SILICON IMPLEMENTATION OF
PULSE CODED NEURAL NETWORKS



THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE



SILICON IMPLEMENTATION OF
PULSE CODED NEURAL NETWORKS

edited by

Mona E. Zaghloul
The George Washington University

Jack L. Meador
Washington State University

Robert W. Newcomb
University of Maryland

\d
W

SPRINGER SCIENCE+BUSINESS MEDIA, LLC



Library of Congress Cataloging-in-Publication Data

Silicon implementation of pulse coded neural networks / edited by Mona

E. Zaghloul, Jack L. Meador, Robert W. Newcomb.

p. cm. -- (The Kluwer international series in engineering and
computer science)

Includes bibliographical references and index.

ISBN 978-1-4613-6152-7 ISBN 978-1-4615-2680-3 (¢Book)

DOI 10.1007/978-1-4615-2680-3

1. Neural networks (Computer science) 2. Semiconductors.
I. Zaghloul, M. E. (Mona Elwakkad) II. Meador, Jack L.
III. Newcomb, Robert W. IV. Series.
QA76.87.555 1994
006.3°3--dc20 93-48181

CIp

Copyright © 1994 by Springer Science+Business Media New York

Originally published by Kluwer Academic Publishers in 1994

Softcover reprint of the hardcover 1st edition 1994

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system or transmitted in any form or by any means, mechanical,
photo-copying, recording, or otherwise, without the prior written permission of
the publisher, Springer Science+Business Media, LLC.

Printed on acid-free paper.



TABLE OF CONTENTS

PREFACE
1. Some Historical Perspectives on Early
Pulse Coded Neural Network Circuits
R. W. Newcomb
2. Pulse Techniques in Neural VLSI:
A Review
A. F. Murray
3. Silicon Dendritic Trees
J. G. Elias
4. Silicon Neurons for Phase and Frequency

Detection and Pattern Generation
M. DeYong and C. Fields

5. Pulse Coded Winner-Take-All Networks
J. L. Meador and P. D. Hylander

6. Realization of Boolean Functions Using
a Pulse Coded Neuron
M. de Savigny and R. W. Newcomb

7. Design of Pulse Coded Neural Processing
Element Using Modified Neural Type Cells
G. Moon and M. E. Zaghloul

8. Low-Power Silicon Neurons, Axons
and Synapses
J. Lazzaro and J. Wawrzynek

9. Synchronous Pulse Density Modulation
in Neural Network Implementation
J. Tomberg

vii

39

65

79

101

113

153

165



vi

10.

11.

12.

INDEX

CMOS Analog Neural Network Systems Based
on Oscillatory Neurons
B. Linares-Barranco, E. Sanchez-Sinencio,
A. Rodriguez-Vazquez and J. L. Huertas

A Digital Neural Network Architecture
Using Random Pulse Trains
G. R. Salam and R. M. Goodman

An Unsupervised Neural Processor
J. Donald and L. A. Akers

199

249

263

291



Preface

When confronted with the hows and whys of nature's computational
engines, some prefer to focus upon neural function: addressing issues of
neural system behavior and its relation to natural intelligence. Then there are
those who prefer the study of the "mechanics” of neural systems: the nuts and
bolts of the "wetware": the neurons and synapses. Those who investigate
pulse coded implementations of artificial neural networks know what it means
to stand at the boundary which lies between these two worlds: not just asking
why natural neural systems behave as they do, but also how they achieve their
marvelous feats. The research resuits presented in this book not only address
more conventional abstract notions of neural-like processing, but also the more
specific details of neural-like processors.

It has been established for some time that natural neural systems perform
a great deal of information processing via electrochemical pulses.
Accordingly, pulse coded neural network concepts are receiving increased
attention in artificial neural network research. This increased interest is
compounded by continuing advances in the field of VLSI circuit design. This
is the first time in history in which it is practical to construct networks of
neuron-like circuits of reasonable complexity that can be applied to real
problems. We believe that the pioneering work in artificial neural systems
presented in this book will lead to further advances that will not only be useful
in some practical sense, but may also provide some additional insight into the
operation of their natural counterparts.

The idea of creating a book dedicated to pulse coding in neural VLSI was
first conceived at the International Conference on Circuits and Systems by
Mona Zaghloul in the spring of 1992. A special session had been organized by
Jack Meador and Robert Newcomb for the conference which was the first of
its kind and had attracted a number of researchers from both Europe and the
US who are working in the area. A poll of authors presenting at that session
showed unanimous support for the development of a book which would
showcase recent progress in pulse coded implementations. This book
represents the combined contributions of both those who were present at that
first special session as well as several others who are currently conducting
research in this fascinating area.

This volume seeks to cover many of the relevant contemporary studies
coming out of this newly emerging area. It is essentially a selection,
reorganization, and expansion of recent publications. In addition, Prof. Robert
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Newcomb provides a historical perspective on early pulse coded neural
network circuits in Chapter 1. This is followed by a review of more recent
pulsed neural VLSI techniques given by Alan Murray in Chapter 2. In that
chapter, Dr. Murray reviews the variety of pulse coding strategies available
and discusses pulse implementation techniques being investigated at the
University of Edinburgh. Silicon dendritic trees which are intended to emulate
the behavior of spatially extensive biological neurons are then discussed by
John Elias in Chapter 3. A model for a typical spiking neuron is described by
Mark DeYong and Chris Fields in Chapter 4 and is shown to be useful for
phase and frequency detection, filtering, and pattern encoding. In Chapter 5,
Jack Meador and Paul Hylander present a pulse coded winner-take-all network
which encodes decision strength as a variable rate pulse train generated by the
winning unit. The Neural Type Cell which is a special circuit that accepts
analog inputs and produces pulse coded outputs is used in Chapter 6 by Marc
De Savigny and Robert Newcomb to implement Boolean functions as well as
by Gyu Moon and Mona Zaghloul in Chapter 7 as part of a unique processing
element that can be used as a basic cell for artificial neural network
implementation. Low power silicon implementation of Neurons, Axons and
Synapses are introduced by John Lazzaro, and John Wawrzynek in Chapter 8.
These new implementations improve upon the power dissipation
characteristics of the self-resetting neuron and silicon axon described by
Carver Mead in his popular 1989 book. Synchronous pulse density
modulation techniques are presented in Chapter 9 by Jouni Tomberg. Both
switched capacitor and digital implementations of synchronous pulse coded
arithmetic are discussed in the context of established network architectures
here. The transconductance mode technique is presented in Chapter 10 by
Bernabe Linares-Barranco, Edgar Sanchez-Sinencio, Angel Rodriquez-
Vazquez, and Jose Huertas to implement an equivalent circuit for an oscillatory
neuron based on the simplified operation of the living neuron. This oscillatory
neuron is used to implement and test established neural architectures. In
Chapter 11 a digital architecture that utilizes random bit sequence properties is
described by Gamze Salam and Rodney Goodman. The extension of
previously established stochastic pulse coded implementation techniques are
presented and demonstrated. Finally in Chapter 12, James Donald and Lex
Akers present experimental results obtained with two adaptive pulse coded
signal processing chips for real-time control. These chips use pulse coded
signals for inter-chip communication and analog weights for information
storage. In all of this work, novel circuits are presented and innovative
techniques for implementing conventional neural network architectures are
introduced.
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SOME HISTORICAL
PERSPECTIVES ON EARLY PULSE
CODED NEURAL NETWORK
CIRCUITS

Robert W. Newcomb

Electrical Engineering Department
University of Maryland, College Park MD, 20742

PERSPECTIVES

From the beginnings of mankind the means of brain activity must have
fascinated man. And although Galvani had shown in the late 1700s that
muscles were excited by electrical activity of the nerves [Galvani 1791,
Brazier 61] it was not known through most of the 1800's what was the basis for
activity of the brain - indeed it is still unknown how a person thinks. In any
event the publication by the Polish neurophysiologist Adolf Beck in the
Centralblatt fiir Physiologie [Beck 1890], concerning his measurements of
electrical activity in the brain [Beck 1888], caused considerable controversy as
to whom was the first one to achieve such an accomplishment. After almost all
sides were heard from, the controversy was settled by a further letter to the
Centralblatt by Richard Caton calling attention to the measurements he had
reported to the August 24, 1875, meeting of the British Medical Association
and recorded in the report of the meeting [Caton 1875]. Among statements in
Caton's original report is the following: "When any part of the grey matter is in
a state of functional activity, its electric current usually exhibits negative
variation" [Brazier 61] where by "negative variation" at the time was meant
action potentials. Thus, we see that measurements were made on the pulse
coded electrical activity in the brain as early as 1875.



Nevertheless it was well into the 1930's before really significant
measurements were begun. Once such measurements were initiated more and
more sophisticated measurements were needed and for them more elaborate
electronic circuits were developed for that purpose. Among those making such
measurements in the 1930's was Dr. Otto H. Schmitt, who devised a means of
solving the equations proposed in theories of biological impulse propagation
via vacuum tube circuits [Schmitt 37a].

From my search of the literature it appears that Dr. Schmitt should be
given the credit for the first electronic circuit specifically designed as a pulse
coded neural circuit. This occurs in his April 1937 paper "An Electrical Theory
of Nerve Impulse Propagation” [Schmitt 37b] for which only the abstract
survives in the open literature. From the two abstracts, [Schmitt 37a, Schmitt
37b], it is clear that an electrical circuit was built to test the theory of "impulse
propagation” as the following is stated in [Schmitt 37b]: "The validity of the
theory is tested by comparing the behavior of this artificial "nerve” with that of
real nerve." It is also clear that Dr. Schmitt had in mind the use of such circuits
for the simulation of live neuron behavior since the above quote continues: "If
the theory is valid and the electrical model is a suitable equivalent, then certain
of the unmeasurable electrical characteristics of nerve can be evaluated in
terms of the constants in the electrical "nerve" required to make its
performance duplicate that of real nerve." This viewpoint is further
strengthened by private correspondence of Dr. Schmitt to the author (dated
June 9, 1993) in which he states that his 1937 Ph.D. was "in Physics,
Mathematics and Zoology with the topic of simulating the nerve axon with
computer available components." Finally it is also clear that the purposes of
these circuits was to better study neural function, rather than to make better
computers or controllers, since the abstract closes with: "The way would then
be open for a study of the mechanisms of the effects of abnormal agents such
as drugs, ion imbalances, and the like."

Dr. Otto H. Schmitt’s position is borne out further by the following quote
from the 1979 article of Pellionisz [Pellionisz 79] for which it should be noted
that [Schmitt 37a] follows [Schmitt 37b] on the original printed page and that
[Schmitt 37a] is an abstract for a demonstration of the working circuits: "The
third approach was the physical representation of highly simplified neurons by
small electrical circuits (so called neuromeme: see Harmon, 1959; McGrogan,
1961; Jenik, 1962; Lewis, 1964). Although this approach received a great
impetus from the widespread acceptance of the McCulloch-Pitts concept, it is
actually rooted in an idea of Schmitt (1937), who created the binary-output
electrical circuit that realizes threshold function (the Schmitt trigger)." These
references are [Harmon 59], [McGrogan 61], [Jenik 62], [Lewis 64], and



[Schmitt 37a] for Schmitt. It should be noted that it is after Dr. Schmitt that the
Schmitt trigger is named, this being the regenerative comparator which gives
hysteresis familiar to almost all undergraduate students studying electronics
[Millman 79, p. 623]. And, although the Schmitt trigger was published as a
circuit in its own right [Schmitt 38], it is clear that the work on pulsing in
neural circuits had a considerable influence on its development, if not being
the primary reason for its existence.

As we can see from the references of Pellionisz cited above, there was a
gap of roughly 15 years before further serious work on electronic circuits
occurred after that cited of Schmitt. In the meantime the fundamental paper of
Hodgkin and Huxley [Hodgkin 52] was published. Having given a
mathematical treatment for the generation and processing of action potentials,
this paper [Hodgkin 52] spawned a large number of circuits for simulating
these equations and, as a consequence, stimulated the development of many
aspects in the modeling of neural behavior [Eccles 57]. A typical circuit of the
era used a large number of bipolar transistors, both npn and pnp, incorporated
relays and many transistors and capacitors, see for example Figure 11 of [Jenik
64]. The references cited by Pellionisz give other representative circuits with
the book of MacGregor and Lewis [MacGregor 77] somewhat giving the state
of the art of the ideas surrounding circuits for neural modeling in the mid
1970's. However, to anyone versed in present day VLSI technology it is clear
that it would not be practical to build VLSI circuits of any size using the
neurons of most of the circuits published into the early 1970s.

With this last comment in mind it is worth noting that in the early and mid
1960s another philosophy emerged. This was the idea that rather than
simulating the actual behavior of neurons, as set up in equations like those of
Hodgkin and Huxley it might be expedient to mimic their behavior through
more concise abstractions. Although a move in this direction can be seen in the
work of the Applied Research Department team at RCA, [Putzrath 61, Martin
61, McGrogan 61], and of Harmon [Harmon 59] at Bell Laboratories, in my
mind the most significant idea of the 1960s toward this philosophy is
contained in the "neuristor” introduced by H. Crane in his 1960 doctoral
dissertation at Stanford [Crane 60]. This was published two years later in the
Proceedings of the IRE [Crane 62] where in the same issue appeared a very
interesting circuit by Nagumo, et all [Nagumo 62], for mimicking nerve axon
propagation, in essence giving a circuit realization of the neuristor, albeit quite
impractical for VLSI due to its use of tunnel diodes (a similar type of circuit
was actually given earlier by Cote [Cote 61] but the paper by Nagumo, et al,
has received more recognition, probably due to its rather elegant mathematical
development of axon mimicking equations). The idea of the neuristor was to



abstract the four key axon properties of threshold of excitation, refractory
period, attenuationless and uniform speed of propagation from which new
classes of computers could be conceived following upon the structure of neural
systems. Although in some sense impractical for circuit realizations due to the
need for lines and circulation of pulses upon the lines, the idea of abstracting
the neural system properties into ones that are tractable for electronic
realization is one that appears to be paying off. In any event the neuristor and
its derivatives led to a large number of circuits being proposed for neural
system realizations in the mid 1960s through the mid 1970s, in Europe, Japan
and the US. Many of the pertinent references to that era are listed in
[Newcomb 79], a paper appearing originally in Spanish out of friendship for a
Latin American colleague interested in the ideas.

Although there were a number of isolated studies throughout the world at
the time, one of the most interesting group undertakings was the Polish-USA
neural-type microsystems studies funded in the early 1970s by the US National
Science Foundation (under grants 42178 and 75-03227) using Polish wheat
purchase debt funds to finance the Polish side of the research. This program
had as its goal the development of bipolar and MOS circuits suitable for
integrated circuit construction that would mimic the behavior of neural
systems, and, hence, called "neural-type," a word coined by Professor N.
DeClaris. On the Polish side this was directed by Dr. M. Bialko of Politecnica
Gdansk, with involvement of C. Czarnul, B. Wilamowski, and J. Zurada,
among others, and on the US side was jointly directed by Dr. N. DeClaris and
myself, both of the University of Maryland, with involvement primarily of C.
Kohli. The main results to come out of this research in the pulse coded
hardware area were the development (primarily by B. Wilamowski) on the
Polish side of a bipolar circuit that acted as an action-potential-like-pulse
generator [Wilamowski 75] and a companion MOS circuit [Kulkarni-Kohli 76]
developed on the US side (primarily by C. Kohli) as well as a pulse processing
circuit jointly developed [Czarnul 76] (primarily by C. Czarnul). Probably it is
fair to say that of all the circuits developed during the historical period of 1930
- 1980, only the MOS circuit of [Kulkarni-Kohli 76] has survived with any
type of vitality and that in a form very much modified and improved upon to
take advantage of present day technology; see the paper by G. Moon and that
by M. de Savigny which follow in this volume. But all of the historical circuits,
which were primarily of the pulse processing type well into the 1980s, have
served the purpose of leading us step by step to better artificial neural
networks. It is also clear from the historical record that the lack of funding
during the 1975-1985 decade led to a new breed of researchers and a new set
of ideas, most of which were not founded upon the pulse processing



philosophy. One important change of emphasis that has come about has been
the concentration of interest upon synaptic influences, as incorporated in
modemn theories via the weights. In the research into the 1970s most of the
circuits concentrated upon developing axon behavior with the synaptic
junctions somewhat overlooked. In any event, it is refreshing for me to see an
upsurge of interest in the pulse coding techniques since there are clear
advantages, as biological systems discovered eons ago.

Because of the intrinsic interest in neural networks and the evident
significance to the future of hardware developments to the field of artificial
neural networks, it seems to me of considerable importance to have a well
documented history of the hardware developments, especially of pulse coded
circuits. Thus, I have tried to concisely put down some of what I am aware. But
this is only a start and in the end I would emphasize that only an outline of
what I consider to be the historically significant activities into the mid 1970s
have been given here. And probably of that some has been missed as I
discovered by recently locating a paper on a pulse code optoelectronic-
magnetic neuron by Bray in 1961 [Bray 61]. In my mind this is a field of
which we who are alive today can take great pride when we come to the point
of being able to sit as elders on our porch swings relating the developments of
the times to our grandchildren, as historically elders have done through the
ages. Thus, it is with considerable anticipation that I await a thorough
treatment by a competent historian of this fascinating field of modern history.
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PULSE TECHNIQUES IN
NEURAL VLSI: A REVIEW

Alan F. Murray

Department of Electrical Engineering
University of Edinburgh, Edinburgh EH9 3JL, UK

INTRODUCTION TO PULSE CODING

The coding of signals as the characteristics of pulse trains, or of indivi-
dual pulses is not a new idea. Many areas of the nervous system are known to
perform processing via electrochemical pulsed processes. Furthermore,
pulse-modulation schemes are widespread in electronic signal transmission -
any textbook on electronics will provide a review of these techniques (see, for
example [Horowitz 89]). for some readable background.

The use of pulses in neural VLSI, which is perhaps an obvious applica-
tion area for the technique, is of more recent origin. Since the advent of the
thermionic valve (tube) circuit models of "neurons” and "synapses" have been
built, in an attempt to better understand the functionality of these neural
building blocks. In 1987 we reported the first serious attempts to build a con-
nected, pulse-firing VLSI network [Murray 87ab]. This was, to be sure, a
crude and inelegant piece of design, but it did demonstrate that it was possible
to use pulses not only as a communications strategy, but as a computational
medium, in the neural context. Since then, more elegant designs have
emerged from this author’s and from many other research groups, examples
of which can be found in this book. The technique may almost be said to
have "entered the mainstream”. No longer is it simply a perverse and quirky
technique, adopted by academics for esoteric reasons. Chips based on pulse-
coding are boasting specifications to rival those of better-established techno-
logies (purely digital, and purely analogue, for example), and there are several
advantages in pulse-coding which will become clear throughout this book.
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Not all of these advantages have yet been fully exploited, and we believe that
pulse-coding has much yet to offer, as might be expected from an emerging
technique.

However, it is not the purpose of this chapter, this book, or any of the
authors therein to claim that pulse-coding is the best way forward for neural
integration. Some of the problems with pulse coding will be outlined in this
and other chapters (after the advantages have been highlighted, of course).

In this chapter I will attempt to provide a grounding in pulse techniques
and technologies, followed by a description of the "Pulse-Stream" work done
by the Edinburgh neural VLSI group. The EPSILON chip represents the cul-
mination of the first phase of that work, and will be described, warts and all.

In a final section, this chapter describes future directions in pulsed neural
VLSI - in the author’s group in particular.

Motivations

There is an attitude "spectrum" within the neural pulse fraternity, which
is well-represented by the chapters in this book. At the "biological" end, Laz-
zaro (Chapter 8) builds silicon models of the spiking behaviour of the axon
hillock. Lazzaro works very much within the Mead philosophy - building
analog VLSI models of early neurological processing functions such as hear-
ing and vision. His pulse-firing, or "spiking" circuits form building blocks in
a silicon model of the auditory canal, in which the silicon "hair cells" cause
spiking patterns whose temporal and spatial properties are important. In a
similar vein, but with different aims, John Elias (Chapter 2) builds
biologically-inspired silicon models of dendritic trees. These form delay
lines, where pulses may be injected at different times and places. This is not a
straightforward attempt to model biological forms, however, as the artificial
structures may be viewed as generic programmable processors, with no con-
ventional "weights", or learning algorithm. They are trainable by genetic
algorithms, to perform a variety of functions - such as distinguishing between
symmetric and asymmetric images. If the left hand side of the image is used
to provide pulse inputs to the upper half of a symmetric dendritic tree, and the
right hand side feeds the lower half, then the integrated output from the tree
will have a different temporal shape for symmetric and asymmetric images. It
is possible, therefore to conceive of a generic dendritic tree, where the archi-
tecture of the tree is adapted, rather than individual weights, to allow a com-
mon underlying structure to perform a variety of functions. The combination
of a biologically-inspired structure and computational medium (pulses) with a
genetic algorithm is seductive, although the neurobiological connection must
always be welcomed cautiously.
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At perhaps the opposite end of the spectrum alluded to above is the work
of Tomberg and Kaski (Chapter 9). In their encoding scheme, "pulses” are
synchronous pseudo-random bit streams, where the relative density of logical
1’s and Os in a time-window represents a (quantised) analog value. Such sto-
chastic coding methods are in themselves not new [Mars 81] but have not
been used in the neural context by other groups as yet. While the encoding
scheme requires weights and states to be stored as digital pseudorandom
"words", the computational elements reduce to simple logic gates. Thus a
trade-off is made between an increase in weight/state storage area, and a
reduction in the complexity (and thus area) of the arithmetic elements.

It can be seen, therefore, that pulsed methods are versatile. They can be
more or less "analog", according to the application and the prejudices of the
designer. What all pulsed methods have in common, however, is a more
overt use of the time axis as a coding medium than in conventional analog
and digital systems. It is this use of the time axis that brings about many of
the advantages of pulsed techniques, and the next section begins with a dis-
cussion of the ways in which it may be approached.

Methods

A time-varying analog state signal S; can be encoded in each of the fol-

lowing ways:-

PAM : Pulse Amplitude Modulation:

PWM : Pulse Width Modulation:

PFM : Pulse Frequency Modulation (average repetition rate of pulses)

PPM : Pulse Phase Modulation (delay between two pulses on different lines)

In addition, further variants exist - PCM : Pulse Code Modulation
(weighted bits) and PDM : Pulse Delay Modulation (delay between a pulse
pair on the same line).

PWM, PFM, PPM (and PDM) encode information in the time domain,
and are here seen as variants of pulse rate. In other words, PDM and PPM are
essentially equivalent to PFM with no averaging over several pulse intervals.
Such non-averaged pulse modulation techniques are used in various natural
systems, particularly where spatial or temporal information is derived from
the time of arrival of individual pulses or pulse pairs.

Pulse Amplitude Modulation (PAM). Here, the signal amplitude A; (
V; = A; X constant frequency pulsed signal ) is modulated in time, reflecting
the variation in S; . This technique, useful when signals are to be multiplexed
on to a single line, and can be interleaved, is not particularly satisfactory in
neural nets. It incurs the disadvantages in robustness and susceptibility to pro-
cessing variations inherent in a purely analog system, as information is
transmitted as analog (pulsed) voltage levels.
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Pulse Width Modulation (PWM). This technique is similarly straight-
forward, representing the instantaneous value of the state S; as the width of
individual digital pulses in V; . The advantages of a hybrid scheme now
become apparent, as no analog voltage is present in the signal, with informa-
tion coded as described along the time axis. This signal is therefore robust,
and furthermore can be decoded to an analog value by integration. The con-
stant frequency of signalling means that either the leading or trailing edges of
neural state signals all occur simultaneously. In massively parallel neural
VLSI, this synchronism represents a drawback, as current will be drawn on
the supply lines by all the neurons (and synapses) simultaneously, with no
averaging effect. Power supply lines must therefore be oversized to cope with
the high instantaneous currents involved.

Pulse Frequency Modulation (PFM). Here, the instantaneous value of
the state S; is represented as the instantaneous frequency of digital pulses in
V: whose widths are equal. Again, the hybrid scheme shows its value, for the
same reasons as described above for PWM. The variable signalling frequency
skews both the leading and trailing edges of neural state signals, and avoids
the massive transient demand on supply lines. The power requirement is
therefore averaged in time.

Phase and Delay Modulation. In this final example, two signals are
used to represent each neural state, and the instantaneous value of S; is
represented as the phase difference between the two waveforms - in other
words by modulating the delay between the occurrence of two pulses on one
or two wires. In biological neural systems, decisions are often made on a
timescale comparable with the inter-pulse time, thus implying that a time-
domain, rather than frequency-domain process is at work [Simmon 89].
While this does not of itself provide justification for any technique, it is an
interesting parallel. This technique enjoys many of the advantages of the
PWM and PCM variants described above, but it does imply the use of two
wires for signalling, unless one of the signals is a globally-distributed refer-
ence pulse waveform. If this choice is made, however, signal skew becomes a
problem, distorting the phase information across a large device, and between
devices.

In summary, pulsed techniques can code information across several
pulses or within a single pulse. The former enjoys an advantage in terms of
accuracy, while the second sacrifices accuracy for increased bandwidth.

Issues - Noise, Robustness, Accuracy and Speed

The four techniques described above share some attributes, but differ in
several respects from each other and in most respects from other techniques.
All the techniques except PAM are only really susceptible to FM (or edge-
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jitter) noise, which will be less significant in a conventionally noisy environ-
ment. For instance, a small degradation in the voltage representing a logical 1
will only have a small effect on a system using time as the information coding
axis for analog state, and such signals can survive transfer between devices in
a multi-chip network much better than analog (or PAM) signals. Further-
more, signals which are purely digital (albeit asynchronous) are easily regen-
erated or "firmed up" by a digital buffer, which restores solid logic levels
without altering pulse widths or frequencies.

Accuracy is, as in all analog systems, limited by noise, rather than by the
choice of word length, as it is in a digital system. We have been designing
systems with 1% accuracy in synapse weights, for instance, but there is no a
priori reason why higher or lower accuracy cannot be achieved, at the
expense of more or less area. In our own pulsed systems, a feedback scheme
part-compensates for circuit inaccuracies (e.g. spread of transistor threshold).
Without such a scheme, networks rely on the precision of weights pro-
grammed into the silicon memories, or must perform an elaborate pre-
processing of the weights before applying them to the silicon.

Speed of operation is perhaps the most difficult and contentious "figure
of merit" to quantify in all essentially analog, asynchronous systems. We can
clarify the issues involved by looking at a PFM system. The most crucial
parameter is the minimum pulse width. This defines the minimum time in
which anything at all can happen. The maximum pulse frequency is then
chosen to give the desired dynamic range in the multiplication process. This
then defines the overall speed at which "calculations" are made. The final fac-
tor is the number of pulses over which averaging is performed, to arrive at an
individual product T;;S;, and thus at the accumulated activity 3 T;;S;.
Clearly, the technique used for multiplication, the dynamic range of the
weights, and the level of activity in the network can all affect a speed calcula-
tion. We present below the results only of an attempt to estimate the speed of
computation in one of the networks developed in Edinburgh, where we have
been working to date on systems which require 100 pulses to drive a silicon
neuron fully "on" or "off". We do not present this as a serious figure of merit
for our networks, but only as a guide to the sort of speed that can be achieved,
basing the calculation around a modest process speed. With a pulse fre-
quency conservatively set at 0.5MHz, a two-layer multilayer perceptron with
an average level of activity, and a typical distribution of synaptic weights will
settle in around 3ms, regardless of the number of synapses on the chip. The

N,
3x1073
operations/sec, where N; is the number of synapses. For a typical 10,000
synapse network, this equates to over 3x10° operations (multiply/adds) per

average computational speed may therefore be estimated as
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second - a fearsome number for a self-contained single chip! We treat this
sort of calculation with the greatest scepticism, however, masking as it does
the data dependence of the result, and the asynchronousness it implies. This
is purely an averaged result, and individual calculations may take longer or
shorter times.

What the speed calculation above does imply, however, is that pulse
stream VLSI neural systems could perform many forms of computation (such
as speech recognition) in real time. In truth, the speed bottleneck is likely to
be shifted from pure computational speed to its normal location in analog sys-
tems - inter-chip communication. To this end, we are developing smart inter-
communication schemes that address this new limitation directly.

"PULSE-STREAM" NEURAL VLSI

In this section I look, rather selfishly, at the history of pulsed methods
within my own group. We have now a considerable body of experience in the
use of pulsed techniques, and I feel we have generated both elegant and
inelegant designs. For this reason, a brief resume should be of interest, offer-
ing as it does the Edinburgh Pulse Experience - warts and all.

History

We first struck upon the idea of pulse coding in the neural context in
1985, and reported our first working circuits in 1987 [Murray 87a]. At that
stage, our reasons for adopting a pulsed method were, in retrospect, odd. We
had already experimented with digital, bit-serial neural VLSI [Murray 87c]
and identified that the analog option was more interesting for reasons of den-
sity and speed. We did not (and do not), however, have access to an "analog"
process - one incorporating controlled resistor and capacitor structures, and
providing well-specified MOSFETs. We also observed:-
a) That biological neural networks use pulses.
b) That oscillators were easy to create in CMOS.

Circuits

This section describes the different circuit forms and approaches that we
have used to date, culminating in the microscopically analog, macroscopically
digital form used for the EPSILON chip, which ends this chapter.

Almost Digital. Fig. 1 shows the form of a neuron in this system. Exci-
tatory and inhibitory pulses are signalled on separate lines, and used to dump
or remove charge packets from an activity capacitor, with excitatory pulses
necessarily inverted. The resultant slowly varying analog voltage X; is used
to control a Voltage Controlled Oscillator (VCO), designed to output short
pulses rather than a simple square wave.
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Figure 1. Early Pulse-Stream Neuron, with an inelegant "hard-limit"
threshold characteristic.

Synaptic gating is achieved by dividing time artificially into periods
representing !4, Ya..... of the time, by means of "chopping clocks", synchro-
nous to one another, but asynchronous to neural activities. In other words,
clocks are introduced with mark-space ratios of 1:1, 1:2, 1:4, etc., to define
time intervals during which pulses may be passed or blocked. These chop-
ping clocks therefore represent binary weighted bursts of pulses. They are
then "enabled " by the appropriate bits of the synapse weights stored in digital
RAM local to the synapse, to gate the appropriate proportion (i.e. Y2, Ya,
%4,..... ) of pulses S; to either the excitatory or inhibitory accumulator column,
as shown in Fig. 2. Multiplication takes place when the presynaptic pulse
stream S; is logically ANDed with each of the chopping clocks enabled by the
bits of T};, and the resultant pulse bursts (which will not overlap one another
for a single synapse) ORed together. The result is an irregular succession of
aggregated pulses at the foot of each column, in precisely the form required to
control the neuron circuit of Fig. 1.

A small =10 - neuron network was been built around the 3um CMOS
synapse chip developed using this technique [Murray 87ab, 88b, Smith 88].
The small network, while not of intrinsic value, owing to its size, served to
prove that the pulse stream technique was viable, and could be used to imple-
ment networks that behaved similarly to their simulated counterparts.

Digital Circuits for Analog Purposes. The "almost digital" system
described above proved the viability of the pulse stream technique. However,
the area occupied by the digital weight storage memory is unacceptably large.
Furthermore, the use of pseudo-clocks in an analog circuit is both aestheti-
cally unsatisfactory and detrimental to smooth dynamical behaviour, and
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Figure 2. Early, near-digital pulse stream synapse, using synchronous
"chopping clocks” to implement multiplication by digital weights.

using separate signal paths for excitation and inhibition is both clumsy and
inefficient. Accordingly, we developed a fully programmable, fully analog
synapse using dynamic weight storage, and operating on individual pulses to
perform arithmetic. Further, the "dump and remove" transistors in the neuron
of Fig. 1 have been distributed amongst the synapses, as has the activity capa-
citor, reducing the neuron to a straightforward VCO [Murray 88bc, 89].

Fig. 3 shows the fundamentals of the synapse circuit, with some details
concealed at this stage, to aid explanation. The synapse weight T;; is stored
as a voltage on a capacitor. The viable storage time is determined by the size
of the capacitor, the temperature at the chip surface, and the leakage charac-
teristic of the CMOS process used. At lowered temperatures, dynamic
storage of the voltage representing T;; for a number of seconds, with leakage
below 1% of the correct value would be possible. At room temperature,
refresh of dynamically stored values is necessary. This dynamically stored
voltage controls the positive supply Vj,,,;, to a two-transistor CMOS inverter
T1/T2. Increasing T;; lowers this supply voltage.

Presynaptic input pulses { S; } are presented asynchronously at the input
to this inverter, with a constant width D¢, and a frequency determined by the
state of neuron k as described earlier in this section. The inverter T1/T2 is
ratioed (i.e. transistor widths and lengths are chosen) such that the inverter’s
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Figure 3. Time-modulation (pulse-width) synapse - schematic.

ability to discharge its output node is weaker than its charging ability. The
output of the inverter, on receiving an input pulse S; is therefore as shown,
discharging from an initial value of Vg, to 0, at a rate determined by the
effective "on" resistance of T2. The discharge is almost exactly linear, as the
transistor T2 is operating in saturated mode, and is therefore equivalent to a
constant current sink for almost all of the discharge. At the end of an input
pulse, a rapid charge back to Vy,,,;, occurs via T1.

The second inverter restores the sense of the pulse, and also performs a
thresholding operation via its switching threshold V., the voltage at which
the inverter switches between output high and low. Putting the two inverters
together, the length of the output pulse is determined by how long the
discharge node spends below the switching threshold of the second inverter.
This is determined by the first inverter’s supply voltage Vg, which is in
turn proportional to T;;.

The net effect is that pulses appear at the postsynaptic node with a fre-
quency given by the firing rate of neuron k, and a widrh equal to a maximum
possible value Dz, multiplied by a factor 0 <T7;; < 1. The multiplication is
only linear, however, over a restricted range of T;;. We have determined the
range over which the product 7;;S; is linear by (SPICE) simulation [Murray
88b] and Fig. 4 shows typical results with T;; =0and = 1. Clearly, there is
potential noise problem when T;; =1 ( Vyppy = Vi ) in that a small
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Figure 4. Operation of time-modulation synapse - schematic.

negative noise impulse on the discharge node or a positive disturbance to Tj;
itself will cause a spurious output pulse. This can be avoided by leaving some
headroom in the dynamic range of T;; and by restricting the switching speed
of the second inverter, to filter the pulse, and thus remove undesirably high
frequency effects.

With this caveat, the useful dynamic range is shown in Fig. 5 to be
1V <T;; £3V. In comparison with networks based on subthreshold operation,
this is a wide range. It is therefore possible to "split" the range, to allow the
upper half ( 2V <T;; <3V ) to represent excitation and the lower half (
1V<T; <2V ) to represent inhibition. Fig. 6 shows the entire analog
synapse, which uses this technique to implement both excitation and inhibi-
tion in one circuit.

The circuit shown in Fig. 3 can be seen as T1/T2 and the first inverter
following. Transistor T5 merely allows an additional control to be applied
electronically to the discharge rate. The dynamic synapse voltage is buffered
from the inverter T1/T2 by a simple active load amplifier circuit T3/T4.
Transistors T6/T7 are distributed versions of the "front end"” of the neuron cir-
cuit shown in Fig. 1, with an inverter on the input of T6 to get the sense of the
gate signal correct. The method of implementing inhibition requires more
explanation.

If we arrange that the transistors T6/T7 are always either fully open cir-
cuit or saturated, then they are a switched current source and sink respec-
tively, whose associated currents are controlled by the transistor widths and
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Figure 5. Range of linear operation of time-modulation synapse.
lengths W¢, W5, Lg, and L.
Therefore, a pulse on the gate of T6 dumps a packet of charge of value
Quumped(Tij) = [l dt = I¢ DtxT;; coulombs, (1)
while a pulse on the gate of T7 removes

Oremoved = II 7 dt =1, Dt coulombs. )

The net charge added to the activity x; is therefore
OQroral (Tu )= Qdumped(Tij ) = Qremoved- 3

If we choose values of W, Lg, W and L such that Qgumped(2V) = Qremoved
then Q,,,,(2V) =0. This effectively splits the range of T;; such that a value
T;;>2V will result in an increase in x; proportional to (T;j—2V) and a value
T;;<2V will result in a decrease in x; proportional to (2V-T;;).
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Figure 6. Time-modulation (pulse-width) synapse - details.

This is exactly what we set out to do. A column of these synapses, with
the associated distributed capacitors on the drain connections of T6 and T7
will aggregate the total activity from all neurons connecting to neuron i to
represent x; by a slowly varying voltage. The rise in the voltage representing
x; caused by a single pulse passing through synapse Tj; is:-

Qtotal (Tx j)
Ctotal (.X,')

As the number of synapses in the column is increased, the capacitance
Cota1(%;) in the denominator of (6) increases proportionately, and therefore the
individual contributions to AV(x;) become less significant, as we would wish.
Naturally, as more synapses are added, more terms of the form Qy,,(T;;) are
added, and the synapse is therefore 100% cascadable, both topologically and
electrically.

To ensure that transistors T6 and T7 remain in saturation, two additional
devices, T8 and T9, are incorporated, as shown in Fig. 7. This incurs little
penalty in silicon area, as they have the additional effect of reducing the need
for the lengths of T6 and T7 to be large to restrict their source-drain currents.
These devices act as voltage attenuators, as for instance, the gate voltage on
T7 cannot be driven above V,,;;,(9) —V,, The effectiveness of the attenuation
process is increased by the body effect, whereby a MOS device has its thres-
hold raised as its source rises above the substrate potential. The attenuated
pulses on the gates of T6 and T7 ensure that these transistors operate in the
subthreshold region, and are therefore essentially always saturated, and
always operate as current source and sink respectively.

AV(x;) = C))
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Figure 7. Modified Time-modulation (pulse-width) synapse - improved
output characteristic.

The test chip based on this technique proved functional, and was able to
implement small perceptron networks. However, the effects of process varia-
tion across the silicon surface - variations in the threshold in different man-
ifestations of transistor T2, for instance, created wide variations in synapse
characteristics. This problem, coupled with the still-high transistor count (13
MOSFETs, for the full synapse) drove a move towards a more analog solution
to the multiplication problem.

Fully Analog. The initial motivation behind the unusual pulse stream
form was the analogy with biological neurons, coupled with a desire to use an
essentially digital CMOS process for asynchronous analog circuits. These
reasons remain, but have been augmented by the discovery that some arith-
metic operations such as multiplication can be implemented very efficiently
using pulse streams. Furthermore, when states are represented by 0 — 5V
pulses, the neural state can be used to switch analog circuits in and out of a
system. When analog voltages are used to represent neural states, it is much
more difficult to keep all the MOSFETS used to perform arithmetic operations
in known operating regimes.

The technique described in this section uses the MOSFET transistor
characteristic equations to produce a current that is proportional to the pro-
duct of two voltages. Current is subsequently summed by an integrator cir-
cuit. The equation is that for the drain-source current, Ipg , for a MOSFET in
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the linear or triode region:-

HCo W Vis?]
= (Vs =Vr) Vps— >

&)

Ips =

Here, C,, is the oxide capacitance/area, p the carrier mobility, W the
transistor gate width, L the transistor gate length, and Vgs, Vr, Vpg the
transistor gate-source, threshold and drain-source voltages respectively.

This expression for Ipg contains a useful product term:-

HCoW

XVGSXVDS

However, it also contains two other terms in VpgxVy and Vpg? .

One approach might be to ignore this imperfection in the multiplication,
in the hope that the natural robustness of neural systems renders it irrelevant.
We have chosen, rather, to remove the unwanted terms via a second MOS-

FET, as shown in Fig. 8.
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Figure 8. Two-transistor (transconductance) multiplier.
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The output current /5 is now given by:-

W, Wi Vps12
13=llcax (VGSI"VT)VDSI S 6)
1
W, Vpsa?

