from
NSP is 83,289. Without AC, the total revenue from PSP and BSP are 105,698 and
127,469, representing a 26.9% and a 53.0% performance improvement, respectively.
When AC is applied, the new total revenues are 105,698 and 117,808, representing
a 26.9% and a 41.4% improvement. Note that with AC, the total revenue from BSP
is less than it is in the no AC case. This is reasonable for light load situation (such
as the chosen workload in this case) because the AC works before the BPS and if
the workload results in system bottleneck saturation, the AC simply rejects requests.
However, the saturation for current configuration can be relaxed in another config-
uration that is returned by the BPS, and the rejected requests will result in loss of
revenue. We believe that when workload is high, due to switching cost, the over-
all revenue without AC will be less than in the AC case. To confirm this, we set
the total number of users in both pools to 250. The total revenue from NSP is now
84,170. Without AC, it is 127,918 using PSP and 158,487 from BSP, representing
a 52.0% and a 88.3% performance improvement. With AC, the total revenue from
PSP and BSP are 127,918 and 161,550, representing a 52.0% and a 115.7% per-
formance improvement. In conclusion, BSP always outperforms PSP in terms of

9 QoS-Aware Service Selection 245

Table 9.4 Load in pool 1 decreases while it increases in pool 2

Workload NSP Without A/C With A/C
(P2, P1) PSP BSP PSP BSP
(20,190) 7,201 6,227 14,492 6,227 14,492
(30,180) 7,068 6,862 11,895 6,862 11,895
(40,170) 6,944 5,584 9,865 5,584 9,865
(50,160) 6,834 5,576 14,617 5,576 14,617
(60,150) 6,735 5,569 14,787 5,569 14,787
(70,140) 4,761 5,560 14,917 5,560 14,917
(80,130) 5,557 5,551 1,790 5,551 1,790
(90,120) 5,244 5,540 4,567 5,540 4,742

(100,110) 6,374 5,528 7,562 5,528 5,238
(110,100) 3,459 5,515 9,442 5,515 3,321
(120,90) 3,827 5,499 12,455 5,499 4,233
(130,80) 2,410 5,482 586 5,482 2,028
(140,70) 2,415 5,461 1,792 5,461 7,181
(150,60) 2,420 5,436 1,346 5,436 1,346
(160,50) 2,425 5,405 1,468 5,405 1,468
(170,40) 2,429 5,367 1,469 5,367 1,469
(180,30) 2,429 5,314 1,471 5,314 1,471
(190,20) 2,418 5,229 1,474 5,229 1,474
(200:10) 2,339 4,993 1,474 4,993 1,474

Total revenue 83,289 1,05,698 1,27,469 1,05,698 1,17,808
Improvement 26.9% 53.0% 26.9% 41.4%

revenue contribution. The AC doesn’t always improve performance, depending on
the workload intensity and workload mix.

9.4.2.3 Random Workload

In this section, we consider a more representative workload scenario—the ran-
dom workload. The number of users in pools 1 and 2 are uniformly distributed
between 20 and 200. Moreover, the workload mix in each pool is also random.
In Sections 9.4.2.1 and 9.4.2.2, a thirty-second fixed switching decision interval is
used. In this section the switching decision interval time is the same as the work-
load change interval time, which is also a random number uniformly distributed in
a fixed range. Two cases are considered: (1) a short switching decision interval time
uniformly distributed between 15 and 25 s; (2) a long switching decision interval
time uniformly distributed between 25 and 55 s. In Sections 9.4.2.1 and 9.4.2.2, a 5
s fixed server switching time is used; we also alter the switching time (to 5, 10 and
15 s) and evaluate the performance impact of the switching cost on total revenue
for the three different switching policies. We evaluate the performance of the three
policies with and without the admission control scheme for each of the above cases.
All the experiments run for approximately two hours, during which 1,000 switching
decisions are made.

246 James W. J. Xue and Stephen A. Jarvis

Table 9.5 Short decision interval for random load
Without A/C With A/C

Switching time Metrics NSP PSP BSP NSP PSP BSP

5 s

No. of switches 0 130 20 0 145 15
Revenue (x1,000) 2,340 2,833 5,692 2,340 2,813 5,702
Improvement (%) 0 21.1 143.3 0 20.2 143.7
Improvement over non-ac (%) 0 −0.71 0.17

10 s

No. of switches 0 108 3 0 112 13
Revenue (x1,000) 2,340 2,886 4,731 2,340 2,894 5,684
Improvement (%) 0 23.3 102.2 0 23.7 142.9
Improvement over non-ac (%) 0 0.27 20.2

15 s

No. of switches 0 101 3 0 106 3
Revenue (x1,000) 2,340 2,928 4,730 2,340 2,937 4,783
Improvement (%) 0 25.2 102.1 0 25.5 104.4
Improvement over non-ac (%) 0 0.29 1.13

Tables 9.5 and 9.6 list the performance results for short and long switching deci-
sion intervals (thus switching decision interval time). As can be seen from Table 9.5,
for different server switching times, both PSP and BSP perform better than NSP in
terms of revenue contribution with and without AC. When no AC is applied, the
improvements are 21.1 and 143.3%, 23.3 and 102.2%, 25.2 and 102.1% for the 5,
10 and 15 second switching times respectively. With AC, the improvement are 20.2
and 143.7%, 23.7 and 142.9%, 25.5 and 104.4%, for the three cases, respectively.
Without AC, the numbers of switches are 130 and 20, 108 and 3, 101 and 3, for 5, 10
and 15 s switching times respectively. When AC is employed, the numbers are 145
and 15, 112 and 13, 106 and 3, respectively. As can be seen from both tables, the
number of server switches decreases as the server switching time increases. This is
because the increase in switching time makes server switching more costly, which
results in fewer switches. PSP always implements more switches than BSP. Also,
the total revenue from BSP decreases slightly whereas it increases using PSP as the
server switching time increases. This is understandable since PSP makes switching
decisions solely based on workload proportion, and it switches servers even though
the performance improvement may be very small. BSP on the other hand tries to
search for the best switching that results in more improvement at each switching
step. We find that the configuration returned by BSP is usually much further from
the current configuration (that not found by PSP), thus each BSP switching step
is more costly than that from PSP. On average, for each switching step, the ratio
of the improvement over the cost from BSP is greater than that from PSP. Thus,
BSP results in more revenue than the PSP policy. Due to the nature of the random
load, servers may need to be switched back to their original pool. As the switching
time increases, the number of switches for both policies decreases, therefore the to-
tal revenue increases from PSP but decreases from BSP. However, BSP consistently
outperforms PSP in terms of revenue contribution for all cases, and the improvement
from BSP over NSP is more than four times that of PSP.

From Table 9.5, it can also be seen that when AC is employed, there is a consider-
able improvement (20.2%) when the server switching time is 10 s. The improvement

9 QoS-Aware Service Selection 247

for the other two cases is less pronounced. The table also shows that when AC is
employed, PSP results in more switches in each case compared with the no AC
case. We believe this is a result of the workload mix change, which is caused by
the AC.

Table 9.6 Long decision interval for random load

Without A/C With A/C
Switching time Metrics NSP PSP BSP NSP PSP BSP

5 s

No. of switches 0 152 20 0 158 13
Revenue (x1,000) 4,778 5,702 11,567 4,778 5,661 11,579
Improvement (%) 0 19.4 142.1 0 18.5 142.4
Improvement over non-ac (%) 0 −0.73 0.11

10 s

No. of switches 0 134 20 0 82 15
Revenue (x1,000) 4,778 5,710 11,557 4,778 6,399 11,577
Improvement (%) 0 19.5 141.9 0 33.9 142.3
Improvement over non-ac (%) 0 12.1 0.17

15 s

No. of switches 0 119 3 0 80 15
Revenue (x1,000) 4,778 5,832 9,539 4,778 6,436 11,566
Improvement (%) 0 22.1 99.7 0 34.7 142.1
Improvement over non-ac (%) 0 10.4 21.2

Table 9.6 presents similar results to those seen in Table 9.5. Without AC, the
number of switches for PSP increases from 130 to 152, 108 to 134, 101 to 119
for 5, 10 and 15 s switching times, respectively; the number from BSP drops to 3
for the 15 s case, this trend can also be seen in Table 9.5. This is reasonable as
longer switching interval times result in potentially better configurations, thus more
switches. With AC, the number of server switches for PSP increases from 145 to
158 for the 5 s case, but decreases from 112 to 82, 106 to 80 for the other two cases;
the numbers of switches from BSP are 13, 15, 15 for 5, 10, 15 s switching times,
respectively. We believe that the workload mix (more weight for gold class jobs)
in the long switching decision interval case will result in more potentially better
configurations, and thus more switches.

The revenue improvement when using BSP is almost 142% for all the cases re-
gardless of the use of AC (an exception is the 99.7% implement for the case when
the server switching time is 15 seconds and no AC is employed). The reason for
the latter decrease is the same as for the number of switches above. The total rev-
enue improvement from PSP without AC are 19.4, 19.5 and 22.1% for the three
switching time cases. With AC, the improvements are 18.5, 33.9, and 34.7%. The
improvements are, however, much less than those from BSP regardless of the use of
AC.

