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Preface 

In the past decades parallel and distributed computing played a key role that 
were stimulated by the availability of faster, more reliable, and cheaper super­
computers and distributed systems. It will also become technologies in shaping 
future research and development activities in academia and industry. In the not 
too distant future, most of researchers in science and engineering fields will 
have to understand parallel and distributed computing. With hyperthreading 
in Intel processors, hypertransport links in next generation AMD processors, 
multicore silicon in today's high-end microprocessors, emerging cluster and 
grid computing, parallel/distributed computing has moved into the mainstream 
of computing. To fiiUy exploit these advances, researchers must start to write 
parallel or distributed software and algorithms to cope with large and complex 
problems with very tight timing schedules. 

This book is a collection of self-contained chapters written by pioneers and 
active researchers in parallel and distributed computing. It reports the recent 
important advances in the area of parallel and distributed computing and pro­
vides an opportunity for practitioners and researchers to explore the connec­
tion between various techniques in computer science and develop solutions to 
problems that arise in the rapidly emergmg field of parallel and distributed 
computing. 

This book is intended for researchers and graduate students in computer 
science and electrical engineering, as well as researchers and developers in 
industry. We believe all of these chapters will not only provide novel ideas, 
work m progress and state-of-the-art techniques in the field, but also stimulate 
the future research activities in the area of parallel and distributed computing 
with applications. This book can be used as a textbook and a reference for use 
by students, researchers, and developers. 

The book is mainly divided into four parts. Chapters 1 to 3 (Part 1 ) cover 
programming models and supporting tools. Part 2, Chapters 4 to 8 describes 
high performance parallel and distributed algorithms including task scheduling 
algorithms, solving NP-complete problems based on DNA computing. Part 
3, Chapters 9 to 15 covers the area of network, parallel computer architec­
tures and distributed systems. Finally, Part 4, Chapters 16 to 21, covers paral­
lel/distributed applications. 

In the following sections, we will discuss the chapters of this book in more 
detail so that readers can better plan their perusal of the material. Extensive 
external citations are not given here but will be found in the individual chapters. 

Part 1: programming models and support tools 
In the first paper, Tsujita et al. develop a flexible MPI library, called Stampi, 

to enable MPI operations on a heterogeneous computing environment. Users 
can call the functions in Stampi without awareness of underlying commu­
nication mechanism. In Chapter 2, Cao and Svm present a Graph-Oriented 
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Programming (GOP) model that provides flexible graph constructs and graph-
oriented primitives to build a programming paradigm based on graph topology, 
and also provides a formal specification of software architecture for distributed 
programs. Saber and Mirenkov describe an outline of the approach to program­
ming cellular automata systems in Chapter 3. They also discuss the concepts 
and features of a program generator in the system and how the parallel tem­
plate programs support the automatic generation of executable codes from the 
multimedia specifications. 

Part 2: algorithms 
To achieve high performance on distributed memory machines with process­

ing nodes, one has to attain both high single-processor performance and high 
parallel efficiency at the same time, hi Chapter 4, Yamamoto et al. propose a 
general framework for designing 1-D FFT based on a 3-dimensional represen­
tation of the data that can satisfy both of these requirements. Two algorithms 
are shown to be optimal from the viewpoint of both parallel performance and 
usability. Experiments on Hitachi SR2201 show their algorithms can get 48% 
of the peak performance when computing the FFT of 2^^ points using 64 nodes. 
Guo and Chang present an algorithm to solve an NP-complete problem, vertex-
cover problem based on a molecular supercomputer model in Chapter 5. Their 
molecular computer model is called Adleman-Lipton model, which has a com­
putational power for solving NP-complete problem using DNA computing. In 
Chapter 6, Hwang et al. propose a special design concept to construct a gener­
alized group-oriented cryptosystem (GGOC). Any group can use their method 
to construct a GGOC which provides a secure environment for a sender to 
send confidential messages to it. Chapter 7 addresses the problem of schedul­
ing tasks in the Non-Uniform Memory Access (NUMA) multiprocessor system 
with a bounded number of available processors. An algorithm is proposed to 
schedule tasks by considering the intertask communication overhead and the 
contentions among communication channels. The proposed algorithm also ex­
ploits the schedule-holes in schedules. In Chapter 8, Lin and Ng describe a 
static scheduling approach to integrate task mapping, scheduling and voltage 
selection to minimize energy consumption of real-time dependent tasks exe­
cuting on a number of heterogeneous processors. Their approach is based on 
genetic algorithms. In Chapter 9, Vidyarthi et al. describe a cluster-based dy­
namic allocation scheme for distributed computing systems. A fuzzy function 
is used for both the task clustering and processor clustering. This paper shows 
how the dynamic allocation of stream of tasks, with minimum knowledge, is 
possible in a distributed computing system. 
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Part 3: networking, architectures, and distributed 
systems 

In the first paper of this part, Chapter 10, Liang and Wang propose a scheme 
to improve existing on-demand routing protocols by creating a mesh and mul­
tiple alternate routes by overhearing the data packet transmission for ad hoc 
network. Their scheme establishes the mesh and alternate routes without trans­
mitting any extra control message. Chapter 11 presents a cost-effective fault-
tolerant routing strategy for optical-electronic grids. Loh and Hsu design a 
fully adaptive, both deadlock-free and livelock-free, fault-tolerant routing strat­
egy for multi-hop grid networks. In Chapter 12, Kim et al. address information 
hiding using steganography technique. They improve generalized Lowbit En­
coding method and apply this method with CDMA to level up information hid­
ing. Chapter 13 addresses a proposal for the Synergy Distributed Shared Mem­
ory System and its integration with the virtual memory, group communication 
and process migration services of the Genesis Cluster Operating System. In or­
der to retrieve fresh information, Sato et al. explain a distributed search engine 
that they developed, called Cooperative Search Engine (CSE) in Chapter 14. 
In CSE, a local search engine located in each Web server makes an index of 
local pages, and a meta search integrates these local search engines in order to 
realize a global search engine. In Chapter 15, Sreenivas and Bhalla provide ex­
act conditions for an arbitrary checkpoint in distributed systems. Their method 
does not require expensive global computations and it is based on independent 
dependency tracking within clusters of nodes. The proposed computations can 
be performed by a node to identify existing global checkpoints. The nodes 
can also compute conditions to make a checkpoint, or conditions, such that a 
collection of checkpoints, can belong to a global snapshot. 

Part 4: applications 
In this part, Liu and Guo, in Chapter 16, describe a framework of an in­

teractive data mining system based on PC cluster environments that they are 
developing. The system is an interactive and dynamic visual. In Chapter 17, 
the author analyzes the mobile Internet transition from the social process view­
point first. A two-year tracing of mobile email transition observed on a com­
mercial mobile web service shows the two-staged transition to cope with the 
bulk email problems. Then, the author, Yamakami, proposes an identity tran­
sition factor model to describe the social process of the forced email address 
changes in the mobile Internet. Chapter 18 presents two approaches for an 
efficient polygonal approximation on distributed systems and parallel comput­
ers. The authors describe how to use parallel and distributed algorithms to 
allow maximum efficiency on grid of computers and to mmunize communica­
tions by distributing the geometric grid elements. In Chapter 19, Xie and Shen 
present a novel efficient geometric registration algorithm based on the shape 
of the closed-regions. Their registration algorithm takes advantage of shape 
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information of the closed-regions bounded by contours in images. Chapter 
20, presents MAPFS as a flexible and high-performance platform for data-
intensive applications and, more specifically, for data grid applications whose 
major goal is to provide efiicient access to data. In Chapter 21, Zhu et al. in­
troduce and analyze an efiicient Key Message (KM) approach to supporting 
parallel computing in cluster environments. Their goal is to reduce the com­
munication overhead and thus the completion time of a parallel application. 
Experiments demonstrate that when the network background load increases or 
the computation to commimication ratio decreases, the analysis results show a 
significant improvement on commimication of a parallel application over the 
system which does not use the KM approach. 
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Abstract A flexible MPI library, Stampi, has been developed to enable MPI operations 
on a heterogeneous computing environment. APIs are based on the MPI-1 and 
the MPI-2 standards. Users can call these functions without awareness of under­
lying communication mechanism. In message transfer, a vendor-supphed MPI 
library and TCP/IP socket are used selectively among MPI processes. Introduc­
ing its own router process mechanism hides a complex network configuration in 
inter-machine data transfer. In addition, the MPI-2 extensions, functionalities of 
dynamic process creation and MPI-I/0, are also implemented. MPI-I/0 on the 
Stampi library realizes both local and remote I/O operations due to the request 
of user applications. We have evaluated performance of primitive MPI fimctions 
in Stampi and sufficient performance has been achieved and effectiveness of our 
flexible implementation has been confirmed. 
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1. Introduction 
Recent applications in computational science handle huge amounts of mem­

ories, storages in addition to computation power. Nevertheless amounts of 
computational resources have recently grown hugely, a parallel computer has 
a limit on these resources due to physical constraints. As one of the solutions 
to overcome this limit, construction of a huge scale of computing environment 
by connecting computers via network has been focused because of its cheaper 
cost in construction and high bandwidth network cormections. 

As MPI (Message Passing Interface) [1,2] has become the de facto standard 
in distributed parallel computation, almost all computer vendors have imple­
mented their own MPI libraries. Although parallel computation coupled with 
several types of computers requires inter-machine communication, any vendor-
supplied MPI library does not provide it generally. To realize such communica­
tion, we have developed an intermediate library named Stampi [3]. This library 
plays a role of the glue between a user program and underlying communica­
tion libraries, and it relays a messages between them and hides complexity and 
heterogeneity among computers. MPI communication inside a computer is re­
alized using a vendor-supplied MPI library. On the other hand, TCP/IP socket 
connections are used among computers. Those two commimication modes are 
selected flexibly by an intermediate communication library of Stampi. 

In MPI communication, all processes are supposed to be accessible each 
other generally. But communications from/to computation nodes in private net­
work or via firewall are difiicult due to several underlying problems in such en­
vironment. Although MPI communications using administrative method such 
as network address translation (NAT) or virtual private network (VPN) can be 
considered, the authors selected to develop a flexible communication library 
which provides dynamic control capability to user program. A router process 
is invoked on an IP-reachable node, and it relays messages to the processes in 
the private or firewalled networks. The number of router processes is valuable 
and users can select it in order to gain higher throughput. 

In some cases, users can not get fully computational resources of each com­
puter. Dynamic resource usage is a key technology for effective use of com­
putational resources. This method can be realized using dynamic process cre­
ation defined in the MPI-2 standard [2]. Stampi realizes this functionality in 
a heterogeneous distributed computing environment. Stampi also supports the 
dynamic process creation with a secure communication path. 

Handling huge amounts of data is also significant in parallel computation. In 
such data-intensive computation, almost all applications tend to have access to 
noncontiguous data rather than contiguous data. Because UNIX I/O APIs are 
not effective to have access to noncontiguous data, MPI-I/0 APIs have been 
proposed in the MPI-2 standard. As the MPI-I/0 APIs give useful and flexi­
ble interfaces for both contiguous and noncontiguous accesses in parallel-I/O 
operations, MPI-I/0 fimctions are realized in several kinds of vendor-supplied 
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MPI libraries. But none of them provide MPI-I/O operations among different 
hardware platforms yet. 

To realize such mechanism, we have designed and developed an MPI-I/O 
library, Stampi-I/O [4], as a part of Stampi, using a flexible communication 
mechanism of Stampi. Users can call MPI-I/O functions in both local and re­
mote I/O operations with the same API defined in the MPI-2 standard. Stampi-
I/O has been designed to work on any computer where a vendor-supplied MPI 
library is available. Besides, if a vendor-supplied MPI-FO library is available, 
high performance parallel I/O operations is realized using the library. Other­
wise Stampi-I/O executes MPI-I/O operations using UNIX I/O functions. 

In this paper, outline, architecture and preliminary results of Stampi, includ­
ing Stampi-I/O, are described. 

2. Stampi: A Flexible MPI Library for 
Heterogeneous Computing Environment 

Stampi has been developed to provide a computing environment which hides 
heterogeneity among computers for flexible MPI operations. The features of 
Stampi are summarized as follows; 

1 flexible communication mechanism among computers, 

2 dynamic process creation and remote I/O operation mechanisms based 
on the MPI-2 standard, 

3 flexible mechanism in both local and remote I/O operations, and 

4 support of extemal32 data format among multiple platforms. 

Users can execute fiinctions including MPI-I/O functions across multiple plat­
forms using Stampi without awareness of differences in communication mech­
anism and I/O system. Rest of this section describes the details of Stampi. 

2.1 Flexible communication mechanism 
Stampi has inter-operability between intra-machine and inter-machine data 

transfers with the same APIs defined in the and the standards. Architectural 
view of Stampi is illustrated in Figure 1.1. It is assumed that master user pro­
cesses and slave user processes are running on parallel computers A and B, 
respectively. In intra-machine data transfer, Stampi uses a well-tuned vendor-
supplied MPI library with the help of the vendor-supplied communication 
mechanism (VSCM). On the other hand, the common communication mech­
anism interface (CCMI) is used in inter-machine data transfer. In the CCMI 
layer, TCP/IP is applied to have inter-operability on any platform. 

When user processes are in private or firewalled networks, a router process, 
which is invoked on an IP-reachable node, relays messages to/from those pro­
cesses. If computers have multiple network interface cards (NICs), multiple 
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Parallel computer A IP-reachable Parallel computer B 

CCMI: Common Communication Mechanism Interface (TCP/IP) 
VSCM : Vendor Supplied Communication Mechanism 

Figun: 1.1. Architectural view of Stampi. MPl communications and MPI-1/0 operations are 
available across computers. 

routers are invoked in order to gain higher throughput in inter-machine MPI 
communication. Users can select the number of in their programs by using key 
parameters in an info object. 

Inter-operability among different kinds of MPI implementations is also an 
important issue in parallel computation on a heterogeneous computing environ­
ment. The Stampi library also has an inter-operable interface to other MPI im­
plementations using an IMPI [5] interface. MPI operations between a Stampi 
program and a LAM/MPI [6] program has been realized using the IMPI inter­
face. 

2.2 Dynamic process creation and remote I /O 
operation mechanisms based on the MPI-2 
standard 

and MPI-I/0 operations in the MPI-2 standard are important features in dis­
tributed parallel computation. These mechanisms have been implemented in 
Stampi for dynamic use of computational resources and flexible I/O opera­
tions. Using these methods, users can execute their programs in the manager-
worker fashion. Some useful key parameters (user-ID, node name, partition 
name, batch queue name, etc.) are supported for the mechanisms. For MPI-
I/O operations among computers, we introduced an MPI-I/0 process which 
plays parallel-I/O operations on a remote machine, are invoked on a remote 
machine according to key parameters passed to the MPI.Fi le_open function 
using the spawn mechanism of Stampi. 

In execution of an MPI program, Stampi supports interactive and batch 
modes both. Here, we would like to explain how child MPI processes and MPI-
I/0 processes are created with a Stampi library on a batch system. Figure 1.2 
depicts mechanism of the spawn operation and the remote I/O operation under 
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user 
proces^ 

Frontend node Frontend node. 
13. connect 

3. start-up; 

1. issue a start command 
I 

10.forl( 

user process 
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'11. start-uD.±J^PI-l/9 operations 

Disl( 

(̂  :-:':':-y : Router process 
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9. issue a start command 

Batcti queue 

8. submit 

Figure 1.. 2. Spawn operation and remote I/O operation of Stampi under the batch mode. 

the batch mode. Firstly user processes are initiated by a Stampi start-up com­
mand (starter) on a computer in the left side. When those user processes call 
MPI_Comm.spawn or MPI_File_open, a router process kicks off a starter 
process on a computer in the right side with the help of remote shell command 
(rsh, ssh, etc.) and it generates a script file which is submitted to a batch queue 
system according to a specified queue class in an info object. Secondly, the 
starter written in the script file kicks off user processes or MPI-I/0 processes 
in the case of MPI_Comm_spawn or MPI_File_open, respectively. Besides, 
a router process is invoked on an IP-reachable node if it is required. Finally, a 
network connection between both computers is established. 

In addition to the dynamic process creation, Stampi supports a static process 
creation based on the MPI-1 standard on a heterogeneous computing environ­
ment. In process creation on a remote machine, the dynamic process creation 
mechanism is used inside the Stampi library. Users can execute their programs 
across computers using Stampi. 

2.3 Flexible mechanism in local and remote I /O 
operations 

MPI-I/0 functions are available not only inside a computer but also among 
computers using Stampi. When user processes call MPI .F i le .open , a Stampi 
library is called first. Then the Stampi library selects the most efiicient I/O 
method possible between any two processes flexibly according to a target com­
puter in the info object specified by users. 

When MPI-INFOJSrULL is specified in MPI_File-open, the I/O opera­
tion on a local file system is carried out. On the other hand, the remote I/O 
method is selected when key parameters such as target host name are set in the 
info object by MPI.Inf o_set and the info is used in MPI_File_open. The 
remote I/O operations are processed with TCP socket connections via a router 
process and an MPI-I/0 process. 

An example code of an MPI-I/0 program is shown in Figure 1.3. In this 
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call MPI_Info_create(info,err) 
call MPI_Info_set(info,'host','comp-b',err) 
call MPI_Info_set(info,'user','myname',err) 
call MPI_Info_set(info,'wdir','/home/mydir',err) 
call MPI__Info__set (info, 'nqsq' , 'pbl' , err) 
call MPI_Info_set(info,'node' , ' 3' , err) 
call MPI_Info_set(info,'mpiio','vendor',err) 
call MPI_Info_set(info,'io-np','2',err) 
call MPI_File_open(MPI_COMM_WORLD,'datafile', 

MPI_MODE_WRONLY | MPI_MODE__CREATE, info, f h, err) 
call MPI_File_set_view(fh,0,MP1_INT,MPI_INT, 

'external32',MPI_INFO_NULL,err) 
call MPI_File_write(fh,buf,nints,MPI_INT,status,err) 
call MPI_File_seek(fh,(MPI_Offset)0,MPI_SEEK_SET,err) 
call MPI_File__sync (fh, err) 
call MPI_File_read(fh,buf,nints,MPI_INT,status,err) 
call MPI File close(fh,err) 

Figure 1.3. An example code of an MPl-I/0 program for remote I/O operations. 

example code, several key parameters for remote I/O operations are specified 
by MPI-Inf o - se t . The key parameters, nqsq and node, are used to specify 
parameters of the batch queue system. Users can also give mpiio to specify 
an MPI-I/0 library to be used (a vendor-supplied MPI-I/0 library or a UNIX 
I/O library). Multiple MPI-I/0 processes can be created on a remote machine 
using a key parameter, io-np, to gain higher throughput when a vendor-supplied 
MPI-I/0 library is available. The number of MPI-I/0 processes is variable up 
to the number of user processes. 

2.4 Support of external32 data format 
To assure inter-operability in data handling among multiple platforms, ex-

temal32 is supported as a common data format in Stampi. It is also available 
in MPI-I/0 operations using Stampi-I/0. When extemal32 is designated in the 
data format, data conversion from native data format to extemal32 and vice 
versa is carried out automatically. Thus users need not pay attention to the 
difference on each hardware platform. 

3. Performance measurement of Stampi 
Performance measurement of MPI functions in Stampi was carried out on 

two typical hardware configurations in computational science. One config­
uration is interconnected supercomputers, a Fujitsu VPP5000 and a Hitachi 
SR8000 in Japan Atomic Energy Research Institute, and another one is inter­
connected Linux machines, a Linux workstation and a Linux cluster with an 
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Figure 1.4. Schematic view of I/O operations witli multiple user processes. 

SCore PC cluster system [7], On both cases, the systems are interconnected 
via Gigabit Ethernet based LAN. 

In computational science, coupled simulation on interconnected supercom­
puters has been focused due to the lack of computational resources. As the 
SR8000 and the VPP5000 have different architecture in both hardware and 
software, performance can be improved in some kinds of coupled simula­
tion codes using architectural merits of each supercomputer. Besides, MPI-
I/O operations using a vendor-supplied MPI-I/0 library is available on the 
VPP5000. Stampi has been implemented on many kinds of supercomputers 
including them to realize MPI communication on interconnected supercomput­
ers. Besides MPI-I/0 functions have been supported on supercomputers where 
a vendor-supplied MPI-I/0 library is available. To show high availability and 
flexible architecture of Stampi, we evaluated performance of Stampi, typically 
performance of MPI-I/O operations, on the interconnected supercomputers. 

Recently PC clusters have been focused for its cost-effective high perfor­
mance and high availability. Stampi has been implemented on an SCore cluster 
system to realize coupled parallel computation among a PC cluster and other 
machines [8], To show sufficient performance of Stampi on a PC cluster, peak 
performance of MPI communications were measured using Stampi. 

In the following subsections, data size is denoted as the whole data size to 
be transfered. Data was distributed among user processes equally as shown 
in Figure 1.4. In performance measurement of roimd-trip communication, we 
calculated transfer rate as (message data size)/(RTT/2), where RTT is roimd 
trip time for ping-pong communication between user processes. In addition, 
we defined the latency as RTT/2 for 0 Byte message. 

3.1 Performance measurement between a 
Hitachi SR8000 and a Fujitsu VPP5000 

Firstly, we mention about performance measurement between the Hitachi 
SR8000 and the Fujitsu VPP5000. Hereafter, they are denoted as SR and VPP, 
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respectively. The SR consists of 20 computation nodes, and they are all IP-
reachable. Interconnection among those nodes is established with high perfor­
mance cross-bar network with 1 GB/s bandwidth for single direction. While 
the VPP consists of one frontend node and 64 backend (computation) nodes 
and those nodes are interconnected with high performance cross-bar network 
with 1.6 GB/s bandwidth. Those backend nodes are in private network and they 
are all accessible only from the frontend node. High performance and flexible 
I/O operation is available with the FPFS (Flexible and high Performance File 
System) [9]. The FPFS has multiple disks for file sttiping and round-robin 
I/O operations. The FPFS and the backend nodes are interconnected with four 
Fibre Channel connections (theoretical peak bandwidth is 100 MB/s per link.). 

In this test, peak performance of raw TCP socket connections and inter-
machine MPI commimications between the SR and the VPP was measured at 
first. Next, peak performance of collective blocking I/O operations was mea­
sured using M P I _ F i l e . w r i t e . a t _ a l l and MPI_F i l e_ read . a t_a l l for 
both local and remote operations. In addition, performance of remote opera­
tions using multiple MPI-I/0 processes was measured. In all MPI-I/0 opera­
tions, I/O operations were carried out on the FPFS. 

3.1.1 Performance results of round- t r ip raw T C P socket 
connect ions. At first, we measured performance of round-ttip point-
to-point inter-machine data transfer using raw TCP socket cormections. It is 
reported that appropriate TCP buffer size can improve performance of raw 
TCP socket connections in [10]. We fried to find appropriate TCP buffer 
size for inter-machine data transfer between the SR and the VPP. In addition, 
TCPJSTODELAY option in s e t s o c k o p t was specified to optimize the inter-
machine data transfer. 

We measured performance of inter-machine data transfer between the SR 
and a frontend node of the VPP and between the frontend node of the VPP and 
a backend node of the VPP. Table 1.1 shows the performance results. Transfer 
rate between the SR and the frontend node of the VPP was about 10 % of 
theoretical bandwidth. The most appropriate TCP buffer size was considered 
to be 512 KByte and latency in this case was 3 ms. In inter-machine data 
transfer between the frontend node and the backend node of the VPP was much 
higher than that between the SR and the frontend node of the VPP. In this 
case, the TCP buffer size is not a significant parameter for the communication 
performance. 

3.1.2 Performance results of in ter-machine d a t a t ransfer 
using S tampi . Next, we measured performance of point-to-point inter-
machine data transfer with several TCP buffer sizes and TCP_NODELAY option 
using Stampi. To optimize inter-machine data transfer, these parameters can be 
specified from a Stampi start-up command. For example, next command; 

% jmpirun -np 1 -sockbufsize 512 -tcpnodelay program 
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Table 1.1. Performance results of round-trip point-to-point inter-machine data transfer be­
tween a Hitachi SR8000 (SR) and a Fujitsu VPP5000 (VPP) using raw TCP socket connections. 
Unit of numbers in this table is MB/s. 

TCP buffer size (Byte) Latency 
Data size (Byte) 

512 K IM 16M r 64M 128 M 
SR -^ VPP(Frontend) 

128 K 
512K 

I M 

3.08 ins 
2.99 ms 
3.09 ms 

11.9 
11.9 
12.0 

12.3 
12.2 
12.2 

12.5 
12.7 
8.12 

12.3 
12.7 
8.83 

12.3 
12.7 
7.52 

VPP(Frontend) « VPP( 
128 K 
512K 

I M 

Backend) 
0.13 ms 
0.13 ms 
0.12 ms 

166.2 
159.3 
159.6 

167.8 
159.9 
159.1 

162.1 
169.8 
170.0 

169.7 
164.6 
169.8 

170.0 
168,4 
170.9 

Table. 1.2. Perfomiance results of ping-pong inter-machine MPI communication using Stampi 
between a Hitachi SR8000 and a Fujitsu VPP5000 with several TCP buffer sizes. Unit of 
numbers in this table is MB/s. 

TCP buffer size (Byte) 

128 K 
512K 
I M 

Latency 

7.87 ms 
10.7 ms 
11.2 ms 

512K 

7.89 
10.2 
10.6 

Data size (Byte) 
I M 

7.20 
9.89 
9.48 

16 M 

7.65 
11.1 
10.4 

64 M 

7.63 
9.75 
7.24 

256 M 

7.48 
9.67 
7.00 

initiates a process (program) on a local machine with a TCP buffer size of 512 
KByte and TCP_NODELAY option for an inter-machine data transfer. Once 
inter-communicator is established between executed user processes and spawned 
processes, MPI communication starts with the help of raw TCP socket connec­
tions via the inter-communicator. 

In our test, ping-pong message transfer was operated between the SR and 
the VPP using MPI .Send and MPI_Recv. Table 1.2 shows performance re­
sults. From this table, we notice that appropriate TCP buffer size is 512 KByte. 
The appropriate TCP buffer size was 512 KByte in both raw TCP socket con­
nections and inter-machine MPI communication. Therefore we consider that 
the most appropriate TCP buffer size in this case is 512 KByte for remote I/O 
operations using Stampi. In addition, we notice that latency of inter-machine 
MPI communication using Stampi is about 3 times larger than that of raw TCP 
socket connections. We consider that this additional latency was introduced by 
implementation of a Stampi library. 

3.1.3 Performance results of local I / O opera t ions . Per­
formance of local I/O operations with Stampi was measured using a vendor-
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Figure 1.5. Functional diagram of (a) vendor-supplied execution method and (b) Stampi-
supplied execution metliod. 

supplied MPI-I/0 library [11] on the VPP. In this test, vendor-supplied and 
Stampi-supplied execution methods were used. Functional diagram of these 
methods are depicted in Figs 1.5 (a) and (b), respectively. In the vendor-
supplied execution method, a user process directly calls a vendor-supplied 
MPI-I/0 library. On the other hand, a user process calls a Stampi library first. 
Next, the Stampi library calls the vendor-supplied MPI-I/0 library. We exam­
ined whether overhead time for implementing the Stampi library was negligi­
ble or not compared with the execution time in the vendor-supplied execution 
method. 

Performance results of local I/O operations using M P I . F i l e _ w r i t e . a t _ a -
11 and MPI_Fi le_read_at_a l l are shown in Table 1.3. In this table. Write 
andi?e<3^correspond to MPI_Fi le_wr i te_a t_a l l and MPI_Fi le-read_a-
t . a l l , respectively. Besides, Vendor and Stampi mean vendor-supplied and 
Stampi-supplied execution methods, respectively and np denotes the number 
of user processes. From this table, performance advantage for two and four 
user processes is obvious. 

In the vendor-supplied MPI-I/O library of the VPP, disk cache mechanism 
is equipped on an I/O node of the VPP for performance improvement. In this 
mechanism, the number of cache blocks is 256 and the size of each block is 
64 KByte. Thus, total size of the cache is 16 MByte. It is considered that 
performance degradation for the over 16 MByte was caused by inefiiciency of 
the mechanism when the cache was almost fixU with data. 

Furthermore, there was no significant degradation m the Stampi-supplied 
method compared with the vendor-supplied one. Thus, implementation of the 
Stampi library does not affect the performance of local I/O operations. 

3.1.4 Performance results of remote I / O opera t ions . In 
remote I/O test, a user program was initiated on the SR and I/O operations 

http://MPI.File_write.at_a-
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Table 1.3. Perfomiance results of local I/O operations with MPI .Fi le .wr i te .a t .a l 1 and 
MPI-File_read-at-all on a Fujitsu VPP5000. In this table, Write and Read correspond 
to MPI-Fi le-wri te-a t .a l l and MPI_File_read-at-all, respectively. Besides, Vendor 
and Stampi mean vendor-supplied and Stampi-supplied execution methods, respectively. Unit 
of numbers in this table is MB/s. 

Write 
(Vendor) 

Write 
(Stampi) 

Read 
(Vendor) 

Read 
(Stampi) 

np 

1 
2 
4 
1 
2 
4 

1 
2 
4 
1 
2 
4 

Data size (Byte) 
512K 

308.1 
2164.5 
3906.3 

300.3 
2155.2 
3876.0 

115.0 
2325.6 
4237.3 

114.7 
2304.1 
4166.7 

I M 

312.6 
2272.7 
4219.4 

305.3 
2267.6 
4273.5 

110.0 
2439.0 
4651.2 

109.8 
2427.2 
4524.9 

4 M 

312.9 
2357.1 
4640.4 

305.2 
2359.9 
4640.4 

106.1 
2528.4 
2515.7 

106.1 
2523.7 
4956.6 

8 M 

1060.4 
2371.8 
4725.3 
1061.0 
2373.9 
7719.8 

1272.7 
2534.9 
5047.3 
1272.9 
2535.7 
5044.1 

16 M 

96.9 
141.5 
398.4 

93.6 
136.8 
380.6 

103.1 
109.7 
560.1 
103.2 
109.7 
497.9 

64 M 

58.1 
109.8 
244.3 

53.5 
106.2 
222.7 

81.5 
109.4 
533.1 

81.2 
108.8 
507.6 

256 M 

30.5 
68.0 

106.0 
32.9 
66.0 

111.3 

55.4 
109.6 
218.9 

55.5 
108.9 
218.7 

was carried out on the VPP. In this test, MPI-I/0 processes using a vendor-
supplied MPI-I/0 library and a single router process were created on the VPP. 
Performance was measured in the user program on the SR. We specified the 
best TCP buffer size (512 KByte) and TCP-NODELAY option to gain higher 
throughput. 

Transfer rate of remote I/O operations with M P I _ F i l e . w r i t e _ a t _ a l l 
and MPI_F i l e_ read_a t . a l l between the SR and the VPP was measured 
using Stampi. User processes were initiated on the SR and one or two MPI-
I/O processes were created on the VPP. Table 1.4 shows performance results. 
In most cases, performance for two MPI-I/0 processes was higher. Consider­
ing the I/O operations on the VPP, the I/O mechanism on the VPP in the two 
MPI-I/0 processes case is similar to that of local I/O operations for two user 
processes. Therefore we consider that this improvement was realized due to 
the performance improvement mentioned in local I/O operations for two user 
processes (Table 1.3). As inter-machine data transfer time was dominant com­
pared with local I/O operation time in remote I/O operations, the improvement 
realized by two MPI-I/O processes in remote I/O operations was not drastic 
compared with that in the local I/O operations. 

In addition, we notice that performance of read operations was better than 
that of write operations although there was not significant difference in perfor­
mance between local write and read operations. In the remote write and read 
operations between the SR to the VPP, almost all inter-machine data transfers 
were carried out from the SR to the VPP and vice versa. To find reasons, we 
measured performance of one-way trip inter-machine data transfer using raw 



14 PARALLEL AND DISTRIBUTED COMPUTING 

Table L4- Perfonnance results of MPI-File_write-at-al l and 
MPI_Fxle.read-at_all in remote 1/0 operations from a Hitachi SR8000 (SR) to a 
Fujitsu VPP5000 (VPP). Unit of numbers in tliis table is MB/s. In this table, np and io-np 
denote the numbers of user processes and MPI-I/0 processes, respectively. 

MPLFile.write.at.all 
(SR -> VPP) 

MPI-File.read-at.all 
(SR ^ VPP) 

np 

2 
2 
4 
4 
8 
8 
2 
2 
4 
4 
8 
8 

lo-np 

1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 

512 K 

7,67 
7.69 
6.38 
6,82 
1.28 
1.35 
7,27 
12.2 
3.94 
7.12 
1.89 
3.76 

Data size (Byte) 
I M 

10.2 
10.5 
9,48 
11.2 
1.39 
1.32 
10.3 
17.2 
7.40 
13.1 
3.66 
7.22 

8 M 

8.63 
13.5 
5.38 
1.60 
0.30 
0.53 
8.26 
22.5 
17.1 
19.5 
14.1 
18.7 

16 M 

8.72 
14.1 
7.71 
11.5 
1.63 
3.10 
13.0 
23.3 
18.5 
17.8 
16.8 
22.5 

64 M 

8.23 
13.5 
5.78 
14.8 
1.20 
3.39 
9.77 
21.4 
17.9 
20.2 
17.5 
20.8 

256 M 

S.82 
9.27 
5,11 
9.12 
2.86 
6.53 
8.21 
18.7 
17.1 
18.3 
19.8 
21,9 

Table. 1.5. Performance results of one-way trip inter-machine data transfer using raw TCP 
socket connections between a Hitachi SR8000 (SR) and a Fujitsu VPP5000 (VPP). Unit of 
numbers in this table is MB/s. 

S R ^ 
VPP(Frontend) 
VPP(Frontend) -^ 
VPP(Backend) 

VPP(Frontend) 
VPP(Frontend) «-
VPP(Backend) 

Latency 

1.41ms 

0.038 ms 

1.14 ras 

0.547 ms 

512K 

83.1 

126.8 

23.7 

101.9 

Data 
1 M 

21.9 

105.2 

22.0 

97.8 

size (Byte) 
16M 

11.8 

91.2 

17.1 

98.3 

64 M 

11.5 

94.0 

16,0 

97,5 

128 M 

11,4 

94,9 

15,7 

97,3 

TCP sockets from the SR to the VPP and vice versa. Performance results are 
shown in Table 1.5. According to these results, we consider that performance 
of remote write operations is lower than that of remote read operations because 
inter-machine data transfer from the SR to the VPP is lower than that from the 
VPP to the SR. 

There was performance degradation in remote I/O operations with multiple 
user processes on the SR compared with the single user process case as shown 
in Table 1.4. To find reasons, we measured performance of inter-machine data 
transfer of MPI.Send and MPI.Recv between the SR and the VPP using a 
Stampi communication library. In this test, slave processes on the VPP were 

http://MPI-File.read-at.all
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Table 1.6. Perfoniaance results of inter-machine data transfer with MPI.Send and 
MPI-Recv between a Hitachi SR8000 (SR) and a Fujitsu VPP5000 (VPP). In this Uhle,np(SR) 
and np(VPP) denotes the numbers of processes on the SR8000 and tire VPP5000, respectively. 
Unit of numbers in this table is MB/s. 

SR(MPI.Send) -^ 
VPP(MPI_Recv) 

SR(MPIJ{ecv) *-
VPPfMPI.Send) 

np(SR) 

1 
2 
4 
8 
1 
2 
4 
8 

np(VPP) 

1 
1 
1 
1 
1 
1 
1 
1 

Latency 

4.35 ms 
4.61 ms 
4.81 ms 
6.76 ins 
17.2 ms 
17.3 ms 
18.9 ms 
11.5 ms 

Data size 
64 M 

4.82 
2.93 
1.77 

0.954 
19.7 
22.5 
15.8 
15.9 

(Byte) 
256 M 

8,40 
6.65 
4.71 
2.97 
19.1 
22.4 
17.6 
19.5 

created by master processes on the SR. Performance results are summarized in 
Table 1.6, where np(SR) and np(VPP) are the numbers of processes on the SR 
and the VPP, respectively. As shown in this table, performance of MPI.Send 
was lower than that of MPI_Recv on the SR. We consider that this result is 
caused partly by the performance difference in inter-machine data transfer by 
TCP raw socket connections shown in Table 1.5. We notice that performance 
of inter-machine data transfer is lower with increase of the number of processes 
on the SR. From these results, it is considered that the performance of remote 
I/O operations with multiple user processes was degraded due to the poor per­
formance in one-way trip inter-machine data transfer from the SR to the VPP 
with multiple user processes. 

3.2 Performance measurement between an 
SCore PC cluster and a Linux workstation 

Performance of MPI communication was also measured on the intercon­
nected Linux machines, a Linux PC cluster using the SCore PC cluster system 
(an SCore PC cluster) and a Linux workstation (dual 600 MHz Pentium III 
CPU node, Linux SMP kernel 2.4.17). The SCore PC cluster has one server 
node and eight computation nodes. Each node was a dual 1.26 GHz Pentium 
III CPU node. All the nodes except the server node have dual network connec­
tions, Gigabit Ethernet (1 Gbps, foil duplex mode) and Myrinet2000 (2 Gbps) 
via a Gigabit Ethernet switch and a Myrinet2000 switch, respectively. Each 
computation node has a 64-bit PCI NIC (Intel PRO/1000). The server node was 
connected to the Gigabit Ethernet switch with 100 Mbps bandwidth and full 
duplex mode. The SCore PC cluster was connected to the Linux workstation 
with Gigabit Ethernet via two Gigabit Ethemet switches (NetGear GS524T). 
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Table 1.7. Latencies and transfer rates of raw TCP socket connections between a computation 
node in an SCore PC cluster and a Linux workstation via Gigabit Ethernet. Unit of numbers in 
this table is MB/s. 

Latency 
61 ^s 

Message data size (Byte) 
64 K 1 IM 1 8M 1 64M 1 256 M 
30.1 1 37.2 1 37.3 | 36.9 | 36.8 

Table 1.8. Latencies and transfer rates of inter-machine MPI communication between an 
SCore PC cluster and a Linux workstation. In this table, dynamic and static denotes dynamic 
and static process creation modes, respectively. np(SCore) and np(Linux) are the numbers of 
processes on the SCore PC cluster and the Linux workstation, respectively. Unit of numbers in 
this table is MB/s. 

dynamic 
static 

np(SCore) 
1 
1 

np(Linux) 
1 
1 

Latency 
57.0 IMS 

106.5/is 

Message data size (Byte) 
64 K 1 1 M 1 8 M 1 64 M 1 256 M 
19.5 1 33.9 1 34.6 | 34.9 | 35.0 
18.9 1 33.7 1 35.0 | 35.3 | 35.4 

3.2.1 Performance results of in ter-machine d a t a t ransfer 
using raw TCP socket connections. Firstly, we measured per­
formance of inter-machine data transfer using raw TCP socket connections 
between a computation node in the SCore PC cluster and the Linux work­
station. Performance results are shown in Table 1.7. From this table, it is 
considered that up to 30 % of theoretical bandwidth of Gigabit Ethernet has 
been achieved. These values are compared with performance values of inter-
machine MPI communications later to examine whether there is performance 
degradation in implementing Stampi or not. 

3.2.2 Performance results of inter-machine MPI commu­
nicat ion. Secondly, we measured performance of inter-machine MPI 
communication in the dynamic and the static process creation modes. In the 
dynamic mode, a single user process was initiated on the SCore PC cluster 
and an another user process was invoked on the Linux workstation by a spawn 
function. On the other hand, we initiated a single user process on a computa­
tion node in the SCore PC cluster and the Linux workstation each in the static 
mode. Performance results are shown in Table 1.8. From these results, we 
consider that the performance in both modes is quite comparable to that of the 
raw TCP socket connections. 