= = (Vgs2 = V7 ) Vpsa + —

i, 2 (Vasa = Vr) Vosa L, 2

The secret now is to select W, Ly, W,, Lo, Vgs1, Vgs2, Vps1 and Vpgo to
cancel all terms except

W,
——Vis1%XVps1 )

l‘LCox L,

This is a fairly well-known circuit, called a Transconductance Maulti-
plier. It was reported initially for use in signal processing chips such as filters
[Denyer 81] and later in [Han 84] It can be used directly in a continuous time
network, with analog voltages representing the { S; }. We choose to use it
within a pulse-stream environment, to minimise the uncertainty in determin-
ing the operating regime, and terminal voltages, of the MOSFETs, as
described above.
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Figure 9. Two versions of the pulsed transconductance multiplier.

Fig. 9 shows two related pulse stream synapses based on this technique.
The presynaptic neural state S; is represented by a stream of 0-5V digital,
asynchronous voltage pulses V; . These are used to switch a current sink and
source in and out of the synapse, either pouring current to a fixed voltage
node X (excitation of the postsynaptic neuron), or removing it (inhibition).
The magnitude and direction of the resultant current pulses are determined by
the synapse weight, currently stored as a dynamic, analog voltage T;; .
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The fixed voltage at point X and the summation of the current pulses to
give an activity x; =Y T;;S; are both provided by an operational amplifier
integrator circuit, whose saturation characteristics incidentally apply a sig-
moid nonlinearity. The transistors T3 and T4 act as power supply "on/off™
switches in Fig. 9a, and in Fig. 9b are replaced by a single transistor, in the
output "leg" of the synapse. Transistors T1 and T2 form the transconductance
multiplier. One of the transistors has the synapse voltage T;; on its gate, the
other a reference voltage, whose value determines the crossover point
between excitation and inhibition. The gate-source voltages on T1 and T2
need to be substantially greater than the drain-source voltages, to maintain
linear operation. This is not a difficult constraint to satisfy.

The attractions of these cells are that all the transistors are n-type, remov-
ing the need for area-hungry isolation well structures, and In Fig. 9a, the verti-
cal line of drain-source connections is topologically attractive, producing very
compact layout, while Fig. 9b has fewer devices. When weight address circu-
itry is added, the two synapse circuits comprise 6 and 5 transistors respec-
tively.

Implications for the Neuron
While the synapse form described above is attractively compact and

topologically simple, it places a heavy requirement on the current integrator.

As more and more synapses are cascaded, the integrator must sink or source

more and more current to maintain the virtual ground at its input, in order that

point X in the circuits of Fig. 9 remain at a fixed reference voltage, and the
transconductance multiplier property is maintained. To cope with this
requirement, either:-

a) The operational amplifier that underpins the integrator circuit must have
a high enough output current drive capability to cope with the maximum
number of synapse circuits it has to serve.

b) The drive capability of the operational amplifier must be distributed
amongst the synapses themselves.

We have chosen the latter approach, effectively distributing the output
drive transistors of the operational amplifier between the synapses. As a
result, each synapse comprises two extra transistors, at a small cost in area,
giving a fully cascadable form. The EPSILON chip, which uses this tech-
nique, underpins the remainder of this chapter.
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THE EDINBURGH PULSE-STREAM IMPLEMENTATION OF A
LEARNING-ORIENTED NETWORK (EPSILON) CHIP

We have designed a large pulse stream demonstrator chip using the tran-
sconductance multiplier circuit outlined above.

Circuits
The neuron circuits we use have all been based on voltage- or current-

controlled oscillators. The details of the circuitry used [Murray 92ab] are

complex, and discussion in the context of this chapter is unwarranted. The
synapse circuit, however, illustrates an unusual use of the transconductance
multiplier form, and is worthy of special mention here.

The synapse circuit is based on the transconductance circuit described
above, but embedded in the system in a manner that is not obvious (Fig. 10).
Here, the output drive transistors of the Operational Amplifier that underlies
the neural integration process have been distributed through the synaptic
column. This effectively devolves the current drive capability associated with
the integrator output to the synaptic sites themselves. This brings about a
number of desirable features:-

1) The system is now much more cascadable, as each synapse adds its own
current drive ability, and the Op-Amp at the foot of the column only
drives transistor gates (purely capacitive).

2) Power is now dissipated more evenly across the chip, alleviating prob-
lems associated with "hot-spots”.

3) Perhaps most unexpectedly, and most beneficially, the synapse is now
well-matched to its own "drive" stage, as they are physically close
together. If, for instance, transistor thresholds are lowered locally, both
the synapse and its drive transistors will become "faster". As a result, the
effect of the process variation that caused the threshold shift is cancelled
(to first order).

The combination here may be described as "analog computation under
digital control". The transconductance multiplier is an analog circuit, while
the presynaptic neural input signal is a digital pulsed waveform, which effec-
tively switches the analog multiplier in and out of the neural column. Long-
range communication (of neural states) is thus performed by robust, pulsed
signals, while the advantages of small area and high speed of an analog multi-
plier are enjoyed at the synapse level. While this combination is not "better"
than all other pulsed approaches, as the remaining chapters of this book make
abundantly clear, it is a powerful one, which we intend to exploit via EPSI-
LON and extend into other chips with increased functionality [Murray 92c].
and enhanced technology [Reeder 91]
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Figure 10. Transconductance multiplier "system". The drive stage of the
integrator has now been distributed throughout the synaptic column as
MOSFETs M4 and M5.
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Specification
EPSILON consists of an array of 120x30 synapses with 30 on chip neu-
rons (see Fig. 11)

Figure 11. The EPSILON chip - =lcmxlcm.

The chip has been implemented using European Silicon Structures’ (ES2)
1.5um CMOS Digital process and occupies an area of 10mm by 9.5mm. The
estimated worst case power consumption for this device is 350mW which is
well within the safe limits for a chip of this size. All of the subcircuits on the
chip have been tested and found to be functionally correct. A printed circuit
board allows the chip to operate as a hardware accelerator to both Sun and PC
host computers.

As a rough, and hopefully not invidious comparison, Table 1 shows the
capabilities of the EPSILON device, alongside those of INTEL's ETANN
product [Holler 89].

EPSILON is still a new device, and we only have limited experience of
its capabilities as a network. Early experience suggests that it will prove a
powerful device where it can be part of the learning cycle - a situation com-
mon to all analog implementations, where inclusion in the leamning loop is
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ETANN vs. EPSILON - COMPARISON

80170NX (ETANN) 30120PI (EPSILON)
Floating Gate Technology Standard CMOS Process
64 Variable Gain Neurons ‘ 30 Variable Gain Neurons
128 Inputs 120 Inputs
10,240 Synapses 3,600 Synapses
2x(80x64) Arrays 120x30 Array
Inputs: Analog Inputs: Analog, PFM and PWM
Outputs: Analog Outputs: PFM and PWM
3us per layer 10ps per layer (PWM)
2B Connections/s/chip 0.36B Connections/s/chip
Non-Volatile Weight Storage Capacitive Weight Storage
> 100us per Weight Update 1ps per Weight Update
Multiplication Non-Linear Linear Multiplication
at extrema over Weight Range

essential. Where weights are pre-calculated and "down-loaded" to the device,
EPSILON, ETANN and all such devices will cause problems. Some immun-
ity can be gained by noisy off-line training, but it is likely that success will be
limited where the chip cannot exhibit its own idiosyncracies during learning.
As an example of EPSILON’s functionality and performance , Fig. 12 shows
the linearity of the synaptic multiplication. Here, the sending neuron state is
swept through its full range for a range of different weight voltages - inhibi-
tory and extcitatory. It can be seen that the output state varies with impres-
sive linearity, although the characteristic is not perfect.

This points towards some problems that remain with the EPSILON dev-
ice, and it would be dishonest to conceal them. While the techniques
described above have produced synaptic columns that are extremely process-
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Figure 12. (Transconductance) multiplier characteristic from the EPSILON
chip. The sending neuron state is swept through its full range for a range of
different weight voltages - inhibitory and extcitatory.

tolerant, there are still significant variations between neurons, arising from
variations in the integrator characteristics. In all but the "tightest" neural
architectures, we can remove these by using a row of synapses (one for each
neuron) to effectively cancel out these variations. However, this is a "hack”,
and we would wish to render it unnecessary, by including auto-bias circuitry,
in a revised EPSILON design. The other major flaws in EPSILON are cou-
pling betwen the pulsed neural outputs and the activity voltages, and a small
voltage drop in the power supplies aacross the device. Both of these can be
rendered irrelevant by careful programming, but both should be removed by
better layout in EPSILON Mark II.

In summary of EPSILON, therefore - it is an impressive and startling
device. It demonstrates beyond any doubt that pulsed techniques can be made
to work over large silicon substrates without oscillator coupling and high
power consumption - the two concerns often expressed with respect to scaling
up pulsed circuits - causing any problems. The device is flawed, but not
fatally so. We are looking forward to demonstrating its capabilities in a range
of applications, and correcting its minor faults in our subsequent designs.

CONCLUSIONS AND ISSUES

Many issues remain to be addressed. Dynamic weight storage, the tech-
nique used for EPSILON, is successful and conceptually simple. It is, how-
ever, fraught with the practical problems of refresh and corruption. Existing
non-volatile technologies such as MNOS [Sage 89] and Floating-Gate [Holler
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89] are expensive, intrusive (they place extra layers within the CMOS pro-
cess) and inconvenient. We are developing a novel amorphous-silicon (o.-Si)
device [Reeder 91] that attempts to address these problems by adding a pro-
grammable o-Si resistor structure on top of the existing CMOS layers. The
device is fast and compact, but as this chapter is being written, its yield is
atrocious. We have high hopes that these problems will be overcome, but we
are realistic about the likely timescales for getting such a novel device "under
control".

Even if such a device can be made to yield satisfactorily, it is likely to
require on-chip training to optimise the use of what are likely to be idiosyn-
cratic weight memories. We are therefore developing on-chip learning stra-
tegies and chips, [Murray 92c] which do not warrant inclusion in detail in this
chapter. We have, however, "stumbled upon" some fascinating and, we
believe, very important results indicating how we might best make use of
inaccurate (in the analog sense) memories. The discovery came about as we
were probing the capabilities of the on-chip algorithm, injecting analog noise
at the the synapses to simulate a "real" analog environment. The results are
startling enough to deserve inclusion, offering as they do a partial solution to
the accuracy problem inherent in all analog systems. That they endow a net-
work with an ability to make good use of "imperfect” components, by training
with "imperfect” arithmetic is hardly a real cause for surprise - the nervous
system has been doing the same for a long time!

Noisy Learning

Accepted dogma hold that high (=16-bit) accuracy is needed during
neural learning. This has discouraged attempts to develop analog learning
circuitry, although some recent work on hybrid analog/digital systems [Hollis
90] suggests that learning is possible, if perhaps not optimal, in low (digital)
precision networks. We found that analog noise, far from impeding neural
learning, actually enhances it. While the results relate to a MultiLayer Per-
ceptron (MLP) network, using an algorithm with its roots in back-
propagation, they have implications for all learning schemes using gradual
weight increment/decrement techniques.

Noise in Learning

The experiments described in this section relate to a series of experi-
ments using a training algorithm devised by the author. [Murray 91, 92c] The
details of the algorithm are not important here, except that it is susceptible to
imprecision in the same way as is the ubiquitous back-propagation algorithm.
It is important to realise here that the noise in question is not in the training
data. Training with noisy data is a ubiquitous technique, which effectively
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expands the training set artificially, and consequently penalises overfitting of
decision boundaries. Here, we are injecting noise at the synapses - a less
invasive procedure with more complex implications. As an example of a
"real” classification task, with both training- and test- data sets, the
Oxford/Alvey vowel database formed the vehicle for a 54 : 27 : 11 MLP to
learn to classify vowel sounds from 18 female and 15 male speakers. The
data appear as the analog outputs of 54 band-pass filters, for 11 different
vowel sounds, and 33 speakers, with a 1-out-of-11 coding scheme on the out-
put neurons for each of the 11 vowels.

Experiments were conducted in pairs, which were in every respect identi-
cal, using the same set of randomised initial weights, except for the presence
of noise. Leamning is enhanced by the presence of noise at a high level
(around 20%) on both synaptic weights and activities. This result is surpris-
ing, in the light of the normal assertion alluded to above that back-
propagation requires up to 16-bit precision during learning. The distinction is
that digital inaccuracy, determined by the significance of the Least Significant
Bit (LSB), implies that the smallest possible weight change during learning is
1 LSB. Analogue inaccuracy is, however, fundamentally different, in being
noise-limited. In principle, infinitesimally small weight changes can be
made, and the inaccuracy takes the form of a spread of "actual” values of that
weight as noise enters the forward pass. The underlying "accurate” weight
does, however, maintain its accuracy as a time-average, and the learning pro-
cess is sufficiently slow to effectively "see through” the noise in an analog
system.

The implication is that while analog noise may introduce temporarily
inappropriate changes in the { 7, } and { 0j, }, the underlying trend reflects
the accurate synaptic weight values, and makes the appropriate averaged
adjustments. The further implication is that drawing parallels in this context
between digital inaccuracy and analog noise is extremely misleading. The
former imposes constraints (quantisation) on allowable weight values, while
the latter merely smears a continuum of allowable weight values. The
incidental, and highly interesting finding - that higher levels of noise actually
assist learning - is not so easily explained, although injection of noise into
adaptive filter training algorithms is not unusual. Corrupting the training data
with noise is held to have the same effect as penalising high curvature in deci-
sion boundaries - in other words it causes the network to draw sweeping
curves through the decision space, rather than fitting convoluted curves to the
individual training data points [Bishop 90]. In this way, underlying trends are
modelled, while fine "irrelevant” detail is ignored. These two findings con-
cerning noise would seem to be perfectly general in the neural context, and
have ramifications for all learning processes where weights evolve
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incrementally, and slowly. We can explain what is happening in the presence
of arithmetic noise by examining the mean-squared error on the outputs {o; /.
The total mean squared error, over all P patterns {0,/ is given by:-

1 _pcP
E(or) = % L E,
p=l

Where:-
1 k=K-1 1 k=K-1 ~ 2
E=~ 3 Ep=7 X (p({Tw))-op) @®
k=0 k=0

If we Taylor-expand the output value oy, to second order, around the
noise-free weight set, we eventually achieve an error function of the form:-
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This has added two terms to the normal error expression of the form:-
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In other words, the error, which is being notionally minimised by the
learning process, is made greater by these two terms. The effect of the
second term is complex, as it involves second derivatives, and also depends
on the errors {Ey, /. The first term, however, can be re-written as

2
Kx<A? > { ao"} an
14

0Ty
averaged over all patterns, output nodes, and weights
This is more illuminating. It implies that solutions will be favoured
where the dependence of outputs on weights is smeared out as much as possi-
ble - where the average of the derivative is minimised. We have performed
some simple but exhaustive experiments to verify this finding.
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Fig. 13 shows the effect of different levels of noise on a learning cycle
with the same initial conditions. The effect on the network’s ability to sustain
synaptic damage is clear. The resistance to synaptic corruption can be seen to
be even greater [Murray 92d].

These results indicate that, as expected, the network’s tolerance to
weight damage is enhanced by the inclusion of noise in the arithmetic during
the learning phase. We have also predicted and demonstrated, by examining
both of the above terms, [Murray 92d, 93] that generalisation ability and
learning times should be, and are, improved by noisy training. It is not
appropriate to deal with these issues here, although they have far-reaching
implications form all MLP learning, whether implemented as hardware or
software.

In conclusion, the results show that noisy training enhances the quality of
a learnt weight set in terms of generalisation, reduces the training time, and
perhaps most importantly for VLSI, distributes the information optimally
across the weight set. We are able to show that learning with the EPSILON
chip, where arithmetic precision is limited, is enhanced by noisy training, and
we intend to extend the technique to train networks using @-Si weights, where
the inaccuracy issue will rear its head once again.

Closing Remarks

This seems a good note on which to end. Pulsed techniques remove
some of the concerns (susceptibility to corruption of information, for exam-
ple) that surround conventional analog VLSI. However, the technique is fun-
damentally analog, and thus has limited accuracy - limited by the fundamen-
tals of the device physics. We should strive to work with the physics rather
than against it - in much the way that nature has done.

The remainder of this book will underline the diversity and elegance of
design that has emerged in the pulsed field. We have converged upon a range
of techniques and issues which are outlined in this chapter and its associated
references. Others, with a different perspective and background, have gone a
different route. What unites us as a "community"” is the simple realisation that
pulses offer a combination of robustness, simplicity, circuit surprises and bio-
logical parallels that is both satisfying scientifically, and attractive in
engineering terms.
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SILICON DENDRITIC TREES

John G. Elias

Department of Electrical Engineering
University of Delaware, Newark DE, 19716

INTRODUCTION

In the vertebrate nervous system, communication between distant
neurons is done using encoded pulse streams. Closely packed neurons may not
produce impulses at all, relying instead on electrotonic spread of membrane
potential differences to communicate (e.g. McCormmick, 1990). Impulses are
also used within the dendritic trees of some, or perhaps all, spatially extensive
neurons (e.g. Llinas and Sugimori, 1980). However, their role is not well
understood, partly because experimental measurements are extremely difficult
to obtain within thin dendritic branches.

Although long distance communication needs may have been the primary
evolutionary force behind encoded pulse streams, their impact goes well
beyond simple communications. Neurons are continuously bombarded by
hundreds or thousands of afferent pulse streams whose impulse responses are
integrated by the cell’s active and passive membrane elements. A cell’s
response depends on, among other things, its morphology, membrane electrical
and chemical properties, and the location of afferent synapses. The resulting
membrane voltage trajectory due to the integration of individual impulse
responses plays a critically important role in the dynamic behavior of the cell
(e.g. Rapp et. al, 1992). Even a relatively small number of afferent pulse
streams leads to complex changes in membrane voltage that may be useful in
neural computation (e.g. Northmore and Elias, 1993).
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As pointed out by Murray et. al. (1987, 1991), the use of encoded pulse
streams for computation and for communication represents an attractive
approach towards implementing highly robust large-scale artificial neuronal
systems. In their approach, binary signals in the form of encoded pulse streams
are used to control analog circuitry and carry information between
computational units. The pulse coded approach has since been adopted by a
number of research groups, some of which are represented by chapter
contributions in this book.

In this chapter, we describe the silicon implementation of an ADT
(artificial dendritic tree) that is intended to emulate the behavior of spatially
extensive biological neurons which have passive dendrites. We begin with a
presentation of background material that should illustrate the linkage between
our artificial structures and their biological paragons. This is followed by a
description of the artificial neuronal elements and their behavior under impulse
excitation. The next section covers aspects of silicon implementation, and the
final section is a brief discussion of a tracking controller that makes use of
ADTs.

BIOLOGICAL COMPUTATIONAL ELEMENTS

Neuron anatomy can be generalized as having three major parts with the
following highly simplified functional descriptions: 1) a spatially extensive
dendritic tree, which receives and integrates afferent signals at specific
synaptic sites distributed over the entire tree structure; 2) a soma, which forms
a response based on the collective dendritic tree electrical signal; and 3) an
axon, which propagates efferent impulsive signals from the soma to distant
dendritic trees of other neurons. All parts of the neuron depend with varying
degree on electrical and chemical changes elsewhere in the cell. For many
neurons, the dendritic tree occupies 80-90% of the total surface area of the
neuronal membrane, and it is believed that this extensive morphology gives the
neuron powerful dynamic signal processing capabilities (e.g. Rall and Segev,
1987) which are not represented by highly abstract models such as the
perceptron (Rosenblatt, 1962).

Dendritic Trees and Chemical Synapses

Although the electrical properties of dendrites and axons have been
studied for over one hundred years, much of what is known about electrical
signal spread in dendrites has been developed during the last thirty years by
Wilfrid Rall and his co-workers (e.g. Rall, 1957; 1989). In this section, we
limit the brief discussion to passive dendrites and refer the interested reader to
(Llinas and Sugimori, 1980; Koch et al., 1983; Shepherd et al., 1989;
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Hounsgaard and Midtgaard, 1988) for more information on the active
properties of dendrites.

»— = ~—~———V+Rm1(xyt)

Figure 1. a) Drawing of typical Purkinje cell (after Berry and Bradley, 1976)
from cerebellum showing extensive dendritic tree which supports ~10°
synapses in humans. b) Electrical model for a section of passive dendrite with
a membrane capacitance, C,,, in parallel with a membrane resistance, R,,, and
with a series axial cytoplasmic resistance, R,. The resting membrane voltage is
determined by voltage source, V},. ¢} One-dimensional cable equation which
gives the membrane voltage, V, at location X at time ¢ as a result of current
density, I(X,t).

It is common practice in neural network research to model the neuron as a
point entity that receives and processes inputs at the soma (cell body).
However, most neurons have a spatially extensive dendritic tree structure,
which not only forms most of the cell’s surface area but provides a
spatiotemporal signal processing capability not present in traditional neural
network models. Figure 1a depicts a drawing of a Purkinje neuron (Berry and
Bradley, 1976) from the cerebellum which attempts to show the extensive
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dendritic tree structure that is common with these types of cells. The dendritic
tree receives most of the afferent impulses, which in human Purkinje cells is at
approximately 10° different synaptic locations.

Figure 1b is an electrical model for a section of passive dendrite with a
membrane capacitance, C,,, in parallel with a membrane resistance, R,,, and a
series axial cytoplasmic resistance, R;. A linear second-order differential
equation, the cable equation shown in Figure 1c, describes the
one-dimensional voltage profile for a given current density, I(x,t).
Transmembrane dendrite current (outward or inward) results in a soma voltage
that depends in a nonlinear way on the location of the transmembrane current
on the dendrite (Rall, 1964). This characteristic provides a means to scale or
weight an input signal, over a wide dynamic range, by simply selecting the
position for inward or outward current on the dendritic branches. The means to
produce inward or outward current at particular sites is provided by the
chemical synapse.

The synapse is the basic computational element of the nervous system. It
is the site of signal transduction, where afferent signals, which originate from
either distant or adjacent neurons, are received and combined to effect a new
neuronal state. The extent of the state change is dependent on a large number
of factors, not least of which is the past state trajectory. There is much
experimental evidence that suggests that certain levels of afferent activity
density leads to potentiation or depression of the cell’s normal resting voltage
that persists over widely varying times (e.g. Andersen, 1987; Hebb, 1949).
These short and long term potentiation effects are thought to play an important
role in neurocomputation and memory. There are at least three types of
synapses in nature: chemical, electrical, and ephaptic (e.g. McCormick, 1990).
In this chapter, we will focus only on emulating the computationally important
behavior of the chemical synapse, which is believed to be, by far, the most
common type.

We shall assume that the chemical synapse can be modeled as an
ensemble of opened or closed charge-passing channels that open transiently
due to the arrival of neurotransmitter at receptor sites on the postsynaptic
terminal (e.g. Nicoll, 1988). If the released transmitter molecules are short
lived and arrive and bind to receptor sites on the postsynaptic terminal in a
time that is short compared to the postsynaptic membrane response then this
process can be modeled as an impulsive event. The impulse response then
depends only on the dynamics of the postsynaptic cell. If the postsynaptic cell
has an Nth-order low pass filter characteristic behavior, where N is greater than
unity, then its impulse response closely resembles the alpha function (Rall,
1967).
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The nature of the interaction of synapses with respect to the electrical
distance between simultaneously active sites is a critically important property
of passive dendritic trees. An active synapse is defined as the transient opening
of ion-specific channels that permits current to flow if a potential difference
exists across the membrane for those specific ions. For active synapses that are
temporally coincident and that are located at electrically nearby sites (i.e. the
resistance between them is relatively small), the resultant signal is a sublinear
function (e.g. Koch et al,, 1983; Shepherd and Koch, 1990b) Conversely, for
temporally coincident signals in which the active synaptic sites are electrically
distant from each other, the resultant signal is nearly linear. This phenomenon
is extremely important in providing a rich environment for computation.

An excitatory synapse results in a positive or depolarizing voltage
trajectory if its reversal potential is greater than the membrane resting voltage.
An inhibitory synapse results in a negative or hyperpolarizing voltage
trajectory if its reversal potential is less than the membrane resting voltage. An
important class of inhibitory synapses have their reversal potential near the
normal membrane resting potential and therefore produce no voltage
transitions whenever the membrane voltage is near rest. These silent synapses
are believed to play a critical role in visual processing (e.g. Torre and Poggio,
1978).

The transient response of dendrites to depolarizing or hyperpolarizing
synaptic activation shows two important features. First, the peak voltage
amplitude as measured at the soma is largest for active sites nearest the soma
and gets progressively smaller for sites further away. Second, the time at which
the peak occurs shows a similar dependency on the distance from the active
site so that distal sites are spread out in time and reach their peak values later
than more proximal sites. This transient behavior suggests the possibility of
powerful dynamic signal processing capabilities using simple circuit elements
modeled after dendritic trees and chemical synapses.

Somata and Axons

The electrical response due to synaptic stimulation diffuses or propagates
through the dendritic tree to all other portions of the cell interior. As the
electrical signal spreads to other parts of the cell, an action potential or impulse
might be generated at specialized sites along the dendrites, axons, or soma. An
action potential is a highly nonlinear voltage transition that is usually triggered
by the cell membrane voltage exceeding some threshold value. As mentioned
previously, information is often conveyed from neuron to neuron by
modulating the interpulse interval and their phase relationships. The interpulse
interval can vary over a large range. Some neurons produce high pulse density
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bursts with long intervals in between bursts. Other neurons are continuously
producing pulses with a particular interpulse interval. Synaptic activity in the
dendritic tree along with cell morphology and membrane electrical properties
have a dominant role in determining the resulting pulse behavior. In general,
depolarizing excitatory responses tend to reduce the interpulse interval, and
hyperpolarizing inhibitory responses tend to increase the interpulse interval.
Silent synapses tend to play a localized inhibitory role in particular regions of
the dendritic branches (e.g. Northmore and Elias, 1993).

Axons carry information in the form of encoded impulses to distant
neurons. Axons are described by the same electrical model as passive dendrites
and therefore are fairly lossy. In order to transmit pulses over long distances,
axons often have an additional coating (myelin) that helps to reduce losses, and
they have repeaters every few millimeters that regenerate the pulses.

ARTIFICIAL DENDRITE AND CHEMICAL SYNAPSE

In this section, we describe electronic circuits that 1) emulate the
electrical behavior of passive dendritic trees and chemical synapses and 2) are
simple and robust enough to ensure that networks, which ultimately need to
support huge numbers of synapses, can be constructed with standard VLSI
processing. Electronic analogs of active dendrite behavior (e.g. Llinas and
Sugimori, 1980; Shepherd et al.,1985, 1989; Hounsgaard and Midtgaard,
1988) will not be treated in this chapter.

Artificial Dendrites

Passive artificial dendrites are formed by a series of standard
compartments, where each compartment has a capacitor, C,, that represents
the membrane capacitance, a resistor, R, that represents the membrane
resistance, and an axial resistor, R, that represents the cytoplasmic resistance
(e.g. Rall, 1989). Figure 2a shows a section of artificial dendrite with five
standard compartments that is part of a much longer branch like that shown in
Figure 2b.

The transient response of the artificial dendrite is of primary importance.
Figure 2c shows the impulse response measured at point S due to inward
impulse current at four different locations, A, B, C, and D on a passive artificial
dendrite as represented in Figure 2b. The location S represents the position of
the soma. Therefore, the voltages measured at S are those that would affect
somatic voltage-sensitive circuits and perhaps cause the generation of an
efferent impulse.

As with biological passive dendrites, the peak voltage amplitude is largest
for transmembrane current nearest the soma and gets rapidly smaller for sites
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further away. The time for the voltage to peak shows a similar behavior: time-
to-peak-voltage increases with distance from S (e.g. Rall, 1989). The behavior
shown in Figure 2 illustrates how the concept of weight is an inherent property
of the dendritic physical structure. It is clear that position along the artificial
dendrite can be used to produce an effective weighting, in both time and
amplitude, of afferent signals that are in the form of transient inward or
outward currents.
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Figure 2. a) Compartmental model of passive dendrite. Each RC section, R,,,
R, and C,, is a standard compartment that simplifies VLSI layout. b)
Standard compartments are abutted on substrate to form silicon dendritic
branches. c¢) Impulse response of single artificial dendritic branch due to
transient transmembrane current at indicated locations on branch.

Artificial Chemical Synapse
The means for enabling inward or outward impulsive current at a specific
artificial dendrite location is accomplished by using a single MOS field effect
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transistor. A p-channel transistor enables inward current, which produces a
depolarizing excitatory type response, and an n-channel transistor enables
outward current, which results in an inhibitory type response. Some n-channel
transistors have one of their terminals connected to the resting voltage, Vi
and play the role of silent or shunting inhibitory synapses. Two variants of
artificial dendrites are shown in Figures 3a and 3b, where p-channel (upper)
and n-channel (lower) transistors are placed at uniform positions along the
branch. In Figure 3a, only hyperpolarizing inhibitory synapses are present,
while in Figure 3b, both hyperpolarizing and shunting are shown. The
transistors are turned on by an impulse signal applied to their gate terminals.
Both transistor types operate in the triode region. Therefore, the amount of
transmembrane current depends on the conductance of the transistor in the on
state, the duration of the gate terminal impulse signal, and the potential
difference across the transistor, which is dependent on the state of the dendrite
at the point of the synapse. All excitatory transistors have identical drawn
dimensions (as do, currently, inhibitory transistors), and both excitatory and
inhibitory artificial synapses are placed at the same locations in the current
chip implementations. In normal operation, both excitatory and inhibitory
transistors at the same site may turn on simultaneously.

Electrical Response of Artificial Dendritic Trees and Synapses

In Figure 2, we illustrated the behavior of the impulse response amplitude
as a function of the synapse position on the ADT, thus demonstrating the
effective weighing of inputs that are mapped onto the tree structure. The
impulse response amplitude as a function of the afferent impulse signal width
is shown in Figure 4a, which represents measured responses from one of our
VLSI circuits for four different impulse widths. A similar postsynaptic
behavior is found in biological preparations under presynaptic voltage-clamp:
presynaptic depolarization produces a nearly linear increase in postsynaptic
voltage (e.g. Angstadt and Calabrese,1991). This behavior may be due to a
lengthening of the time over which transmitter is released, thereby increasing
transmembrane current in the postsynaptic terminal. In any event, the efficacy
of existing connections can be changed by altering the impulse width. We are
investigating how this may be done on a local basis, perhaps consistent with
Hebb’s postulate (Hebb, 1949), such that both local synaptic strength and the
location of the synapse on the branch combine to produce an effective synaptic
weight for a given connection.
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Figure 3. a) A five compartment section of artificial dendrite with five
excitatory and five hyperpolarizing inhibitory artificial synapses. (b) Same as
(a) but includes three shunting inhibitory synapses. V. is the resting voltage,
Viop is the maximum membrane voltage. () A multibranched ADT which is
constructed by piecing together artificial dendrite sections like that in (a) and

(b).

The artificial dendrite’s voltage response to closely spaced impulses is
shown in Figure 4b. The response due to each synaptic event is added to the
resultant branch point voltage from past events until the voltage reaches a
maximum value. This behavior is the expected impulse response of an
Nth-order system and is solely due to the effective postsynaptic membrane.
The same behavior would be observed if the phasing of multiple, transiently

conducting, artificial synapses was short compared to the effective membrane
constant.
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Figure 4. Experimental results from artificial dendrite-synapse circuit to
afferent stimulation a) Graded response: amplitude of voltage peak at soma is
linearly related to afferent impulse width over wide range. b) Tetanus
response: closely spaced impulses cause voltage response to saturate if impulse
rate is faster than membrane decay time c) Nonlinear and nearly-linear
response: curve 1 is the resultant somatic voltage for simultaneous stimulation
of two adjacent synapses on same branch (see fig 3c). Curve 2 is somatic
voltage for simultaneous stimulation of two synapses on different branches.
Positions of synapses for curves 1 and 2 were equidistant from soma.

Multiple, simultaneously conducting synapses that are electrically close
together produce a voltage at the soma that is less than the sum of their
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individual responses (e.g. Shepherd and Koch, 1990b). This sublinear effect is
due to the shunting load seen by each synaptic site when electrically nearby
synapses open their channels. In contrast, multiple, simultaneously conducting
synapses that are electrically far apart produce a nearly linear resultant voltage
at the soma. Both of these behaviors, as measured at the trunk of a
two-branched ADT (e.g. point S in Figure 3c), are shown in figure 4c. The
smaller voltage transient (curve 1) was measured when two adjacent artificial
synapses were simultaneously active on the distal end of one of the branches.
The larger voltage transient (curve 2) shows the resultant voltage when two
artificial synapses on separate branches were  simultaneously active. In this
case, the resultant is nearly twice that of the previous example. In both cases,
the artificial synapses were equal distance from the point of measurement. This
type of behavior clearly enriches the signal processing capabilities of systems
comprised of spatially extensive dendritic trees (Koch and Poggio, 1987).

Artificial Somata and Axons

The analog output voltage of each ADT must be processed by an impulse
generating artificial soma. Although the behavior of biological somata is quite
complex, and it varies considerably depending on cell type and species (e.g.
Koch and Poggio, 1987), we believe a simple circuit will suffice. Soma circuits
like those described by Mead (1989), Meador et. al. (1991), and Lazzaro
(1992) are simple to implement and exhibit desirable behavior. We are
currently investigating the use of these circuits or adaptations of them with our
ADTs.

In nature, the axon is the channel over which information is conveyed to
distant locations. If this was its only function we would have little need to
emulate its behavior. However, axons, like dendrites, impart a delay in the flow
of information, which we believe is an important system capability.
Fortunately, information carried by axons is in the form of impulses which
makes delaying them by arbitrary amounts of time a fairly simple matter. In
our system, impulses produced by either sensors or artificial somata are
captured by monitoring circuitry (see below) that can hold the impulse for a
specified time before sending it to its final destination(s).

SILICON DENDRITIC TREES

If artificial dendrites are to be used in real systems then they must be
implemented via a process that can make huge numbers of them in a small area
inexpensively. The only feasible path for doing this currently is with standard
silicon processing methods. In this section, we discuss briefly the
implementation of a dendritic system in silicon. Before discussing the silicon
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implementation, we must say a few words about our method of making
connections between synapses and impulse sources.

Convergent, Divergent, and Recurrent Connections

Networks that are built with artificial dendrites and synapses process
signals that have a spatiotemporal significance by mapping afferent signal
pathways to specific locations on the dendritic trees. The connections between
synapses and the outputs of sensors and neurons determine the overall system
response for a given dendritic dynamic behavior. The number of different
connection patterns is quite large and is a factorial function of the number of
synapses and sensor elements. If we limit, for the moment, the number of
divergent connections to one, then the total number of different connection
patterns is given by

N!

(N=M)!

where N is the number of artificial synapses and M is the number of sensor and
neuron outputs. Artificial systems may have thousands of afferents and many
times more synapses, resulting in an extremely large number of possible
connection patterns. In our system, we allow each sensor element or artificial
neuron to make unrestricted divergent connections and each synapse to receive
multiple convergent connections from both sensor elements and artificial
neurons. This tends to make the number of possible connection patterns much
larger than that indicated by the equation.

Virtual Wires

In the implementation of an electronic system, the number of data
pathways in or out of modules is limited by the available technology.
Integrated circuit packages rarely exceed 500 pins; our current artificial
dendrite chips are in 40 pin packages. This limitation in pin count is of special
concern with dynamic artificial neuronal systems because of the analog nature
of the computation. Each sensor or neuron output must be able to connect to
any one of the artificial synapses in the system, and the spiking outputs from
sensors and neurons must arrive at their artificial synapse destinations in a
parallel fashion.

In order to overcome I/O limitations and to meet the connectivity and
timing requirements, we make use of a multiplexing scheme that we refer to as
virtual wires. In this scheme, the outputs of active neurons and sensors (i.e.
those that are currently producing a spike or impulse) cause the synapses that
they connect with to become activated after a delay that is specific for each
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efferent connection. The process of reading an active output causes that output
to return to the inactive (i.e. nonspiking) state.

Virtual wires are formed using four circuits: digital or analog Stimulus
Memory, which is closely associated with each synapse, Address Decoding,
which serves all on-chip synapses, State Machine, which determines sensor
and neuron output states, and Connection List, which specifies the locations of
synapses and the axonal delay associated with each connection. Stimulus
Memory and Address Decoding are on-chip circuits; the Connection List and
State Machine are off-chip. With digital Stimulus Memory, the activated
synapses throughout the system are turned on transiently by a global impulse
stimulus signal. With analog Stimulus Memory, the synapses turn on as soon
as they are activated and turn off after either a globally set or individually set
delay.

Vtop
p—STIMULATE*
exc_syn*[n]
Vv
< > $ 3 t rest
Rm 3 Ra $ 3 Ra $ Rm*. .
:;Cm = ] - ::Cm
GND
vdd
CLEAR* i SET* Address F——ACTIVATE
" Decoder | ADDRESSN:0]
GND

Figure 5. Digital excitatory Stimulus Memory shown with its p-channel
synapse transistor. SET* is asserted by applying the proper address and
asserting ACTIVATE. When SET* is asserted the synapse is activated (i.e.
exc_syn*{n] is set to logic 0) and the artificial synapse will turn on while
STIMULATE* is asserted. CLEAR* inactivates all Stimulus Memory locations
throughout the system. Both STIMULATE* and CLEAR* are global signals in the
system.

The circuit diagram of a digital excitatory Stimulus Memory connected to
its p-channel artificial synapse transistor is shown in Figure 5. With the digital
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Stimulus Memory, nine transistors are needed for each artificial synapse. A
synapse is activated when its exc_syn*[n] is set to logic O by asserting SET*
while CLEAR* is unasserted. The SET* signal is asserted by the on-chip
address decoder when the proper combination of external address lines and
control signal are asserted. An activated synapse will turn on while the global
impulse signal, STIMULATE?*, is asserted. The global signal CLEAR¥* is
asserted after every STIMULATE* assertion to inactivate synapses in
preparation for the next round of sampling and activation.

Digital Stimulus Memory requires a rather large number of transistors for
each synapse and does not lend itself to individually variable synapse on-times
as discussed above and illustrated in Figure 4a. Therefore, we have designed
an analog Stimulus Memory cell that is considerably simpler and provides
some control over the synapse on-time. The circuit diagram of an analog
inhibitory Stimulus Memory connected to its n-channel artificial synapse
transistor is shown in Figure 6. The same address decoder is used in both the
digital and analog designs and the interface is the same except the signals
CLEAR¥* and STIMULATE* are not required. The duration of the on-time for
a particular synapse type (i.e. excitatory, hyperpolarizing, shunting) throughout
a chip is controlled by separate bias voltages, Vy,.

The Connection List is a multiple-bit-wide memory that holds the
synapse addresses and axonal delay of each efferent connection in its domain.
For large systems, we plan to divide the network into domains that will permit
a certain level of parallel sampling of neuron and sensor outputs which should

V[ES[

R, 3 R, s

r.v
=
S
=
3
V‘VY

Vg 4
10 1
ACTIVATE— Address J P T .
ADDRESS|N:0}——{ Decoder| v p

VIES[

Figure 6. Analog inhibitory Stimulus Memory. Connection of synapse
source terminal to GND results in a hyperpolarizing behavior while
connection to V., produces a shunting or silent synapse behavior. The
synapse turns on when a proper address is present and ACTIVATE is asserted.
The on-time duration is controlled by Vy which is different for each synapse
type on a chip.
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enhance system scalability. The Connection Lists across all domains hold the
pattern of connectivity for the system and thus their contents determine system
behavior. A connection pattern can be fixed in ROM, or as in our present
system, loaded via computer for experimentation

Figure 7 illustrates a simplified single-domain system comprising
Connection List, sensor, State Machine, and four neuromorphic chips, each of
which contain a number of artificial neurons. The outputs of the artificial
neurons on each chip are sampled via a multiplexer which is selected by the
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Figure 7. Simplified block diagram for single domain system showing basic
operation. All sensory and neuronal outputs activate the artificial synapses that
they connect to through the virtual wires. NO-CONNECTs are for analog
Stimulus Memory implementations.
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on-chip Address Decoder. Each neuron is in one of two states, so only a single
output pin is needed to read all of them. In operation, the State Machine reads
the state of each sensor element and every neuron in its domain. A spiking
neuron or sensor output is detected by the State Machine which then activates
all of the synapses that connect to that particular sensor or neuron. For chips
with digital Stimulus Memory, STIMULATE* is asserted transiently after
reading all outputs, thus turning on activated synapses while it is asserted. This
is followed by asserting CLEAR*, which inactivates all synapses. For chips
with analog Stimulus Memory, synapses turn as they are activated and stay on
for a time that is different for each synapse type. As with Mahowald’s method
of connecting neuron outputs to synapses (Mahowald, 1992) addresses of
synapses and neurons are used rather than direct connections carrying spikes.