9.4.2.4 Workloads Generated from Internet Traces

The workloads used for our simulation are generated from real-world Internet
traces [13]. Two Internet traces are used for the workloads in the two server pools

248 James W. J. Xue and Stephen A. Jarvis

in the experiments. The EPA-HTTP trace contains a day’s worth of HTTP requests
to the EPA WWW server located at Research Triangle Park, NC. The SDSC-HTTP
trace contains a day’s worth of HTTP requests to the SDSC WWW server located
at the San Diego Supercomputer Centre in California. Workload characteristics (in
terms of the number of requests in the systems) in both traces are extracted every five
minutes. In this section, two switching decision intervals are considered: (1) a short
switching decision interval—30 s; (2) a long switching decision interval—60 s. In
Section 9.4.2.2, a 5-s fixed server switching time is used; we use different server
switching times (5, 10 and 15 s) in this section and evaluate the performance im-
pact of the switching cost on total revenue for the three different switching policies.
We evaluate the performance of the three policies with and without the admission
control scheme for each of the above cases.

Table 9.7 Short decision interval for workload from traces
Without A/C With A/C

Switching time Metrics NSP PSP BSP NSP PSP BSP

5 s

No. of switches 0 18 5 0 18 7
Revenue (x1,000) 614 683.5 1,374 614 683.2 1447
Improvement (%) 0 11.3 123.7 0 11.3 135.6
Improvement over non-ac (%) 0 0 11.9

10 s

No. of switches 0 14 5 0 13 16
Revenue (x1,000) 614 715 1370 614 714.7 1370
Improvement (%) 0 16.4 123.2 0 16.4 123.2
Improvement over non-ac (%) 0 0 0

15 s

No. of switches 0 13 16 0 13 24
Revenue (x1,000) 614 648.7 569.1 614 648.7 1250
Improvement (%) 0 5.6 −7.3 0 5.6 103.5
Improvement over non-ac (%) 0 0 110.8

Tables 9.7 and 9.8 list the performance results for short and long switching deci-
sion intervals. As can be seen from both tables, for different server switching times,
both PSP and BSP perform better than NSP in terms of revenue contribution with
and without AC, except for the long interval case when the server switching time is
15 s. The improvement for PSP ranges from 5.6 to 16.4% whereas it ranges from
103.5 to 136% for BSP with one exception (−7.3%).

Table 9.8 shows that when the number of switches is the same (the number of
switches for BSP is the same for different switching times), the longer the server
switching time is, the less the performance improvement is. Table 9.8 also shows
that the number of switches for PSP when the switching time is 5 and 10 seconds is
the same; but when the switching time increases to 15 s, the number of switches de-
creases by 2 to 16, which results in a slight performance improvement. In Table 9.7,
it can be seen that when the server switching time increases from 5 to 10 s, the
number of server switches for PSP drops from 18 to 14, which results in slight per-
formance improvement. When the switching time is increased to 15 s, the number
of switches only decreases by 1. Since the switching cost has increased by 50%, the
total revenue is reduced. Results from both tables are intuitive. Server switching is

9 QoS-Aware Service Selection 249

not cost-free, therefore, the performance improvement is closely related to how long
a switching takes and the number of server switches. There is a trade-off between
performance improvement and the number of server switches, and it depends on
the decision interval and the server switching time. On the one hand, more switches
results in more potential performance improvement, on the other hand, due to the
switching costs involved, too many switches could result in less or negative im-
provement.

Table 9.8 Long decision interval for workload from traces

Without A/C With A/C
Switching time Metrics NSP PSP BSP NSP PSP BSP

5 s

No. of switches 0 18 5 0 18 7
Revenue (x1,000) 1,228 1,369 2,750 1,228 1,369 2,899
Improvement (%) 0 11.5 123.9 0 11.4 136.0
Improvement over non-ac (%) 0 −0.1 12.1

10 s

No. of switches 0 18 5 0 18 7
Revenue (x1,000) 1,228 1,367 2,747 1,228 1,366 2,894
Improvement (%) 0 11.3 123.7 0 11.3 135.6
Improvement over non-ac (%) 0 0 11.9

15 s

No. of switches 0 16 5 0 16 7
Revenue (x1,000) 1,228 1,420 2,744 1,228 1,420 2,890
Improvement (%) 0 15.6 123.4 0 15.6 135.3
Improvement over non-ac (%) 0 0 11.9

For the chosen workload, when AC is applied, there is no performance improve-
ment for PSP, and the overall improvement for BSP is approximately 12%. The
exception is the last case in Table 9.7, where the improvement is 103.5% with AC
but is negative without AC.

In conclusion, for certain workload scenarios, there is a trade-off between perfor-
mance improvement and the number of server switches for different server switch-
ing times and switching decision intervals. The number of server switches depends
on workload characteristics. Admission control schemes do not always improve per-
formance for all workload scenarios.

9.5 The Selection of Switching Services

After extensive performance evaluation of the switching services, the agent can then
choose the most suitable service among all services. The goal of each server switch-
ing service in the given example is to maximise the total revenue from both server
pools. The performance results show that the BSP service outperforms the PSP ser-
vice in terms of revenue contribution to ISPs, therefore, it should be chosen in the
given scenario.

250 James W. J. Xue and Stephen A. Jarvis

9.6 Summary

In this chapter, we first explain the importance of web service selection as the num-
ber of functionally similar services is increasing, hence, the agent has to choose the
best one among those services based on some non-functional attributes such as the
QoS of each service. The challenge of web service selection arise due to a number
of factors. One important factor is that it is very difficult to assess the QoS of a
service, especially in the real-time environment, where changing system state can
affect the quality of the service. Another important factor that could affect the as-
sessment of QoS is that some dishonest service providers over claim the quality of
their services to attract more clients. This issue is closely related to reputation of
service providers and trust between them and the agents (or the end users). Some
approaches such as the introduce of user feedback (or voting) mechanisms can help
to resolve the trust-related issues.

After general discussion of the procedure of service selection, we then use a
server switching service as a case study to describe the service selection procedure.
The focus of the case study is on performance modelling of the multi-tier Inter-
net services and performance evaluation of various switching services employed in
such as multi-tier architecture. As can be seen in this chapter, service selection after
performance evaluation is straightforward, therefore, performance evaluation plays
a very important role in web service selection. The development of performance
models can be time-consuming, however, it is the service providers’ responsibility
to model their service and the targeted execution environments.

References

1. A. S. Ali, S. A. Ludwig, and O. F. Rana. A Cognitive Trust-Based Approach for Web Service
Discovery and Selection. In Third IEEE European Conference on Web Services, 2005.

2. M. Arlitt and T. Jin. A Workload Characterization Study of the 1998 World Cup Web Site.
IEEE Network, 14(3):30–37, 2000.

3. G. Balbo and G. Serazzi. Asymptotic Analysis of Multiclass Closed Queueing Networks:
Multiple Bottlenecks. Performance Evaluation, 30(3):115–152, 1997.

4. P. Barford and M. Crovella. Generating Representative Web Workloads for Network
and Server Performance Evaluation. ACM SIGMETRICS Performance Evaluation Review,
26(1):151–160, 1998.

5. G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. Queueing Networks and Markov Chains:
modelling and performance evaluation with computer science applications. Wiley, 2nd edi-
tion, 2006.

6. J. Y. L. Boudec. Rate Adaptation, Congestion Control and Fairness: A Tutorial, Nov 2005.
7. G. Casale and G. Serazzi. Bottlenecks Identification in Multiclass Queueing Networks Using

Convex Polytopes. In Modelling, Analysis, and Simulation of Comp. and Telecommunication
Systems (MASCOTS), 2004.

8. P. J. Denning and J. P. Buzen. The Operational Analysis of Queueing Network Models. ACM
Computing Surveys, 10(3):225–261, 1978.

9. D. A. D’Mello and V. S. Ananthanarayana. Quality Driven Web Service Selection and Rank-
ing. In Fifth International Conference on Information Technology (ITNG’08), 2008.

9 QoS-Aware Service Selection 251

10. D. L. Eager and K. C. Sevcik. Bound Hierarchies for Multiple-class Queueing Networks.
Journal of ACM, 33(1):179–206, 1986.

11. S. Galizia, A. Gugliotta, and J. domingue. A Trust Based Methodology for Web Service
Selection. In International Conference on Semantic Computing (ICSC’07), 2007.

12. Y. Gao, J. Na, B. Zhang, L. Yang, and Q. Gong. Optimal Web Services Selection Us-
ing Dynamic Programming. In 11th IEEE Symposium on Computers and Communications
(ISCC’06), 2006.

13. Internet Trace. Internet Traffic Archive Hosted at Lawrence Berkeley National Laboratory. In
http://ita.ee.lbl.gov/html/traces.html, 2008.

14. T. Kerola. The Composite Bound Method for Computing Throughput Bounds in Multiple
Class Environments. Performance Evaluation, 6(1):1–9, 1986.

15. C. Knessl and C. Tier. Asymptotic Approximations and Bottleneck Analysis in Product Form
Queueing Networks with Large Populations. Performance Evaluation, 33(4):219–248, 1998.

16. M. Litoiu. A Performance Analysis Method for Autonomic Computing Systems. ACM Trans-
action on Autonomous and Adaptive Systems, 2(1):3, 2007.

17. J. Little. A Proof of the Queueing Formula L = λW . Operations Research, 9(3):383–387,
May 1961.

18. D. A. Menasce and V. A. F. Almeida. Capacity Planning for Web Performance: metrics,
models,and methods. Prentice Hall PTR, 1998.

19. M. Reiser and S. Lavenberg. Mean-value Analysis of Closed Multi-Chain Queueing Net-
works. Journal of the Association for Computing Machinary, 27:313–322, 1980.

20. J. Rolia, X. Zhu, M. Arlitt, and A. Andrzejak. Statistical Service Assurances for Applications
in Utility Grid Environments. Technical report, Technical Report HPL-2002-155, HP Labs,
2002.

21. P. J. Schweitzer. A Fixed-point Approximation to Product-form Networks with Large Popu-
lations. In 2nd ORSA Telecommunication Conference, 1992.