4. Related Work 
There are several MPI implementations which intend to support a heteroge­

neous computing environment such as MPICH [12], MP1CH-G2 [13], PACX-
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MPI [14] and so on. There are differences in design policy of MPI implemen­
tations such as extensibility for future computer architecture, flexible com­
munication mechanism in heterogeneous computing environment, well-tuned 
communication method and support of Grid computing environment. 

Inter-machine MPI communication is established by direct connections among 
all the computers in MPICH. On the other hand, MPICH-G2 and PACX-MPI 
uses router process mechanism for inter-machine MPI communication. The 
number of router processes is fixed in both cases. MPICH-G2 uses Globus [15] 
as an underlying communication library to support inter-machine MPI com­
munication on a Grid computing environment. This library is used as a de 
facto standard MPI library in Grid computing. It realizes MPI communica­
tions across multiple computers which are distributed in a wide-area network. 
In this library, a vendor-supplied MPI library is used inside a computer, while 
TCP sockets are used via Globus communication libraries among computers. 
In Stampi, router process is dynamically created according to communication 
mechanism of computers or user's explicit configuration requests. In addition, 
the number of router processes is selectable in a user program. Stampi selects 
the most appropriate MPI library according to a destination of MPI communi­
cation. A vendor-supplied MPI library is used inside a computer, while TCP 
sockets are used in inter-machine MPI communication. 

There is an MPI-I/0 library named ROMIO [16] in MPICH. Interface to a 
lower level library is supplied by ADIO [17]. ADIO supports several kinds of 
file systems. On the other hand, Stampi was developed as a glue for MPI com­
munication and MPI-I/0 operations between different platforms. It provides 
users a computing environment which hides heterogeneity among computers 
for MPI operations. In MPI-I/0 operations using Stampi, a vendor-supplied 
MPI-I/0 library is used inside a computer, while remote I/O operation is car­
ried out by inter-machine communication mechanism of Stampi and a newly 
developed MPI-I/O process. On an I/O server, a vendor-supplied MPI-I/O li­
brary is used as default. 

Since MPICH is designed to be able to replace the communication drivers 
into well-tuned native one, it has several versions based on the hardware plat­
forms. MPICH-GM [18] is one of the derivations of the MPICH library. It 
uses a GM [18] driver for a Myrinet PC cluster. It exploits lower latency and 
higher transfer rates of Myrinet networks. A cluster system, SCore [7], also 
supports Myrinet and Ethernet interconnections among PC nodes. A built-in 
MPI library, MPICH-SCore [19], uses a PM2 [20] driver in intra-machine MPI 
communication with higher throughput. 

5. Summary 
We have reported outline, architecture and preliminary performance results 

of Stampi. 
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In Stampi, not only MPI-1 functions but also MPI-2 functions are supported 
to realize flexible MPI operations in a heterogeneous computing envirormient. 
We have implemented a router process to relay messages from/to user pro­
cesses in private or firewalled networks. In addition, an MPI-I/O process has 
been introduced to realize MPI-I/O operations on a remote machine. 

Through performance measurement test, we observed effectiveness of Stampi 
in both MPI communications and MPI-I/O operations. We observed that peak 
performance of MPI communication from a Hitachi SR8000 to a Fujitsu VPP5-
000 is lower than that in the opposite direction. We also observed the similar 
degradation in raw TCP socket communications. Thus we consider that perfor­
mance of MPI communication from the SR8000 to the VPP5000 was degraded 
by lower performance of raw TCP socket communications in the same direc­
tion. 

MPI communications based on the MPI-2 standard has been also realized 
on an SCore cluster system. Users can select dynamic process creation mode 
based on the MPI-2 standard in addition to static process creation mode based 
on the MPI-1 standard. We achieved sufficient performance m MPI communi­
cations. 

Currently, Stampi is supported on several platforms, for example, scalar 
parallel computers (Hitachi SR8000, IBM SP3, SGI Origin, SGI Onyx, etc.), 
vector parallel computers (Fujitsu VPP5000, NEC SX-5, etc.), workstation/PC 
clusters (Solaris, HP-UX, Linux, FreeBSD, SCore, etc.) and so on. 
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Abstract The advances of parallel and distributed computing demand high-level program­
ming models that support efficient software development and execution. Graphs 
can effectively represent the logical structures of distributed systems and ap­
plications so as to facilitate the programming of distributed applications and 
support efficient mapping of programs to hardware architecture. This chapter 
presents a Graph-Oriented Programming (GOP) model that provides flexible 
graph constructs and graph-oriented primitives to build a programming paradigm 
based on graph topology and also provides a formal specification of software 
architecture for distributed programs. The GOP model creates an abstract pro­
gramming framework and supports dynamic reconfiguration of distributed com­
puting system to implement adaptive computation and fault-tolerance. Various 
computing envirotmients have been developed based on GOP for cluster com­
puting, web service, and component-based computation. 
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1. Introduction 
Parallel and distributed systems have been providing a pervasive computing 

platform, along with the significant advances in network and Internet technolo­
gies, for developing and executing various applications. The application areas 
span fi-om large-scale scientific computing to web service and E-commerce. 
The programming methodologies for parallel and distributed computing are 
still an active research area. Due to the high diversity in application areas and 
system architectures, the modeling of parallel and distributed applications is 
not a plain deed. 

At present, parallel and distributed programming mainly employs the com­
puting paradigms such as message-passing, data-parallel, divide-and-conquer, 
and master-slave models. These paradigms have the limitations in represent­
ing the structuring characteristics of parallel and distributed applications and 
systems. Therefore, high-level programming model is required, which demand 
high flexibility to describe distinctive features of different application require­
ments on the model. The model should be able to describe the logical struc­
ture of different applications in identical way so that a uniform programming 
methodology can be created. It should be scalable to represent computations 
on clusters and on wide-area systems. It should be adaptive to the dynamic 
evolution of the computational pattern of an application and the architectural 
configuration of the underlying system. 

A parallel and distributed application is composed of a collection of func­
tional components called tasks that can be executed concurrently, possibly on 
different machines, with necessary interaction and cooperation. Graph is ide­
ally suited to represent such a logical program structure. The nodes represent 
the tasks and the edges denote the interactions between the tasks. The graph 
structure is flexible to represent different computation and communication pat-
tems. A graph can be scalable to the size of a program and an underlying 
system. A graph is pliable to make dynamic modification to reflect the evo­
lution of the computational requirement of a program and the architectural 
evolution of an underlying system. Different program code can be bound to 
the nodes to build a MPMD program. Attributes can be assigned to the nodes 
and edges to represent the features of a program and the performance of system 
resources. The graphs can be used in an abstract fi-amework to define support­
ive services in parallel and distributed computing, such as task naming and 
grouping, communication and coordination, load balancing, and fault toler­
ance. The graph-oriented programming model can conform to object-oriented 
programming model and provide a powerfiil support to the development of 
graph constructs, primitives, and programs. 

This chapter presents a Graph-Oriented Programming model, called GOP, 
for developing parallel and distributed programs. The GOP model provides 
a high-level abstraction by which a parallel / distributed program is depicted 
as a logical graph. In the graph, the nodes represent the computational tasks 
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and the edges represent the communication and synchronization between the 
tasks. The operations performed by the tasks are defined as local programs 
that are bound to the nodes. Therefore, a distributed program can be speci­
fied. The GOP model can also specify a task-to-processor mapping to execute 
the program. GOP specifies the graph constructs for user to build a program. 
It provides a library of primitives to be called by local programs for varied 
operations based on the graph structure. 

The GOP model has also provided a formal specification method for the 
software architecture of parallel and distributed software. It is a versatile model 
for various computing environments such as cluster computing, web-based ap­
plications, and component-based computation. 

The rest of the chapter is organized as follows. Section 2 discusses the 
related work. Section 3 specifies the GOP model and its features. Section 4 
introduces the computing frameworks based on the GOP model. Section 5 
gives the conclusions and fixture work. 

2. Related Work 
Graph-based programming has been a prosperous approach of parallel com­

puting for decade. Graphical programming languages, libraries, and environ­
ments have been developed as visual programming tools to ease parallel pro­
gramming and assist the software development on parallel systems. 

CODE [1,15] is a graphical parallel programming language in which a user 
can create a parallel program by drawing a dataflow graph that shows the com­
munication structure of the program. The graph consists of nodes to represent 
computations (or shared variables) and arcs to represent the data flow. HeNCE 
[3] is a graphical language for creating and running parallel programs over 
a heterogeneous collection of computers. Differing from CODE, the graph 
in HeNCE shows the control flow of a program [16]. PYRROS [26, 27] is 
a compile-time scheduling and code generation tool for parallel program on 
distributed-memory architecture. It provides a task graph language for cre­
ating the task graph for a program, editing the associated C code, specifying 
the weights of computation and communication operations, and the maximum 
number of available processors. VPE [17] is a visual parallel programming en­
vironment that provides a simple GUI for creating message-passing programs 
and supports automatic compilation, execution, and animation of the programs. 

Some graphical programming tools provide pre-defined computational tasks 
or program structures for specific applications. VDCE [23, 24] is a software 
development environment that provides task libraries for building large-scale 
applications on the network of heterogeneous computers at geographically dis­
tributed sites. CAPSE environment [12] provides tools for performance pre­
diction in the development of parallel programs based on the graphical creation 
and editing of the scalable workload characterizations of MIMD algorithms. 
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Some graphical programming environments aim to support code reuse. Tracs 
[2] is a graphical programming environment that promotes a modular approach 
for application development across heterogeneous machines on a local net­
work. P-RIO [13] is a modular parallel programming environment that pro­
vides an object-based software construction methodology with modularity and 
code reuse. 

Finally, there are visual programming environments that adopt object-orient­
ed technology. Prograph [20, 22] is an object-oriented visual programming 
language and a development environment on Macintosh platforms. Visper [21] 
is a distributed object-oriented environment that supports visual programming 
development, object (process) groups, and agent-based system management. 

The projects discussed above are graph-based programming languages and 
environments in which graph is simply used as a visual representation of a pro­
gram structure. The code, especially the inter-node communication and syn­
chronization, is programmed in the convention of procedural languages (e.g., 
C, FORTRAN) and message passing libraries (e.g., MPI, PVM, SOAP). A ma­
jor shortcoming of these existing works is that the design model is not mapped 
to the implementation model, thus there is a big gap between the design and im­
plementation support. Differently, our GOP model harnesses graph-oriented 
concept. Aa graph is not only used as the representation of program structure 
but also specifies the operations of the program based on the topology of a 
graph. For example, the communication primitives can be defined using the 
relative references of source and destination nodes in the graph, such as prece­
dent and successor, parent and children, root and leaves, instead of using node 
IDs. The graph-oriented approach creates a flexible high-level programming 
model which allows a program adaptive to the parameters of the program and 
the imderlying system such as problem size and number of processors. As an 
abstract representation of software, the GOP model also provides a framework 
for the specification of software architecture. It can also support dynamic re­
configuration to match the evolution of computational requkements and system 
resources. With an object-orientation extension, this can be achieved through 
reflection. 

3. GOP Model 
GOP (Graph-Oriented Programming) is a graphical programming model for 

parallel and distributed programming. It specifies the graph constructs and 
primitives to develop different programs. With the graph-oriented concept, 
GOP provides a high-level abstraction of program structure that is appropriate 
to be defined and implemented in object-oriented method and other program­
ming paradigms. 
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Figure S. 1. The GOP model 

3.1 Graph Specification 
In GOP, a program is defined as a logical graph, G(N, E), where iV is a set 

of nodes and £ is a set of edges. The nodes represent the computational tasks 
of the program. Each edge links a pair of nodes, denoting the relationship 
between them. The relationship can be execution precedence, data dependency, 
and commimication requirement. The graph represents the logical structure of 
the program. The edges can be directed to denote unidirectional data flow 
or control flow. Otherwise, an edge without direction allows bi-dkectional 
interaction between the nodes. 

Associated with the nodes is a collection of local programs (LPs). Each 
node is bound with an LP that provides the program code to be executed by the 
node. The communication operations specified on the edges are unplemented 
in the LPs by calling correspondent message-passing primitives. The nodes of 
a graph can be allocated to multiple processors and be executed concurrently. 
The GOP model can specify the node-to-processor mapping. In general, the 
GOP model consists of the following components. 

(1) Logical graph: a logical graph (directed or undirected) defines the struc­
ture of a program in which the nodes represent the computational tasks and the 
edges specify the relationships between the nodes. 

(2) Local programs: a collection of local programs (LPs) specifies the oper­
ations performed by the nodes. 

(3) LP-to-node mapping: the mapping binds the LPs to the nodes. 
(4) Node-to-processor mapping (optional): the mapping allocates the nodes 

to the processors to execution. When a program does not explicitly specify this 
mapping, the runtime system will use a default mapping strategy. 

Figure 2.1 manifests the construction of the GOP model. In the GOP-based 
programming, a programmer first constructs a logical graph to describe the ab­
stract structure of a program and writes associated logical programs. The LPs 
can be written in any languages supported by the implementation system. The 
LPs also invoke the pre-defined primitives to perform the communication and 
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coordination operations specified by the edges. The LPs are bound to the nodes 
by a LP-to-node mapping. The node-to-processor mapping is an optional com­
ponent that can be specified before submitting the program to execution. The 
constructs of a GOP-based program can be specified as following: 

(1) Logical graph 
Let LGfraph be the class of logical graph. Graph-name is the identifier of a 

logical graph. Nodejio is the ID of a node. 
<Logical-graph> ::= LGraph Graph-name '=' ' { ' '{'<set-of-nodes>'y, 

' { ' <list-of-edges>y ' } ' . 
<set-of-nodes> ::= <range-of-nodes>\<node-list>. 
<range-of-nodes> v.— <node-no >..<node-no>. 
<node-list> ::= <node-list >, <nodejio>\<nodejjo>. 
<list-of-edges> ::= <list-of-edges>,'{' node-no, nodejio ' } ' | ' { ' node-no, 

node-no ' } ' | e . 
<node-no> : : = { 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 } . 
(2) Local programs 
<Local-program> ::= code of a programming language and a library of 

primitives. 
(3) LP-to-node mapping 
Let LMap be the class of LP-to-node mapping. Lmap-name is the identifier 

of an LP-to-node mapping. LPJd is the name of a local program. An LP-to-
node mapping is defined as a set of {nodejio, LPJd} pairs that binds the node 
nodejio with the local program LPJd. 

<LP-to-node-mapping> ::-LMap Lmap-name '=' ' { ' <node-lp-pair>'y. 
<node-lp-pair> ::= <node-lp-pair >, ' { ' <node-no>, <LP-id>'}' | ' { ' 

<node-no>, <LP-id>'}' | e . 
<LP-id> ::= { a-z | A-Z | _ | 0-9 } . 
(4) Node-to-processor mapping 
Let PMap be the class of node-to-processor mapping. Nmap-name is the 

identifier of a node-to-processor mapping. Processor Jd is the ID of a pro­
cessor. A node-to-processor mapping is specified as a set of {node-no, pro­
cessor Jd} pairs by which node-no is mapped to processorJd. The node-to-
processor mapping is an optional construct. If omitted, a default mapping will 
be used. 

<Node-to-processor-mapping> ::-FMsap Nmap-name '=' ' { ' <node-pro-
cessor-pair>'}' . 

<node-processor-pair> ::= <node-processor-pair>,'{' <node-no >, <pro-
cessorJd>'}' | ' { ' <node-no>, <processor-id>'}' \ e . 

<processor-id> ::= system-dependent id. 

The GOP model is independent from any language and platform. It can be 
implemented on different hardware and software platforms such as clusters and 
distributed systems on top of PVM, MPI, and CORBA. The local programs can 
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Figure. 2.2. Logical graph of a master-slave algorithm 

be written in different languages (such as Java, C, and C++), depending on the 
implementation. 

The GOP model builds a high-level framework for software architecture 
[10, 11] which supports the architectural definition of parallel and distributed 
software. The GOP modularizes a program as a graph. With regard to the 
non-intuitive structures of parallel and distributed programs, GOP enables pro­
grammer to visually describe the abstract structure and specify the semantic 
context of a program such as data dependency, task precedence, and synchro­
nization among concurrent tasks. The GOP model establishes a foundation to 
the architectural design of parallel and distributed programs, which is helpful 
to improve the efficiency of software development. The model can enhance the 
understandability of the complex logical structures of parallel and distributed 
programs. 

As the support for software architecture, the GOP model is convenient to 
define the abstract structure of a family of software system. Using GOP, for 
example, we can depict the generic structure of a master-slave algorithm. Fig­
ure 2.2 shows a logical graph of master-slave computation with one master and 
four slaves. Node 0 is the master that runs the local program Master. It is the 
coordinator of entire computation. Other nodes are slaves running the local 
program Slave to perform certain computation. They are under the control of 
the master. 

With the GOP graph constructs, the master-slave program can be defined as: 
(1) Logical graph: LGraph msgraph = {{0..4}, {{0,1}, {0,2}, {0,3}, {0,4}}}; 
(2) LP-to-node mapping: LMap Imsmap = {{0, "Master"}, {1, "Slave"}, 

{2, "Slave"}, {3, "Slave"}}; 
(3) Node-to-processor mapping: PMap pmsmap = {{0, "hostO"}, 

{1, "hostl"}, {2, "host2"}, {3, "host3"}}; where hostO to host3 are the names 
of the hosts to run the program. 

The master-slave program can implement any computation specified by the 
local programs. For example, the programs can implement client-server com­
puting such as file server and web server. The programs can also accomplish 
parallel computing where the master acts as the task allocator and the slaves 
run the tasks in parallel. Hence, the GOP model provides an abstract represen­
tation for a family of programs that have an identical structure. 
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3.2 Graph-oriented Operations 
In the GOP model, a library of graph-oriented programming primitives can 

be defined based upon the semantics of graph. The LPs can call these prim­
itives to implement various operations in the graph-oriented programming. 
Users can also define custom prunitives in the similar graph-oriented seman­
tics. The graph-oriented prunitives can be basically classified into four cate­
gories: 

• Communication and synchronization 

These primitives support communication operations for passing mes­
sages ixom one node to others, such as unicast, multicast, and broadcast. 
The LPs call the primitives to fulfill the communications associated with 
the edges and to synchronize the operations of the nodes. 

• Subgraph derivation 

The primitives aim to derive subgraphs, such as the shortest path and 
spanning tree, of a graph. Many distributed algorithms include the con­
struction of some form of subgraph deriving from an original graph to 
obtain optimal solution. The primitives are usefial to these algorithms. 

• Query 

The primitives examine the attributes of a graph such as the number of 
nodes, the current binding of an LP to a node and whether an edge exists 
between two nodes. The query provides a basis for the operations of 
system control and reconfiguration. 

• Graph update 

The primitives support dynamic reconfiguration of a graph. For exam­
ple, there are primitives to insert or delete nodes and edges in a graph. 
Also, the LP-to-node mapping and node-to-processor mapping can be 
dynamically altered at runtune. The dynamic reconfiguration of a pro­
gram graph refiects the adaptation of distributed computing in response 
to varying computational requirements and available resources. 

In the graph-oriented primitives, the references to nodes and edges are gen­
erally based on relative naming. The primitives do not explicitly indicate the 
nodes and edges involved. Instead, the relative positions of the nodes and 
edges are specified such as precedents, successors and neighbors. For exam­
ple, in Figure 2.2, the "Precedents" of the master are all slave nodes and the 
"Successor" of all slaves is the master node. In a GOP-based program, new ref­
erences can be derived by carrying out set operations on existing references. 
For example, the neighbors of a node are the union of its precedents and suc­
cessors. 
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A collection of message passing primitives including unicast, multicast and 
anycast can be called in the LPs for inter-node communication. In Figure 2.2, 
the master can multicast a message to the slaves by the multicast primitive 
MsendQ using the reference "Precedents": 

Msend(Precedents, message); 

Each slave node can receive the message by the anycast primitive ArecvQ 
that receives a message from any of the nodes specified by the reference "Suc­
cessor", which refers to the master in this example: 

Arecv(Successor, message); 

The interaction between the master and the slaves can be accomplished by 
a composite of communication primitives. For example, the master can send 
a message to query all slaves and wait for the responses using Msend() and 
Mrecv() primitives: 

Msend(Precedents, query.command); 
Mrecv(Successors, result-buffer); 

On the other side, each slave receives the query and sends the result back to 
the master as: 

Arecv (Successor, command); 
if (command = query) { 

process the query; 
Asend (Successor, result); 

} 
The class of logical graph LGraph specified m Section 3.1 provides a gen­

eral specification of a graph structure. It can be used to describe any type of 
graphs. However, an algorithm is usually designed on a specific graph topol­
ogy, e.g., tree, hypercube, or mesh. The algorithm needs to operate with spe­
cific semantics and constraints on a particular graph topology. To support the 
topology-specific operations, the GOP model allows programmers to derive 
new graph type, such as a tree or a star, fi-om the basic LGraph along with new 
primitives based on topology-specific semantics and operations. For a tree, for 
example, there is one root and each node has one ancestor and one or more 
descendants. The primitives for tree-specific operations can be defined with 
the references as parent, children, siblings, root, and leaves. 

An example of graph derivation is a new graph type created for the master-
slave computation shown in Figure 2.2. The new type of graph is called Star 
that is derived from the class of LGraph: 

<Star-graph>::= Star Star-name '=' ' { ' <Logical-graph>, ' { ' <center-
node>'}','{' <set-of-leaves > ' } ' ' } ' • 

<center-node>: := <node-no >. II master node 
<set-of-leaves>:~ <node-list >. II all slave nodes 

where <Logical-graph>, <nodejio >, and <node-list> are specified in Sec­
tion 3.1. This new type of graph constrains the topology as a star that consists 
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of one center node and a number of leaf nodes. Every leaf is connected to the 
center node. 

With the type of star, the primitives can be redefined to directly implement 
intuitive, star-specific operations. To perform the query operations as above, 
the master at the center can make use of the star-specific primitives where the 
reference to the slaves is omitted because it is implied in the primitives: 

SendToLeaves(query .command); 
RecvFromLeaves(result_buffer); 

The slave nodes receive the query command and send the result back to the 
master using the primitives as: 

RecvFromCenter(command); 
SendToCenter(result); 

3.3 Dynamic Reconfiguration 
As a framework for software architecture, the GOP model also manifests the 

dimensions in which the software can evolve. Distributed applications demand 
the capability of dynamic reconfiguration to adapt to the evolving computa­
tional requirements and execution environment. GOP facilitates the dynamic 
reconfiguration of a software system with the support of graph-oriented opera­
tions. 

Traditionally, the configuration of a parallel / distributed software contains: 
(a) a set of software components; (b) the interconnections between the compo­
nents that specify the interactions between the components; (c) the mapping of 
the components to target hosts [5]. The configuration is closely related to the 
concept of software architecture. Dynamically reconfigurable software system 
is sometimes called a system with dynamic architecture [18]. 

Dynamic reconfiguration is needed in many circumstances of distributed 
computing. In distributed applications, the workload is often dynamically gen­
erated in individual components. The applications require dynamic transfor­
mation in its structure to handle the change of workload distribution. New 
nodes can be added to a graph to share the increasing workload. A node can 
also be removed from a graph when the node fails to work. 

The characteristics of the GOP model determine the feasibility for dynamic 
reconfiguration, hi GOP, local programs (LPs) are separated fi'om a graph 
topology. The LPs may not share any information except the structure of a 
logical graph. The LPs need no direct reference to each other for interaction. 
The LPs bound to individual nodes communicate with one another through 
relative naming. This feature allows the modification to a graph meanwhile 
keeping the compatibility of the LPs on the altered graph. The GOP model 
specifies the query primitives to examine the structure of a graph by which 
the proper reconfiguration can be determined. Furthermore, the scope of valid 
reconfiguration can be constrained within a specific graph topology as the valid 
primitives of graph update are specified based on the graph topology. The 
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Figure 2.3. Add new leaves to the graph 
reconfiguration of a graph can be defined at a high level ui terms of logical 
graph, making it easier to understand and manage. 

With an object-oriented extension, the GOP model can support dynamic 
reconfiguration through inheritence and reflection. As an example, consider 
the dynamic reconfiguration of the master-slave graph shown m Figure 2.2. 
The master can dynamically add new slaves to or remove existing slaves from 
the graph according to the runtime workload. Figure 2.3 shows that four slaves 
are added to the graph. A new slave can be added to the graph using the 
primitives of graph update as following: 

Node newLeaf = new Node(node_no); // create new leaf 
Edge newEdge = new Edge(newLeaf, centerjiode); // create new 

edge 
AddNode(graph-name, newLeaf); // add new leaf to graph 
AddEdge(graph-name, newEdge); // add new edge to graph 

The dynamic reconfiguration in Figure 2.3 preserves the star topology. Nev­
ertheless, dynamic reconfiguration can also create a new graph topology that is 
different fi'om the original one. The GOP model implements such a dynamic 
reconfiguration by deriving a new graph type that extends the original one. The 
primitives of the new graph type can be invoked to transform the original graph 
to the new topology. Let us use the graph derivation to reconfigure the graph 
on the right side of Figure 2.3. Assume that the master is finally overloaded 
as more and more slave nodes are added to the system, a new master node 
will be added into the graph. To achieve this goal, a new type of graph called 
StarMC is defined which extends the star topology to permit the coexistence 
of more than on center. Figure 2.4 shows such a reconfiguration that adds an 
additional master to the original star. In the multi-center star, each slave is 
Imked to each of the masters. This reconfiguration can be implemented by the 
following primitives: 

Node newCenter = new Node(node_no); // create a new center 
AddNode (graph-name, newCenter); // add new center to graph 
for(each leaf in the graph) { 

Edge newEdge = new Edge(leaf, newCenter); // create a new 
edge between each leaf and the new center. 

AddEdge = (graph-name, newEdge); // add the edge to the graph 

} 
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Figure 2.4. Add a new center to a star 
The behavior of the master-slave program with multiple centers should be 

adjusted accordingly. In StarMC, some primitives should be redefined. For 
example, the communication primitive SendToCenter( ) should be redefined 
for the leaves to send a message to one of the centers to balance the workload 
between the masters. The primitive of adding a new leaf should be redefined 
to link the new leaf to each of the centers. On the other hand, the original local 
programs are still usable on the new topology because the graph-oriented op­
erations will be automatically adjusted based on the adaptive implementation 
of the primitives in the StarMC. 

4. Applications of GOP 
We have developed different programming environments to implement the 

GOP model for cluster computing, web-based computation, and component-
based computation. 

4.1 ClusterGOP 
ClusterGOP [8] is a software environment to implement the GOP model 

for cluster computing. It provides a visual user interface and a fi-amework for 
developing parallel and distributed programs on cluster systems. The user in­
terface is a visual programming environment. When building an application, a 
programmer starts to draw a logical graph in the graph design editor. Then, the 
programmer uses the text editor to write the LP code and binds to the nodes 
of the logical graph. After that, the whole application is ready for compila­
tion and execution. To run the program, the graph nodes will be mapped to 
the processors m the cluster according to the user-specified node-to-processor 
mapping or a default mapping strategy. 

The ClusterGOP environment provides a library of primitives for communi­
cation, synchronization, query, and graph update. The LPs can call these prim­
itives. The communication and synchronization primitives closely conform to 
the MPI (Message Passing Interface) standard [14] and are implemented with 
the MPI fimctions. 

When compiling the application, the ClusterGOP envirormient converts the 
logical graph into XML (Extensible Markup Language) format [25]. Then, 
ClusterGOP transfers the necessary data (including the XML graph, LPs, and 
ClusterGOP library) to target machines and compiles the application. After 
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that, ClusterGOP starts to execute the application. Each target machine con­
tains two runtimes to run the programs. One is the ClusterGOP runtime, which 
is a background process to support the query, update and consistency of a graph 
structure. When updating a graph, the runtime will block other machines from 
updating the graph and synchronize the graph update made on different ma­
chines. The other is the MPI runtime, which implements the ClusterGOP com­
munication and synchronization primitives. ClusterGOP uses the MPI library 
as the low-level implementation of inter-process communication. 

4.2 WebGOP 
WebGOP [6] is a framework for constructing web-based distributed applica­

tions. WebGOP uses object-oriented method to support software architecture. 
It specifies the architecture of a distributed computing system with the graph 
objects that are separated from the programming of functional components. 
The object-oriented method also benefits the reusability of the fimctional com­
ponents and the software architecture. With the graph objects and the built-in 
graph-update facilities, dynamic reconfiguration of an application can be im­
plemented. 

The WebGOP framework defines the graph constructs as the foundation to 
build the GOP-based web applications. The framework consists of a Web­
GOP runtime, a monitoring and management module, and a security protection 
module. The core of the WebGOP runtime is the distributed representation 
and management of a graph on which a set of graph-oriented message pass­
ing primitives and a set of basic graph update primitives are provided as the 
APIs for programming web applications. The WebGOP runtime translates the 
graph nodes and nodes groups into web addresses. Several graph derivation 
operations such as the shortest path, minimum spanning tree are built in the 
runtime. 

The monitoring and management model is responsible for helping user to 
manage, debug and monitor the applications. The module also acts as the 
front-end user interface for application loading, deployment, activation, and 
dynamic reconfiguration. 

Reliable and flexible security protection is essential to the web applications. 
As an open system running over different administrative domains, WebGOP 
should control user access to the resources by discerning the permissions. The 
security protection module is provided for this purpose based on cryptic com­
munication and digital signature identification. 

A prototype of WebGOP is developed in a heterogeneous network environ­
ment consisting of a Sim Ultra Enterprise server 10000, several Sim Solaris 
workstations and Microsoft Windows 2000 workstations. The prototype is im­
plemented with Java and Apache SOAP (Simple Object Access Protocol) [4]. 
Since SOAP has become de facto standard protocol for web services, WebGOP 
uses it to realize the compatibility in the web environment. The prototype pro-
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vides a communication middleware to support the interactions between the 
components of distributed web applications and a graph-oriented framework 
for architectural modeling and programming. Sample applications have been 
developed on the WebGOP framework to evaluate the performance of the pro­
totype. For example, a master-slave system is constructed for web service and 
the dynamic reconfigurations shown in Figure 2.3 and Figure 2.4 are imple­
mented. 

4.3 ComponentGOP 
ComponentGOP [7] provides a new approach to support the creation and 

reconfiguration of distributed component-based software (CBS). Distributed 
software can be viewed as a collection of building blocks (called components) 
that interact with each other through message passing. ComponentGOP im­
plements the GOP model in component-based computing based on a generic 
middleware such as CORBA [9]. ComponentGOP creates a graph-oriented 
framework for modeling and constructing component-based software. The ar­
chitectural design of CBS can be simplified to a higher level with graph ab­
straction and pre-defined graph patterns. It also acts as the communication 
middleware for distributed components. 

The ComponentGOP framework consists of a configuration manager mod­
ule, a consistency maintenance module, and a runtime module. The Compo­
nentGOP runtime includes the APIs that provides a set of graph-oriented prim­
itives for programming component-based software and the ComponentGOP 
LIB for compiling and executing the applications. The kernel of the runtime is 
the distributed representation and management of graphs. Based on the kernel, 
a set of graph-oriented primitives are created for message passing, graph up­
date, and query. The configuration manager module acts as the front-end user 
interface for component loading, deployment, activation, and dynamic recon­
figuration management. When a graph needs dynamic reconfiguration, soft­
ware consistency should be maintained among distributed components. The 
consistency maintenance module is used for this purpose. 

A prototype of ComponentGOP has been implemented on top of CORBA 
using Java and VisiBroker (a CORBA compliant platform) in a heterogeneous 
network environment with Sun Solaris workstations and Windows 2000 work­
stations. In the prototype, the ComponentGOP LIB is divided into two sub-
libs: GOPORBXIB and GOPXIB. The GOPORBXIB mainly implements 
the commimication-related primitives that are mapped to the CORBA method 
invocations. The implementation of GOPORBXIB is based on CORBA DII 
(Dynamic Invocation Interface), DSI (Dynamic Skeleton Interface) and CORBA 
compiled client stubs and server skeletons. The GOP_LIB implements other 
primitives such as graph update and query. ComponentGOP encapsulates the 
complicated CORBA programming details in abstract, graph-oriented compo­
nents so that the component-based programmmg can be simplified. 
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5. Conclusions 

In this chapter, we have presented the GOP model for graph-oriented pro­
gramming. The GOP model provides a new framework for constructing the 
logical structure of a distributed program in terms of graph. The operations 
of the program are specified on the graph structure. The model presents a 
high-level abstraction of program logic to support the formal specification 
of software architecture. Distributed programs built on the GOP model are 
suited to undertake dynamic reconfiguration at runtune in response to the evo­
lution of computational requirements and underlying systems. New comput­
ing fi-ameworks and middleware can be developed based on GOP to implement 
graph-oriented programming in different parallel and distributed environments. 
We have implemented the graph-oriented computing environments for cluster 
computing, web-based computation, and component-based computation. 

We will design a formal specification of the graph-oriented model. We be­
lieve that the graph grammar based formalism is a suitable approach for the 
formal specification. For the prototype implementation, we will enrich the 
graph-oriented programming tools including graph editor, task scheduler, and 
program visualization. We are investigating the integration of the GOP-based 
environments such as ClusterGOP, WebGOP, and ComponentGOP under a uni­
fied interface that can be used for application programming in different sys­
tems. 

References 

[1] D. Banerjee and J. Browne, "Complete Parallelization of Computations: Integration of 
Data Partitioning and Functional Parallelism for Dynamic Data Structures", Proc. 10th 
IEEE Int'l Parallel Processing Symp. (IPPS'96), Honolulu, Hawaii, April 15-19, 1996, 
pp.354-361. 

[2] A. Bartoli, P. Corsini, G. Dini and C. Prete, "Graphical Design of Distributed Applications 
Through Reusable Components", IEEE Concurrency, Vol. 3, No. 1, Spring 1995, pp.37-50. 

[3] A. Beguelin, J. Dongarra, A. Geist, R. Manchek and K. Moore, "HeNCE: A Heterogeneous 
Network Computing Environment", Scientific Programming, Vol. 3, No. 1,1994, pp.49-60. 

[4] D. Box, D Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Nielsen, S. Thatte 
and D. Winer, "Simple Object Access Protocol (SOAP) 1.1", W3C Note, May 8, 2000, 
available at http://www.w3.org/TR/S0AP/ 

[5] J. Cao, A, Chan, C. Lee and K, Yu, "A Dynamic Reconfiguration Manager for Graph-
Oriented Distributed Programs", Proc. 1997 Int'l Conf. on Parallel and Distributed Sys­
tems (ICPADS'97), Seoul, Korea, Dec 1997, pp.216-221. 

[6] J. Cao, X. Ma, A. Chan and J, Lu, "WEBGOP: A Framework for Architecting and Pro­
gramming Dynamic Distributed Web Apphcations", Proc. 2002 Int'l Conf. on Parallel 
Processing (ICPP'02), Vancouver, Canada, August 2002, pp.266-275. 

[7] J. Cao, M. Cao and A. Chan, "Architecture Level Support for Dynamic Reconfiguration 
and Fault Tolerance in Component-Based Distributed Software", Proc. 2002 Int'l Conf. on 
Parallel and Distributed Systems (ICPADS'02), Dec. 2002, Taiwan, pp.251-256. 

[8] F. Chan, J. Cao and Y. Sun, "High-level Abstractions for Message-passing Parallel Pro­
gramming", Parallel Computing, Vol.29, No.11-12, 2003, pp.1589-1621. 

http://www.w3.org/TR/S0AP/


36 PARALLEL AND DISTRIBUTED COMPUTING 

[9] CORBA, http://www.corba.org/ 

[10] D. Garlan and M. Shaw, "An Introduction to Software Architecture", in Advances in Soft­
ware Engineering and Knowledge Engineering, Vol. II, World Scientific Publishing, 1993. 

[11] D. Garlan and D. Perry, "Software Architecture: Practice, Potential, and Pitfalls", Proc. 
Idthlnt'l Conf. on Software Engineering, Sorrento, Italy, May 16-21, 1994, pp.363-364. 

[12] B. Gruber, G. Haring, J. Volkert and D. Kranzlmtiler, "Parallel Programming with CAPSE 
- A Case Study", Proc. 4th EUROMCRO Workshop on Parallel and Distributed Process­
ing (PDP'96), Braga, Portugal, Jan. 1996, pp.130-137. 

[13] O. Loques and J. Leite, "P-RIO: A Modular Parallel-Programming Environment", IEEE 
Concurrency, Vol. 6, No. 1, Jan-Mar 1998, pp.47-57. 

[14] The Message Passing Interface (MPI) Standard, http://www-unix.mcs.anl.gov/mpi/ 

[15] P. Newton and J. Browne, "The CODE 2.0 Graphical Parallel Programming Language", 
Proc. ACMInt'l Conf. on Supercomputing (Supercomputing'92), Washington D.C., July 
1992,pp.l67-177. 

[ 16] P. Newton, "Visual Programming and Parallel Computing", Workshop on Environments 
and Tools for Parallel Scientific Computing, Walland, TN, May 26-27, 1994. 

[17] P. Newton and J. Dongarra, "Overview of VPE: A Visual Environment for Message-
Passing", Proc. 4th Heterogeneous Computing Workshop, Santa Barbara, CA, April 25, 
1995. 

[18] P. Oreizy and R.Taylor, "On the Role of Software Architecture in Runtime System Re­
configuration", lEE Proceedings-Software Engineering, Vol. 145, No. 5, October 1998, 
pp.137-145. 

[19] PVM, http://www.csm.oml.gov/pvm/ 

[20] T. Smedley and P. Cox, "Visual Languages for the Design and Development of Structured 
Ohjecis", Journal of Visual Languages and Computing, Vol 8, No. 1, 1997, pp.57-84. 

[21] N. Stankovic and K. Zhang, "A Distributed Parallel Programming Framework", IEEE 
Transactions on Software Engineering, Vol. 28, No. 5, May, 2002, pp.478-493. 

[22] S. Steinman and K. Carver, Visual Programming with Prograph CPX, Manning Publica­
tions, 1995. 

[23] H. Topcuoglu, S. Hariri, W. Furmanski, J. Valente, I. Ra, D. Kim, Y. Kim, X. Bing and B. 
Ye, "The Software Architecture of a Virtual Distributed Computing Environment", Proc. 
6th Int'l Symp. on High Performance Distributed Computing (HPDC'97), Portland, OR, 
Aug. 5-8, 1997, pp.40-49. 

[24] H. Topcuoglu, S. Hariri, D. Kim, Y. Kim, X. Bing, B. Ye, I. Ra and J. Valente, "The Design 
and Evaluation of a Virtual Distributed Computing Environment", Cluster Computing, Vol. 
l ,No. l,1998,pp.81-93. 

[25] XML, http://www.xml.org/ 

[26] T. Yang and A. Gerasoulis, "PYRROS: Static Task Scheduling and Code Generation for 
Message Passing Multiprocessors", Proc. ACM Int'l Conf. on Supercomputing (Supercom­
puting'92), Washington D.C., July 1992, pp.428-437. 

[27] T. Yang and A. GerasouUs, "A Parallel Programming Tool for Scheduling on Distributed 
Memory Multiprocessors", Proc. the Scalable High Performance Computing Conference, 
Williamsburg, Virginia, April 26-29, 1992, pp.350-357. 

http://www.corba.org/
http://www-unix.mcs.anl.gov/mpi/
http://www.csm.oml.gov/pvm/
http://www.xml.org/


Chapter 3 

P R O G R A M M I N G CELLULAR AUTOMATA-
LIKE SYSTEMS IN A MULTIMEDIA 
PARALLEL E N V I R O N M E N T 

Mahmoud A. Saber and Nikolay Mirenkov 
Graduate Department of Information Systems 
The University of Aizu, Japan 
8032101@u-aizu.ac.jp,nikmir@u-aizu.ac.jp 

Abstract The cellular automata (CA) models and corresponding algorithms have a rich 
theoretical basis. They have also been used in a great variety of applications. A 
number of programming languages and systems have been developed to support 
the implementation of the CA models. However, these languages focus on com­
putational and performance issues, and do not pay enough attention to program­
ming productivity, usability, understandability, and other aspects of software en­
gineering. In this chapter,we provide an outline of our approach to programming 
cellular automata systems. We also provide a brief explanation of a user interface 
subsystem and discuss concepts and features of a program generator subsystem 
in this environment. We pay special attention to the parallel template programs 
supporting the automatic generation of executable codes from the multimedia 
specifications. 