Standard Dendrite Compartment

Figure 8 illustrates the basic integrated circuit layout of our standard
dendrite compartment sans synapse transistors. Each compartment has an
effective membrane capacitance, C,,, an effective membrane resistance, R,,,
and an effective cytoplasmic resistance, R,. The size of the artificial dendrite
standard compartment varies with each chip design. In the past, it has ranged
from 18 pm by 180 um to 18 pm by 360 pum with most of this area being taken
up by the capacitor.

The capacitor is the largest element in the standard dendrite compartment
and is implemented using conventional silicon processing methods (e.g. Allen
and Holberg, 1987). The capacitor was fabricated with two layers of
polysilicon separated by a thin oxide layer. The top plate of the capacitor is
polysilicon layer 2 (poly2) and connects to a ground bus that runs
perpendicular to the long axis of the capacitor. The bottom plate is polysilicon
layer 1 (poly1l) which connects directly to the resistors, R, and R,,,, and to the
synapse transistors in the stimulus memory (see Figures 5 and 6). The
capacitance varies, depending on chip design, between 1 and 2 pf, which is
based on an oxide thickness of approximately 700 A. There are many
techniques to reduce the footprint of the capacitor while keeping the same
capacitance: thinner dielectric, use material with a higher dielectric constant,
e.g. silicon nitride, employ three-dimensional capacitors, e.g. trench or tower
capacitors, but we will not explore these further here.

The compartmental resistors may be implemented by a number of
standard silicon fabrication techniques: well, pinched, active, and SC (e.g.
Allen and Sanchez-Sinencio, 1984). The resistor footprint for a particular
resistance depends not only on the resistance value but also on the
implementation technique. Well resistors have a footprint advantage over the
other techniques because the well resistor can be put under the capacitor.
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Therefore, a well resistor does not take up any silicon real estate but it has the
disadvantage of relatively small resistance (measured as 5 k{2 per square for
our chips). Pinched resistors have a higher resistance but can not be placed
under the capacitor. Active and SC resistors require control voltages and clock
signals and emulate resistor behavior over a certain range of terminal voltages
and resistance values.

control(s) in poly1 GND control(s)

7)1)(2

Syng

out
Figure 8. Basic VLSI layout for standard dendritc compartment. Five
compartments are shown. Control lines for resistors permit adjustment of
resistance over a limited range. V., establishes the resting voltage (typically
1V). The synapse transistors (not shown) connect to terminals on the left hand
side labeled syn.

We have implemented n-well, active, and SC resistors on different chips
and will report on the details of their design and relative behavior later (Elias
and Meshreki, 1993). In our standard dendrite compartment, n-well resistors
go under the capacitor and active or SC resistors are placed at the ends of the
capacitor as shown in Figure 8. Independent control signals for changing the
resistance of the SC or active R, and R, pass along both sides of the
compartment. For chips with active resistors, the control signals are DC
voltages that permit a certain range of adjustment. With SC resistors, the
control signals are AC voltages in which the frequency determines the
resistance. Presently, the R, resistors in all of the compartments share the
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same control signals and the R, resistors share a different set of control signals.
Therefore, all compartments have nominally the same R,, and R, resistances.
The standard dendrite compartment was designed to abut with adjacent
compartments and was pitch-matched to the on-chip virtual wire circuitry. This
method makes the construction of ADTs a relatively simple task: to make a
branch, standard compartments are placed side-by-side until the desired branch
length is reached. Branches are then connected via metal or poly wires to form
trees. The spacing between compartments is the minimum distance between
capacitors (2 pm). The compartments are aligned such that the inputs of one
compartment connect to the outputs of the previous compartment.

Silicon Implementation

The ADT circuits and their on-chip virtual wiring are fabricated using a 2
pm CMOS double-poly n-well process on a 2mm by 2mm Mosis Tiny Chip
(e.g. Mead, 1989). The artificial somata and output multiplexer have been left
off the chips thus far to permit experimentation with different soma circuits.
Four artificial dendritic branches each having 15 excitatory and 15
hyperpolarizing inhibitory artificial synapses have been implemented on most
of the chips. The number of synapses are kept low in order to leave open
silicon areas on the chips for other analog test circuits.

Figure 9 shows an ADT chip layout that uses digital stimulus memory
cells. In this implementation, the four branches are in-line, with a gap in
between each branch, and centered on the die. The ends of each branch are
taken out of the chip through package pins to allow experimentation with
different tree structures. Multiple chips can be combined as well to produce
tree structures with more branches, longer branches, or higher order branching.
The remaining circuitry makes up the virtual wires.

TRACKING CONTROL

We are investigating the use of ADT circuits in various control and
sensory processing applications. One of these makes use of ADTs to control
the pointing of a video camera such that a maneuvering-target is always kept in
the center of the camera’s field of view. In this system, the sensor is a standard
RS-170 type camera and its pointing actuators are torque motors that are
antagonistic to each other. The actuators couple to the camera body via cables
and cause the camera to pivot about a single point which is fixed on a multi-
axis platform. Both camera and platform are controlled by similar ADT
circuitry and actuators. The paired torque motors and cables are simple analogs
of antagonistic muscle groups and tendons of the primate oculomotor and head
systems, the camera representing an eye, and the platform functioning as a
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Inhibitory Stimulus Memory

Address Decoder

on-chip virtual wire circuitry

Figure 9. Chip layout of artificial dendrites fabricated using a MOSIS 2 um
double polysilicon standard CMOS process. The four artificial dendritic
branches can be seen in the center of the die. The ends of each branch are
connected to pads which allows experimentation with different branching
structures. Each branch has 30 synapses (15 excitatory and 15 inhibitory)
which are uniformly spaced along the branch.

head. In operation, the paired motors, linked by camera and platform
attachment points, move against each other by applying unequal tension on the
cables, thereby changing the gaze direction. In the complete system, there are
two pairs of antagonistic actuators attached directly to the camera and two
pairs attached to the camera’s supporting platform.

Live video, directly from the camera, is displayed on a monitor, which
allows observers to follow the progress of the tracking system. In operation,
any target that moves into the camera’s field of view will attract the system’s
interest and cause it to rapidly rotate the camera and platform in a direction
that makes the target’s image less eccentric with respect to the field of view.
Rotational movement continues until the target’s image is centered. The
greater the target eccentricity, the greater is the peak rotational velocity of the
camera.

The one dimensional system shown in Figure 10 can serve to illustrate the
basic control operation of the complete system. Only two ADTs are needed for
this one-dimensional target tracker. Each artificial neuron uses a single
dendritic branch which has N/2 excitatory and N/2 inhibitory artificial
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Figure 10. Simplified block diagram of a one-dimensional target tracking
system that makes use of ADTs and oscillating artificial somata. Camera
sensor elements near center make connections to distal synapses on ADTs
while sensor elements near edges make connections to proximal synapses.

synapses, where N is the number of sensor elements. The connections between
the sensor and each artificial neuron have a simple triangular structure (Elias,
1992). However, the inhibitory and excitatory connections for each artificial
neuron are mirror images of each other: the top half of the sensor makes
excitatory connections to the lower ADT and inhibitory connections to the
upper ADT; the bottom half of the sensor makes inhibitory connections to the
lower ADT and excitatory connections to the upper. This connection pattern
gives the system the ability to detect imbalance in the sensor’s field of view.
With an unbalanced sensor field, the outputs of the neurons are no longer of
equal pulse density which forces the actuators to pull the camera in a direction
that reduces the eccentricity between target and camera center.

The artificial somata are voltage controlled pulse generators which, in the
absence of dendritic transients, oscillate with a center frequency of fy Their
output pulse streams are not synchronous and they have approximately the
same center frequency, f, When the target is in the center of the camera’s field
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of view, the ADTs receive a balanced set of stimuli from the camera. Under
balanced conditions, the transient output from the dendritic branch is
approximately zero. Therefore, the soma center frequency remains at fy. When
the target is off center, the dendritic branches receive an unbalanced stimulus
pattern that results in a non-zero output transient. The response of the artificial
somata to an excitatory input is to transiently increase the output frequency
above fj. Presently, hyperpolarizing membrane voltage does not reduce the
pulse frequency below fy. The amount by which fy changes depends on the
magnitude of the integrated impulse responses from the ADT. The dynamics
are dependent on the effective membrane properties and the spatial location of
active artificial synapses.

In one dimension, the system operates in the following way. Assume a
non-maneuvering target suddenly appears near the top of the sensor’s field of
view. The camera must be moved up in order to put the target’s image in the
center of the monitor. Due to the excitatory synaptic activity the pulse rate to
the top actuator increases which causes it to pull harder on its cable. Although
there are inhibitory voltage transients on the lower ADT, the tension on the
bottom stays above a minimum value. As the camera rotates towards the target,
all the while reducing the eccentricity, tension on the top cable lessens until the
target is centered, when once again the tension on the bottom and top cables is
equal and the camera stops rotating.

As the target maneuvers away from the camera’s gaze in an attempt to
escape, the impulse patterns applied to the dendritic branches induce voltage
transients which increase nonlinearly as the distance between target image and
monitor center increases. The exact response with distance from the center
depends on the actual connection pattern (Elias, 1992) between sensor
elements and ADTs. A desirable connection pattern would have the controller
rotate the camera faster towards the target when the distance between target
image and monitor center is large compared to when the distance is small.
With the target’s image near the monitor center, the response is much reduced
which allows a slower approach to the final camera position and a minimum
amount of overshoot.

SUMMARY AND DISCUSSION

Our research program attempts to capture useful neurocomputational
principles from biology by applying structure and behavior modeled after
synaptic and dendritic levels of implementation. The ADT described in this
chapter is the basic computational substrate in our system. Although our
electronic models of chemical synapse and passive dendritic tree are, in many
respects, extreme simplifications of biological structures, their dynamic
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electrical behavior appears to satisfactorily follow that of their biological
paragons. The ADT structure is based on a current understanding of passive
dendritic trees which results in an extremely simple circuit implementation
that is highly scalable. Artificial neurons with extensive dendritic trees have
the capability to process signals that have both temporal and spatial
significance. In our networks, weights are replaced with connections which,
when combined with the sublinear behavior of electrically close synapses and
the nearly linear behavior of widely separated synapses, provide a rich
computational substrate for signal processing.
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INTRODUCTION

Biological neurons employ rapid pulses - action potentials (APs) - for
long- distance transmission of signals. A typical AP has a pulse width of one
to a few ms and an amplitude of up to 100 mV. Cells that fire action potentials
typically fire either continuously or in bursts of several APs separated by
quiesent periods. Increases or decreases in activity correspond to increases or
decreases in the firing frequency for continuously-firing cells, and to increases
or decreases in the frequency or duration of bursts for bursting cells [Kuffler
84, Kandel 85]. Action potentials provide the advantages of relatively low-
noise, lossless signal transmission typical of digital encodings of information.
Nervous systems do not, however, appear to employ any standard digital
encoding. The key features of communication in biological systems are timing,
frequency, and phase relations between parallel streams of signals. These
features are consistent with the requirements of asynchronous, data-driven
computation in environments in which the temporal relations between events
are usually important, and in which the system must process information
and respond appropriately in times commensurate with those of relevant
environmental changes.

An action potential is fired when the internal potential of a specialized
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region of the axon, the axon hillock, exceeds a threshold. The potential at
the hillock is a convolution of both excitatory and inhibitory post-synaptic
potentials (PSPs) generated at synapses on the dendritic tree, the cell body,
and the axon itself. The PSPs are typically tens of mV in amplitude and tens
of ms in duration at the receiving synapse; transmission through the dendritic
tree generally dampens, delays, and broadens each PSP. Neurons may have
hundreds to thousands of distinct synapses from as many distinct input neurons,
and PSPs from each input may have different amplitudes and durations, and
require different amounts of time to affect the potential at the hillock. Neurons
do not just count incoming APs, and fire if the number exceeds a threshold.
Each action potential reflects the combined effect of inputs received at different
times from different sources by the firing cell. Firing is typically the result of
the cell’s receiving multiple excitatory inputs, and many different patterns of
input may initiate firing. In some cells, the majority of inputs are inhibitory; AP
firing by such cells therefore indicates a relaxation of inhibition relative to the
default state as opposed to an enhancement of excitation over the default state.
In either case, the response of the cell is very sensitive to the temporal relations
between signals received at the same or different parts of the dendritic tree.
The output of a neuron may drive synapses on many other neurons. The high
fan-in and fan-out of most neurons, the wide variation in synaptic strengths,
the presence of both excitatory and inhibitory synapses on single neurons,
and the complexity of the convolution of PSPs due to the complex geometry
of dendritic trees make neurons computationally powerful devices. Streams
of action potentials from single cells, or from coordinated groups of cells,
often have very complex, irregular temporal spectra. The representation of
neuronal activity by a smoothly-varying AP frequency that is a simple function
of weighted, summed input frequencies, as is typical in many artificial neural-
network models can be seriously inaccurate and misleading [Selverston 88,
Miall 89]. More detailed and realistic model neurons are needed to investigate
the computational properties of neural systems and to assess the utility of
neuron-like computational mechanisms for solving real-time vision, sensory
integration, motion control, and other engineering problems.

We have developed a hardware model of a typical spiking neuron in order
to investigate the types of behavior such devices can produce and their potential
for application in signal processing and control systems [Fields 92, DeYong
92a). Our hybrid temporal processing element (HTPE) explicitly models
excitatory, inhibitory, and shunting synapses and PSPs, PSP convolution at
the hillock, action potential generation, and AP transmission. The HTPE is
more realistic than pulse-stream counters [Card 89, Foo 89] and more complete
than the operational-amplifier based silicon neurons of Mahowald and Douglas
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[Mahowald 91]. The basic components of the HTPE are few-transistor modules
that generate "slow" signals representing PSPs and "fast" signals representing
APs.

Convolution Test
Date/Time run: 01/1382 15:16:50 Tempersase: 27.0
‘.w ......................................
o T : X N A N
10ns 100ns 200n8 300ns 400ns 500ne 600ns 700ne
« N - ouT .

Figure 1. Simulation of HTPE Behavior. SPICE simulation of the convo-
lution of excitatory and inhibitory PSPs to a single HTPE. Upper panel: the
excitatory input frequency is too low to overcome the inhibition, so no APs
are produced. Lower panel: the excitatory input frequency is sufficient to
overcome the inhibition. APs are superimposed on the PSP background.

All signals have been scaled to the V - ns operating range for ease of VLSI
fabrication and application to very high-speed signal processing tasks. The
widths of these signals may be varied from roughly 10 ns to several ms for slow
signals and from roughly 2 - 10 ns for fast signals by varying externally-applied
modulating voltages. These PEs can be used as multifunctional building blocks
to develop relatively simple circuits for basic logic functions [Fields 92], pulse-
stream generation, signal selection via a winner-take-all mechanism [DeYong
92a), and a variety of signal-processing functions (DeYong 92b]. Here we
show that HTPEs very naturally implement the frequency and phase detection
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and shifting, pulse-stream filtering, and complex pattern encoding functions
that are ubiquitous in biological neural circuits.

SIMPLE CIRCUITS FOR GATING AND PHASE SHIFTING
The basic HTPE consists of one or more excitatory, inhibitory, or shunting
inputs (synapses), a resistive load representing the cell body (soma), and an
AP firing circuit (hillock). HTPEs accept pulses as input and produce them as
output, and compute internally by analog convolution [DeYong 92a]. A single
HTPE with both excitatory and inhibitory inputs acts as a frequency detector
that produces output pulses only when the pulse stream on the excitatory input
is above a critical frequency set by the strengths of the synapses and the
frequency of the inhibitory input.

CONT

o—— 3

Figure 2. Phase Shift Demodulator (PSD). This single-HTPE system
determines if the phase shift between the signals on the A and B inputs is
within a specified window. HTPEs 1 - 3 provide input signals. The length of
the window is set by the phase difference between the A and CONT signals. If
the signals are within the window the output of the PSD (HTPE 4) becomes
active. The window duration is a linear function of the A-CONT phase shift.

The frequency of the output increases as the excitatory frequency in-
creases, up to a saturation point set by the refractory period of the hillock.
This behavior is the result of the finite width and a-function shape of the PSPs,
which convolve to generate periodic waves on a subthreshold background
(Figure 1).
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PSD
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Figure 3. Output of the PSD circuit (Fig. 2) for signals with phase differences
less than (A) and greater than (B) the phase window set by the inhibitory signal.
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The simplest case of phase detection is the detection of coincidence within
a fixed time window. The detection of coincidence between two excitatory
inputs, neither of which is sufficiently strong to generate an output, is the basis
for AND gating by the HTPE [Fields 92]. The width of the coincidence window
is set by the widths of the excitatory PSPs; if these are different, the order in
which the signals arrive will also influence whether they count as "coincident."
Coincidence detection becomes general phase detection if both excitatory
signals are periodic; an output pulse is produced at the input frequency if the
input signals are of the same frequency and within the coincidence window.
An output pulse is produced at the beat frequency if the input signals have
different frequencies. The introduction of a third, inhibitory input sufficient in
strength to pull the combined excitatory PSP below threshold, as shown in Fig.
2, allows the coincidence window to be varied. Figure 3 shows the response of
a single-HTPE phase detection system to acceptable (A) and unacceptable (B)
phase shifts between two input signals of the same frequency.

START
A
1
SHIFT
2

Figure 4. Two-HTPE Oscillator. Oscillation is produced by the cross-
coupled excitatory feedback and is initiated by a single AP on the START
input. The frequency of oscillation can be varied or stopped by pulsing the
inhibitory SHIFT input.

Convolution of excitatory and inhibitory PSPs generated by inputs with
different frequencies can be used to shift the output frequency by an amount
fixed by an inhibitory input. Figure 4 shows two HTPEs cross-coupled to form
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a stable oscillator. The oscillation frequency can be shifted by applying an
inhibitory input at the "SHIFT" synapse. The frequency of the inhibitory input
determines the amount by which the oscillation frequency is shifted, as shown
in Fig. 5. Frequency shifting, with the limiting case of on/off gating, is the
basis for pattern generation in nervous systems [Selverston 88]. Very complex
periodic and aperiodic patterns can be generated by coupling oscillators of the
type shown in Fig. 4 to single-HTPE phase detectors of the type shown in
Fig. 2.

TWO-PE OSCILLATOR
Date/Time run: 11/18/01 08:12:45 Temperature: 27.0
.5V + + -
| 1‘ lﬁm i U |
RlRY \ " 2 \ L
0.5V + +
ssv oIN1 = OUT1 , F F ﬂ
' | 141
,krﬂ% ﬂ %"F“
t il | | E (

siN2 s OUT2

Figure 5. Frequency shifting using the two-HPTE oscillator (Fig. 4).
Different shift frequencies correspond to different signal frequencies at the
SHIFT input.

Phase shifting requires introduction of a fixed delay without altering
frequency. This can be done by replacing the inhibitory synapse in the HTPE
shown in Fig. 2 with a shunting synapse, the function of which is to maintain
the soma at its resting potential [De Yong 92a). A shunted HTPE produces
an output in response to an excitatory input only if the excitatory PSP is
sufficiently broad and strong that it is still above threshold when the shunting
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signal decays. Varying the width of the shunting PSP for a fixed excitatory PSP
thus effectively varies the delay between the arrival of the excitatory pulse and
the generation of the AP, resulting in a pure phase shift [DeYong 92]. Phase
shifts allow the simulation with HTPEs of the delaying functions of extended
dendritic trees. Coincidence circuits that include phase shifts can be used as
delayed coincidence gates, which produce output only when the input signals
have particular time separations. Such circuits are basic building blocks for
systems capable of detecting and responding selectively to complex temporal
patterns.

PULSE-STREAM FILTERING

Filters resolve complex signal streams with many superposed components
into simpler patterns. Filtering is used ubiquitously in signal processing
applications to remove noise from input signals or to demodulate signals from
carrier waves.

b) :
Figure 6. Low (A) and high (B) pass filter systems. Band-pass an d band-stop

filters are formed by ORing and ANDing the low-pass and high-pass filter
outputs, respectively.

a)

In conventional filtering systems the system behavior is characterized by
the filter type (e. g. high or low pass) and the critical frequency or frequencies,
where the critical frequency signifies the half power (3dB) point of the filter
transfer function.
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The half-power frequency of the filter and the filter type effectively
determine which frequencies are passed and which frequencies are attenuated
by the filter, i.e. the pass-band of the filter. If a frequency of interest is
within the pass-band of the filter, it should be allowed to pass. If, on the other
hand, the frequency of interest is not in the pass-band of the filter, it should be
attenuated by at least fifty percent.

HTPE-based systems that perform the four basic filtering operations on
input AP streams (low pass, high pass, band pass, and band stop filtering) have
already been reported [DeYong 93]. The 3dB point (critical frequency) of
these pulse stream filter is taken to be the frequency at which half of the APs
are removed from the input stream, thus reducing the total energy contained
in the stream by half. This definition of pulse stream attenuation allows pulse
stream filtering to be viewed as a form of pulse frequency modulation.

HTPE-level diagrams of low- and high-pass pulse stream filters are shown
in Fig. 6. In the low-pass filter (Fig. 6A), an incoming AP stream fires EPSPs
on the inputs of both HTPEs 1 and 2. HTPE 1 is biased so as to allow a
one-to-one firing ratio between the input and output if the inhibitory synapse
on HTPE 1 is inactive. The inhibitory feedback from HTPE 2 to HTPE 1
is inactive if the input frequency is sufficiently low to allow the oscillator
formed by HTPE 3 to maintain subthreshold activity on the input of HTPE
2. If the input frequency increases to the point where it begins to overcome
the oscillator-driven inhibitory input on HTPE 2, the inhibitory feedback to
HTPE 1 will become active, causing a reduction in the input/output firing ratio
of HTPE 1. When the 3dB frequency is reached the input/output firing ratio
of HTPE 1 will be 2:1. The high-pass filter system of Fig. 6B operates on
the same principle, except the roles of the excitatory and inhibitory synapses
on the input of HTPE 2 are reversed. These filters can be combined in and
OR configuration for a band-pass filter, and in an AND configuration for a
band-stop filter [DeYong 93].

PATTERN ENCODING

HTPE filters can be used to transform simple periodic signals with
fixed frequency to complex quasiperiodic or aperiodic patterns. Both the
quantitative and qualitative characteristics of the output signal from a given
filter are sensitively dependent on the difference between the input frequency
and the 3db point of the filter. Figure 7 shows the response of an HTPE high-
pass filter to an input signal with a frequency equal to the filter’s half-power
frequency. This filter passes signals at 15.5 MHz at 100%, and attenuates
signals at 14.3 MHz to zero. With a 15.152 MHz input, the filter produces a
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Figure 7. /O Response of the high-pass filter (Fig. 6B) at an input freque
ncy of 15.152 MHz. This filter passes 15.5 MHz at 100% and 14.3 MHz at 0%.
The input pulse stream (top) is allowed to pass to the filter output (bottom) at
a ratio of 25 output APs to 50 input APs, 50%.
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Figure 8. I/O Response of the high-pass filter at an input frequency of
14.706 MHz. The input pulse stream (top) is allowed to pass to the filter output
(bottom) at a ratio of 7 output APs to 25 input APs, 28%.
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quasiperiodic signal with 25 output APs for every 50 input APs (50% power).
The local frequency of this output signal shifts periodically from the input
frequency to 1/3 the input frequency. As the input frequency is decreased,
both the high and low frequency components of the output signal change. At
14.706 MHz (28% power), for example, the filter produces 7 output APs for
every 25 input APs, in a stable pattern with components at 1/3 and 1/5 the
input frequency (Fig. 8).

At power levels for which the average output frequency is not a rational
fraction of the input frequency, the HTPE filters produce aperiodic output with
multiple local frequency components. While the stability and repeatability of
these patterns have yet to be extensively investigated with fabricated hardware,
the wide range of behaviors observed in simulations suggests that single
HTPE filters may be useful as pattern memories of the sort contemplated
by [Selverston 88] that would be addressable by single input frequencies.
The possibility of storing complex patterns, combined with robust pattern
transformation capabilities, suggests that HTPEs will be applicable to a wide
range of signal processing problems.

CONCLUSIONS

The circuits outlined here provide the basic functionality required for a
wide variety of temporal signal processing applications, and illustrate the power
of hybrid analog-digital computing for solving signal processing problems.
None of the circuits shown here require more than 500 mm by 350 mm of
chip area (in a CMOS 2 mm process), using custom layout masks that we
have already developed [DeYong 92a]. The hybrid processing, custom design,
and temporal nature of the HTPE produce efficient high-speed low- hardware
solutions to signal processing problems that are unwieldy when addressed by
conventional analog and digital methods. A single filter circuit may operate on
frequencies from the sub-Hertz range up to the GHz range by simply adjusting
the DC biases of the system; no changes in the physical structure of the
system are required. These systems exhibit complex behaviors ranging from
sensitive pattern detection and filtering operations to addressable complex
pattern memory.
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INTRODUCTION

This chapter introduces a pulse-coded winner-take-all (PWTA) network
which employs a unique combination of presynaptic and lateral inhibition that
can be efficiently implemented in VLSI. The manner in which the network not
only selects the winner but also indicates the weight of the decision made is
unique among established winner-take-all networks. A combination of all-or-
nothing and graded responses is encoded as a variable rate pulse train
appearing only at the output of the winning unit. The mechanism used is
closely related to the presynaptic inhibition approach introduced in [Yuille 88]
with the exception that it is self-resetting and has properties which make it well
suited for electronic realizations using asynchronous pulse-coded circuitry.

The chapter begins with some background on winner-take-all network
architecture. The development continues with information coding and
processing using asynchronous pulse streams. A functional model of the new
PWTA network implementation is then developed. The design of a 2-micron
CMOS PWTA circuit based on that model is then presented complete with
experimental measurements. The chapter concludes with a discussion of some
of the unique features which distinguish this approach from other previously
established winner-take-all circuits.
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BACKGROUND

The Winner-Take-All Function And Competitive Neural Networks

The winner-take-all (WTA) function plays a central role in competitive
neural networks and is related to recurrent on-center off-surround models of
natural neural systems [Grossberg 73]. The WTA function can be computed
sequentially using numerical comparisons, or in parallel using a Hopfield
network [Majani 88] or MOS current conveyors [Lazzaro 88, Andreou 91].

The WTA function is useful because it is an essential component of well
established neural networks such as ART, self organizing feature maps, and
counterpropagation networks [Zurada 92]. It also finds use in applications
such as vector quantization and coding, statistical data clustering, and
optimization [Hertz 91].

In simple competitive networks, connection weight vectors (or "prototype
vectors") are updated to move toward closely related input vectors. The
function of the WTA subnetwork is to determine which of the prototypes is
nearest by some distance measure. The inner product measure is used in
simple competitive learning while Euclidean distance is employed in the more
complex feature map algorithms. The two are equivalent when normalized
vectors are used. A simple competitive learning rule based on the inner
product distance measure can be expressed concisely in terms of a randomly
distributed input vector and a set of prototype vectors associated with unit
outputs:

v - 1 f WHiX>WHX Vj#i
0 otherwise 1)
Awiani(X—Wi)

where Wi and X correspond to the prototype vector for unit i and the input
vector respectively. Here, only unit output Y; is active, so only row i of W is
adapted in proportion to learning rate constant h. In competitive networks the
inner product computation and winning unit computation are distributed across
two distinct subnetworks as illustrated in the networks of Figure 1. The focus
of this paper is upon the implementation of the winning unit computation
independent of others associated with distance measures and adaptation.

One characteristic of particular importance to the VLSI implementation
of WTA networks is area complexity. WTAs using the Hopfield network
organization (Figure 1a) are less practical for VLSI than those using an
"inhibitory interneuron” approach (Figure 1b) since winning unit feedback
requires a more complex interconnect. The Hopfield net approach has O(N?)
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Figure 1. Winner-take-all network organization within a simple competitive
network: a) Hopfield network approach and b) the use of a recurrent inhibitory
interneuron. Inner product distance computations are computed in the distinct
W subnetwork, independent of the WTA implementation. Excitatory
connections are indicated by open circles with filled circles indicating
inhibition.

area complexity while the use of an inhibitory interneuron requires only O(N)
area for N units. The architecture of the WTA network introduced here uses
the more space-efficient inhibitory interneuron approach.

Computation In The Pulse Probability Domain

Asynchronous pulse coded processing units similar to the axosomal
circuits first described in [Meador 91] are the basic elements of the WTA
network to be presented here. The functional organization of a simple
axosomal circuit is shown in Figure 2.

The axosomal circuit operates by cyclically charging and discharging the
integrating capacitor C at a rate in proportion to the instantaneous magnitude
of the synaptic current Inet. During the integration phase of circuit operation,
S1 is closed and S2 is open. In this state weighted synaptic currents are
summed via Kirchoff's current law to form the input current Inet which is
integrated over time on C. With increasing time, the voltage across C
increases, eventually reaching the upper threshold of the Schmitt trigger. At
this threshold the output of the Schmitt trigger toggles, causing S1 to open and
S2 to close causing C to discharge through R and S2. When the capacitor
voltage reaches the lower Schmitt threshold, the circuit reverts to the
integration state. The width of the output pulse is dictated by the time-
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Figure 2. Functional structure of an "axosomal circuit” for asychronous pulse
stream processing. Pulses having a fixed width of TO are generated at a rate
determined by the magnitude of the synaptic current Inet.

constant of the RC circuit, while the rate at which pulses occur depends upon
the magnitude of the synaptic current. The axosomal circuit is effectively a
current controlled oscillator exhibiting several orders of magnitude of dynamic
range and essentially mimics the basic firing cycle of most natural neurons
[Guyton 86]. In fact, the term "axosomal” is inspired by nature in the sense
that the locus of action potential generation commonly lies in the axon hillock
of the neuron soma.

The axosomal circuit of Figure 2 can be used to compute a scaled and
weighted summation of pulse probabilities. When used in conjunction with
certain pulse stream multipliers or "synapse circuits,” the probability that the
output pulse stream is generating an action potential or is "firing" is
proportional to the weighted summation of the probabilities that input pulse
streams are in the action potential state. This is best understood by examining
axosomal circuit behavior in conjunction with a simple fixed synapse circuit
such as that diagrammed in Figure 3. In the figure, Wij is a voltage which
represents the weight of the synapse. This voltage is maintained such that M1
approximates an ideal current source that is gated by transistor M2. Several
orders of weight magnitude are available if Wij is maintained in the weak
inversion region of M1 [Meador 91]. Since transistor M2 in turn is controlled
by the pulse stream input signal Xj, the more frequently (inverted) pulses
arrive at Xj, the longer M2 remains on, transferring more charge to the
axosomal circuit. Similarly, with increasing weights (decreasing weight
voltage in this case), more charge per pulse will flow. If a continuously
varying Wij and a fixed Xj having firing probability one (is continuously
firing) is presented to the circuit the response will be the integral pulse
frequency modulation (IPFM) of Wij [Bayly 69, Gestri 71, Sanderson 80] as
illustrated in Figure 4.
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Figure 3. The axosomal circuit of Figure 2 controlled by a simple fixed
synapse circuit. The rate at which output pulses are generated varies in direct
proportion to with the connection weight (which increases with decreasing
voltage Wij in this case) and increasing pulse frequency on Xj.

LU I TR R S

Figure 4. Output pulses generated from a continuously varying weight with a
fixed input having firing probability one (continuously firing). The integral of
the resulting pulse stream varies in direct proportion to the input signal
integral.
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IPFM yields a pulse stream having a repetition rate which varies in
proportion to the integral of the weight modulating signal. Since each
individual output pulse has constant width and magnitude, the integral of the
output pulse stream varies in direct proportion to the integral of the input. A
new constant area pulse is generated each time the signal integral reaches a
multiple of a constant determined by axosomal circuit parameters (equivalent
to the area K in Figure 4). Given this and also that the integral of a binary
pulse stream per unit time is equivalent to an estimate of pulse probability, it is
a simple matter to demonstrate that the axosomal circuit can be used to scale
pulse stream firing probabilities, as for example is shown in Figure 5.

t
Figure 5. Pulse stream firing probability scaling with binary pulse stream
input Xj. Wij is fixed and a variable rate pulse stream applied to Xj. The
output firing probability varies in direct proportion with that of the input.

In this figure, the connection weight Wij is assumed fixed and a variable
rate pulse train is applied to Xj. Firing probability scaling can be succinctly
expressed as:

Pr(Y,=1)=K™" w; Pr(X;=1) )

where the firing probabilities are sampled over identical time intervals
independent of circuit state. K depends upon C and the Schmitt threshold
voltages. It is proportional to the quantity of charge required to raise C's
terminal voltage to the firing threshold voltage.

The extension of this result to a weighted summation of several inputs is
straightforward. Parallel synapse circuits yield a summation of individual
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weighted inputs via Kirchoff's current law. The firing probability of the result
is simply a scaled, weighted sum of input pulse probabilities:

Pr(Y, =1)=K"Y w; Pr(X;=1) 3)

This result is presented graphically forjtwo pulse stream inputs in Figure 6. It
is important to note that this result proceeds asynchronously independent of
signal timing. This means that under certain conditions a relative phase shift
between the two signals will yield only a minor variation in the overall result.
Any deviation from the ideal sum due to a phase shift is bounded by the
accuracy limits established by pulse width and the signal observation interval.

Wij Xj
wij |

Wik Xk
Wik |

Inet = Wik Xk + Wij X
Wik + Wij 4

t

Figure 6. Weighted summation of pulse stream firing probability for two
inputs Xj and Xk.
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Although the traditional sigmoidal output function is not explicitly
represented in Equation (3), it is implied by the probabilistic signal
representation. Just as probabilities are bound by 0 and 1, the response of an
asynchronous pulse coded neuron circuit consisting of the axosomal and
synapse circuits presented here saturates at zero and some maximum firing rate
determined by the pulse width To. A small To yields a large dynamic range for
pulse repetition rates, increasing the accuracy of the signal representation for
constant obervation intervals.

Pulse Coding in VLSI Implementation

There are several advantages in the use of pulses as a VLSI
communication and computation medium. In general, pulses are very easy to
buffer and can communicate continuous analog information off-chip. It is
easier to multiplex pulse stream signals for improving the efficiency of both on
chip and off chip communication [Murray 91, Mahowald 92]. Furthermore,
asynchronous pulse coded neuron circuits have a natural "power down"
property where very little power is consumed when no input data is being
processed.

Another unique property of pulse coded signals is that both digital and
analog information is effectively communicated simultaneously. The "all or
nothing" response traditionally considered to be an important feature of natural
neural processing is complemented by the ability to express continuous values
having a dynamic range limited only by the pulse width and observation
interval. One might argue that this property helps explain the flexibility
exhibited by neurons in the wide range of specialized functions they perform
in natural neural systems. As will be seen later, this property lends a useful
feature to pulse-coded WTA networks: that of being able to communicate the
"certainty" with which a particular winning decision is made.

AN ASYNCHRONOUS PULSE-CODED WTA

A winner-take-all network that extends the presynaptic inhibition
feedback mechanism first described by Yuille and Grzywacz [Yuille 88] is
presented in this section. The pulse-coded WTA (PWTA) network introduced
here employs a unique combination of presynaptic and lateral inhibition to
yield a self-resetting network that preserves winning input strength
information and is robust with finite precision distributed computation. The
manner in which this network not only selects the winner, but also indicates
decision "weight" by the strength of the winning unit response is unique
among established WTA algorithms. A combination of all-or-nothing and
graded responses is encoded as a variable rate pulse train appearing only at the



87

output of the winning unit. This section introduces a functional model of the
network and analyzes the parametric conditions under which an ideal WTA
function is computed.

Model

A PWTA network combines pulse-coded unit dynamics with an
inhibitory recurrent interconnect. The activation of a pulse-coded unit
(corresponding to the terminal voltage of the capacitor in the axosomal circuit
of Figure 3) can be modeled by the nonlinear differential equation:

KV =—av + net — (Bv -y + net)g(v) “4)

where 0O< v(0) < Vi and g(e) is a binary hysteresis function having a threshold
of Vih and a threshold of Vil. Provided y/(a+) < Vi, vi will oscillate between
Vi and Vih. Simultaneously, g(vi) describes a pulse train having a repetition
rate which varies sigmoidally with input net current.

PWTA network dynamics can be expressed in terms of (4) with additional
global inhibition from a shared inhibitory interneuron:

xv; =—av; +net; —((B-A)v; -7 +g(v;)—(Av, =L +net, )G(V) )

where
G(V)=VY g(vy)

indicates a logical OR computed by the interneuron and V corresponds to the
vector of unit activations, [vl,..vn]. Figure 7 illustrates the network
architecture. G(V) is global inhibition which occurs when any unit pulses,
causing all activations to be inhibited toward equilibria specified by network
parameters B, A, y and {. Ideally, the winning output is indicated by the
dominance of the first unit having activation that reaches Vth Since the
winning unit establishes the synchronized re-initialization of all others, it is
the only one to fire. In general, the winning unit is determined by a
combination of network reset state and input magnitude. With appropriate
parameter values, the reset state establishes initial conditions at the beginning
of each firing cycle that make the winning decision dependent exclusively
upon the Inet inputs.

Unit activations in a PWTA network have three important equilibria: one
associated with an integration phase of operation and two others with a firing
phase. Combinations of these equilibria establish cyclic attractors in the
network activation space. The activation trajectory for a unit is determined
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exclusively by one target attractor at a time, as established by the values G(V)
and g (vi) (Table 1). During the integration phase all units compete in a race
toward the firing threshold V. The first unit to reach that threshold triggers
the firing phase. During this second phase, (0+p)/x determines the decay rate
and y/(0+f) the asymptote of the winning unit activation. (o+A)/x and {/
(a+A) determine the respective quantities for losing units.

net; g(Vh) g(vi)

nety

nety

Figure 7. An asynchronous-pulse-coded winner-take-all network
architecture. A single-layer with a recurrent inhibitory interneuron yields a
linear interconnect organization.

G(V) g(v) KV, Action

0 0 —Qv; + net; integration phase

1 0 —(o+ 7")Vi + C firing phase,unit i loses
1 1 —(o+B)v, +vy firing phase,unit i wins

Table 1. PWTA processing unit operation is determined by a combination of
global inhibition from the recurrent interconnect (G(V)) and local unit output

(g(vi)).

Winner Determination
The PWTA integration phase corresponds to a specific case of the
presynaptic inhibition WTA network [Yuille 88]. Equation (5) can be
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rewritten in a form which separates presynaptic inhibition and reset terms:
KV; = —av; +net; (1-V g(v;)) = (B -A)v; -y +{ + net;)g(v;) - (Av; ~5)G(V)  (6)
ji

where the third and fourth terms realize a reset function that will be discussed
in the following section. When considered alone with appropriate choices for
Vih and Vi, the first two terms realize a presynaptic WTA:

where

Ki(V)=l—¥g(vj)

Proof of presynaptic WTA function for this specific Ki requires that it be
established that a winner exists, is unique, and directly corresponds to the
largest input.

A winner exists provided netw > atVih where netw is the winning input
value. Given the premise that a winner never exists, then g(vi( t )) = 0 V(i,1).
This implies that Ki(V) = 1, V(i,t). By Equation (7) then, vi — neti /o for all
units as t — eo. Since netw > otVth, then vw > Vth meaning that g(vw) = 1,
thereby contradicting the negative premise. Therefore, there will always exist
a winner at some point in time.