22. K. Sevcik and I. Mitrani. The Distribution of Queueing Network States at Input and Output
Instants. Journal of the Association for Computing Machinary, 28(2), 1981.

23. M. Sun and F. Arbab. Qos-driven Service Selection and Composition. In 8th International
Conference on Application of Concurrency to System Design, 2008.

24. D. T. Tsesmetzis, I. G. Roussaki, I. V. Papaioannou, and M. E. Anagnostou. QoS awareness
Support in Web Service Semantics. In the Advanced International Conference on Telecom-
munications and International Conference on Internet and Web Applications and Services
(AICT/ICIW’06), 2006.

25. UDDI. Universal Description Discovery and Integretion. In http:// www.uddi.org, 2006.
26. B. Urgaonkar, G. Pacifici, P. J. Shenoy, M. Spreitzer, and A. Tantawi. An Analytical Model for

Multi-tier Internet Services and its Applications. ACM SIGMETRICS Performance Evaluation
Review, pages 291–302, 2005.

27. L. Vu, M. Hauswirth, and K. Aberer. QoS-Based Service Selection and Ranking with Trust
and Reputation. Lecture Notes in Computer Science, 2005.

28. WSDL. Web Serivce Description Language. In http://www.w3.org/TR/ wsdl.
29. P. C. Xiong and Y. S. Fan. QoS-aware Web Service Selection by a Synthetic Weight. In

Fourth International Conference on Fuzzy Systems and Knowledge Discovery, 2007.
30. A. Zalewski and A. Ratkowski. Evaluation of Dependability of Multi-tier Internet Business

Applications with Queueing Networks. In International Conference on Dependability of Com-
puter Systems (DEPCOS-RELCOMEX’06), 2006.

31. J. Y. Zhou and T. Yang. Selective Early Request Termination for Busy Internet Services. In
15th International Conference on World Wide Web, Edinburgh, Scotland, 2006.

Chapter 10
Future Directions

Nathan Griffiths, Kuo-Ming Chao, Simon Miles, Sanjay Modgil, Nir Oren,
Michael Luck and Kwei-Jay Lin

Abstract Given the distributed and dynamic nature of SOC, and the autonomy of
the agents involved, it is inevitable that failures will sometimes occur. Such fail-
ures might be due to simple errors or bugs, or may be a result of explicit malicious
behaviour on behalf of an agent. In this chapter we introduce a number of future
directions that will support the management of SOC by defining and constraining
interactions (contracts), assessing and reducing the risk of failure (trust and reputa-
tion), and defining the responsibilities of the agents involved (accountability).

Nathan Griffiths
Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
e-mail: nathan@dcs.warwick.ac.uk

Kuo-Ming Chao
Department of Computer Science, Coventry University, Coventry, CV1 5FB, UK
e-mail: k.chao@coventry.ac.uk

Simon Miles
Department of Computer Science, King’s College London, London, WC2R 2LS, UK
e-mail: simon.miles@kcl.ac.uk

Sanjay Modgil
Department of Computer Science, King’s College London, London, WC2R 2LS, UK
e-mail: sanjay.modgil@kcl.ac.uk

Nir Oren
Department of Computer Science, King’s College London, London, WC2R 2LS, UK
e-mail: nir.oren@kcl.ac.uk

Michael Luck
Department of Computer Science, King’s College London, London, WC2R 2LS, UK
e-mail: michael.luck@kcl.ac.uk

Kwei-Jay Lin
Department of Electrical Engineering and Computer Science, University of California, Irvine,
CA, USA
e-mail: klin@uci.edu

N. Griffiths, K.-M. Chao (eds.), Agent-Based Service-Oriented Computing, 253
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-041-0 10, c© Springer-Verlag London Limited 2010

254 Nathan Griffiths and Kuo-Ming Chao et al.

10.1 Introduction

In open systems there will always be a need for agents to be constrained or in-
centivised to act cooperatively [8]. Where agents have divergent goals there is a
temptation to attempt to improve individual utility by rescinding commitments,
overcharging, or reducing quality. Current service-oriented systems tend to either
avoid addressing such issues, by restricting the agents involved to those from known
trusted providers, or by providing only a partial solution using relatively simple trust
and reputation techniques. In the long-term we see electronic contracts as being the
foundation of an overall solution (introduced in Section 10.3). Electronic contracts,
as per traditional paper contracts, allow the creation and enforcement of restrictions
on agent behaviour. However, as described in Section 10.3, we are some way off
from practical useable contract-based approaches. Moreover, even when practical
electronic contract systems do exist, such contracts are unlikely to specify precisely
all aspects of an interaction, but instead will focus on the main issues and likely areas
of failure. Trust and reputation (introduced in Section 10.2) can be used in the short-
term to provide a solution to constraining and influencing the behaviour of agents,
and in the long-term will provide a fall-back for failures and circumstances that are
not covered by electronic contracts. A related aspect of interactions is accountabil-
ity (introduced in Section 10.4), which enables the identification of responsibility in
the event of service failure. Such accountability supports reconfiguration to remedy
failures, and can include mechanisms such as compensation.

10.2 Trust and Reputation

Trust and reputation, as discussed in Chapter 8, are a means for an agent to assess the
likelihood that others will behave as desired and as expected. Several computational
approaches to trust and reputation have been developed over recent years. At the
most basic level trust is seen as a simple numerical assessment of the risk associated
with interacting with others based on an agent’s direct past experiences. Using these
experiences simple update functions [25], probability assessments [36], and fuzzy
logic [13] have all been used to estimate an agent’s trustworthiness. Reputation com-
bines this notion of trustworthiness from direct experiences with information from
third parties to determine a richer notion of trust [1]. Many approaches take into
account reputation information from third parties as a complement to direct experi-
ences. For example, the mechanisms used in Regret [33], TrustNet [35], FIRE [15]
and TRAVOS [36] all make use of reputation in this way. More details on these ap-
proaches can be found in Chapter 8. At present, however, there is no single trust and
reputation mechanism that is widely used and generally accepted. Moreover, there is
no widely accepted mechanism that is targeted at service-oriented systems, and al-
though the existing mechanisms are clearly applicable to service-oriented systems,
they do not fully address the needs of this domain. Each of the models proposed ad-
dresses the needs of a particular environment and, despite being of clear relevance,

10 Future Directions 255

none has yet found widespread acceptance in the area of service-oriented comput-
ing.

Trust and reputation are fundamental to supporting decision making across the
various processes in a service-oriented system, ranging from the initial selection
of appropriate services, to managing runtime issues such as QoS and resource pro-
vision. Our view is that there are three important areas that require further work
to enable trust and reputation to be fully integrated into service-oriented systems,
namely, establishing agreement on the characteristics of services and interactions
that can be monitored and managed using trust-based techniques, refinement of
existing trust and reputation mechanisms to take account of such characteristics,
and extending existing tools and technologies to support decision making based on
trust and reputation. These areas can be viewed as giving rise to two main activ-
ities that are required to facilitate widespread adoption of trust and reputation in
supporting decision making, namely standardisation and technology integration.

10.2.1 Standardisation

In order to increase the adoption and use of trust, some form of standardised infor-
mation representation and communication mechanism is needed. There are several
aspects to achieving such standardisation, but the most fundamental is to have a
clearly defined information format and set of trust and reputation dimensions. Many
existing approaches to trust consider interactions as being decomposed into several
dimensions, such as cost, quality, reliability and so forth [13]. If trust and reputation
are to be useful in open systems it is important for heterogeneous agents operat-
ing on different platforms and supplied by different vendors to consider the same
dimensions, and for these dimensions to have appropriate semantics and representa-
tion. In particular, we need a common language and frame-of-reference for specify-
ing the characteristics of services, agreements, and interactions such that suppliers’
and consumers’ expectations match, and are relevant to third parties who may be
relying on information regarding the results of an interaction to make judgements
about trust and reputation. Thus, we require all agents in a system to have a common
understanding of characteristics such as cost, quality, reliability etc.

The first stage in achieving a widely applicable trust and reputation mechanism
for service-oriented systems is to define an appropriate representation for describing
service and interaction characteristics. In technical terms this is a relatively straight-
forward task, since the possible dimensions have been considered in detail by exist-
ing literature, and we are essentially concerned with selecting a subset of these and
finding an appropriate representation language. At a management level, however,
this is a non-trivial task requiring input from stakeholders and users to ensure that
a suitable set of dimensions, along with appropriate semantics and representations
are selected. Given the range of application domains for service-oriented systems
this is a complex task, since we need to arrive at a suitable set of dimensions that is
rich enough to represent agents’ concerns and yet simple enough to enable sharing
of trust and reputation information. For service aspects such as cost it is simple to

256 Nathan Griffiths and Kuo-Ming Chao et al.

envisage a commonly agreed unit of currency, for example, but for aspects such as
quality and reliability it is more difficult to frame an agent’s interests in a domain in-
dependent and commonly understood manner. Our view is that a promising solution
is to combine existing domain specific characteristics with more general interaction
descriptions. For example, quality might be described in terms of the proportion of
interactions in which expectations were met, rather than focusing on precise service
details. A common representation language and semantics is fundamental to en-
abling agents to exchange trust and reputation information without misinterpreting
or corrupting the meaning of the information.

Based on an agreed representation of service and interaction characteristics, we
need a commonly agreed mechanism for sharing such information. In particular, to
enable agents to make judgements about trust and reputation we need a mechanism
to support feedback and recommendations between agents. On the completion of an
interaction (and potentially during service delivery) it is likely that both the service
provider and consumer will update their own personal trust assessments of the other
party, with respect to their behaviour during the interaction. If such information is
shared, then other third parties can use it to refine their own assessments of the
agents concerned. To enable third parties to effectively use such information not
only do we require a common representation language, but we also require an agreed
mechanism for the dissemination of information.