Keywords: Cellular automata, self-explanatory components, algorithmic film format.template 
programs, multimedia interface 

1. Introduction 
In this chapter, We present a environment oriented to programming cellular 

automata systems where global behavior arises from the collective effect of 
many locally interacting, simple components. CA systems are distinguished 
from parallel computing systems based on the scale of number of processors 
involved in each of them. Most parallel computers contain no more than a few 
dozen processors. In the parallel computing systems, the term massively par­
allel usually describes those few machines that consists of several thousand, 
or, at most tens of thousands of processors. Cellular automata systems involve 
parallelism on a much larger scale, with a number of cells often measured by 
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the exponential notion 10 ̂ . In addition, CAs are extreme manifestation of true 
concurrency, because they does not explicitly specify neither the order (in time) 
nor the place (in space) of performing computational steps. They are started 
in the cellular space then and there, when and where the respective readiness 
conditions are met.Cellular automata systems have long needed a way to un­
derstand their essential features and global behaviors during all phases of the 
life cycle. We designed and implemented a new multimedia envirormient that 
can be used to specify, present, and execute computational algorithms from the 
field of cellular automata (CA) systems. 

The Active Knowledge Studio (AKS) group at the University of Aizu is 
studying, design-ing, and developing multimedia programming envirormients 
for various domains; see, for example, [1]- [5]. These special purpose en­
vironments are developed within the framework of a global environment and 
based on common design and implementation approaches. However, because 
of the orientation to different domains, each environment possesses its own 
features represented through specific multimedia objects and interface panels. 
The multimedia programming environment is based on self-explanatory com­
ponents approach [6]. Self-explanatory components constitute a framework 
for visual representation and specification of objects/processes, based on the 
idea of multiple views and algorithmic multimedia skeletons. A series of mul­
timedia frames represents a set of algorithm features in an algorithmic "filpi" 
format. In this format, computational algorithms become components that are 
accessed and manipulated through a number of views related to its dynamic, 
static, and hierarchical features [7]. algorithmic "Film" is used as a new type 
of abstraction to represent computational algorithms by combining mathemat­
ical and physical concepts [6]. Mathematical concepts are used to convey the 
arithmetic/logic aspects of algorithmic activities. Physical concepts are used 
mainly to convey the spatial and temporal aspects of computation. A film is a 
series of multimedia frames (stills.) One frame represents a view (aspect) of 
an algorithm; many frames represent many algorithmic aspects. Frame views 
are arranged into six special groups. The first three groups visualize 1) com­
putational steps and data structures, 2) variables attached to the structures and 
formulas used in space-time points of algorithm activity, and 3) input/output 
operations. The fourth group consists of frames of an integrated view where 
important features from previous groups are presented altogether. Groups 5 
and 6 are auxiliary views related to the film title, authorship, registration date, 
and links to other algorithms, additional explanations, statistics of the usage, 
etc. Films as pieces of "active" knowledge are acquired in a film database. 
The fihn frames are watchable and editable in a nonlinear order according to 
the user's demands. Therefore, the conventional animation (movie) is a mere 
partial case of our fihn concept. We also consider our fihns as self-explanatory 
components, because multiple views are an excel-lent basis for bridging the 
gap between "syntax and semantics" and understanding the component mean­
ing. 
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Figure 3.1. The architecture of the multimedia parallel programming enviroimient 

An overall architecture of the multimedia environment comprises a multi­
media interface subsystem, a program generation subsystem, a rendering en­
gine, a parser, a template programs library, and metafiles bases (see Figure 3.1). 
We will explain main parts of the environment's architecture in Sections 3-5. 
The work presented here is situated in the context of several research areas 
like pixel rewriters, pixel-level computation, and fine grain parallel computa­
tion. Some of them include software visualization techniques. Pixel rewriters 
are used to explore the variety of interesting computations on, and manipula­
tion of, shape directly in the pixels [8]. These are close to Furnas's BITPICT 
system [9], a pixel rewriting system proposed as a possible model for "purely 
graphical" reasoning. A work of the same area is Yamamoto's VISULAN sys­
tem [10]. It is an extension of Furnas's pixel rewrite programming language. 
Pixel-level computations are used extensively in the early stages of processing 
and parsing images in the area of computer vision. Filters highlight edges by 
enhancing brightness gradients in the pixel array [11], In morphological analy­
sis [12], noisy edges are healed by first dilation. Image processing is central to 
photo manipulation applications of Photoshop type, using pixel operations like 
blurring, sharpening, and color substitution. WinALT [13],[14] is a simulat­
ing system of fine grain algorithms and structures that have a recognizable and 
intuitively clear interface which eases the learning of the system. Graphics is 
used to represent the intermediate and resulting data visually. However, these 
systems usually focus on computational and performance issues, and provide a 
rather "conventional" view of the algorithm description. They pay not enough 
attention to the human abilities, and reserve the graphics and colors to represent 
the intermediate and final results only, while the algorithm structures and steps 
of computation are described in a pure textual form. The rest of this chapter is 
organized as follows. In Section 2, we reconsider the modeling of CA systems 
and in Section 3, the multimedia interface subsystem is briefly explained. In 
Sections 4 the program generator subsystem is described. In Section 5, the 
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features of the parallel template programs are shown, and in Section 6, the 
conclusion is presented. 

2. Cellular Automata Systems Features 
Most entities that exhibit life-like behavior are complex systems made up of 

many elements simultaneously interacting with each other. One way to under­
stand the global behavior of a complex system is to model that behavior with 
a simple system of equations that describe how global variables interact. By 
contrast, the characteristic approach followed in artificial life is to construct 
lower-level models that them-selves are complex systems and then to iterate 
the models and observe the resulting global behavior. Such lower-level mod­
els are sometimes called agent- or individual-based models, because the whole 
system's behavior is represented only indirectly and arises merely out of the in­
teractions of a collection of directly represented parts (agents or individuals). 
As complex system changes over time, each element changes according to its 
state and the state of those neighbors with which it interacts. Complex systems 
typically lack any central control, though they may have boundary conditions. 
The elements of a complex system are often simple compared to the whole 
system, and the rules by which the elements interact are also often simple. The 
behavior of a complex system is simply the aggregate of the changes over time 
of all of the system's elements. In rare cases the behavior of a complex system 
may actually be derived from the rules governing the elements' behavior, but 
typically, a complex system's behavior cannot be discerned short of empiri­
cally observing the emergent behavior of its constituent parts. The elements 
of a complex system may be connected in a regular way, e.g. on an Euclidean 
lattice, or in an irregular way, e.g. on a random network. Interactions be­
tween elements may also be without a fixed pattern, as in molecular dynamics 
of a chemical soup or interaction of autonomous agents. When adaptation is 
part of a complex system's dynamics, it is sometimes described as a complex 
adaptive system. For long time it has been very difiicult to study the behav­
ior of complex systems because the formal models describing them were so 
hard that the main computational modality, represented by the integration of 
differential equations, was intractable even using powerfiil parallel computers. 
The development of computer science in the latest years considerably enlarged 
its application boundaries because of the continuous rise of computing power. 
At the same time research in parallel computing showed evidence of the sig­
nificant potential of parallel computing models, such as cellular automata and 
neural networks, in representing a valid alternative to differential calculus in 
the description of complex phenomena [15]. This occurs especially when dif­
ferential equations cannot eflSciently be solved because of their complexity or 
when is very difiicult to model the problem being solved in terms of differen­
tial equations. Cellular automata (CA) are very effective in modeling complex 
systems because they can capture the essential features of systems in which 
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the global behaviour arises fi^om the collective effect of large numbers of lo­
cally interacting simple components. CAs are decentralized spatially extended 
systems consisting of large numbers of simple identical components with local 
cormectivity. Such systems have the potential to perform complex computa­
tions with a high degree of efiiciency and robustness, as well as to model the 
behavior of complex systems in nature. For these reasons, CAs and related 
architectures have been studied extensively in the natural sciences, mathemat­
ics, and in computer science. They have been used as models of physical and 
biological systems, such as fluid flow, galaxy formation, earthquakes, and bio­
logical pattern formation. They have been considered as mathematical objects 
about which formal properties can be proved. They have been used as parallel 
computing devices, both for the high-speed simulation of scientific models and 
for computational tasks such as image processing. In addition, CAs have been 
used as abstract models for studying emergent cooperative or collective behav­
ior in CA systems [16]-[18]. Many programming languages and systems were 
developed to implement cellular automata (CA) based algorithms (see, for ex­
ample [19]-[21].) After a study of the interesting features of the CA model, we 
had the motivation to create a new multimedia representation of the CA model 
that can be manipulated with user-oriented visual interface, and translated to 
efiicient parallel programs, as we are going to explain in the following sections. 

3 . M u l t i m e d i a I n t e r f a c e S u b s y s t e m 

In the case of a conventional language, a source program is input as a text 
with some support of a text editor. In our case of the fihn language, a source 
program can be input as collection of icons, colored shapes, in addition to 
text whenever it is more expressive than other media. Figure 3.2 depicts the 
contents of the multimedia interface subsystem. A special module to perform 
searching and opening operations for fihns, scenes, and frames is considered 
as a multimedia navigator that helps the users to get their needs fi-om the fihn-
base in a user-fi-iendly few steps. The users can create there own films fl-om 
scratch based on their own experience or with the help of an interactive wiz­
ard. After these operations, the user can watch a fihn or its parts and perform 
editittg and composing manipulation. Editing mode allows the specification of 
cellular models. The power of a specification method is mainly related to its 
flexibility, generality, and capability to customize visualizations [22]. While 
watching a fihn is close to algorithm anunation field, an algorithm animation 
visualizes the behavior of an algorithm by producing an abstraction of both 
data and the operations of the algorithm (for a comprehensive view of the 
field, see [23].) These manipulations are divided mto six groups dependmg 
on algorithmic film features (as we have mentioned m the Introduction, these 
features are dhectly represented by six groups of fihn fi-ames). As a result, the 
editing/watching/composing module is created as six sub-modules. Each sub-
module is a multimedia interface to edit, watch, and compose frames of a cor-
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Figure S.3. Panels of Multimedia interface subsystem 

responding group. A metafile reader/writer module is responsible for stormg 
the specifications of the manipulated films m the metafile bases, and fetching 
them to the interface modules whenever they are re-quested. The multimedia 
interface subsystem is developed in JAVA. Figure 3.3 shows some of the panels 
(editing, watching, and, formula attaching panels) developed and used for the 
CA domain. See [24]-[25], for more details about the dtesign and implemen­
tation of this subsystem. In the fikn format, a CA is specified by a series of 
frames (computational steps) and repetitive constructs on sub-series of these 
fi-ames. Each step is defined by a set of substitution rules and a partial order to 
apply on the rules. In its turn, each substitution rule is specified as a parallel 
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Figure S-i- A Frame example 

operation of "find & replace" type applied on all CA cells. Each frame shows 
a view (some features) of an algorithmic step. The frames can be watched 
in either static or dynamic (animated) views. To represent contents of frames 
and orders of their execution, a special icon language has been developed. A 
frame contains a sample grid, and pairs of micro-icons that represent substi­
tution rules applied on the grid, control micro-icons that represent an iteration 
scheme applied on a set of frames, and micro-icons for introducing some ir­
regularity and priority conditions applied on the rules and iteration schemes. 

In Figure 3.4, a frame example divided into three sections is shown. On 
the upper-left section, a sample image where substitution rules can be applied. 
On the bottom section, five pairs of micro-icons are placed down, they are to 
describe rules, and three micro-icons are put up-right; they are -from left to 
right - to define a type of the frame iteration, scheme irregularity, and rule 
priorities. The shown iteration scheme is applied for one scene that consists of 
three frames (1:3). All rules have the same priority. To specify a CA model, 
a set of the illustrated visual elements should be selected, and edited by few 
mouse clicks, then watched in the multimedia user interfaces, after that the 
user can obtain the corresponding executable code as we are going to describe 
in the following section. 

4 . G e n e r a t i n g E x e c u t a b l e C o d e 

After watching the fihn specification from different points of view, and per­
forming new editing/composing operations, a metafile writer module generates 
a program generator metafile. The writer module is considered as a multimedia 
scanner that analyzes fihn sections (scene by scene, frame by frame, etc.), then 
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Figure 3.5. The program generator subsystem 

writes their description in a metafile used in later stages of the program gener­
ation. The program generator metafiles have a common outline that consists of 
a header and body parts. The header part stores global information about the 
film; it consists of the following records: A system (source) grid of cells, The 
size of the grid, Variables declared on the grid. Frame transformations. Types 
of iterations, irregularity of iterations, grid boundaries, and cell neighborhood. 

The body part includes priority conditions to be applied to frame substi­
tutions, types of substitutions, and data of the pairs of cellular patterns to be 
found and replaced. Next, a parsing unit (system parser) performs the analysis 
of the program generator metafile, that is a global type checking. This parsing 
unit recognizes the syntactic structures of algorithmic skeletons. After that, an 
executable code generation takes place. The program generator (PG) (depicted 
in Figure 3.5) consists of semantic template program selector (STPS), target 
program composer (TPC), target program tuner (TPT), target program genera­
tor (TPGs), and conventional compilers. The final product of PG subsystem is 
a target machine (sequential/parallel) executable code. 

PG has a read-only access to the template program library which will be 
discussed later in this section. STPS defines hand-coded template programs 
to be called for representing corresponding computational schemes. STPS se­
lects templates based on a type of the grid (ID, 2D, 3D, etc.), a size of the grid 
(small, medium, big, huge), the number of expected operations on each cell 
of the grid, in addition to, types of boundaries (close/open), neighborhood, it­
erations, and overlapping solving schemes. TPC adjusts the selected template 
programs to be parts of one program. Li other words, it Creates a program of 
template programs by adjusting them from a whole program view. TPT uses 
the declarations of variables, formulas, etc. related to the above mentioned 
syntactic structures to tune the composed program on an "indivisual" basis. 
The tuner output is used by a program generator to create either a sequential or 
parallel C-program which is compiled by a conventional compiler to obtain a 
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target machine code. During the program generation phase, the template pro­
grams library (TPL) is accessed frequently, so, it is important to mention a few 
features related to TPL. Like any library of programs, the contents must be 
high-tech pieces of code written by expert developpers in order to be used by 
users of various levels of skills and experiences. TPL consists of three major 
modules: searchable index, a sequential template programs pool, and a paral­
lel template programs pool. The searchable index is an interface between the 
entire library and outsiders. It faciltate the process of finding the most suitable 
templates in a short time. TPL uses adaptive searching techniques that accu­
mulate its experience over time to improve the searching process. Sequential 
template programs pool is a collection of light-load computational codes to 
be used on a single processor architecture. Meanwhile, parallel template pro­
grams pool is a collection of heavy-load computational codes which are used 
on a parallel architecture. In the following section, we will talk in details about 
parallel template programs. 

5. Creating Parallel Programs 
In this section, we provide some details of parallel template programs (FTP): 

back-ground, classification of parallel template programs, and a look mside a 
parallel template program. 

5.1 Target Machines and Parallel Model 
At the University of Aizu, we use MPICH [26] implementation of Message 

Passing Interface (MPI) [27], on a network of Fujitsu GF400 S machines with 
" Sun UltraSPARC-Iii" processors. A parallel program can be executed over 
a variable number of machines reaches 96 machines connected by 100 Mbps 
network. MPI parallel computational model (Figure 3.6) posits a set of pro­
cesses that have only local memory but are able to communicate with other 
processes by sending and receivmg messages. It is a definmg feature of the 
message-passing model that data transfer from the local memory of one pro­
cess to the local memory of another requires operations to be performed by 
both processes. Message-passing model has become widely used for many 
reasons like universality, expressivity, ease of debugging, and providing high 
performance computation. Two levels of parallelism are supported: (1) coarse 
gram and (2) fine grain parallelism. The coarse grain parallelism is especially 
valid for the strategies of parallelism like master-worker and macro-pipelines, 
where the communication activity is relatively small in comparison with the 
computation performed. In the fine grain parallelism, there is a relatively large 
amount of communication in comparison with the computation done. 
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Figure 3.6. The message passing model 

5.2 Classification of Parallel Template Programs 
It is too difficult to create a single parallel program that enjoy every feature 

of the parallel computational model because of the complex nature of paral­
lelism. We classify PTP into several categories that are expandable over time 
to satisfy user needs and cover the recent technologies and programming tech­
niques. PTPs are selected based on this classification to generate executable 
codes. PTP are classified accord-ing to: 

• Granularity of tasks (coarse grain/fine grain) 

• Parallelism model (data/fimctional) 

• Task assignment (static/semi static/dynamic) 

5.3 Inside Parallel Template Program 
A generic parallel template program (Figure 3.7) consists of non-changeable 

and changeable parts. The non-changeable part is prepared as a ready-made 
program to implement a computational scheme written in C&MPI. It is usually 
a set of nested loops with formal parameters, variables, and bodies of formal 
operations. The changeable part including the formal parameters, variables, 
bodies of formal operations, and positions to be filled out by real parameters, 
variables, and operation bodies, which are specified by user's operations per­
formed through the multimedia inter-faces. For CA models, the PTPs have 
common functions to process the cellular grid; the first basic fimction is the 
pattern discovery, which is responsible for finding all in-stances of the speci­
fied patterns in the grid. Two approaches to search the cellular grid are imple­
mented. The first approach directly searches the whole grid for each pattern 
in turn. This means if there are N patterns related to different substitutions, 
the grid is searched N times. The second approach is to compose N patterns 
into a single larger pattern, and to search the grid for that pattern. Selecting 
the proper searching approach is based on the nature of the CA system. The 
second function is the overlapping detection. Its main task is to analyze the 
discovered instances of patterns; if an overlapping occurs among them, this 
function selects one of the over-lapped patterns to be replaced and discard all 
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Figure 3.7. A generic template program chart 

Others. This decision is taken based on a priority condition specified by the 
user in earlier stages. The third function is pattern replacement. Its task is to 
apply the substitution rules to the processed grid after solving all overlaps by 
the previous function. 

6. Conclusion 
In this chapter, we overviewed the modeling of cellular automata systems, 

briefly explained multimedia interface, described the program generation, and 
showed the features of the parallel template programs. We demonstrated how 
in designing our multimedia environment, we abstract the knowledge as much 
as possible from the underlying computational infrastructure. We also pre­
sented our approach to provide higher level environments that allow the users 
to effectively manage their knowledge, experience, and abilities, as well as, 
their computational resources and domain environments. As a future work, we 
are working on empirical study to measure the self-explanatory factors of our 
multimedia environment. The feedback will be used in improving our work. In 
addition, we will run experiments to measure the improvement of performance 
of our parallel template programs. 
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Abstract 

Keywords: 

We review 1-dimensional FFT algorithms for distributed-memory machines 
with vector processing nodes. To attain high performance on this type of ma­
chine, one has to achieve both high single-processor performance and high par­
allel efficiency at the same time. We explain a general framework for designing 
1-D FFT based on a 3-dimensional representation of the data that can satisfy 
both of these requirements. Among many algorithms derived from this frame­
work, two variants are shown to be optimal from the viewpoint of both parallel 
performance and usability. We also introduce several ideas that further improve 
performance and flexibility of user interface. Numerical experiments on the Hi­
tachi SR2201, a distributed-memory parallel machine with pseudo-vector pro­
cessing nodes, show that our program can attain 48% of the peak performance 
when computing the FFT of 2^^ points using 64 nodes. 
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1. Introduction 
The Fourier transform is one of the most fundamental tools in science and 

engineering and has applications in such diverse areas as signal processing, 
time series analysis and solution of partial differential equations. While a 
straightforward computation of the Fourier transform of N points requires 
0{N'^) work, Cooley and Tukey proposed a novel algorithm called the fast 
Fourier transform (FFT) that requires only 0{N log N) work in 1965 [6], 
Since then, many variants of the FFT have been proposed so far, including 
autosort FFT [12][15], FFT for general N [1], FFT for real data [9][15] and so 
on. 

The FFT has a large degree of parallelism in each stage of the computa­
tion, and accordingly, its implementations on parallel machines have been well 
studied. See, for example, [5] [13] for implementations on shared-memory 
parallel machines and [2] [7] [9] [10] [13] [14] [16] for implementations on 
distributed-memory parallel machines. 

In this article, we review 1-dimensional FFT algorithms for distributed-
memory machines with (pseudo-)vector processing nodes. This type of ma­
chines have become increasingly popular recently in high-end applications 
such as weather forecasting and electronic structure calculation. Representa­
tive machines that fall into this category include NEC SX-7, Fujitsu VPP5000 
and Hitachi SR2201 and SR8000. 

To attain high performance on this type of machine, one has to achieve both 
high single-processor performance and high parallel efiiciency at the same 
time. The former is realized by maximizing the length of the innermost loops, 
while the latter is realized when the volume and fl-equency of inter-processor 
communication is minimized. We explain a general fi-amework for 1-dimensi­
onal FFT based on a 3-dimensional representation of the data [2][14] that satis­
fies both of these requirements. In designing an FFT routine using this frame­
work, one can consider several possible variants which differ in the way the 
data is distributed among the processing nodes at each stage of computation. 
We examine these variants and point out that two of them are optimal from 
the viewpoint of both parallel performance and usability. They need only one 
global transposition and input/output data using cyclic distribution. One of 
them called the variant zzx coincides with the algorithm proposed by Taka-
hashi [14]. 

Next, we introduce several ideas to fiirther improve the performance and 
flexibility of user interface. Specifically, we describe methods for enhancing 
single-processor performance by increasing the length of the innermost loops 
and enhancing parallel efiiciency by overlapping interprocessor communica­
tion with computation. We also propose an extension that enables the routine to 
input/output data using general block cyclic distributions. The block sizes for 
input/output data can be specified independently by the user and this flexibility 
is realized without increase in the amount of interprocessor communication. 
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The rest of this paper is organized as follows: In section 2 we describe 
the general framework for 1-D FFT based on the 3-dimensional representation 
and find out the best variants among those derived from this framework. Ideas 
for further unprovmg their performance and flexibility of user interface are 
introduced in section 3. Section 4 shows the performance of our program on 
the Hitachi SR2201. Conclusions are given in the final section. 

2. A general framework for 1-D FFT on 
vector-parallel machines 

In this section, we will explain a general framework for designing a 1-
dimensional FFT routine on vector-parallel machines following [2] [3] [14]. 
It is intended to achieve both high single-processor performance and high par­
allel efficiency at the same time and is based on a 3-dunensional representation 
of the data. To derive the framework, we start with the case of 1-D FFT algo­
rithms for vector machines. 

2.1 A 1-D FFT algorithm for vector machines 
based on a 2-dimensional representation of 
data 

The discrete Fourier transform of a 1-dimensional complex sequence 
{/o, /i) • • • 1 IN-I} is defined as follows: 

A T - l 

Ck=Y^fjUj'j^ {k = 0,l,...,N-l), (4.1) 

where u>isf = exp{—27Ti/N) and i = i / ^ . 
When N can be factored as TV = NxNy, the indices j and k can be ex­

pressed in a two-dimensional form: 

j = 3xNy+3v {jx = 0,...,Nx-l, jy = 0,...,Ny-l), {4.2} 

k = k^ + kyNx (A ;^=0 , . . . ,A r^ - l , ky = Q,...,Ny-l).{A3) 

Accordingly, {/j} and {cfc} can be regarded as two-dimensional arrays: 

Ny-t-jy, (4-4) 

Cfe.fea = Ck^+kyN^r- (4-5) 

Using these notations, we can rewrite eq. (4.1) as follows: 

Ny-lN:c-l 
_ \ ^ ST f , X3xNy-\-jy){ka:+kyNa:) 

^K,ky — 2^ 2^ JjxJy'^N 
jy=0 jx=0 

3y=0 \\Jx=0 I I 
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This shows that the Fourier transform of {fj} can be computed by the follow­
ing algorithm proposed by Bailey [3]: 

[Algorithm 1] 

1 Compute c'k^^.^ = ^fj^o fj.Jy^'N^'' by repeating iV^-point FFT Ny 
times. 

2 Multiply c;^.^ by w^*^^ 

3 Compute Cfc„fc„ = E J ^ L V (^k,jy^Ny'' by repeating iV^-point FFT N^ 
times. 

The factor w^ "' appearing in step 2 is called twiddle factor and the step 2 is 
called twiddle factor multiplication. This algorithm requires about the same 
amount of computational effort as the FFT of N data points. It is especially 
suited to vector machines if Ny and N^ are chosen so that both of them are 
0{vN) and the loops over jy and kx are used as the innermost loops in steps 
1 and 3, respectively. Then the innermost loops will have a fixed length of 
0(-\/N) . Moreover, the factor a; is a constant within these loops and can be 
loaded outside the loops. 

2.2 The five-step FFT based on a 3-diinensional 
representation of data 

In the algorithm explained in the previous subsection, we decompose the 
1-D FFT into multiple FFTs of smaller size and use the multiplicity for vec-
torization. In the case of distributed-memory vector-parallel machines, we 
need another dimension to use for parallelization. To this end, we factor TV 
as N = NxNyNz and introduce a three-dimensional representation for the 
indices j and k: 

j = jxNyN,+jyN,+j, (4.7) 

{jx = 0,...,Nx-l, jy = 0,...,Ny-l, j , = 0,...,N,-l), 

(4.8) "x-^iy 

{kx^O,...,Nx-l, ky = 0,...,Ny-l, k, = 0,...,N,-l). 

By regarding the input and output sequences as three-dimensional arrays fj^jyj^ 
and Ck^^ky,k^, we can rewrite eq. (4.1) as follows: 

(4.9) 

This suggests the following five-step FFT [14]: 
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[Algorithm 2: Five-step FFT] 

1 Compute 4̂ ^̂ .̂ ^̂ .̂  = E i ! = " o V j . J „ J . < ^ by repeating iV,-point FFT 
NyNz times. 

jykx 2 Twiddle factor multiplication (I): multiply c'̂ ^ • • by f^^^^^ 

3 Compute ĉ '̂ ,,̂ ,̂ .̂  = ZfjJo ^kjyjAy'' ^^ '^^^^^^^ ^vP^'''' ^'^^ 
NxN^ times. 

4 Twiddle factor multiplication (II): multiply cl^^ky,o, ^Y wĵ ('="+'=«^"). 

5 Compute Cfe,,fe„,fe, = Y!!^'~O <,fe„,j, '^^^ by repeating AT -̂point FFT 
NxNy times. 

Because the operation in step 1 consists of NyN^ independent FFTs, we can, 
for example, use the index jy for vectorization and the index jz for paralleliza-
tion. Steps 3 and 5 can be executed in a similar way. 

2.3 A general framework for vector-parallel FFT 
based on the five-step algorithm 

There are many possible ways to exploit the parallelism in Algorithm 2 for 
vectorization and parallelization. For example, in step 1, we can use the y-
direction for vectorization and the z direction for parallelization, or vice versa. 
Similarly, we have two possible choices in each of steps 3 and 5. In total, there 
are 2^ == 8 possible variants. In this subsection, we clarify which variant is 
optimal from the viewpoint of both parallel performance and usability. 

Let zxy denote the variant which uses z, x and ?/-directions for paralleliza­
tion in steps 1, 3 and 5, respectively. In this variant, the 3-dimensional arrays 
are scattered along the 2;-direction among the nodes in step 1, while they are 
scattered in the x and y-direction in step 3 and 5, respectively. Accordingly, 
redistribution of the array is necessary after step 1 and step 3. This operation is 
called global transposition. Among the eight possible variants, yxy, yzx, yzy 
and zxy need two global transpositions. In contrast, variants yxx, zxx, zzx 
and zzy need only one global transposition and their communication overhead 
is half of the former ones. We can therefore expect that the latter group will 
achieve higher parallel performance and consider only them from now on. We 
illustrate the vectorization and parallelization in the zxx variant in Figure 4.1. 

Now assume that the number of points {Nx, Ny and N^) in the direction 
along which the array is scattered is divisible by P, the number of processing 
nodes, and that we adopt cyclic distribution for scattering the data in each 
direction. From eqs. (4.7) and (4.8), we know that the indices j and k change 
contiguously when indices jz and kx change contiguously, respectively. As 
a result, the input data is distributed in a cyclic manner in j when the array 
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Figure 4-i- Vectorization and parallelization in the zxx variant. 

is scattered in the z-direction, while it is distributed in a block cyclic manner 
with block size Nz when the array is scattered in the j/-direction. Similarly, the 
output data is distributed in a cyclic manner in k when the array is scattered 
in the x-direction, while it is distributed in a block cyclic manner with block 
size Nx when the array is scattered in the y-direction. These observations are 
summarized in Table 4.1 for the four variants. Here, C and BC denote cyclic 
and block cyclic distribution, respectively. 

From the table, we can see that the variants yxx and zzy use different data 
distributions for the input and output data, while zxx and zzx use the same 
(cyclic) distribution. From user's point of view, it seems more natural that the 
FFT routine uses the same data distribution for input and output data. Thus we 
can conclude that the variants zxx and zzx are the best ones judging both from 
parallel performance and usability among the eight variants that can be consid­
ered within our general framework. Of these two, the variant zzx has been 
proposed by Takahashi [14] as an algorithm suited to vector-parallel machines. 

2.4 The detailed algorithm of the variant zxx 
In this subsection, we describe a detailed algorithm of the 1-D parallel FFT 

based on the variant zxx. To this end, we first introduce some notations. Let 
Xp denote the partial array allocated to node p at step i. We also define the 

Table 4-1- Comparison of the four variants. 

Step 

Input 
1 
3 
5 

Output 

Direction of 
transform 

-
X 

y 
z 

-

variant yxx 
BC 
y/z 
xjz 
x/y 

C 

Direction of 
parallelization/vectorization 

variant zxx 
C 

z/y 
xjz 
x/y 

C 

variant zzx 
C 

z/y 
z/x 
x/y 

C 

variant zzy 
C 

z/y 
z/x 
y/x 
BC 
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indices and their ranges as follows: 

i^ = 0 , . . . ,A / -^ - l , jy = Q,...,Ny-l, j ^ = 0 , . . . , A r ^ - l , (4.10) 

kx = Q,...,N^-l, ky = 0,...,Ny-l, k, = 0,...,N,-l, (4.U) 

p = 0,...,P-l, q = 0,...,P-l, (4.12) 

j ' , = 0,...,N,/P-l, (4.13) 

k', = 0,...,N,/P-1.(4.14) 

Here, j'^ and k'^ are local indices corresponding to jz and kx, respectively, and 
are related to the latter in the following way: 

jz=j',P+p, (4.15) 

kx = k'xP+p, (4.16) 

where p is the node number. 
Using these notations, the algorithm can be described as follows: 

[Algorithm 3: Detailed algorithm of the variant zxx] 

1 Data input: x'p{jy,j'z,3x) = fj^NyN.+jyN,+j',P+p-

2 FFT in the a;-direction: 

^p Uy>Jz>^x) = z2j^=Q -^p Uj/iiziixj'^jVj,'"-

3 Twiddle factor multiplication (I): 

^P Uydz' ^x) = Xp Uy^Jz' ^xj^N^Ny• 

4 Data packing for global transposition: 

4^\jy, J'z^ K, Q) = xPiJyd'z, KP + Q)-

5 Global transposition: xf'{jy,j'z,k'x,q) = x''q\jy,j'z,k'x,p). 

6 Data unpacking: 

xfiJ'zP + q, k'x,3y) = Xi''\jy,j'z, k'x, q). 

7 FFT in the y-direction: 

Xp {jz,kx,ky) = 2ZjJ-0 Xp {jz,kx,jy)'^Ny • 

8 Twiddle factor multiplication (II): 

X ^ ' \ k ' x , k y , j z ) = X P i j z , k'x, k y ) j f ' ^ ' ' ' - ' ^ ' ^ ^ ^ \ 

9 FFT in the ^-direction: 

Xp {kx, ky, kz) = z J j / = 0 Xp [kx, ky,jz)l^]^^ ' • 

10 Data output: Ck'^p+p+kyN^+k^N^Ny = Xp {k'x,ky,kz). 
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In this algorithm, the most computationally intensive parts are the FFTs in 
steps 2, 7 and 9. The indexing scheme for array Xp is designed so that the 
index with respect to which the Fourier transform is performed comes last and 
the loop merging techniques to be described in subsection 3.2 can be applied 
easily. 

The computational steps of this algorithm are illustrated in Figure 4.2 for 
the case of TV = 512 and P = 4. Here we used the global 3-dimensional array 
rather than the partial 3-dimensional arrays for illustration to facilitate under­
standing. The numbers m the first and third 3-dimensional arrays correspond 
to the indices of input sequence fj and output sequence Ck, respectively. The 
shaded area represents elements which are allocated to node 0, and the area 
enclosed by a thick line represents a set of elements used to perform a single 
FFT in the x, y or ^-dhection. It is apparent from the figure that (i) the FFTs in 
each direction can be computed within each node, (ii) there is only one global 
transposition, and (iii) the input and output data are scattered with a cyclic 
distribution, as required. 

)fj> 

ix 

1. Data input 
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2. FFT in the x-direction 
3. Twiddle factor 

multiplication (i) 

4. Data packing 
5. Global transposition 
6. Data unpacking 

7. FFT in the ydirection 
8. Twiddle factor 

multiplication (II) 

9. FFT in the Z'direction 10. Data output 

FiguTd 4-^- Computational steps of our FFT routine. 

3. Further improvements 
In this section, we introduce several ideas that can further improve the per­

formance and usability of the 1-dimensional vector-parallel FFT described in 
subsection 2.4. However, all the ideas apply to algorithms based on other vari­
ants as well. 
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3.1 Optimization of Nx, Ny and N^ 

In the derivation given in subsection 2.3, Nx, Ny and N^ for the variant zxx 
were assumed to be arbitrary as long as Nx and N^ are divisible by P. We 
can use this fi-eedom to increase the vector length. From Table 4.1 it can be 
seen that y, z and y-directions are used for vectorization in the FFTs in the 
X, y and 2;-directions, respectively. So we can maximize the single-processor 
performance by maximizing Ny and Â ^ subject to the above constraints. 

3.2 Increasing the loop length by loop merging 
To further extend the vector length, we can use loop merging techniques 

[14]. First, if Nz/P > 1, each processing node computes FFT for multiple 
values of j ^ in step 2 of Algorithm 3. So the loop over j'^ can be merged with 
the loop over jy, extending the loop length to NyN^^/P. 

Second, we can use Stockham's algorithm [ 12] [ 15] suited for vector proces­
sors in performing the FFT in each step. Let n = 2^ and assume that we want 
to compute the FFT of an n-point sequence lo(0,0), lo( l , 0), 
... ,YQ{n - 1,Q). This can be done with the following algorithm. 

[Algorithm 4: Stockham FFT] 
do L = 0, p - 1 

do ?n = 0, a t — 1 
do / = 0, /3L - 1 

YL+i{Um) = YL{l,m) + YL(1 + !}L,m)'^n^'' 
Yt+-,{l,m + aL) = YL{hm)-YL{l + liL,Tn)ui';:^'-

end do 
end do 

end do 

The result is stored in Yp{Q, 0), Fp(0,1), . . . , Yp{0, n - 1). 
Notice that the uj in the innermost loop does not depend on /. This means 

that if we use this algorithm to compute the A/̂ c-point FFT in step 2 of Algo­
rithm 3, we can merge the loop over / with the loop over jy. Combined with the 
loop merging mentioned above, the innermost loop length is finally extended 
to NyN,PL/P. 

Because the loop of length /3i appears UL times in Stockham's algorithm, 
the average length of the innermost loops in step 2 is 

AyV, E S ^ ^ I W L ^ NyN, ^log.Nx 

~ NyN,\og2Nxl2R (4.17) 

Hence the loop length can be increased by a factor of N^ log2 Nxj^P. Simi­
larly, the innermost loop length in steps 7 and 9 can be extended to NxNz log2 Ny/2P 
and NxNy log2 Nz/2P, respectively. 
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3.3 Overlapping the communication with 
computation 

As we have shown in subsection 2.3, the variants yxx, zxx, zzx and zzy 
can attain higher parallel efficiency than other variants because they need only 
one global transposition. However, even one global transposition incurs con­
siderable overhead because the amount of data each processing node has to 
transfer is 0{N/P) and is comparable to the computational work per node 
of 0{Nlog N/P). This is expected to cause a severe problem for future-
generation vector-parallel computers, for the speed of interprocessor data trans­
fer evolves much more slowly than the processor speed. 

To mitigate the problem, we can construct a modified algorithm in which 
the data transfer is overlapped with computation. In this algorithm, the data is 
divided into two parts depending on whether its jy index is even or odd and one 
of them is transferred while the other is computed. The outline of the algorithm 
can be stated as follows: 

[Algorithm 5: Overlapping the communication with computation] 

1 Compute the FFT in the a;-direction using only those elements with even 
jy. Multiply the results with twiddle factors, w^^^ for even jy. 

2 Compute the FFT in the a;-direction using only those elements with odd 
jy. Multiply the results with twiddle factors. At the same time, perform 
global transposition operation for those elements with even jy. 

3 Compute the first log2 Ny — 1 stages of the FFT in the y-direction using 
5only those elements with even jy. At the same time, perform global 
transposition operation for those elements with odd jy. 

4 Compute the first log2 Ny — l stages of the FFT in the y-direction 5using 
only those elements with odd jy. 

5 Compute the last stage of the FFT in the y-direction using all the data. 
Multiply 5the results with twiddle factors. 

6 Compute the FFT in the ^direction using all the data. 

This algorithm exploits the fact that in the first log2 Ny — 1 steps of the y-FFT, 
Scomputations involving elements with even jy and those with odd jy can be 
done separately [15]. As a result, the overhead due to global transposition 
can be hidden if the computing times in steps 2 and 3 are longer than the 
communication time in these steps. 

3.4 Use of user-specified input/output block 
sizes 

In the variant zxx and zzx, both the input and output data are scattered 
among the processing nodes 5 in a cyclic manner. However, some users may 
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need more flexibility of data distribution. For example, block cyclic distribu­
tion is frequently used when solving linear simultaneous equations or eigen­
value problems on distributed-memory machines [4]. So if the user wants to 
connect the FFT routine with these routines, it is more convenient that the FFT 
routine can input/output data using block cyclic data distribution with user-
specified block sizes. Note that the block sizes suitable for input and output 
data may not be the same, so it is more desirable if they can be specified inde­
pendently. 

To construct an FFT routine that meets these requirements, we can use the 
five-step FFT as a basis. Let the block sizes for input and output data be Li and 
L2, respectively, and assume that Nz and N^ are divisible by Li *P and L2*P, 
respectively. Now we scatter the three-dimensional array along the 2-direction 
in steps 1 and 2 of Algorithm 2 using block cyclic distribution of block size Li, 
and along the x-direction in steps 3-5 using block cyclic distribution of block 
size L2. Then, from eq. (4.7), we know that the whole input sequence of length 
N is scattered with a block cyclic distribution of block size Li. Likewise, the 
whole output sequence is scattered with a block cyclic distribution of block 
size JL2- This method requires only one global transposition like the variant 
zxx and leaves the room for vectorization using indices jy, jz and jy in steps 
1, 3 and 5, respectively. 