A winner is unique provided Vu > 0. Given g(vw) = 1 it follows that
Ki(V) =0 Vi # w, which in turn implies that for all units save the winner vi =
0; so g(vi) = 0 when vi < Vi.. Thus only that unit having activation vi = Vth
has a non zero output.

The winning unit corresponds to the largest input provided vi(Q) <
vw(0). An expression of the difference of unit differential activation can be
obtained from Equation (7):

1(~dd—t(vw -v;)=—-0(v, —v,;)+(net, —net;) (8)

This expression assumes that vi < Vi V i, so a winner has yet to be
established and Ki(V) = 1 for all units. If vi(t) < vw(t) for any t, then the only
way a unit j associated with a losing input netj can win is if at some point vi(t)
= vj(t). Under such circumstances, activation order is determined by:

K—(l(vw—vi)=(netW —net;) )
dt

The only way order will be exchanged is if this expression is negative. But
that contradicts what is implied by input order, so only the largest input can
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lead to a winning activation when the two activations are equal. Thus the
winning unit corresponds to the largest input provided vi(0) < vw(0). This also
obviously holds for the trivial case where initial states are identical, vi(0) =
vw(0).

Clearly, initial conditions are possible where vi(0) > vw(0) even though Ii
< Iw in which a losing input will yield a winning output. If, for example, v(0)
is large enough such that vi(t) can reach Vi before winner vw(t) can "catch up"
then input order will not directly determine the winner. vi(0) > vw(0) does not
necessarily imply erroneous winner determination though, since there also
exists the possibility that Iw is large enough to compensate for unequal initial
bias against vw.

Network Initialization

The PWTA firing phase controlled by the latter terms of (6) provides a
cyclic reset mechanism for establishing initial conditions. Although a global
signal indicates the end of an integration phase, local parameters determine
unit initial conditions for the next integration phase. The network
automatically resets at a rate dictated by the largest input signal, in a sense
implementing a kind of automatic input gain control. It shall now be shown
that this reset mechanism functions independently of initial network state,
therefore insuring the correct indication of the winning input.

A PWTA correctly indicates the winning input independent of initial
network conditions. It does so by converging to a cyclic attractor in which
only that unit associated with the largest input fires. That cycle is entered by
the end of the second integration phase provided y/(0+B) < Vu, A >> B, and {/
(0+A) = Vu.

If initial network conditions are such that vi(0) £ vw(0) V i, then the result
follows directly from the simple argument of the previous section that the state
vi(t) = vw(t) never occurs so the winner is correctly indicated at the end of the
first integration phase.

If the initial conditions are such that 3 i ,vi(O) > Vw(0), then the first unit
to fire does not necessarily correspond to the true winning input, so it can only
be considered a "hypothesized" winner. Since Y/(0+f) < Vu, the hypothesized
winning unit activation will follow a truncated exponential trajectory during
the first firing phase:

v y=dVa —Y/ (@B Py (@) v, >V, o

* v, otherwise
until vw(t) = Vu whereupon vw(0) = Vu is established for the subsequent
integration phase at the beginning of the second cycle. Since {/(a+A) = Vu all
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losing unit activations asymptotically converge to Vu following the trajectory:

v,()=(v; =V,) eV 4y, (11)

where vi* is unit i activation when the network firing phase is entered. This
establishes vi(0) = Vi + € at the end of the first firing phase. Therefore, vi(0) =
vw(0)+€ Vi at the beginning of the second integration phase. By the properties
of exponential decay, € can be made arbitrarily small by increasing A and
causing vi to more rapidly converge. A >> [ implies that € is very small, so the
state vi(t) = vw(t) occurs very early in the second integration phase. It is
theoretically possible to choose A arbitrarily large relative to B without € ever
reaching zero. In practice, A can be made large enough for € to fall below
computational precision limits, as determined by the digital word length or the
analog noise floor. Thus in practice, a ratio of A/B can be found which
virtually establishes the condition vi(0) = vw(0). Thus unit activations become
properly ordered according to (9) before entering the second firing phase.
Therefore, the second unit to fire will be that associated with the largest input.
This winning cycle will repeat until actual input order changes.

EXPERIMENTAL PWTA IMPLEMENTATION

This section presents a CMOS implementation of a PWTA circuit along
with experimental measurements verifying its functionality. A simple
variation of the axosomal circuit of Figure 2 is used in combination with 3-bit
digitally programmable synapse circuits in a simple competitive neural
network. Test results show that the network correctly matches 4-element input
vectors with their stored prototypes.

CMOS Circuits

Figure 8 shows a block diagram of the experimental system. The Pulse
coded inputs X0 through X3 are weighted by the programmable synapse
circuit array and distributed to the axosomal circuits. The outputs (Y0 through
Y3) control a global inhibition generator, 1. The global inhibition signal feeds
back to all the neurons in the network using an O(n) architecture like that of
Figure 1 a).

The programmable synapse circuits are simple 3-bit MDACS controlled
by serial-in-parallel-out registers (Figure 9). These registers are chained
together in a bit-serial fashion for simplified interfacing to host hardware.
Although this simple weight I/O organization would not likely be used in more
complex systems requiring synapse adaptation, it does provide a
straightforward method for examining the functionality of experimental
PWTA circuits. Input signal Xi gates supply current to M2 - M4 via M1. Vrefis
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selected for subthreshold operation with transistor aspect ratios increasing in
powers of two for binary weighting. Dynamic SIPO register R controls which

‘“f‘ﬁ”‘“?‘”r@ ¥
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L 4
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Figure 8. Pulse coded winner-take-all system organization.

branches are active to establish eight synaptic weight levels. A layout
organization consisting of mirrored pairs of the circuit has dimensions 318 x
198 microns.

In the axosomal circuit shown in Figure 10, M1 and M2 correspond to S1
and S2 and M3-M8 form the Schmitt trigger of Figure 2. In this
implementation, the integration capacitance primarily consists of the gate-bulk
capacitance of transistors M4-M7. With the aspect ratios given, the threshold
voltages of the Schmitt trigger are 1.5 V and 3.0 V for Vil and Vth respectively.
M11 forms the local branch of the global inhibition generator. Each axosomal
circuit layout has dimensions of 186 x 48 microns.

The global inhibition signal I controls the switching between integration
and firing phases of the axosomal circuits. Figure 11 shows how the transistors
corresponding to M1l from network axosomal circuits connect together to
compute the OR global inhibition function. When the output of one neuron
fires, the I inputs of all axosomal circuits will be forced high. This will in turn
cause all of them to enter the network firing phase, simultaneously discharging
all the integrating capacitors and effecting their simultaneous inhibition.
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Figure 9. The programmable synapse circuit consists of a 3-bit
programmable MDAC. Eight synaptic weight levels are available for testing
PWTA response. Minimum size devices are used unless noted otherwise in
the diagram.
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Figure 10. CMOS implementation of the axosomal circuit in Figure 2.

Network Initialization

As detailed earlier, certain initialization conditions must be adhered to for
a PWTA network to correctly indicate a winning input. Specifically, for the
ideal model previously discussed (equation (5)), system parameters should be
selected such that y/(o+B) < Vi, A >> [, and {/(a+A) = Vu. In practical
implementation terms, these constraints mean that the activation of the
winning unit (voltage across the integration capacitor) should decay toward
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Figure 11. Global inhibition circuitry. One weak pullup transistor and an
inverter are needed for the network with transistor M11 is repeated for each
axosomal circuit.

;.ﬂ I

some value less than Vu while the activation of all losing units should decay
toward Vu precisely. Furthermore, the losing unit decay rate should exceed
that of the winning unit so that it has converged upon Vuto a reasonable degree
of accuracy when the network exits the firing phase. Meeting these conditions
in the ideal case guarantees that transition boundaries between winning units
can be made arbitrarily precise.

In actual circuits however, a number of error sources conspire against this
ideal goal. Variation in threshold voltages, time delays, and discharge rates
between fabricated axosomal circuits means that erroneous decisions can be
made in the region of ideal transition boundaries. Functional simulations have
previously shown that two nonideal effects, namely vascillation and hysteresis
can be observed in transition regions where two inputs are too close to resolve
[Meador 92]. Absolute precision is an unreasonable design goal for obvious
reasons, so an alternate design criterion must be developed.

In the case of the network presented here, consistent behavior within
transition regions is considered to be more important than absolute precision.
Specifically, the network reported here has been designed to consistently
exhibit hysteresis within indeterminate transition regions. This behavior
occurs rather naturally with a relatively simple circuit since both winning and
losing units approach ground simultaneously, with the losers by definition
starting at a lower activation level than the winner. When the winning
activation reaches Vu the losing activations all are significantly smaller since
the decay rates are large. Thus the current winner will begin the following
integration phase with a higher activation, and will continue to win until some
other input reaches a significantly larger value.
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IC Test Results

A MOSIS 2-micron CMOS Tiny Chip was used to test an experimental
PWTA implementation. The resulting measurements were obtained using a
Tektronix DAS9200 / LV500 digital tester in combination with a Phillips
PM3580 logic analyzer. The tester was programmed to deliver variable duty
cycle pulse trains to each of the four system inputs while the logic analyzer
recorded system responses. The network was first programmed bit-serially
with the four prototype vectors {1 73 5],{7135],[1753),and [1 35 7]
respectively. The vectors were chosen to have equal magnitude so that true
Euclidean distance would form the basis for all comparisons. Pulse trains were
applied to the network inputs having duty cycles corresponding to these four
vectors and the system responses recorded (Figure 12). In the figure, it can be
seen that the unit programmed with the matching prototype vector is the only
one to be activated. Another observation made is that although each winning
unit fires with about the same probability for the same winning input
magnitude (about 3-4 pulses per 90 uS), the firing is irregular - a consistent,
fixed firing period is not observed. This result most likely arises from parasitic
capacitance in the synaptic summing junction on the axosomal input. Charge
continues to accumulate in the summing junction during the network firing
phase, independent of the integrating capacitor within the axosomal circuit. At
the begining of the next network integration phase, the accumulated charge is
redistributed onto the integration capacitor, resulting in an apparent
instantaneous increase in net input current. Since all units re-enter the
integration phase simultaneously and the accumulated charge will be greater
for the winner than all other units, this will not affect the winning outcome
unless the parasitic capacitance is somewhat larger than the axosomal
integrating capacitance. One reasonable way to avoid such error is to simply
use a larger axosomal integrating capacitance. A second, more scalable
approach would be to distribute the switches S1 and S2 (Figure 2) throughout
the synaptic array, thereby maintaining a constant ratio between parasitic and
integrating capacitors.

DISCUSSION AND CONCLUSION

The PWTA system presented in this chapter has several interesting
features which distinguish it from other previous WTA implementations. One
of those is the ability to indicate the strength of input data upon which a
decision is based. Saturating WTA algorithms such as those described in
[Majani 88] effectively filter out such information. In the presynaptic
inhibition algorithm [Yuille 88] the rate at which system state changes is
directly related to input signal strengths. The time required to arrive at a
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decision can be considered an indicator of the importance or "weight" carried
by the inputs. A larger input signal is interpreted as "significant” so a decision
is made rapidly. If all inputs are small, more time is taken to gather evidence
before a final decision is made. The PWTA algorithm inherits this property
from its presynaptic predecessor, but instead indicates input signal strength by
winning unit firing rate.
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Figure 12. Fabricated IC response to matching inputs. In each example the
input vector X matches one of the four stored prototype vectors. In each case,
the unit associated with the stored prototype is the only one to fire.

The PWTA algorithm also inherits a useful input averaging property from the
presynaptic inhibition algorithm. Unit dynamics are such that activation
increases monotonically with a filtered average of the input signal. In
electronic implementation terms, this makes it possible to directly process the
kind of pulsed input signals employed in asynchronous-pulse-coded ICs
[Meador 91, DeYong 92, Hamilton 92, Moon 92, Watola 92]. Although a
combination of the original O(N) WTA circuit [Lazzaro 1988] with Mead's
self-resetting neuron circuit [Mead 1989] would yield a system that generates
pulses, it would not properly process input pulse trains since the current-mode
WTA expects data represented as continuous input currents.

One interesting property of this network is that most power is dissipated
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only when pulses are generated. With low input currents (low output firing
rates), most of the power is dissipated as Vc approaches Vth during the
transition into the firing phase. Less power is dissipated during the firing
phase since much less time is spent resetting the network than integrating input
signals. At higher input currents, the average dissipation of the axosomal
circuits increases with the winning unit firing rate. At zero input current, the
inherent charge leakage of MOSFET source/drain connections will cause Vc to
tend away from Vth. As aresult, the network dissipates very little power when
inputs become quiescent, yet responds instantaneously when nonzero inputs
become available, dynamically adjusting power requirements to suit the input
processing needs. This differs significantly from the self-resetting neuron
circuits originally described by Mead [Mead 1989] where continuous power
dissipation results from operating a fixed-threshold inverter in its high gain
region (see Chapter 8 of this volume for a novel low power variation of that
approach).

In conclusion, the pulse coded winner take all system which has been
presented in this chapter not only possesses useful physical properties that are
well-suited for VLSI implementation, but also novel functional properties.
Low-order system layout complexity, compact cell implementations, and
dynamic power dissipation combine with the ability to encode decision
strength to yield a flexible and efficient implementation of an important neural
network function.
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ABSTRACT

It is proven here that all of the sixteen Boolean functions of two variables
can be realized by a pulse coded neuron, thus guaranteeing that present day
digital computers could be implemented using pulse-coded neural networks.
The result uses an adjustable pulse coded neuron that is realized with a neural-
type cell in each of the two input branches and one in the output branch. These
neural type cells allow for the adjustment of pulse repetition frequencies to
obtain the appropriate coding for each function by the adjustment of internal
weights. Suitable values for the weights are given in Table 2. The strictly
greater than function is used to explain the weight choices along with SPICE
simulation results for the exclusive Or.

INTRODUCTION

One of the frequent questions posed of researchers in other areas is “what
are the capabilities of pulse-coded neural networks ?7” In particular “are they as
good as present day digital computers?” Since the logic of present day digital
computers is primarily based upon Boolean functions, as one step in starting to
answer these questions is to answer the question “can pulse-coded neural
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networks realize all of the Boolean functions?” Here we show that indeed they
can by presenting a pulse-coded neuron that realizes all the Boolean functions
of two variables. Since we wish to consider digital logic functions [Habib 89],
we concentrate on digital data coded on analog signals analogous to biological
neurons processing analog data. And although we only consider two inputs to
the neuron, extensions to more inputs are readily accomplished.

However, the basic motivation for a pulse coded neuron is the work of
neurobiologists who have found that biological neurons pulse code the
information they process [Ganong 85, p. 94]. Since it may be desired to have a
neuron that mimics the pulse coded processing of the brain [Hartline 89], it has
appeared reasonable to try to match a model neuron as closely as possible to
what we know by way of a description of pulse handling in biological neurons
[Cole 89, Murray 88]. As for engineering importance, it further appears that
pulse coding can achieve a better noise-immunity when used for present day
artificial neural network computation [Meador 91, Tomberg 90]. This could be
important in some environments, or when the accuracy or reliability of a neural
network is capital.

The main contributions of this chapter include: the presentation of a pulse
coded neuron; showing how to obtain the sixteen Boolean functions of two
variables with the same neuron via weights; and simulation of the neuron. As
such this paper extends the results reported in [Savigny 92].

DESCRIPTION OF NEURON

Our neuron, shown in Figure 1, uses pulse coding of the information
[Murray 89] to implement Boolean functions. We are interested here in
implementing Boolean functions which requires an effective coding of the two
logical levels "0" & "1". We will code by a neural-type pulse at repetition rate
r; when the information is a logic "1" and repetition rate ry, chosen to be zero,
that is, a DC constant, when the information is a logic "0". In Figure 1 the
inputs In; & In, can be these pulse coded signals, or, if needed, TTL-
compatible logic levels. Next, we give a short description of how the neuron of
Figure 1 works.

General principle

There are two inputs In; & In, with the signal on each branch being
routed through three components: a pulse inverter, a Neural Type Cell (NTC)
[El-Leithy 88], and a lowpass filter. The pulse inverter, which is controlled by
the weight w;, i=1,2, allows us to invert the logic level of the input. Not all of
the 16 Boolean functions could be realized without this inversion. The NTC is
our pulse generating element coding the logic level passed from the pulse
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inverter. Finally, the lowpass filter (LPF) will let pass through the fundamental
and possibly the second harmonic of the pulse repetition frequency of the NTC
pulses. The choice is made through a weight w;s.

A key element of the neuron is the multiplier that takes the product of the
filtered signals x;, i=1,2, yielding y=k-x;-x,. Depending on which harmonics
are present in the x;'s, y has certain peaks in its spectrum. We select some of
these peaks by a bandpass filter (BPF) which gives the signal z. The weight wy
sets the center frequency of the passband of this filter.

s Yif

In, ‘
—si ¢/~ = NTC LPF }—
X4
Tf Td
[ 2z Out
x}- BPF | 571 ] i {u
2s v
In, ‘ X
—1 ¢/~ =] NTC || tPF 2

Figure 1. Block diagram of the pulse-coded neuron.

Unfortunately, we may end up with signals that have a repetition rate
double that of an input pulse's repetition rate. For Boolean functions, this is not
acceptable if we want to cascade our neuron, in which case, the output of a
neuron is then the input of a second one, and if a change in the output
repetition rate occurs, every stage would need to be optimized for a different
rate. Therefore, we design a frequency divider to divide by two (.5/1 in Figure
1). The weight w4 on the divider of Figure 1 permits selection of the presence
of frequency division or not.

Lastly, we need an output NTC to regenerate the shape of the pulses, and
therefore guarantee that the output signal of the neuron will be standardized
over the different processing elements in a network regardless of what Boolean
function each individual neuron processes.

In the following parts we study how to code information on the NTC
pulses and show how we can use the spectrum of the internal signals x;'s, y, and
z to get the Boolean functions.

Choice of Repetition Rates
The repetition rate r, representing a "1" is chosen in the higher range of
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the frequencies that the NTC can generate in order to further increase the
difference between "0" and "1". Because the neural-type pulses are not
sinusoidal, the pulse signal for a logic "1" is seen in the frequency domain as
made of harmonics denoted n-f;, where n is an integer. We have r;=f,. If we
had chosen r, different from 0, it would have been harder to design efficient
filters, since r; and r, would be given by the same NTC which has a somewhat
restricted range. In other words, r; would have been closer to 1, and we would
have need for much better filters. Besides, signals at O frequency are relatively
easy to use.

Role of the frequency in separating cases

The signal generated by the NTC is far from being sinusoidal [Tsay 91, p.
2]. In fact, the fundamental of r, is very strong if the NTC's input voltage, Vin
is close to Vinlow or Vin.high which are the limits of the range of the values of
Vin for which the NTC generates pulses. [Savigny 90, p. 38] For r, that is
chosen in the upper region of the repetition rates generated by the NTC, the
second harmonic contains up to 40% of the energy of the fundamental.

Since others have much less energy, we consider only the first two
harmonics of the neural-type signals. Therefore, X|, the Fourier transform of
the signal on branch i just before the multiplier, has peaks at +f,, £2.f, in
which case, Y, the signal after the multiplier, has peaks at #f1, +2-f1, £3-f1, and
+4.-f1. This is because, if, with 8(-), the Dirac function, and 3(-), the Fourier
transform,fori=1,2,

S(x(0) = X(1) = A+ [8(7 = £)+8(f + 5] N
= [8(7-21)+8(r+21)

where A;, B;, C; are strictly positive real constant unless otherwise specified.
Then, with * denoting the convolution operator,

Y(F)=X,(f*X,(f)=3 [xI(t)'xz(t)]
2A/A,+ BB, +C/C,
— 2 : 2 2.5(f)

+ A;B,+A;B,+B,C,+ B,C;
2

[8(f-£)+8(F+1)]
2)
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+2A1C2+2:{’2C, B8 18(r-25)+8(f +21,)]
+BICZ—';BZC;1..[5(f—3f])+5(f+ 3f1)]

+ L2 [8(-45,)+8(f +45,)]

We summarize this in Table 1 recognizing that a logic "0" is represented by a
DC constant, and a "1" by a signal having harmonics at f; and 2-f;. The table
gives the peaks in Y for the four logic combinations of the inputs. By choosing
between these peaks, we create the different functions.

X1 logic “0” logic *“1”
X, 0 f, 2f,
logic0” f, 0 f, 2f,
logic*1”  f f, 0.2f, f,,3f,
2f, 2f, f,,3f, 0,4f,

Table 1. Peaks in the spectrum Y of the product signal for different pulse coded logic
inputs. A logic "0" at the i-th input of the neuron is transformed into a constant X, on
the other hand, a logic "1" at the i-th input is transformed into pulses at repetition rate
r;, the upper harmonics are lowpass filtered out and the resulting signal X; contains the
first, or the first and second harmonics of r;.

Role of the filters

Changing the cutoff frequency of the lowpass filters will suppress some
frequencies in x, or X, and suppress certain harmonics of r; in y. This can be
seen in Table 1. Let us study an example: suppose we filter out the harmonic
2-f, of the pulses from the first branch (C;=0 in 2). Practically, this corresponds
to disregarding the column of Table 1 labeled 2-f;. The combination "01"
(B,=C,=0 in 2) on the inputs can be differentiated from "10" (C,=B,=C,=0 in
2) - where the left bit is the logic state of the first branch, similarly for the
second - since peaks at £2-f, are present in y when the inputs are "01", but are
not present in Y for "10".

The pulse inverter
It turns out that not all the Boolean functions of two variables can be
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realized with filters and a multiplier. To achieve this we add the pulse inverter
on the input of the neuron [Savigny 91, p. 46]. Its purpose is to take the
incoming signal on its input and invert its logic level. Therefore, if a logic "0"
is present on the input of the pulse inverter, the pulse inverter transforms it into
a logic "1" and vice versa. That is, if the pulse inverter is selected the pulse
repetition rate at the input to the pulse inverter is changed to the “inverse”
pulse repetition rate at its output.

We will see in the next section that some functions (out of the sixteen,
exactly 6, including and, or, xor, 0) do not need to invert their inputs, while
others do (for example, nor, nand). This has the consequence that we need the
capability to enable or disable the pulse inverters depending on what function
we want to implement.

THE DIFFERENT BOOLEAN FUNCTIONS

We discussed in a previous section that changing the filters and enabling
or disabling the pulse inverters and frequency divider in the neuron of Figure 1
results in changing the processing of information in the neuron. We show in
this section that all of the sixteen Boolean functions of two variables can be
achieved by such changes.

We will call "weight" these quantities that are changed to obtain different
functions. This is motivated by the terminology being used for neural networks
[Dayhoff 90], where changing the weights modifies the processing. Table 2
lists the weights that are needed to obtain the different Boolean functions.

In the left column of Table 2, we use the notation Bh to label the Boolean
function: B refers to "Boolean," and the number h in hexadecimal is a reminder
of the output; just translate the hexadecimal number in binary and you have the
output of the function. For example, for the four combinations of inputs listed
at the top of Table 2, xor has the outputs 0 1 1 0, which is 6 in hexadecimal, so
it is labeled B6. Also in the table, the sign weight w;,, i=1,2 takes on the value
"-" if the pulse inverter is enabled, "+" if it is not. Similarly, the divider weight
wi4is "Y" when the frequency divider is selected, "N" when it is not required.
The weights on the filters are labeled wy, i=1,2,3, and are the cutoff
frequencies for which we abbreviate the cutoff frequency by n, when an actual
cutoff frequency of n-f; is necessary. In the output columns, we denote zero for
a pulsed signal with zero frequency representing a logic "0," and f, for pulses
at the frequency which denotes a logic "1." In the next section, we show an
example to illustrate the choice of weights to be taken from Table 2.

SIMULATION RESULTS
In order to check the validity of the theory, we first present the function
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B2 as an example of how the weights of Table 2 apply. Then we implement the
pulse coded neuron using SPICE for the xor (B6) function.

Inputs
Inp, {O O 1 1
In, |]O 1 0 1
logic output | Name | wyo  wyr  wyo Wy wir wig | Output
BO{0O O 0 0]0 + 1 + 1 > N |0 0 0 O
Bl1 {0 0 O 1|and |+ 1 + 1 2 Y [0 0 0 f
B2 10 0 1 Ojsgt + 1 - 1 2 Y |0 0 f O
B3 {0 0 1 1]|In + 1 + 0 1 N |0 0 f f
B4 |0 1 0 O] sst - 1 + 1 2 Y (0 f, 0 O
B5 |0 1 0 1]In + 0 + 1 1 N |0 f 0 f
B6 {0 1 1 Ofxor |+ 1 + 1 1 N [0 f f O
B7 {0 1 1 1]or + 1 + 2 1 N |0 f f f
B8 (1 0 O Ofnor |- 1 - 1 2 Y |(ff 0 0 O
B9 {1 0 O 1| nxor |+ 1 - 1 1 N |ff 0 0 f
BA|1 O 1 Ofnlnyp [+ O - 1 1 N if, 0 f O
BB|1 O 1 1|goe |+ 1 - 2 1 N {f, 0 f f
BC|1 1 O Ofnln |- 1 + 0 1 N |(ff f, 0 O
BD|{1 1 0 1fsoe |- 1 + 2 1 N |f, f, 0 f
BE |1 1 1 Ofnand |- 1 - 2 1 N iff f, f; O
BF |1 1 1 1|1 In, 2 In, 2 1 N (f, £ f f
Table 2. Weights of the pulse-coded neuron in order to obtain the 16 Boolean

functions of 2 inputs variables In; & In,. w;, i=1,2 is "-" if the pulse inverter is
selected, "+" otherwise. f.=w;f, i=1,2 is the cutoff frequency of the lowpass filters
with fm between f; and 2|, f.=ws¢f; is the cutoff frequency of the bandpass filter.
Finally, w34="Y" when frequency division is necessary, "N" else.
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Verification of the weights for "'sgt"

The function B2 is also called "sgt," for "strictly greater than." From
Table 2, we get the values of the weights for the neuron of Figure 1. We have
four cases for the input vector (In;,In,), namely (0,0), (0,1), (1,0), and (1,1).
According to the w;; & wy entries of Table 2, we invert the second branch
only, which swaps the bits of that branch. Then, the NTCs transform a logic
"0" to OV, and a logic "1" to pulses at repetition rate r,. Both input branch
NTCs have pulses with harmonics at n-f;, where n is a positive integer.
According to w =1 & wy=1 a lowpass operation is performed on each input
branch cutting off all high harmonics. After the filters, we are left with signals
having most of their energy at the frequency f; for the logic "1," and we still
have O for the logic "0”. The next step is to perform a modulation by taking the
product of the two input branch signals. The resulting signal, y, has energy
around frequencies which are the sum and difference of the frequencies of the
signals on each branch. From the wy column, in which wy=2, we take the
bandpass around 2-f; which creates a signal with energy at 2-f, only when the
input to the network is (1,0). A division of the frequency by two (w44="Y")
reduces the frequencies present in the output signal to f, or 0 (recall that the
logic "0" which is represented by a DC constant is not affected by the
frequency division). The logic equivalent of the obtained signal is "0" when
the input is (0,0), (0,1), or (1,1) and "1" results from the input (1,0). We
therefore have the desired output for the strictly greater than Boolean function
B2.

We have chosen to illustrate Table 2 by this function because B2 requires
all the elements of the neuron, so if the proof is understood for this function, it
should be straightforward to write the proofs for the 15 other functions.
Indeed, given an understanding of how to prove the result for B2, it is easy to
prove all the results of Table 2; consequently, except for the comments on
“xor” which follow, the details of proving the validity of the other entries is
omitted, though they can be found in detail in [Savigny 91].

Xor

The point of this section is to realize an exclusive or (xor) using the
neuron of Figure 1 with the weights of Table 2 for B6. An MOS circuit of the
neuron using MOSIS parameters was simulated via PSPICE.

Figure 2 gives the signals at the outputs of the NTCs on each branch of
the neuron and the output. We check that the output (lower curve) is a logic "1"
(i.e. pulses, possibly after a delay) if and only if exactly one input is "1"; note
that a "0" or "1" in In; is accurately represented by the pulses displayed in the
two upper curves.
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s V(14)

Figure 2. SPICE analysis results for the xor (B6) function.

CONCLUSIONS

We have presented a neuron realizing the sixteen Boolean functions of
two variables, noting that the same structure can implement any of these
functions, if well-chosen weights are used. Simulation results are given to
verify that the neuron works as claimed.

Using de Morgan's work, we know that any binary valued logic function,
no matter how complicated, can be realized using the basic two-input functions
discussed in this paper. This leads us to the end result that any digital computer
can be realized by a pulse coded neural network. Since our pulse coded neuron
might be interfaced with TTL-compatible computers, the neuron is designed to
allow for TTL input signals, as well as for input pulse coded signals. If it is
desired that the output should also be TTL-compatible, a simple device exists
[Savigny 91] to convert the pulses to TTL voltage levels. In other words, we
can replace logic gates by this neuron, as well as use it throughout a pulse
coded computer.

At this point, we are researching a way to reduce the size of the electronic
circuit realizing the neuron: The one presented in this paper gives an existence
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proof that neurons can implement logic functions, but to get a reasonable size
network, its neurons must have the smallest size possible. Thus, it would be
best if the filters, frequency dividers, and pulse inverters could be dispensed
with.

Finally we wish to acknowledge discussions with many of our colleagues
and students as well as the research support of the AFOSR portion of ONR
Grant No. N00014-90-J-1114.
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ABSTRACT

This chapter presents the hardware realization of Neural Processing
Element (NPE). The NPE executes the well-known nonlinear threshold
function of the weighted surnmation, and behaves as an artificial neuron in an
artificial neural network. The synaptic weighting and summing using pulse
coded Modified Neural-Type Cells (MNTC) are presented. The basic
information processing is in the form pulse duty cycle modulation. A
prototype CMOS chip with 2um minimum feature size was designed and
measurements on the fabricated chip are included.

INTRODUCTION

Artificial Neural Networks (ANN) has been heavily studied during the
last two decades in pursuit of non-linear, highly distributed, soft error immune
system performance in both scientific and engineering fields [Lipp87,
Widr90]. They offer attractive solutions for many problems in which
perception is more important than intensive computation [Graf88, Lipp87].
The first pioneering work was done by McCulloch and Pitts [Mccu43] giving
mathematical expressions of nervous activities, and thereafter various types of
models of a bio-neuron have been introduced as in [Fitz61, Hodg52]. Based
on the single neuron model, several different network model algorithms have



114

been proposed in recent years having perceptual properties, such as learning,
associative memory, image or speech recognition, feature extraction, and
pattern classification [Carp87, Koho88,Tank86, Ande77, Rume86, Kosk&7].

The research on neural networks covers broad topics of modeling,
network  architecture, and hardware implementation. Hardware
implementations of neural network algorithms support two main
characteristics of neuromorphic systems: speed and fault tolerance. The
hardware implementation method shows inherent fault tolerance specialities
and high speed which is usually more than an order over the software
counterpart [Lee92, Graf88]. So, it was often pointed out by many authors
[Graf87, Sanc91, Murr92, Mead91, Graf88] that in order to obtain the full
benefit of neural network algorithms, special purpose hardware must be built.

In this chapter, a CMOS hardware implementation of Neural Processing
Element (NPE) is proposd. The NPE serves as neuron in an Artificial Neural
Network. The motivation for this task is, as explained above, to enhances
computational speed by several order of magnitudes than software simulation
and thus will lead us to have real world applications in interactive mode. The
inputs and the outputs of the proposed NPE are represented as analog
continuous values, while weighting process is done with digitized pulse
streams. The analog pulse coded technique for weighting allows us to design
in a simple way, yet holding similarities in signal shape with biological
neurons. Pulse Duty Cycle Modulation technique is adopted only for the
weight multiplication. The input and the weight multiplication outcome is
converted into a pulse stream, where the average pulse duty cycle [Bell88] of
the pulse stream serves as an information variable. The use of the average
pulse duty cycle as information medium have many advantages. For example,
it supplies advantages from both digital and analog approaches: such as
reasonable noise immunity, small hardware realization size, and asynchronous
behavior where system clocks are not needed. Another important advantage
that justifies the use of pulses is that, since such systems operate on the basis of
averaging principles, they are inherently more tolerant to imperfections and
non linearities in the components. There is no need for pre- or post-
manipulation for signal modulations as often seen in conventional ones in
communication [Carl86] chopping clocks [Murr89], Op-amps [Mead91], or
switched capacitor circuits [Tomb90]. The proposed design uses the pulse
coded operation only for the weighting process and does not need auxiliary
circuits needed for pulse shape manupulation, such as pulse frequency
modulation (PFM), pulse amplitude modulation (PAM), and pulse position
modulation (PPM) circuits.

The analog circuit used to generate pulses as function of input is the
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Neural Type Cells (NTC) originally developed by Newcomb [New83]. In the
following sections, we will first discuss modifications introduced to the Neural
Type Cell so as to adapt to our proposed technique of pulse coded synaptic
weights. The Modified Neural Type Cell (MNTC) is used as a synapse for
Neural Processing Element (NPE) which serves as a neuron in a proposed
Artificial Neural Network.

MODIFIED NEURAL TYPE CELL AS A SYNAPTIC ELEMENT

The Neural Type Cell (NTC) circuit was introduced by Newcomb in
[Newc83]. It emulates the spiking pulse generation feature of biological
neuron. It has advantages for VLSI implementation such as the simple
structure and its functional similarity with its biological counterpart. However,
it also has disadvantages of limited oscillation range and complexity of the
process which results from its hysteresis nonlinearity. The original NTC has
been modified as compared to the original one [Newc83], and named
Modified Neural Type Cell (MNTC). The Modified Neural Type Cell
(MNTC) will serve as a synaptic element where the weighted multiplication
between the input and the weight is occuring. Functionally it receives an input
signal from other neurons or from outside and converts that into a
corresponding pulse stream whose pulse shape is controlled by the weight
signal. A simple functional representation for the MNTC is shown in Figure 1.

The MNTC consists of two functional sub-blocks: voltage controlled
oscillator and threshold crossing detector blocks. Both input and weight are
analog values in voltage and the output is a pulse stream with a fixed height.
The MNTC can be viewed, thus, as a voltage-controlled oscillator with a
control signal W (Weight). Inherent hysteresis characteristics of the original
NTC contributes to trigger the oscillatory phenomena, and the details for this
was explained in [Moon90c]. The weight signal is tied to a voltage controlled
resistor [Moon90b], whose value will decide the conductance of a resistor
device within the MNTC. As the weight signal changes, the conductance of a
resistive device is changing and this will indirectly control the pulse duty cycle
of the output pulse

Figure 2 shows the original Neural Type Cell. As can be seen, it consists
of three transistors (M1 - M3), three passive resistance (R1 - R3) and a
capacitor (C). Input is V1 and outputs are V2, V3, and V4. As the input (V1)
increases in time domain, V2 and V4 decrease, and V3 increases. When V1
reaches a certain level and above, the outputs start to oscillate and their shapes
of waves are changing by the input. More specifically, the frequency is
increasing while the amplitude of the output is decreasing. The detailed
analysis and description for the NTC's operation were reported in [Moon91a].
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Figure 1. Functional representation of Modified Neural Type Cell.

The original NTC shown in Figure 2 serves as an analog voltage
controlled oscillator (VCO) in Figure 1, whose wave is controlled by the input
strength. As seen in Figure 2, the output of the original NTC is a totally analog
signal whose shape is controlled by the input. These analog continuous
properties impose difficulties for signal handling. Thus a threshold crossing
detector block for converting the analog wave into pulse streams with a fixed
height was introduced.

Figure 3 shows an NTC with a threshold crossing detector. Notice here
that V3 is chosen since it is known to swing across the threshold voltage of the
feedback transistor (M3) [Moon91a]. The support for this choice was
rationalized in an analytical way [Moon91a, Moon92] and will not be covered
in here. The threshold crossing detector consists of two inverters. The first
inverter, which is composed of M4 and M5, is to convert the analog wave into
a pulse stream. It has to have a minimum loading effect on the V3, which
might deteriorate the performance of the original NTC. Also, it should have a
suitable (near the threshold voltage of the N-type transistor (M3)) level of
inverter threshold voltage [Mead80]. Considering above two necessities, the
M4 and MS are designed with sizes of 4/2um and 24/2um, respectively. The
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inverter threshold voltage of the first inverter was designed to be
approximately 1.7V. Using regular device parameters, the loading capacitance
on V3 from the first inverter is estimated as 0.0448 PF. This is quite small

vdd
R2 :.L_ C
RI
va
V2
M2
\%! I
M1 M3 | V3
R3

T T T T 7 T
10y 20u 30y RIS

2 O0x  iwm s ll.)ﬁ%a?r:,, sy ] triﬂﬂ ws ]

Figure 2. Circuit diagram for the original NTC and the SPICE Simulation.
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compared with the load capacitance C (35pF) in Figure 3 and thus we can say
that the loading effect is negligible.

The second inverter, which is composed of M6 and M7, has two
purposes. One is to enhance the weak driving-current capability, and the other
is to make the output Yp have the same polarity (phase) as V3. M6 and M7 are
designed with sizes of 40/2um and 20/2um, respectively. The size of pull-up
transistor (M6) is designed twice as large as the pull-down transistor (M7),
considering the mobility difference between the hole and electron carriers.

The simulation result for Figure 3 is shown in Figure 4.

J T e Jw
im Rzi —cC OI[ olE
V4 i iu—l_
V2 dl: o

R el

R3

M5 M7

Threshold
vCo Crossing
Detector

Figure 3. Circuit diagram for a NTC.



Figure 4. SPICE Simulation result of Figure 3.

As expected the output Yp is now a pulse stream with same level of swing
(0 - 5V), and its pulse shape is still controlled by the input (X). Notice that the
frequency of the output Yp is increasing as the input increases. This can be
explained analytically through previous works [Moon90b, Moon92].

Thus far we have only input and output terminals. Now we have to
introduce a weighting function into the circuit of Figure 3. To do this, we
adopt a voltage controlled MOS resistor [Moon90a] which will replace one of
three passive resistors in Figure 3. Instead of R1 and R2, we chose R3 for this
replacement. The control signal of the MOS resistor can be adaptively
controlled through a learning block that is limited between V4, and GND.

The voltage controlled MOS resistor is composed of two enhancement-
type MOS transistors as shown in Figure 5, and its equivalent resistance was
found as [Moon90a]
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R,, =1/[K(Ve2-2V, - El)] )

where K is transistor gain factor [A/V?], and Vt is the threshold voltage for
transistors.

The detail description for this resistor was reported in [Moon90a] and it
will not be dealt with here.

+ + - :; 1 +
Id1 ! ! 1d2 El Vc2

Ml M2 ’ ' ‘
V12 l | + V12 ‘”I Ml Mo o—0
El _— _ Ve2 Id1 Y ? 1d2
) I
O 0 o
2 2
(a) (b)

Figure 5. CMOS voltage-controlled linear resistor. (a) NMOS-type and (b)
PMOS-type

Replacing R3 with the voltage controlled resistor, we have new circuit
diagram as shown in Figure 6. The external voltage source E1 shown in Figure
5 is to accommodate an appropriate dynamic region and is not used in Figure 6
for simplicity. The signal labeled W is the control voltage (Vc2) for the MOS
resistor and serves as the weight signal for the MNTC as well. Thus, now we
have set up a basic configuration for synaptic element which has an input, a
weight, and an output, whose pulse shape is controlled either by the input or by
the weight. Figure 7 shows corresponding simulation results of Figure 6 with a
fixed weight and a varying input in (a), and with a fixed input with changing
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Figure 6. Modified NTC with a voltage controlled resistor replacing R3.

weight in (b).