Reputation mechanisms can be categorised into centralised and decentralised,
and it is also important to develop a standardised approach for acquiring and main-
taining reputation information. Ideally, this would be done in a decentralised man-
ner, such that no single agent (or group of agents) has overall control. Decentralisa-
tion reduces the risk of a controlling agent manipulating reputation information or
being a bottleneck or single point of failure in the system. A centralised approach,
however, is simpler and so a pragmatic approach may be to first deploy a centralised
approach, and then move to decentralisation once scalability etc. becomes an issue.
For example, a basic reputation scheme would be for all agents involved in an inter-
action to submit feedback to a central repository on completion of the interaction.
Agents can then extract feedback from this repository to make trust and reputation
assessments of the agents with whom they might interact. For example, if faced
with a choice between two service suppliers who advertise similar characteristics,
an agent might try to select the most reliable by looking at the feedback for the two
suppliers to assess whether one is more likely to deliver the stated characteristics.

10.2.2 Technology Integration

For trust and reputation to be widely adopted in practical deployed service-oriented
systems, the notions of trust and reputation need to be fully integrated into the tools
and technologies that are used. This applies throughout the discovery, selection,
composition, execution and management of services. Throughout this book we have
have seen a variety of techniques and approaches for integrating agents and service-
oriented computing, and the tools and technologies described can all be extended

10 Future Directions 257

to support trust (and reputation). The most basic level at which trust needs to be
incorporated is in QoS-aware service selection and composition. The most common
approach to service selection and composition is based on business process flow us-
ing WSDL and BPEL4WS. Our view is that the first step to widespread utilisation of
trust and reputation to support SOC is to integrate such concepts into these existing
technologies. Once this is done, more advanced approaches, such as the multiagent
service composition approach described in Chapter 3 can be extended to incorpo-
rate trust and reputation. From this base, tasks such as workflow management and
maintaining QoS, as discussed in Chapters 4 and 9, can similarly incorporate trust
and reputation. The key point is that to facilitate the adoption of trust-based tech-
niques we need to identify the most widely used tools and technologies and augment
or extend them to support trust. Doing so will, first, provide a short-term alternative
to electronic contracts (as discussed in the following section), and second, in the
long-term, provide a fall-back for situations and failures that are not covered by
contracts.

Integrating support for trust and reputation into the tools and technologies that
are used for service-oriented systems is reliant on the existence of a common repre-
sentation language and semantics, as discussed above. Once such a representation is
agreed, existing tools can be augmented to support this representation. For example,
the WSDL descriptions of services offered might be required to specify particular
service characteristics as defined by the representation. Similarly, when orchestrat-
ing services, the control and data flow can be specified in such as way as to ensure
that the required characteristics are considered.

10.2.3 Further Challenges for Trust and Reputation

In addition to the integration of trust and reputation support into the tools and tech-
nologies used for service-oriented computing, there are a number of more general
challenges to address in which trust and reputation are likely to be part of the so-
lution. Two significant issues that will become increasingly important as service-
oriented computing becomes more widespread are collusion and compliance.

Collusion occurs where two or more agents manipulate interactions and/or infor-
mation to promote or demote particular agents or services. For example, an agent
may give positive feedback after a negative experience in return for some payment.
Agent can use a combination of their own experiences and the information pro-
vided by others in detecting collusion. Detection of collusion is an open problem
in agent-based systems, and although initial work exists in particular areas such as
centralised reputation systems [20] and online auctions [39] there is no general so-
lution. Similarly, there is no mechanism for detecting collusion in service-oriented
systems, and this is likely to be an important area of future research.

Compliance is concerned with ensuring that interactions proceed in accordance
with the agreed characteristics. In a complex workflow, where there are several
levels of sub-contracting, it can be difficult to ensure that the overall result meets
the required criteria. For example, in a data analysis application where all services

258 Nathan Griffiths and Kuo-Ming Chao et al.

must meet certain accuracy and quality constraints it is difficult for the overall “cus-
tomer” to ensure that all sub-contractors adhere to these constraints. The first issue,
as discussed above, is to ensure that we have suitable languages for expressing the
characteristics required of interactions, for example using an augmented version of
BPEL4WS. The second issue is to ensure that appropriate monitoring is performed
at run-time to ensure compliance with the specified workflow. Since there is no
global agent, this again involves issues of trust as the only practical solution is for
individuals to monitor compliance locally and trust the compliance information pro-
vided by others.

The final challenge for integrating trust and reputation into service-oriented com-
puting is to ensure that there exist appropriate mechanisms for imposing sanctions
on agents who rescind their commitments. Such sanctions are likely to be two-fold
including a decrease in perceived trust and reputation and an explicit penalty or
compensation mechanism, and both of these aspects require consideration. Exist-
ing approaches to trust and reputation typically include mechanisms by which the
perception of an agent is decreased if they fail to fulfil their commitments. These
mechanisms should be relatively straightforward to transfer to a service-oriented
setting. However, little work has been done on establishing penalty or compensa-
tion mechanisms, and we see this a important issue. Firstly, some mechanism is
needed for specifying the penalties that will be incurred under different circum-
stances (for example, there may be different penalties for being late to a complete
failure to deliver). (Note that this is different to the notion of “compensation” in
BPEL which is related to rollback of transactions rather than imposing penalties.)
Secondly, a mechanism is required to ensure that such penalties when incurred are
actually paid.

10.3 Contract-Based Systems

Simon Miles, Sanjay Modgil, Nir Oren and Michael Luck

In this section, we consider contract-based systems, their grounding on the concept
of norms, and the infrastructure required to support them. Dynamic open systems
of the kind envisaged for service-oriented architectures can be considered complex
systems in which very many entities interact, usually with some individual or collec-
tive purpose. However, it has been argued [8] that agents interacting in a common
society need to be constrained in order to avoid and solve conflicts, make agree-
ments, reduce complexity, and in general to achieve a desirable social order. This is
the role of norms, which represent what ought to be done by a set of entities (agents
or services), and whose fulfilment can be generally seen as a public good when their
benefits can be enjoyed by the overall society, organisation or group [7]. Research
on norms and agents has ranged from fundamental work on the importance of norms
in agent behaviour to proposing internal representations of norms [37], considering
their emergence in groups of agents, and proposing logics for their formalisation
(e.g., [32, 37]).

10 Future Directions 259

The easiest way to represent and reason about norms is by seeing them as built-in
constraints, where all the restrictions and obligations of agents are obeyed absolutely
without deliberation. In this view, the effort is left to the system designer to ensure
that all agents respond in the required way and, consequently, that the overall system
behaves coherently. However, this may result in inflexible systems that must be
changed off-line when either the agents or the environment change. By contrast,
if a dynamic view of norms is taken, in which agents are not assumed to obey norms
in all cases, the flexibility of the overall system can be assured [40].

Norms are thus the mechanisms of a society to influence the behaviour of the
agents within it. They can be created from different sources, varying from built-in
norms to simple agreements between agents, or more complex legal systems. They
may persist over different periods of time, for example until an agent dies, as long
as an agent remains in the society for which the norms were issued, or just for a
short period of time until a normative goal is satisfied.

10.3.1 Electronic Contracts

In situations in which the obligations, prohibitions and permissions that may affect
agent behaviour in a normative system may not apply to societies as a whole, but to
individuals within the society, they can be documented and communicated between
agents in the form of contracts. Electronic contracts, mirroring the paper versions
exchanged between businesses today, offer the possibility of dynamic, automatic
creation and enforcement of such restrictions and compulsions on agent behaviour.
In addition, in situations in which there are many contracts within a particular appli-
cation, it can be difficult to determine whether the system can reliably fulfil them all;
computer-parsable electronic contracts may allow such verification to be automated.

Modelling business service components belonging to different organisations
(such as a Web Service, for example) as independent entities that are able to dynam-
ically negotiate, commit to, enact and dissolve contractual agreements at runtime
seems to be a sensible and natural option. Here, contracts may be used as a formal
means to set out commitments, obligations, prohibitions, permissions, powers, du-
ties, penalties and other conditions on the execution of the underlying process or
workflow. Such software contracts can thus help to bridge the gap between formal
legal documents between companies and their software implementations. In par-
ticular, they facilitate increased flexibility in deployed systems while at the same
time they maintain a formal underpinning for service-service interaction, and make
it possible to evaluate service execution in terms of compliance with the contract
rather than behaviour according to shared program code.

There are two pre-requisites to realistically applying an electronic contracting
approach in real-world domains. First, to exploit electronic contracts, a well-defined
conceptual framework for contract-based systems, to which the application entities
can be mapped, is needed. Second, to support the management of contracts through
all stages of the contract life-cycle, we need to specify the functionality required of

260 Nathan Griffiths and Kuo-Ming Chao et al.

a contract management architecture that would underly any such system, leading
to ready-made implementations for particular deployments of that architecture. We
will consider the requirements of both the conceptual framework and the supporting
architecture below.

10.3.2 Conceptual Frameworks for Contract-Based Systems

A conceptual framework is needed to describe a contract-based system, including
the contracts themselves and the agents to which they apply. A number of useful
operations may be performed on the framework specification of a given application.
First, off-line verification mechanisms can check whether the contracts to be estab-
lished obey particular properties, such as being achievable, given the possible states
the world can reach. From this, and the contracts themselves, it is possible to de-
termine which states are critical to observe during execution to ensure appropriate
behaviour. A critical state of a contract-based system with regard to an obligation
essentially indicates whether the obligation is fulfilled or fulfillable, e.g., achieved,
failed, in danger of not being fulfilled, etc.