One shortcoming of this approach is that Ny, which is the length of the 
innermost loops in steps 1 and 5, tends to become small because Nx and Nz 
need to be large enough to be multiples of Li * P and L2 * P, respectively. 
We can mitigate this problem by using loop merging techniques described in 
subsection 3.2. The readers are referred to [16] for more detailed description 
and performance evaluation of this approach. 

4. Experimental results 
We implemented Algorithm 3 on the Hitachi SR2201 [8] and evaluated 

its performance. The SR2201 is a distributed-memory parallel machine with 
pseudo-vector processing nodes. Each node consists of a RISC processor with 
a pseudo-vector mechanism [11], which preloads the data irom pipelined main 
memory to on-chip special register bank at a rate of 1 word per cycle. One 
node has peak performance of 300MFLOPS and 256MB of main memory. The 
nodes are connected via a multi-dimensional crossbar network, which enables 
all-to-all communication among P nodes to be done in P — 1 steps without 
contention [17]. 

Our FFT routine is written in FORTRAN and inter-processor communica­
tion is done using remote DMA, which enables data stored in the main mem­
ory of one node to be transferred directly to the main memory of another node 
without buffering. The FFT in the x, y and z direction in steps 2, 7 and 9 
is performed using Stockham's radix 4 FFT [15], a variant of Algorithm 4 
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which saves both computational work and memory access by computing Y/:,+2 
directly from Y^. 

To measure the performance of our FFT routine, we varied the problem 
size per node, N/P, from 2^* to 2^°. As for the number of nodes P , we 
measured the performance in two cases, namely, P = 1 and P = 64. We 
adopted optimization of Nx, Ny and A''̂  introduced in subsection 3.1, but did 
not incorporate the loop merging technique and overlapping of communication 
and computation. We didn't adopt the modifications to make the input/output 
block sizes user-specifiable, either. Readers interested in the last point are 
referred to the performance results given in [16]. The w's used in the FFT 
and twiddle factor multiplication are pre-computed, so the time for computing 
them is not included in the execution time to be reported below. 

Table 4.2 and Figure 4.3shows the execution time and the performance of 
our routine. From these results, we can see that (i) the maximum performance 
on a single node is 176MFLOPS, which is more than 58% of the peak per­
formance and (ii) parallel performance on 64 nodes is 9.18GFLOPS, which is 
about 48% of the peak performance. 

10 

CO 1 0 

o 
10° 

c3 10 

^ 10 
- + - P = 1 

- • - P = 6 4 

2 " 2'° 2'° 2'" 

Problem size N per node 

Figure 4-3. Performance results for P — 1 and P = 64. 

From these results, we can conclude that the FFT algorithm described in this 
article can attain high performance on a (pseudo-)vector-parallel machine. 

Table 4-2. Performance results for P = 1 and P = 64. 

64 

N/P = 2 " N/P = 2" ' N/P' N/P = 2^ 
130.86MF 
43.33% 

157.07MF 
52.35% 

158.82MF 
52.94% 

176.irMF 
58.7% 

6477.44MF 
33.73% 

8477.41MF 
44.15% 

8146.88MF 
42.43% 

9175.07MF 
47,78% 
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5. Conclusion 

In this article, we reviewed 1-dimensional FFT algorithms for distributed-
memory machines with vector processing nodes. We explained a general frame­
work for designing 1-D FFT based on a 3-dimensional representation of the 
data that can achieve both high single-processor performance and high parallel 
efficiency at the same time. Among the many algorithms derived from this 
framework, we showed that two variants are optimal from the viewpoint of 
both parallel performance and usability. We also introduced several ideas that 
fiirther improve performance and flexibility of user interface. 

We implemented the algorithm on the Hitachi SR2201, a distributed-memory 
parallel machine with pseudo-vector processing nodes, and obtained the per­
formance of 9175 MFLOPS, or 48% of the peak performance, when transform­
ing 2^^ point data on 64 nodes. It should be easy to adapt our method to other 
similar vector-parallel machines. 
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Abstract Cook's Theorem [5, 6] is that if one algorithm for an NP-complete problem 
will be developed, then other problems will be solved by means of reduction to 
that problem. Cook's Theorem has been demonstrated to be right in a general 
digital electronic computer In this chapter, we propose a DNA algorithm for 
solving the vertex-cover problem. It is demonstrated that if the size of a reduced 
NP-complete problem is equal to or less than that of the vertex-cover problem, 
then the proposed algorithm can be directly used for solving the reduced NP-
complete problem and Cook's Theorem is correct on DNA-based computing. 
Otherwise, Cook's Theorem is incorrect on DNA-based computing and a new 
DNA algorithm should be developed from the characteristic of NP-complete 
problems. 

Keywords: Molecular Computing, DNA-based Parallel Computing, Cook's Theorem, NP-
complete Problem. 

Introduct ion 

Nowadays, producing roughly 10^* DNA strands that fit in a test tube is 
possible through advances in molecular biology [1]. Those 10^^ DNA strands 
can be employed for representing 10^^ bit information. Basic biological oper-
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ations can be applied to simultaneously operate 10^^ bit information. This is 
to say that there are 10^^ data processors to be executed in parallel. Hence, it 
is very clear that biological computing can provide very huge parallelism for 
dealing with the problem in real world. 

Adleman wrote the first paper in which it was demonstrated that DNA {De-
oxyriboNucleic Acid) strands could be applied for figuring out solutions to an 
instance of the NP-complete Hamiltonian path problem (HPP) [2]. Lipton 
wrote the second paper in which it was shown that the Adleman techniques 
could also be used to solving the NP-complete satisfiability (SAT) problem 
(the first NP-complete problem) [3]. Adleman and his co-authors proposed 
sticker for enhancing the Adleman-Lipton model [9]. 

In this chapter, we use sticker to constructing solution space of DNA library 
sequences for the vertex-cover problem. Simultaneously, we also apply DNA 
operations in the Adleman-Lipton model to develop a DNA algorithm. The 
main result of the proposed DNA algorithm shows that the vertex-cover prob­
lem is resolved with biological operations in the Adleman-Lipton model from 
solution space of sticker. Furthermore, if the size of a reduced NP-complete 
problem is equal to or less than that of the vertex-cover problem, then the 
proposed algorithm can be directly used for solving the reduced NP-complete 
problem. 

1. DNA Supercomputer Model 
A DNA (DeoxyriboNucleic Acid) is a molecule that plays the main role 

in DNA based computing [10]. In the biochemical world of large and small 
molecules, polymers, and monomers, DNA is a polymer, which is strung to­
gether fi^om monomers called deoxyriboNucleotides. The monomers used for 
the construction of DNA are deoxyribonucleotides, which each deoxyribonu-
cleotide contains three components: a sugar, diphosphate group, and a nitroge­
nous base. This sugar has five carbon atoms - for the sake of reference there is 
a fixed numbering of them. Because the base also has carbons, to avoid confii-
sion the carbons of the sugar are numbered from 1' to 5' (rather than from 1 to 
5). The phosphate group is attached to the 5' carbon, and the base is attached 
to the 1' carbon. Within the sugar structure there is a hydroxyl group attached 
to the 3' carbon. 

Distinct nucleotides are detected only with their bases, which come in two 
sorts: purines and pyrimidines [1, 10]. Purines include adenine and guanine, 
abbreviated A and G. Pyrimidines contain cytosine and thymine, abbreviated 
C and T. Because nucleotides are only distinguished fi'om their bases, they 
are simply represented as A, G, C, or T nucleotides, depending upon the sort 
of base that they have. The structure of a nucleotide is illustrated (in a very 
sunplified way) in Figure 5.1. In Figure 5.1, B is one of the four possible bases 
(A, G, C, or T), P is the phosphate group, and the rest (the "stick") is the sugar 
base (with its carbons enumerated 1' through 5'). 
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2' r 

Figure 5.1. A schematic representation of a nucleotide. 

In the Adleman-Lipton model [2, 3], splints were used to correspond to the 
edges of a particular graph the paths of which represented all possible binary 
numbers. As it stands, their construction indiscriminately builds all splints 
that lead to a complete graph. This is to say that hybridization has higher 
probabilities of errors. Hence, Adleman et al. [9] proposed the sticker-based 
model, which was an abstract model of molecular computing based on DNAs 
with a random access memory and a new form of encoding the information, to 
enhance the Adleman-Lipton model. 

The DNA operations in the Adleman-Lipton model are described below [2, 
3, 7, 8]. These operations will be used for figurmg out solutions of the vertex-
cover problem. 

The Adleman-Lipton model: 
A (test) tube is a set of molecules of DNA (i.e. a multi-set of finite strmgs 

over the alphabet {A, C, G, T}). Given a tube, one can perform the following 
operations: 

1 Extract. Given a tube P and a short single strand of DNA, S, produce 
two tubes +(P, S) and —(P, S), where +(P, S) is all of the molecules 
of DNA in P which contain the strand 5 as a sub-strand and — (P, S) is 
all of the molecules of DNA in P which do not contain the short strand 
S. 

2 Merge. Given tubes Pi and P^, yield U(Pi,P2), where U(Pi,P2) = 
Pi U P2. This operation is to pour two tubes into one, with no change of 
the individual strands 

3 Detect. Given a tube P , say 'yes' if P includes at least one DNA 
molecule, and say 'no' if it contains none. 

4 Discard. Given a tube P , the operation will discard the tube P . 

5 Read. Given a tube P , the operation is used to describe a single molecule, 
which is contained in the tube P . Even if P contains many different 
molecules each encoding a different set of bases, the operation can give 
an explicit description of exactly one of them. 
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© 
Figure 5.2. the graph G of our problem. 

2. Using Sticker for Solving the Vertex-Cover 
Problem in the Adleman-Lipton Model 

2.1 Definition of the Vertex-Cover Problem 
Assume that G is a graph and G = {V, E), where V = {vi,..., Vn} is a set 

of vertices in G and E = {{va, Vb) \ Va and V}, are vertices in V, respectively} 
is a set of edges in G, and \V\ = n is the number of vertex in V and \E\= m 
is the number of edge in E. 

Mathematically, a vertex cover of a graph G is a subset V^ C.V of vertices 
such that for each edge {va, Vb) in E, at lease one of Va and Vb belongs to V^ 
[5, 6]. The vertex-cover problem is to find a minimum-size vertex cover fi"om 
G. The problem has been shown to be a NP-complete problem [6]. 

The graph in Figure 5.2. denotes such a problem. In Figure 5.2 , the graph 
G contains three vertices and two edges. The minimum-size vertex cover for G 
is {vi}. Hence, the size of the vertex-cover problem in Figure 5.2 is one. It is 
indicated fi^om [6] that finding a minimum-size vertex cover is a NP-complete 
problem, so it can be formulated as a search problem. 

2.2 Using Sticker for Constructing Solution 
Space of DNA Sequence for the Vertex 
Cover Problem 

The first step m the Adleman-Lipton model is to yield solution space of 
DNA sequences for those problems solved. Next, basic biological operations 
are used to remove illegal solution and find legal solution from solution space. 
Thus, the first step of solving the vertex-cover problem is to generate a test 
tube, which includes all of the possible vertex covers. Assume that an n-digit 
binary number corresponds to each possible vertex cover to any n-vertex graph, 
G. Also suppose that V^ is a vertex cover for G. If the i-th bit in an n-digit 
binary number is set to 1, then it represents that the corresponding vertex is in 
V^. If the i-th bit in an n-digit binary number is set to 0, then it represents that 
the corresponding vertex is out of F^. 

By this way, all of the possible vertex covers in G are transformed into an 
ensemble of all n-digit binary numbers. Hence, with the way above. Table 5.1 
denotes the solution space for the graph in Figure 5.2. The binary number 000 
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3-digit binary number 
000 
001 
010 
Oil 
100 
101 
110 
111 

The corresponding vertex cover 

0 
{'^i} 
{V2} 

{l'2,^'l] 
{^3} 

{i-'a.t'i} 
{'^3,'J2} 

{v3,V2,Vi} 

Table 5.1- The solution space for the graph in Figure 5.2. 

in Table 5.1 represents that the corresponding vertex cover is empty. The binary 
numbers 001, 010 and Oil in Table 5.1 represent that those corresponding 
vertex covers are {ui}, {^2} and {^2,^1}) respectively. The binary numbers 
100,101 and 110 in Table 5.1 represent that those corresponding vertex covers, 
subsequently, are {^3}, {^3, vi} and {v^, D2}. The binary number 111 in Table 
5.1 represents that the corresponding vertex cover is {U3, i;2, ui}. Though there 
are eight 3-digit binary numbers for representing eight possible vertex covers in 
Table 5.1, not every 3 -digit binary number corresponds to a legal vertex cover. 
Hence, in next subsection, basic biological operations are used to develop an 
algorithm for removing illegal vertex covers and findmg legal vertex covers. 

To implement this way, assume that an unsigned integer X is represented 
by a binary number a;„, a;„_i,.. .,x\, where the value ofxi is 1 or 0 for 1 < 
i < n. The integer X contains 2" kinds of possible values. Each possible 
value represents a vertex cover for any n-vertex graph, G. Hence, it is very 
obvious that an unsigned integer X forms 2" possible vertex cover. A bit Xi in 
an unsigned integer X represents the i-th vertex in G. If the i-th vertex is in a 
vertex cover, then the value of a;, is set to 1. If the i-ih. vertex is out of a vertex 
cover, then the value of a;* is set to 0. 

To represent all possible vertex covers for the vertex-cover problem, sticker 
[9, 15] is used to construct solution space for that problem solved. For every 
bit, Xi, two distinct 15 base value sequences are designed. One represents the 
value 1 and another represents the value 0 for Xi. For the sake of convenience 
of presentation, assume that Xi^ denotes the value of Xj to be 1 and a;," defines 
the value of x, to be 0. Each of the 2" possible vertex covers is represented 
by a library sequence of 15*n bases consisting of the concatenation of one 
value sequence for each bit. DNA molecules with library sequences are termed 
library strands and a combinatorial pool containing library strands is termed 
a library. The probes used for separating the library strands have sequences 
complementary to the value sequences. 

The Adleman program [ 15] is modified for generating those DNA sequences 
to satisfy the constraints above. For example, for representing the three ver­
tices in the graph in Figure 5.2, the generated DNA sequences are: 
a;i° = AAAACTCACCCTCCT, X2° = TCTAATATAATTAGT, 
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X3° = ATTCTAACTCTACCT, xi^ = TTTCAATAACACCTC, 
X2^ = ATTCACTTCTTTAAT and 0:3̂  = AACATACCCCTAATC. 
Therefore, for every possible vertex cover to the graph in Figure 5.2, the cor­
responding library strand is synthesized by employing a mix-and-split com­
binatorial synthesis technique [16]. Similarly, for any n-vertex graph, all of 
the library strands for representing every possible vertex cover could be also 
synthesized with the same technique. 

2.3 The DNA Algorithm for Solving the Vertex 
Cover Problem 

The following DNA algorithm is proposed to solve the vertex cover prob­
lem. 

Algorithm 1 Solving the vertex cover problem. 

(1) Input (TQ), where the tube TQ includes solution space of DNA sequences to 
encode all of the possible vertex covers for any n-vertex graph G, with 
those techniques mentioned in the previous subsection. 

(2) For k = 1 torn, where m is the number of edges in G. 
Assume that e^ = {vi, Vj), is one edge in G and Vi and Vj are 
vertices in G. Also suppose that bits Xi and Xj, respectively, 
represent Vi andvj. 
(a) e^ = +{To,Xi^) and9 = -iTo,Xi^). 
(b) e^ = +ie,Xj^) and6^ = -(6*, a;/). 

(c)n=^yj{e\e^). 
EndFor 

(3) For i = 0 to n — 1 
For j = i down to 0 
(a)Tj+iON ^ ^Tj,xi+i^) andTj = -{Tj,Xi+i^). 

rz>;r,-+i = u(T,+i,r,+i°^). 
EndFor 
EndFor 

(4) Fork = 1 ton 
(a) If (detect (Tk) - 'yes') then 
(b)Read (Tk) and terminate the algorithm. 
Endlf 

EndFor 

Theorem 1 From those steps in Algorithm 1, the vertex cover problem for any 
n-vertex graph G can be solved. 
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Proof. In Step 1, a test tube of DNA strands, that encode all 2" possible 
input bit sequences a;„,. . . , xi is generated. It is very clear that the test tube 
includes all 2" possible vertex covers for any n-vertex graph G. 

From the definition of vertex cover [5, 6], Step 2(a) applies "extraction" 
operation fi-om the tube TQ to form two test tubes: 6^ and 6. 9^ contains all 
of the strands that have Xi = 1, while 6 consists of all of the strands that have 
Xi = 0. It is very clear fi-om the definition of vertex cover that the tube 9 
represents those sets which do not include the vertex Vi. Next, Step 2(b) also 
uses "extraction" operation from the tube 9 to form two new test tubes: 9'^ and 
9^. 9^ contains all of the strands that have Xi = 0 and Xj = 1, while 9^ consists 
of all of the strands that have Xi — 0 and Xj = 0. The tubes 9^ and ^^ contain 
the strands, which satisfy the definition of vertex cover. Therefore, Step 2(c) 
applies "merge" operation to pour the tubes 9^ and 9'^ into the tube TQ. After 
Steps 2(a) to 2(c) are repeated to execute m times, the tube TQ includes the 
strands, which represent those legal vertex covers. When each time of the 
outer loop in Step 3 are executed, the number of execution for the inner loop 
is (i + 1) times. The first time of the outer loop is executed, the inner loop is 
only executed one time. Therefore, Step 3(a) and 3(b) will also be executed 
one time. Step 3a uses "extraction" operation to form two test tubes: Ti'^^ 
and To. Ti'-'^ contains all of the strands that have xi = 1. To consists of all 
of the strands that have xi = 0. That is to say, the first tube encodes every 
vertex cover including the first vertex and the second tube represents every 
vertex cover not including the first vertex. Hence, Step 3(b) applies "merge" 
operation to pour the tube Ti^^ into the tube Ti. After repeat to execute Steps 
3(a) and 3(b), it finally produces n new tubes. The tube T^ for n > A; > 1 
encodes those vertex covers that contain k vertices. 

Because the vertex-cover problem is to find a minimum-size vertex-cover, 
the tube Ti is detected with "detection" operation in Step 4(a). If it returns 
"yes", then Tj contains those vertex covers which size is minimum. Therefore, 
Step 4(b) uses "read" operation to describe the sequence of a molecular in Ti 
and the algorithm is terminated. Otherwise, repeat to execute Step 4(a) until a 
minimum-size vertex cover is found in the tube detected. D. 

2.4 The Complexity of the Proposed DNA 
Algorithm 

The following theorems describe time complexity of Algorithm 1, volume 
complexity of solution space in Algorithm 1, the number of the tube used in 
Algorithm 1 and the longest library strand in solution space in Algorithm 1. 

Theorem 2 The vertex-cover problem for any undirected n-vertex graph G 
with m edges can be solved with 0{n^) biological operations in the Adleman-
Lipton model, where n is the number of vertices in G and m is at most equal 
to {n*{n- l) /2). 
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Proof. Algorithm 1 can be applied for solving the vertex-cover problem for 
any undirected n-vertex graph G. Algorithm 1 includes three main steps. Step 
2 is mainly used to determine legal vertex covers and to remove illegal vertex 
covers from all of the 2" possible library strands. From Algorithm 1, it is very 
obvious that Steps 2(a) and 2(b) take 2 * m "extraction" operations and Step 
2(c) takes m "merge" operations. Step 3 is mainly applied to figure out the 
number of element in every legal vertex cover. It is indicated from Algorithm 
1 that Step 3(a) takes {n* {n — l)/2) "extraction" operations and Step 3(b) 
takes (n * (n - 1 ) /2) "merge" operations. Step 4 is used to find a mmimum-size 
vertex cover from legal vertex cover. It is pointed out from Algorithm 1 that 
Step 4(a) at most takes n "detection" operations and Step 4(b) takes one "read" 
operation. Hence, from the statements mentioned above, it is at once inferred 
that the time complexity of Algorithm 1 is 0{v?) biological operations in the 
Adleman-Lipton model. D. 

Theorem 3 The vertex-cover problem for any undirected n-vertices graph G 
with m edges can be solved with sticker to construct 0(1^) strands in the 
Adleman-Lipton model, where n is the number of vertices in G. 

Proof. Refer to Theorem 2. D. 

Theorem 4 The vertex-cover problem for any undirected n-vertices graph G 
with m edges can be solved with 0(n) tubes in the Adleman-Lipton model, 
where n is the number of vertices in G. 

Proof. Refer to Theorem 2. O. 

Theorem 5 The vertex-cover problem for any undirected n-vertices graph G 
with m edges can be solved with the longest library strand, 0(15 * n), in the 
Adleman-Lipton model, where n is the number of vertices in G. 

Proof. Refer to Theorem 2. D. 

2.5 Range of Application to Cook's Theorem in 
DNA Computing 

Cook's Theorem [5,6] is that if one algorithm for one NP-complete problem 
will be developed, then other problems will be solved by means of reduction to 
that problem. Cook's Theorem has been demonstrated to be right in a general 
digital electronic computer. Assume that a collection C is {ci, C2, • • • , Cm} 
of clauses on a finite set U of variables, {ui,U2, • • • ,««}, such that —Cx— 
is equal to 3 for 1 < cc < m. The 3-satisfiability problem (3-SAT) is to find 
whether there is a truth assignment for U that satisfies all of the clauses in C. 
The simple structure for the 3-SAT problem makes it one of the most widely 
used problems for other NP-completeness results [5]. The following theorems 
are used to describe the range of application for Cook's Theorem in molecular 
computing 
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Theorem 6 Assume that any other NP-complete problems can be reduced to 
the vertex-cover problem with a polynomial time algorithm in a general elec­
tronic computer If the size of a reduced 1<IP-complete problem is not equal to or 
less than that of the vertex-cover problem, then Cook's Theorem is uncorrected 
in molecular computing. 

Proof. We transform the 3-SAT problem to the vertex-cover problem with 
a polynomial time algorithm [5]. Suppose that U is {ui, U2, • • • •, ^n} and C 
is {ci, C2, • • • , Cm)- U and C are any instance for the 3-SAT problem. We 
construct a graph G = (V, E) and a positive integer if < | y | such that G has 
a vertex cover of size K or less if and only if C is satisfiable. D. 

For each variable Ui in U, there is a truth-setting component Tj = {Vi,Ei), 
with Vi = {ui,Ui^} and Ei = {{ui,Ui^}}, that is, two vertices joined by a sin­
gle edge. Note that any vertex cover will have to contain at least one of MJ and 
Ui^ in order to cover the single edge in E^. For each clause Cj in C, there is 
a satisfaction testing component Sj = {V/, Ej^), consisting of three vertices 
and three edges joining them to form a triangle: 

Vj^ = {aj[j],a2[j],a3[j]} 

Ej^ = {{ai[j],a2{j]},{{ai[J],a3[j]},{{a2[j],a3\j]}}-

Note that any vertex cover will have to contain at least two vertices from 
Vj^ in order to cover the edges in Ej^. 

The only part of the construction that depends on which literals occur in 
which clauses is the collection of communication edges. These are best viewed 
from the vantage point of the satisfaction testing components. For each clause 
Cj in C, assume that the three literals in Cj is denoted as Xj, yj, and Zj. Then 
the communication edges emanating from Sj are given by: 

Ej^ = {{ai[j],xj}, {a2[j],yj}, {a3[j],Zj}}. 

The construction of our instance to the vertex-cover problem is completed by 
setting K = n + 2*m and G — {V, E), where 

n m 

and 
n vn m 

E = {\jEi)iJ{\jE])^{[jV^). 
i= l j = l 3=1 

Therefore, the number of vertex and the number of edge in G are, respec­
tively, (2 * n + 3 * m) and (n + 6 * m). Algorithm 1 is used to determine the 
vertex-cover problem for G with 22*"+3*™ DNA strands. Because the limit of 
DNA strands is 10^^, n is equal to or less than 15 and m is also equal to or 
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less than 15. That is to say that Algorithm 1 at most solves the 3-SAT problem 
with 15 variables and 15 clauses. However, a general digital electronic com­
puter can be applied to directly resolve the 3-SAT problem with 15 variables 
and 15 clauses. Hence, it is at once inferred that if the size of a reduced NP-
complete problem is not equal to or less than that of the vertex-cover problem, 
then Cook's Theorem is uncorrected in molecular computing. 

From Theorem 3 - 6, if the size of a reduced NP-complete problem is equal 
to or less than that of the vertex-cover problem, then Algorithm 1 can be di­
rectly used for solving the reduced NP-complete problem. Otherwise, a new 
DNA algorithm should be developed according to the characteristic of NP-
complete problems. 

3. Experimental Results of Simulated DNA 
Computing 

We finished the modification of the Adleman program [15] in a PC with one 
Pentium(R) 4 and 128 MB main memory. Our operating system is Window 
98 and the compiler is C++ Builder 6.0. This modified program is applied 
to generate DNA sequences for solving the vertex-cover problem. We added 
some subroutines to the Adleman program for simulating biological operations 
in the Adleman-Lipton model in Section 2. We also added the subroutines to 
the Adleman program to simulate Algorithm 1. 

The Adleman program is used for constructing each 15-base DNA sequence 
for each bit of the library. For each bit, the program is applied for generating 
two 15-base random sequences (for 1 and 0) and checking to see if the library 
strands satisfy the seven constraints in subsection 2.2 with the new DNA se­
quences added. If the constraints are satisfied, the new DNA sequences are 
greedily accepted. If the constraints are not satisfied then mutations are in­
troduced one by one into the new block until either: (A) the constraints are 
satisfied and the new DNA sequences are then accepted or (B) a threshold for 
the number of mutations is exceeded and the program has failed and so it ex­
its, printing the sequence found so far. If n-bits that satisfy the constraints are 
found then the program has succeeded and it outputs these sequences. 

Consider the graph in Figure 5.2. The graph includes three vertices: vi, V2 
and Vi. DNA sequences generated by the Adleman program modified were 
shown in Table 5.2. This program, respectively, took one mutation, one muta­
tion and ten mutations to make new DNA sequences for vi, v^ and V3. With 
the nearest neighbor parameters, the Adleman program was used to calculate 
the enthalpy, entropy, and free energy for the binding of each probe to its corre­
sponding region on a library strand. The energy was shown in Table 5.3. Only 
G really matters to the energy of each bit. For example, the delta G for the 
probe binding a ' 1' in the first bit is thus estimated to be 24.3 kcal/mol and the 
delta G for the probe binding a '0' is estimated to be 27.5 kcal/mol. 
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Vertex 
hline X3° 

.T'/' 

^ l " 

X,'-

X2' 

Xl' 

5' —+ 3' DNA Sequence 
ATTCTAACTCTACCT 
TCTAATATAATTACT 

AAAACrCACCCTCCT 
AACATACCCCTAATC 
ATTCACTTCrnAAT 
TTTCAATAACACCTC 

Table 5.2. Sequences chosen to represent the vertices in the graph in Figure 5.2. 

Vertex 

.X-3" 

X2'' 

Xy" 

X,' 

X2' 

.XI ^ 

Enthalpy energy (11) 
105.2 
104.8 
113.7 
112.6 
107.8 
105.6 

Entropy energy (S) 
277.1 
283.7 
288.7 
291.2 
283.5 
271.6 

Free energy (G) 
22.4 
19.9 
27.5 
25.6 
23 

24.3 ' 

Table 5.3. 
strand. 

The energy for the binding of each probe to its corresponding region on a library 

The program simulated a mix-and-split combinatorial synthesis technique 
[16] to synthesize the library strand to every possible vertex cover. Those li­
brary strands are shown in Table 5.4, and represent eight possible vertex covers: 
0,{wi},{i^2},{w2,i'i},{w3},{w3,ui},{w3,f2} and {vo,,V2,vi], respectively. 
The program is also applied to figure out the average and standard deviation 
for the enthalpy, entropy and free energy over all probe/library sfrand interac­
tions. The energy is shown in Table 5.5. The standard deviation for delta G is 
small because this is partially enforced by the constraint that there are 4, 5, or 
6 Gs (the seventh constraint in subsection 3.2) in the probe sequences. 

The Adleman program is employed for computing the distribution of the 
types of potential mishybridizations. The distribution of the types of potential 
mishybridizations is the absolute frequency of a probe-strand match of length k 
from 0 to the bit length 15 (for DNA sequences) where probes are not supposed 
to match the strands. The distribution is, subsequently, 106,152,183,215,216, 
225, 137, 94, 46, 13, 4, 1, 0, 0, 0 and 0. It is pointed out from the last four 
zeros that there are 0 occurrences where a probe matches a strand at 12,13,14, 
or 15 places. This shows that the third constraint in subsection 3.2 has been 
satisfied. Clearly, the number of matches peaks at 5 (225). That is to say that 
there are 225 occurrences where a probe matches a strand at 5 places. 

4. Conclusions 
Cook's Theorem is that if one algorithm for one NP-complete problem will 

be developed, then other problems will be solved by means of reduction to 
that problem. Cook's Theorem has been demonstrated to be right in a general 
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5' -ATTCTAACTC'IACCTTCTAATATAATTACTAAAACTCACCCTCCT-3' 
3'-TAAGATTGAGATGGAAGATTATATTAATGATTTTGAGTGGGAGGA-5' 
5'-ATTCTAACTCTACCTTCTAATATAATTACTTTTCAATAACACCTC-3' 
3' -TAAGATTGAGATGG AAGATTATATTAATGA AAAGTTATTGTGGAG-5' 
5'-ATTCTAACTCTACCTATTCACTTCTTTAATAAAACTCACCCTCCT-3' 
3'-TAAGATTGAGATGGATAAGTGAAGAAATTATTTTGAGTGGGAGGA-5' 
5' -ATTCTAACTCTACCTATTC ACTTCTTTAATTTTCAATAACACCTC-3' 
3'-TAAGATTGAGATGOATAAGTGAAGAAATTAAAAGTTATrGTGGAG-5' 
5'-AACATACCCCTAATCTCTAATATAATTACTAAAACTCACCCTCCT-3' 
3'-TTGTATGGGGATTAGAGATTATATTAATGATTTTGAGTGGGAGGA-5' 
5'-AACATACCCCTAATCTCTAATATAATTACTTTTCAATAACACCTC-3' 
3'-TTGTATGGGGATTAGAGATTATATTAATGAAAAGTTATTGTGGAG-5' 
5'-AACATACCCCTAATCATTCACTTCTTTAATAAAACTCACCCTCCT-3' 
3' -TTGTATGGGGATTAGTAAGTGAAGAAATTATTTTG AGTGGGAGGA-5' 
5'-AACATACCCCTAATCATTCACTTCTTTAATTTTCAATAACACCTC-3' 
3'-TTGTATGGGGATTAGTAAGTGAAGAAATTAAAAGTTATTGTGGAG-5' 

Table 5.4- DNA sequences chosen represent all possible vertex covers. 

Average 
Standard deviation 

Enthalpy energy (H) 
108.283 
3.58365 

Entropy energy (S) 
282.633 
6.63867 

Free energy (G) 
23.7833 
2.41481 

Table 5.5. The energy over all probe/library strand interactions. 

digit electronic computer. From Theorem 4—6, if the size of a reduced NP-
complete problem is equal to or less than that of the vertex-cover problem, then 
Cook's Theorem is right in molecular computing. Otherwise, Cook's Theorem 
is uncorrected in molecular computing and a new DNA algorithm should be 
developed from the characteristic of NP-complete problems. 

Chang and Guo [12, 14] applied splints to constructing solution space of 
DNA sequence for solving the vertex-cover problem in the Adleman-Lipton. 
This causes that hybridization has higher probabilities for errors. Adleman 
and his co-authors [9] proposed sticker to decrease probabilities of errors to 
hybridization in the Adleman-Lipton. The main result of the proposed algo­
rithms shows that the vertex cover problem is solved with biological operations 
in the Adleman-Lipton model from solution space of sticker. Furthermore, this 
work represents clear evidence for the ability of DNA based computing to solve 
NP-complete problems. 

Currently, there are still lots of NP-complete problems not to be solved be­
cause it is very difficulty to basic biological operations for supporting math­
ematical operations. We are not sure whether molecular computing can be 
applied for dealing with every NP-complete problem. Therefore, in the fu­
ture, our main work is to solve other NP-complete problem unsolved with the 
Adleman-Lipton model and the sticker model, or develop a new model. 
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of any trusted party. We also propose a practical and efficient generalized secret 
sharing scheme based on simple operations. We apply our design concept to 
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We also show that our proposed GGOC is practical and is more efficient than 
Chang and Lee's GGOC. 
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1. Introduction 
Due to the rapid prevalence of computer networks and communications, 

we usually prefer processing and transmitting data in computer network en­
vironments than communicating by means of traditional paperwork. In these 
network environments, cryptosystems are the major technique to protect confi­
dential data from being destroyed, disclosed, or altered by unauthorized users. 
The conventional cryptosystems, e.g., sjmimetric cryptosystems and asymmet­
ric cryptosystems, are usually only used to send confidential messages to an 
individual; namely, they cannot be adapted when confidential messages are in­
tended for a group instead of an individual [7]. However, in our real world, 
messages are frequently addressed to a group of people, such as a board of di­
rectors. "How to transmit confidential messages to a group ?" is a very impor­
tant issue. The messages, which are intended for a group, are usually divided 
into three types by their implicit properties [10]. 

(1) important messages : these messages are so important that only some 
specific subsets of the recipient group are authorized to decrypt them in 
order to keep the message secure. 

(2) urgent messages : these messages are so urgent that each legal member 
of the recipient group is authorized to decrypt them in order to make the 
communication convenient and fast. 

(3) particular messages : these messages are transmitted to an individual, 
so only the specific individual is authorized to decrypt them for the sake 
of privacy and secrecy. 

The cryposystem which satisfies the preceding issues is named Group Oriented 
Cryptosystem(GOC)[7]. 

Desmedt first proposed a scheme [7] to solve the GOC problem, but, un­
fortunately, his scheme was impractical. However, since then, there have been 
many researchers [7, 8, 9, 10, 17] proposing new (fc,n) threshold cryptosys­
tems trying to solve GOC-related problems. In their (fc, n) threshold cryptosys­
tems, any k legal members of the recipient group can cooperate to decipher the 
encrypted message. They still cannot satisfy the need of having some spec­
ified subset of legal recipients cooperate to decipher the encrypted message. 
This {k, n)-threshold policy is too simple in many applications because it as­
sumes that each member of the recipient group is equally trusted and equally 
authorized with regard to a same encrypted message. Benaloh and Leichter [1] 
showed that a (fc, n) threshold scheme could only handle a small firaction of the 
ideal secret sharing policy which we might follow. Laih and Ham [14], how­
ever, proposed a generalized threshold cryptosystem and claimed that it could 
be implemented on any secret sharing policy, but Langford [12] soon pointed 
out that Laih and Ham's scheme is not secure for some access stmctures. 

Chang and Lee [5] proposed a Generalized Group-Oriented Cryptosystem 
(GGOC) without a tmsted party. The difference between GGOC and GOC is 
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that GGOC can handle any secret sharing policy. As a matter of fact, Chang 
and Lee's GGOC can not only be implemented on any secret sharing policy 
but also work without the assistance of a trusted party. In most cryptographic 
applications, a trusted party does not exist in a group [11]. This situation be­
comes more common in commercial or intemational applications. Thus the 
GGOC without a trusted party is very attractive. However, in some cases, an 
undesired side effect is that the number of primes required by their scheme 
grows exponentially in accordance with the number of memberships [15]. In 
other words, Chang and Lee's scheme is neither practical nor efficient when 
there are many members in the recipient group. In this chapter, we propose a 
design concept of GGOC and the GGOC constructed by our design concept 
does not need the assistance of any trusted party. Each group can employ our 
design concept to construct a secure GGOC based on a secure generalized se­
cret sharing scheme [1], and an asymmetric cryptoscheme, and a symmetric 
cryptoscheme. We shall also propose an efficient generalized secret sharing 
scheme and use our design concept to construct a secure GGOC based on it, 
RSA [18], and DES [16]. The newly proposed GGOC is practical and more 
efficient than Chang and Lee's GGOC. 

This chapter is organized mto five sections. Section 2 introduces our gen­
eralized secrete sharing scheme. The discussions and security analysis of our 
generalized secret sharing scheme is described in the subsection 2.2. Section 
3 provides our GGOC design concept and we also apply our design concept 
to construct a GGOC based RSA, DES and our generalized secret sharing 
scheme. We discuss the security, computational and communication costs in 
Section 4. Finally, we make some conclusions in Section 5. 

2. A New Generalized Secret Sharing Scheme 

Without loss of generality, we assume that a secret K is shared by a set of n 
participants t/ = {[7i, t /2 , . . . , t/„}. The generalized secret sharing scheme is 
a method which divides the secret K into n shadows Ki,K2,- ••, Kn accord­
ing to the secret sharing policy. The trusted party distributes every shadow Ki 
to a relative participant [/»through a secure channel. Let F be a set of subsets 
of participants U, where the subsets in T are those subsets of U that should 
be able to reconstruct the secret K. T is named an access structure, and each 
element in T is called a qualified subset of the secret sharing policy. By the def­
inition of the access structure F, these shadows have to satisfy the following 
conditions: 

(1) If a qualified subset of participants pool their shadows, then they can 
reconstruct the secret K. 

(2) If an unqualified subset of participants pool their shadows, then they can 
reconstruct nothing about the secret K. 
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In the following subsection, we show our generalized secret sharing scheme 
and analyze its security and computational cost. 

2 . 1 B a s i c S c h e m e 

The new generalized secret sharing scheme uses a publicly accessible board 
where the trusted party can give away true information for all the participants to 
access. This board is named a bulletin board. If memory and communication 
are inexpensive, the trusted party can transmit the true public information to 
the participants instead of storing it centrally. Thus, a public bulletin board is 
necessary for all existing secret sharing schemes to publish the access structure 
and the number of participants. 

With this public bulletin board mechanism, our scheme can be divided into 
two parts: the distribution part and the reconstruction part. In the following, 
we shall give a general description of our scheme according to this division, 
where n is the number of shadows, and the access structure is F. 

Part 1: Distribution 

In this part, the trusted party generates and distributes the shadows to the 
participants as the following steps. Step D-1 uses a concept of super-increasing 
set. It is defined as follows: 

Definition 

Give an integer set {ai,a2, •.., an}. This set is named a super-increasing 
set if it satisfies the condition 

y2 «̂ < ^j , for 1 < j < n. 
%=\ 

D-1. Randomly generate two distinct super-increase sets {a'l, 02, • • • i o'n} 
and {6'̂ , 62, • • •, &n}- Permute these two sets and let the new sets be 
{ai, a 2 , . . . , a„} and {61,62) • • • 1 &n} so that neither < ai , 02 , . . . , a„ > 
nor < 61,62,..., 671 > is an increasing or decreasing sequence. 

D-2. Distribute the integer pair (aj, hi) to the participant JJi as her/his shadow 
through a secure channel. 

D-3. For each access instance V in F, compute Dy so that 

where '®' represents a bitwise exclusive-OR operation. 

D-4. Publish Dy on the bulletin board. 
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Part 2: Reconstruction 

In this part, any qualified subset V of participants can cooperate to recon­
struct the secret K as follows: 

R-1. Pool their shadows (a,, &i)'s together. 

R-2. Get the public parameter Dy from the bulletin board. 

R-3. Reconstruct 

In Equations (6.1) and (6.2), we should alter some data types. First, the 
results of Ylvuev^i ^^'^ Sv t / ev^ i ^^^ ^^ integers, their types should be 
changed to the binary form with the same bit length before performing the 
exclusive-OR operation. Second, the binary result of (J^vt/ eV' ^i®^wev «̂) 
should be changed to the integer type. Finally, we perform the subtraction and 
addition operations to get K and Dy respectively. 