As can be seen from Figure 7(a), with a fixed weight of 3.5V, as the input
increases, V3 also increases. At the moment when V3 reaches the threshold
level of the feedback transistor M3, it turns on and hysteresis triggers
oscillatory phenomena. After this point, as X input increases, the frequency of
the output pulse stream (Yp) increases while the density of the pulse is
becoming higher. Figure 7(b) shows a fixed input of 4V, and the increase of
the weight voltage will cause frequency increase of the output Yp but with
lower density. Instead of picking up the frequency of the output pulse stream
as a variable of the system, we chose the pulse density as a control parameter
for the system. By doing so, we do not need manipulations or preprocessing
on signals, like spectrum analysis or synchronization, as often seen in pulse
frequency modulation (PFM) technique [Carl86]. However, the pulse density
of the output pulse of Figure 7 does not change in the same direction with
respect to both input and weight voltages. It increases as the input voltage
increases, while it decreases as the weight voltage increases. Thus, to have the
pulse density changing in the same direction with both the input and the
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Figure 7. SPICE simulations of Figure 6. (a) with a fixed weight of 3.5V, (b)
with a fixed input of 4.0V.
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weight, we interchanged M1 and R1 as shown in Figure 8.

In addition, the original NTC has a limited range for oscillation. For
instance, in Figure 7(a) the oscillation happens only for input range of 3.3 -
5.0V. QOut of this range, no oscillation is acquired. This is due to the inherent
hysteresis characteristic with the feedback transistor (M3) in the original NTC,
which contributes to trigger this oscillatory phenomena [Moon90c].
Conditions for oscillation were already studied in [Savi90] and the focus in
the design is to increase the oscillation range as wide as possible.

vdd
_| M4 M6
X R2 __c
|| M8 . M1
v YPML
X . \) I . -
1 M
\s M2
] M3 I A'AY
RI ‘
||| M0
R3eq +
M5 M7
'[ MR3 w

Voltage S
Scaler vCo Digitization

Figure 8. Circuit diagram of Modified Neural Type Cell.

The Modified Neural Type Cell is shown in Figure 8. A voltage scaler is
added to scale the range of input. The voltage scaler is a simple circuit
composed of three transistors (M8 - M10), which scales a limited input
oscillation range into a wide one. The maximum range of the X' signal in
Figure 8 for oscillation was found as 3.3 - 4.4V. However, with a scaler circuit,
the input value (X) is scaled into this range for X'.

Both M8 and M10 are NMOS transistors with their gates tied to the
power line (V44 , and M9 is a PMOS device. With their gates tied to Vg,
devices M8 and M10 are always turned on and thus can be seen as two
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Figure 9. SPICE simulation results of MNTC. a) with a fixed weight of 3.5V,
b) with a fixed input of 4.0V

resistive components connected in series constituting a voltage divider. The
aspect ratios of both transistors determine the dividing factor which will decide
the offset level of the output. M9, on the other hand, determines the slope of
the output (X' in Figure 8). Notice here that M9 is a P-type MOS device, and
thus as X increases,its gate-to-source voltage (V,,) is decreasing.

Figure 9 shows simulation result of MNTC (Figure 8) with a fixed weight
of 3.5V in (a), and with a fixed input of 4.0V in (b). We can see that the
oscillation range is widened significantly up to 4V (0 - 4V), and that pulse
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density of Yp is now decreasing as input increases. However, as seen in Figure
9(b), there is a limited range of oscillation for the weight value. Figure 10
graphically shows this oscillation range in the X-W (Input-Weight) plane.

As the weight increases beyond the upper bound on the oscillation range,
the output Yp goes to zero. As the weight decreases below the lower bound of
the oscillation range, the output Yp stays at V4 (5V). This relation can be
clearly seen in Figure 9(b). From the above, it appears that the range of
oscillation is for 2.9 < W < 4.1, thus by using an appropriate scaler circuit for
the weight voltage, we can force the MNTC to operate in the oscillatory mode
for a larger W range. Notice that this will, however, increase the number of
transistors by three for each MNTC.

The above completes a CMOS circuit design of a synaptic element using
an MNTC. Both input and output are analog continuous value in voltage, and
the output is a pulse stream whose shape is controlled either by the input or by
the weight. Notice that in this scheme of MNTC, we established a CMOS
design of weighted multiplication in a simple way. The theory of such an
operation is discussed in [Moon93b]. The proposed MNTC occupies 73mil?.
Although the weighing (multiplying) process is not exactly linear and not
precisely controllable, we analytically found that it is a monotonic process.

NEURAL PROCESSING ELEMENT
In this section, we will describe the functions of the proposed Neural
Processing Element (NPE) as a single node in an ANN. In the NPE, the

S g r y +
‘oscrangesax.gnu’ —
Yp=GND ‘oscrangemin.gnu’  +
4 MA 4
Oscillaton Range \
3t
2 3
K Yp=Vdd
1P
0 " i
0 1 2 3 4 5

Figure 10. Oscillation range in X-W plane.



126

information is to be processed and the output be distributed to the other nodes.
Thus, it acts as an electronic analogy of a biological neuron in nervous system.

As shown in Fig 11, inputs are applied from other NPE in the structure or
by external stimulus. Each input has its corresponding weight. These multiple
weighted inputs are to be summed in the NPE, and compared with a threshold
value. In case the weighted sum is larger than the threshold, the output is to
fire with logic value high (one), otherwise, it remains low (respectively, zero).
This speculation gives us a possible function block diagram of the NPE as
shown in Figure 11.

Inputs Weights I: External  g:Threshold
X1 Current
/———\SQ'ce Outputs
Ys
(Analog)
Summation Threshold ’

. —» YD
Logic lor0
(Digital)

: Optional

NPE

Figure 11. Functional block diagram of Neural Processing Element (NPE).

The NPE consists of four function blocks: Modified Neural Type Cell
(MNTC), summation, threshold logic, and adaptive learning blocks. Inputs
(Xi) are time-varying analog voltage signals and there are two outputs: one
being digital (YD) and the other is analog (YS). Digital output has two values
as a result of the comparison, either high when the Ys is larger than the
threshold (), or low otherwise. The analog output (Ys) is a continuous analog
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signal of the output of the summation block. This is not passed through
comparison process in the threshold block. The choice between YD and YS
depends on the network model and also upon functionality of the network.

The input signal is multiplied by a corresponding weight as described in
the previous section in the MNTC. In the summation block, a summation of all
the weighted inputs is executed. A simple capacitive load is adopted for
current charge summation (accumulation). An external current source (I)
could be applied. In the threshold block the comparison between the weighted
summation and a given threshold value is accomplished. The output will be
displayed to external, and also will be delivered to other NPE's in the network.
Notice that the threshold level 0 (B is normally half of the maximum voltage
swing of the Ys) is applied from outside, and can be changed depending on the
function of the network. Finally, in an optional learning block, the weights are
updated in an adaptive fashion. The weights are updated according to a
learning rule and play a major role in determining the overall behavioral
characteristics of the networks.

The model of a single processing element in Figure 11 satisfies the basic
properties of the artificial neuron. In the following a detailed description of the
components of NPE is described.

Summation Block

To achieve an artificial neuron as described, each weighted input must be
summed. The summation block is for this task; summing weighted input
signals which are generated through the previously described synaptic blocks
(MNTCs). A circuit diagram for a proposed summation block is shown in
Figure 12.

The n - input pulse stream signals at the left side (Ypi) come from the
MNTCs. Each pulse has a certain pulse density which is controlled either by
the input or by the weight in the MNTC. The analog output, Y, is the voltage
across the capacitor Cs. There is also one external current source, Iext, with
which we can control the output directly from outside. As can be seen, each
pulse works as a single input for pseudo-inverter structure (M1, M2) and as the
number of input increases, the number of this transistor pair (M1, M2) is also
increasing. Transistors M3 and M4 have two purposes: one being to increase
resistive value and achieving a large RC constant in transient, and the other is
to minimize charge feed-through effect [Alle87, Gray84] over the output when
switching, which is normally witnessed in MOS switching device due to stray
overlap capacitances. If the inverters and Cs are designed in such a way that
the circuit has much larger RC time constant than the pulse period, the output
Ys will converge to a steady-state value in between Vdd and ground. One



128

vdd

i ———-
A I «’4["*‘1 g [—lez. Ced B’vn
e Wl o [ s Q* fext

- —|E1M4 o
—— 0w NS

Figure 12. Circuit diagram for summation.

example is shown in Figure 13.
The Pulse Duty Cycle (PDC) of the n-th output of a time-varying pulse
stream over a (possibly variable) time interval, t, is defined as:

Y PW(j)
Yoo (t) =2—rn = PDC @

where PW(j) is the j-th pulse width in the stream, assumed to be of m pulses, in
time interval t.

This is for a pulse stream analogous to the duty cycle of a single pulse
[Bell88]. As a result of (2), we know that 0 < PDC < 1 and that PDC
represents the average value of pulses in time period of t. Thus we can say that
the closer PDC is to 1, the denser a pulse stream is. Note also that in order to
have a meaningful value of PDC for a given pulse stream, the time t should be
chosen larger than any of the PW(j). In case of dense pulse, the steady-state
value of Ys will be close to the ground level. If the pulse density is small, on
the other hand, the output Ys will be close to the Vdd level. In this way the
steady-state value of Ys can be represented as a function of the 'summation’ of
contributions from each pulse.
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Figure 13. Output of summation block with a large RC time constant.

In this scheme, the circuit in Figure 12 was designed and adjusted so that
when average value of PDCs from every pulse streams is equal to 0.5 the
steady-state output Ys is half of Vdd. This can be easily done by using
suitable sizes of transistors, whose turned-on resistances are same for pull-up
and pull-down operations. The sizes of M1, M2, M3 and M4 are chosen as 2/
50, 2/100, 4/4 and 4/45, respectively. In this way of design, we differentiate
the excitatory operation from inhibitory one, depending on the value of the
PDC. If a PDC of single pulse stream is larger than 0.5 generating higher than
half of the Vdd level, we say that the connected corresponding MNTC is acting
as an inhibitory junction, otherwise it will act as an excitatory one.

This scheme is very unique and has a lot of advantages in its design, for it
allows us to have both inhibition and excitation weights to take place on the
same synaptic junction of pulse coded MNTC by simply adjusting the PDC.
Also we do not need signal manipulation or pre-processing for weighted
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summation, like synchronization, pre-filtering, or flip-flops as seen in
[Murr89, Find90,Sala91].

The simulations for each discrete PDC value and its corresponding
steady-state output in the summation block are shown in Figure 14. Figure 15
shows the PDC versus the steady-state otuput Ys. As can be seen and
expected, as PDC increases, the corresponding steady-state output decreases

and vice versa. Thus, we can say Y is a monotonically decreasing function of
PDC,i.e.

Y, = f(PDC) ?3)

The function f is shown in Figure 15. At the point PDC equals 0.5, the
expected steady-state value was 2.5V (half of the supply voltage). A small
offset (+0.11V), however, was read from the simulation when PDC is 0.5.
This offset is due to various secondary effects and does not have significant
effect on the overall performance of the weighted summation.

Another aspect to be considered is the fact that a non-refreshed capacitive
storage element (Cs) is used for the summation block where charges are
summed in a temporal integration form. Here it is necessary to assume that the
leakage from a capacitive element is negligible in time-wise, and thus, the
circuit operates more rapidly than leakage affects the operation of weighted
summation. This assumption is quite acceptable because the leakage from the
capacitive element in VLSI package (in dark space) is known in the order of
1015 A [fA] [Botc83] while the charging or discharging current to the capacitor
(Cs) is in the order of 10°- 10°[uA-mA]. Therefore, the time constant for
leakage is roughly 10° less than that of charging or discharging operation, and
as a result, the leakage effect in this design is negligible.

Threshold Block

In this work, the well-known differential amplifier stage [Alle87, Greb84]
is used for sigmoid type of the non-linear operation. The circuit diagram is
shown in Figure 16. It contains five transistors. The input pair M1 and M2 are
N-type transistors and the current mirror (M3 and M4) is composed of P-type
transistors. A current source is achieved by M5 operating in its saturation
region. The two inputs are the output of the summation block (Ys) and a
threshold (6). The threshold (8) is an external input. The output of the
threshold block is Yth. Simulation result of the transfer curve of Figure 16 is
shown in Figure 17.
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@ ()

Figure 14. Simulation results of the relation between PDC and steady-state
output (Ys). PDC=a)0,b)0.2,¢) 0.4,d) 0.6,¢) 0.8, and f) 1.

As can be seen, as the difference between Ys and 6 sweeps along the x-
axis, the S-shape of Yth is acquired. So, if Ys > 6 then Yth is high (5V),
otherwise Yth is low (0V). As shown in Figure 18 two inverters composed of
M6 -M9 are added in order to increase the current driving capability of YD.
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Figure 15. PDC versus steady-state output curve.

vdd

M3] F q EM4

Yth

l Ml MZ—]l
© "

Ys 5V \ + © : Threshold
Iss

Figure 16. Circuit diagram of CMOS differential amplifier for sigmoid
threshold.
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Figure 17. Sigmoid threshold curve of Figure 16.

Specifically, the first inverter (M6 and M7) is designed with minimum feature
size of 3/2um, which will have minimum interference over the sigmoid
operation of the differential stage. The second inverter (M8 and M9) is
designed with rather large size (M8 = 40/2, M9 = 20/2um) to accommodate
enough current. These two inverters serve to sharpen the slope in the transient
region and thus producing a hard limiter-like nonlinearity for YD. The circuit
diagram for the threshold block and corresponding simulation result are shown
in Figure 18 and 19, respectively

Adaptive Learning Block

An adaptive learning block is not necessarily needed for all networks
depending on the application. It is not needed in the case of a predetermined
fixed weight vector, with a simple non-linear mapping from the input into the
output [Gros85, Feld81]. However, in the case of controlling the network
adaptively for a special purpose or teaching the network to learn a specific
application, an adaptive learning block is needed. This process is called
training or learning.
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Figure 18. Circuit diagram for threshold block.
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Figure 19. Simulation result of Figure 18.
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Learning is the process by which the synaptic weights (or weight vector)
are changed. Several different algorithms for learning have been studied by
many authors [Hebb49, Widr73, Mins61].

To illustrate how a leamning rule can be implemented in CMOS form,
consider for example, the Hebbian learning rule [Hebb49] of

W; (new) = aY; (0ld) Y;(old) 4)

where o is a leaming constant, and Wij is the weight between i-th and j-th
neuron. Yi and Yj are outputs (Ys or YD in Figure 11) from i-th and j-th
neuron, respectively. Equation (4) is a multiplication between the two neurons'
outputs. A single NMOS transistor may be used for this multiplication.
Consider the circuit diagram shown in Figure 20.

+ Vds -

Figure 20. Single transistor multiplier.

When the NMOS transistor is in its linear region of operation, the drain-
to-source current is given by [Alle87]

By W Vi )
1=t My, vy, -

[0),8
where W and L are the width and the length of MOS transistor, respectively,
€,x 1s permitivity of dielectric material of the transistor gate, i, is electron
mobility, and Vt is the threshold voltage of the MOS transistor.
For small values of Vds, eq. (5) can be approximated to

Tag =Eﬁ%¥(vgs - Vt)Vds = K(Vgs - Vl)Vds ©)

t0)(
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where K is the transistor gain factor and is a constant.

Thus, we can consider Vgs and Vds as two variables for multiplication.
Although it has an offset due to the threshold voltage, Vt, multiplication
properties hold.

CMOS CHIP DESIGN AND MEASUREMENTS

A CMOS chip was designed and fabricated to test the design introduced
above. The chip was designed so as to achieve an appropriate network
configuration for a desired application. @A group of basic module
corresponding to each of the above functional blocks are stacked in horizontal
rows in the layout. The Modified Neural Type Cells (MNTC) are stacked on
top of the chip. Each basic cell has the same height with the Vdd metal line
running horizontally along the top edge and the GND line running horizontally
along the bottom edge. By abutting the cells horizontally a stack of synapse
cells is constructed. In between metal lines are placed for interconnections
among cells. The chip layout is shown in Figure 21.

Each basic functional block is shown in the layout of Figure 21. The chip
was fabricated through MOSIS using 2p double-metal P-well technology.
Measurements were done in the VLSI Design/Test Laboratory at The George
Washington University. In the following sections, results of separate tests for
each of the functional blocks to verify the performance are illustrated. The
design of the basic functional blocks above can be configured in many of the
known neural models such as the Hopfield model, Perceptron, and Winner-
Take-All models.

Modified Neural Type Cell Measurement

The single MNTC occupies 150pm x 320pum (73 mil?) silicon area. To
illustrate the effect of the weight voltage on the output pulse duty cycle of the
MNTC, a fixed input (x) was applied to the cell, and a varying weight voltage
(W) was applied. Figure 22 shows the relation between the weight voltage
(W) and the Pulse Duty Cycle (PDC) of the pulse stream output of the cell. As
shown in Figure 22, as the weight decreases in Figs 22a to 22f the PDC
increases.

The results of Figure 22 can be summarized as in Table 1. Comparing the
results of Table 1 with the simulation results, we see a shift of the measured
oscillation range of about +29% from the simulation. These shifts may be due
to deviations for the fabrication process. However, the fabricated MNTC
shows the intended function behavior of the design and this can be used as
synapse junction in the Neural Processing Element (NPE).



137

Figure 21. Chip Layout

Neural Processing Element Measurements

To verify the behavior of the NPE, measurements of the fabricated NPE was
done. Two sets of measurements were done: one to measure the effect of the
weight over the analog output Ys, and the other to measure the effect of the
input over the output Ys. Figure 23 shows the measurements. In this case W,
was held at Ov, and thus Y, remains high, while W, was varied. As W,
increases the output Ys is also increasing. We note that although the frequency
of Y, is increasing as the weight W, is increasing, the PDC of Y, is
decreasing as the weight W, increased. Figure 24 shows the second set of
measurements for the NPE. Two weights W, and W, are fixed, and the input
is increasing. The results are summarized in Table 2, where it is clear that the
output increased as the input increases.
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W(volts) PDC
4.66 0
4.37 0.49
431 0.61
4.25 0.85
4.20 0.97
4.10 1

Table 1. PDC vs weight with input x=3.88v

Cases Ys(V)
(a) X=1.7 2.7
(b) X=2.1 29
(c) X=2.5 3.1
(d) X=3.0 3.5
(e) X=3.5 3.6
(H X=4.0 3.7

Table 2.  Ys changes with a varying input and fixed weights in two input
NPE.
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CONCLUSIONS

In this chapter the Neural-Type Cell was used in the design of the Neural
Processing Element. The NTC was modified to achieve design requirements
for the NPE. The NPE may be used as a basic cell in different configurations
of Artificial Neural Networks. For example, suitable models are Hopfield
model, Perceptron, Winner-Take-All, and Autotracking [Moon93c]. This is
possible because the introduced NPE is equipped with the basic functional
properties of an artificial neuron. Analytical expressions for PDC have been
derived in [Moon93b,c]. Measurements on the fabricated chip showed very
much encouraging electrical performance which corresponds with the
objective functions as well as the simulation results.
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LOW-POWER SILICON
NEURONS, AXONS AND
SYNAPSES

John Lazzaro and John Wawrzynek

Computer Science Division
UC Berkeley, Berkeley, CA 94720

Power consumption is the dominant design issue for battery-powered
electronic devices. Biologically-inspired sensory preprocessors may be an
important component of portable computing devices that require real-world
visual or auditory input. The silicon neural design style presented in [Mead
89, Andreou 91] naturally supports low-power VLSI design; in this design
style, MOS transistors typically operate in the weak-inversion regime. The
low-power performance of this design style is outstanding; for example, [Watts
91] reports on a 51-stage silicon cochlea, that computes all outputs in real time
and consumes 11 uW.

However, several popular circuits in this design style operate transistors
outside the weak-inversion regime. These circuits, that model the spiking
behavior of the axon hillock and the pulse propagation of axons, dominate
power consumption in many neural chips [Lazzaro §9ab, Lazzaro 91, Horiuchi
91].

This chapter describes modified versions of these axon circuits. The
modified circuits have been designed and fabricated and are fully functional;
these circuits show a measured improvement in power consumption over the
original circuits. Power consumption decreases of a factor of 10 to 1000 have
been measured, depending on pulse width and spiking frequency. The density
of the modified circuits is comparable to the original circuits. This chapter also
describes describes several low-power synaptic circuits.
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AXONAL CIRCUITS

Figure 1 shows the spiking neuron circuit from [Mead 89], that uses a
high-gain voltage amplifier with a sigmoidal nonlinearity as a gain element.
The circuit converts the unidirectional current I; into a sequence of fixed-width,
fixed-height voltage pulses of V,,. During a pulse V,, = V44, and between pulses
V, is at ground potential.
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Figure 1. Spiking neuron circuit and function, with unidirectional current
input I;, voltage pulse output V,, and pulse width control voltage V5.

To understand circuit operation, consider the circuit condition after an
output pulse has completed. In this state, V, is at ground potential, and V is
lower than the switching threshold of the amplifier. The discharge path of the
state capacitor C is closed, and the charging path of C is open.

The circuit remains in this state until the input current I; increases V. to
the switching threshold of the amplifier. At this point, V,, switches to Vg4. The
feedback capacitor Cy ensures the secure switching of the circuit. The new
value of V is above the switching threshold of the amplifier, and depends on
the relative values of Cy and C.

Once a pulse begins, the discharge path of the state capacitor C is open,
and the charging path of C is closed. The control voltage V,, sets the discharge
rate of C, and thus the width of voltage pulse of V,,. The circuit remains in
this state until V. decreases to the switching threshold of the amplifier. At



155

this point, V, switches to ground potential, and the pulse is complete. The
voltage V. is reset to a value below the switching threshold of the amplifier,
that depends on the relative values of Cy and C.

This circuit, as described in [Mead 89], uses two dlgltal inverters in series
as the high-gain amplifier; Figure 2(a) shows this amplifier implementation.
When used in the spiking neuron circuit, the transistors in first inverter of
this amplifier are biased outside the weak-inversion regime. In many designs,
the static current consumption of these transistors dominates the current
consumption of the chip.

A
T

K, 4

V,,°——"| Vo (b)

Figure 2. Original gain stage (a) and low-power gain stage (b). K; and K,
are control voltages, set to ensure all transistors operate in the weak-inversion
regime.

Figure 2(b) also shows a low-power implementation of a high-gain
amplifier suitable for use in the spiking neuron circuit. The control voltages
K, and K, limit the static current consumption of the amplifier. The response
time of the amplifier is not symmetric; the speed of crossing the amplifier
threshold in a positive direction is not limited by K3 and K>, but the speed
of crossing the threshold in a negative direction is directly dependent on K
and K,. In many applications, this asymmetry allows the bias currents of
the amplifier to be set in the weak-inversion regime. The diode-connected
transistor acts to raise the switching threshold of the amplifier.
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AXONAL EXPERIMENTAL DATA

Figure 3 shows the static current consumption of the two amplifiers shown
in Figure 2, as a function of the input voltage V;. This figure shows data from
a test chip fabricated in the 2um double polysilicon n-well Orbit process as
supplied by MOSIS. The current meter used in this measurement is not able to
measure currents below 5 nA. As expected, the low-power amplifier consumes
negligible current below its switching threshold, and a constant current above
its switching threshold.

100 pA=

Taq +
original

low power

Figure 3. Power supply current 4 for original gain stage and low-power
gain stage, as a function of V;. Note log scale for current.

Figure 4 shows the current consumption of the spiking neuron circuit
of Figure 1, implemented with the original amplifier and the low-power
amplifier. As expected, the current consumption of the low-power circuit
is a linear function of spiking frequency, and increases with the size of the
pulse width. All data was taken with the values of K; and K, necessary for
correct circuit function with 10us pulses; the current consumption for longer
pulse-width operation can be reduced by adjusting K; and K.
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Figure 4. Power supply current Iz4 for original spiking neuron circuit and
low-power spiking neuron circuit, as a function of spiking frequency. Labels
next to graphs indicate pulse width of spikes, in units of seconds. Note log
scale for frequency and current.

THE AXONAL DELAY CIRCUIT

Figure 5 shows one section of the axonal delay line circuit described in
(Mead, 1989). In engineering terms, the circuit is a cascade of non-retriggerable
monostables, each with a voltage output V, that is either at Vg4 or at ground
potential. To understand circuit operation, consider the condition Vi = Vyq,
Vi+1 = 0, Fr41 = 0. In this case, the voltage V. as shown in Figure § is below
the switching threshold of the amplifier. The discharge path of the capacitor C
is closed, and C is charged by a current set by the voltage Vy — V, = Vag — V5.
When the voltage V. increases to the switching threshold of the amplifier,
Vk+1 changes to Va4, and the axon stage associated with Vi begins a similar
charging cycle. Once this cycle has completed, the voltage Fi.; switches to
V4a4 and the capacitor C associated with Vi, quickly discharges, causing the
voltage Vg4 to switch back to ground. In this way, a constant width voltage
pulse propagates down the structure.
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Figure 5. Axon circuit and function. Labels include ports V} and Fj to
previous stage, ports Vi, and Fj, to next stage, pulse width control voltage
Vp., state voltage V., state capacitor C and feedback capacitor Cy.

As with the spiking neuron circuit, the amplifier in each neuron circuit, if
implemented with two digital inverters in series, consumes appreciable static
current. Replacing the original amplifier with the low-power amplifier reduces
the current consumption of an axonal delay circuit. Figure 6 shows the current
consumption of an 18-stage axonal delay circuit, implemented with the original
amplifier and the low-power amplifier.

For pulse widths of 100 us and 1 ms, current consumption of the low-
power axon circuit is a linear function of spiking frequency. For a pulse width
of 10 us, the state capacitors C are not fully discharged with a single pulse,
and some additional static current consumption occurs. As with the spiking
neuron circuit, the current consumption of the low-power axon circuit also
depends on pulse width length. All data was taken with the values of K3
and K, necessary for correct circuit function with 10us pulses; the current
consumption for longer pulse width operation can be reduced by adjusting K
and K.

The original axon circuit has a single free parameter, Vp, that sets both
the speed of pulse propagation and the width of each pulse. The low-power
axon circuit provides two additional parameters, K; and K. These parameters
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permit the pulse width and propagation speed to be set independently, allowing
overlapping pulses in successive taps.

100 uAx

&";‘;’/ / - original

Iy 3

1m 0.1 m 10 1 low power

100 Hz 10 Khz
Frequency

Figure 6. Power supply current Iyq for original axon circuit and low-power
axon circuit, as a function of spiking frequency (18 sections). Labels next to
graphs indicate pulse width of spikes, in seconds. Note log scales for current
and frequency.

SYNAPTIC CIRCUITS

This section describes several different types of low-power synaptic
circuits. Referring to Figure 1, synaptic circuits convert the pulse output
representation of the signal V, into a unidirectional weak-inversion current
signal suitable for connection in I;. Different synaptic circuits perform different
types of signal processing during the conversion. All of the circuits in this
section have been fabricated as components in functional systems, except
where indicated.

Figure 7 shows simple synaptic circuits. The circuit in Figure 7(a) [Mead
89] is a very simple synapse, converting a downward voltage pulse into the
unidirectional current output I,. The magnitude of the current pulse is set by
the control voltage V,,,, and the width of the current pulse reflects the width of
the input voltage pulse.
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In some situations, the width of the input voltage pulse is very small and
not under voltage control; in particular, pulse outputs from spiking neuron
circuits used in off-chip communication have this property. [Lazzaro 93]. The
synapse circuit shown in Figure 7(b) is designed to produce an output current
pulse I, that is wider than the input voltage pulse. The control voltage V; sets
the width of I,,, and the control voltage V,, sets the magnitude.

mimkl v, *;]/ ;:[; T
1T4[

|

J

Vw

Vw_d_ l—l ‘4

v I,

(a) (b)

Figure 7. Synapses circuits, producing output currents 1.

The circuits in Figure 7 allows voltage pulses to be multiplied by a weight
set by V,,, and summed together using Kirchoff’s current law. Circuits shown
in Figure 8 are useful for performing signal processing on this aggregate
current signal. These circuits transform a unidirectional input current J; into a
unidirectional output current I,.

The circuit in Figure 8(a) includes two control voltages, V5 and V3, which
can be used together to scale I; by factors greater than or less than unity. If all
transistors are operating in the weak-inversion regime, the equation

I, = Le(s/DVi-V2)/Vo

describes the operation of the circuit, where V,, = kT'/q and « is a fabrication
constant as described in [Mead 89].

The circuit in Figure 8(b) is similar to the circuit in Figure 8(a), but uses
the currents I; and I, to scale the input current. If all transistors are operating
in the weak-inversion regime, the equation
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I, =IL/I,]1,

describes the operation of the circuit.

. o
Vldi jlc» v i

() (b)

I

Figure 8. Scaling circuits for currents: I, = I; a(Iy, Iz, V1, Va).

The scaling circuits of Figure 8 can be used as components for circuits that
implement adaptation or facilitation. Figure 9(a) shows an adaptation circuit,
that has been used in an auditory nerve model [Lazzaro 92]. The primary input
of this circuit is I;, a current usually obtained by summing the response of
many simple synapses. The output of the circuit, I,, is a scaled version of
I;. If the auxiliary input of this circuit (marked with a pulse) is inactive for
an extended period of time, the circuit performs unity scaling. If the auxiliary
input is active, however, the output I, is a reduced version of I;. The temporal
characteristics of the adaptation are set by the control voltages V,, and Vjy;
depending on the values of these parameters, the circuit can produce time
constants as long as several seconds.

Figure 9(b) shows a facilitation circuit that operates on a similar principal
to the adaptation circuit of Figure 9(a). In this circuit, auxiliary input activity
scales I, to be larger than I;; a lack of auxiliary input activity performs unity
scaling. An addition control voltage, V], limits the maximum scaling of the
circuit. This circuit simulates correctly but has not be used in a fabricated
system.
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Figure 9. Short-term adaptation and facilitation circuits.

The circuits in Figure 9 are both controlled by a single auxiliary input.
This input can be replaced by a logical combination of several inputs, to
produce a circuit suitable for learning algorithms.

CONCLUSIONS

This chapter reviews low-power circuit technology for spiking neurons,
axons, and synaptic circuits. Using the circuits from this chapter, the reader
should be able to recast many of the circuits from other chapters of this book
into low-power designs.
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SYNCHRONOUS PULSE DENSITY
MODULATION IN NEURAL
NETWORK IMPLEMENTATION

Jouni Tomberg
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Tampere University of Technology, Tampere Finland , SF-333101

INTRODUCTION

Artificial neural networks (ANN) are massively parallel, distributed
information processing structures [Wasserman 89]. They consist of huge
amount of processing elements interconnected via weighted connections. The
idea for these networks is based on the biological world, but their models are
considerable simpler. According to the biological models the processing
elements are called "neurons” and the weighted connections "synapses”. The
signal lines from neurons to synapses and from synapses to neurons are called
"axons" and "dendrites", respectively. Although the structure of neurons and
synaptic connections is relatively simple, the large amount of them needed for
practical applications makes the implementation of ANNs quite complicated.
One effective way to implement ANNSs is VLSI circuits. In the simplest case a
neuron can be modeled by nonlinear summing amplifier. The weight values of
the synaptic connections, which are responsible for information storage, can be
implemented by resistors of different strengths. The learning process changes
these weight values according to some specified rule. From the information
processing point of view a synapse can be considered as a multiplier which
does the product of the incoming neuron value with the stored weight value. A
neuron then adds together the output values of the synapses and performs a
nonlinear function for the resulting sum. Because of wide range of different
ANN algorithms we often need slightly more complicated neuron structure
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and the strength of the synaptic connections must be easily programmable. The
major goal is to find an effective method to implement the ANN structures on
VLSI circuits. Both analog and digital structures can be used [Graf 89]. The
main advantages of analog implementations are simple basic blocks and
communication which leads to denser chips. The restrictions of these
implementations are the difficulties in analog weight storage and noise
immunity. On the other hand the digital structures are straightforward to design
and off-chip communication and expandability is better. The area required by
the digital structures is larger leading often to smaller networks on a single
chip. However, the digital structures can better use the advantage of new sub-
micron fabrication processes. Thus, the best implementation technique
depends strongly on the application. In many cases the mixed ana/digi
techniques seem to give the best results. One interesting approach for this kind
of implementation is the pulse-density modulation (PDM) technique. In a
restricted sense it mimics the biological idea of neuron action using both
analog and digital structures.

SYNCHRONOUS PDM TECHNIQUE

In the pulse-density modulation technique the signal value is represented
by statistically distributed events occurring asynchronously in time. We have
expanded this definition also for synchronous pulse streams. Thus, in the
pulse-density arithmetic numbers are represented as streams of digital bits, 0
and 1 [Tomberg 90a]. We interpret the bits in the stream as the sign bits of the
two's complement numbers, i.e. zero is + and one is -. The value of a pulse-
density number depends on the relation of 0's (+) and 1's (-) in a given window
moving along the time axis. Furthermore, we define that all the values are
fractional numbers between -1 and +1. Thus the value of a bit stream including
N zeros and M ones is (N-M)/(N+M) and by a number including P bits we can
represent (P+1) values (Fig. 1).

=1+ =1+ +[~|+[= =]+[" ]+ +]-]
> ol

P - BIT WINDOW:

* N ZEROES AND M ONES (N+M = P)

. _(N-M)
VALUE = (F530

Figure 1. Representation of a PDM-coded value.

The value of a pulse-density stream is continuous, i.e. we can take a
sample of P bits any time from the stream and it represents the initial value. In
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the normal binary arithmetic we can represent 2P values with a P-bit word. In
that case the overall structure of the arithmetic is much more complicated and
requires more area on a chip. In contrast the arithmetic of pulse-density
numbers is quite straightforward to realize. The multiplication of two numbers
can be done by using a simple bitwise exclusive-or (XOR) function. The
addition is done within a defined window by summing the bit values together.
The resulting pulse-density bit stream is then defined according to the resulting
sum. One should bear in mind that in a pulse density number each bit in the
stream has the same weight. This makes the number less sensitive to bitwise
errors and the representation more robust than the ordinary binary arithmetic.

PDM ARITHMETIC AND STRUCTURES

The implementation of PDM arithmetic can be done by using digital or
analog structures. Both of them have some benefits and drawbacks concerning
the implementation and accuracy. Although the arithmetic structures are
simple in the PDM technique the data storage for synaptic weights is quite
large. If we want to use weight values with P levels we need P-bit register in
PDM technique but only log,(P) in ordinary binary arithmetic. However, the
PDM- weight value can be stored by using dynamic structures which takes less
area than the static ones. One interesting approach would be to use dynamic
CCD (charge coupled device) structures [Soclof 85] for weight memory to
minimize the area. Certainly there is a trade-off where the weight data stored in
the PDM format takes more area on silicon than the logic of the ordinary
binary arithmetic. Thus, the PDM technique is effective only for
implementations where the weight data length is not so large that the benefit of
the simpler arithmetic structures will be lost. This break even point depends on
the implementation technique, i.e. how small the dynamic data storage
structure is compared with the logic structures. Another important point when
comparing these different methods is the operation speed. If the top level
processing has massive parallelism but the data processing in the lower level is
done serially we can loose the benefit compared with the situation when the
low level processing is done parallel but the top level processing sequentially.
We must take this into account when using the serial PDM technique.

Addition

In the case of N P-bit PDM numbers (P+1 levels) we need N*P bits and
clock cycles to represent the final PDM sum. This is of course similar with the
ordinary binary arithmetic with the distinction that larger amount of bits is
needed for the number representation. The simplest way to implement the
digital "neural” PDM addition is to multiplex in time the resulting bits from
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synaptic multiplications to dendrite line and sum them together in the neuron
[Tomberg 91]. This addition in a neuron can be mixed with the non linearity
function and be done within defined window by using ordinary digital binary
adders or analog structures. The total circuit area is not so sensitive for the
increased area in neuron as in synapse. When using the multiplexing scheme in
large networks the amount of bits and, thus, clock cycles will be too high for
practical applications.

Another method is to use ordinary serial adders in the dendrite line to get
a digital bitwise sum which is sent to the neuron. In this case we need only
log,(N) clock cycles to perform each bitwise sum. However, the overall
control structure would be more complicated. If we use mixed analog/digital
technique we can do the bitwise adding by using analog amplitude modulation.
Adder structure in each synapse adds or subtracts charge from the common
dendrite line depending on the result of the synaptic multiplication. In this case
the resulting sum on the dendrite line will remain P-bits long, but each "bit"
will have several levels. This is very area effective implementation but the
main restriction is the accuracy of the analog structures.

Multiplication

Generally multiplication is implemented by adding the multiplicand
recursively to itself as many times as the multiplier defines. In the PDM-
multiplier (Fig. 2) a simple XOR-function is used instead of a full-adder which
is the case in the ordinary binary arithmetic. Thus, we go through the
multiplier bit by bit and add the whole multiplicand into the pulse stream
XORed with the multipliers bit. If we have two P-bit numbers (P+1 levels) the
result will be P2-bit long and it takes P2 clock cycles to perform. In the ordinary
serial binary multiplier the data is log,(P) bits long (B bits, P levels) and result
would be 2*log,(P) bits requiring in serial case (log,(P))? clock cycles.

MULTIPLICAND IN

l_\) RESULT
P-bit shift register for weight 1 ouT

Figure 2. Serial PDM multiplier.
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To reduce the amount of clock cycles in the PDM multiplication we can
use a serial parallel structure (Fig. 3). Here the multiplicand is coming in
serially multiplied by the paralle]l PDM weight value. The result would be P
times parallel P-bit numbers connected further to the adder on the dendrite
line. In this case the multiplication takes only P clock cycles. If we use serial-
parallel multiplier in the ordinary binary arithmetic we would need only
2*log,(P) clock cycles for the multiplications. But in this case the area is much
larger since several full-adders are needed.

PzDR§§¥T

WYY

T TT IT

MULTIPLICAND N

1 2 3 P

’— P-bit shift register for weight

Figure 3. Serial/paralle] PDM multiplier.

In Table 1 the ordinary binary multipliers and PDM multipliers are
compared with different data lengths. In the comparison two different dynamic
shift register structures for weight storage are used. In the 6 transistor case the
implementation is an ordinary dynamic CMOS shift register with NMOS
transmission gates. In the 3 transistor case a more advanced CCD type shift
register technique is used. In the ordinary binary serial/parallel multiplier a
static register structure for weight value is used because the weighted bits are
fed parallel into the multiplier. This requires more area than the dynamic
structures. In the case of PDM value all bits have the same weight and, thus,
the value in the serial/parallel PDM multiplier can be moving around the
register continuously. This makes the use of minimum area dynamic structures
possible.

From Table 1 we see that the smallest area would be achieved by the
serial PDM multiplier for 17 level weight values and 3 transistor weight
storage. In the 257 level case the ordinary binary multiplier takes much less
area. However, these numbers include only the area of the multiplier. The
ordinary binary arithmetic requires many control structures and signals to
synchronize the data flow. The data stream in the PDM technique is continuous
without any other synchronizing signals than the global clock.
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METHOD BITS LEVELS SPEED WEIGHT SIZE
(Clock STORAGE (Trans.)
Cycles) | (Trans.)
PDM 16 17 256 6 102
Serial 3 54
256 257 65536 6 1542
3 774
PDM 16 17 16 6 160
Serial/Parallel 3 144
256 257 256 6 2 560
3 2304
Ordinary Binary |4 16 16 6 96
Serial 3 84
8 256 64 6 152
3 128
Ordinary Binary 4 16 8 8 224
Serial/Parallel 8 256 16 8 448

Table 1. Efficiency estimations of the different multiplier structures.

It is obvious that when using many levels in the weight values the ideal
synaptic multiplication using PDM technique requires more area than the
ordinary binary arithmetic and too many clock cycles to be effective. However,
when combining the multiplication and addition operations using mixed ana/
digi structures the PDM technique offers effective structures for neural
arithmetic.