The framework specification can also aid in determining which processes are
suitable for the administration of the electronic contracts through their lifetimes, in-
cluding establishment, updating, termination, renewal, and so on. In particular such
processes also include observation of the system, so that contractual obligations can
be enforced or otherwise effectively managed; these processes depend on the criti-
cal states mentioned earlier. The selection of a process typically requires that certain
agents take on specific roles. These roles in turn require that the agents have certain
capabilities, which are in turn instantiated by specific components. Furthermore,
only once these administrative processes exist may contract documents actually be
used and enforced by the system.

10.3.3 Supporting Architectures for Contract-Based Systems

An effective architecture for contract-based systems should support multiple dif-
ferent ways of handling all stages of a contract’s life cycle (for example, allowing
for contracts to be negotiated, or imposed by the organisational hierarchy, allowing
for both lax and strict contract enforcement, and the like). This would allow the ar-
chitecture to be incorporated into a wider range of application domains and types
of deployment than existing systems which mandate the use of a specific protocol.
For example, there are different ways for agents to sign a contract, some useful
in domains in which some centralised management components exist, such as us-
ing a trusted third party notary to manage the process and store the contract, while
others are applicable in decentralised settings, such as all parties to the contract ap-
plying digital signatures to preserve its integrity. Similarly, an architecture should
not constrain a designer in using a single approach for contract administration and
management, but instead provide guidelines and useful building blocks from which

10 Future Directions 261

complete systems may be created. This contrasts with specifications such as WS-
Agreement and Web Service Level Agreement, where the specifications cover only
part of a contract’s administrative requirements [2, 24].

Moreover, it is valuable to aim for broad observation and management of obli-
gations and prohibitions, so as to verify whether they are being complied with, to
prevent failure when in danger of violation, and to take advantage of success when
obligations are being easily met. Here, the critical states identified from a frame-
work specification as those in which the status of a norm changes, can be used to
focus observation and management of obligation fulfilment in accordance with a
particular application.

10.3.4 Existing Work and Future Directions

Current deployments of e-business applications typically function in the following
way: some overarching legal agreement between the relevant parties is signed by
human representatives, with only the subsequent implementation of the resulting
e-business links being developed and deployed in software [6]. This enables busi-
nesses to address particular (but basic) legal constraints, and at the same time to
benefit from the opportunities afforded by new software tools. However, the ap-
proach suffers from some important limitations. First, there is often no explicit or
formal connection between the initial legal agreement and the resulting software
implementation. Second, legal agreements are typically general, covering the whole
business collaboration, as opposed to particular aspects of that collaboration. For
example, this might not address the specific aspects of a shipment of parts for air-
craft engines, but might instead cover the agreement between businesses to supply
parts in general. Related to this is a third limitation: legal agreements are typically
fixed and restrict flexibility, yet the implementation of software contracts or agree-
ments (and the supporting infrastructure) facilitates much greater flexibility than is
possible in these legal documents. A key advantage of software contracts is that
they can be modified dynamically at runtime, yet if the corresponding legal agree-
ments do not permit this, then the benefits that might be gained from the software
infrastructure are thus severely curtailed.

Although there is much existing work on contract-based systems, with significant
research and development, we are still far from the development of practical usable
contract-based approaches to e-business system design. In particular, approaches
such as software by contract (and Microsoft INDIGO) are at a very low level and
primarily address method correctness rather than higher level issues of service deliv-
ery, which is where the additional value, as described in this section, arises. Similar
approaches, such as ebXML, allow only static contract patterns, which lose much
of the flexibility and dynamism, as suggested above.

Concepts such as norms specifying patterns of behaviour for agents, contract
clauses as concrete representations of dynamic norms, management or enforcement
of norms being governed by other norms, and the like, are all already established in
the literature [9–11, 23], but less work has been conducted on the development of

262 Nathan Griffiths and Kuo-Ming Chao et al.

practical system deployments for business scenarios. In particular, business systems
operate in the context of wider organisational and inter-organisational processes,
so that commitments, providing assurance over the actions of others, assume great
importance. While potentially less flexible over the short term (as an entity should
honour its commitments rather than performing any action it desires), explicit con-
tracts provide just such commitments. They are therefore more appropriate for busi-
ness systems than more flexible, less predictable ad hoc approaches [12, 27].

Overall, the area of contract-based systems is very promising, but with much
work remaining to transform the existing ideas into practical implementations.

Acknowledgement

The research described in this section is partly supported by the European Commis-
sion Framework 6 funded project CONTRACT (INFSO-IST-034418). The opinions
expressed herein are those of the named authors only and should not be taken as nec-
essarily representative of the opinion of the European Commission or CONTRACT
project partners.

10.4 Service Accountability

Kwei-Jay Lin

When a service agent in SOC [5,16] delegates service functionalities to other service
agents, it is imperative for the main agent to ensure that all external servers provide
an acceptable and consistent level of performance, in order to meet the overall ob-
jective from its clients. The behaviour of each individual service in a service process
must be clearly understood in order to resolve any responsibility issue if there is a
service failure. Any ill-behaved service should be detected and may be replaced im-
mediately to ensure the service quality. In other words, service agent systems should
have simple-yet-effective mechanisms to conduct:

1. monitoring of services and diagnosis of possible faults and problems,
2. inspection and reasoning about the correctness of individual services, and
3. dynamic reconfiguration of services and service processes.

To provide a holistic solution to the above requirement, the framework of ser-
vice accountability has been proposed in [41] as a means to monitor services, iden-
tify problems, and make remedies. Indeed, accountability needs have been defined
constantly in the real world by many public institutions such as government agen-
cies, hospitals and non-profit organisations as a comprehensive measure to provide
operation transparency and to furnish a responsible attitude toward any unaccept-
able behaviour. We believe that accountability for agents and services should also

10 Future Directions 263

be carefully studied in SOC by considering the unique characteristics in the ser-
vice oriented paradigm. An accountability mechanism for service systems should
clearly specify the expected behaviour, model inter-dependencies among service
components, diagnose and identify faulty service agents, and defuse and recover
from faults [28].

10.4.1 Introduction to Accountability

Accountability has become a major concern for business management in USA, es-
pecially after the ratification of the Sarbanes-Oxley Act of 2002 [34] (also known
as the Public Company Accounting Reform and Investor Protection Act of 2002),
which establishes new enhanced accountability standards for all public companies
and public accounting firms. The PCAOB (Public Company Accounting Oversight
Board) is given the responsibility of overseeing, regulating, inspecting, and disci-
plining accounting firms in their roles as auditors of public companies. The Act
has made accountability a mandatory requirement for organisations. An effective
quality management infrastructure is essential to maintain business integrity.

Horsch reports on results-based accountability for public institutions [14], and
identifies the following design considerations for systems with accountability:

1. Objective: Outcomes that articulate what programs are to achieve;
2. Quality: Indicators to measure whether or not outcomes have been achieved;
3. Benchmark: Performance standards to assess how programs are progressing;
4. Monitoring: Data collection instruments to regularly obtain indicator data;
5. Feedback: Periodic collection and analysis of data for decision making and re-

porting.

Among the five design issues of an accountable institution, the first three are
industry-specific, to be identified by the mission of a specific institution. With that,
IT may be used to implement the last two elements: monitoring and feedback. This
is particularly true for agent-based SOC systems since we can utilise the agent capa-
bility for intelligently monitoring services and analysing their behaviours. Through
an agent-based SOC framework, we can offload the accountability management bur-
dens from humans to agent infrastructure.

10.4.2 SOA Accountability

Service accountability means that services deployed (regardless of whether by hu-
man, machine or software) have the obligation to accept the responsibility of, i.e.,
to account for, all of their actions [22]. By imposing accountability on services, ser-
vice clients are given transparency on service behaviours when conducting service

264 Nathan Griffiths and Kuo-Ming Chao et al.

collaborations. As a result, they may have better problem resolution capability when
invoking accountable services.

Accountability in the context of computer decision systems has been analysed
in [18] using four accountability attributes: fault, causality, role and liability. We
now review these four accountability attributes from SOA’s perspective.

• Fault in SOA is the result of a service execution which deviates from the client’s
expectation on the service. When a service is invoked, the service is expected to
fulfil some functional and nonfunctional capabilities. If a service result does not
comply with the a priori agreement, it is deemed to have a fault.

• Causality in SOA is a relationship between a fault and one or more services
that produce the results directly or indirectly. In many cases, a fault in service
execution can be the cause for another fault, resulting in a chain of faults.

• Role in SOA is a well-defined responsibility fulfilled by an agent during service
execution. Service providers and service clients are the two most obvious roles
in SOA. Other roles in SOA include service monitors, fault handlers, etc.

• Liability in SOA may include service replacement, process reconfiguration,
and/or compensation transactions. In the simplest case, a faulty service is re-
placed by a capable service. It may also cause the service process to be recom-
posed with a different workflow. Finally, due to some erroneous actions that have
occurred, a service system may need to initiate a compensation transaction to cor-
rect previous executions. Depending on the type of problem situation, different
liability actions should be applied.

10.4.3 Accountable Service Computing Model

As shown in Figure 10.1, the key phases of accountable computing include Detect,
Diagnose, Defuse, and Disclose. Each phase has its goals and artifacts. In this sec-
tion, we discuss the issues in each phase.

Detect Diagnose Defuse Disclose

Fig. 10.1 Phases of accountability management

10 Future Directions 265

10.4.3.1 The Detection Phase

The detection phase is to implement the following tasks: (1) dynamically acquiring
status on services and the environment, (2) computing the values of the relevant
quality attributes, and (3) comparing the values of quality attributes to the threshold
values identified in the SLA.