2,2 Discussions and Security Analysis 

It is obvious that the computational cost of our generalized secret sharing 
scheme depends on Steps D-1, D-3 and R-3. Step D-1 takes 2 x n arithmetic 
additions to generate two distinct super-increase sets. Both Equation (6.1) of 
Step D-3 and Equation (6.2) of Step R-3 use only simple operations: arithmetic 
additions and bitwise exclusive-OR operations. As a result, our GGOC scheme 
is easy to implement in hardware. Incontestably, our scheme is practical and 
efficient. 

The proposed scheme requires a public bulletin to publish information, e. 
g. access structure F and the parameter Dy for each qualified subset V. All 
participants can access the information, and yet the integrity and authenticity 
of such information are still assured. Cachin [3] pointed out that such a public 
bulletin is necessary for all the existing secret sharing schemes nowadays, and 
yet it contains at least the access structure and the number of participants. How­
ever, the access structure is a set of all qualified subsets, our generalized secret 
sharing scheme only ^dds a parameter Dy to each qualified subset V. It does 
not increase many burdens to the public bulletm. If there are many qualified 
subsets in the access structure, the public bulletin will be very large. It seems 
to be ineflicient in this case, but all the generalized secret sharing schemes have 
this common drawback. Moreover, if the access structure includes all the k out 
of n participants subsets as the qualified subsets. We suggest that the user uses 
the (fc, n) threshold schemes which will be more efficient than she/he uses any 
generalized secret sharing scheme. 

In many generalized secret sharing schemes, e. g. Benaloh and Leichter [1], 
and Blundo et al.[2], each participant holds many integers as her/his shadows 
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to share a secret with other participants, that the number of shadows held by 
each participant is dependent on the access structure. Each participant has 
to remember that each shadow she/he held is used m which qualified subset. 
In our scheme, each participant only holds two integers as her/his shadow and 
she/he can use these two integers to cooperate with other participants to recover 
the shared secret based on any qualified subset. 

The security analysis of the generalized secret sharing scheme shall focus 
on whether an unqualified subset Q of participants can reconstruct the secret 
K. Theorem 1 proves that the participants of the unqualified subset Q can not 
reconstruct the shared secret by themselves. 

Theorem 1. 

The participants of the unqualified subset can not reconstruct the shared 
secret by using their shadows directly. 

Proof: 

By Equation (6.2), if the unqualified subset Q wants to reconstruct the 
shared secret K, they must know the correct parameter DQ. Since the sub­
set Q is unqualified, the dealer does not generate DQ in the distribution part. 
Nobody knows this value DQ. Clearly, the participants of the unqualified sub­
set Q can reconstruct the shared secret K by using their shadows. Q.E.D. 

The unqualified subset Q may try to use the public information to recon­
struct the shared secret. However. Theorem 5 proves that they also can not 
reconstruct the shared secret K by using the public information. Before de­
scribing Theorem 5, Theorem 2, Lemma 3 and Theorem 4 show some results 
which are used to prove Theorem 5. 

Theorem 2. 

Let us randomly select some distinct integers from a given super-increasing 
set {ai, a2 , . . . ,««} to form two integer sets {ai^, a^ j , . . . , Oĵ } and 
{aji,aj2,. • •,aj^}, where 1 < s < n and 1 < t < n. If {ajj,ajj,...,Oj^} ^ 
{aji, a j2 , . . . , ajt}, then ^ I L i "-ik ¥= E L I «J*, • 

Lemma 3. 

Give (ai + 02) © (6i + 62) = c. Let d be the maximal bit length of (ai + 02) 
and (61 + 62), then (fc x 2'̂  + ai + 02) ®{kx2'^ + bi+ 62) equals c for any 
arbitrary positive integer k. 

Proof: 

By the format of binary bits , the first d bits of (A; x 2̂ * + ai + 02) are equal 
to the first d bits of (fc x 2"̂  + 61 + 62) for any arbitrary positive integer k. The 
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exclusive-OR of these d bits are '0' bits. Thus we conclude that (A; x 2"̂  + ai + 
02) ® (fc X 2*̂  + foi + 62) = c for any arbitrary positive integer k. Q.E.D. 

Theorem 4. 

Let V, Q' and Q" be subsets of participants with V D Q = (p and V U 
Q' G r ,VUQ" e r for Q',Q" C Q, and Q' 9̂  Q". Given two pairs, 
(Evj/iSQ' «i' T^yUiEQ' ^i) ^"'̂  (Evc/ieQ- «i' Evc/i6Q" ^i)' *en the number of 
possible pairs (X^vt/jeV '̂ «' Y^yUiEV ^j)'^ which satisfy Equation (6.3) is infi­
nite. 

DvuQ' - Dv^Q-= ( ^ ttj, ^ a j )©( ^ 6i, ^ bi) 
-iUiev MUteQ' Vf/i6v Vf/i€Q' 

Proof: 

Let (2Jvc/i6Q' "»'2Jvc/ieQ' ^j) = v^\^^2) > \z2\/UieQ" ^i'zlyUieQ" »̂) ~ 
(G"i,G"2) .and(J^vf;.g^^ai, J]v(7i6y^i) = (Xi,-'f2). Then Equation (6.3) 
can be rewritten as 

D = ((Xi + G'l) ® {X2 + G'2)) - ((Xi + G"i) © (X2 + G"2)). (6.4) 

And we also know the values of G'̂ , G2, G"i, G"2, and D. Let's assume that 
the pair {hi^h^) is one solution of (Xi, ^2) for Equation (6.4). Let d be the 
maximal bit length among (/ii + G'i), (/12 + G^), (/ii + G"i), and (/i2 + G"2). 
By Lemma 3, we know that the pairs (fc x 2̂ * + /ii, A; x 2*̂  + /i2)'s for all 
positive integer fc's are solutions of (Xi, X2) for Equation (6.4), too. In other 
words, the number of pairs (Xi, X2)'s for Equation (6.4) is infinite. So, we 
conclude that the number of possible pairs (X^yt/ ev ^»' Svc/ ev ^«)'^ which 
satisfy Equation (6.3) is infinite. Q.E.D. 

Theorem 5. 

The participants of the unqualified subset Q can not reconstruct the shared 
secret K by using the public information. 

Proof: 

By Equation (6.1), the difference between the secret K and the public pa­
rameter Dv is equal to (X^vj/iev^* ® Y^\iUieV^i) > which is based on the 
mixing operations irom different algebraic groups. These two kinds of oper­
ations, the bitwise exclusive-OR and the summation, are incompatible. We 

prove that (Evj/^ev "-i i= Y1NV,&M ^0 and (Evi7iev î 7̂  Evc/iSM/ ^0 ^ r Ĥ 
V ^W xa. Theorem 2. So the unqualified subset cannot reconstruct secret K 
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by exploiting one equation alone. However, the unqualified subset Q can link 
several equations through K or through (X^vt/iev ^j ® Svt / ey «̂) • Linking 
two equations via K, they can get relations of the form 

Dv-Dw = {Yl "'i® Yl ^i)~^Yl "' ® $Z »̂)' 
Vai€V V!7i€V V(7i6W VUi€W 

where F and PF are any qualified subsets. Because the operation pair (bit­
wise exclusive-OR, summation) does not satisfy the distribution law and the 
association law, the members of Q cannot derive the value on the right-hand 
side of the equation above. Except for a single special case that X v̂i7 ev ^i ® 
Y^VUieV^i = T,yUieW°-i ® Evt/iew^« ' which can be recognized on the 
bulletin by Dy = Dw, those linkings are of no use at all. 

At the same time, the unqualified subset Q can link two equations via 
Svc/isy °'i ® Y^\/Uiev ^i > ^^^y '^^^ obtain another relation 

DvuQ' - DvuQ" = ( ^ ai, ^ fli) ® ( X I ^'' X^ ''') 
vUiev vUteQ' \/Uiev yuteQ' 

-(^ ai, J2 ^i)®iYl ^̂ ' Yl ^̂ )- <̂ -̂̂ ) 
Wi€V Vf/i6Q" V!7i€V Vf/i€Q" 

where VnQ = (p and VDQ' € T, V^UQ" G T for Q', Q" c Q, and Q' ^ Q". 
By Theorem 4, the members of the unqualified subset Q can compute infinite 
possible values for the unknown pair ( ^ y a ev ^i' IZvuev »̂) which satisfies 
Equation (6.5). However, the probability for the members of the unqualified 
subset Q to get the right pair (^yc/ eF ^i' IZwiev ^i) which satisfies Equation 
(6.5) is very small. Thus the participants of the unqualified subset Q can hardly 
compute anything by using the public information. Q.E.D. By 
Theorems 1 and 5, it is clearly that the participants in any unqualified subset 
can not recover the shared secret. 

Theorem 6. 

Suppose {ai,a2,..., an} is a super-increase set. Let |ai | = d and \ai\ — 
X)}=i kjl = e > 0, for i = 2 , 3 , . . . , n, where \x\ denotes the bit length of a;. 
Then |a^| = 2^-'^{d + e), for ft. = 2 , 3 , . . . , n. 

Proof: 

1) Basis step: Since |ai| = d, |a2| = ^ + e = 2^~^(d + e) is clearly valid. 
2) Inductive step: Assume that \ak\ = 2^~'^{d + e) for some fc > 1. 
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= d+{d + e) + 2{d + e) + .. 
= {d + e) + {d + e){l + 2 + . 

. + 2''-\d + e) + e 
.. + 2''-^) = 2''-\d + e) 
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Then|afe+i| 

Hence, by the principle of finite mduction, we conclude that \ah\ = 2^^ ^ (rf+ 
e),ioih = 2,3,...,n. Q.E.D. 

It is not easily to exactly derive the relation between the bit length of each 
integer in the super-increase set and the number of elements in this set. Theo­
rem 6 shows one case of the super-increase set. Let a^ be the largest integer of 
this set. The bit length of a„ is 2"~^(d-f e) in the case as Theorem 6. It will be 
large when n is large. The proposed scheme may be not practical in this case. 
However, many cryptographic techniques shall use a long binary bit string as 
the secret key or password against the brute-force attack. We suggest use the 
magnetic card to keep these shadows when they are large. In the GGOC of 
Section 3, the sender shall encrypt the shadows and send them with the cipher-
text to the recipient group. The participants of the recipient group do not need 
to keep their shadows. Although the shadows are large, they do not affect the 
practicability of the application of Section 3. 

In the case of Theorem 6, the difference of |oj| and YL]^i \^i\ is a fixed 
value e, but Step D-1 should permute these integers before distributing them 
to the participants. It does not affect the security of the proposed scheme. 
Additionally, the attacker does not know d and e. It is hard for the attacker to 
derive these n integers from the large interval (1,2^" C'̂ +e)). Although d and 
e are small, the proposed scheme is still secure. In other word, the smallest 
integer of the su-per-increase set can be small. 

Like many secret sharing schemes, we assume all of the participants pool 
their true shadows in Step R-1. In order to enhance the security, our scheme 
can be combined with other cheater detection schemes [4, 19] to check the 
validity of the shadows in Step R-1. 

3. The Design Concept of GGOC 
In this section, we shall propose a design concept of constructing GGOC. 

The inspiration comes fi-om Chang and Lee's GGOC [5]. The design con­
cept to be proposed is built on three schemes: the generalized secret shar­
ing scheme, the asymmetric cryptoscheme, and the symmetric ciyptoscheme. 
Each group can put any set of a generalized secret sharing scheme, an asym­
metric cryptoscheme, and a symmetric cryptoscheme imder our design concept 
to construct a GGOC. The GGOC thus constructed does not need the assistance 
of a trusted party. The GGOC constructed by our design concept uses the se­
lected generalized secret sharing scheme to make sure that only the qualified 
subset can read the sent message. The selected asymmetric cryptoscheme is 
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used as a channel to send some secret information and the symmetric cryp-
toscheme is used to encrypt the sent message. In order to illustrate our idea 
clearly, we make an example of constructing a GGOC based on RSA [18], 
DBS [16], and our generalized secret sharing scheme. 

Two roles, the sender and the recipient group, appear in a GGOC issue. 
The recipient group selects and publishes one asymmetric cryptoscheme, one 
symmetric cryptoscheme, and one generalized secret sharing scheme in the ini­
tialization phase. Each member of the recipient group generates her/his public 
key and secret key based on the selected asymmetric cryptoscheme and then 
publishes her/his public key on the public bulletin. As a generalized secret 
sharing scheme is all about, we also use an access structure F to show which 
recipients can cooperate to decrypt the encrypted message in the GGOC. In 
our design concept, if the access structure is decided by the recipient group, 
then they have to publish their access structure on the public bulletin in the 
initialization phase. Otherwise, if the access structure of each message is dy­
namic and dependent on the sent message, then the access structure is decided 
by the sender. The sender shall send, or publish, the access structure F with its 
corresponding message. 

Let's first define some notations used in the example of constructing GGOC 
as follows: 

(1) Ek{M): the encryption fiinction of DBS, where k is the encryption key 
and M is the plaintext. 

(2) Dk{C): the decryption function of DBS, where k is the decryption key 
and C is the ciphertext. 

(3) PEp^{M): the encryption function of RSA, where pk is the public key 
and M is the plaintext. 

(4) PDs^{C): the decryption function of RSA, where Sk is the secret key 
and C is the ciphertext. 

In the initialization phase, each member C/j of the recipient group selects 
her/his secret key s^. and public key pki based on RSA. She/he also publishes 
her/his public key in the bulletin. 

In the following paragraph, we show how to use the GGOC based on our 
design concept to send a message M to a recipient group in three cases ac­
cording to their implicit properties. We illustrate our idea by using RSA as 
the asymmetric cryptoscheme, DBS as the symmetric cryptoscheme and our 
generalized secret sharing scheme proposed in Section 2 as the selected gener­
alized secret sharing scheme. Practically, the interested reader can construct a 
new GGOC by replacing each scheme with another cognate scheme. 

Case 1: M is an important message. 
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The message is so unportant that only some specific subsets of the recipient 
group are authorized to decrypt it. The sender encrypts and sends this message 
as follows: 

(1) Select a private key K based on DBS and compute C = EK{M). 

(2) Construct the access structure T to speciiy the qualified subsets V s of 
the recipient group which are authorized to read this message. Alterna­
tively, if r is specified by the recipient group, she/he gets F from the 
bulletin. 

(3) Randomly generate two distinct super-increase sets {a'l ,a'2,.-., aĵ } and 
{6j, 621 • • • 1 b'n}- Permute these two sets and let the new sets be 
{ai, 02, • • •, CLn} and {61,62, • • • > K} so that neither 
< ai,a2,- •• ,an > nor < bi,b2,... ,bn > isan increasing or decreasing 
sequence. 

(4) Compute a pair {Ai, Bi) for each member [/» of the recipient group so 
that Ai = PEp^, (ai) and Bi = PEp,^, (hi). 

(5) Send the pair {Ai,Bi) to Ui, or, alternatively, the sender can use the 
Chinese Remainder Theorem to integrate all {Ai, Sj)'s into an integer 
pair and then transmit this integer pair to the recipient group or pubKsh it 
on the bulletin instead of transmitting the cipher {Ai, Bi) to the member 
Ui individually. 

(6) For each access instance V in the access structure F, compute and put a 
parameter Dy on the bulletin board so that 

Dv = K-{Y^ ai® Yl ^̂ )-
yUiEV MUiev 

(7) Send the ciphertext C to the recipient group. 

Any qualified subset V of the recipient group can cooperate to decrypt the 
ciphertext C as follows: 

(1) Generate the shadow (oj, hi) of each participant Ui in V by 

ai = PDs^. {Ai) and 6„_i+i = PDs^. {Bi). 

(2) Pool all the shadows (oj, 6j)'s together. 

(3) Get the public parameter Dy from the bulletin board. 

(4) Reconstruct K = Dy + (Ev£/i6V °-i ® Evf/iCV ^i)-

(5) Read the message M by M = DK{C). 



92 PARALLEL AND DISTRIBUTED COMPUTING 

Case 2: M is an urgent message. 

The message M is so urgent that any legal member of the recipient group is 
authorized to decrypt it. The sender encrypts and transmits the message M as 
follows: 

(1) Select a private key K based on DBS. 

(2) Compute C = EK{M). 

(3) Compute Si for each member Ui of the recipient group so that Si = 

(4) Send Si to Ui. Or, alternatively, use the Chinese Remainder Theorem 
to integrate all of these ciphers Si's into one integer and then transmit 
this integer to the recipient group or publish it on the bulletin instead of 
transmitting the cipher Si to the member Ui individually. 

(5) Transmit the cipher C to the recipient group. 

Each member of the recipient group can decrypt the ciphertext C as follows: 

(1) Generate the private key Khy K = PDs,^. {Si). 

(2) Read the message M by M = DK{C). 

Case 3: M is &nparticular message. 

The sender wants to send a particular message M to a particular member 
Ui of the recipient group, she/he encrypts and transmits the message M as 
follows: 

(1) Retrieve the member f/j's public key p^. from the public bulletin. 

(2) Encrypt the message M by C = PEp^, (M). 

(3) Send the ciphertext to the recipient group. 

The particular member Ui can read the message M by M = PDsk- (C). 

4. Discussions 

In many generalized secret sharing schemes, it is assumed that there is a 
trusted party who is responsible for generating and distributing a shadow to 
each participant according to the access structure and the shared secret. As 
for our design concept, by Step (2) of the Case 1, the sender shall make her-
/himself responsible for generating and distributing shadows. That is why the 
GGOC based on our design concept does not need the assistance of the trusted 
party. 

The security and the computational cost of the GGOC based on our de­
sign concept is dependent on the security and the computational cost of the 
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Table 6.1. The comparison between our GGOC and Chang and Lee's GGOC. 

Schemes 
types of messages 

particular 
message 

urgent 
message 

important 
message 

computational 
operations 

sender 
recipient 

communication cost 
computational 
operations 

sender 
recipient 

communication cost 

computational 
operations 

sender 

recipient 

communication cost 

our scheme 

RSA 
RSA 
l-'Vlbits 
RSA+DES 
RSA+DES 
\N\ X n + \C\ bits 
RSA+DES 
+ addition 
+ bitwise 
exclusive-OR 
RSA+DES 
+ addition 
+ bitwise 
exclusive-OR 

2 X n X |Af| + \C\ 
+\I\ X \D\ bits 

Chang and 
Lee's scheme 

RSA 
RSA 
\N\ bits 
RSA+DES 
RSA+DES 
(.V| X n -f \C\ bits 
RSA+DES 
+ muhiplication 
+ modular 
exponentiation 
RSA+DES 
+ addition 
+ multiplication 
+ modular 
exponentiation 
2 x n x |iV| + |C| 
+ | / | X \D\ bits 

selected asymmetric cryptoscheme, symmetric cryptoscheme and generalized 
secret sharing scheme. Both of the asymmetric cryptoscheme and the symmet­
ric cryptoscheme have efiRcient and secure commercial products such as RSA 
and DES. The analyses of the security and the computational cost of the newly 
constructed GGOC focus on the selected generalized secret sharing scheme. 
We have shown that our generalized secret sharing scheme is secure and efii-
cient in Section 2. So the constructed GGOC in Section 3 is naturally secure 
and efficient. 

Without loss of generality, we assume there are n members in the recipient 
group and the size of the confidential message is less than the block size of 
the RSA and DES. We also assume that the cipher of RSA \s\N\ bits and 
the cipher of DES is |C| bits. The communication cost of the newly GGOC 
is shown in Table 6.1. Moreover, Table 6.1 also shows the comparison of 
computational operations and commimication cost between our GGOC and 
Chang and Lee's GGOC. It is clear that our GGOC is more efiicient than Chang 
and Lee's GGOC. In Table 6.1, | r | denotes the number of qualified subsets in 
access structure and |D| denotes the average size of the public parameter D of 
Equation (6.1). 

5. Conclusions 
This chapter propose a design concept to construct a GGOC. The GGOC 

provides a secure environment for a sender to send confidential messages to 
a group. We also propose a secure and efiicient generalized secret sharing 
scheme. This generalized secret sharing scheme is based on simple opera-

file:///s/N/
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tions. Furthermore, we use our design concept to construct a GGOC based on 
our generalized secret sharing scheme, RSA, and DBS. The newly constructed 
GGOC has following properties: 

1. It is n^ore efficient than Chang and Lee's GGOC. 

2. It only uses simple operations: additions and bitwise exclusive-OR op­
erations. 

3. It is easy to implement in hardware. 

4. It does not need the assistance of a trusted party. 

5. It permits the sender to specify qualified subsets of recipients. 

6. It permits the sender to renew the encryption/decryption keys so as send 
to the confidential message m each transmission. 
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Abstract This chapter addresses the problem of scheduling tasks in the Non-Uniform 
Memory Access (NUMA) multiprocessor system with a bounded number of 
available processors. An algorithm is proposed here to schedule tasks by consid­
ering the intertask communication overhead and the contentions among commu­
nication channels. Communication contentions arise from the communication 
medium having insufficient capacity to serve all transmissions, causing signifi­
cant contention delays. The proposed algorithm also exploits the schedule-holes 
in schedules; therefore, it could produce better schedules than that produced 
by existing algorithms. In this chapter, a sharper bound in the multiprocessor 
scheduling problem with the consideration of the communication delay is also 
shown. The proposed algorithm ensures performance within a factor of two 
times of the optimum scheduled lengths for general directed acyclic task graphs. 
Experimental results demonstrate the superiority of the proposed algorithm over 
that presented in literature. 

Keywords: scheduling, NUMA, multiprocessor, communication, directed acyclic graph. 

Introduction 
Scalable shared-memory multiprocessors are emerging as attractive plat­

forms for parallel applications. Examples of such architectures include the 
Data General nuSMP [1], HP/Convex Exemplar [3], Sequent STiNG [15], and 
SGI Origin 2000 [10]. What makes these machines attractive is the shared 
address space. In such a paradigm, programmers could write parallel pro­
grams easier, but still require substantial tuning effort to reduce the impact of 
long-latency memory accesses. The difficulty lies in the fact that both data 
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and programs must be partitioned and then distributed to processors for eflS-
cient parallel execution, resulting in communication overhead [9, 14]. The la­
tency and bandwidth limitations induced by the interconnection network could 
seriously degrade the gain obtained by parallelization. Additionally, access 
contentions by several processors for the shared communication media (e.g., 
switches, memory modules, etc.) could further exacerbate the communication 
time. Therefore, to exploit the potential of parallel processing, the scheduling 
algorithms must be developed. Such algorithms allocate tasks to processors, 
and determine the execution order to attain the minimum completion time. 
This problem is usually considered as the multiprocessor scheduling problem. 
However, it is recognized that certain relaxed or simplified cases of schedul­
ing problems still fall into the class of NP-hard problems [9]. Consequently, 
previous efforts have focused on finding heuristics for obtaining satisfactory 
solutions in a reasonable time complexity. 

Several researchers have studied the scheduling problem. For instance, 
MCP [12] algorithm and Hwang's ETF algorithm [9] schedule tasks under the 
assumption that the number of processors is limited. Kwok and Ahmad pro­
posed two algorithms, DCP [18] and FASTEST [8], under the condition that 
the number of processors is unlimited; Yang and Gerasoulis also presented 
DSC [16] in the same assumption. Dynamic Level Scheduling (DLS) [4] and 
MH [6] algorithms were introduced for arbitrary processor network architec­
ture. In addition, MJD [11] and CPFD [7] algorithms were task-duplication-
based algorithms. 

However, none of the above works considers the impact of the communi­
cation contention. They schedule tasks to attain the minimal completion time 
for programs based on the macro-dataflow [17] model. In such a model, a 
task node starts the execution after receiving all the necessary input operands 
from its input edges, and then exports the computed results simultaneously 
through its output edges. The assumption that there is no contention among 
communication channels in this model is not reasonable [13]. Consequently, 
the scheduled tasks cannot be adequately executed in real multiprocessor sys­
tems. Selvakumar and Siva [14] presented an algorithm for scheduling tasks 
by considering the intertask communications and the contentions in communi­
cation charmels. However, the disadvantages of their approach are that a) the 
time complexity is apparently of a high order, and b) additional space is needed 
for keeping fi-ee time slot lists. 

An algorithm referred to as the Task Scheduling with Communication Con­
tentions (TSCC) algorithm is presented here. The TSCC algorithm exploits the 
schedule-holes [14] in schedules. It schedules tasks by considering the non-
negligible intertask communication and takes account of the communication 
contentions created by data exchange. Communication contentions arise fi'om 
the communication medium having insufiicient capacity to serve all transmis­
sions, causing significant contention delays. In this chapter, a sharper bound 
in the multiprocessor scheduling problem with the consideration of the com-
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munication overhead is also shown. It is meaningful not only theoretically 
but also practically to give a better lower bound for evaluating the accuracy of 
the resultant heuristic solution more precisely. It could prune a larger number 
of meaningless branches that will never lead to an optimal solution imder the 
branch-and-bound paradigm and even in the solution-based heuristic methods. 
For the comparative demonstration of the proposed algorithm's effectiveness, 
we apply two conventional algorithms. The experimental results reveal the 
superiority of our algorithm over that compared. 

The rest of this chapter is organized as follows. Section 2 introduces the 
preliminaries and related works. Section 3 presents the proposed algorithm, 
and section 4 shows the lower performance bound. Experimental results are 
provided in section 5. Concludmg remarks are finally made. 

1. Preliminaries and Related Works 
Previous works [8, 16, 18] assumed that there is an infinite number of pro­

cessors such that the potential for exploiting the maximum parallelism within 
parallel programs could be investigated. However, it is impossible that the 
number of processors is infinite in real multiprocessor systems. The problem 
of exploiting schedule-hole [14] arises when the processor number is limited. 
Therefore, these algorithms could not be applied to the scheduling problem on 
a bounded number of processors. 

This section opens with the description of the program model called the 
Shared Communication Resource (SCR) model [5], which enlarges the macro-
dataflow program description to allow the employment of scheduling heuristics 
in NUMA systems. The SCR model is formally described as follows. 

A program is represented as a directed acyclic graph (DAG) based on the 
SCR model. The DAG is defined by a quintuple G={Nt, Ng, E, C, T), where 
Nt is the set of tasks, Ng is the set of SCR nodes, C is the set of communication 
volumes, T is the set of computation costs, and E is the set of communication 
edges which define a partial order or precedence constramts on NtUNg. There 
is no communication edge between n, and rij, when n,, rij G Nt or m, rij G 
Ng. The value of Cĵ  G C is the communication volume occurring along the 
edge Cij e E, either rii e Nt, rij G Ng or n, G Ng, rij G N. The value n GT 
is the computation time for node n, G Nt, and n-O for all rii € Ng. When 
there is data dependence between tasks n̂  and rij, where rii, rij G iV ,̂ there 
exists a node rig G Ng such that eig, Sgj G E. 

In SCR model, a task is an indivisible unit of computation; once the task 
execution begins, it must continue to completion without interruption. Only 
one task at a time can access data from one SCR node. Two independent tasks 
must therefore access data from the same SCR node in sequence, making re­
source contention issue. Task execution is triggered by satisfying precedence 
constraints and by removing resource contentions. Precedence constraints oc­
cur when the execution of one task must be postponed until the anival of all 
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necessary data. The two kinds of resource contentions are that (a) a task ex­
ecuting contention, in which a task's execution must be deferred until all the 
tasks scheduled before it within the same processor complete their execution, 
and (b) a communication contention, in which data are received sequentially 
from the same communication channel, i.e., a task cannot receive data from 
all its predecessors simultaneously. Synchronization is just represented by a 
communication edge with zero data size. This is because that the synchro­
nization overhead could not be obtained at the compile-time. However, we 
will study this problem in the fiiture work. Experimental results [5] show that 
the adoption of the SCR model could achieve more realistic outcomes for the 
clustering/scheduling problem in NUMA systems. 

Suppose next that a NUMA system is homogeneous, and that the communi­
cation is half-duplex. Each processor has a co-processor to deal with communi­
cations, which allows computations and communications that are independent 
of each other to be overlapped. Formally, let P={pi| i = l , . . . , |P|}, |P| j oo, be 
the set of homogeneous processors. Let P{ni) be the processor allocated by 
Ui, and rjipi, pj) denote the latency required to transfer a message unit from pi 
to Pj, where pi, pj e P. 

Given a DAG and a system as described above, this problem is to obtain a 
non-preemptive schedule with the minimal completion time. To simplify the 
analysis, we neglect the additional overhead of transforming a serial algorithm 
into a parallel form, and assume that no additional processing cost is required 
to execute programs in multiprocessor systems. To avoid high complexity, only 
the non-backtracking approach is considered here. Aiming to simplify it, only 
two kinds of communication latencies are considered. Let M={i/, Lr} be the 
set of latencies, where Li=T](pi, pi), pi GP, is the intraprocessor latency; and 
Lr^(Pi, Pj), where pi, pj GP, and i^j, is the interprocessor latency. 

Formally, let N = NfU Ng, andpred(ni) be the set of immediate prede­
cessors of rii. After satisfying the precedence constraints and removing the 
communication contentions, the earliest starting time of node rij, est(nj), is 
the earliest time when node rij can start the execution. Vnj € pred{nj), the 
earliest completion time of node ni is defined as follows: 

ect{ni) = est{ni) + n. (7.1) 

Let succ{ni) be the set of immediate successors of n^ and lmt(P(ni)) be the 
last message time of the processor, which n, is allocated. Consequently, the 
earliest starting transmission time of edge e^ is defined as follows: 

estt{eij) = max{ect{ni),lmt{P{ni))). (7.2) 

For node rij, we claim that a chain of communication edges can be found 
as Xj : eij —> e2j ^ . . . —> Sqj, such that estt{e\j) < estt (e2j) < . •. < 
estt(eqj), where ni , n2, ..., riq G pred{nj). Let icti{ekj, eij) denote the idle 
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communication time interval between two communication edges, e/^j and e^, 
in the chain Xj, 1 < k < i < q; mathematically, 

icti(e,,,e,,) = | ^ ' ^ fthemfse, ^'^'^^ 

where T = estt{eij) — estt{ekj) — c^j x r]{P{nk),P{nj)). The idle com­
munication time before the commimication edge e^ is defined to be 0(ey) = 
min(icti(ekj, 6^)), 1 < k < i. Thus, ^rii £precl(nj), 

,, .. ( min{estt(eij)) + Y^fcy x ri{P{ni),P{nj)) + ^(eij)), 
•" \ max{esU{eij)+Cij xr]{P{ni),P{nj))). 

(7.4) 
Let st{eij) denote the starting time for Cy after scheduling; mathematically, 

Vrifc Gpred(nj), 

stie- •) = max i ^^^(^^^^i^kj)) + J2{ckj x r]{P{nk), P{nj)) + O(efcj)), 
^ '^' \ max{estt(ekj) + Ckj X ri{P{nk),P{nj))), 

(7.5) 
where 1 < fc < i < q' in the chain Xj. 

The least completion time of node rii, lct{ni), is the longest execution time 
from this node to the sink node. Formally, Vrij G A'', 

lct{ni) = max{cij x Li+ TJ + lct{nj)), (7.6) 

where Vn^ G succ(ni). 
Initially, Vnj G N snApred{ni) = 0, let est(ni) = 0. 

2. T S C C Algori thm 

The TSCC algorithm exploits the schedule-holes in schedules by consider­
ing the communication overhead and the contentions among communication 
channels. Selvakumar and Siva [14] stated "Scheduling-holes in a processor 
(communication channel) are the time intervals during which the processor 
(channel) is not scheduled provided these time intervals occur prior to the finish 
time of the task (communication) last scheduled to the processor (commimica­
tion channel)." The schedule-holes are primarily due to that a task is scheduled 
after some tasks with higher priorities; however, it could be scheduled before 
these tasks with higher priorities and does not affect the earliest starting times 
of these tasks. 

Figure 7.1 provides an example of exploiting schedule-holes to improve the 
quality of schedules. For instance, assume that there is a partial DAG, as shown 
in Figure 7.1(a). Figure 7.1(b) shows the schedule obtained by applying a list 
scheduling algorithm according to a scheduling priority. In this figure, after 
scheduling ni and n2, the set of ready tasks is {713,714, n^}, where the priority 
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of scheduling ns is larger than that of n^, and the priority of scheduling n4 
is larger than that of 725. The applied algorithm schedules first 723 and then 
124. However, n5 could be scheduled before n^ without affecting the earliest 
starting time of 714, as shown in Figure 7.1(c). In such a situation, the schedule 
holes could be exploited, and the completion time could be shortened. 

Time 
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(a) a DAG G (c) after exploiting schedule holes 

Figure 7.1. An illustrative example of exploiting schedule holes. 

Existing algorithms do not consider the conditions of exploiting schedule-
holes. Therefore, the properties of exploiting schedule-holes are defined to 
ensure that the completion time of a DAG will be strictly curtailed after apply­
ing TSCC. 

P r o p e r t y C I . The task Ua could be scheduled to P{na) before rib, if 
the scheduling operation at step i-1, which schedules Ua to processor P{na) to 
minimize est{na), does not aifect the strict reduction of est{nb) at some fixture 
step j , i < j , where the following conditions are satisfied: 

1. est{na) < est{nb), 

2. Ta + lct{na) - est{na) <Tb + lct{nb) - est{nb), and 

3. P K ) = P{nb). 

To improve the performance of the TSCC algorithm, a fiirther property for 
the completion time reduction warranty is defined to ensure that the completion 
time is strictly curtailed. For instance, assume that there is a partial DAG, as 
shown in Figure 7.2, where ric and nj, have been allocated to some processors, 
na is ready and Ub still does not satisfy some precedence constraints or some 
resource contentions. Suppose that P{nc) ^ P(nd) and that the dominant 
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sequence passes through n;, and rid- Scheduling ria to P{nd) should not affect 
the strict reduction ofest{nb) at some future step; otherwise, such a scheduling 
may lengthen the parallel completion time. 

P r o p e r t y C2. The operation, which schedules Ua to minimize est{na) 
at step i-1, should not affect the strict reduction oiest{rHi) at some future step j , 
i < j , where n;, is along the dominant sequence [16] which is the longest path 
of the scheduled DAG. 

scheduled 

..•••••' unscheduled 

dominant sequence 

Figure 7.2. An illustrative example of the Property C2. 

To improve the performance of the TSCC algorithm, the properties CI and 
C2 for the completion time reduction warranty should also be considered. The 
reason for adopting the scheduling priority, max{Ti + lct{ni) — est{ni)), to 
select candidates is described as follows. When two nodes are ready and their 
least completion times are equal, the node that could be issued earlier should be 
scheduled first. When the two ready nodes have the same earliest starting time, 
the one which has the larger least completion time should also be scheduled 
first. If we mix these situations, the priority function will be max{Ti+lct{ni) — 
est{ni)). 

The TSCC algorithm initially finds the let for each node bottom-up, and 
then pre-schedules DAGs by a list scheduling algorithm that schedules tasks 
according to the priority, max{Ti + lct{ni) — est{ni)). Nodes without pre­
decessors are selected first. A candidate with max{Ti + lct{ni) — est{ni)) is 
allocated to a schedule by considering the properties CI and C2; the chosen 
candidate node is then examined. The algorithm repeats this procedure imtil 
all nodes have been examined. 

The time complexity of pre-scheduling is 0(|iV|(|A/'| + \E\)) and the time 
complexity for calculating let is Oi\N\ + \E\), where \N\ = \Nt\ + \Ns\. The 
while loop is executed 0(\N\) tunes. The time complexity of findmg the node, 
rii, with max{Ti + lct{ni) — est{ni)) is 0(|A''|). Checking the properties CI 
and C2 is executed 0( | Ar| |P | (| Ar| + \E\)) times. The tinie complexity of TSCC 
algorithm then is 0(|P||JV|^(|Ar| + \E\)). Consequently, in practical applica­
tions, the complexity of the TSCC algorithm is reasonable, because in [14] the 
corresponding complexity is 0(|Ar|^|P||£;| log^ |P|). 
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TSCC algorithm 
Input: a NUMA system M, and a DAG G. 
Output: a schedule with the minimal parallel completion time. 
{ 

Initialization. 
Finding Ictini), Vrij e NtU Ng. 
Pre-scheduling. 
unexam<— NtU Ns, ready —̂ 0. 
While unexam^ 0 

{ 
ready <— ready Urij, y rii e unexam andpred (rij) fl unexam = 0. 
Finding n^ with max(Ti+lct{ni)-est(ni)), \/ rii € ready. 
Hs <— n, l*ns is the selected candidate node*/ 
If there is n^ Greatfy, n^ ^ Ug, which satisfies properties CI and 

C2 
{us «- rife}. 

Scheduling Ug to its corresponding processor. 
unexam <— unexam - Ug, and reacfy *— reac/v - Ug 

} 
} 

3. Performance Bounds 
This section introduces a sharper bound for the scheduling problem. It is 

meaningful not only theoretically in evaluating the accuracy of the resultant 
heuristic solution more precisely, but also practically in giving a better lower 
bound in the multiprocessor scheduling problem. 

In the multiprocess scheduling problem, there are at least two kinds of the 
resource contention: one, in which execution of a task must be deferred un­
til the completion of all the tasks scheduled before it in the same processor; 
and the other, that entails receiving data fi'om immediate predecessors sequen­
tially, i.e., a task that cannot receive data from all its predecessors simultane­
ously. The Lemma 1 and 2 describe the two kinds of the resource contention 
as follows. 

L e m m a 1. For a communication e^ in a schedule, only one of the 
following three cases should be considered. Case 1: Only one task and one 
communication have resource contention relationships with e^. Case 2: Only 
one task has a resource contention relationship with ejj. Case 3: Only one 
communication has a resource contention relationship with e^. 

Proof. We prove Lemma 1 by contradiction. Three possibilities are 
available for a communication edge ê - in a schedule: 
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1) Assume there is neither a computation task nor a communication that 
has a resource contention relationship with Cy. This assumption would 
imply that we can advance the starting time of the communication edge, 
Sij, or that we can advance the earliest starting time of computation task 
Tij. However, this contradicts Equation 7.4 for Uj, or Equation 7.5 for 
eij. 

2) Assume that more than one computation task has resource contention 
relationships with e^. Two sub-possibilities are (a) these tasks are all 
allocated to the same processor. Since the tasks must be executed in 
order, only one can have a resource contention relationship with e^; or 
(b) the tasks are allocated to more than one processor. It is impossible 
for more than one processor to receive the commimication data along 
Bij. 

3) Assume that more than one commimication has resource contention re­
lationships with Cij. The proof is similar to that of the possibility 2). 

Thus, the Lemma 1 is proven. § 

L e m m a 2. For a task rii in a schedule, only one of the following three 
cases should be considered. Case 1: Only one task and one communication 
have resource contention relationships with rij. Case 2; Only one task has a 
resource contention relationship with rij. Case 3: Only one communication 
has a resource contention relationship with n,. 

Proof. Since the proof is similar to that of Lemma 1, we omit it. § 

Theorem 1 For any DAG G = (Nt, Ns, E, C, T) to be scheduled to a NUMA 
system, the schedule length, u), obtained by TSCC always satisfies 

UJ< h - Tpij^opt + Y^ f Ci,i+1 X irimax- ( \p\ ) Vminj j , (7.7) 

where Uopt is the length of the optimal schedule, rjmax = 'max{r]{pi,pj)) and 
rjmin = min{r]{pi,pj)), \f any pair pi, pj € P. 