Simplified Arithmetic

Because the PDM numbers have equal weight for each bit and the data
stream is continuous some simplifications can be used in implementing the
arithmetic. Thus, the required area is decreased and speed increased. If we
assume that the density of zeroes and ones in a pulse stream is smoothly and
'randomly' distributed inside a 'window' (length of the number), we can
perform the multiplication by taking a simple bitwise XOR-operation between
the multiplier and multiplicand. In long run this gives a good approximation of
the ideal result in P-bit window. In this case we need only P clock cycles for




171

multiplication instead of P? as was the ideal case. If we assume that the
multiplicand has most of the time values near to the maximum or minimum,
i.e. the bit stream is dominantly zero or one, this method gives a good
approximation for the result even though the bit stream has not ideal random
distribution. This non-ideality happens with a strong non linearity (e.g. step
function) in the neuron output. This step function simplification has been used
with success in our earlier VLSI implementations [Tomberg 89ab, 90].

Nonlinearity Function

In the neuron the non linearity function is performed for the synaptic sum
coming from the dendrite line. In the most simplified case a step function non
linearity is used. In digital case it can be implemented by adding the bit values
from the PDM stream together within a defined window and setting the output
to zero if the sum is positive and one if negative. In the analog case a special
lossy switched-capacitor integrator which operates as a low pass filter
following a highly nonlinear amplifier can be used. The output of the
integrator has a value that is related to the last input values. The step function
is performed by an amplifier with high gain. In the simplest case the amplifiers
can be implemented by using cascaded CMOS inverters [Tomberg 89a].

In some cases more complicated (e.g. sigmoid shaped) non linearities are
necessary. For example the backpropagation algorithm [Wasserman 89] needs
a non linearity function which is differentiable everywhere. In digital
implementation we must define a logic which changes the PDM value in the
output register according to the incoming PDM value. This logic defines the
used non linearity. In most complicated cases it can be a look-up table. In
analog case we have the incoming PDM value in analog format at the output of
the integrator. Thus, we can use analog structures to generate the non linearity
function. After this the analog value must be converted back to PDM value.
This can be done by using a sigma-delta modulator structure [Gray 87] which
provides similar pulse stream representation as used in the PDM technique.

Weight modification

The learning process in neural networks is based on the changing the
synaptic weight values according to some specified rule. Thus, especially if
on-chip learning is desired, the weight values should not be only loadable to
the circuit but also on-chip modifications should be possible. We have used a
structure where the weight value can be increased or decreased by one unit
using two control lines [Tomberg 91].
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Figure 4. Weight modification logic for the PDM structure.

In the PDM technique the weight modification logic is quite simple (Fig.
4) compared to ordinary binary logic where some extra logic is needed to
prevent the overflow situations. In the PDM technique the modification is done
by going through all the bits in the weight and changing one bit from one to
zero or from zero to one if the value is increased or decreased, respectively.

PDM STRUCTURES FOR IC IMPLEMENTATIONS

Numerous IC implementations of artificial neural networks consisting of
tens up to hundreds of neurons on a single chip have been designed during the
last years. The switched-capacitor technique has been proposed for some of the
neural network implementations [Tsividis 88]. It offers an effective method for
mixed analog/digital implementations. The biologically oriented pulse-stream
methods has also been found very promising among many other suitable
techniques [Graf 89, Murray 88, Hirai 89]. Limitations of the implementations
are usually the network size, the simplifications of the algorithm due to the
restrictions of the used technique, and the off-chip interface for application
purposes. These limitations could be alleviated by new techniques, such as
wafer scale integration and optoelectronic devices.

Next we will discuss two ways of implementing the PDM synapse and
neuron structures in silicon using both analog switched-capacitor (SC) and
fully digital techniques. These techniques offer effective ways for large and
expandable network implementations. The advantage of the switched-
capacitor structure is its small area and thus larger networks can be
implemented in a single chip. In contrast the digital structure offers better
connectivity between individual chips and thus very large networks can be
obtained by connecting chips together. Both structures are very modular and
thus expandable in a chip.
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Analog Switched-Capacitor Structures

In the SC-technique resistors can be substituted by clocked capacitors.
Thus instead of currents in resistor networks one deals with charges in
switched-capacitor networks [Tsividis 88, Tomberg 89c]. For example a
clocked capacitor structure shown in Figure 5 with a capacitor of value C and
clocking frequency f, can replace a resistor of value:

R = 1/(f*C) 1)

R
Ao— —oB

l R=(fexC)
clock

¢C¢o———oB

AO—O\'—‘H'_/
- 1

Figure 5. Switched-capacitor (SC) technique.

The result of the synaptic multiplication, performed by the XOR-gate, is
connected to control the switched-capacitor structure. The weight value is
running around the shift-register and the XOR-operation is performed between
the current axon value and the bit of the weight value. The sum of the synapse
outputs, i.e. "unit charges”, is formed in the dendrite line. If the result of the
multiplication is "-" the synapse is adding charge to the dendrite line and in
case of "+" it is subtracting it. In Figure 6 we show the structure of the
switched-capacitor synapse.

Apart from the nonlinear transfer function the neuron together with the
dendrite line acts like an adder. It forms the sum of the synaptic outputs
coming along the dendrite line and then performs a nonlinear function to the
sum. The first part of the neuron is a lossy switched-capacitor integrator which
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Figure 6. SC implementation of a PDM synapse: (a) block diagram and (b)
transistor level diagram.

operates as a low-pass filter. This integrator forms the sum of the incoming
pulse values inside the defined window. The sum is then fed to the second part
which is a nonlinear amplifier structure implemented by serially connected
inverters. The shape of the transfer function of an inverter is ideally sigmoid
like. In this case we have maximized the amplification by cascading several
inverters. Thus, the output of this stage is either high or low depending on the
"sign" of the sum formed by the integrator. Therefore, this structure converts
the output signal of the integrator from the voltage domain to pulse-density
domain by using the step function shaped non linearity. The last inverter is
designed as a tri-state structure to allow high impedance state during the
initialization period. The structure of the switched-capacitor neuron is shown
in Figure 7. During the initialization period the network is in the write state so
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that the outputs of the neurons are controlled to be in high impedance states.

The basic idea of the lossy integrator structure is that the output has
always a value which is related to the last input values. For simplicity the
amplifiers were chosen to be inverters. If we implement the low-pass part by
using resistors and capacitors the bandwidth (BW) and amplification (A) of
such a structure are:

BW = 1/(2*p*R*Cy) 2)
A=-R/R,. 3)

If on the other hand these resistors are replaced by switched-capacitor
structures whose switching frequency is f the bandwidth and amplification
will be:

BW = (f*C)/(2*p*Cy) 4)
A =-Cy/C,. )

Thus the bandwidth is directly dependent on the switching frequency.
Because we have used 16-bit weight registers and the bit frequency equals the
switching frequency, the maximum reasonable bandwidth is f/16, though also
smaller bandwidths can be used. Such structures give smoother distribution of
the pulses and thus better reliability, but increase the convergence time of the
network. The advantage of the structure is that the resulting capacitor values
are independent on the frequency. This is of course true only for a limited
frequency range because of the non-idealities, such as the resistance of the
transmission gate switches. Nevertheless, we gain a wider range of proper
operating frequencies. The amplification of the structure is chosen to be one.

As described above the data is processed in this circuits both in digital
and analog form. Data is moving from neuron to synapse in digital form and
from synapse back to neuron in analog form. The synaptic weight values are
stored in digital PDM form, synaptic multiplication and adding operations are
performed by analog structures and during the non linearity function in
neurondata is converted again to digital PDM form. Because of the PDM data
representation the conversion between digital and analog forms is very easy.
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Figure 7. SC implementation of a PDM neuron; (a) block diagram and (b)
transistor level diagram.

Digital Structures

The fully digital structures offer straightforward implementation for
many different fabrication technologies and also off-chip expandability, which
we see very important. However, the realization of the digital pulse-adder in
the synaptic dendrite line seemed to be tricky. The sum of the synaptic outputs
of one synapse matrix column is formed by chaining the pulse-adders of
synapses together by a dendrite line. The one bit pulse stream between
synapses makes it possible to connect separate chips together with a minimum
amount of extra interface pins.

The synapse structure using simplified pulse-adder block leads to an
effective IC implementation (Fig. 8). In this case the result of the bitwise
multiplication, the input from the previous synapse and the sum can have
values -1 ("-") or +1 ("+"), as represented by one bit. On the other hand the
carry values -1, 0 or +1 require one more bit for their representation. We have
used the algorithm in which the bitwise result saturates to value -2 or +2, i.e.
the sum and carry signals have values -1 or +1 as the sum reaches or exceeds
either -2 or +2, respectively. When the sum is zero two successive bits are set
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to be complementary. To prevent the clamping of the camry value after
saturation the carry input signal does not affect the carry output signal. Thus,
the second bit of the carry signal is the same as the sum output and we will
save one flip-flop in the implementation. In some cases the synapses near the
neuron in this pulse-adder chain can block out the effect of other synapses that
are further up in the chain. This is because of the overlapping and saturation
conditions, which can occur if pulse-density coded weight values near to +1 or
-1 are used. This will especially ruin the operation of large networks, in which
two synaptic nodes can block out hundreds of others. The carry signal in the
pulse-adder is used to compensate this effect. We could further minimize this
effect by modifying the pulse adder, but this would lead to much more
complicated structure and the required area of the synapse would increase
dramatically. In contrast our aim was to minimize the required structures and
obtain larger implementations.

This problem can also be compensated by modifying the learning rule in
such a way that the overlapping and saturation conditions are minimized. This
can be done by collecting the statistics of the training vectors during the
learning and modifying the synaptic PDM weight codes in such a way that the
sum of the individual bits in the pulse stream is minimized. This is easiest for
simple networks like fully connected content addressable memory algorithms.
The performance can be increased more by re-arranging the synaptic
connection matrix according to the training set. The synaptic connections
between the neurons with highest positive or negative correlation should be
placed higher in the matrix, because their possibility to block out the others is
larger. This method has been tested by using PC-controlled test board
[Palovuori 91]. In spite of the good results which we have obtained in many
tasks, the learning performance is also case sensitive for general purpose
applications.

To increase the overall performance of the digital synapse structure, we
have also tested a version where we replaced the pulse-adder by conventional
bit adders even though it makes the operation more complex. There are
basically two ways to implement an ideal digital bit adder. We can use an
ordinary bit-serial adder in each of the synapses. In this case we need log;N -
bits to represent the bitwise sum of the array with N neurons. Therefore, the
weight register should be shifted once for log,N clock pulses of the adders.
The control signals of this implementation are somewhat more complicated.
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Figure 8. Fully digital implementation of a PDM synapse: (a) block diagram
and (b) transistor level diagram.

We must know how many neurons we have in the network, so that we
know how many bits and thus clock cycles are needed for each bitwise sum.
However, we were looking for even simpler structures. Because the synaptic
matrix takes most of the area in the circuit we wanted to minimize the synapse
logic. Thus, we end up to an implementation where the bits from the synapses
are multiplexed in time and the summing is done in the neuron (Fig. 9).

In this case we need N clock cycles to calculate each bitwise sum, but the
clock frequency can be higher because of the simpler structures along the
dendrite line. Furthermore, we obtain an automatic configuration of the
network, i.e. we do not need to tell for the network how many neurons are
connected in it. Each neuron in the end of the dendrite line sends up a pulse
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which enables the synapses one at a time. The last synapse sends this pulse
back to the neuron, which ends the bitwise summing process.

For realizing the neuron we have used a step function non linearity which
in many algorithms seems to give the same results as the ideal sigmoid
function. This is implemented by calculating the sum of bits, i.e. -1's ("-") and
+1's ("+") inside the chosen 16-bit window (length of the weight register), and
setting the output to zero if the result is positive and to one if it is negative.

In the case of simplified pulse-adder synapse structure the 16-bit window
is formed by a 16-bit delay line and the sum can be formed by a recursive
adder structure in which the input bit of the window is added to the sum and
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Figure 9. Time multiplexed digital PDM synapse structure.

the output bit is subtracted. This keeps the sum of the last 16-bits always in the
adder [Tomberg 89b]. Thus, the number of the bits in the adder of the neuron is
independent on the network size. We have optimized the adder structure to be a
simple 16-bit dynamic bi-directional shift register which implies up-down
counting (Fig. 10).

When the network is initialized, the delay register of the neuron is filled
with the initial value. This is done by selecting the input of the shift register
from the I/O- pads by WRITE-signal. The neuron can operate in two different
modes. In the normal mode the output of the neuron is formed as
described above. In the "network” mode the nonlinear function is not
performed and the output is the same as the input, i.e. the output of the
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synapse. This mode is used when the chip is cascaded together with other chips
to form a larger network.

When the ideal bit-adder implementation of synapse structure is used,
the amount of the bits in the neuron structures depends on the network size.
Therefore we need log,N bits more for the sum and the delay line in the
neuron, where N is the number of neurons in the fully connected network. In
this case the restriction for the expandability is the size of the adder in the
neuron and we should implement an adder large enough for the expansion
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Figure 10. Fully digital implementation of a PDM neuron: (a) block diagram
and (b) transistor level diagram.
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INTEGRATED CIRCUIT IMPLEMENTATIONS

Several VLSI implementations of artificial neural network algorithms has
been designed and tested using the described PDM structures. Fully connected
neural network architectures have been used as test benches for the developed
structures and later on many other networks were designed.

Implementations of Fully Connected Network

Hopfield type fully connected neural network has been the network most
popularly implemented as integrated circuits. This is mainly because of the
simple and regular structure and its properties are well known. Thus, it offers a
good test bench for the developed structures. We have implemented such a
network by using both switched-capacitor and fully digital structures
[Tomberg 89ab].

Simple SC-Implementation [Tomberg 89a]

First we will discuss the overall architecture of the SC-network as shown
in Figure 12. The neurons are placed on the diagonal line of the synapse
matrix. In this way the structure is very regular. The self-connections of
neurons are lost, but this is not essential for many applications. The network
state is read and written through the bi-directional buffers, controlled by the
I/O-logic. There is also a serial output for the weight data, which could be used
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for testing purposes and for chaining several network chips together. Circuit
level simulations for large networks are very heavy and therefore only small
networks have been simulated with SPICE circuit simulator. However, from
these simulations we can see that the circuitry operates correctly and larger
network can be tested after processing.

Serial Serial
{0AD IN ~<}—NMALIZE

R
156, &
"r@
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serial data

Serial (S WE Of N, N, Nooy N,

Figure 12. Architecture of the fully connected network with SC
implementation.

In Figure 13 simulation results for a network with three fully connected
neurons and 10 MHz operating frequency are shown. This kind of small
networks converge quite rapidly, i.e. within 32 clock cycles. For larger
networks convergence times are of course longer.

Using a 2.5 pm one metal-layer molybdenum gate CMOS-process the
area of one synapse with 16-bit weight register, i.e. 17 weight values is less
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Figure 13. Simulation results of a SC network with three fully connected
neurons.

than 50 000 um?. Thus for example an array of 16x16 synapses requires less
than 12.8 mm?2 The whole active area of the chip including the buffers and
simple I/O-control logic is less than 15 mm? If this design is scaled down to |
im process, we could get in excess of 100 fully connected neurons on a single
chip of size 1 cm?. For ordinary IC-packages the pin count restricts the amount
of neurons. One solution to this problem would be to multiplex the outputs so
that the neuron states can be read and written.

Simple Digital Implementation [Tomberg 89b]

Now we will turn to the overall architecture of the digital network
implemented with simplified pulse-adder synapse structures (Figure 14).
Because of the digital interface, these chips can be connected together to form
larger networks. For simple connectivity, the neuron outputs must be wired to
the "axon" inputs by the user. Each chip has two different operating modes;
normal-mode and network-mode. In the normal-mode the chip operates as a 16
neuron and 256 synapse network and can be used alone or to be cascaded
together with other chips. In the network-mode the neurons of the chip are
bypassed and only the 16x16 synapse matrix is active. In this mode the chip
can be connected together with other chips to be a part of large array of
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Figure 14. Architecture of the fully connected network with digital
implementation.

synapses. Therefore, a large network of 16*¥M fully connected neurons
contains MxM chips of which M chips are operating in the normal-mode and
M(M-1) chips in the network-mode.

For the digital structures functional level simulations are the most
interesting ones. In Figure 15 simulation result for a network with three fully
connected neurons is shown. The internal states of the neurons, denoted as
“initial" in the figure, are actually output values of the delay line of the neuron,
i.e. delayed dendrite values. By creating functional models of the basic blocks,
neurons and synapses, we can simulate also larger networks quite easily.

In Figure 16 functional simulations for a network with 25 fully connected
neurons are shown. In this case the network is trained with three patterns, i.e.
numbers 1,2 and 3, by using the delta rule [Wasserman 89]. We have tested
several different learning rules and observed the importance of proper
learning. Because the digital implementation of the PDM technique is not
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ideal, as discussed earlier, we should use a learning rule which gives the
optimum result for the weight coding [Tomberg 91].

Using a 2.5 pm CMOS-process, the area of one synapse with 16-bit
weight register is about 70 000 pm? as compared with the area 50 000 pm? in
[Tomberg 89a]. Thus for example an array of 16x16 synapses is less than 18
mm?. Again, if the design is scaled down to 1 um process about 90 fully
connected neurons could be placed on a chip of size 1 cm?. For 16x16 network
we would need 16 I/O-pins for connecting the synapse rows, i.e. axons
together and 32 I/O-pins for connecting the synapse columns, i.e. dendrites
together. In this case we would need 48 pins for cascading chips together and
additional 8 pins for control lines. We have designed this network by using 2
pum two metal layer CMOS process with a 68 pin LCC (Leadless Chip Carrier)
package and it is currently been processed by Austria Micro Systems. The total
area of the chip including the I/0-pad structures was less than 28 mm?. The pin
diagram was designed in such a way that single chips can be easily cascaded
and a printed circuit board with 16 such circuits was implemented. This board
can be joined to parallel port of a PC and programmed easily by the user.

Digital Implementation with On-Chip Learning Facility [Tomberg 91]

For more general purpose implementation we have designed a network
with ideal pulse-stream adders together with optimized on-chip learning
algorithm. This ensures autonomous operation with minimum amount of
external control circuitry.

The learning algorithm is divided into the initialization and iterative parts.
During the weight initialization the synaptic weights are calculated according
to the training set based on Hebb's rule [Wasserman 89, Lippman 87] which
are then set into the network. The first phase in the learning procedure is to
reset all weights to zero (PDM) value. Then each training pattern is shown for
the network once and the network is modified according to the rule:

Awj; = (pi*p;) ©)

where p; and p; are the pixel values of neurons i and j. If Aw;; is O the weight is
not modified and if it is +1 or -1 one of the bits in the PDM-coded weight value
is changed from one to zero or from zero to one, respectively. The second
phase consists of iterative weight modification based on the Delta-rule
[Wasserman 89] in which all the training patterns are presented for the network
randomly and after the stabilization the weight values are modified according
to the rule:

Awi=p;d-p)*p, ™
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where p;® and p;¢ are the desired values of the pixels and p; is the actual output
value. This phase goes on until all the patterns are learned.

The fully digital interface makes it possible to expand the network easily
by connecting several circuits together. Each chip has two possible
configurations. In the first configuration the chip operates as a neuron and
synapse network with control logic and it can be used alone or to be cascaded
together with other chips. In the second configuration the neurons and the
control logic of the chip are bypassed and only the synapse matrix is active.
This mode is used simply to expand the connection matrix of the chips with
active neurons. Thus the circuits with active neurons are responsible also for
the control of the expansion circuits. The network can operate either in the
learning or recognition mode selected by an external signal. The learning mode
is fully automatic. First the control logic reads the patterns from the buffer
memory and initializes the weights. Then the iterative modifications are done
until all the patterns are learned or this phase is stopped externally. The state of
the status signal tells whether the network is still learning or finished. During
the recognition phase it tells when the network is stabilized. The stabilization
of the network is detected by a special logic which checks the output states of
the neurons within the defined, in this case 16 bit, window.

The synaptic weight modifications are controlled by two line sets going
through every synapse. These are the axon lines going vertically through each
synapse in row and the dendrite lines going vertically through each synapse in
column. During the learning phase these lines are fed via the control logic. The
actual weight modification logic is placed in each synapse (Fig. 4). If both
lines going through a synapse have different values no modifications for that
weight value is done. If on the other hand both lines have the value zero or one
the weight value is increased or decreased by one, respectively. The increasing
is done by changing a bit with value one to zero. The decreasing is a reverse
operation. For each modified bit the whole weight register is checked serially.
If no place for the modification is found, the weight value is obviously
saturated to its maximum value.

The control logic is operating synchronously in each circuit which has
active neurons. Each one reads and writes the patterns of its own neurons and
sends the weight modification signals according to those neuron states. Their
operation is basically independent of each other and the necessary
synchronization is done by the external control signals which set the operation
mode and start the operation. The only information between the adjacent
control circuits is concerning the stabilization state of the network. Thus, all
the circuits are chained together by the status signals which tells whether the
neurons of the circuit are stabilized or not.
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The first version of the circuit is done by using Programmable Gate
Arrays (PGA's) and therefore the network size is quite small; only four
neurons on each circuit. This prototype is used for testing purposes. In the first
full custom version with dynamic structures we are aiming to 32 neurons on a
chip and clock speeds up to 20 MHz.

Boltzmann-Machine Implementation [Tomberg 90b]

The Boltzmann-machine algorithm can be seen as a stochastic
modification of the Hopfield type network [Sompolins 88]. In this case the
state of the neuron is based on a statistical rather than a deterministic approach.
The idea is to make the nets to find global minima of the energy function
instead of local minima as in case of Hopfield nets. The Boltzmann Machine is
suitable for various optimization tasks although the algorithm is
computationally very heavy. This is because of the simulated annealing
method which requires very efficient implementation on hardware. The fully
connected part of output and hidden nodes tries to find a global minimum from
the energy space defined by the state of input nodes. The output state of a node
or neuron depends statistically on the input values, i.e. a noise parameter is
added to the non linearity function of the neuron. This parameter is called
temperature of the network and it defines the probability of the network to be
in either one of the binary states. If the temperature is zero the node operates
just like a neuron in the Hopfield network. If the temperature is infinite the
output value can be either one of the binary values with equal probability.

To ensure an efficient VLSI implementation of the algorithm some
modifications have been made for the original, ideal Boltzmann-machine
algorithm. For the number representation we have used digital pulse-density
coded values with 17 discrete levels. We have also used a linear probability
function instead of the sigmoid. Thus, we end up with two main
simplifications namely linearizing the probability function and quantizing the
synaptic weight values and the number representation in general. The effects
of these simplifications have been tested by simulations [Tomberg 90b]. We
found out that linearizing the probability function has very small effect on the
performance. In contrast the quantization of the weight levels decreases the
performance significantly. Nevertheless, by increasing the amount of the
hidden nodes we can decrease this effect. Thus, we obtain better performance
either by increasing the amount of the discrete levels or the hidden nodes. Both
of these will also increase the area of the silicon implementation and an
optimal solution depends on the network size and application. Also the results
of K.Kuyma [Kyuma 91] show that the effect of weight quantization in
Boltzmann-machine network is essentially insignificant above certain critical
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number of quantization levels. This number depends on the training set size.
For training set size of the order of the neuron numbers the critical value was
about 10.

The architecture of the Boltzmann machine circuit is shown in Figure 17.
The circuit is designed to operate together with a host processor, which
controls the learning and optimization operations. Thus, no control structures
are implemented on chip in this first version. Our initial aim was to implement
an efficient test structure for a larger network and include the control structures
in a later designs. The network consists of the input nodes and fully connected
block of hidden/output nodes. The operation is controlled via several registers,
which are written and read by the host processor. The network configuration is
selected via a special register which controls the /O -nodes. During the
learning the nodes which are selected to be output nodes can be clamped to
desired values by writing the value in the I/O-register and selecting the
clamped nodes via the control register. All the I/O-node values, both hidden
and output nodes can be read via the I/O-register. The updating is performed
by selecting the desired row via the row decoding register and updating the
entire row by the value written in the update register. The simulated
"temperature” parameter of the algorithm is controlled with a register. The 16-
bit parallel Random Number Generator (RNG) block generates a new random
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Figure 17. Architecture of the Boltzmann-machine circuit.
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value during each clock cycle [Saarinen 91]. These random numbers can be
considered as pulse-density coded white noise for 16 different channels. The
random number generator is based on the shift-register structure with XOR
feedback connections giving a very efficient implementation. The temperature
parameter of the network can be changed by modifying the amplitude of the
noise added on the dendrite lines. This is performed by feeding the noise via
pulse-density synapses as controlled by the temperature register. The noise is
multiplied by the temperature value written in the register

Both digital and switched-capacitor implementations of the structures
based on the pulse-density modulation technique can be used. The switched-
capacitor implementation leads to smaller area, but the digital implementation
has the advantage of easier off-chip expandability. The active area of the
circuit implemented by the 2.5 um? CMOS process is approximated to be 40
mm? with the switched-capacitor structures and 50 mm? with the fully digital
structures.

Self-Organizing Network Implementation [Tomberg 92]

Self-organizing neural network models can be seen as biologically
plausible because they do not need training pairs during the learning phase, i.e.
they fall into the category of unsupervised learning. Kohonen's Self-organizing
Feature map is one of the best known models and has many VLSI
implementations [Goser 91]. The most critical issues of implementations are
the effective calculation of the best matching node and its variable
neighborhood. The most common applications for this kind of network can be
found in the area of pattern and speech recognition.

In this our design we have combined the knowledge adopted from the
earlier PDM implementations for realizing self-organizing network with on-
chip learning algorithm. We have used SC-technique together with digital
substructures to optimize the overall performance of the circuit. In Figure 18
we show the architecture of the implementation containing 16 nodes for input
vectors with 16 components and 16-bit PDM coded weight values. In this first
design the neighborhood is one dimensional. In future versions the amount of
nodes and bits in weights can be easily scaled up according to the requirements
of the application. Also multidimensional neighborhoods are possible.

The operation of the circuit is continuous, i.e. the components of the input
vector are fed into the circuit in the PDM format and the result of the network
can be read from the outputs continuously. In addition only two control inputs
are needed. The first one selects the operation mode of the circuit i.e. it either
is in the learning mode or just finding the best matching output node. The other
one is used to control the learning phase. In general two parameters are needed



191

VECTOR eee—m

1 Fe——m—— e ——e—

! o { i | NoOE 18 |
1 . i
1 Jw-tl 1
| 1 |
| i I
[} 1 ‘welght |
| H I
i N THD E
[} : ‘waight 1
] ] ‘I
1 e H
4 [ Sy !

| BEST MATCHING COMPARATOR l
p——o  BEST
L ... MATCHING
..... ouT
NEIGHBOURHOOD
SIZE 4
o ATION ) NEIGHBOURHOOD LOGIC |
o |
Weight modification contral |

Figure 18. The PDM synapse logic of the self-organizing network.

for controlling the learning operation. One of them controls the neighborhood
size and the other defines the shape of the update function of the weights in the
neighborhood. Both of these parameters are controlled as a function of time.
In our implementation we update all the weights in the defined neighborhood
by a unit value. The shape of the update function is implemented by repeating
the update operation for the defined input vector with different sizes of
neighborhood so that the requirements of the desired update function are
satisfied. Thus only one control value for learning purpose is needed when it is
used synchronously with the input vector feeding.

The distances between the input vector and the reference vectors of the
nodes are calculated by adding together all the absolute values of the
differences between the component of the input vector and corresponding
weight value (Manhattan distance). These values are then compared in parallel
with each node and the neighborhood is defined around the best matching
node. The feedback information to the weight updating logic is used to modify
the weight value during the learning phase while the next vector is fed in. Due
to the fully parallel operation the time of one learning cycle is proportional
only to the amount of bits in the weight value. During the recognition phase
only the best matching part of the algorithm is performed and the weight
updating logic is disabled.

The difference between an incoming PDM-coded value and a PDM
weight value is calculated in the synapse logic by using lossy integrator
structure implemented by switched capacitor technique (Fig. 19). The sign of
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the difference is then detected by a simplified comparator implemented by
CMOS inverters. The absolute value of the difference is generated based on
the sign of the result. The results of different components are added together
within the dendrite line by using simple charge adding method. The synapse
block includes also the weight modification logic. The control signal
(MODIFY) comes from the neighborhood logic timed by the window
synchronizing pulse. If the MODIFY signal is high the weight value is
modified during the next P clock cycles according to the sign of the difference.
The distance of each node from the input vector is calculated in the
neuron by integrating the summed charge from the dendrite line within the
PDM window (Fig. 20). The charge in the integrator corresponds to the
distance between the input vector and the node value. Thus the neuron which
has the lowest value in the integrator is closest to the input vector. These values
are compared by a special SC-feedback structure. All the integrators are
charged equally via the reference capacitors Cy which keeps the value of the
integrator of the best matching node below the threshold value of the fixed
comparator. This is done by continuously checking the output values of the
comparators via the wire-and structure. If one or more comparator outputs are
high all the integrators are charged and if none of them is high all the
integrators are discharged by a small unit value. Thus the output of the best
matching comparator has positive pulses which are then latched in the output
after each comparing sequence. In order to select one of the best matching
nodes in the case of equal distance values some extra logic is added to the
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output of the neuron. The final output is then taken to the neighborhood logic
which performs filtering of the data and calculates the neighborhood for the
weight modification logic. The neighborhood is defined by using a SC-
modification of the resistive network [Mann 88, Hochet 91]. Instead of using
comparators with selectable threshold value, we decided to use a simple fixed
value comparator and modify the strength of the connections in the network by
altering the clocking frequency of the SC-connections between the
neighboring nodes (Fig. 21). Therefore, a bigger clocking frequency means
larger neighborhood and vice versa. The operation mode selection signal is
used to disable the weight updating signal when the circuit is not in the
learning mode.

The architecture of the circuit is modular offering easy on-chip expansion
of the network. However, the off-chip expansion is more difficult due to the
global operation based on charge adding principles. The control logic is
relatively simple including only the global two phase clock signal generator
and sequencers for generating the PDM window synchronizing pulses and the
neighborhood size control frequency according to the external control value. In
order to achieve an optimum implementation a CMOS process with effective
capacitor structures and possibility for small dynamic shift registers is
required. Our first design is targeted for 1 um double poly, double metal
CMOS process which offers good possibilities for dense and effective
structures.

Other implementations

Other algorithms can also be implemented by using pulse-density
modulation technique. However, their requirements concerning the
simplifications of the basic algorithm are often stricter. One should also bear
in mind that the required accuracy of the algorithm may strongly affect the



194

NEURON } }
STATE

?
MODE —_DO—LDO———‘ MODIFY n

ENA,, 7

Connections : E - ok ok,
S~ ‘ P : Connection to
from ot+""0 i ] l O~ neighbour 1

neighbours J; : :
ST
[-i Connection unit

C L]

d(‘\iT : gt ek, ,,,,, 5

e ., ., Connection to

g neighbour n
ok, & f""“ |

EConnection unit

Figure 21. The neighborhood logic of the self-organizing circuit.

suitability of the structure and its implementation. For example, the
backpropagation [Wasserman 89] algorithm seems to require more than 256
discrete values for the weights during learning [Graf 89]. This makes analog
implementations less suitable due to it's smaller inherent accuracy and larger
noise sensitivity. Otherwise, for example the Boltzmann-machine is more
robust for the weight quantization than the Backpropagation model [Kyuma
91]. The non linearity function of the neuron must also be differentiable
everywhere and thus we can not use the step function approximation instead of
the sigmoid function. This makes the implementation of the non linearity
function in the neuron more complicated. Basically we must use a look-up
table in the place of simple up/down counter or recursive adder as was the case
in the Hopfield type networks.

CONCLUSIONS

The pulse-density modulation technique offers an interesting method to
implement artificial neural networks as VLSI circuits. It is suitable for
networks with relatively small amount of weight levels or very effective
weight storage techniques. The optimized result will be obtained by using
mixed analog/digital structures. One of the benefits of PDM technique is the
simple interface to analog world due to the data representation. The analog
data can be converted to digital PDM format by using simple sigma-delta
modulator structure.
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The synaptic weight data is stored in dynamic shift registers and the
weights are fully programmable between -1 and +1. The number of discrete
levels of the weight value depends directly on the length of the weight
registers. This affects also the minimum synapse size and thus the maximum
network size on a single chip. The advantage of the switched-capacitor
implementation is small area of a synapse, and therefore relatively large
networks can be implemented. The architecture of the network is also regular,
modular and thus easy to expand. For the same complexity of the network
architecture a digital implementation requires 30 per cent more silicon area.
This difference can, however, be considered quite insignificant. The advantage
of a fully digital implementation is good off-chip expandability to larger
networks. The main restriction is that the simplified digital implementation is
in many ways not ideal. This can be partly compensated by the leaming rule.
An ideal digital implementation will be obtained by expanding the structures
using more silicon area or time for the processing.

Several successful VLSI implementations have been designed by using
the PDM technique [Tomberg 89ab 90 91 92, Palovuori 91]. Both co-processor
type circuits and fully autonomous circuits with on chip learning facility has
been designed. Currently we are looking for more complicated system level
implementations of ANNs using PDM technique. One particular interest is to
apply the PDM technique for more biologically oriented neuron model due to
the relationships to the biological pulse-stream representation.
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The area of Artificial Neural Networks consists of building machines and
algorithms that are based somehow on the structure of natural brains. It has
been shown during the past years that such type of machines are able to do
human kind of tasks (associative memories, pattern recognition, feature
extraction, ...) much more efficiently than conventional algorithms running on
conventional computers.

The fact that the area of knowledge called Artificial Neural Networks is
based on biological brains is not trivial to any outside observer. A biological
brain is made of nervous tissue, it contains living cells, it works thanks to an
immense collection of biochemical reactions between huge organic molecules,
and it is powered by the metabolism of the living being that owns that brain.
On the other hand, an artificial neural network is most of the times a strange
software algorithm on a digital computer. Sometimes, when we talk about
hardware implementations of artificial neural networks, we can physically
identify the neurons and synapses of the system, but they are just a collection
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of transistors and wires built on a rigid silicon substrate that might
communicate to a digital computer, and that is powered by a constant voltage
source usually plugged to a socket on the wall. Where is then the relation
between these two neural systems, the natural and the artificial?

They both consist of a set of processing elements, called neurons,
interconnected by synapses. The relationship is therefore in the structure, not
in the implementation. It is the structure of the artificial neural systems that
gives them the ability to perform human-kind tasks. And even more, what
makes a neural system able to perform a specific task is not the collection of
little processors or neurons, but the collection of weights of the synapses and
how these change in time.

In this chapter we will put the emphasis on the implementation of the
neurons, and we therefore believe it is good to know the ‘connection’ between
the natural biological neuron and the artificial one. The way natural neurons
work and interact will give us a wider vision of the field and might help us in
the future if we decide to change the artificial implementation technique or
technology.

A first step towards building biology-like neural network hardware is
making the artificial neurons to be signal controlled oscillators: the neurons
fire a sequence of pulses if the controlling signal reaches a certain threshold
value, otherwise no pulses will be fired. This implementation philosophy has
already been adopted by many researchers and is growing in interest gradually
(1]-[10].

In this chapter we will first describe with some detail the operation of the
living neuron and its interaction with the others. Based on this, we will derive a
mathematical model (definitely not the most complete available today) that
will serve our purposes. Then we will give a hardware implementation of this
model and will simplify it gradually until obtaining simple and efficient
artificial neurons usable for oscillatory VLSI hardware [10]-[11]. Afterwards,
we will use these neural oscillators to build conventional neural networks,
namely a Hopfield network and a BAM network. Finally, before concluding,
we will give some hints on how to extend these networks to chaotic oscillators
based neural systems, which seem to be available in nature as well.

PHYSIOLOGY OF THE BIOLOGICAL NEURON [12]-[13]

In this section we are going to describe briefly the biological mechanisms
involved in the interaction between neurons and how, as a consequence of this
interaction, a neuron generates an electrical impulse that is called the action
potential.

A neuron is a living cell immersed in an interstitial fluid. There exists a
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voltage difference between the inside and the outside of the cell that is
produced by an unequal distribution of electrolytes inside and outside of the
cell membrane. This unequal distribution of ions is a consequence of the cell
membrane having different permeability factors for each one of the ions. For
the time being, and as is illustrated in Figure 1, assume that inside the cell
membrane there are K* ions and large organic A” ions, while outside there are
mainly CI” and Na* ions. The cell membrane is always impermeable to the A”
ions so that they always remain inside the cell. These molecules are too large
for passing through the cell membrane’s pores. During the resting state the cell
membrane is permeable only to K* and CI ions. Therefore, K* will tend to
diffuse outwards, while CI" tends to diffuse inwards in order to equal their
concentration on both sides of the membrane. As a consequence of this
diffusion the electrical equilibrium of the state shown in Figure 1 is altered,
and an electrical field will arise (negative inside with respect to the outside).
This electrical field opposes the diffusion of ions down their concentration
gradients. An equilibrium state will be established in which the force of the

B A e Cl- ® Na+ ® K'.

QL

QLLID

Figure 1. Distribution of Electrolytes inside and outside of a Living Neuron
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electrical field against the ions equals the chemical force that makes the ions
diffuse. At this equilibrium state a voltage difference of typically 60-80mYV is
present between the internal and external walls of the cell membrane, called
membrane resting potential.

In 1943 David Goldman of Bethesda derived an expression for the
membrane potential in terms of the concentration of ions on both sides of the
membrane and their relative membrane permeabilities. For the case of our
living cell membrane the electric potential V,, (inside with respect to outside)
is given by,

P (K], +P, [Na*], +P.I[Cl],
V. = 58mViog K n out Na - owr ¢l _ W
P [K'1,,+P,, [Na"],+P,ICl]

out

where Py, Py, and P, are the relative membrane permeabilities for K*, Na*
and CI" respectively, [K*],,; [Na*],,, and [CI'],,, are the concentrations of
ions K*, Na* and CI outside the membrane, and [K*];,, [Na*];, and [CT'];,
are the concentrations inside.

During the resting state of the neuron the cell membrane is impermeable
to ions Na* (Py,=0) and V,,=-75mV (typically between -60mV and -80mV).
During the generation of the action potential Py, reaches its maximum value
and V,,=+50mV: there is a flow of Na™ inwards the cell that contributes to the
increment of membrane voltage V,,, followed by a flow of K* outwards to
reestablish the resting potential. Naturally, there is also a mechanism that, after
the action potential, is going to pump Na™ outside, and K* inside, so that the
resting concentrations of these ions are recovered. This is performed
independently by the so-called Na*-K* pumps. These are very complex
organic molecules embedded in the membrane that literally pump Na* out and
K™* in against their concentration gradients, by means of a sequence of
chemical metabolic reactions that consume energy.

An equivalent circuit for the electrical properties of the nerve membrane
is shown in Figure 2. The different permeability factors are represented by
conductances Gy, , Gg and G, and C,, is the capacitance imparted by the
lipids of the membrane. Eg, Ey, and E; are called the Nernst Potentials for
K*, Na* and CI', respectively. They are defined by the expressions
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Figure 2. Equivalent Electrical Circuit for Electrical Properties of the Nerve
Membrane

[K"]

Ey = 58mVlog——
[K ]in
Na*]

Ey, = 58mViog——— @)
[Na'],,
[CI'],;

E.= 58mVlog—_——'i
[Cl ]out

According to the Goldman equation (1) when the neuron is resting, since
Pp,=0, it yields

P [K'] +P,.[Cl],
V, = 58mViog—+— 7 3
P (K", + P CT]

Usually the effect of CI' ions diffusion is negligible, so that

out

(K] s
V,=58mVlog———— = E, = -75mV @)

k1,

and the membrane resting voltage is approximately equal to the K* Nernst
potential (which is -75mV).
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During the generation of the action potential Py, increases until it reaches
a peak and then returns to zero. At the peak, when P, is maximum,
Goldman’s equation can be approximated by

[Na")

szSSmVlog—-———-—;——— =F
[Na'],,

Na = +50mV 5)

which is approximately the peak voltage of the action potential.