An accountable SOA system must first determine the expected behaviour in a
service system. The criteria for determining acceptable behaviours are usually de-
rived from the service interface, service policies, and service level agreement (SLA)
that includes quality and constraints of services.

A policy in SOA is a formal statement representing assertions on the require-
ments of services. Examples of SOA policies are authentication requirements for
sensitive information, and the predetermined response time for time-sensitive ser-
vices, etc. Service providers and consumers define their policies on services. A ser-
vice agreement is then derived as a mutual agreement on various quantifiable qual-
ity aspects of the service in order to enable runtime measurement and calculation.
Quality attributes are defined with an acceptable range for normal service execu-
tions [18, 29]. Example quality attributes are availability, accessibility, and perfor-
mance. The values of these quality attributes can be computed from measurements
on services and the execution environment. For example, availability is defined as
the percentage of time during which a service is available and performance can be
measured by dispatch time and latency time.

Faults in service processes may be present at different system levels: includ-
ing platform level, service level, and process level. The platform level includes the
system hardware, middleware, resources, and communication network. The service
level is defined by service invocations, service outputs, and QoS interfaces. The
process level is defined by business process specification and service flow from the
end-to-end point of view. An accountable system must detect all types of faults at all
three levels. Measurements on services and environment can be gathered by various
service monitoring methods such as [4, 26].

10.4.3.2 The Diagnosis Phase

Given some detected error or failure, an accountability support system must analyse
the problems detected to identify the likely cause(s). A cause is defined as the fault
origin of the erroneous behaviour or a situation (context) which has resulted in a
failure.

We can classify causes into three classes: (1) causes arisen from problematic
services, (2) causes arisen from malfunctioned infrastructure, and (3) causes arisen
from invalid service invocations by clients. Causes of the first type are often found
on poor behaviour of services such as “service not responding” and “unexpected ser-
vice behaviour”. Causes of the second type are similar to that found in conventional
application system management. For example, service systems may be overloaded
with an excessive number of invocations or network may be congested. Causes of

266 Nathan Griffiths and Kuo-Ming Chao et al.

the third type are related to invalid input values or parameters sent by clients, and
incompatible input and output parameters between two interconnected services.

There are different ways to diagnose faults and to identify causes. A probabilis-
tic model is reported in [41], which adopts the Bayesian network model to assess
services upon the observation of some abnormal behaviour. The approach utilises
monitoring agents and intelligent diagnosis methods, so that accountability is ef-
ficiently assessed. However, as in any probabilistic model, the result of assessing
accountability and diagnosed results is not always correct. Additional checking is
required to confirm the true cause of a fault.

Another way to conduct diagnosis is to use a statistical approach which utilises
the history of service invocations and rules for determining the cause based on the
observed abnormality. In this approach, we need to derive and define diagnosis rules
from the statistical analysis on earlier occurrences of (Abnormality Type, Cause
Type) pairs. The more comprehensive service logs are recorded, the more reliable
diagnosis may be produced. Statistical studies have been reported in [3, 38].

10.4.3.3 The Defusing Phase

This phase is to resolve the problem determined from the diagnosis phase. The ac-
tual method of defusing problems largely depends on the type of the cause.

For faulty services, the defusing method is usually to replace malfunctioning ser-
vices. The replacement can be for a service, a portion of a process execution path, or
the whole process. A faulty service may be replaced by a compatible service which
provides similar functionality and possibly stronger QoS (but with a higher cost).
When replacing a portion of an execution path, the execution path is updated by
considering the dependency between replaced services and their neighbour services.
When replacing the whole process path, the path is re-composed without using the
faulty service.

For causes from malfunctioning hardware, a defusing method must identify all
services affected and exclude them from the new service process. After that, the
system may reboot the middleware environment. For causes of the third type, e.g.,
invalid input parameters from clients, the defusing method is to request a new set of
input values, or select another service that can accept the parameters correctly.

10.4.3.4 The Disclosure Phase

In real life legal matters, a liability is often imposed on the party that has caused
a service failure. The disclosure phase is to apply a post-mortem remedy on the
outcome of a failed service. The remedy may be to compensate the service client
due to the damage from the service delivery failure, or to penalise the faulty server
so that it is prevented from making similar problem in the future.

The former remedy may be carried out as compensating transactions for the
client. For example, an aborted transaction may be restarted. An incorrect purchase

10 Future Directions 267

may be returned and credited. A delayed payment transaction may need to be hon-
oured with the original price and terms, even with extra discounts. Such remedy
actions may be executed as “exception handling” transactions by a penalty decision
maker in the accountability framework.

To penalise faulty servers (such as business process designers, service providers,
network administrators, SOA middleware managers), the information about their
unacceptable service record can be used to change the qualification or reputation of
these services. The result of disclosure can be reflected in the service repository for
future reference. That is, the causes for a certain abnormality, the effectiveness of
defusing methods for the causes, and the reputation of services can be effectively
utilised for future invocations.

10.4.4 Accountability System Components

To provide the functionality needed for accountable service computing, a compo-
nent architecture for accountable service system is shown in Figure 10.2. The archi-
tecture consists of four components: Monitor, Inspector, Handler, and Recorder.

Detector Discloser

ti i t

Service Agreement

Service Policy

Penalty

«introduces»

Player
«participates»

«is given»

Service Agreement

Detection Method Service System
«monitors»

«based on»

«recover»

Penalty Decision
Maker

«decides»

Abnormality

Defuser

«includes»

«identifies»

Defusing Executor

«based on» se
d

on
»«has an

«diagnose»

Diagnoser

Diagnosis Method Original Cause Defusing Decision

Recovery Plan

«includes»
«based on»

«produces»

«b
aeffect»

Diagnosis Method Original Cause Defusing Decision
Maker«identifies»

«based on»

Fig. 10.2 Accountability components

The component Monitor is to detect abnormality of services. It consists of the
following elements: Service Policy, Service Agreement, Fault Detector, and Abnor-
mality. Based on the Service Policy, the Fault Detector provides ways to recognise

268 Nathan Griffiths and Kuo-Ming Chao et al.

Abnormality by monitoring services, comparing current states to Service Agree-
ment, and describing abnormal situations.

The component Inspector is to analyse the situations and identify the fault origin.
It has elements of Diagnosis Conductor and Root Cause. For the errors detected, the
Diagnosis Conductor identifies causes using its diagnosing methods, and produces
a description of causes.

The component Handler is to recover a problematic services system from the
causes identified. It consists of the following elements: Recovery Decision Maker,
Recovery Plan, and Recovery Manager. Recovery Decision Maker generates a re-
covery plan on which the Recovery Manager defuses the fault causes. The recovery
plan is defined with appropriate defusing methods for the types of causes and system
management guidelines.

The component Recorder is to determine responsible players for the causes and
relevant penalties for them. It utilises the following elements: Penalty Decision
Maker, Service Provider, and Penalty. Penalty Decision Maker decides the specific
penalty for responsible players.

10.4.5 Related Work

Many service quality management and assurance research subjects are related to
accountability, as shown in Table 10.1. We summarise their research goals and tech-
nologies in the table.

Table 10.1 Comparison of QoS issues

Quality attributes Objective Technical challenge Methods
Autonomic Computing Make services Optimisation self-config., self-protection,

self-managed (Pro-active decisions) Self-healing, -optimisation
Security Threat resistance Algorithm complexity Encryption, firewalls,

(Resource integrity) securing channels
Safety Failure avoidance Property validation Program analysis
Trust Service trustworthy Reputation collection, Recommendation

collusion analysis
SLA QoS agreement Contract QoS measurement

Accountability Problem identification Causality and probability Diagnosis and reasoning

Autonomic computing is an approach to develop systems that are capable of
self-management, and are self-configuring, self-healing, self-optimising, and self-
protecting [17]. Each of the self-* methods is implemented with four operations
in sequence; monitoring, analysing, planning, and executing. These operations are
analogous to those defined in accountability. However, autonomic computing is mo-
tivated more from the demands for self management, whereas accountable service
computing is motivated to provide reliable and stable services. Even if a service
is managed in full autonomic manner, it may not be considered to be accountable

10 Future Directions 269

because accountability demands clarification aspects and goals such as determining
the responsible party for the given problem, which are not typically presented in
autonomic computing.

Security in computing systems means protecting systems from unauthorised ac-
cess, use, disclosure, disruption, modification, or destruction [31]. Security focuses
on withstanding threats, whereas accountability considers diagnosing threats for
security related problems and considers a comprehensive set of quality attributes
beyond security. Hence, a secure service may or may not be accountable, but an
accountable service is meant to be secure.

Safety in computer systems is a condition where theories and engineering ap-
proaches are defined to prevent foreseeable accidents and to minimise the result of
unforeseen ones [21]. The primary concern of system safety is the management of
hazards: their identification, evaluation, elimination, and control through analysis,
design and management procedures. Safety conditions are often defined to detect
the extreme values in the range of normal service output. In other words, an in-
correct output may not qualify as a system safety concern. Safety definitely can be
enhanced by accountable service computing, but it is only part of the objective for
accountability management.

Trust is the subjective probability by which an individual expects that another in-
dividual performs a given action on which its welfare depends [19]. Services with a
high trust value usually cause less problems during invocation. By choosing services
with a high trust, service systems may be more stable on providing a high QoS; but
it does not necessarily mean that the systems are accountable.

A service level agreement (SLA) is a specification of contracts between ser-
vice providers and consumers and it is generally accompanied with contracts on
QoS [30]. A SLA is focused on defining agreements between two parties, while ac-
countability is to identify problems and resolve them based on the specification of
SLA.