Proof. The set of all points of time in (0, u) could be partitioned into 
two sets A and B. A is defined as the set of all points of times for which all 
processors are executing some tasks, and B is defined as the set of all points 
of time for which at least one processor is idle. If B is empty, all processors 
complete their last assignment at w and no idle interval can be found within 
(0, w). The TSCC schedule is indeed optimal and, thus, the theorem holds 
obviously. Therefore, we assume that B is non-empty. Moreover, we also 
assume that B is the disjoint union of q' open intervals as below: B=(/n, Iri) 
U {Il2, /r2) U . . . U (Iiq, Irq), whcrC 7(1 < Irl < I^ < Ir2 < • • • < kq < Uq-
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Without loss of generality, we claim that a chain of tasks can be found, i.e., 
Xq : ni —^ n2 -^ ... -^ Ux, such that 

q X x~l 

Y^ {Ir,i - Ii,i) <J^Tk + J2 i(^k,k+i X v{P{nk),P{nk+i))). (7.8) 
i = l fe=l fe=l 

Let Ux denote the task that finishes in the TSCC schedule at time u). Let 
st{nx) denote the stating time scheduled by TSCC for Ux- Three possibilities 
regarding the starting time of n^ are 

(a) st{nx) < In. 

(b) st{nx) S B, i.e., 3 an integer h,h<q, s.t. Iih < st{nx) < Irk-

(c) st{nx) G A but stijix) > In, i.e., 3 an integer h, h < q — 1, s.t. Irh < 
st{nx) < Ii,h+i or Ir,g < st{nx). 

If the first possibility occurs, the task n^ by itself constitutes a chain that 
satisfies our claim. 

The second possibility is next considered. Suppose that h is the index sat­
isfying (b). Then, n^ covers some part of B from its right end to somewhere 
in-between Ii^ and Irh- An attempt is made to add the second task, Ux-i, to 
the chain. According to the Lemma 1 and 2, there is some task Ug or some Cgx 
that has a resource contention relationship with n^. Therefore, let Ux-i = rig, 
and add Ux-i to the chain, Xq. The cycle can be repeated until the starting 
time of the last added task satisfies (a) or (c). 

The third possibility is considered as follows. Suppose that h is the index 
satisfying (c). According to the Lemma 1 and 2, there is some task Ug or 
some egx that has a resource contention relationship with Ux. Therefore, let 
Hx-i = rig, and add n^-i to the chain, Xq. The cycle can be repeated until 
the starting time of the last added task satisfies (a) or (b). 

The whole process is repeated by considering the above-mentioned three 
possibilities until st(ni) < In is satisfied. Finally, a cham satisfying our 
claim (see Eq.7.8) is constructed. Consequently, 

X X — 1 

J2'^e< i\P\ - 1) X^Tfc + \P\ J2 (Cfe,fe+1 X Vmax), (7.9) 

where $ is the set of processor idle time intervals and r^ is the processor idle 
time interval (i.e., the left-hand sum is over all idle time intervals for proces­
sors). The chain, X, takes at least YA:=I '^k + l]fe=i(cfe,fc+i x ''?min) to finish 
all tasks in any schedule, i.e., 

X x—1 

^opt > ^ T f e -I- 'Y{Ck,k+l X •^min) ( 7 . 1 0 ) 

k=l k=l 
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The following inequality is also obvious: 

X^ Ti < |P | X Wop*. (7.11) 
UiEN 

Consequently, 

- IPf ( (2 |^ l - '^)<^apt + E (Ci,J+l X {\P\{'nmax - Vmin) + Vmin)) j 

< (2 - i ^ j LOopt + E (ci,i+l X (̂ maa; - ( T P T ) '7mmjj •§ 

(7.12) 
When the number of processors approaches infinite, the performance bound 

of the TSCC algorithm is within a factor of two times of the optimum sched­
uled length for general DAGs. When rjmin = 0, our performance bound is re­
duced to the sum of Graham's boimd for list scheduling [2]. When rjmin > 0, 
our performance boimd is sharper than that in literature. 

4. Experimental Results 
This section presents experimental results to verify the preceding claims. 

The feasibility of the proposed algorithm is assessed by evaluating practical 
applications, such as the FFT, Laplace equation. Fork-trees, Join-trees and 160 
randomly generated program graphs, whose graph sizes vary from the mini­
mum of 364 nodes with 363 edges to the maximum of 365 nodes with 606 
edges. 

We have implemented an evaluation environment that takes SISAL [ 17] pro­
grams as input and evaluates their performance. The optimizing SISAL com­
piler translates programs to IFl intermediate files based on the macro-dataflow 
model. The evaluation environment modifies these IFl codes based on the 
paradigm for SCR model. The transformed intermediate files are scheduled by 
our proposed algorithms and evaluated their performance. The transformation 
progress does not modify any syntax of IFl; therefore, IFl could be used as 
the intermediate code for the SCR model and SISAL compiler could generate 
executable machine code from it. 

Let Li be 2 cycles/byte, and Lr vary from 4, 8, 16 to 32 cycles/byte. The 
average communication overhead associated with each edge varies from 32, 
64, 128 to 256 bytes. The cost required for each task varies randomly fi-om 1 
to 512 cycles. The processor number varies from 2,4, 8,16 to 32. The speedup 
for a scheduling algorithm is defined as 

Speedup = SequentialCompletionTime/ParallelCompletionTime. 
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Two algorithms are implemented for comparison. The first, a list scheduling 
algorithm schedules tasks according to the priority, est{ni)+Ti+lct{ni). The 
task with est[ni)+Ti+lct{ni) is scheduled to a corresponding processor until 
there is no un-scheduled task. The second, SCH [14] exploits schedule-holes 
to produce more adequate schedules. 
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Figure 7.3. (a)Speedup, (b)Scheduling time vs. number of processors for fork trees. 

Figure 7.3 shows the experimental results of 160 fork trees, where "SCH" 
denotes the SCH algorithm, "List" the list scheduling and "TSCC" the TSCC 
algorithm. These results indicate that TSCC performs better than others. As 
the number of processors increases, the difference in speedup between SCH 
and TSCC also increases. The main explanation is that the little possibility of 
causing the schedule-holes is due to the structures of fork trees. Figure 7.3(b) 
confirms the superiority of TSCC in time complexity over the SCH algorithm. 
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Figure 7.4- (a)Speedup, (b)Scheduling time vs. number of processors for join trees. 

Figure 7.4 shows the experimental results of 160 join trees. These results 
indicate that SCH performs better than others. However, the average differ­
ence in speedup between SCH and TSCC is only about 0.744%, and the time 
complexity of SCH algorithm was apparently of a high order. The main expla­
nation is that the great possibility of causing the schedule-holes is due to the 
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structures of join trees. Figure 7.4(b) confirms the superiority of TSCC in time 
complexity over other algorithms. 
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Figure 7.5. (a)Speedup, (b)Scheduling vs. number of processors for random DAGs. 

Figure 7.5 shows the experimental results of 160 randomly generated DAGs. 
Figure 7.5(a) confirms that the speedups increase when the number of proces­
sors increases, which corresponds with findings in previous literature. These 
results also indicate that the performance gain of applying SCH is similar to 
that of applying TSCC; in fact, the average difference in speedup between 
SCH and TSCC is only 0.414%. However, the scheduling time of applying 
TSCC surpasses that of applying the SCH, as shown in Figure 7.5(b). The 
main reason for the superiority of TSCC in time complexity is that SCH finds 
the earliest starting time by searching the list of free time slots in each proces­
sor. 
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Figure 7.6. Speedup for FFT algorithm. 

The example applied here is the classical FFT. The task dependence graph 
can be considered as the concatenation of two trees: the MERGE tree and 
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SPLIT tree. We execute this example when n=2^^. Figure 7.6 shows the 
speedup for FFT. When the number of processors is 2, the SCH performs better 
than TSCC. When the number of processors is larger than 2, TSCC is always 
superior to SCH, as shown in Figure 7.6. These experimental results show that 
the TSCC algorithm has better performance than that of SCH when the join-
degree is equal to the fork-degree within applications. Because TSCC also 
tries to balance the tradeoff between the resource utilization and the speedup, 
the optimal parallelism exploitation may not be achieved. The situation is also 
shown in Figure 7.5. According to the comparison between Figure 7.5 and 
Figure 7.6, the minor superiority of SCH in Figure 7.5 maybe result from that 
the number of join-structures is larger than that of fork-structures when we 
randomly generate the task graphs. 

Finally, to show that TSCC is superior in the resource utilization to oth­
ers, the Laplace Partial-Differential Equation algorithm is evaluated. In such 
applications, a region is discretized and an iterative method is used to approx­
imate fiinction values within this region. The experimental results for Laplace 
partial-differential equation are similar to that of FFT. The difference of the 
performance between TSCC and SCH is very little. As the interprocessor 
communication latency increases, the difference of the performance between 
TSCC and SCH increases. However, the resource usage of TSCC is better 
than that of SCH. In Table 7.1, TSCC is always superior in the resource usage 
to SCH. This is because that TSCC also tries to balance the tradeoff between 
the resource utilization and the speedup; the optimal parallelism exploitation 
may not be achieved. This situation is also shown in previous experimental 
results. In Table 7.1, the resource usage of applying TSCC is better than that 
of applying SCH. 

Table 7.1. Processor Usages of Different Scheduling Algorithms 

PE# 
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4 
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16 
32 
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16 
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4 
7 
7 
7 

= 4 
TSCC 

2 
4 
8 
15 
15 

ijr — 

SCH 
2 
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8 
16 
16 

= 80/L( 
List 

2 
4 
4 
4 
4 

= 8 
TSCC 

2 
4 
8 
15 
15 
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sen 
2 
4 
8 
13 
13 

160/Li 
List 

2 
3 
3 
3 
3 

= 16 
TSCC 

2 
4 
8 
8 
8 

5. Concluding Remarks 
This work examines the impact of scheduling tasks to multiprocessor sys­

tems by exploiting schedule-holes in schedules with the consideration of the 
non-negligible intertask communications and the communication contentions. 
TSCC ensures performance within a factor of two times of the optimum sched­
uled lengths for general DAGs. We demonstrate the performance of our algo-



REFERENCES 111 

rithm by evaluating some practical applications and some randomly generated 
task graphs. Experimental results demonstrate the superiority of the proposed 
TSCC algorithm. The scheduling performance depends on the size of the prob­
lem, the degree of parallelism and the task graph granularity. The above ex­
periments show that the TSCC can obtain a good performance, if a proper task 
partitioning is provided. Since exact weight estimation may not be feasible in 
practice, the experiments show that as long as the task graph is coarse grain, the 
performance variations are small. Thus, coarse grain partitions with sufficient 
parallelism are commended. 
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Abstract 
Many of today's embedded Systems, such as wireless and portable devices 

rely heavily on the limited power supply. Therefore, energy efficiency becomes 
one of the major design concerns for embedded systems. Dynamic voltage scal­
ing (DVS) provides the possibility to reduce the power consumption of mod­
em processors. This chapter addresses the problem of static variable voltage 
scheduling for heterogeneous real-time embedded systems. The aim is to opti­
mize energy consumption while guaranteeing the deadline constraints and prece­
dence constraint of the tasks. The approach is based on Genetic Algorithms. 
Task mapping, scheduling and voltage selection are integrated in the same phase 
in our approach in order to achieve lowest energy consumption. The experi­
mental results show that the proposed algorithm is effective and reduces energy 
consumptions ranging from 20%, up to 90% under different system configura­
tions. We also compare the proposed Genetic Algorithm based algorithm with 
two list-scheduling-based algorithms and one simulated-annealing-based algo­
rithm. The comparisons demonstrate that the genetic algorithm based algorithm 
outperformed the other algorithms in terms of finding more feasible schedules 
and saving more energy. 

Keywords: Energy Optimization, Task Scheduling, Real-Time Systems, Embedded Sys­
tems, Genetic Algorithms. 
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Performance Scientific and Engineering Computing at Parallel Processing Letters, 2005. 
"The author would like to thank NSERC (National Science Engmeering Research Council, Canada) for 
supporting this research. 

mailto:mlin@stfx.ca
mailto:x98bld@stfx.ca


114 PARALLEL AND DISTRIBUTED COMPUTING 

1. Introduction 
Many of today's embedded Systems, such as wireless and portable devices 

rely heavily on the limited power supply by the battery. Therefore, energy ef­
ficiency becomes one of the major design concerns for embedded systems in 
order to lengthen battery life, to reduce the electricity cost and to improve per­
formance. Reducing the power of CPU is the critical part of energy saving for 
an embedded system. Dynamic voltage scaling (DVS) [18] is an effective way 
to reduce energy consumption of a CMOS processor by dynamically chang­
ing its supply voltage. Many of today's advanced processors such as those 
produced by Intel and AMD support DVS technology. 

The CPU power consumed per cycle in a CMOS processor can be expressed 
as P = CLFV^JJ, where CL is the total capacitance of wires and gates, VDD 

is the supply voltage and F is the clock frequency. It is obvious that a lower 
voltage level leads to a lower power consumption. The price to pay for low­
ering the vohage level is that it also leads to a lower clock frequency and thus 
slows down the execution of a task. The relation between the clock fi-equency 
and the supply voltage is: F = K* (VDD - VTH)"^/VDD- AS a result, exploit­
ing DVS may hurt the performance of a system. When using DVS in a hard 
real-time system where tasks have deadlines, we can not lower the voltage lev­
els of the processors too much as we also need to guarantee the deadlines of 
the tasks be met. Therefore, classic scheduling and DVS has to be addressed 
together. 

Modem embedded systems are often implemented as distributed systems 
where tasks can be executed in parallel. The tasks need to interact with each 
other to accomplish a complex job in timely fashion. As a result, the tasks 
in a distributed hard real-time system often have a deadline and precedence 
constraints among them. Due to various degree of application parallelism, the 
processors experience idle intervals. DVS can be exploited to reduce the idle 
intervals and thus save energy. 

In the past few years, there have been a number of algorithms proposed for 
applying DVS to hard real-time systems [4,5,15,1, 8,11,19,2,7]. Many pre­
vious works of DVS-based scheduling either focus on single processor power 
conscious scheduling [1, 8, 5, 10] or consider independent tasks only [10, 5]. 
There is less work done for distributed systems with dependent tasks. 

In this paper, we focus on static DVS-based scheduling algorithm for dis­
tributed hard real-time systems. The problem of optimally mapping and schedul­
ing tasks to distributed systems has been shown, in general, to be NP-comple-
te [17]. Because of the computational complexity issue, heuristic methods 
have been proposed to obtain optimal and suboptimal solutions to various 
scheduling problems. Genetic algorithms have recently received much atten­
tion as searching algorithms for scheduling problems in distributed real-time 
systems [9,14, 17]. Our DVS-based scheduling algorithm adopts Genetic Al­
gorithms. Different from classic scheduling problem aiming at minimizing ex-
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ecution time, our algorithm takes voltage level as one extra variable and aims at 
minimizing energy consumption while guaranteeing all tasks meet their dead­
line. The approach is an integrated method where task assignment (to which 
processor the tasks will be assigned), task scheduling (when the tasks will be 
executed) and voltage selection (at which voltage level the tasks will run) are 
performed at the same phase. Note that we consider multi-voltage DVS pro­
cessors instead of variable-voltage DVS as real DVS processors show only a 
limited number of supply voltage levels at which tasks can be executed. 

The paper is organized as follows. First, the related works are discussed 
at Section 2. Then the energy model and the discussion of why using an in­
tegrated method are addressed in Section 3. Task Model and schedule model 
are described in Section 4. After that, The Genetic Algorithm for scheduling 
with energy level consideration is described in Section 5. Section 6 shows the 
experiment details and the comparisons of our GA-based approach with other 
approaches. Finally the conclusions are presented in section 7. 

2. Rela ted Works 

Although there have been quite a number of works on applying DVS to real­
time systems, there has only been limited works for static power conscious 
scheduling for dependent real-time tasks on multi-processors[l 1, 19, 6, 16,4]. 

Luo et al. [11] proposed a method to construct power-efScient schedule by 
combining off-line and on-line schedules. The used heuristic is mainly based 
on critical path analysis and task execution order refinement. 

Zhang et al. [19] studied energy minimization on multiprocessor systems 
which separates task scheduling from the voltage selection. That is, the algo­
rithm is composed of two phases. The first phase performs task mapping and 
scheduling and the second phase performs voltage selection based on the ex-
istmg schedule generated fi-om the first phase. In the second phase, the voltage 
selection problem is formulated as Integer Programming (IP) problem. 

Mishra et al. [16] also proposed a two-phase algorithm for energy aware 
scheduling. The first phase uses a list scheduling heuristic algorithm to gener­
ate static schedules for the tasks on multiple processors. And the second phase 
focuses on the power management scheme which exploits the static slacks due 
to the degree of parallelism to slow down some tasks to achieve energy saving. 

Gruian [4] proposed a method that uses simulated annealing to find task 
assignments and constructive heuristic to perform task scheduling. Task as­
signment and scheduling are performed separately as well. This method is 
different fi-om the other methods discussed above in that it involves an itera­
tive method to search for a good solution instead of using a pure constructive 
method. 

Our approach uses Genetic Algorithms which integrates task assignment, 
scheduling and voltage selection in the same phase. Instead of just constructing 
one optimal solution using a constructive method, we construct and evaluate 
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many different solutions during an iterative process. This is different from 
Gruian's method [4] where only one solution is considered in one iteration. 
By exploiting the evolution rules in nature using Genetic Algorithm, betters 
solution (a solution is a schedule in this case.) can be fr)und as demonstrated 
by our experiments. 

Schmitz et al. [12] had also proposed a method that used Genetic Al­
gorithms. However, their method is non-integrated where task assignment, 
scheduling and voltage selection are separated, similar to the algorithms in 
Zhang [19], Mishra [16] and Gruian [4]. 

The shortcoming of a non-integrated method is that it is not optimal be­
cause it is unlikely that the static schedule generated by a list scheduling or 
other methods is the optimal schedule to begin with for performing voltage 
scheduling for energy saving. In section 3.3, we will illustrate this using an 
example. Instead of performing energy minimization based on existing sched­
ules, as done in [4,16,19,12], our algorithm integrates the scheduling problem 
and energy minimization problem in the same phase. The rational behind the 
integrated approach is that the energy consumption not only depends on the 
energy level of each task at each processor, but also depends on how the task 
is mapped and scheduled in each processor. 

Our approach is a static approach where the tasks are assumed to run with 
the worst case execution time(WCET). In reality, tasks may take less time than 
their WCET to complete and there will be run-time slacks available. Therefore, 
further optimization can be done dynamically [2, 4] in run time to lower the 
voltage level of some processors and to fill the slack as much as possible as 
long as the constraints of the tasks are met. 

3. Energy Model 

3.1 Voltage, speed and energy 
The processor energy model used in this paper has been widely described in 

the literature [18]. For a processor with CMOS circuits, the dominant source 
of the energy consumption is the dynamic power dissipation, which is: 

P = CL*F*Vi,D, (8.1) 

where CL is the load capacitance, F is the processor clock frequency and 
VDD is the voltage supply, respectively. The relationship between operation 
frequency and the voltage is expressed below. 

F = K*{VDD- VTHf/VoD, (8.2) 

where A; is a constant and VTH is the threshold voltage. We can see from Eq. 
(8.2), there is an almost linear relationship with the processor speed and the 
supply voltage. Now we suppose a task t takes M cycles to finish, then the 
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execution time Exect required to finish the task will be: 

Exect = M/F, (8.3) 

and the energy consumed by the task T is given as E — P * Exect, that is : 

E = CL*M* V^D- (8.4) 

From Eq. (8.4) and Eq. (8.3), we can see that if we reduce the voltage by 
half, the execution time will be double but the energy consumed will just be 
one-quarter accordingly. 

3.2 Energy minimization scheduling example 
The goal of using DVS processors is to reduce the total energy consumption 

by modifying the supply voltage while still guaranteeing tasks meet their con­
straints. To illustrate how this works, let's consider a very simple scheduling 
example vvith three different tasks which are going to be mapped on two iden­
tical processors. In this example, we assume that there is no communication 
time between tasks and the DVS processor takes zero time and zero energy 
consumption to switch voltage level. 
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Figure 8.1. DAG of a Task Set and the Task Length and Deadline 
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First of all. Figure 8.1 shows the directed acyclic graph (DAG) of the tasks. 
It also shows the length and deadline of each task when the supply voltage is 
S.OV. We assume that the dynamic power dissipation at 5.0V is 4J/s and the 
CPU speed is lOOMHz. Based on Eq. (8.1) and (8.2), the dynamic power dis-
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sipation at 2.5V is 0.5J/s (1/8 of 4J/s) and at 1.25V is 0.062J/s (1/8 of 0.5J/s), 
and the CPU frequency at 2.5V is 50MHz (1/2 of lOOMHz) and at 1.25V is 
25MHz (1/2 of 50MHz), respectively. Now suppose that Tl and T3 will be 
executed on processor 1, and T2 will be executed on processor 2, respectively. 
Case 1 in Figure 8.2 shows the schedule without DVS. In this case, each pro­
cessor runs at the highest speed with 5.0V voltage supply and the total energy 
consumption = 4J/s * 10s + 4J/s * 10s + 4J/s * 10s = 120J. Case 2 in Figure 8.2 
shows the schedule with DVS. In this case, task Tl and T3 run at voltage 2.5V 
and they slow down by half and T3 runs at voltage 1.25 V and slows down to 
1/4. The execution time for Tl, T2, T3 are 20s, 20s and 40s, respectively. 
The total energy consumption in this case is = 0.5J/s * 20s + 0.5J/s * 20s + 
0.062J/S * 40s = 22.48J. So we can see by using the DVS processor, the energy 
consumption reduced up to 80% of the original energy consumption. 

3-3 W h y using an integrated me thod? 

Next, we will use an example to show the problem of using a non-integrated 
approach for task assignment, scheduling and voltage selection. 
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Figure 8.3. Why an Integrated Method 

Let's consider an example where there are three tasks Ti, T2 and T3, two 
processors Pi and P2. The tasks' WCET (or length) and deadline are shown 
in Figure 8.3. Each processor has two voltage levels: 5.0V and 2.5V. A non-
integrated method first generates a schedule without considering energy. We 
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choose a commonly used list scheduling algorithm: Earliest-Deadline-First 
algorithm (EDF). The schedule constructed is shown at Figure 8.3(A). The 
only possibility for saving energy starting from schedule A is to slow down 
T2 (T2 running at voltage 2.5V as shown at Figure 8.3 (B)). Schedule B is 
less optimal (consumes more energy) than schedule C where T3 is mapped to 
processor P2 thus allowing both T2 and T3 run at voltage 2.5V. 

As we have seen, in a non-integrated approach, the schedule produced by the 
task assignment and scheduling phase might not be the right schedule for the 
energy optimizer to start with that leads to a final schedule with the least energy 
consumption. Therefore, we integrate the task assignment, scheduling and 
voltage selection in the same phase in order to generate an optimal schedule. 

4. Task and Schedule Models 

We consider the general energy aware scheduling problem for a set of task 
Ti, T2 , . . . , Tjv on a set of heterogeneous processors Pi, P2, • • •, PM where N 
is the number of tasks and M is the number of processors. Each processor has 
a number of voltage levels. 

Next, we describe some more detailed notations for the task model. 

• Each task has a Worst Case Execution Time (WCET) on each processor 
for a given voltage level. The worst case execution time of task t on 
processor p at voltage level I is represented as wt^p^i. 

• Each task has a deadline, di is used to denote the deadline of task i. 

• There are precedence constraints among tasks. The precedence con­
straints among tasks are represented by a directed acyclic graph, G — 
{y, E), where vertices represent tasks and edges represent dependencies 
of the tasks. If there exists an edge e: Vi —> Vj in E, then Vj can only 
start to execute after Vi finishes. We call Vi a pre-task oivj. 

• The power dissipation for a processor p running at level / is denoted as 
POWp^i. 

m Suppose task t is assigned to processor p and run at voltage level I. Then 
the energy used to execute task t is given by: 

POWp^i * wt,p,i 

where wt^p^i is the worst execution time of the task t on the processor p) 
at voltage supply level I. 

• For a set of tasks Ti, T2 , . . . , T;v scheduling onto the set of processors 
Pi, P 2 , . . . , PM- Assume T, is mapped to processor P(z) and runs at 
level L{i). Then the total energy consumptions can be easily calculated 
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as follows: 

N 

Etotal = 'Y^{POWp(^i)^L{i) * WTi,P{i),L{i)) 

To simplify the energy model, we assume that it takes no time to switch fi-om 
one voltage level to another and therefore no energy consumed accordingly. 

5. Scheduling and Voltage Selection Using GA 
Genetic Algorithm (GA) was first invented by John Holland in early 

1970's [13]. It is an effective heuristic approach for finding solutions for com­
binatorial optimization problems [3] with a large search space. The basic com­
ponent of a genetic algorithm is chromosomes. Each chromosome consists of 
a number of genes. Each chromosome represents one solution for the problem 
where each gene encodes a particular part of the solution. To find the optimal 
solution by genetic algorithms, we first generate an initial population which 
contains a number of chromosomes. Next, by applying two different repro­
duction methods, crossover and mutation, to the current population, we can 
generate a new population. Repeatedly applying the above step for a certain 
amount of generations, we can find a good solution (near optimal) in the end. 
Genetic algorithms have been used extensively for task scheduling without en­
ergy consideration in the literature [17]. 

5.1 Schedule representation 
A chromosome of our GA algorithm is a schedule. Different fi-om the classic 

binary string representation for a chromosome, we use a structure representa­
tion which is an extension of the schedule representation in [9]. A schedule 
is represented by an ordered list of genes and each gene contains three data 
items: the task number, the processor number and the voltage level. The chro­
mosome can be viewed as an iV * 3 array (see Table 8.1) where A'' is the total 
number of tasks. The first row of a chromosome indicates the tasks ordered 
from left to right. The second row indicates the corresponding processor that 
each task will be assigned to. And the third row is the voltage level selected 
for the corresponding processor for each task. 

Table 8.1. A Schedule Representation 

Task 
Proc 
Level 

Ti 

P i 

In 

Tb 
P. 
L, 

TN 

P.w 
IN 

In the example shown in table 8.2, tasks f i, t2, is and 4̂ are to scheduled 
onto processor pi and p2 where both of the processor have two voltage levels. 
Task i2 and ts are assigned to process p2 and runs at voltage level 1 and 2 



Energy Awmv, Scheduling for Heterogeneous RT Embedded Systems 121 

respectively. Task 4̂ and ii are assigned to process pi and runs at level 2 and 
1 respectively. 

Table. 8.2. A Schedule Example 

Task 
Proc 
Level 

2 
2 
1 

3 
2 
2 

4 
1 
2 

1 
1 
1 

5.1.1 Topological order of genes. A random order of tasks may 
result in infeasibility because the precedence constraints might be violated. 
To avoid such problem, we only allow chromosomes that satisfy topological 
order [14]. A topological ordered list is a list in which the elements satisfy the 
precedence constraints. To maintain all the individuals in the populations of 
any generation to be topological ordered, we adopted the techniques in [14]. 

• Generate only topological ordered individuals in the initial population 
(see section 5.2); 

• Use carefully chosen genetic operators (see section 5.3). 

5.1.2 Calculate t h e s ta r t ing t ime of tasks . The starting time 
of a task depends on the earliest available time of the processor it is assigned 
to and the latest finishing time of all of its pre-tasks. 

For a given schedule, the calculation of the starting time of each task is 
straight-forward. Since each chromosome satisfies topological order, the cal­
culation can be done from left to right. This way, the starting time, and there­
fore the finishing time of all the pre-tasks for a given task t have been calculated 
before calculating the starting time o f t 

5.2 Population initialization 
The population initialization is done by constructing a number of task lists 

(the first row of the schedules) that satisfy the topological order and randomly 
assigning processor number and voltage level. 

The essence of constructing a topological ordered task list is that a task can 
be added into the list only if all its pre-tasks have already been added to the 
list. 

To construct the task list that satisfy the topological order, we use a concept 
defined m [14]: the in-degree of a task t. The in-degree of a task t is defined as 
the number of tasks that must be executed before t and have not been put into 
the list. Note that a task can only start if all its pre-tasks aheady finish their 
execution. Therefore, a task is ready to put into the list only when its in-degree 
is zero. 
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The algorithm to construct a topological list works as follows. First calculate 
the in-degree for all tasks. Then randomly select a task whose in-degree = 0 
and add it to the list. Then remove this task from the task graph and update 
the in-degree of the tasks in the new task graph. We repeat the above two steps 
until all the tasks have been added to the list. If a topological order can not 
be found for a task set, then there will not be any feasible schedule for the 
scheduling problem under consideration. 

Note that the deadline constraint may still be violated even a schedule satis­
fies a topological order. 

We also include two special chromosomes in the initial population to in­
crease the efficiency of our genetic algorithm. The two chromosomes are con­
structed using earliest-deadline-first heuristic together with the topological or­
dering. That is, when several tasks can be added to the list (all their pre-tasks 
are already in the list), the one with the earliest deadline will be selected. The 
difference of the two chromosomes is that one selects the highest voltage lev­
els for all the processors (the tasks will run fastest, but consume the highest 
energy) while the other selects the lowest voltage level for all the processors 
(the tasks will run slowest, but consume the lowest energy). 

5.3 Evaluation 
The aim of our optimization problem is to minimize the energy consumption 

of the tasks. The evaluation fimction of the energy consumption is expressed 
as follows: 

N 

Etotal = J^iPOWp^) 
8 = 1 

where N is the total number of task, P{i) is the processor which task i is 
assigned to and L{i) is the voltage level used to run task i, f OWp(i) ^(j) is 
the power dissipation of the processor running task i with the given voltage 
level L{i) and Wi^p^i^^^f^ is the worst case execution time of task i running on 
processor P{i) with the given voltage level L{i). 

However, the individual schedule with smaller Etotal will not always be con­
sidered better. This is because we need to consider one more factor: the dead­
line constraints (precedence constraints are already encoded into the schedule 
enforced by the topological order.). Our GA algorithm has been designed in a 
way that individuals violating the deadline constraints has less chance in get­
ting into the next generation. 

5.4 Genetic operators 
Genetic Algorithms explore the search space by genetic operators. New 

individuals are produced by applying crossover operator or mutation operator 
to the individuals in the previous generation. The probability of the operators 
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indicates how often the operator will be performed. We choose 0.6 as the 
probability for the crossover and 0.4 as the probability for the mutation. 

5.4.1 Muta t i on . To avoid the solution being tracked into a local 
solution, mutation operation is used in Genetic Algorithms. The mutation oper­
ator creates a new individual with a small change to a single individual. In our 
approach, we use Processor and/or Level Assignment Mutation. To perform 
the mutation, we randomly select a range of genes from a chromosome and 
then randomly change the processor number and/or the level number within 
this range. Obviously, the mutation operator does not change the order of the 
tasks. Therefore, the new individual also satisfy the topological order. 

5.4.2 Crossover. The crossover operator creates new individuals 
by combining parts from two individuals. To perform crossover operation, we 
first randomly pick two chromosomes (as parents) from the current population. 
Then we randomly select a position where the crossover is going to occur. The 
first part of child 1 uses the schedule of parent 1 up to the chosen position. The 
second part of child 1 is constructed by selecting the rest tasks (the tasks not 
in the first part) from parent 2 in order. The same mechanism also applies to 
child 2. Below is an example of our crossover operator. Assume we have two 
individuals as shown in Figure 8.4. Suppose the selected position is 2, then 
the children will be shown as in Figure 8.5. 
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Figure 8.4. Crossover Parents 
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Figure 8.5. Crossover Children 

The crossover operator will produce two offsprings that are topological or­
dered if the parents are topological ordered. The detailed proof can be found 
in [14]. 

6. Experimental Results 
In this section, we describe the simulation experiments preformed. We first 

compare our algorithm with one that does not have power management to 
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demonstrate the efficiency of energy reduction of our algorithm. The algo­
rithm we compared is a commonly used List Scheduling method: EDF (Earli­
est Deadline First). This EDF algorithm does not have power management: all 
processors run at the highest speed. 

We also compare our GA-based approach with three other scheduling algo­
rithms that incorporate power management. The three algorithms are: Longest 
Task First with Power management (LTFP), Earliest Deadline First with Power 
management (EDFP) and energy aware Simulated Annealing (SA). 

The algorithms are applied to a large number of randomly generated schedul­
ing problems. Next we describe the features of the generated scheduling prob­
lems. 

6.1 Generating scheduling problems 
6.1.1 Task graph. The tasks to be scheduled in a scheduling 
problem can be represented as a task graph. We partition the task graph into 
groups where each group has the same number of tasks and the same number 
of constraints. The following table shows the number of task and the number 
of constraints we have considered in our experiments. For each category, 5 
task graphs were generated. The result you see later are average result of the 5 
problems in each category. 

Task# 
Constraint # 

20 
0,10 

50 
0,10,25 

100 
0,10,25,50 

200 
0,10,25,50,100 

Beside the task graph, each scheduling problem has one more variable: the 
number of processors. We have chosen 3, 5, and 10 processors for each task 
graph. 

For simplicity, we assume that each processor only have three different lev­
els of voltage supply. We also assume that there is no communication time 
between tasks so that each task can be processed immediately after the re­
quired resource (CPU) is available. Moreover, we assume that the CPU takes 
no time to switch from one voltage level to another one. 

6.1.2 W C E T of tasks . The worst case execution time (WCET) 
of the tasks are randomly generated. Note that we consider heterogeneous 
distributed systems in this chapter. Therefore the execution time for the same 
task are different on different processors. The variation is within the range of 
-10% and 10%. 

Also note that even though a processor have several voltage levels (and 
therefore several speed), we only need to generate the execution time for the 
tasks at the highest voltage supply level of the processor being considered. The 
execution time for the tasks at other voltage supply levels of the processor can 
be calculated based on Eq. (8.3). 
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6 .2 E n e r g y r e d u c t i o n r a t e 

The first experiment is to compare the energy consumption of our schedul­
ing algorithm with that of Earliest Deadline First scheduling method which 
does not have any power management. The experimental results shown at Fig­
ure 8.6 indicate the average percentage of the energy reduced for each category. 

irf..-/iic,.jcc,n«:i 
itomi - • • • 

1 

1) I 10 I 2: 

Numb; ' of Tasks ([..owsr Tiidê O iiid Kuinber of Cont.Ea!nt5 l'.'pper fndcx) 

Figure 8.6. Energy Reduction Rate Chart 

By looking at Figure 8.6, we can see that our algorithm can reduce energy 
ranging from 20%, up to 90%. The smaller task set, the more energy saving 
can be achieved. Also one interesting result from our experiments is that re­
gardless of the number of tasks, increasing the processor number or decreasing 
the number of constraints allows more energy saving by our algorithm. This is 
because the flexibility of a schedule mainly depends on the number of resource 
it can use or the number of constraints it must satisfy during the scheduling. 

6 . 3 C o m p a r i s o n w i t h o t h e r s c h e d u l i n g 
a l g o r i t h m s 

Our second experiment is to compare the GA based algorithm with three 
other scheduling algorithms with power management: Longest Time First with 
Power management (LTFP), Earliest Deadline First with Power management 
(EDFP) and energy-aware Simulated Annealing (SA). 

The first two are list scheduling approaches. The general idea of a list 
scheduling method is that it keeps a list of ready tasks and assigns the tasks 
to the list based on predefined priorities. A task with a highest priority will 
be scheduled first. In our experiment, we considered two different priority as­
signment approaches - Earliest Deadline First and Longer Task First. The first 
one will place the task with the earliest deadline to the front of the list and 
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Table 8.3. Comparison: Percentage of Finding Feasible Solutions 

Tasks 
20 

50 

100 

200 

Constraints 
0 
10 
0 
10 
25 
0 
10 
25 
50 
0 
10 
25 
50 

GA 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 

SA 
100% 
100% 
100% 
100% 
100% 

33.33% 
33.33% 
33.33% 
33.33% 

0% 
0% 
0% 
0% 

LTFP 
100% 
100% 
0% 
0% 
0% 
0% 
0% 
0% 
0% 
0% 
0% 
0% 
0% 

EDFP 
100% 
100% 
100% 
0% 
0% 

100% 
0% 
0% 
0% 
0% 
0% 
0% 
0% 

the second one will place the task with the longest task length to the Kst first. 
The power managements are simple in LTFP and EDFP. Both approaches use 
random voltage level selection. If the resulted schedule is not feasible, then the 
highest level will be used for all the processors. 

Simulated Annealing (SA) is an iterated search method for optimization 
problems. The advantage of SA is the ability to avoid being trapped in a local 
optimum solution as compare to a greedy search method. We consider power 
management in our SA as follows. 

• The initial solution has random voltage levels. 

• The neighbors of a solution include not only solutions with small changes 
in the ordering of tasks or the processors assigned, but also solutions 
with small changes in the voltage levels. 

To run the simulation, we apply all four algorithms to each scheduling prob­
lem generated. The results show that GA almost always return the best solu­
tions in terms of the feasibility of the schedules. A schedule is infeasible if 
the deadline constraints or precedence constraints are violated. In many cases, 
especially when the task number is large, only GA-based approach can find 
feasible solutions. The percentage of finding feasible solutions for the four 
algorithms is shown in the tables 8.3. 

The reason that EDFP or LTFP often gets unfeasible solution is that they are 
one-shot methods with randomly selected voltage levels. SA runs for several 
iterations, starting from a random schedule. In general, SA is better than EDFP 
or LTFP, and GA is the best approach in terms of finding feasible solution and 
saving more energy. 

The comparison of the energy saving of SA and GA is shown at the table 8.4. 
The table shows the average percentage of the energy reduction for GA and SA 
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Table 8.4. Comparison: Energy Reduction of GA and SA 

Tasks 
20 
50 
100 
200 

GA 
91.23% 
78,17% 
78.52% 
36.05% 

SA 
91.12% 
75.64% 
64.25% 

NF 

methods for different task set size. To have a fair comparison, we only consider 
those problems where both approaches can find feasible solutions. 

Note that the LTFP and EDFP are not listed because most of the time they 
do not find feasible solutions. Both LTFP and EDFP find feasible solutions 
only when the task number is small (20 in our experiments). The average 
percentages of energy reduced for LTFP and EDFP for 20 tasks are 60.23% 
and 59.24% respectively, which are much lower than those of GA (91.23%)) 
and SA (91.12%). 

7. Conclusion 

We have addressed energy optimization problem in real-time embedded sys­
tems in this chapter. A genetic algorithm has been presented for static schedul­
ing for real-time embedded systems that support DVS. The algorithm is de­
signed for heterogeneous systems with tasks that have deadline and precedence 
constraints among them. The aim is to reduce the energy consumption while 
satisfying the constraints of the tasks. The algorithm integrates task mapping, 
scheduling and voltage selection in the same phase instead of adjusting an ex­
isting schedule to minimize energy as done in many other methods. A large 
number of experiments were conducted and the experimental results show that 
our GA-based approach can reduce the energy consumption of a system rang­
ing from 20%), to 90%. We also compared our GA-based approach with two 
list scheduling algorithms and the simulated annealing method. The experi­
ments showed that our approach can find better solutions for most scheduling 
problems in terms of the feasibility of the solutions and the energy saving. 
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Abstract This paper describes how the allocation of stream of tasks, with minimum knowl­
edge, is possible in a distributed computing system . In literature, almost all the 
task allocation models in a distributed computing system require a priori knowl­
edge of tasks execution time, communication time etc. on the processing nodes. 
Since the task assignment is not known in advance, this time is difficult to es­
timate. A cluster-based dynamic allocation scheme is proposed for both the 
distributed computing system and the tasks that ehminate the execution time re­
quirement. Further, as opposed to a single task, multiple tasks are considered for 
allocation by the model. For both the task clustering and processor clustering a 
fuzzy function is used. Clustering and assignment process is used dynamically 
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as it suits tlie stocliastic stream of incoming taslcs. Experimental results validate 
the efficacy of the proposed model. 

Keywords: DCS, Task Allocation, Dynamic Task Clustering 

1. Introduction 
Distributed Computing System (DCS) provides the platform for parallel/conc­

urrent execution of tasks/modules. A task consists of communicating mod­
ules operates (possibly) in parallel. DCS tries to execute incoming stream 
of tasks allowing their concurrently executable modules to proceed in paral­
lel if computing nodes are available and communication pattern of the hard­
ware/software facilitates the same. When these modules are assigned to the 
processing nodes, it forms load. A clustered workload assignment algorithm 
for the tasks in a large heterogeneous DCS is proposed here. 