The conductances Gy, , Gg and G are proportional not only to the
relative membrane permeabilities, but also to the concentration of electrolyte
at the side of the cell membrane that is the source of the flow. So, for example,
for Na* the source of the flow is the outside of the cell membrane (the flow is
from outside to inside). Therefore,

+
GNa e PNa [Na ]

out
+
Gy<P. 1K1, ©

Gp <P lCI]

C out

Embedded in the cell membrane there are the so-called ionic channels.
These are physical channels (pores) that can be opened and closed by different
stimuli, and when open allow the flow of certain ions through the membrane.
The opening and closing of these channels is what changes the permeability of
the membrane, and therefore, the membrane potential. Many channels have
been identified so far. However, we are going to consider only a few of them
that will allow us obtain an appropriate mathematical model for the neuron
dynamics.

The Na* Channels

We are going to consider only two different types of Na* channels: the
ones opened chemically by organic molecules called neurotransmitters
released by the end of a synapse when it receives an electrical impulse, and the
ones that are opened when the membrane voltage reaches a certain threshold
value (approximately -50mV) !, These two channels receive the name of
Chemically Gated Channels and Voltage Gated Channels, respectively.

1. Recent studies [13] reveal that there are also some intermediate types of channels,
i.e., they can be opened by the two mechanisms.
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Figure 3. Schematic Illustration of Excitatory and Inhibitory Synaptic
Connections to a Neuron.

Chemically Gated Channels

In Figure 3 is depicted a neuron with two synaptic connections, one
excitatory and one inhibitory. The end of the synapses do not touch the cell
membrane of the neuron. There is a spacing between each synapse and the
neuron’s membrane of approximately 20-40nm, called synaptic cleft. Each
synapse is at the end of an axon of another neuron. When an electrical impulse
reaches the synapse, vesicles containing large organic molecules called
neurotransmitters are released. The neurotransmitters that will open the
Chemically Gated Na* Channels are excitatory neurotransmitters. They are
contained in spherical vesicles inside excitatory synapses

The Chemically Gated Na* Channel is a large organic molecule (a
protein) embedded in the neuron’s membrane at the synaptic cleft between
neuron and an excitatory synapse. When excitatory neurotransmitters are
released into the synaptic cleft, they will eventually reach the Na* channels
and bind to them. When this happens the channels are physically deformed so
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that they change their structural geometry and open a pore in the membrane
that allows the flow of Na* ions. This process is schematically represented in
Figure 4. The excitatory neurotransmitters only bind temporarily to the
channels. They will be hydrolyzed into another substance which is inactive and
will be absorbed by the synapse, so that the neurotransmitter can be recycled
for future use.

(b)

Figure 4. Illustration of Opening Mechanism of a Chemically Gated Na*
Channel by an Excitatory Neurotransmitter.

Voltage Gated Na* Channels
These are channels that are opened when the membrane voltage increases
above -50mYV, approximately. When an electrical impulse is delivered through
an excitatory synapse, excitatory neurotransmitter is released, chemically
gated Na* channels open and Na* flows into the cell producing an increase in
the membrane voltage. If the electrical impulse was strong enough or if it was
a sufficiently long train of pulses, then more channels had been opened and the
membrane voltage had reached the -50mV threshold. If this happens the
voltage gated channels will open and therefore further increase the membrane
voltage. This is like a chain reaction whose result is a very high Na*
permeability factor (high Gy,) which will produce the action potential

The way the voltage gated Na* channels work is as follows. It is another
protein. It consists of four equal rigid units of 300 amino acids that are joined
by other chains of flexible amino acids. These four units are arranged in
a cylindrical fashion inside the membrane. For a membrane voltage below
-50mYV the four units are very close together and the channel is closed. But if
the membrane voltage increases above -50mV the four units will separate (no
more than 54 ) allowing flow of Na* ions. This is schematically illustrated in
Figure 5. Some regions of the protein are charged positively and others
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Figure 5. lllustration of Structure of a Voltage Gated Na* Channel When
Closed (a), and When Open (b).

negatively. It is believed that the interactions between these oppositely charged
regions serve as sensors of changes in transmembrane voltage, producing
changes in the configuration of the channel protein, which opens the channel
slightly allowing flow of Na*. Such channels remain open only for a few
milliseconds, and the flow of ions can be represented by a square pulse of
current (1 to 2 pA) of the same amplitude for all active channels but different
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duration. Figure 6 (a) shows the current through three different channels, while
Figure 6 (b) depicts the shape of the sum of 200 of them.

Due to the chain reaction produced when the membrane voltage reaches -
50mYV, all the voltage gated channels will open making Gy, very high for a few
milliseconds. The transient membrane voltage V,, produced under these

20ms 20ms

(a) (b)
Figure 6. (a) Currents through Three Individual Voltage Gated Channels: (b)
Sum of the Currents through 200 Voltage Gated Channels
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Figure 7. Membrane Voltage and Ionic Currents During an Action Potential
in a Cell Membrane
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conditions is called the action potential (see Figure 7). The amplitude and
shape of this action potential are characteristic of the neuron cell and do not
depend on the signals that triggered it. If the signal that triggered the action
potential is strong enough a train of action potentials might be generated (each
one of them of constant amplitude and shape). The number of action potentials
and the separation between them does depend on the strength of the triggering

signal.

The K* Channels

There are several types of K* channels, but the action of all of them is to
stabilize the membrane potential to the resting voltage. Their effect can be
summarized as a current opposite to the Na* one that is activated after some
delay by an increase in the membrane voltage as shown in Figure 7. Since this
current produces a decrease in membrane potential, it will make, after the peak
of Na* current, the voltage to reach its resting value. Furthermore, if originally
not enough Na™* channels were opened fast enough, this K* current will start to
make the membrane potential to decrease before the threshold voltage is
reached and, therefore, abort the action potential.

The CI" Channels

The CI channels are chemically gated channels embedded in the neuron’s
membrane in the synaptic cleft of inhibitory synaptic connections. When an
electrical impulse reaches this synapse, inhibitory neurotransmitter is released
into the synaptic cleft and will attach to the CI" channels distorting them briefly
and opening ionic gates permitting CI” ions to move by diffusion into the cell.
The result is an ionic current that tends to decrease the membrane voltage, as is
shown in Figure 8. The ionic channels for inhibition are surprisingly
nonspecific, depending purely on the pore size: all anions smaller than a
critical size in the hydrated state (0.29nm) pass through.

AN ELECTRICAL CIRCUIT MODEL

So far we have described the physiology of the living neuron and given a
partial equivalent electrical circuit (see Figure 2). Now we are going to
complete the equivalent circuit so that it will allow us to represent most of the
dynamics involved. The circuit is shown in Figure 9. The different ionic
channels are represented by the following elements:

» I, represents the excitatory effect of the Na* current passing through
the chemically gated Na* channels. This current source depends on
the signals arriving from other neurons through excitatory synapses.
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Figure 8. Effect of Inhibitory Transmitter, Released by an Inhibitory Synapse,
on the Membrane Voltage.
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Figure 9. Electrical Circuit Model that Explains the Generation of the Action

Potential

in a Neural Cell.

I, represents the inhibitory effect of the CI" current passing through
the chemically gated CI" channels. This current source depends on
the signals arriving from other neurons through inhibitory synapses.

G, represents the change in Na* permeability of the cell membrane
due to the opening of voltage gated Na* channels. The value of the
conductance G, will therefore be voltage V,, dependent.
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» Gy represents the change in K* permeability of the cell membrane
due to the opening of voltage gated K* channels. The value of the
conductance Gg will therefore be voltage V,, dependent, although
this dependence is much softer than for Gy,

The loading effect of all the axons of the neuron (that will propagate the
electrical impulses to other neurons) is modeled here by a distributed RC line.
More precisely, the axons should be modeled by a distributed line of elements
like the circuit comprised by broken lines in Figure 9. Such a distributed line
would be able to regenerate the action potential along its way to the next
synaptic connection without degrading it.

It is worthwhile to mention here that action potentials can be produced in
any living cell (not necessarily belonging to the nervous system) if properly
excited [13]. Their generation is a property of the cell membrane. What makes
the cells of the nervous system unique in this sense is that they are able to
propagate action potentials through their axons and synaptic connections to
other cells.

The part of the circuit of Figure 9 enclosed by broken lines is very similar
to the one that Hodgkin and Huxley proposed in 1952 [14] to relate current and
voltage through the nervous cell membrane during an action potential. They
provided mathematical expressions for the different conductances,

Gy = m’h ,
S M
K

that were governed by time and voltage dependent differential equations,

- om (V. )-m
ENUA
h (V) -h
EXUAN
_ nw(Vm)—n
BEXZAN

The functions m.(V,;)), T(Vi)s Boo(Vi), Ti(Vi), n(V,,) and 1,(V,,) are
only voltage dependent and are depicted in Figure 11. The model of Hodgkin

®
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Figure 10. Hodgkin-Huxley Curves for Voltage-Only-Dependent Functions of
Equation (8).

and Huxley explains very well the generation of the action potential, but fails
to explain the generation of more than a single impulse, such as the complex
firing patterns that characterize most neurons [13]. These type of patterns can
be explained, however, by the presence of other ionic channels in the
membrane. Their global effect is similar to allowing the Na¥ channels to
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remain open as long as the membrane voltage is above the threshold that opens
them. In the following section we will consider a simplification of Hodgkin
and Huxley’s model by FitzHugh and Nagumo [15]-[17], where the Na*
conductance is only voltage dependent (but not time dependent) and, therefore,
is able to model the generation of trains of pulses.

In the circuit of Figure 9 we have included a current source that
represents the Na*-K* pump. That current source should not be considered as
forming part of an electrical circuit that explains the generation of action
potentials, because this pump works independently of the action potential and
its function is only to avoid accumulation of Na™* ions inside the cell and of K*
ions outside. Also, the load of the distributed RC line can be neglected for
most practical purposes.

Another aspect we would like to mention before ending this section is
how to model the synaptic interconnections between neurons. Remember that
when an electrical impulse reaches the end of the axon, i.e. the synapse, a
certain amount of neurotransmitter is released into the synaptic cleft between
the synapse and the next neuron. These neurotransmitters remain in the
synaptic cleft for a few milliseconds and open some of the chemically gated
Na™ or CI' channels. The more excitatory neurotransmitters are released, the
more chemically gated Na* channels will open and the more likely it is that
the membrane voltage will reach the -50mV threshold that opens the voltage
gated Na* channels, generating the action potential. The more inhibitory
neurotransmitters are released, the more negative the membrane voltage will
become and the less likely the threshold will be reached. For each neuron that
is receiving neurotransmitters from all the synapses connected to it, a spatial
and temporal summation of all the inputs is performed. Spatial in the sense that
each synapse is contributing to increase (if excitatory) or decrease (if
inhibitory) the membrane voltage when it receives an electrical impulse, and
temporal because the more electrical impulses arrive the more
neurotransmitters are present in the synaptic cleft before there is time to
inactivate them (for further recycling) and a higher variation in membrane
voltage is achieved. This effect can be modeled by the following two
differential equations,
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Figure 11. Circuit Diagram for Modeling the Synaptic Connections to One
Neuron
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where V;* are the electrical signals at the excitatory synapses, V; are the ones
at the inhibitory synapses, and C,, C;, o,, o;, B, and B; are time constants
related parameters. If

C=C,=C,
(X=(Xe=(ll )
[3:_[38= ;
I=1 -1

e

equations (9) can be reduced to

dl
Cd—t=—a1+ﬁ(z i—ZV;] (11)
i J
A circuit that implements this equation is shown in Figure 11. The effect
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Figure 12. Na* Current as a Function of Membrane Potential in the Simplified
Model Proposed by FitzHugh and Nagumo

of the integrator in Figure 11 or the time derivatives in equations (9) and (11) is
what models the fact that the neurotransmitters remain active for a finite period
of time (a few milliseconds) inside the synaptic cleft. Therefore, with egs. (9)
(or the simplified egs. (11) and the block diagram of Figure 11), we are able to
model the interactions between oscillatory neurons.

FITZHUGH-NAGUMO NEURON MODEL AND VLSI CIRCUIT
IMPLEMENTATION

Theoretical Model

The simplifications introduced by FitzHugh and Nagumo [15]-[17] in the
circuit comprised by broken lines in Figure 9 are a different modeling of the
Na* and K* conductances. Since the Na* current characterized by Gy, is a
fast one that strongly depends on the membrane voltage, it is modeled by a
time independent nonlinear conductance, as is shown in Figure 12. On the
other hand, the K* current is a slow current that does not depend very
nonlinearly on the membrane voltage. Therefore, Gg can be modeled by a
linear resistor R connected in series with an inductor L and a voltage source
E that represents the membrane resting potential, as shown in Figure 13. This
model is mathematically described by the following set of first-order
differential equations,

av,_ .
Cm? = I—lK—fNa (Vm)
(12)
diy
L— =V _+E,.—Ri,

dt
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Figure 13. Equivalent Circuit for FitzZHugh-Nagumo Neuron Model

Circuit Derivation

We would like to have an equivalent circuit of FitzHugh-Nagumo’s
model suitable for a CMOS implementation. The circuit of Figure 13 is not
adequate for this purpose because of the presence of inductor L. Therefore, we
will use a specific circuit design technique, called Transconductance-mode
(T-mode), that will allow us to implement the equations directly into a circuit
that only has capacitors and transconductance amplifiers, both appropriate for
CMOS VLSL

We will first present this circuit design technique as a general tool for
implementing a circuit that solves a general system of N nonlinear first order
time differential equations in the variables x, x,, ... xp.

N N
Yoi Zgijxi+fj (x) + ZBU.)&,. =0 ., j=1,..N (3

i=1 i=1

Yoj, 8ij and B;; being constant parameters and fj(~) nonlinear functions of
x=(x], X3, ... X)y). Consider now the circuit of Figure 14. It consists of N nodes
of voltages x;. Each node j is connected to ground through a capacitor Cj; and
to each other node i through a capacitor Cj;. Two current sources I, ; and Iy; are
also connected to each nodej. I ; is linearly dependent on the node voltages of
all the other nodes,
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Figure 14. General Topology Representing N Nonlinear Differential Equations

N
I= Y 8%+, (14)
i=1

where g;; (which can be positive or negative) is the transconductance relating
interaction between nodes i and j, and y,,; is an offset term. I y; is a nonlinearly
dependent current source,

INj =fj(x1, e Xy) =fj(x) (15)
For each node j the following KCL equation holds,
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N N
Yot 2 8%t (x) = 3, C(h—%) + C (16)
i=1 i=1
If we define now,
C..
v if i#j

N
Bij = a7n
-}E(%l U‘ i

=1

=Jj

we obtain the set of equations (13).
By comparing equations (12) and (13) we can see that equations (12) are
a particular case of (13) for N=2,

Coa%2 = Y, = 8ma*1 —f (%)

(18)
Ci1%1 = Vo1 F 812~ 83
if we do the following assignments,
y y
Vo=x, ,=x I1=-2 E =2
gm2 gm
c c fy
22 11 g X
c =2 L=— R=1-m foa (V) = 2
Em2 8mi Emi Em2

By drawing now the circuit of Figure 14 for equations (18) the circuit
shown in Figure 15 is obtained. The exact form of the function f(*) seems not
to be very critical. Originally, a cubic polynomial [16] for Figure 12 was
suggested, but a piece wise linear dependence can give the same basic
properties to the system [15]. We will consider f(*) as shown in Figure 16. The
nonlinear resistor of Figure 15 with the driving point characteristics of Figure
16 can be implemented in T-mode by the circuit shown in Figure 17 [10], [18].
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Figure 15. T-mode Implementation of FitzHugh-Nagumo’s Equations
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Figure 16. N-Shaped Piece Wise Linear Function for Nonlinear Element of
Figure 15

Circuit Dynamics

A phase portrait of the equilibrium points of the system described by
equations (18) is shown in Figure 18, where g,-g,=g-g,=g;. The equilibrium
points are obtained when x; = X, = 0, ie., they are obtained by the
intersections of the two curves,

Yor = 8mp*1 —f(x) =0
=0

(20)

Yo1 T 8m1*2 T 8mat

Since there is a nonlinearity with three linear segments, we can divide the
phase plane into three linear regions, namely, regions “1”, “2”, and “3” as
shown in Figure 18. Each one of these linear regions will have its own unique
equilibrium point. If this equilibrium point lies inside its own region it is called
real equilibrium point. If it lies outside the region that defines it, it is called
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Figure 17. Implementation of the Nonlinear Function Using T-Mode
Techniques

virtual equilibrium point. Note that a virtual equilibrium point cannot be
reached by the system, because as soon as it goes into another region the
equilibrium point of this new region is different. The function f(*) is defined
as,

g8x,—E,(8,+8) for region ‘3’
f(x) = 178.% for region ‘1’ (21)
8x,+E (g,+8) for region ‘2’

Therefore, according to equations (18), for region “1” the linear differential
equations are given by,
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Figure 18. Phase Portrait of the System Characterized by Equations (18)
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Figure 19. Classification of Equilibrium Points According to the Values of 7T,
and A, in their State Equations

and determinant A, of the matrix in equation (22). In Figure 19 we give a
classification of equilibrium points according to the values of T,, and A, [19].
Equilibrium point A of region “1” will therefore be unstable if,

4 8
T =—- “m 50
C22 Cll
(24)
Ao _ gm]gm2 _ gagm3 >0
C11C22 C11C22

For regions “2” and “3” we can describe the behavior of the system by
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where 0=—E for region “2” and a=—E, for region “3”. The equilibrium points
B (for region *“2”) and C (for region “3”) will be stable if

8 8
T1=___’__”‘§ 0
C22 Cll
(26)
8,18 8,8
Al miom2 1°m3 >0
C11C22 C11C22

For proper operation of the system we need to make A unstable and B and
C stable equilibrium points. Suppose now that, for a certain value of y,; and
Y2, A is real while B and C are virtual. Suppose also that the system is at a
certain time in region “1” of Figure 18. Since A is unstable the system will
move away from it until it eventually reaches region “2” or “3”. When this
happens, since the equilibrium point (B or C) is stable, the system will be
attracted by it. But before it is reached, the system will find itself again in
region *“1” and repelled by A. As a consequence of all this, the system will
oscillate in a limit cycle in which it goes from regions “2” to “3” and vice versa
crossing region “1” each time.

By changing, in Figure 18, the relative position of the curves x; = 0 and
X, = 0, through y,; and/ory,;, we can make B or C become real equilibrium
points and A a virtual one. If either B or C is real, the system will reach the
stable equilibrium point and stay there. Therefore, no oscillations will be
produced. This corresponds to the resting state of the neuron where no action
potentials are generated. But if y ,; and/or y,; is changed beyond the threshold
value that makes either B or C change from real to virtual and vice versa, the
system will start to produce oscillations (the neuron is active and firing action
potentials). Note that y,, represents the total excitation current I=I —I; of
Figure 13. Note also that, as can be seen in Figure 18, for y,1/8m3-Y02/8m2
there is an upper and a lower value that will stop the oscillations. This means
that FitzHugh-Nagumo’s equations represent a double threshold system.
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Figure 20. Measured Free-Running Oscillations for the Circuit of Figure 15
When gml/Cl 1<<gm2/C22

Experimental Results

An IC prototype for the circuit of Figure 15 was fabricated in a standard
2wm  double-metal, double-poly CMOS process using the MOSIS IC
fabrication facility [10], [11]. The OTAs or transconductance amplifiers
employed were linearized ones [20]. The diodes were implemented using
diode-connected MOS transistors. When the two external inputs y,; and y,
are set to zero, the outputs of the circuit x| and x; are free running oscillations.
If the time constants of the two differential equations (18) are made very
different, i.e., g,,1/C11<<€2/C5, then Fitzhugh-Nagumo’s equations simulate
the behavior of biological cell membranes. The corresponding measured
response of the circuit for this case is shown in Figure 20. When signal y ; is
considered as the input to the neuron (y,;=0) and x; as its output, we can see in
Figure 21 the, measured input-output relationship of the cell, where y, is the
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Figure 21. Input-Output Relation of Oscillator of Figure 15; Lower Trace is
Input y,, (¥,1=0), Upper Trace is Output x,

lower trace and x, is the upper trace. Note that the circuit models the behavior
of a double-threshold neuron: if the input is either above the upper threshold or
below the lower one, no oscillations are produced. But if the input is between
the two thresholds, the output is a firing sequence of pulses. Using the
interconnection principle of Figure 11 we interconnected two FitzHugh
Nagumo cells as shown in Figure 22 using two neurons of Figure 15 and two
lossy integrators. The output of the two neurons is shown in Figure 23.

HYSTERESIS NEURON MODEL AND VLSI IMPLEMENTATION

The motivation to develop simpler neuron models (but still keeping the
oscillatory nature) is based on their potential use [1]-[11] in implementing
hardware for neural network architectures. The free-running oscillator of
FitzHugh-Nagumo’s system can be further simplified to a hysteresis oscillator
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Figure 22. Connections of Two Oscillatory Neurons in a Loop

Figure 23. Response of a Two-Neuron-Loop Oscillator
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x 5=H(x;)

_E1

Figure 24. Hysteresis Transfer Function Extracted from FitzHugh-Nagumo’s
Model

if, in equations (18), we impose the following conditions,

8,8, = 8,— 8,7 in f(x,)

yol=ya2=0 @7
gml gm2

—_— K — o0

Cll C22

The consequence of this is that the first equation in (18) will reach its steady
state immediately. Therefore, it can be reduced to,

f(xy)
X, == (28)
gm2

Taking the inverse of equation (28) yields,
x, = H(x,) (29)

which is a hysteretic transfer function, as depicted in Figure 24. Hence,
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X
X
Figure 25. Equilibrium Points of the Hysteretic System
equations (18) simplify into,
&m3 Ch
H(x)) - ——x-—3% =0 (30)
ml gml

The equilibrium points of this system (x; = 0) are given by the intersection
of the two curves,

y=H(x))

&m3 @
y= ——x‘

gml

as is shown in Figure 25. If (g,,,18,12)/8,>8m3, the only equilibrium point is A,
which is unstable according to the earlier analysis. In this case, equation (30)
represents an oscillator. But if (g,,18,,2)/8,<gn3 there are two more
equilibrium points, B and C, which are stable, so that the system will stop in
either one of them and then no oscillations will be present. Therefore, the
oscillator (neuron) can be turned on and off by changing g,3. A circuit
implementation of such a system is shown in Figure 26 [21]. For a CMOS
implementation it is however easier to substitute the linear resistor gm3'1 by a
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Figure 26. Block Diagram of Hysteretic Neuron Cell
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Figure 27. Equilibrium Points of the Modified Hysteretic System

nonlinear one, as shown in Figure 27 [22]. This would change equation (30)
into

Cll .
H(x)) -f(x)) —;—xl =0 (32)

ml

A circuit diagram that realizes equation (32) is shown in Figure 28. Note that
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4 i=g H(x)

Figure 28. Block Diagram of CMOS Circuit for Modified Hysteretic Neuron
Cell

the shape of the nonlinear resistor has to be able to change in the way shown in
Figure 27, so that the two equilibrium points A and B can be obtained. When
equilibrium point A is obtained, since it is unstable, the system will oscillate.
But if B is the equilibrium point, since it is stable, the oscillations will
disappear. An appropriate CMOS implementation for the nonlinear resistor is
shown in Figure 29. If x is positive the current I. goes through M, and is
reflected to the input node so that f(x)=I,. If x| is negative, I. goes through
M and no current is reflected back to the input node, f(x;)=0.

In order to implement the T-mode hysteresis element (note that the output
is a current while the input is a voltage) of Figure 28, we can use the circuit
diagram given in Figure 30.

The operation of the double output transconductance amplifier in Figure
30 is defined approximately by the following equation,

1 ifv>0

AR}
I = (33)
-1 if v<Q

Ss

Therefore, when v > 0 then i = I;; > 0 and v = E* — x, which means that x <
E*. On the other hand when v < 0, then i = —I;; < 0 and v = —E — x, which
means thatx > -E".
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Figure 30. Circuit Diagram for T-Mode Hysteresis Amplifier
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Figure 31. CMOS Circuit for the Modified Hysteretic Neuron Cell
Summarizing,
1 if x<E'
AR)
i= (34)

-1 if x>-E
s

which is a hysteretic function.

A complete CMOS circuit for the neuron or oscillator of Figure 28 is
shown in Figure 31. This simple oscillator was fabricated in a 3pm double-
metal CMOS process [22] using MOSIS. The input (u, in Figure 31) output (x
in Figure 31) relationship for this neural oscillator is shown in Figure 32. The
parameters that can be adjusted in the neural oscillator of Figure 31 are I, E*
and E". E* and E’ control the amplitude of the oscillations at x(#), and I
controls the slope of the triangular waveforms. The three of them can be used
to change the frequency of the oscillations.

We also connected a two neuron loop, like the previously mentioned in
Figure 22, using these hysteretic type oscillators. The result is shown in Figure
33.

OSCILLATORY TYPE T-MODE NEURAL NETWORK SYSTEMS
Here we will show how to use the neural oscillator of Figure 31 to build
complete but simple neural network systems. We will illustrate this with two
examples: a Hopfield network [23] and a BAM network [24]. In both cases we
need to provide some neurons interconnecting circuitry, called synapses.
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-182.000us 68.0000us 318.000us

-ttt ittt bft b 0 d

Ch. 1 = 1.000 Volts/div Offset = 0.000 Volts
Ch.2 = 250.0 mVolts/div Offset = -1.000 Volts
Timebase = 50.0 Hs/div Delay = 68.0000 s

Figure 32. Input-Output Relationship for the CMOS Hysteresis Neural
Oscillator

According to what was described previously, each neuron sums the
contributions of its interconnecting neurons and performs a lossy integration
with this sum. Using T-mode (Transconductance-mode) analog circuit design
techniques, the circuit shown in Figure 34 could perform this task, where, x;,

... Xz are the output voltages of previous neurons, x,,, is an external input, g1,

- 8mg are the transconductance gains of the synaptic transconductance
ampllﬁers R and C are responsible for the lossy mtegratmn , and u, (see
Figure 31) is the neural oscillator controlling signal. The values of g,,,;, ... 8mg
are the weights of the synaptic interconnections. For the transconductance
amplifiers the circuit shown in Figure 35 was used [11]. The measured DC
transfer characteristics for this amplifier, when connecting five of them in
parallel and loaded with a 20K resistor as shown in Figure 36, are given in
Figure 37. The values of the weights (see w in Figure 37) were varied between
w=—-1.2V and w=-2.8V, and the input signal was swept between V;,=-2.2V

1. Resistor R will not be implemented physically. The output resistance of the
transconductance amplifiers is sufficient.
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Figure 33. Pattern Generation by a Loop of Two Hysteretic Neural Cells

and V;,=+0.2V. Note that these multipliers are four-quadrant multipliers.

They. were designed to be used for non-oscillatory neural networks [11], [25],
[26]. But in an oscillatory neural system based on the neurons of Figure 31
only two-quadrant multipliers are needed: if x; in Figure 34 is not oscillating
then it should be i;=0, if x; is oscillating then i; should also be an oscillating
signal. This can be accomplished by making x,(D)lnon-oscillating=GND,,,, by

Til TiZ 1iq —L
X,q B X, a X, a a R CI

Figure 34. T-mode Circuit for Interconnections of Neurons
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Figure 35. Actual Schematic of Fabricated Multipliers

Figure 36. Experimental Set Up for Measurement of DC Characteristics of
Transconductance Synaptic Multiplier

properly adjusting the value of E in Figure 31. With this in mind we can now
assemble the Hopfield and BAM networks using these oscillatory neuron cells.

Oscillatory Hopfield Network
The Hopfield network [23] is a single layer neural network in which
every neuron provides input to all others excluding itself. Also the weights
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Figure 37. Measurement of DC Transfer Curves of five Synaptic Multipliers
in Parallel for V,;,=—3.77V

are symmetric: the weight of the synapse that connects the output of neuron i
to the input of neuron j, w;;, is equal to the one of the synapse connecting the
output of neuron j to the input of neuron i, w;.

We built a 5-neuron Hopfield network, and in Figure 38 is shown the
interconnection topology that we had in our experimental set up using the
synaptic transconductance multipliers together with the oscillatory neurons.
Note in Figure 32 that the neuron behaves equivalently to having a negative
gain: if u, is below the threshold the neuron is firing, otherwise the output of
the neuron is steady (and equal to GND,,,=-1.0V). This means that the
normalized weights have to be multiplied by —1. If we want to store the pattern
10101 the corresponding normalized weight matrix with sign change is [23],

0 +1-1+1-1
+1 0 +1-1+1
-1+41 0 +1 -1 (35)
+1-1+4+1 0 +1
—1+1 -1+1 0
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Figure 38. Interconnection Topology for Oscillatory Hopfield Network

For the multipliers we used Vp,;,,=—3.77V and

Y =-28V for w. = +1

ij
Y=-20V for Wy = 0 (36)
Y = -1.2V for Wy = -1

Figure 39 summarizes the stable steady states obtained for all possible
input combinations. Note that the system either converges to the stored pattern
10101 or to its complementary 01010. The transient response of the
convergence to pattern 10101 is shown in Figure 40. Each one of them shows
the input and output voltages of one of the neurons.

Oscillatory BAM Network

A BAM network [24] is a two layer neural network in which each neuron
of a layer is only connected to all the neurons in the other layer. The weights
are also symmetric: the weight of the synapse connecting the output of neuron
i of layer 1 to the input of neuronj in layer 2, wy;, is equal to the weight of the
synapse connecting the output of neuron j in layer 2 to the input of neuron i in
layer 1, Wi,

We built a 3+3 neurons oscillatory BAM. The interconnection topology is
shown in Figure 41. We programmed the pattern shown in Figure 42, which
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Input Stable Pattern
(0) 00000 01010 (10)
(1) 00001 10101  (21)
(2) 00010 01010 (10)
(3) 00011 01010  (10)
4) 00100 10101  (21)
(5) 00101 10101 (21)
(6) 00110 01010 (10)
(7) 00111 10101  (21)
(8) 01000 01010 (10)
(9) 01001 01010 (10)
(10) 01010 01010 (10)
(11) 01011 10101  (21)
(12) 01100 01010 (10)
(13) 01101 01010 (10)
(14) 01110 01010 (10)
(15) 01111 10101  (21)
(16) 10000 10101 (21)
(17) 10001 10101  (21)
(18) 10010 01010 (10)
(19) 10011 10101  (21)
(20) 10100 10101 (21)
(21) 10101 10101 (21)
(22) 10110 01010 (10)
(23) 10111 10101  (21)
(24) 11000 01010 (10)
(25) 11001 10101  (21)
(26) 11010 01010 (10)
(27) 11011 01010 (10)
(28) 11100 01010 (10)
(29) 11101 10101  (21)
(30) 11110 01010 (10)
(31 11111 10101  (21)

Figure 39. Measured Stable States for Oscillatory Hopfield Network Loaded
with the Pattern 10101.

has the normalized weight matrix (with its corresponding sign change) [24]

The synaptic multipliers were biased with V,,;,=—3.77V, and their weight

-1 +1 -1
+1 -1 +1
-1 +1 -1

inputs Y (see Figure 35) were connected to




239

AL

JUTUUUY

JUTTTUVUY

Output of neuron 1

]

Output of neuron 2

Ynjut o:fnezltrori I

Inﬁut o'fne'uro;if .

T

7

Output of neuron 3 |

I

Input of neuron 3

Output of neuron 4

Input of neuron 4

AALATAAAMAARAL

ll

JUUUUUUPOUUUUfUUUU5

Input of neuron 5

Inputs: 110mV/div, Offset = -1.20V
Outputs: 1.00V/div, Offset = 0.00V

Time Scale: 20.0ps/div

Figure 40. Convergence to Pattern 10101 for Oscillatory Hopfield Network

Y = -28V

for

= —-1.2V for

i

(3%)

shows the transient response of the convergence to pattern A when the input is
A. Each figure shows the input and output voltage for one of the neurons.
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Figure 41. Interconnection Topology for Oscillatory BAM
X1X2%3

Y1Y2y3
Figure 42. Pattern to be Stored in the Oscillatory BAM

EXTENSION TO CHAOTIC OSCILLATORY NEURONS

An interesting and natural extension of the oscillatory neuron based
neural network systems described so far, are neural systems made up of
coupled chaotic oscillators. Such systems are not only thought to explain some
of the sensory signal processing in living beings [27]-[29], but have been also
suggested for engineering applications such as signal detection in very noisy
environments [30], robot path planning [31], etc.

There is no generally accepted definition of chaos. However, from a
practical point of view it can be defined as a bounded steady state behavior that
is not an equilibrium point, not periodic, and not quasi-periodic (i.e., a linear
combination of uncorrelated periodic components). A conventional oscillator
has a steady state called limif cycle, which is a bounded closed path in the state
variables space. A chaotic oscillator does not converge to a limit cycle but to
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| ; i=g(v 1 )
Vi

an attractor, which is a bounded closed surface in which the steady state
trajectories are trapped but are not predictable.

The simplest autonomous continuous time electrical circuit with chaotic
behavior proposed so far is Chua’s circuit [32], which is shown Figure 44.
This circuit is described by the following set of first order nonlinear
differential equations

Figure 44. Chua’s Circuit

) 1
vy = RC (vy=vy) - g(V)
; 1
V) =-— RC, — (vy=v,) +], (39)
. 1

The conditions under which equations (39) exhibit chaotic behavior are
available elsewhere [32], [33]. Using the general circuit technique of Figure 14
described earlier to map these equations into a T-mode circuit results in the
circuit depicted in Figure 45. The corresponding mapping of variables and
parameters is

[ =x 2
V=X Va=EX =X,—
1 1 2 2 L 3C2
(40)
A& 1 _ & 1 &
RC,_C, RC, ¢, L ¢

The nonlinear resistor can be implemented using the circuit of Figure 17
and making O<-g;<g,. Transistor level hspice simulations of this circuit have
been performed [34] and are shown in Figure 46, where steady state
trajectories, inside the atractor called double scroll, can be seen.
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Figure 46. Transistor Level Hspice Simulation of T-mode Chua’s Circuit

Such a chaotic oscillator has the potential to be used in a larger VLSI
circuit in order to implement chaotic neural network systems for modelling of
biological chaotic systems [27]-[29] or for practical engineering applications
[30].

CONCLUSIONS

We have seen that using oscillatory type of neurons it is possible to build
conventional neural network systems, like for example a Hopfield or a BAM
system. Furthermore, we have built an oscillatory neural cell based on
successive simplifications derived from the biological principles that define
the behavior of living neurons. We started our discussion by describing the
biochemical principles responsible for the generation of electrical nerve pulses
in biological cells, then an equivalent circuit was derived that modelled the
physiological behavior. A simplified circuit model (by FitzHugh and Nagumo)
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was obtained and addressed using a circuit theoretical approach in order to
derive a VLSI compatible design. This VLSI CMOS design was fabricated,
tested and characterized. It was further simplified to a hysteretic based neural
oscillator. This one has been used to build a 5-neurons Hopfield network and a
3+3 neurons BAM network.

We have seen that there is a strong connection between the living
biological neurons of real nervous systems, and the artificial neural network
algorithms available in the literature. This connection is even more evident if
oscillatory (or even chaotic) neurons are used, and we have seen that it is
feasible to build conventional Hopfield and BAM hardware networks using
oscillatory neurons.
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MOTIVATION AND PREVIOUS WORK

It has been shown that random pulse trains have interesting properties,
which make them suitable for many kinds of computations [Tomlinson 91,
Tomlinson 90, Murray 91]. Under certain restricted conditions, they can do
quite complex computation with simple processing units, using probability
and time to advantage. This is quite appropriate for VLSI implementations
of neural networks where the high switching speeds of devices can be traded
in for small processing units to implement massively parallel architectures.
Thus, it is not surprising at all that random pulse trains have already been
applied to hardware implementations of neural networks. Their properties have
been exploited both in noise generation for Boltzmann learning in Bellcore’s
stochastic learning microchip [Alspector 91] and in computing the transfer
function of neural processing units in Neural Semiconductor’s Digital Neural
Network Architecture (DNNA)[Tomlinson 91]. Here, we will describe a
digital architecture utilizing random bit sequence properties, which combines
several features of previous implementations, and adds new ones, such as
analog valued inputs and wider dynamic range in digital weight representation.
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SIMULATING THE DIGITAL ARCHITECTURE USING
RANDOM PULSES

Relevant Properties of Pseudorandom Number (PN) Sequences
Here, we restrict our discussion to binary random number sequences generated
by linear feedback shift registers (LFSR), using the properties of irreducible
polynomials. Further, we will assume that the two values an element of the
sequence can take on are (+1) and (-1). This simplifies the mathematics con-
siderably, but all the discussion that follows applies equally well to sequences
of (1)’s and (0)’s.

We will start by stressing that no finite sequence is ever truly random.
Hence, we use the term pseudorandom. Since sequences generated by LFSR
are of finite length, we can not expect true randomness itself and will have to
contend with certain properties of randomness, instead. We continue to outline
these properties [5]:

Periodicity and Maximum Period. The succession of states in a shift
register is periodic. The length of the period can not exceed 2" — 1, where 7 is
the number of registers. If a sequence has maximum length, its characteristic
polynomial is irreducible.

Auto-correlation. If {z,} = {zo,21,22,..} is any finite sequence of
binary terms of length N, the auto-correlation function () is defined by

1 XN
&(r) = v ﬂ};l:::ﬂ:lcn_k.,
Here 7 can be thought of as a phase shift.

Auto-correlation function ®(7) of the sequences we describe is two-valued.

Namely,
1 ifr=0
Q(T)’{~1lv ifo<T<N

Equal Number of (+1)’s and (-1)’s. In each period of the LFSR
sequence the number of (+1)’s are almost equal to the number of (-1)’s.
Because in a LFSR of r registers, r consecutive zeros (or as we have been
referring to them, (-1)’s) are not generated, the number of (+1)’s exceed the
number of (-1)’s by one.
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Properties of Consecutive Terms. Here, we will switch back to
referring to the elements in the LFSR sequence as (1)’s and (0)’s. In an LFSR
of r registers, every possible array of r consecutive terms, except all (0)’s
occurs exactly once. The number of consecutive (1)’s or (0)’s of length k
(where 0 < k < r— 1) is 27~k-2,

Brief Description of Architecture

Consider a typical feed-forward neural network where the activation
function of each neuron o; is derived from the outputs of the previous layer
of neurons oj, through weights wj;. In the digital neural network architecture
we describe, the product pairs (wj;0;) and the synaptic sum (3_; wjioj) are
computed using a different paradigm of arithmetic. An input is represented in
pulse-width modulated format. Unlike in some of the previous implementa-
tions, this allows for analog valued input to the first layer. The represenation
of each input is stored in a shift register stack, which uses a random bit stream
as clock. As mentioned in the previous section these random bit streams have
a rather interesting property that a second bit stream generated by a single shift
or more has very negligible correlation to the original stream [Golomb 671.
Since our objective is to perform arithmetic functions between pulses using
simple logic gates, this is an essential property [Tomlinson 91, Alspector 91].

INPUT NEURON - SAMPLING AND WEIGHTS

PWM data_in

bit_streaml > > > > > >

bit_

Figure 1. Input neuron with ten weights

An input neuron is shown in Figure 1. The method of computing the
(wjio;) pairs is also indicated in the figure. Products by weights less than 1 are
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achieved by a logical AND of the input with the appropriate number of random
bit strings. Products by weights greater than 1 are achieved by a logical OR of
the appropriate number of input slices in time.

The fanout from each input neuron to synapses can be kept low by rout-
ing only the essential product lines and reconstructing the needed (wj;0;) pair
at the synapse.

These product pairs are wire-OR’ed at the synapse and fed directly to the
output. The saturating nature of the sum compares favorably to a hyperbolic
tangent function, thus there is no need for a transfer function for the output
neuron.

Pulse Arithmetic using Logic Operations

The ‘AND’ product has been described previously by Gaines [Gaines 69].
Here, we wish to provide some insight into the ‘OR’ product case.