As observed in preceding discussions, some notions of accountability also appear
in existing work on autonomic computing, trust, and SLA. However, accountability
has a different motivation and objectives. Its main objective is on the fault identifica-
tion and resolution for service processes. It presents a comprehensive management
framework, deploys an accountability support architecture, and incorporates some
fault diagnosis methodology.

10.4.6 Future Direction

Accountability is very important for agent-based SOC since agents in multi-agent
systems rely on each other to complete their total functionalities. Agents must have
the mechanism to assure others that they are accountable of their behaviour and
performance, so that their clients may achieve specific end-to-end service objectives.

One of the most important issues for a practical support of accountability is effi-
ciency. We need to facilitate the 4-D capabilities without a heavy system overhead.

270 Nathan Griffiths and Kuo-Ming Chao et al.

We also need to have a good mechanism design so that it can respond promptly
whenever a service fault occurs. Another practical issue is the completeness of the
quality attributes. A real-life service-oriented system must manage many complex
quality attributes. Some of them may not be detected by a single event, but must
be reasoned in a holistic manner and/or compared with historical records. More re-
search is needed to design innovative event detection and reasoning technologies for
all types of accountable services.

Acknowledgement

The research described in this section is partly supported by the Tsinghua National
Laboratory for Information Science and Technology (TNList), China. The opinions
expressed herein are those of the named author only and should not be taken as
necessarily representative of the opinion of Tsinghua University.

References

1. A. Abdul-Rahman and S. Hailes. Supporting trust in virtual communities. In Proceedings
of the 33rd Hawaii International Conference on System Sciences (HICSS 2000), page 6007.
IEEE Computer Society, 2000.

2. A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne, J. Rofrano, S. Tuecke,
and M. Xu. Web services agreement specification (ws-agreement). Technical report, Global
Grid Forum, 2004.

3. L. Ardissono, L. Console, A. Goy, G. Petrone, C. Picardi, M. Segnan and D. T. Dupre. En-
hancing web services with diagnostic capabilities. In Proceedings of the Third European
Conference on Web Services (ECOWS ’05), page 182, 2005.

4. L. Baresi and S. Guinea. Towards dynamic monitoring of WS-BPEL processes. In Pro-
ceedings of International Conference on Service-Oriented Computing (ICSOC 2005), pages
269–282, 2005.

5. M. Bichler and K. J. Lin. Service-oriented computing. IEEE Computer, 39(3):99–101, 2006.
6. B. Brauer and S. Kline. SOA governance: A key ingredient of the adaptive enterprise. Devel-

opment technical report, Hewlett Packard, February 2005.
7. C. Castelfranchi, R. Conte, and M. Paolucci. Normative reputation and the cost of compliance.

Journal of Artificial Societies and Social Simulation, 1(3), 1998.
8. R. Conte. Emergent (info)institutions. Journal of Cognitive Systems Research, pages 97–110,

2001.
9. C. Dellarocas. Contractual agent societies: Negotiated shared context and social control in

open multi-agent systems. In Workshop on Norms and Institutions in Multi-Agent Systems,
4th International Conference on Multi-Agent Systems, 2000.

10. F. Duran, V. Torres da Silva, and C. J. P. de Lucena. Using testimonies to enforce the behaviour
of agents. In Proceedings of the AAMAS’07 Workshop on Coordination, Organization, Insti-
tutions and Norms in Agent Systems, 2007.

11. A. Garcia-Camino. Ignoring, forcing and expecting concurrent events in electronic institu-
tions. In Proceedings of the AAMAS’07 Workshop on Coordination, Organization, Institutions
and Norms in Agent Systems, 2007.

10 Future Directions 271

12. M. Ghijsen, W. Jansweijer, and R. Wielinga. Towards a framework for agent coordination
and reorganization, agentcore. In Proceedings of the AAMAS’07 Workshop on Coordination,
Organization, Institutions and Norms in Agent Systems, 2007.

13. N. Griffiths. A fuzzy approach to reasoning with trust, distrust and insufficient trust. In
Cooperative Information Agents X, volume 4149 of Lecture Notes in Computer Science, pages
360–374. Springer-Verlag, 2006.

14. K. Horsch. Results-based accountability systems: Opportunities and challenges. The Evalua-
tion Exchange II(1), 1996. http://www.gse.harvard.edu/hfrp/eval/issue3/theory1.html

15. T. D. Huynh, N. R. Jennings, and N. Shadbolt. Developing an integrated trust and reputation
model for open multi-agent systems. In Proceedings of the 7th International Workshop on
Trust in Agent Societies, pages 65–74, New York, USA, 2004.

16. M. N. Huhns and M. P. Singh. Service-oriented computing: Key concepts and principles.
IEEE Internet Computing, 2005.

17. IBM: An architectural blueprint for autonomic computing, 2006. http://www-
01.ibm.com/software/tivoli/autonomic/

18. D. G. Johnson and J. M. Mulvey. Accountability and computer decision systems. Communi-
cations of the ACM, 38(12):58–64, 1995.

19. A. Josang, R. Ismail, and C. Boyd. A survey of trust and reputation systems for online service
provision. Decision Support Systems 43, 2007.

20. R. Jurca and B. Faltings. Collusion-resistant, incentive-compatible feedback payments. In
Proceedings of the 8th ACM conference on Electronic commerce, pages 200–209. 2007.

21. N. G. Leveson. Safeware: System Safety and Computers. Addison-Wesley, 1995.
22. K. J. Lin. Accountable services. In Proceedings of the IEEE International Conference on

e-Business Engineering (ICEBE), 2007.
23. F. Lopez y Lopez, M. Luck, and M. d’Inverno. A normative framework for agent-based sys-

tems. Computational and Mathematical Organization Theory, 12(2–3):227–250, 2005.
24. H. Ludwig, A. Keller, A. Dan, R. P. King, and R. Franck. Web service level agreement

(WSLA), language specification. Technical report, IBM Corporation, January 2003.
25. S. Marsh. Optimism and pessimism in trust. In H. Geffner, editor, Proceedings of IV Ibero-

American Conference on Artificial Intelligence (IBERAMIA 1994), pages 286–297. Addison-
Wesley, 1994.

26. G. Morgan, S. Parkin, C. Molina-Jimenez, and J. Skene. Monitoring middleware for service
level agreements in heterogeneous environments. In Challenges of Expanding Internet: E-
Commerce, E-Business, and E-Government, pages 79–83, Springer, 2005.

27. E. Muntaner-Perich, J. Lluis de la Rosa, and M. Esteva. Towards a formalisation of dynamic
electronic institutions. In Proceedings of the AAMAS07 Workshop on Coordination, Organi-
zation, Institutions and Norms in Agent Systems, 2007.

28. H. Nissenbaum. Computing and accountability. Communications of the ACM, 37(1):72–80,
1994.

29. L. O’Brien, L. Bass, and P. Merson. Quality attributes and service-oriented architectures.
Technical Note CMU/SEI-2005-TN-014, 2005.

30. M. Papazoglou. Web Services: Principles and Technology. Prentice Hall, 2007.
31. C. P. Pfleeger and S. L. Pfleeger. Security in Computing. Prentice Hall, 2003.
32. A. Ross. Directives and Norms. Routledge and Kegan Paul Ltd., 1968.
33. J. Sabater and C. Sierra. A reputation model for gregarious societies. In Fourth Workshop on

Deception Fraud and Trust in Agent Societies, pages 61–70, 2001.
34. Sarbanes-oxley act (2002). http://www.sec.gov/about/laws/soa2002.pdf
35. M. Schillo, P. Funk, and M. Rovatsos. Using trust for detecting deceitful agents in artificial

societies. Applied Artificial Intelligence, Special Issue on trust, Deception, and Fraud in Agent
Societies, 14(8):825–848, 2000.

36. W. T. L. Teacy, J. Patel, N. Jennings, and M. Luck. TRAVOS: Trust and reputation in the
context of inaccurate information sources. Autonomous Agents and Multi-Agent Systems,
12(2):183–198, 2006.

37. R. Tuomela and M. Bonnevier-Toumela. Norms and agreements. European Journal of Law,
Philosophy and Computer Science, 5:41–46, 1995.

272 Nathan Griffiths and Kuo-Ming Chao et al.

38. G. Wang, C. Wang, A. Chen, H. Wang, C. Fung, S. Uczekaj, Y. L. Chen, W. G. Guthmiller
and J. Lee. Service level management using QoS monitoring, diagnostics, and adaptation
for networked enterprise systems. In Proceedings of the Ninth IEEE International EDOC
Enterprise Computing Conference (EDOC ’05), pages 239–250, 2005.

39. J.-C. Wang and C.-C. Chiu. Recommending trusted online auction sellers using social network
analysis. Expert Systems with Applications 34(3):1666–1679, 2008

40. F. Zambonelli, N. Jennings, and M. Wooldridge. Organisational abstractions for the analysis
and design of multi-agent systems. In Proceedings of the First International Workshop on
Agent-Oriented Software Engineering, 2000.

41. Y. Zhang, K. J. Lin, and J. Y. Hsu. Accountability monitoring and reasoning in service-oriented
architectures. Journal of Service-Oriented Computing and Applications (SOCA) 1(1), 2007.