Various task allocation models, discussed in the literature [1]-[15], map the 
modules of a single task [l]-[2], [4]-[7] or multiple tasks [3] onto the nodes 
of the DCS. These algorithms have scalability limitations. In general, scala­
bility is a common concern with optimal solutions to task allocation in DCS 
since the problem is NP-hard [10]. To overcome the scalability limitations, 
heuristic approaches [11][14] are applied for larger instances of the problem. 
Based on their performance measures, these approaches can be classified as 
schedulability-based [12][13] or communication based [14][15]. To reduce the 
allocation search space, modules of the tasks are clustered into larger units of 
allocation. Further, allocation effectuate with the resulting module clusters, not 
individual modules, to available nodes. Various flavor of these are proposed in 
[14][15]. In general clustering heuristics, such as those in [14], typically re­
quire the knowledge of module execution and inter module communication 
times. These values depend on processor speed and link bandwidth and re­
quire a priori knowledge of task to processor assignment. Since the assign­
ment is not known in advance, these heuristics are usually applicable only to 
a homogeneous system. For large distributed applications, parts of which may 
span several heterogeneous platforms, this is a serious limitation [9]. 

The approach, used in this work, differs fi^om other clustering approaches in 
four respects. First, while in existing approaches clustering is done only once 
followed by the allocation, a more scalable dynamic approach that iteratively 
refines the solution is applied in this model. Second, the clustering algorithm 
proposed can handle heterogeneous systems efiiciently. Third, multiple tasks 
as opposed to a single task is considered unlike most of the allocation models. 
And finally, the clustermg is solely based on the communication aspect of the 
task and the system. This avoids the priori knowledge of tasks execution times 
on the nodes of the DCS. 
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The paper is organized as follows. The next section describes the problem 
and its possible formulation. Section 3 presents the techniques for cluster for­
mation . Section 4 presents the multiple task allocation (MTA) algorithms. 
Results of the experimental study are given in section 5 with concluding re­
marks following in the next section. 

2. The Problem 
Workload, for a DCS, is composed of a set of tasks Tj, each of which is 

characterized by a set of modules Mi eTi. Each module M, has a worst-case 
computation requirement e, measured in processor cycles (or other units in­
dependent of processor speed). A module Mi may exchange messages with 
another module Mj of the same task. The hardware platform on which the 
application is to be executed is an arbitrary-topology distributed system, com­
posed of several dedicated and shared links. Links may be dedicated (point-
to-point) or multiple access (e.g. an FDDI ring). A processor may have access 
to more than one link. The processors of distributed systems are on the same 
LAN or many LANs are connected through routers and gateways. 

The modules of same task are related and their relation is represented by 
the task graph. Stream of tasks, arriving for execution in DCS, are disjoint. 
The task graph considers the precedence and the Inter Module Communication 
(IMC) among the modules. The tasks that arrives into the DCS is equipped 
with the following information: 

a) IMC between modules rui and ruj of task T{cij) 
b) Precedence amongst the modules of the task graph 

With this information, object is to find an assignment of modules to proces­
sors, in a DCS. Schedule is likely to be found by a suitable clustering (module 
and processor) and their assignment. 

3. Cluster Formations 
In a DCS, a sizable fraction of the total time is experienced in the inter mod­

ule communication. Communication Penalty (CP) experienced by the system 
is[8]. 

f~ip _ total ,q jN 

•'-comp 

Where Ttotal is the time required by the algorithm to solve the given problem 
and Tcomp is the time attributed to computation. If Teomn is the time involved 
in communication among different modules of the task, then 
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J- toted '-comp + Tc, (9.2) 

As obvious, less communication will reduce the communication penalty. 
Bandwidth, inter processor distance; links, communication devices etc. affect 
the communication time amongst the modules. Proposed Cluster formation 
(both task and processor) considers the above aspect of the communication 
and aims to reduce the communication penalty. 

3.1 Dynamic Cluster Formation 
A DCS can be partitioned in different subsystems, called node clusters. A 

heuristic is used for the cluster formation. Various cluster formation that de­
pends on the network organization of the DCS are depicted below. 

Ciuster 1 
Cluster 1 

r~^ Processing node jRouter 

Figure 9.1. Hypercube and tree stmcUire 

Cluster formation takes care of one, the connection among the processors 
(i.e. if the processors are directly connected, it is better to keep them in the 
same cluster) and two, the placement of communication devices (routers and 
gateways). These devices delay the communication and so to exclude them in 
the clusters formation. 

The structure of the cluster changes as per the need and availability of the 
processing nodes from time to time (Figure 9.1). The examples given in Figure 
9.2 and 9.3 elaborate the same. 

Clusters of the modules of a task can be formed similarly. Usually the clus­
ters formed for the modules will be fixed throughout their execution i.e. static 
clusters are formed for the modules of the task. 

3.1.1 Processor Cluster ing. Processor clustering attempts to 
identify group of processors that can be treated as a single unit. This group of 
processors is clustered together In the present work, attempt is made to form 
clusters of processors based on the architecture of the DCS and application de-
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Cluster 1 Cluster 2 

Cluster 3 

Figure 9.2. Cluster formation at time T for nonregular network of nodes 

,~\ Cluster 2 

Cluster 4 

Figure 9.3. Cluster formation at time T + i for nonregular network of nodes 

mand. The nodes in the processor cluster may change dynamically depending 
on the application requirement. 

The aim to have the clustering of processors is to reduce the communica­
tion overhead to its possible extent. Thus while forming the clusters, the I/O 
speed of the processors and the bandwidth of the coimecting links are to be 
considered. Abdelzaher and Shin[9] have defined the attraction force Bij I 
i+j for the clustering of the processors. Here Bij is the bandwidth of the link 
connecting two processors Pi and Pj of i and j speed respectively. 

Inter processor distance is accounted for the processor cluster formation, 
here. The communication between two processors, which are not directly con­
nected, incurs more overhead than the communication between two directly 
connected processors. The more the distance the larger is the communication 
overhead. 

A fiizzy function is applied to define the membership of the processors and 
is used to form the clusters of the processors. The fiizzy function is to keep 
those processors in the same cluster that are directly connected or at a little 
distance. Membership fiinction is defined as follows: 
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where, diff(dkl,D)= \ dkl - D \ 
dkl= the distance between processors Pj; and P; 
D = the diameter of the network 

Using the above membership fiinction each processor of the DCS will get a 
membership value, between 0 and 1, that helps in the formation of the proces­
sor clusters. 

Processors of other LANs, interconnected via routers, should be excluded 
in cluster formation as these affect the communication delay. 

3.1.2 Modu le Cluster ing. Modules of the task are clustered 
based on the inter module communication requirements. Highly communicat­
ing modules are clustered together to reduce communication delays. The same 
fuzzy function, as above, is applied to grade the high communicating and low 
communicating modules. Thus each module of the task will get a membership 
value, which helps in the cluster formation. The fuzzy function is as below. 

^(^^•)=iTdim^-c) ^'-'^ 

where, l+diff{cij, C)= \ cij - C j 
mmunication 

C = the maximum possible communication between any two modules 
Cij= the communication between the modules mi and nij 

4. Cluster Allocation 
This section describes the algorithm, which assigns module clusters to pro­

cessor clusters. Both the processor cluster and task clusters are formed. Pro­
cessor cluster may change dynamically, depending upon the availability and 
needs. Module clusters fit onto the processor clusters according to the follow­
ing scheduling policies. 

a) Best Fit: Module cluster is placed m a processor cluster in which it fits 
almost exactly i.e. it tries to map one to one onto between module cluster and 
processor cluster as far as possible. 

b) First Fit: Module cluster is placed in any available processor cluster, 
which can accommodate it. 

c) Worst Fit: Module cluster is placed in the processor cluster, which leaves 
the maximum number of unused processor in the processor cluster. 



Dynamic Clustering of Tasks and DCS for A'hdtiple Task Allocation 135 

d) Reverse Fit: This mapping is unlike to above three. Here, number of 
modules in the module cluster is more than the number of processors in the 
processor cluster. 

Obviously worst fit is least desired. Choice is to be made among the best fit, 
first fit or reverse fit. 

In dynamic cluster formation of the processing nodes, the following crite­
rion is adopted for allocation refinement. 

i) Merge: If the number of modules in the module cluster exceeds the num­
ber of processors in a processor cluster, merging of processor cluster may take 
place depending on the availability of the processors. 

ii) Split: Similarly splitting the processor cluster can take place if the no. 
of processor in a processor cluster (P) exceeds the no. of modules in assigned 
module cluster (Tm). The whole cluster can be spitted into two parts having 
the unused processor in one cluster and keeping the rest with the other. 

4.1 The MTA Algorithm 
The mapping of the module clusters to processor cluster takes place accord­

ing to the following algorithm. 

ClusterBasedJVITAO 
{ 

1) PROCESSOR.CLUSTER0; 

2) Do(for all the incoming tasks at hand) 

3) Send the task to a computing node for distribution and all the nodes 
having a task will execute the following steps. 

4) MODULE.CLUSTERi); 

5) While there are module clusters unallocated onto processor cluster use 
the following scheduling algorithm: 
if BEST FIT 

then EXECUTEQ 
else if FIRST FIT 

then SPLITO; 
else if REVERSE FIT 

then MERGEO; 

6) Subtract the occupied memory from the available memory of the proces­
sors. 

7) Else if memory requirement is not satisfied exclude it from the task 
queue and enqueue it for the next iteration. 
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}\\Memory updating is a critical section and is to be taken care of ac­
cordingly. 

PROCESSOR-CLUSTERQ; 
{ 

1) Estimate the frizzy membership value for all the processors with other 
processors starting with the first processor. 

2) Starting from first, cluster those processors that lie in the same and min­
imum membership value. 

3) If there is a communicating device in between two processors, exclude 
the next processor in the cluster. 

4) Do step 2 and 3 for all the remaining processors and if any qualifying 
processor is already clustered, exclude that processor in the current clus­
ter. 

} 

MODULE.CLUSTERO; 
{ 

1) Estimate the frizzy membership value for all the modules of the task in 
respect of IMC starting with the first module. 

2) Starting from first module, cluster those module which lie in the same 
and minimum membership value. Do it for all the remaining modules. 
If any qualifying module is already clustered, exclude that module in the 
current cluster. 

} 

SPLITQ; 

{ 

1) Exclude (P-Tm) processors from the processor cluster. 

} 

MERGEQ; 

{ 

1) Look for close to (Tm-P) free neighbor processor. 

2) Join these processors in the same processor cluster. 

3) if none free (Tm-P) neighbor processors, then reallocate (Tm-P) mod­
ules on the same processors of the cluster 
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}\\for P Processors in the cluster T^ modules are allocated 

5. Experiments 
The software, for the experimental study of the above algorithm, is devel­

oped in Borland C++. Task and processor graphs as well as various communi­
cation matrices, for the study, are randomly generated. Three cases are shown 
here, as other results obtained are similar. For case 2 only, the task graphs and 
processor graph are shown for easy reference. 

Case 1: 

Total number of tasks = 3 

Total number of processors = 4 of sizes 8, 10, 8, 6 
P.duster 1 ofPi,P2 
and P-duster! of P3, P4 are formed. 

Table 9.1. The results for case 1 

Task number 1 
Total module 5 of sizes 1,2,1,2,2 

mi, m,3 in Ti-clusterl 
7712,771,5 in Ti-clusterl 

7774 in Ti -dusteri 

Task number 2 
Total module 4 of sizes 2,1,2,2 

7771,7712 in T^-dusterl 
7774,7773 in Tz-clustcrl 

Task number 3 
Total module 4 of sizes 1,2,2,1 

m,i, rn,i in Ti-clusterl 
7712 in T3.cluster! 
7773 in Ta-dusterS 

Mapping: 

Ti-dusterl -
Ti-duster! -
Ti-duster3 -

P-duster I 
P-duster! 
P-duster \ 

T2-duster\ 
T2-duster! 

Ts-cluster\ 
T^-duster! 
T^-dusterS 

P-duster I 
P-duster! 

P-duster I 
P -duster! 
P-duster I 

file:////for
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Case 2: 
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Total number of tasks = 3 

Total number of processors = 8, Total size = 74 

P.dusterl ofPi,P2, ^4 

P-duster! of P5 

P-duster3 of Pe 

and P-dusterA of P3, P7, Pg are formed. 

Table . The results for case 2 

Task number 1 
Total module 10 
of sizes 2 each 

m i — ms in Ti.clusterl 
me, rn.7 in Tl-cluster2 
7ns, î̂ io in Tl-cluster3 

ma in T l -dusterA 

Task number 2 
Total module 8 

of sizes 3,5,3,6,2,1,3,2 
mi — mi in T^-clusterX 
m.5 — m^ in T2-duster2 

m% in T2.cluster3 

Task number 3 
Total module 6 
of sizes 3 each 

m.1, m.2, ms in Ts-duster l 
?Tt4, 'TIS, me in T'i.cluater2 

Figure, 9.4- Task graph with coiresponding modules for task '. 

•"' O O 
Figure 9.5. Task graph with corresponding modules for task 2 
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Figure 9.6. Task graph with corresponding for task 3 

Figure 9.7. Processor graph for case 2 

Mapping: 
Ti-clusterl —> P.clusterl, Ti.clusterl —* P.clusterl 
Ti.cluster3 —> P.clusters, Ti.clusterA —> P.clusterA 

T2.cluster\ —> P.clusterl, T2.clusterl —> P.clusterl 
T2.cluster3 -^ P.clusterA 

Ti.clusterl —>• P.clusterl, Ts.clusterl —> P.clusterl 

Case 3: 
Total no. of processors = 5 of sizes 8, 6,4,6,4 
P.clusterl consists of Pi, P3, P4 
P.clusterl consists of P2, P5 

Mapping: 
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Table 9.3. The results for case 3 

Task no. 1 
Total modules 5 
of sizes 1,2,1,2,2 

Clusterl m i , rn-u 
Cluster2 rn-i, rris 

Clu.ster3 m4 

Task no. 2 
Total modules 6 

of sizes 1,2,2,1,2,2 

Clusterl mi,TO2,r"ri(3 
Clusler2 rn:i>ins 

Clusters m..i 

Task no. 3 
Total modules 4 
of sizes 2,2,2,2 

Clusterl rnt,rn.i 
Cluster2 rria 
Cluster3 ma 

Task no. 4 
Total modules 6 

of sizes 1,1,1,1,1,1 
Clusterl m,1,1715,7716 

Cluster2 m2 
Clusters m-s 
Cluster4 m,4 

Task no. 5 
Total modules 3 

of sizes 2,2,2 

Clusterl mi,rji3 
Cluster2 m^ 

Ti..clusterl —> P.clusterl, Ti-dusterl —> P.duster! 
Ti-dusterlt —> P,-dusterI 

T2-dusterl —> P-dusterl, T2-duster2 -^ P.dusterl 
T2-duster3 —> P.duster! 

Ts-duster 1 —* P.clusterl, T^-duster! -^ P.clusterl 
T3-cluster3 —> P.dusterl 

T4-dusterl 
Tii-cluster3 

P-duster 1, T^-duster! • 
P-duster!, T^-dusterA • 

P-duster! 
P-duster 1 

T^-dusterl —» P-dusterl, T^-duster! -^ P-duster! 

6. Complexity 
Cluster formation both module and processor will take constant time. As­

sume that there are T tasks and their modules are allocated concurrently. Fur­
ther, let there are m modules in a task T and P node in the DCS. Further, 
assume that out of m modules mc module clusters and out of P nodes Pc pro­
cessor clusters are formed. The complexity will be that of first fit, best fit and 
worst fit and it will be mc * Pc- Other timings are considered constant. 

7. Conclusion 
The sole objective of the algorithm is to eliminate the necessity of the exe­

cution time requirement, yet allocate the tasks efficiently. The results obtamed 
in the experiments claim a good load balance for multiple tasks with the clus­
tering approach. As the algorithm for mapping executes concurrently onto the 
nodes, it is supposed to be better in terms of efficiency. 
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The proposed approach has the potential for scalability and support for sys­
tem heterogeneity. Scalability is achieved by merge and split cluster formation 
of the processors. The approach considers the communication aspect in the 
cluster formation and tries to minimize its overhead. This is a realistic ap­
proach as the other algorithms, based on the same, uses the priori knowledge 
of the execution of the modules of the task on the processors of the DCS. The 
communication bandwidth is known while designing the system, so it is not 
difiBcult to measure the IMC requirements for the modules of the task. This 
work may be a significant move towards the development of task allocator of 
a DCS, as it eliminates the need of the priori knowledge of execution time of 
modules of the task. 
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AN AD H O C ON-DEMAND R O U T I N G 
P R O T O C O L W I T H ALTERNATE R O U T E S 
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Hsinchu, Taiwan 30067, Republic of China 
ckliang@chu.edu.tw, seasu@pdlab.c5ie.chu.edu.tw 

Abstract Because of node mobility and power limitations, the network topology changes 
frequently. Routing protocols plays an important role in the ad hoc network. 
A recent trend in ad hoc network routing is the reactive on-demand philosophy 
where routes are estabhshed only when required. In this paper, we propose a 
scheme to improve existing on-demand routing protocols by creating a mesh 
and multiple alternate routes by overhearing the data packet transmission. Our 
scheme establishes the mesh and alternate routes without transmitting any extra 
control message. We apply our approach to the Ad-hoc On-Demand Distance 
Vector (AODV) protocol and evaluate the performance improvements by ns-2 
simulations. 

Keywords: Ad-Hoc, On-Demand, Routing Protocol, Alternate Routes. 

Introduction 
In a "mobile ad hoc network" (MANET) [1], mobile nodes communicates 

with each other using multihop wireless links. There is no stationary infras­
tructure; for instance, no base stations in the network. Each mobile node (and 
associated host) in the network also acts as a router, forwarding data packets 
for other nodes. Ad hoc networks consist of hosts communicating one another 
with portable radios. These networks can be deployed impromptly without 
any wired base station or infrastructure support. In ad hoc mobile networks, 
routes are mainly multihop because of the limited radio propagation range, and 
topology changes frequently and unpredictably since each network host moves 
randomly. Therefore, a central challenge in the design of ad hoc networks, 
which also has received interests from many researchers, is the development 
of dynamic routmg protocols that can efiflciently find routes between two com-

mailto:ckliang@chu.edu
mailto:seasu@pdlab.c5ie.chu.edu.tw
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municating nodes which are able to route with low overheads even in dynamic 
conditions. Overhead here is defined in terms of the routing protocol control 
messages which consume both channel bandwidth as well as the battery power 
of nodes for communication. 

On-demand routing protocols build and maintain only needed routes to re­
duce routing overheads. Examples include Ad Hoc On-Demand Distance Vec­
tor (AODV) [2, 3], Dynamic Source Routing (DSR) [4, 5], and Temporally 
Ordered Routing Algorithm (TORA) [6]. This is in contrast to proactive pro­
tocols (e.g.. Destination Sequenced Distance Vector (DSDV) [7]) that maintain 
routes between all node pairs all the time. In on-demand protocols, a route dis­
covery process (typically via a network-wide flood) is initiated whenever a 
route is needed. Each node in on-demand routing does not need periodic route 
table update exchange and does not have a full topological view of the net­
work. Network hosts maintain route table entries only to destinations that they 
communicate with. 

In this paper, we propose an algorithm that utilizes a mesh structure to 
provide multiple alternate paths to the Ad Hoc On-Demand Distance Vector 
(AODV) protocol that is one of the on-demand routing algorithms. We con­
struct the mesh structure without producing additional control messages by 
overhearing the data packet transmission. Since an ad hoc network has limited 
bandwidth and shared wireless medium, it is critical to minimize the num­
ber of packet transmissions. It is beneficial to have multiple alternate paths 
in MANET due to the wireless networks are prone to route breaks resulting 
from node mobility, fading environment, single interference, high error rate, 
and packet collisions. 

The rest of the paper is organized as follows. In Section 2, we review the 
AODV protocol. Section 3 illustrates the protocol operation in detail. Per­
formance evaluation using the ns-2 simulator is presented in Section 4 and 
concluding remarks are made in Section 5. 

1. Ad Hoc On-Demand Distance Vector Routing 
The Ad Hoc On-Demand Distance Vector (AODV) routing protocol de­

scribed in [2, 3] is built on the DSDV [7] algorithm previously described. 
AODV is an improvement on DSDV because it typically minimizes the num­
ber of required broadcasts by creating routes on a demand basis, as opposed to 
maintaining a complete list of routes in the DSDV algorithm. The authors of 
AODV classify it as a pure on-demand route acquisition system, since nodes 
that are not on a selected path do not maintain routing information or partici­
pate in routing table exchanges. 

1.1 Construction of AODV 
When a source node desires to send a message to a destination node and does 

not already have a valid route to that destination, it initiates a path discovery 
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process to locate the destination node. It broadcasts a route request (RREQ) 
packet to its neighbors, which then forward the request to their neighbor, and 
so on, until either the destination or an intermediate node with a "fresh enough" 
route to the destination is located. AODV utilizes destination sequence num­
bers to ensure all routes are loop-free and contain the most recent route infor­
mation. Each node maintains its own sequence number, as well as a broadcast 
ID. The broadcast ID is incremented for every RREQ initiated by the node, and 
together with the node's IP address to uniquely identify an RREQ. Intermedi­
ate nodes can reply to the RREQ only if they have a route to the destination 
whose corresponding destination sequence number is greater than or equal to 
that contained in the RREQ. 

During the process of forwarding the RREQ, intermediate nodes record in 
their route tables the address of the neighbor from which the first copy of the 
broadcast packet is received which can be used in establishing a reverse path. 
If additional copies of the same RREQ are later received, these packets are 
discarded. Once the RREQ reaches the destination or an intermediate node 
with a fresh enough route, the destination/intermediate node responds by uni-
casting a route reply (RREP) packet back to the neighbors from which it first 
received the RREQ. As the RREP is routed back along the reverse path, the 
nodes along this path will set up the forward route entries in the route tables, 
which are pointing to the node from which the RREP came. These forward 
route entries indicate the active forward route. Associated with each route en­
try a route timer is set up in order to delete the entry if it is not used within 
the specified lifetime. Since the RREP is forwarded along the path established 
by the RREQ, AODV only supports the use of symmetric links. Figure 10.1b 
shows the process of AODV route discovery. Here is some normal text. 

1.2 Maintenance 

Routes are maintained as follows. If a source node moves, it is able to reini­
tiate the route discovery protocol in order to find a new route to the destination. 
If a node along the route moves, its upstream neighbor will notice the move 
and propagate a link failure notification message to each of its active upsfream 
neighbors to inform them of the erasure of that part of the route. These nodes 
in turn propagate the link failure notification to their upsfream neighbors, and 
so on until the source node is reached. The source node may then choose to 
reinitiate route discovery for that destination if a route is still desired. 

An additional aspect of the protocol is the use of hello messages, periodic 
local broadcasts by a node to inform each mobile node of other nodes in its 
neighborhood. Hello messages can be used to maintain the local connectivity 
of a node. Nodes listen for retransmission of data packets to ensure that the 
next hop is still within reach. If such a refransmission is not heard, the node 
may use any one of a number of techniques, including the reception of hello 
messages, to determine whether the next hop is within communication range. 
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Figure 10.1a. RREQ Broadcast 

2 

Figure 10. lb. RREP Forwarded Path 

The hello messages may list the other nodes from which a mobile has heard, 
thereby yielding greater knowledge of network connectivity. 

2. The Proposed Protocol 
The main purpose of our study is to improve the performance of the Ad Hoc 

On-Demand Distance Vector (AODV) routing protocol. Therefore, we take ad­
vantage of the broadcast nature of wireless communications; a node promiscu­
ously "overhears" data packets that are transmitted by their neighboring nodes. 
From these packets, a node can obtain alternate path information and become 
part of the mesh. The operation details of our scheme are described as follows. 

2.1 Primary Route Construction 
Our algorithm does not require any modification to the AODV's route re­

quest propagation process, but instead we slightly modify the AODV's route 
reply procedure. We add a value called the number of hops to destination 
(HTD), which is a loose upper boimd of the maximal hops to the given desti­
nation, into each ROUTE REPLY (RREP) packet. 

At the beginning of primary route construction, source S sends ROUTE 
REQUEST (RREQ) packet to all its neighbors. Every host that receives RREQ 
for the first time does the same as well. Thus, the RREQ will flood all over the 
network, and will arrive at destination D eventually (if there is a routing path 
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between S and D). When D receives REEQ packet for the first time, it sends a 
RREP back with a zero-value HTD to the host (say P) from which the RREQ 
was sent previously. When P receives RREP, it then creates a route entry for 
D in its route table. The HTD value of that entry is increased. Host P then 
propagates RREP, with HTD, to the host from which P receives RREQ for the 
first time. Every other host receiving RREP will do the same thing as P does. 
Figure 10.2 shows the process of primary route construction. 

VZy——-^/^ /""N Primajy Route —-• 
/ \ l J v l y Route Reply — • 

/ / \ Active Link 

Figure 10.2. AODV route discovery (RREQ Broadcast) 

2.2 Alternate Route Construction 
The alternate routes are established during the route data delivery phase. We 

slightly modify data delivery phase to accomplish the task. Taking advantage 
of the broadcast nature of wireless communications, a node promiscuously 
"overhears" packets that transmitted by their neighboring nodes. In data de­
livery phase, we insert a HTD field into common header of data packet. The 
field can help us to establish a right direction of the alternate route. From 
these packets, a node obtains alternate path information and becomes part of 
the mesh as follows. When a node that is not part of the primary route over­
hears a data packet not directed to it transmitted by a neighbor on the primary 
route, it does the update alternate route procedure. If there is no alternate route 
entry or the HTD of data packet is smaller than route entry than it record that 
neighbor as the next hop to the destination and the HTD in its alternate route 
entry. By the update alternate route procedure, the nodes that overhear the data 
packets sending from the nodes on the primary route can choose the smallest 
HTD among them to update. Nodes that have an entry to the destination in 
their alternate route table are part of the mesh. The primary route and alternate 
route together establish a mesh structure (see Figure 10.3). 

2.3 Route Maintenance 
When a node detects a link break, it changes the common header of data 

packet to make it forward by the mesh node that not on the primary route. After 
that the node performs a one-hop data broadcast to its immediate neighbors. 
Neighbor nodes that receive this data packet unicast the data packet to their 
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Q Q Q Q D 

HTD^IO ..'»ir / 6 /4 /2».. 0 

d d d d b 
Primary Route » Alternate Route ••*• 

Figure 10.3. AODV route discovery (RREQ Broadcast.) 

next hop node only if they have an entry for the destination in their alternate 
route tables and the HTD in it is smaller than that in the data packet. By this 
way, data packets can be delivered through one or more alternate routes and 
will not be dropped when route breaks occur. In order to prevent packet from 
tracing a loop, every mesh node will forward the data packet only if the packet 
is not a duplicate and they have the alternate route entry with a smaller HTD 
than that in the data packet. When a node of the primary route receives the data 
packet from alternate routes, it operates normally and forwards the packet to 
its next hop when the packet is not a duplicate. The node that detected the link 
break also sends a ROUTE ERROR (RERR) packet to the source to initiate a 
route rediscovery. Due to the purpose of our goal is to build a fresh and optimal 
route that reflects the current network situation and topology; we reconstruct 
a new route instead of continuously using the alternate paths. This is also the 
reason why we choose to overhear the data packet to construct the alternate 
routes. 

A route is timed out when it is not used and updated for certain duration of 
time in AODV routing protocol. We apply the same technique in our scheme 
to purge the alternate routes. Nodes that can overhear data packet fransmitted 
through the primary route add or update the alternate route and set up or update 
it's expire time. If an alternate route is not updated its expired time during the 
timeout interval, the node removes the path from the alternate route table. In 
AODV, each RREQ packet has a unique identifier so that nodes can detect and 
drop duplicate RREQ packets. Our protocol uses this method to help nodes 
drop duplicate data packets. 

2.4 Example 

We use Figure 10.4 as an example to show how the mesh and alternate routes 
are constructed by overhear technique and used in data delivery. When the 
RREQ reaches the destination node D, the primary route S-1-2-3-D is selected. 
Figure 10.4(a) show that the destination D set its HTD value to 0 and sends a 
RREP with increased HTD value 2 to node 3. After receiving this RREP, 
only node 3 relays the packet to node 2 since it is part of the route. Node 3 
also increases the HTD value before it relays the packet. See Figure 10.4(b). 
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The other node on the select primary route do the same thing until the RREP 
packet reach the source node S. Figure 10.4(c) shows the HTD state after the 
primary route was build. Figures 10.4(d), 10.4(e) and 10.4(f) show how the 
nodes 4 and 5 build the alternate while the data packet transmitting through the 
primary route. When node S sends the data packet to node 1, nodes 4 and 5, 
who are within the propagation range of node S, will overhear the data packet 
but do nothing, since it is useless to record an alternate route to source node 
S. While node 1 relays the data packet to node 2, nodes 4 and 5 will overhear 
the packet and add an entry into their alternate route table. Figures 10.4(g) 
and 10.4(h) show that nodes 6 and 7 will add an entry when node 2 forwards 
the data packet to node 3. Figure 10.4(i) and 1.4(j) illustrate that nodes 6 and 
7 update their route entry since node 3 has a smaller HTD value than their 
alternate route entries. Besides, nodes 8 and 9 will insert a route entry in their 
alternate route table. It seems that the alternate route in nodes 8 and 9 is useless. 
Figure 10.4(k) explains the usage of the alternate routes record in nodes 8 and 
9. If the link between nodes 2 and 3 is broken and nodes 6 and 7 are moved out 
of the propagation range of node 3, node 8 will be moved into the propagation 
range of node 2 and node 3. We can find an alternate route to salvage the data 
packets, which is shown in Figure 10.4(1). Notice that the alternate route will 
be updated when any data packet transmission can be overheard. It makes our 
alternate route reflects the current network situation and topology. 

3. Simulation Experiments 
In this section, we evaluate the performance improvements made by our 

alternate routing. We compare the simulation results of the AODV protocol 
with that of AODV protocol that applied our scheme as AODV-AR (AODV 
with Alternate Routes). 

3.1 The Simulation Model 
We use a detailed simulation model based on ns-2 [8] in our evaluation. In 

the recent papers [9, 12, 13], the Monarch research simulation multihop wire­
less networks complete with physical, data link, and medium access control 
(MAC) layer models on ns-2. The Distributed Coordination Function (DCF) 
of IEEE 802.11 [10] for wireless LANs is used as the MAC layer protocol. 
The radio model uses characteristics similar to a commercial radio interface, 
such as Lucent's WaveLAN [11]. WaveLAN is modeled as a shared-media 
radio with a nominal bit rate of 2Mb/s and a nominal radio range of 250m. A 
detailed description of the simulation environment and the models is available 
in [8, 9] and will not be discussed here. 

The RREQ packets are treated as broadcast packets in the MAC. RREP 
and data packets are all unicast packets with a specified neighbor as the MAC 
destination. RERR packets are treated broadcast in AODV. Detect link breaks 
using feedback from the MAC layer. A signal is sent to the routing layer when 
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the MAC layer fails to deliver an unicast packet to the next hop. No additional 
network layer mechanism such as hello messages [2] is used. 

Both protocols maintain a send buffer of 64 packets. It contains all data 
packets waiting for a route, such as packets for which route discovery has 
started, but no reply has arrived yet. All packets (both data and routing) sent 
by the routing layer are queued at the interface queue until the MAC layer can 
transmit them. The interface queue has a maximum size of 50 packets and is 
maintained as a priority queue with two priorities each served in FIFO order. 
Routing packets get higher priority than data packets. 

We use traffic and mobility models similar to those previously reported us­
ing the same simulator [9, 12, 13]. A traffic generator was developed to simu­
late continuous bit rate (CBR) sources. The source-destination pairs are spread 
randomly over the network. The size of data pay load was 512-byte. 

We use two mobility models, which use the random waypoint model [9] in a 
rectangular field. In the first expermient model, 50 mobile nodes move around 
a rectangle region of 1500 meters by 300 meters. The second model, 100 
mobile nodes move around a rectangle region of 2200 meters by 600 meters. 
Each node randomly selects a location, and moves toward that location with a 
speed uniformly distributed between 0-20 m/s. 

Once the location is reached, another random location is targeted after a 
pause. We vary the pause time, which affects the relative speeds of the mobiles. 
Simulations are ran for 100 s. Each data point represents an average of 100 
runs with identical traffic models, but different randomly generated mobility 
scenarios. Identical mobility and traffic scenarios are used across protocols. 

3.2 Performance Results 
Figure 5 shows the throughput in packet delivery ratio. The ratio of the data 

packets delivered to the destination to this generated by the CBR source. Our 
scheme improves the throughput performance of AODV. We use seven differ­
ent pause times from 10 sec to 200 sec to measure the influence of mobility. 
As the pause time gets shorter, the performance gain by alternate routes be­
comes more significant. Our protocol is able to deliver more packets to the 
destination than AODV. AODV try to repair the primary route by send RREQ 
packet while the node is closer to destination node than source node. After a 
period of time if the node don't get RREP packet the node will drop the data 
packet. Alternate paths may be broken as well as the primary route because of 
mobility. Moreover, packets can be lost because of collisions and contention 
problems. 

Average end-to-end delay of data packets - This includes all possible delays 
caused by buffering during route discovery latency, queuing at the interface 
queue, retransmission delays at the MAC, and propagation and transfer times. 
Figure 10.6andFigure 10.8 show the simulation result. We can find out that at 
some time AODV-AR has smaller average delay time than AODV. The reason 
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Figure 10.5. Data packet delivery rate (1500m X 300m) 

Figure 10.6. Data packet delivery rate (2200m X 600m) 

is that AODV try to recover the primary route at the node that near destination, 
it will cost the time to wait the RREP packet to be sent back from the destina­
tion. If our protocol salvages the data packet successfully and AODV fails to 
recovery the primary route, then the packet's delay time of our protocol will be 
less than that of AODV. 

4. Conclusion 
We presented a scheme take advantage of the broadcast nature of wireless 

communications to build alternate route without any yield any extra overhead. 
Our scheme can be incorporated into any ad hoc on-demand unicast routing 
protocol to improve reliable packet delivery in the face of node movements 
and route breaks. 

In the future, we may try to repair the primary route with alternate route 
which we build by overhear. In this thesis, the node of main route goes through 
another node of main route by using backup route only one hop. If we can 
increase it to two hops or more, then the backup route should be more reliable. 
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Abstract This article presents a cost-effective fault-tolerant routing strategy for optical-
electronic grids. We propose the design of a fully adaptive, fault-tolerant routing 
strategy for multi-hop grid networks using wavelength-division multiplexing. 
The routing strategy is both deadlock-free and livelock-free. Regardless of the 
number and type of faults and size of the grid network, only three buffer sets 
and two routing tables of size 0{d) are required at each node, where d is the 
grid dimension. In the absence of faults, minimal paths with the least congestion 
are used so that latency is minimised. In the presence of faults or congestion, 
misrouting is constrained selectively to prevent livelock. The routing strategy is 
local-information based and does not exploit component redundancy or isolation 
of healthy nodes and links. 

Keywords: Optical fault-tolerant routing, wavelength-division multiplexing, grids, deadlock-
freedom, livelock-freedom 

Introduction 
An increased interest has manifested itself in fault tolerance issues in optical-

electronic parallel processing systems [1,5,6,8,10,11,19]. Optical-electronic 
parallel processing systems are multiprocessor systems with electronic pro­
cessors and communication charmels that may be implemented with optical 
technology. Contemporary technology limits the number of available wave­
lengths and tunability of optical transceivers, making it difl&cult to establish a 
completely optical communications path between all nodes in a large-scale, 
single-hop all-optical network (AON) [3, 7, 9, 16, 17]. In more practical, 
multi-hop opto-electronic networks, wavelength conversion/amplification at 

mailto:askkloh@ntu.edu
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intermediate nodes along a communication path is carried out [19]. Techno­
logical advances in the past decade have made available physically smaller 
devices with increased optoelectronic conversion efiiciency and lower power 
consumption [17]. Some interesting fault-tolerant routing strategies have been 
proposed for multi-hop networks based on Wavelength Division Multiplexing 
(WDM) [1,5,10-11,19]. In WDM systems, communications on different op­
tical wavelengths may be multiplexed onto an optical fiber. Corresponding 
de-multiplexing is then performed at the receiving node. 

A fault-tolerant routing scheme is proposed by Bandyopadhyay et al. [1] 
for multi-hop networks. In this scheme, each source-destination path is pre-
computed to guarantee message delivery in the presence of faults. All pre-
computed paths are thus deadlock-free and livelock-free. Communication over­
heads are minimised by specifying an upper bound for the path setup time, 
exceeding which the communication is considered blocked. Dynamic faults 
that occur during path establishment can be tolerated. Here, it is required that 
each fault-free node and its associated router know the routing path to every 
other node when the network is fault-free. This may result in a node maintain­
ing complex routing tables that are not cost-effective with increase in network 
size. Also, each fault-free router maintains a queue of messages received over 
a control channel, which is used for path pre-computation and transmission of 
fault information. This, however, requires the need to consider fault tolerance 
issues for the control channel as well. 

Gerstel et al. [5] proposed a fault-tolerant routing strategy for optical-based, 
ring networks. In this strategy, a single fault can be tolerated and alternate 
routing may be determined statically. When routing is blocked in a speci­
fied direction, rerouting is simply invoked m the opposite direction. In more 
complex networks, however, a set of heuristics to provide some adaptivity is 
inevitably required to cope with faults. 

A fault-tolerant scheme that tolerates only faulty links has proposed by Lal-
waney and Koren [10, 11]. The fault model here assumes that a link failure is 
caused by an optical transmitter and/or receiver failure. In this scheme, it is 
assumed that every node has at least one fault-free tunable transmitter and re­
ceiver that can time to the transmitting and receiving wavelengths of all chan­
nels of that node. In the event of a transmitter failure, the fault-free tunable 
transmitter alternately switches between its normal operating frequency to that 
of the failed transmitter. Both communication streams are time-multiplexed 
onto a given link. The use of tunable transmitters and receivers essentially 
enables logical reconfiguration of the network topology to bypass link faults. 
Contemporary transmitters have, however, limited tuning range that restricts 
the types of logical topologies supported [3, 17]. 

In Shen et al. [19], a fault-tolerant routing strategy has been proposed for 
multi-hop, optoelectronic PFZ)M-networks of node connectivity ( / +1 ) . Up to 
/ channel faults may be tolerated provided faults occur before path establish­
ment. This routing model uses a combination of circuit switching to reserve 
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communication paths and packet switching to physically transmit the messages 
along these paths. The fault-tolerant routing strategy can handle both optical 
channel and wavelength conversion faults. Faults that are known before the 
routing stage, after finding the communication path or after path establishment 
but before transmission, can be tolerated. However, the strategy requires pre­
processing to locate alternate paths during path finding, which increases com­
munication overheads. Despite this, dynamic faults that occur during message 
transmission are not tolerated as in [12]. Finally, there are no specified mech­
anisms to tolerate node (processor) failures. 

The challenge then is to design a fault-tolerant optical-based routing strategy 
with the following desired properties: 

• For reliability, the strategy should tolerate component (both node and 
link) faults that may occur not only before but also during message trans­
mission. 

• For efiiciency, minimal or no preprocessing should be employed. Alter­
nate paths for rerouting should, preferably, be computed "on the fly". 

• For cost-effectiveness, existing optical transmitters/receivers should be 
exploited during the absence and presence of faults with no component 
redundancy. Local (nearest neighbor) fault information should be used 
with low complexity routing information that scale slowly with network 
size. Towards these objectives, the use of communication- and space-
efficient schemes [4,14] becomes an important consideration. 