OR - product for (wj > 1). Referring to Figure 1, we define a binary bit
stream input to the stack, z(t), which is a deterministic function of time. We
further define each bit of the stack as z(R(I)), which has some randomness
properties. We can see that

=(R(I)) = z(t - S)
where

I
Sr=I+Y_6()
1=0
and 6(z) is the number of consecutive zeros of the PN sequence clock in
the interval 7. (Thus, for the interval between two consecutive ones in the
sequence, 6(z) = 0).

For the logic-OR product to give a correct result, the phase shifts intro-
duced by the PN sequence clock should be truly random. Since we know that
this is not possible with any finite length sequence, we have to insist, then that
the phase shifts introduced in the two or more signals being input to the OR
gate go through all possible and equally likely permutations over one period
of the sequence. Right away, we can see that this will not hold strictly, even if
we limit our analysis only to two adjacent bits:

Sre1— 851 <1 + max{é(i)}
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Let us assume that the PN sequence clock is generated from an irreducible
polynomial of degree P. Then, max{é(#)} = P — 1, which it occurs only once
in every period, and thus only one permutation of it is possible. In practice;
however, this does not seem to matter much because of the exponentially
decreasing likelihood of larger phase shifts, as was briefly explained in the
above section. Thus, we are able to approximate, using the logic-OR function,
(wji0;) pairs for (wj; > 1).

Eleven Inputs at Ten Different Weights
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0.20
0.10
0.00
‘ ——
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 eiBRVID

Figure 2. Eleven signal values at ten different weights

To illustrate further using non-adjacent bits in the stack, we need to
determine the E{S1 — S;}, givenI > J:

51—51=(I-J)+21:5(k)
k=J

Consider the average value of §. The probability of & is p(s), which
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corresponds to the probability that § = <.

Thus,

E{é} = 26‘1’(5-') < Z 2 kg
s k=0

E{S;-S;} < 3-J)

2

The above approximation is conservative because we ignored the § = 0 case,

which would further reduce E{6}, and consequently E{S; — S;}.

Sampling PWM Signal (1/12) at 10 Weights for 3000 Cycles
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Figure 3. Sampling the weighted signal for 3000 cycles

Sample_number

The E{Sr — S} being relatively small, implies that logic-OR product
could be a reasonable approximation of the actual product. Our simulation
results do confirm this. Figure 2 shows (wj;0;) product pairs for eleven different

inputs and ten different weights.

Among those, products corresponding

to multiplications with (w;; > 1) are the result of sampling logic-OR’ed
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bits. Inputs range from 35 to 13. Weights range from (0.25) to (7). Note the
saturating nature of the product, which resembles a sigmoidal transfer function.

Acuracy and Sampling Intervals. Raw and weighted signal values are
quite accurate outside regions of saturation when sampled over the whole
range of clock cycles. Figure 3 shows the weighted value of a PWM signal
with duty cycle of 75 when sampled over 3000 cycles, (approximately 75 of
the period with an irreducible polynomial of degree 16) instead of the whole
range. The variance of the error is related to the number of sampling cycles.
This property suggests an inherent potential for this architecture to be exploited
for stochastic learning algorithms.

Sums of equal valued signals

resulting sum
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Figure 4. Adding equal valued signals together

Summation by OR’ing. Just as the product pairs corresponding to
(wj; > 1) are computed using a logic OR gate, the synaptic sums }_.(wj;0;)
are computed by wire-OR’ing the (wj;0;) pairs. Figure 4 shows the sum of
equal valued signals. The z — azis is the number of signals that are being

added on a wire. The signals have duty cycles ranging from %2% to 7.
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AN APPLICATION TO PATTERN CLASSIFICATION: THE
IRIS DATABASE

The computation needed to separate the three types of flowers in the
iris database is quite simple. This is a linearly separable case of pattern
classification, so no hidden layer is needed. Only two of the four parameters
associated with the flowers are relevant to the classification; therefore, two
input neurons are sufficient. The weight vector points in a (+,+) direction,
which makes it possible to represent it in this implementation, without having
to process separate (+) and (-) representations of data.

Simulation of a Classification Problem : The Iris Database

output_neuron x 10 -3

virginica

versicolor

500.00

400.00— : i

300.00

setosa ‘

i | _sample_number
0.00 50.00 100.00 150.00

Figure 5. Classification using a ternary unit (with two thresholds).

Solution

For this very simple, single layer architecture simulation we have used
the following procedure: First, we selected the two weights for connecting
each input neuron to the ternary output neuron by inspecting the distribution
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of data in the two dimensional input space. Second, we scaled the weights
and the input parameters so they can be represented in this architecture. Here,
inevitably quantization errors were introduced. Then, we fed the input-weight
pairs to an output neuron with two thresholds to create a ternary function for
choosing between the three possible flowers.

Results

Classification output from simulation is shown in Figure 5. There are
fifty examples of each flower in the database. The two edges of the clusters is
between points 50-51 and 100-101. As expected with this database, iris setosa
and iris versicolor are easy to separate. Iris versicolor and iris viginica; on the
other hand, are not so straightforward. The Bayesian limit on classification
is around 97%. If we were to set the second threshold of the ternary output
neuron at 0.637, this architecture would misclassify only five flowers, which
puts its accuracy at around 95%. This is a very encouraging result, especially
considering the all the sources of noise in this system.

One multiplicand fixed (linear characteristic as expected)

Product at freq ratio 7.5 (V)
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Figure 6. Classification using a ternary unit (with two thresholds).
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HARDWARE IMPLEMENTATION

We will report results from the hardware implementation of a multipli-
cation scheme similar to what has been described above for (w;;0;) pairs for
(wji < 1) case. Specifically, we have fabricated and tested the random pulse
generation and the synaptic multiplication circuits to investigate how accurate
and robust multiplication is using our scheme.

One multiplicand fixed (linear characteristic as expected)

Product at freq ratio 7.5 (V)
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Figure 7. Time averaged product with one multiplicand fixed (as marked).

In the hardware implementation we generate four versions of each analog
input, which are exactly 90° out of phase with one another. A random pulse
train with the desired average value is obtained by selecting randomly between
these four phase shifted versions. The two select inputs to the multiplexer
that chooses between the four phase shifted versions are two uncorrelated bit
streams, which are PN sequences out of phase. This is similar to introducing
random phase shifts to a deterministic pulse, as the PN sequence clock does in
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the digital architecture. The product pair (w;;0;) is obtained by AND’ing the
the selected representation for w;; with o;.

The specific circuit implemented consists of a digital delay line to simulate
the phase shifted weight and input activity level representations. The input to
the delay line is provided from a pulse width modulator that is driven by an
analog input value. This implementation mixing analog and digital techniques
was chosen to test this multiplexing scheme over a continuous range of values.

Both multiplicands equal (parabolic characteristic as expected)

Product at various freq ratios

0.00

-1.00

-1.50

reference
’4; pwm
Vi 4
—2.50
A

-3.50

analog input
-4.00 -3.00 -2.00 -1.00 0.00

Figure 8. Time averaged product of pulses with both multiplicands equal.

The pulse width modulator circuit is an extension of the current controlled
neuron circuit which uses a positive feedback mechanism to generate pulses
[Mead 89]. This circuit compares the input analog value to a triangular wave,
the midpoint of which corresponds to the midpoint of the range of weights
(wj; < 1). Thus, half of the maximum allowable analog value generates a
pulse signal with a 50% duty cycle. This implementation proved to generate
pulse width modulated signals quite accurately (Figure 7, reference signal
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PWM marked with a thick line).

The random bit streams are generated by a shift register sequence, based on irre-
ducible polynomials, using specifically the polynomial (z'6+z'2 423 +z+1).
We have already commented on the relevant properties of such bit sequences.
The product pair gets time averaged using a simple RC circuit.

This scheme has been tested both with one multiplicand fixed and both
multiplicands equal (Figure 6 and Figure 7, respectively). In both of these the
chip has performed very robustly over frequency ratios ranging from 0.1 to
10. This has been demonstrated by time averaging the pulse trains through an
RC filter with a fixed time constant (0.1 sec.). The frequency of activity levels
are adjusted by changing the ratio of frequencies between the triangular wave
generating the pulse-width-modulated representation and the clock generating
the uncorrelated bit sequences which multiplex between them.

CONCLUSIONS

We have described a digital neural network architecture and reported
results from the VLSI implementation of the multiplication scheme embedded
in it. As can be inferred from the test plots, the circuit is robust and quite
accurate over a wide range of clock frequencies. We believe this robustness to
be congenial to the exploration of novel training algorithms in such a system.
One could, by reducing the time constant of the time averaging circuit and
thus averaging the pulse train over a smaller number of clock cycles, get
significant variations in output activity for the same input. The use of the
statistical properties of these variations among computing units could have
novel implications in weight update decisions during training.
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ABSTRACT

Real-time control requires fast and adaptive processing. VLSI offers the
speed and density required to implement such a processor. A controller must
continuously adapt to the data sensed from a dynamic environment. The first
stage of such a controller is a system implementing an unsupervised learning
rule that generates linearly separable representations that capture important
statistical information from the inputs.

We describe the design and test results of two adaptive VLSI processing
chips [1,2]. These chips use pulse coded signals for communication between
processing nodes and analog weights for information storage. The
unsupervised weight modification rule, implemented on chip, uses concepts
developed by Oja [3], and later extended by Leen [4] and Sanger [5].
Experimental results demonstrate that the network produces linearly separable
outputs that correspond to dominant features of the inputs. Such
representations allow for efficient additional neural processing. The adaptation
rule also includes a variable lateral inhibition mechanism. Experimental results
from the first chip show the operation of function blocks that make a single
processing node. These function blocks include forward transfer function,
weight modification, and inhibition. Experimental results from the second chip
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show the ability of an array of processing elements to extract important
features from sensory input data.

INTRODUCTION

Many applications exist for real-time control systems that can adapt to
changing control environments. Neural networks implemented in VLSI can
provide solutions for some of these applications. However, many issues
relating to neural networks for adaptive control remain open. Several
researchers have examined the performance of neural network control systems
using various types of input-output mapping units [6,7]. These systems use
multi-layers of neurons with various learning rules that modify the weights to
reduce error in the output. These systems require several layers of processing
nodes to produce a nonlinear mapping [8,9]. Representations generated by
neurons in the first layers determine the robustness and generalization
capabilities of the network [10]. While our application interest is real-time
adaptive control, this chapter concentrates on the VLSI implementation of an
adaptable processing node. The processing node is unsupervised and acts as a
pre-processing stage to reduce the dimension of its inputs while generating
efficient representations for additional layers of processing elements [1,2].

Figure 1 shows a block diagram of our complete analog input-output
mapping module. First, a set of tapped delay lines and level sensitive neurons
expand the dimensionality of the analog signal. Tapped delay lines time-
embed input signals converting time information to a spatial representation
required by the feed-forward transfer function of our processing nodes. Level
sensitive neurons convert amplitude information to a spatial representation.
This is required if the individual processing nodes in the dimensional reduction
layer have insufficient accuracy to code the analog signal. The next layer
combines multiple inputs to reduce the dimensionally of the first layer. It must
also provide an efficient representation for the output layer. The output layer
maps the internal representation to the correct output value. A layer of neurons
using a supervised training algorithm performs the final output-mapping task
[8]. For the output layer to operate correctly, the representation provided by
the dimensional reduction layer must be linearly separable [9].

An adaptive system must continuously adjust to the nonstationary
statistics provided by the controlled environment. To maintain an optimal
representation for the output layer, the dimensional reduction unit must
continuously adapt through weight modification. Several researchers have
shown that Hebbian weight modification rules can form efficient
representations of the input statistics when used in conjunction with a method
to force each processing node to extract a different feature from the inputs
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Figure 1. A complete nonlinear input-output mapping system

[1-5,10,11]. For this continuous time VLSI implementation, we desire the
magnitude of the weights be controlled. The weight modification rule
proposed by Oja uses negative feedback from the outputs to control the
magnitude of the weights [3]. Our design utilizes the concept of negative
output feedback to control the weight magnitude. This rule combined with a
variable lateral inhibition mechanism forces each processing node to extract a
different feature from the inputs while learning.

To test the feasibility of a VLSI internal layer based on our weight
modification rule, we designed, fabricated, and tested two integrated circuit
chips. The first chip contained one processing node connected so the state of
individual function blocks could be monitored and controlled. The second
chip contained an array of four processing nodes. In the array, each processing
node shared nine inputs connected to adaptable synapses and two inputs
connected to nonadapting synapses. Five of these inputs had defective write
circuits caused by a layout error. Both synapse types can be addressed and
programmed from an external analog source. Additionally, weights stored as
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analog values on a capacitor require a refresh mechanism which has not been
implemented here to negate the effects of charge leakage [13]. The
nonadapting synapses provide two quadrant multiplication, while the
adaptable synapses provide only first quadrant multiplication. Adaptable
synapses also contains additional circuitry for weight modification. The
adaptable synapse measures 105um x 168um, including interconnects, using a
2um CMOS MOSIS process with two layers of polysilicon and two layers of
metal. The tapped delay lines were not implemented on this chip. However,
including the tapped delay lines on chip would significantly reduce the pin
count for large arrays. The output layer was also not implemented on this chip.
It is planned to have the output layer implemented on a separate chip. Since
digital pulses communicate analog values between chips, EMI type noise will
have little effect on the accuracy. Our longer range goal is to build large scale
sensory processing chips and real-time control chips, hence large chips capable
of mult-sensor integration will be necessary.

In this chapter, we present the design and test results in four sections. The
first three sections describe the design and test of the function blocks. The
final section shows results from a complete classifier array chip. The three
function blocks described include the forward transfer function, weight
modification, and inhibition. Tests results from each of these blocks were
obtained from the single processing node chip. Tests of the array shows the
system extracting features from two inputs. These tests allow us to quantify
limits to the array's capabilities in distinguishing between two similar features.

FORWARD TRANSFER FUNCTION

The feed-forward function in most synthetic neural systems consists of a
sum of products between an input vector and weight vector [3-5,6,7,11,12].
This provides a measure of the match between the weight vectors and input
[6,7]. Additionally, some type of output nonlinearity, typically a sigmoidal
function, splits the output probability density into two groups indicating a
decision. In our system, the dimensional reduction layer performs a linear
sum-of-products computation.  Nonlinearities producing a decision are
provided by the next processing layer. Figure 2 shows a block diagram of the
feed-forward function for our complete nonlinear mapping system. The figure
shows both the dimensional reduction layer, implemented on the chip
described here, and the output mapping layer. Pulses generated by the
dimensional reduction layer enable a voltage source for each input from
that layer to charge a capacitor that averages and filters outputs from all
enabled voltage sources. During supervised training, the output mapping layer
adjusts these voltage sources to produce the optimal Z out with minimum error
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given a specific training input. When an input is applied to the dimensional
reduction layer, the voltage on the averaging capacitor approaches the average
of the voltage sources corresponding to the firing neurons. The absolute
frequency of the firing neurons changes only the rate that the voltage on the
averaging capacitor approaches the correct value. This allows us to remove
the dependency on the absolute frequency of the outputs from the dimensional
reduction layer. We will restrict our discussion to the operation of the linear
sum-of-products function.

Nonadaptable Adaptable
Input input

|
|
3 I I
Weight l Output Function B I oA |
________ || Other v 4 I
Nod
| es JT: |
On-Chip Circuit (This Imple mentation) || Off Chip Circuit (Future work) |
Layer 1 (Dimensionel Reduction) Layer 2 (Output Mapping)

Figure 2. Adaptable nonlinear function generator

In our implementation, the problem of inter-processor communication is
addressed using digital pulses. Pulse coded information allows both robust
information transfer and space efficient computation [14-15]. Regeneration
and crosstalk problems associated with analog communication are greatly
reduced by using digital signals [16]. Several other researchers have also
utilized pulses to communicate analog values in a neural network {17-21]. In
this implementation, inputs and outputs of a processing node are represented
by a sequence of pulses. Analog inputs have values proportional to the
duration of the pulse divided by the period between pulses. This type of signal
allows most computations to be performed using MOS switches.

Figure 3 shows the circuit used for the sum of products function which
includes one synapse, and the output function. Summation of the product of
the weight and input occurs by injecting a current, proportional to the synaptic
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weight, into a summing node for the duration of each input pulse. The
summing node receives the current produced by a complete row of synapses
producing summation through Kirchhoff's current law. An integrating
capacitor (C1) converts the current pulses to a voltage change at the summing
node. The neuron output function compares the voltage on the summing node
to a threshold voltage, V ;.1 and produces an active high digital output if the
threshold voltage is exceeded. The output increases the summing node voltage
by positive feedback through C2. If the digital signal switches from O to Vdd,
the voltage shift produced is:

C2
VAth =Vdd——————Cl+C2 )
In our implementation, each output function block requires one C1-C2
set. When implemented in a two layer polysilicon process, C1 and C2 have
areas of 9792pm2 and 2496,.1m2 respectively. C1 is approximately 5pF, and

when combined with C2 provides a hysteresis of 1V in the switching voltage.
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Figure 3. Single synapse and summation circuitry

Input to the synapse circuit, Figure 3, consists of an active high signal IN,
and an active low signal IN generated by the column driver. An input pulse
enables the transmission gate formed by Q1 to transmit the voltage present on
the drain connected transistor Q2, to the gate of transistor Q3. When the input
is inactive (IN low), Q4 shorts the gate of Q3 to Vdd to reduce leakage into the
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summing node through Q3. This structure forms a simple current mirror that
can be switched on for the duration of the input pulse. The current delivered
by the current mirror depends on the voltage on C3, the weight capacitor. This
dependency, shown in the Spice simulation in Figure 4, illustrates the current
injected into the summing node while the input is active.

When active the digital output from the output function block enables a
current sink to remove charge from C1. The digital output becomes inactive
when the voltage on C1
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Figure 4. Theoretical current into summing node during active input

falls below the threshold voltage. Transistor Q5a enables the current sink
formed by Q5b. For tests presented in this section, the current through Q5b
was adjusted so pulse widths of 250ns were obtained. The theoretical value of
the current through Q5b is 24.8pA for this pulse width. This action produces a
series of pulses with the average period between the pulses equal to the sum of
products of the weights and inputs. Mead [22] has implemented this type of
circuit using CMOS inverters. In our system, we use a differential comparator
instead of CMOS inverters to generate the threshold function. The comparator
allows us to externally control the threshold voltage which allows more control
of the operation of the circuit.

A simpler weight multiplication structure consisting of a MOS switch and
MOS transistor for a current source has been proposed by several researchers
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[14, 18]. Compared to the two transistor structure, our weight multiplication
circuit reduces perturbation of the summing node voltage when the weight is
near zero and an input pulse occurs. The only coupling between the input and
summing node occurs through the gate-drain capacitance of Q3. When the
weight is near zero, the change in voltage on the gate of Q3 approaches zero.
In the two transistor structure, the source/drain-substrate capacitance between
the two transistors must discharge from Vdd to the summing node voltage and
the gate-drain capacitance of the switch transistor must charge to the gate
voltage during the pulse. This can result in significant perturbation of the
summing node voltage even if the weight is near zero.

The transistors sizes in the synapse current mirror, the size of C1, and the
hysteresis of the output determine the maximum output frequency of the
processing node. A nominal pulse width of 250nS and maximum frequency of
1 MHz was chosen for this design. CMOS VLSI circuits can easily drive these
signals while maintaining pulse widths accurate for our application.

To determine the size of the transistors for the synapse, we need to
calculate the contribution of each input to the output. If the weights are
normalized such that:

z

-1

wi2=1

\l
o

then let w,e {0,a}, x,e {0,1},
where N is the total number of inputs,
w; is the weights, x; is the inputs, Q)
N-1

and w,= o if x; =1, and define n = in then:
i=0

no’ =1

o =,/1/n

where a is the size of the weight and the number of active inputs is defined as
n. From this we can determine the dependence of the output on active inputs:

N-1 N-1
y =k2wixi=k2axi=kna=k«/ﬁ 3)
i=0 i=0
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If y = 1 when the maximum number of possible inputs, L, are active:

k =1/JL and
“)

Y=i-

In this design we set the time between pulses, 1/y, to be 1uS for 9
simultaneously active inputs, i.e., n=9, x;=1, and L=9. This requires that the
time between output pulses for one active input, n=1, after weight
modification, to be 3puS. Figure 3 shows the transistor sizes used for a 5pF
summing node capacitor and 1V hysteresis design.

For experiments testing the operation of the function blocks, a test chip
with one adaptable input, one nonadaptable input, and one output was used.
Internal analog voltages were monitored with source followers which
exhibited maximum slew rates of about 5*10° V/S and were gain and offset
compensated by measuring an accessible source follower on the chip. Figure 5
shows the measured-compensated summing node voltage during pulsing.
Nine input pulses charge the summing node until the threshold voltage of 2.5V
was reached, and the output fired raising the summing node voltage, producing
a 1V hysteresis. Figure 6 demonstrates the weighting function by showing the
measured output frequencies for a range of input levels and weights. The input
frequency times the pulse width gives the input level (active fraction), except
for the input level of 1, which was held constantly active. Figure 6 shows the
maximum errors in the output linearity occur when the weight voltage was
large and the input duty cycle was greater than 40%. The maximum error of
approximately 5% occurred at an output frequency of 150KHz with the input
at 60%. Using the previous analysis, eq. 4, the difference in output between
two patterns that differ by a Hamming distance of H is:

JL-JL-H_ _["H )
T ! \/1 L

which shows the output accuracy required to distinguish between two binary
patterns with L active inputs and a Hamming distance of H. The measured
worst case accuracy of the output function is approximately 5%. This means a
Hamming distance of 1 can be detected if L=9. Note that this accuracy can be
significantly improved if an input duty cycle of less than 40% is used. Also,
the minimum period between pulses for a continuously active input was 4pS,
not the 3uS design target. Note that mismatch between synapses may produce
an additional source of error not considered here.

Ay =
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Since the outputs are based on relative periods between pulses, the lower
maximum frequency does not pose a problem. These variations can be
accounted for by decreased PMOS transistor transconductance and larger C1
capacitance. Our results show that a sum of products function can be
constructed with characteristics of high dynamic range, and input linearity
sufficient for binary feature detection. Nonlinearity in sum-of-products output
function arises when the input current exceeds the current capability of the
sinking transistor Q5b (Figure 3). When this condition occurs the pulse width
will become wider until the output turns on constantly leading to a sigmoidal
output characteristic. The chip will normally operate in the linear mode since
the output needs to provide a measure of the weights for the normalization
process.

WEIGHT MODIFICATION

We implement a modified unsupervised learning algorithm using
concepts developed by Oja [3] to determine the change in the weight to best
represent the input statistics. For a single synapse element, Oja's weight
modification rule is:

wi(t+‘c)=wi(t)+7»y(t)(xi(t)—y(t)wi(t)) (6)

where, x;(t) is the input, w;(t) is the weight, y(t) is the output from the linear
sum of products function, and 1 is the learning rate or weight increment size.

One of the main advantages of Oja's weight modification rule is the
utilization of feedback from the neuron output to normalize the weights. This
has several significant advantages in a VLSI hardware implementation. First,
if the system is stable, the weight equilibrium is independent of the weight
increment size (A). Second, negative feedback reduces the effects of
nonlinearities in the weight to output transfer-function resulting from the
implementation. In this implementation we take advantage of the insensitivity
to the forward weight transfer function to simplify circuit design and allow
continuous adaptation.

Figure 7 shows the synapse weight modification circuit used in this
design. Basically, the weight modification circuit operates as follows. The
weight update is calculated in two stages. The argument (x - yw) is calculated
by using pulses to enable current sources to charge and discharge a capacitor.
The charging is proportional to x, and the discharging is proportional to yw.
Then, a switch capacitor system produces the multiplication of the output, y,
with the argument (x - yw) [23].

The modification circuit generates a weight update using three phases as
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shown in Figure 8. The first phase resets the capacitor C5 to a predetermined
voltage (LRNLEV). During the second phase, called the statistical sampling
phase, input pulses charge capacitor C3 at a rate that depends on Vp .Gain (see
Figure 7) using the current source formed by Q7. Simultaneously, output
pulses, when active, enable a current sink that discharges C5 at a rate that
depends on the weight capacitor voltage, VC3, and the output. If Q7 and Q10
are operating in saturation with gain parameters by and b, the voltage on C5
at time t after the reset phase is:

2 2
th|) ~B10Y Ve ~Vinl VimLey) )‘ Q)

where x is the active fraction of , PRE and y is the active fraction of POST
during the statistical sampling phase (SAMPEN active). The signal SAMPEN
is active during the statistical sampling phase and is used to gate and POST.
The voltage pulses on the POST line are proportional to the output y during the
statistical sampling phase. By controlling the period of the statistical sampling
phase, (t), we can control the final voltage on CS5.

The current mirror for the weight multiplication function supplies current
into the summing node that depends on the voltage on C3 and is proportional
to the current through the drain of Q6. The gate of Q10 also connects to the
weight storage capacitor, C3, which generates a drain current proportional to

1
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Figure 7. Weight modification circuit
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the drain current of Q6. The largest error in this current source occurs when
the voltage on C3 is maximum. This occurs when learning features which
contain only one active input. Therefore, the drain current of Q10 is
proportional to the weight with only slight error. From this simplification, and
assuming that the initial voltage at t=0 was zero, the voltage on C5 at the end
of the statistical sampling period is:

Ves = V(dpregin X—Y W) (®

where Vv is a proportionality constant with units of voltage, and dp,.Gain iS an
external gain constant that depends on Vp,eGain-
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Figure 8. Learning control signals and timing

We use a switched capacitor approach to calculate the final
multiplication. This allows us to use pulse computation to simplify the design.
During the learning phase, each output pulse transfers charge from the
statistical sampling capacitor C5 to the weight capacitor C3. The size of
charge transfer must be as small as possible so the time constant of the weight
filter is as long as possible (A small). Since y is proportional to output pulse
frequency, when the output operates in the linear region, the output can be used
to set the frequency of the switched capacitor system. During the learning
phase an output pulse generates a set of non-overlapping signals LRN(¢1) and
LRN(¢2). These signals enable switches formed by Q13 and Q14 to first
move charge from C5 to C4 and finally C3. This incrementally modifies the
voltage on C3 for each output pulse. The ratio between C3 and C4, and the
difference between the weight voltage V-3 and the voltage on C5 sets the size
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of the weight increment.

For the longest weight filter time constant, C3 must be large and C4 must
be small. To make C4 as small as possible, the diffusion region between Q13
and Q14 formed C4. The size of this capacitor is approximately 12fF and
depends on the square root of the stored voltage. C3 is constructed using two
layers of polysilicon and has a size of approximately 2.0pF. This combination
of C3 and C4 gives a theoretical maximum increment size of one part in 170
when the difference between the voltage at C5 and C3 is maximum. The two
MOSFETs with the source and drain shorted in Figure 7 is a standard analog
technique to reduce clock feedthrough. However, for our case C3 and CS5 are
much larger than the gate capacitance of Q13 and Q14 therefore while we used
this scheme, it is not required. Note the weight increment size effects only the
time constant of the weight filter since negative feedback is used to stabilize
the weight. Therefore, variations in the increment size do not effect the value
of the weight equilibrium. Figure 9 shows experimental measurements of the
weight counter. In this test the sampling capacitor was set to 4.8V, and the
weight capacitor was set to 1.3V. Leaming was then enabled and each
processing element output pulse incremented the weight capacitor. In this test
the increment size was approximately 6 mV per output pulse. When the
weight is large, one can derive the weight modification used in our circuit as:

wi(t+12)=wi(t+Tl)+7\,y(t+’tl){(dmcajnxi(t)—y(t)wi(t))—Bw(HTl)} ©)

where d is a proportionality constant relating the voltage on C3 and the weight.
Note our implementation of the training rule departs slightly from Oja's [1].
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INHIBITION

An array of neurons using a modified Hebbian weight modification rule
requires a mechanism to force each neuron to extracta different feature
from the inputs [3-5,11,12]. Sanger [5] incorporates a Gram-Schmidt
orthogonalization mechanism in the synapse to force the weights to be
orthogonal. Leen [4] adds a matrix of weights between outputs that uses an
inverse Hebbian modification rule to force the outputs to be uncorrelated. In
our system, we use a variable lateral inhibition mechanism to force the outputs
to be uncorrelated during learning and allow overlap between outputs during
recall. Since the output blocks, which are O(M) (where M is the number of
outputs) in area, contain circuitry for the lateral inhibition, the area of a large
array can be reduced over the previously cited networks. During learning, this
inhibition mechanism acts as a winner take all circuit found in Hamming
networks [9]. During recall, the inhibition mechanism allows several outputs
to become active if the presented pattern lies between trained classes.

Pulse computation allows a simplified inhibition circuit. Qur lateral
inhibition circuit uses a global wire-or signal and a gate circuit to allow the
neuron with the greatest sum of products to inhibit all other neurons in the
array without inhibiting itself. This inhibition occurs only during the high
output pulse of the active neuron. When the output pulse is high it resets all
nonfiring neuron summing node voltages to the inhibition voltage (V).
After the active neuron’s pulse occurs, synapses attached to each neuron
charge the summing node capacitor at a rate that depends on the sum of
products between the weights and inputs. The time for the summing node
capacitor to charge to the threshold and cause the neuron to fire, depends not
only on the sum of products, but also on the initial voltage of the summing
node. Note that the active neuron also resets its summing node voltage below
the threshold to Vi e - Vaw after it fires. The relation between the initial
voltage of the inhibited and the active neurons determines how much greater
the sum of products must be for an inactive neuron to become active. If the
inhibited summing node voltage of a neuron is less than the reset voltage of the
active neuron, the inhibited neuron must have its sum of products greater than
those of the active neuron for it to become active. Conversely, if the neuron's
summing node voltage is inhibited to a value greater than the reset voltage,
this neuron can become active if its sum of products is slightly less than the
active neuron.

By varying the inhibition voltage, the sensitivity to changes in the input
can be controlled. Normal operation of an array of neurons would first set the
inhibition voltage higher than the reset voltage allowing neurons with close
pattern matches to become active. The inhibition voltage would then be
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reduced resulting in only one active neuron for the duration of the learning
phase. Reducing the value of the inhibition voltage allows the network to
reduce its sensitivity to changes in the input feature during synapse
modification in a real-time control system. For tests presented here we fixed
the inhibition voltage to a value slightly lower than the reset voltage using an
external voltage source.

Figure 10 shows the circuit used for the lateral inhibition mechanism.
One transistor, Q18, per chip acts as a load transistor for the inhibition line.
Each neuron output block ties to the single inhibition line with a pull-up
transistor Q17. This produces a wire-or computation that activates Q16 to set
the summing node to the inhibition voltage, INHLEYV, in all neurons except the
currently firing neuron. When the neuron fires, transistor Q19 disconnects the
gate of the inhibition transistor Q16 from the inhibition line and Q20 shorts the
gate to ground to prevent spurious triggering of Q16. Just after the gate of Q16
is disconnected from the summing line, Q17 pulls the inhibition line active.
The size of Q22 contributes to this delay. The inhibition line, INH, becoming
active causes the inhibition transistor Q16 to connect the summing node to
INHLEYV on all neurons except the neuron(s) that have an active output pulse
while the inhibition line is active.
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Figure 10. Inhibition circuit

The single node test chip allowed us to examine the summing node
voltage and inhibit the neuron using an external signal. Figure 11 shows
experimental results of the summing node being set to a the inhibition voltage
after firing twice. From the figure, the delay time between the inhibit signal
and the summing node reaching the reset voltage is about 250nS. This time is
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longer than the actual delay for the case when no off-chip signals were driven.
The additional delay is due to the slew rate of the source follower used to
monitor the summing node voltage, and the propagation time of the inhibit
pulse. The estimated delay time from neuron firing to inhibition is 100nS.
This limits the minimum overlap between patterns for any one array to 10% if
the time between pulses is 1uS. Longer periods between pulses allow patterns
with greater overlap to be recognized as belonging to different categories.
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Figure 11. Measurements of the summing node voltage during firing and
inhibit

PROCESS ARRAY TESTS

First, results illustrating the array chip extracting features from two input
signals are presented. Two sinewaves with adjustable phase shift provided
input data to the network. Before being applied to the network, the sinewaves
were converted to pulses. Qutputs from the pulse generators were applied to
the 4 neuron classifier chip. Depending on the phase shift between the two
inputs, one or two outputs became active and indicated specific features at the
inputs.

Figure 12 shows a block diagram of the test fixture used in these
experiments. An oscillator generated a 1KHz sinewave. A variable phase
shifter and input converter provided two phase shifted and offset sinewaves
from the single input. These two sinewaves were applied to two pulse



280

generators using optical coupling. Outputs from the pulse generators consisted
of 1uS pulses whose frequency was proportional to the input level. First order
low pass filters with a 6dB point of 8KHz provided a measure of the active
fraction from the pulse generators. The two pulse inputs were applied to
adaptable inputs 2 and 6 of the classifier array chip. Active outputs from the
chip where also applied to 8KHz first order low pass filters. This increased the
width of the pulses so they could be sampled over a period of ImS by the
digital storage scope. For this range, the digital scope had a sample time of
1.95puS.  Output waveforms were then digitally processed to extract the
individual pulses. Further processing extracted the time between pulses used
in the plots of the output levels. At SOKHz a maximum accuracy of about 10%
can be obtained with accuracy decreasing as the time between pulses
decreases.
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Figure 12. Block diagram of test fixture used for array tests

Table 1 shows external parameter inputs to the chip. All array tests
presented here use these inputs. The input level and offset of the source
sinewave was set for maximum level with the minimum amount of distortion
as measured at the low pass filters. For each measurement, the phase shift of
the two inputs was set to the desired level. Next, all weights were set to +Wr
by the weight write circuit. The weight write circuit sets the initial values to
each of the synapses. The value of the write voltage +Wr is set so the network
has sufficient activity so that the synapse increment rate exceeds the decay
rate. Then learning was enabled and the weights were allowed to come to
equilibrium. Finally, the inputs and outputs were measured while the chip
continued learning. Note that the inhibition voltage for measurements of the
output was held constant at a level less than the reset voltage. This resulted in
outputs that where completely uncorrelated.
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LRNLEV: Precharge voltage for the capacitor Q5 in the weight
modification circuit

VPREGAIN: Voltage on the gate of Q7
INHLEYV: Inhibit level voltage.
PW : Output pulse width

THRESH: The minimum voltage to produce an active output
(threshold)

INHEN: Gate voltage on Q18
+WR: Starting weights set by the weight write circuitry

SAMPTIME: The time the weight modification circuit samples the
inputs and generates equation 8.

LRNRESTIME: The time that C5 is preset to LRNLEV

LRNTIME: The time where output pulses are enabled to transfer
charge from the sampling capacitor to the weight capacitor.

LRNCYCLE: Time between learn resets.

Table 1. External parameter input values for array test where:

Eigenvectors of the input correlation matrix provide the best basis vectors
for the representation of the input statistics [5]. The correlation matrix is a
statistical measure used to determine the degree of similarity between
elements. In our simple case, the matrix elements are just the time average of
the two inputs, e.g., X1*X1, X1*X2, X2*X1, and X2*X2. The cross-
correlation matrix of two sinewaves offset by half the amplitude of the
sinewave have eigenvectors, {w;, wp} of {{0.707,0.707}, and {0.707,-
0.707}}. Since outputs from the system provide the only method of
information exchange between nodes, the outputs should have activations that
correspond to the eigenvectors. We expect one output to be maximum when
the two inputs have the largest product and one output to be maximum when
one input is maximum and the other input is minimum. Note that our system
can only have positive weights, inputs, and outputs. Our system converges on
the weights of {{0.707,0.707}, and {1,0}}. This produces one output to be
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maximum when the two inputs have the largest product and one output to be
maximum when one input is maximum and the other input is minimum.
Figure 13 shows this result using a theoretical plot of the activation levels for
two outputs with the expected weights and a phase shift of 72°. When the
inhibition voltage is less than the reset voltage, the outputs remain uncorrelated
with the output having the largest sum-of-products active. This results in
output 1 active for the first part and output 2 active for the second part of the
cycle with the transition occurring at .3mS.
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Figure 13. Inputs and theoretical outputs for a phase shift of 72° and weights
of {.707, .707}, and {1,0}

Figures 14, 15, and 16 show results from experimental tests using three
phase shifts. For the experimental test described, we only needed and
therefore used 2 neurons, 2 inputs and 4 weights. The first graph shows
activation of one output when the inputs were phase shifted by 36°. For a
phase shift of 36°, the eigenvalue for the second eigenvector is too small for
the network to extract, resulting in only one feature recognized by the network.
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Figure 14. Measured outputs and inputs while learning inputs with 36° shift
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Figure 16. Measured outputs and inputs while learning inputs with 108° shift

At 72° phase shift, the network can detect two features in the input as shown in
the figure. However, with an input of 72°, the network has two equally
probable stable states. The other probable state was also detected. In this case
the weights converged on the most dominate feature (like Figure 14). Figure
13 shows the theoretical transition point between two activations to be 0.3mS
and Figure 15 shows a measured transition point of 0.225mS. Finally Figure
16 shows the case where the inputs have a 108° phase shift. This case has only
the stable state shown, where two outputs are active indicating the two features
were detected.

Several conclusions can be drawn from results obtained for inputs shifted
by 72°. Since the network had two stable states, this is the point where errors
in the two outputs force the two outputs to have nearly equal time between
pulses. This results in one output completely inhibiting the other. The error in
the time between pulses is equal to the maximum difference between the two
theoretical outputs for the case where output 1 should be active. The
maximum difference between the two theoretical outputs for this case is about
8.5% of full scale (see Figure 15). Additionally, the time to transition for
output 1 active and output 2 active was theoretically 0.3mS and the measured
transition time was 0.225mS. This also indicates an effective error in the
output of about 10%. This effective error includes all network functions and
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provides a measure of the system's ability to distinguish between two features.

Next, we demonstrate the ability of the system to generate representations
from more complex inputs. Four second-order bandpass filters, with a center
frequency of 23, 59, 159, and 408 Hz, generate four training waveforms from a
single periodic triangle wave input. The positive part of these four training
waveforms control the frequency of the four pulse generators that supply
inputs to the chip. To allow our digital oscilloscope to record pules at the
inputs and outputs of the chip, the pulses were averaged with a 8kHz lowpass
filter. This provides a signal that was proportional to the pulse density.
Figures 17 and 18 show the triangle generator waveform and the four resulting
waveforms as measured from the low-pass filter for two different input
frequences. Note the relative positions of the two inputs from the higher
frequency bandpass filters. To generate the output waveforms shown in Figs.
19 and 20, the synaptic weights were first set to nearly equal values and
learning was enabled. Figure 19 shows the outputs when learning inputs from
Figure 17, and Figure 20 shows the outputs when learning inputs from Figure
18. Notice how the processor has grouped the inputs from Figure 17 into two
features as shown in Figure 19. For a different input frequency, the processor
grouped the inputs into three groups as shown in Figure 20.
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Figure 17. Training Set with 33Hz Triangle Input
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Figure 20. Measured Outputs after Learning 40Hz Training Set

CONCLUSIONS

We have constructed VLSI test chips to explore the operation of a
processing node using pulsed communication, analog weights, and on-chip
adaptation. We have implemented a variation of the modified Hebbian
algorithm presented by Oja. To complete the learning rule, we have added a
lateral inhibition mechanism that makes the output representation useful for a
final layer of neurons for output mapping. The first chip allowed us to
examine the internal operation of a single neuron and compare these results
with the results predicted by theory and simulation. Analysis of the operation
included the feed-forward transfer-function, weight adaptation, and inhibition
functions. The array chip allowed us to test a complete classifier system's
ability to distinguish between two similar features. This ability was further
demonstrated with complex time-varying signals. The classifier grouped the
inputs into classes determined by the statistics of the inputs.

This array system performed as a fuzzy classifier where the weights were
normalized and the outputs had controlled overlap. Future experiments will
duplicate in hardware simulations of learning nonlinear plant models. Further
work will also demonstrate the ability to produce inverse plant models for
adaptive control applications.
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