Index

accountability, 263
advertising, service, 23
agent, 2
Agent Communication Language (ACL), 3
agents, 36
AgFlow, 59
ant algorithm, 56
Ant Colony System (ACS), 57
Apache River, 27
automatic composition, 50

binding, 115
blue pages, 26
BPEL patterns, 97
BPEL4WS, 49, 58
broker, service, 22
business process, 83
Business Process Execution Language (BPEL),

90
business process modeling, 82

candidate service, 49
causality, 264
centralised registry, 26
CHORD, 28
choreography, 84
Common Object Request Broker Architecture

(CORBA), 34
component service, 49
composite service, 49
composition, service, 23, 48
composition, web services, 130
consensus, 164
context awareness, 34
contracts, 259

Data Distribution Service (DDS), 34

decentralised registry, 27
dependability, 146
dependability evaluation, 156
discovery, service, 23
discovery, web services, 127
distrust, 190
dynamic binding, 101
dynamic selection, 101

EFLOW, 49
electronic business XML (ebXML), 27

fault, 264
fault injection, 154
fault models, 148
fault prevention, 152
fault tolerance, 33, 146, 153
fault tree, 149
FIRE, 206

global choreography, 88
Globus Toolkit (GT), 29
green pages, 26
Grid Computing, 29
Grid Information Service (GIS), 29

HISTOS, 204

interoperability, 33

Jini, 27
Jini Lookup Service (JLS), 35
JXTA, 28

LEAP, 59
liability, 264

273

274 Index

Linear programming techniques for Multi-
dimensional Analysis of Preferences
(LINMAP), 170

local choreography, 86

match making, 99
matchmaking, 33, 165
MDT-R, 206
mediation, web services, 131
mistrust, 190
mobile ad-hoc networks (MANETs), 28
mobility, 34
modelling methodologies, agent, 6
modelling methodologies, SOA, 7
Multi-agent based QoS-aware Service

Composition (MQSC), 48
Multiple Attribute Decision Making (MADM),

170

norms, 258

ontologies, 120
orchestration, 84
OWL-S, 122

parameterized BPEL, 102
peer-to-peer (P2P), 28
PeerTrust, 212
pheromone, 63
port type, 115
ports, 115
prediction, QoS, 226
proactive composition, 51
process choreographies, 106
provider, service, 22

Qbroker, 59
QoS prediction, 226
Quality of Service (QoS), 48, 52

ranking, web services, 129
reactive composition, 51
registry, central, 25
registry, service, 22
registry, UDDI, 116
Regret, 199
reliability, 33
reputation, 191
role, 264

scalability, 33
security, 33
selection, service, 23
selection, web services, 129

Semantic Annotations for WSDL and XML
Schema (SAWSDL), 125

Semantic Web Layer Cake, 121
Semantic Web Services (SWS), 119
Semantic Web Services Framework (SWSF),

124
server switching, 227
service, 4, 21
service composition generation, 63
service advertising, 23
service broker, 22
service class, 49
service composition, 23, 48
service composition graph, 54
service discovery, 23
Service Location Protocol (SLP), 27
Service Oriented Architecture (SOA), 4
service provider, 22
service registry, 22
service selection, 23
Simple Object Access Protocol (SOAP), 24,

116
Simple Service Discovery Protocol (SSDP), 35
SPORAS, 204

task graph, 53
trust, 190
trust classes, 218
trust, computational, 192
trust, Grid computing, 215
trust, Marsh’s formalism, 197
trust, reputational, 194
trust, socio-cognitive, 191

UDDI Business Registry (UBR), 35
UDDI registry, 116
Universal Description Discovery and

Integration Protocol (UDDI), 116
Universal Description, Discovery and

Integration (UDDI), 25
untrust, 190

web service composition, 130
Web Service Description Language (WSDL),

25, 115
web service discovery, 127
Web Service Discovery Architecture (WSDA),

32
web service mediation, 131
Web Service Modeling Ontology (WSMO),

123
web service ranking, 129
web service selection, 129
web services, 115

Index 275

Web Services Inspection Language (WSIL), 32
white pages, 26
workflow system, 82
WSDL, 58

WSDL-S, 124

yellow pages, 26

	Agent-Based Service-Oriented Computing (2010) (Elements)
	Preface
	Contents
	List of Contributors
	Introduction
	Kuo-Ming Chao and Nathan Griffiths
	Distributed Systems
	Software Agents
	Service-Oriented Architectures
	Modelling Methodologies
	Agent Modelling Methodologies
	SOA Modelling Methodologies
	Agents and Services

	Supporting Development Platforms
	Agents and SOA Standards
	Foundation for Intelligent Physical Agents (FIPA)
	SOA and Web Service Architecture Standards

	Overview of Chapters
	Conclusion
	References

	Service Advertisement and Discovery
	Shanshan Yang and Mike Joy
	Introduction to Service Advertisement and Discovery
	Basic Technologies
	SOAP
	WSDL
	UDDI

	Web Service Registry Architectures
	Centralised Registries
	Decentralised Registries
	Hybrid Registries

	Data Structures
	System Requirements
	Advertisement and Discovery Services
	Agents in Service Advertisement and Discovery
	Agents in Service Oriented Computing
	Development of Agents in Service Advertisement and Discovery

	Challenges in Service Advertisement and Discovery
	System Requirements
	System Modelling

	Summary
	References

	Multi-Agent Coordination for Service Composition
	Junzhou Luo, Wei Li, Bo Liu, Xiao Zheng and Fang Dong
	Introduction
	Preliminaries
	Service Composition
	QoS Attributes and User Satisfaction Degree of Service
	Task Graph
	Service Composition Graph
	From Task Graph to Services Composition Graph
	The Fundamentals of the Ant Algorithm

	Related Work
	Framework of Service Composition
	Service Composition Plan Generation
	Service Selection and Plan Optimization
	Multi-Agent Based Service Composition

	Architecture of MQSC
	Portal Agent
	Decision Agent
	Search Agent
	Registry Agent
	Management Agent
	Execution Agent

	Service Composition Generation
	Service Search and Composition Plan Generation
	QoS-Aware Service Selection

	Service Composition Deployment and Execution
	How to Manage the EA to Implement the Composite Plan for the MA
	The Plan Scheduling Algorithm of the EA
	An Example for the Scheduling Algorithm of the EA

	Case Study
	Case Scenario Description
	Multi-Agent System for Service Composition
	Travel Assistant Service Compositing

	Conclusion and Future Work
	References

	Flexible Workflow Management in Service Oriented Environments
	Birgit Hofreiter and Christian Huemer
	Introduction
	Orchestration and Choreography
	Motivation and Definitions
	Orchestration
	Local Choreography
	Global Choreography
	Approaches to Transform Between Orchestration and Choreography

	Workflow and Web Services
	Web Services Standards for Business Processes
	Specifying a Business Process by Means of BPEL
	Analyzing BPEL by Workflow Patterns

	The Role of Agents in Service-Based Business Processes
	Dynamic Workflows
	Dynamic Selection of Best Service Providers
	Changes to the Workflow Schema

	Summary and Outlook
	References

	Semantics for Service-Oriented Architectures
	Michael Stollberg and Dieter Fensel
	Introduction
	Web Services and SOA
	Web Services
	Service-Oriented Architectures

	Semantic Web Services
	Ontologies and the Semantic Web
	SWS Frameworks

	Semantic Techniques for Automating SOA
	Discovery
	Selection and Ranking
	Behavioral Compatibility
	Composition
	Mediation
	Automated Execution

	Conclusions and Outlook
	Summary
	Future Challenges

	References

	Dependability in Service-Oriented Computing
	Arshad Jhumka
	Introduction
	Service-Oriented Architecture
	Dependability Issues in Service-Oriented Architectures

	Models
	System Models
	Fault Models

	Dependability Enhancement in a Service Oriented Architecture
	Fault Prevention
	Fault Tolerance
	Fault Removal
	Fault Forecasting: Fault Injection

	Dependability Evaluation
	Case Studies
	A Web-Based Application
	Service-Oriented Computing in Ubiquitous Systems

	Conclusions
	References

	Consensus Issues for Service Advertisement and Selection
	Ping Wang, Chi-Chun Lo and Leon Smalov
	Introduction
	Semantic Confusion
	Reaching Consensus

	Existing Solutions for Web Service Selection
	The Proposed QoS-Aware Services Selection Model
	Basic Definitions and Notations
	Consistence and Inconsistence Measurements
	Problem Formulation

	Two Numerical Cases
	Numerical Case I
	Numerical Case II

	Discussion
	Conclusion
	References

	Trust and Reputation
	Sarah N. Lim Choi Keung and Nathan Griffiths
	Introduction
	Trust and Reputation
	Trust
	Reputation
	The Multiple Approaches to Trust and Reputation Models
	Review of Trust and Reputation Models
	Summary of Views of Trust and Reputation Models

	Agents and Service-Oriented Computing
	Peer-to-Peer Architectures
	Grid Computing

	Trust Classes and Ontologies
	Trust Semantics

	Summary
	References

	 QoS-Aware Service Selection
	James W. J. Xue and Stephen A. Jarvis
	Introduction
	Service Selection Procedure
	Case Study---Selection of Switching Service
	Server Switching in Internet Hosting Centres
	Server Switching Procedure
	Modelling Multi-tier Internet Services
	Model Parameterisation
	Bottleneck Identification of Multi-tier Architecture
	Server Switching for Revenue Maximisation
	Switching Policies
	Proactive and Reactive Switching
	Admission Control

	Performance Evaluation
	Experimental Setup
	Evaluation Results

	The Selection of Switching Services
	Summary
	References

	Future Directions
	Nathan Griffiths, Kuo-Ming Chao, Simon Miles, Sanjay Modgil, Nir Oren, Michael Luck and Kwei-Jay Lin
	Introduction
	Trust and Reputation
	Standardisation
	Technology Integration
	Further Challenges for Trust and Reputation

	Contract-Based Systems
	Electronic Contracts
	Conceptual Frameworks for Contract-Based Systems
	Supporting Architectures for Contract-Based Systems
	Existing Work and Future Directions

	Service Accountability
	Introduction to Accountability
	SOA Accountability
	Accountable Service Computing Model
	Accountability System Components
	Related Work
	Future Direction

	References

	Index