In this section, we propose a fault-tolerant routing strategy for multi-hop 
WDM-hassd 3-dimensional grid networks, such as [13, 15, 20, 22], with the 
following attractive properties: 

• Adaptive and tolerant to both node and link faults 

• Fault detection and handling are performed locally at each node 

• Routing strategy is both deadlock-free and livelock-free 

• Each node maintains only three buffer sets and two size 0{d) routing 
tables, d is the node degree of the grid 

• Spare optical transmitters/receivers are not required 

• No computation or broadcast of additional routing information for table 
updates is needed 

The rest of the paper is organised as follows. Section 1 introduces the ter­
minology and notations used in subsequent sections. The design of the routing 
model is discussed in Section 2 while Section 3 details the proofs for routing 
properties. The paper concludes with section 4. 
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Figure 11.1. 

Preliminaries 
Paths determined by ILS A & B 

A 3-dimensional multi-hop grid (3-D grid) is an mo by mi by m,2 network 
containing N = n?=o "^i nodes. Each node, with coordinates {x, y, z), may 
be addressed as i = (z * mo * m,i + x * m,i + y), where 0 < i < A''. Each 
node along a dimension d of the grid, may represent a system that comprises 
a sub-network, and is interfaced to a bi-directional optical link (fiber). Each 
optical link along a dimension d may be viewed directionally. If the optical 
link is interfaced to any two nodes along dimension d,Va = {a^, ai , ao) and 14 
= (62, &i, &o)). we denote the direction along dimension d as Fa, when bd > ad 
or as Bd, when a^ > bd- Finally, each optical link is comprised of multiple 
channels, with each channel supporting transmission at a unique frequency 
optical A. Contemporary technology enables support for 128 different optical 
fi-equencies per fiber [3]. 

2. Design of the Routing Strategy 
In this section, we discuss the design of the routing strategy. We start off 

with the design of a set of space-efiicient routing tables [12]. These tables 
make use of a variation of the compact labelling scheme known as interval 
labelling [18, 21]. 

2.1 Node and Link Labelling Schemes 
Nodes and associated links of regular networks like grids can be labelled 

based on a modified interval labellmg scheme for adaptive routing. In an in­
terval labelling scheme {ILS), the links of each node may be labelled with an 
interval, such that the collections of interval sets at any node are disjoint. Mes­
sages can only be routed over the link associated with an interval containing 
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the destination address. That is, a link labelled with the interval [a, b) can be 
used to route messages to destination nodes {a, a + 1 , a + 2 , . . . , 6 — 1}. To il­
lustrate the modified ILS for adaptive routing, we exemplify the approach with 
a 4 by 3 by 2 grid, as shown in Figure 11.1. Table 11.1 shows the ILS A for the 
3-D grid, where Bd and Fd(d = 0, 1, 2) represent the backward and forward 
directions, respectively, along dimension d of the grid and \ is the modulus 
operator. 

Assume that the message at node i is destined for node v. Then, f{v) = 
v\mo is computed and the interval associated with a BQ or FQ link is first 
determined. Depending on which interval f{v) falls within, the message is 
then routed via BQ or FQ to the correct diml-dim2 plane. If f{v) does not fall 
into an interval, then v is in the same diml-dim2 plane as the source node. In 
the second phase, g{v) = v\{momi) is computed and compared to intervals 
assigned to links in dimensions 1 and 2. The message destined for v will 
be routed along the Bi or Fi channel until it reaches the correct row of the 
destination. Finally, v is compared and the message is routed along B2 or 
F2 to reach the destination node. The bold arrows in Figure 11.1 show the 
message path taken from source node 0 to destination node 23 using the ILS 
A. 

Table 11.1. ILS A for 3-D Grids 

Direction 
.Bo 
Fb 
Bi 
Fi 
B2 
F2 

Interval 

[o.A'̂ o) 
[(i + l ) \mo,mo) 
[0,mo* [i/moj) 
[mo +7710 * [(i\mo77ll)/777oJ,77lo777.l) 

[0, [i\mo77iiJ * 7no77ii) 
[[{i\mQmi)/mo\ * mQm.i,momirn2) 

ILS A defines a mmimal path between any two clusters and the routing 
is in increasing dimension order Hence, the routing is minimal, deadlock-
firee and livelock-free in the absence of faults and congestion [2]. In a grid, 
however, routing can be either in increasing or decreasing dimension order. 
ILS A, which defines increasing dimension-order routmg, determines one path 
for routing. To handle component faults and congestion, the routing strategy 
must be able to exploit alternative paths. We define an alternative ILS for 
decreasing dimension-order routing. Table 11.2 shows ILS B for the grid in 
Figure 11.1. 

ILS B is used in a similar way to ILS A. If the source and destination nodes 
are not on the same plane, the message is first routed along B2 or F2 towards 
the correct dimO-diml destination plane. On the destination plane, the desti­
nation address v is compared to the intervals assigned to links in dimensions 1 
and 0. Once the message has arrived at the same row as its destination via Bi 
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Table 11.2. ILS B for 3-D Grids 

Direction 
Bo 
Fo 
Ih 
Ft 
Ba 
F2 

Interval 
[ma * \i/m\,i) 
[i + 1,mo + mo* \i/mo\) 
[ [ i /womij *mami,m.Q + |;i/moJ) 
[mo + mo * L''/''"oJ, [i/m.om4 j * rtintni + rriorm) 
[0, [ i /momij * momi) 
[[i/m.o?niJ * ?nomi + •momi,?noniim2) 

^ A.] ^^"^^ X: 

Figure 11.2. Wavelength Allocation for a 4 x 3 X 2 Grid 

or Fi, the message is routed to its destination via BQ or FQ. ILS B thus defines 
decreasing dimension-order routing. An example applying ILS B is shown in 
Figure 11.1. Dotted arrows represent the message path. 

2 . 2 W a v e l e n g t h A l l o c a t i o n S c h e m e 

In this section, we describe the wavelength allocation scheme that assigns 
optical frequencies for reception to each node. That is, a node assigned with 
an optical frequency of A receives data destined for it on this frequency. To 
minimise the number of frequencies to be allocated and indirectly the amount 
of optical fibre, we cyclically shift the allocated frequencies. In this way, each 
group of nodes are allocated "unique" frequencies for data reception along a 
given network dimension. This scheme is adapted from a similar one used by 
Louri et al. [15] for hypercubes. 

Specifically, the number of unique optical frequencies to be assigned is 
W = max(mo,mi,m2) for an mo by mi by ma grid network. Assign 
optical frequencies {AQ, AI, . . . , AM/_I} to nodes of row 0 of dimension d, 
{VQ, u i , . . . , vw-i) respectively, where d is the grid dimension with W nodes. 



A Viable Fault-Tolerant Routing Strategy for Optical-Based Giids 163 

Subsequently, assign {Ai, A2,. . . , \w-i, Ao} to nodes of the next row of di­
mension d, and so on. For the next plane of nodes along an orthogonal dimen­
sion, assign optical frequencies {Ai, A2,. . . , Aw^_i, AQ} to nodes of row 0, and 
{-̂ 2, A3, . . . , A^y-i, Ao, Ai} to nodes of the next row, and so on. Figure 11.2 
illustrates the wavelength assignment for the 4 x 3 x 2 grid network. 

Since ILS A or B routes messages along an optical link in dimension order, 
the optical reception frequency of an intermediate node along each dimension 
must be determined before routing takes place along that dimension. Consider 
source node, u, at location (a, b, c) and destination node, v, at location {x, y, z). 
The optical reception frequency index, at v can be computed from the source 
frequency index (f){u) by function F as follows: 

F:{u)^ ct>{v), 

where 

F(0(u)) = {(Piu) -^{x-a) + iy-b) + {z- c)) (mod W) 

Note that the wavelength allocation scheme is independent of the routing 
scheme used. The same optical frequency assignment would apply to the net­
work regardless of whether the routing is based on ILS A or ILS B. It will 
become apparent later that the wavelength allocation scheme is also indepen­
dent of the fault pattern. In the next section, we present the buffer allocation 
model at each node. 

2.3 The Buffer Allocation Scheme 

In this section, we present the buffer allocation model at each node. For 
a 3-D grid, there are a maximum of 6 input and output ports at each node 
as illustrated in Figure 11.3. Each input port comprises an optical demulti­
plexer that channels incoming optical frequencies into the W opto-electronic 
receivers. Each receiver is tuned to a specific frequency and converts that fre­
quency into a corresponding electronic signal. Each output port comprises W 
opto-electronic transmitters, each of which converts an input electronic signal 
into a specified optical frequency. A transmitter may be tuned to transmit at 
more than one frequency. An optical multiplexer then combines up to W dif­
ferent optical frequencies for transmission on the associated optical fiber. The 
electronic switch between the 10 ports is responsible for the routing fiinction, 
Rxy, where x and y denote input and output ports, respectively. 

Figure 11.3 shows that there are three input buffers (IBQJ, IBU, and /i?2i) 
associated with each input port i and three output buffers (OBQJ, OBIJ, and 
0B2j) associated with each output port j . The number of buffer sets allo­
cated is always three and is independent of the size and dimension of the grid 
network. Each buffer set constitutes a logical network and supports communi­
cations in a specified direction. 

Messages in buffer set 0 have the most flexibility, being able to bi-directionally 
traverse a route along any grid dimension. Messages in buffer set 0 can also 
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Figure 11.3. Buffer Allocation Model at a Node 

switch over to either buffer sets 1 or 2 when certain network or traffic condi­
tions arise. Messages in buffer sets 1 and 2, however, are constrained to route 
in specified directions. In addition, messages in buffer set 1 are prohibited fi^om 
using buffer set 2 and vice versa. These constraints are necessary to permit full 
adaptivity and prevent deadlock as will be proven in the next section. Finally, 
the injection buffer, INJB, holds new packets generated by the local CPU and 
the delivery buffer, DB, holds packets for consumption by the local CPU. 

With this design, we are effectively dividing the physical interconnection 
network into three logical networks, LQ,LI and L2 as illustrated in Figure 11.4. 
LQ is connected with Li and L2 through logical links whereas Li and L2 are 
disconnected. There are at most three logical links for each bi-directional op­
tical link (fiber). The logical links share the bandwidth of the fiber. 
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2.4 The Fault-Tolerant Routing Algorithm 
Here, we present the fault-tolerant routing algorithm, FTRoute, in two parts: 

AdaptiveRoute and LogicalRoute. Let the locations of the source, current and 
destination nodes to be at {xs, Vs, Zg), (xc, Vc, -̂ c), and (x^, yd, zj), respec­
tively. For a buffer B, size(B) is the total number of places in the buffer and 
hold{B) denotes the number of places that are currently occupied by a mes­
sage. At each node, given the input port and buffer, and the message's des­
tination node, the routing function R specifies the output buffer and port to 
which the message may be moved. The routing function is defined as Rij : (i, 
p) -^ (J, q) where i and j are the input and output ports, respectively, 0 < i, 
j < 6 (for a 3-D grid), p and q are the buffer indices at the previous and cur­
rent nodes, respectively, withp, q G {0,1,2}. We assume fail-stop faults. The 
failure of an optical receiver may be assumed to be detected at the sending 
opto-electronic transmitter [11, 19]. Thus, a faulty receiver may be treated as 
a faulty transmitter for analysis purposes (see Section 4). 
Definition of Dimension Reversal, DR : The dimension reversal number, DR, 
of a message is the number of times a message has been routed from a dimen­
sion m to a neighbouring node in a lower dimension, n < m. Essentially, 
DR is used to control the extent of misrouting or non-minimal routing that the 
message undergoes. DR is assigned to each message header as follows: 

1) Every new message is initialized with a DR of 0. 

2) Each time a message is misrouted from an input buffer IBmi in any 
node to an output buffer OBnj in the same node, the DR of the message 
is incremented if m > n. 

3) If a message is routed along a minimal path, the DR is not incremented. 
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When DR reaches a specified limit, messages in LQ are switched to Li or 1,2. 
A message travelling in logical network, Li, cannot switch to logical network, 
L-i, and vice versa. The algorithm FTRoute is as follows: 

AdaptiveRoute 
INPUT message from port i, where 0 < z < 6 
GET source buffer index p and destination address v from 
message header 
GET dimension reversal count, DR, from message 
header 
IF destination v reached 

STOP 
ELSE 

RESET bit i in mask vector 
IF (p = 1 or 2) call LogicalRoute(p, message) /* message in i i or L2 

V 
ELSE /* message in LQ *I 

IF (dimension reversals DR < reversal limit RL) 
Select primary output port s based on ILSA 
Select alternative output port t based on ILS B 
l¥hold(OBos) <size(OBos) ORhold(OBot) <size(OBot) 
select(OBoj) = min(hold(OBos), hold(Oot)) 

ELSE /* fault encountered or traffic congestion */ 
IFfirst{hold(OBQk) <size(OBQk)), where 0 < fe < 6 and fc 7̂  s or t 
selectfOBoj) = OBok 
IF (k < i) increment DR 

ELSE discard and retransmit message <EXIT> 
ELSE IF iiyd< Vc) AND {zd > Zc)) OR ((y^ < yc) AND {zd > Zc)) 

call LogicalRoute(\,message) 
ELSE IF {{yd > Vc) AND {zd < z^) OR {{yd > yc) AND {zd < 

call LogicalRoute{2,message) 
ELSE discard and retransmit message <EXIT> 

/* Output message to transmitters at port j */ 
Rij : {i, p) -^ {j, q) I* establish switched links */ 
GET local node's reception wavelength (t>{c) 
COMPUTE (j){v) = F{4>{c)) I* compute destination node reception 
frequency */ 
IF NON-FAULTY(transmitter((?!)(t;)) 
send{message, (j){v)) 

ELSE send{message, g(v)) I* g{v) is frequency of 1st non-faulty 
transmitter */ 
LogicalRouie(p,message) 
IF {xd < Xc) I* In logical network, Li *l 

IF {yd = Vc) AND {Zd = Zc) 
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selectiOBij) = OBw 
ELSE IF (ya < Vc) AND {z^ = Zc) 

select(OBij) = min{hold{OBia), holdiOBu)) 
ELSE IF (2/d = Vc) AND (z^ > Zc) 

select(OBij) = mm(hold(OBio), holdiOBi^)) 
ELSE IF {ya < yc) AND {zd > Zc) 

select(OBij) = min{hold{OBio), holdiOBu), hold{OBir,)) 
ELSE IF {xd > Xc) 

IF {yd = Vc) AND {zd = Zc) 
select(OBij) = OBn 

ELSE IF (yd < yc) AND (zd = z^) 
selectiOBij) = min(hold(OBn), hold(OBu)) 

ELSE IF (yd = yc) AND (zd > Zc) 
select(OBij) = min(hold(OBn), hold(OBi^)) 

ELSE IF (yd < yc) AND (zd > Zc) 
select(OBij) = min(hold(OBn), hold(OBi2), hold(OBir,)) 

IF (xd < Xc) II In logical network, L2 // 
IF iVd = Vc) AND (zd = Zc) 

select(OB2j) = OB20 
ELSE IF (yd > yc) AND (zd = Zc) 

select(0B2j) = min(hold(OB2o), hold(OB23)) 
ELSE IF (yd = yc) AND (zd < Zc) 

select(OB2j) = min{hold(OB2o), hold(OB2i)) 
ELSE IF (yd > yc) AND (zd < Zc) 

select(0B2j) = min(hold(OB2o), hold(OB2i), hold(OB2i)) 
ELSE IF (xd > Xc) 
IF (yd = Vc) AND (zd = Zc) 

select(0B2j) = OB21 
ELSE IF (yd > Vc) AND (zd = Zc) 

select(OB2j) = min(hold(OB2i), hold(OB2i)) 
ELSE IF (yd = yc) AND (zd < Zc) 

select(0B2j) = mm(hold(OB2i), hold(OB2i)) 
ELSE IF (yd < yc) AND (zd < Zc) 

select(OB2j) = min(hold(OB21), hold(OB2s), hold(OB2i)) 

3. Proofs of Routing Properties 
In this section, we present the development of proofs for the fault-tolerant 

routing strategy. In order to achieve deadlock-free routing based on ILS A and 
ILS B, the following routing rules must be satisfied: 

1) A new message enters the network if and only if there exists an OB, 
such that hold{OB) < {size{OB) - 1). This leaves at least one space 
for transit messages. 
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Figure 11.5. Communications cycle exists with ILS A & B 

2) A transit message has higher priority than a new (entry) message. 

3) Messages arriving at the same time are handled in a round robin fashion 
to ensure fairness and avoid channel starvation. 

4) lihold{DELB) = size{DELB),thenselect{OB) = xm.n{hold{OB^^)), 
where 0 < j < 2d and q G {0,1,2}. Message is re-injected into the 
network when the delivery buffer is full. 

5) Ithold{OBiq) = size{OBig), select(OBjg) = min{hold{OBjg,0 < 
j < 2d,q € {0,l,2}andj ^̂  i). When \\select{OB)\\ > 1, one is 
chosen randomly. 

6) Rate of message consumption exceeds rate of message injection [2]. 

Lemma 1: 
Routing with FTRoute is minimal and adaptive. 
Proof: 
Routing using either ILS A or ILS B is deterministic, dimension-ordered and 
the corresponding route produced for any source-destination node cluster pair 
is the shortest. At any node, either ILS A or ILS B may be used. • 

Lemma 2: 
Routing with ILS A and ILS B alone is not deadlock-free. 
Proof: 
Use of ILS A and ILS B alone creates a communications cycle. Consider the 2 
by 2 by 2 grid in Figure 11.5. At cluster 0, a message destined for cluster 7 is 
routed over the path determined by ILS A. At cluster 3, a message intended for 
cluster 6 is routed over a path determined by ILS B. Cluster 7 sends to cluster 
2 via ILS A. Finally, at cluster 6, a message destined for cluster 1, is routed 
along the path determined by ILS B. Since there is a cycle of communication 
requests, deadlock can arise. • 
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Prevention of deadlock requu-es adherence to the above specified routing 
rules as well as the routing directions specified by the logical networks. To 
prove deadlock-freedom in FTRoute, we must prove deadlock-fi^eedom in 
AdaptiveRoute as well as in LogicalRoute. 

Theorem 1: 
Routing phase AdaptiveRoute is deadlock-fi^ee. 
Proof: 
We will prove this by contradiction, hssxxrmng AdaptiveRoute is not deadlock-
free with source and destination clusters u and v, respectively. Then, a cy­
cle of fiiU 10 buffers will exist, {Rij such that hold(OBpi) = size(OBpi) and 
hold(OBqj) = size(OBqj)), at all nodes, inclusive of u and w, in the communi­
cation path. Assume that w is a neighbouring node of u in the communication 
path. This implies that either Rule 6 (v is not receiving the message) or Rule 1 
is violated. \ihold(OBqk) = (size(OBqk) - 1), no new message can be injected 
but transit messages are not prohibited. A transit message then moves towards 
V in the opposite direction to the movement of the empty buffer place. In either 
case, a deadlock cannot exist. • 

Lemma 3: 
Routing phase AdaptiveRoute is fully adaptive. 
Proof: 
Messages first attempt to follow the minimal paths defined by ILS A or ILS B. 
Misrouting is used when these minimal paths are congested or faulty. This is 
evident fi-om the routing algorithm where any OB can be used at some point. 
Specifically, a message may be routed in LQ starting with any dimension and 
in any direction along a specified dimension. • 

Theorem 2: 
Routing phase AdaptiveRoute is not livelock-free in an d-D grid. 
Proof: 
By Lemma 3, AdaptiveRoute is fiiUy adaptive. There exist some clusters such 
that hold(OBqj) = size(OBqj) for j = 0, 1, . . . , d - 1 (minimal paths) and 
hold(OBqj) < size(OBqj) (ox j = d,d+\, ...,2d-\ (non-minimalpaths). In 
such a situation, misrouted messages follow other paths that never reach their 
destinations. • 

Although routing phase, AdaptiveRoute, achieves deadlock-fi-eedom and 
adaptivity, livelock may occur. To prevent livelock, we make use oiDimension 
Reversal, DR, defined previously. After a new message enters the network, it 
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is first routed in LQ. The message is initialized with a DR of 0. DR is used to 
constrain misrouting and prevent livelock as follows. 

Once DR reaches RL, the reversal limit, the message must use minimal 
routing by invoking LogicalRoute. In a mo bymi by m2 grid, we let RL 
= max{mo, mi , 1712}. For increased misrouting, RL may be set higher. In 
LogicalRoute, however, misrouting is not allowed. When minimal paths are 
congested or faulty, messages have to wait instead of being routed along other 
paths. Here, messages are routed in either i i or L2. The message being routed 
in Li or L2 cannot be switched back to LQ. Since Li and L2 are disconnected, 
messages cannot switch between Li and L2. 

Theorem 3: 
Routing phase LogicalRoute is deadlock-free and livelock-free. 
Proof: 
Since logical networks, Li and L2, are disconnected, routing in the physical 
network is deadlock-free if routing in each logical network is deadlock-free. 
From Figure 11.4, it is evident that the permissible routing directions defined 
for the Li logical network do not contain any cycles and is deadlock-free. A 
message from any cluster in the dim0-dim2 plane, traversing dimension 1, can 
not return since the defined message paths are unidirectional in dimension 1. 
Since dimension 2 message paths are also unidirectional, no cycles of buffer 
requests can develop in the dim0-dim2 plane as well. Deadlock-freedom in 
the 1/2 logical network can be proven similarly (see Figure 11.4). In either Li 
or L2, routing is minimal and every step taken by a message is closer to its 
destination. This is evident from the routing algorithm, LogicalRoute. Hence, 
it is livelock-free. • 

Theorem 4: 
FTRoute is fully adaptive, deadlock-free and livelock-free. 
Proof: 
DR does not restrict the use of any particular set of output buffers and by 
Lemma 3, routing phase one, AdaptiveRoute, is fiilly adaptive. Routing phases 
one and two of FTRoute are deadlock-free by Theorems 1 and 3, respectively. 
In phase one, when DR constrains misrouting and when its value reaches the 
upper bound RL, a message is switched to either Li 0TL2. The routes used in 
Li or L2 are minimal. Phase two of FTRoute is livelock-free by Theorem 3. 
Hence, FTRoute is livelock-free. • 

Theorem 5: 
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FTRoute guarantees message delivery in a connected d-dimensional grid only 
if the number of faulty opto-electronic transmitters are upper bounded by (W 
-l)(RL + d). 
Proof: 
In the worst case, in a connected d-dimensional grid, there is only one sur­
viving input and surviving output port at each node on the message path. At 
each output port, up to (W - 1) opto-electronic transmitters can be faulty. The 
longest message path involves up to RL misroutes (see algorithm AdaptiveR-
oute and definition of DR). In either L\ or L2, LogicalRoute prohibits mis-
routing (by Theorem 3) and the message may be successfully delivered in a 
maximum of d hops (where d is the dimension of the grid). Hence, the length 
of the longest message path traverses {RL + d) nodes before reaching the des­
tination and the claim follows. • 

4. Conclusion 

In this paper we have presented a fiiUy adaptive, deadlock-free and livelock-
free fault-tolerant routing strategy for low-dimensional opto-electronic grids. 
Our strategy is cost-effective and supports fault-tolerant routing with moderate 
amounts of resources. Only three logical networks, LQ, LI and £2, and two 
routing tables of size 0{d) are needed (d is the maximum degree of a proces­
sor) regardless of network size. Future work will proceed to extend the routing 
model to other regular networks. 
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Abstract Steganography was designed to get users harder to find out the data through hid­
ing data in forms of various materials such as text, image, video, and audio. The 
most generalized Audio Steganography technique is Lowbit Encoding which in­
sert one bit of Mask to the last bit. Attacker has the disadvantage where attack 
was able to do the Mask which was easily concealed in case of Lowbit Encod­
ing. Also capacity of Stego-data is low. To improve low capacity, we embed 
more than one bit in every sixteen bit. But the attacker easily filters Mask when 
inserted bit is equally bits in every sixteen bits. It is proposed that the Mask 
should be inserted in forms of sign curve with changing the number of bits. We 
apply new method with CDMA to level up information hiding. 
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1. Introduction 
Steganography was designed to get average users(not specialized ones) harder 

to find out the data through hidden data in forms of various materials such as 
text, image, MPEG, and audio. If some secret message were encrypted, the 
security level could go higher. Though some attacker might find out the coded 
secret data, the attacker had to decoding the data. According to the size of 
Mask, the size of Cover-data should be decided. Therefore Mask must be 
condensed to be hidden in the Cover-data. At present the most highly devel­
oped Steganography is the one with using image technique; the most heated 
Steganography is the one with using audio technique. Steganography was de­
signed to get average users(not specialized ones) harder to find out the data 
through hidden data in forms of various materials such as text, image, MPEG, 
and audio. If some secret message were encrypted, the security level could 
go higher. Though some attacker might find out the coded secret data, the at­
tacker had to decoding the data. According to the size of Mask, the size of 
Cover-data should be decided. Therefore Mask must be condensed to be hid­
den in the Cover-data. At present the most highly developed Steganography is 
the one with using image technique; the most heated Steganography is the one 
with using audio technique. 

2. File Encryption Algorithm 
Encryption algorithm is divided into two algorithms. Private-key encryp­

tion and Public-key encryption algorithm. Private-key encryption algorithm is 
called Symmetry key encryption algorithm, too. This algorithm is the same 
as session key used for encryption and decryption. For creating session key, 
random number generator is generally used or user could create the needed key 
by himself A way to using a random number generator will make it difiicult to 
infer session key though has a strong in a dictionary attack method. On the con­
trary, it is easy remember the way which a user creates a key to want directly 
but it is weak in a dictionary attack. DES one of Symmentric key algorithm is 
faster than RSA one of Public-key algorithm approximately 100010000 times 
in hardware process speed and about 100 times if implemented with software 
comparatively [5] [6]. We propose improved file encryption algorithm that can 
unprove the problem that showed a specific pattern in addition to encrypt of a 
file to raise a level of security. The proposed method is composed of following 
steps. First is the applying stage which employs AES algorithm to enhance 
over one step level of encryption. AES has variable key length of 128 bits, 
192 bits, 256 bits at a variable length block of 128 bits, 192 bits, 256 bits. 
Therefore, safety of data is improved. Second is hiding the structure and form 
of encrypted Ciphertext for removing some particular patterns which could 
be appeared m encrypted Ciphertext. And it is applied to the MBE(Modified 
Block Encryption) which encrypts Ciphertext using the key based on this after 
generating random number of Ciphertext blocks. 
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Figure 12.1. Steganography and Digital Watermarking [3] 

3. Steganography 
Steganography means "Covered Writing" coming from Greek language. 

This is to hide some secret message between sender and receiver who are two 
subjects in telecommunication. This method aims at concealing the fact that 
an ordinary message has some secret contents by a third person [8] [9]. Cur­
rently disputable Steganography techniques are ones developed being based 
upon digital environment. 

3.1 Difference of Steganography and 
Watermarking 

It is a purpose that data conceal hidden fact as for the Steganography but wa­
termarking is a purpose to do in order to be able to give no transformation to 
the data that it is not a purpose to hide data. Because Watermarking is the give 
proof of ownership of digital data by embedding copyright statements [2]. But 
it is limited which degree size of the data can embed in a wave file of approxi­
mately 4 minutes play quantity to work in case of Watermarking. Therefore, it 
cannot embed data of large size. A purpose of Steganography is not recognize 
the fact which has hidden data in Stego-data. So Steganography is that actual 
attacker can embed data of large size within the range that data do not know 
embedded fact. And Steganogrphy is usually not robust against modification 
of the data, or has only limited robustness but Watermarking is not. 

3.2 Audio Steganography 
Audio Steganography is developed upon the theory secret data would be eas­

ily transported if message could be hidden in audio files. Low-Bit Encoding, 
Phase Encoding, Spread Spectrum, and Echo Data Hiding are all the methods 
that make it possible to do audio Steganography [4][11][12]. Lowbit Encod­
ing method is the simplest one to insert data into different data structure. This 
method is to substitute the secret data with the last bit of sampling one by bi­
nary stream. The phase coding method works by substituting the phase of an 
initial audio segment with a reference phase that represents the data. Spread 
Spectrum is that most communication channels try to concentrate audio data in 
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as narrow a region of the frequency spectrum as possible in order to conserve 
bandwidth and power. When using a spread spectrum technique, however, the 
encoded data is spread across as much of the frequency spectrum as possible 
Echo data hiding embeds data into a host signal by introducing an echo. The 
data are embedded by varying three parameters of the echo: initial amplitude, 
decay rate, and offset, or delay. The Capacities of Lowbit Encoding, Echo 
Hiding, Phase Coding, Spread Spectrum, and Ceptral Hiding are 44100 bps, 
16 bps, 20 bps, 4 bps, and 20 bps. Assuming music is played for 1 minute, 
users can store 846000 bits using lowbit encoding, 960 bits using echo hiding, 
1200 bits using phase coding, 240 bits using spread spectrum, or 1200 bits 
using central hiding. In other words, all techniques suggested except Lwbit 
Encoding are strong against attacks such as compression, but can store only 
small amount of data and have to support synchronization to reproduce sig­
nals. Also, to insert and extract hidden data as in the original status before 
the message was hidden, additional techniques must be used [21] [22]. These 
techniques are not appropriate to hide general documents, but instead, they are 
mostly used for copyrights protection. Therefore, a technique that does not 
have good stability but has high capacity must be selected to hide and extract 
data without any loss. 

4. StegoWaveK Model 

StegoWaveK is a model that uses the 2-Tier file encryption in order to raise 
a security level of the data which are going to embed the audio Steganography 
system that can hide Mask of various banishments and encoded. Commer­
cialized Audio Steganography software has greatly two problems. First, is 
taking the Low-Bit Encoding way that is the simplest application way of audio 
Steganography. By listening to a wave file or watching wavelength type sim­
ply, users or listeners did not know that information is embedded, but there is 
the important thing that information embedded by attacker has a problem for a 
filtermg to be able to easily work. Second, we need the Cover-data of 16 times 
for Mask file arithmetically. It makes difficulties for choice of the Cover-data. 
Therefore, development of the technology that can embed of large size Mask 
is necessary. 

4.1 Design of StegoWaveK Model 

In order to solve a problem that is able to have been easily analyzed structure 
and a characteristic of a file because general file encryption algorithm shows a 
specific pattern and that a filtermg can easily work in attacker, and capacity was 
low because Commercialized Audio Steganography let the last 1 bit of 16 bit 
hiding data, this paper proposes StegoWaveK. Figure 12.3 is a StegoWaveK 
model to be composed of a level to insert secrete message in Cover-data by 
compression, encryption and embedding. 
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Figure IS. 2. Flowchart of Message Encryption in StegoWaveK 

4.2 2-Tier File Encryption 
2-Tier file encryption is the file encryption that can improve the problem 

that showed a specific pattem in addition to encrypt of a file to raise a level 
of security. 1-Tier is the applying stage which employs AES algorithm to 
enhance over one step level of encryption. AES has variable key length of 
128 bits, 192 bits, 256 bits at a variable length block of 128 bits, 192 bits, 256 
bits. Therefore, safety of data is improved. 

2-Tier hides structure and form of secondly encrypted Ciphertext for remov­
ing some particular patterns which could be appeared in encrypted Ciphertext. 
And it is applied to the MBE(Modified Block Encryption) which encrypts Ci­
phertext using the key based on this after generating random number of Ci­
phertext blocks. MBE algorithm circulates 255 keys which it has sequential 
created fi-om image key and carries out each block and XOR operation. The 
following is MBE algorithm to have applied to 2-Tier. 

4.3 Message Embedding Algorithm 
The most generalized audio Steganography technique is Low-Bit Encoding 

which insert one bit of Mask to the last bit. In the Commercialized system, 
it embeds Mask only to the most right digit fi-om the 16 bit of wave file. But 
the most reliable Steganography technique is the Cepstral Hiding, it's storing 
capacity is very low. It is very hard to embed all different size of Mask. The 
proposed algorithm in this paper is revised Low-Bit Encoding method, and 
improves the two types of problems, which is low capacity and easy filtering 
in Commercialized Audio Steganography. First, in order to insert bigger size of 
Mask to the limited size of Cover-data, we embed more than one bit in every 
sixteen bit. Figure 12.3 shows result from opinion of 100 students listening 
Stego-data hiding as 1 bit, 2 bit, 4 bit, and 6 bit. The student listened to music 
using a speaker. All students were not able to distinguish between Stego-data 
and Cover-data. Therefore, we used headphones for a precision analysis. Most 
of student do not feel the difference of Cover-data and Stego-data. But if we 
increase the number of bit to insert unconditionally, then there is significant 
difference of the two data. Since Cover-data is injured, listener is aware of 
information embedding. Thus we know how about the damage of Cover-data 
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is reduced as to 1 bit, 2 bit, 4 bit, and 6 bit, and how about difference in the 
these Stego-data and Cover-data is showed by file structure aspect. Figure 12.4 
shows the discrepancy of values of weighted bit between Stego-data and Cover-
data. 

In Figure 12.6, the difference of the bit-value which is inserted to Mask 
bit from 1 bit to 4 bit to Stego-data is not significant. However, for the data 
inserted more than six bit, we get the information that there are significant 
difference of the bit value. From this fact, we could conclude that the ideal 
number of insertion bit is from 1 bit to 4 bit in order to minimize changing 
between Cover-data and Stego-data, and evaluate the efiiciency of Capacity. In 
Figure 12.6, the difference of the bit-value which is inserted to Mask bit from 1 
bit to 4 bit to Stego-data is not significant. However, for the data inserted more 
than six bit, we get the information that there are significant difference of the 
bit value. From this fact, we could conclude that the ideal number of insertion 
bit is from 1 bit to 4 bit in order to minimize changing between Cover-data and 
Stego-data, and evaluate the efiiciency of Capacity. 
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Figure 12.5. Flowchart of Message Encryption in Stego WaveK 

In order to prove there in no meaningful difference between Cover-data and 
Stego-data inserted by 1 bit, 2 bit, 4 bit, and 6 bit, we use Cover-data hav­
ing format of 16 bit PCM Wave file. We transfer 16 bit segment to decunal 
number and select three thousand of decimal values to analyze. The Correla­
tion Analysis is performed to know what difference is between Cover-data and 
Stego-data. In the analysis result, since correlation coefficient of relation be­
tween Stego-data and Cover-data is close to 1, we know the fact that Stego-data 
obtains properties of Cover-data. But in the case of 6 bit Stego-data, correla­
tion coefficient is 0.9996 and thus some properties of Cover-data is dropped. 
The Attacker easily filters Mask when inserted bit is equally 2 bit, 3 bit, or 
4 bit. To improve this problem, we propose the method that bits of Mask is 
inserted in forms of sign curve with changing the number of bits, not inserted 
by regular rate per 16 bit of Cover-data. As a result of Correlation Analysis for 
Cover-data and 1 bit Stego-data, we can know that high correlation relationship 
appears between Stego-data with a 1 bit sign curve and Cover-data. In inser­
tion of Mask, we use sign curve and can keep a characteristic of Cover-data. 
In the Dynamic Message Embedding (DME) module, the secret message is 
inserted into a certain critical value, not the lowbit as long as characteristics of 
the cover-data are maintained. For the critical value, features of the cover-data 
and the secrete message are analyzed and processed. Also, the most suitable 
algorithm is selected to insert the secret message from the algorithm that hides 
one bit and the algorithm that improves capacity by the sine curve form. 

In the pre-processing, the soimd volume of the cover-data that is a wave file 
is analyzed and distribution of the sound volume of the wave file is studied. 
Then, referring to the ratio with the next secret message, the critical value to 
hide the secret message is decided. After the location to hide the secrete mes­
sage is decided, the message embedding algorithm is decided Basically, Fmt 
chunk (the header of the wave file) size is 18 bytes. Last 2 bytes of these 18 
bytes describe the size of extension information. However, if extension infor­
mation is not included, remaining 16 bytes is designed as Fmt chunk. Actually, 
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in most cases, Fmt chunk is designed to be 16 bytes. In the commercialized 
audio steganography software, only the wave file with the data chunk identifier 
in 4 bytes from the 37th byte (the location defined assuming that Fmt chunk of 
the wave file is 16 bytes) is recognized as a wave file. In other words, the com­
mercialized audio steganography software does not recognize 18 byte wave 
files. Especially, when MPS music files are converted into wave files, mostly 
they have 18 byte or 14 byte Fmt chunk, which is not supported by the com­
mercialized audio steganography software. To solve this problem, the Chunk 
Unit Read (CUR) module processing according to the chunk of the wave file 
has been designed. In the CUR module, data characteristics are not judged by 
reading fixed location values, but instead, the wave file is processed according 
to the chunk. Therefore, not only the wave file with 18 byte Fmt chunk (the 
basic format) but also wave files with 16 byte and 14 byte Fmt chucks can be 
used as the cover-data. 

5. P e r f o r m a n c e E v a l u a t i o n o f S t e g o W a v e K 

In this section, StegoWaveK that has been implemented by VC++.Net is 
compared with Invisible Secretes 2002 (hereinafter to be referred to as "CS I") 
and Steganos Security Suite 4 (hereinafter to be referred to as "CS 11") that 
have been commercialized and in use now. According to [36], in steganog­
raphy analysis, visual, audible, structural, and statistical techniques are used. 
Therefore, the comparison and the analysis in this study were based on cri­
teria of the Human Visible System (HVS), Human Auditory System (HAS), 
Statistical Analysis (SA), and Audio Measurement (AM). Since the HAS can 
be relatively subjective, audio measurement analysis was added to more objec­
tively analyze and compare the stego-data and the cover-data. For comparison 
and analysis data, PopSong by Kim Min Song was used. In experiments with 
other genre music, similar results were gained. 
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5.1 Human Visible System (HVS) Criteria 
According to the waveform analysis result of the stego-data created by In­

visible Secrets 2002 and Stego WaveK using an audio editor, CooIEditor, it is 
hard to visually tell the difference due to HVS characteristics. Figure 12.8 
shows waveform of the stego-data captured by CooIEditor and Figure 12.9 
shows hexa-decimal code values of cover-data and stego-data. 

5.2 Human Auditory System (HAS) Criteria 
To analyze and compare the suggested system with the existing system on 

criteria of the Human Auditory System (HAS), 13 messages with different 
sizes and 4 wave files were selected as cover-data. We played the stego-data 
where the message is hidden through CS I and CS 11 using lowbit encoding and 
the stego-data where the message is hidden through Stego WaveK system to 
100 students. Although it could be subjective, most students could not tell the 
difference between the cover-data and the stego-data. Following Figure 12.14 
shows the experiment results. 

5.3 Statistical Analysis (SA) Criteria 
In the following, correlations between the cover-data and the stego-data cre­

ated by the CS I, and between the cover-data and the stego-data where the 
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secret message was hidden through StegoWaveK are analyzed by extracting 
characteristics from stego-data. In the result, we can find the stego-data have 
similar characteristics to the cover-data in both cases. 
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5.4 Audio Measurements (AM) Criteria 
Audio measurement and analysis includes frequency response, gain or loss, 

harmonic distortion, intermodulation distortion, noise level, phase response, 
and transient response. These parameters include the signal level or phase 
and the frequency. For example, the Signal to Noise Ratio (SNR) is a level 
measurement method represented by dB or ratio. The quality of the stego-data 
where the message is hidden was measured using SNR. SNR represents ratios 
of relative values [15, 16]. The following graph shows SNRs between the 
cover data and the stego-data created by the CS I, the CS II, and StegoWaveK. 
The SNR of the stego-data created by the suggested system is not significantly 
different from that of the stego-data created by the CS I. However, the SNR 
of the stego-data created by the CS II is relatively different from that of the 
stego-data created by the suggested system. 

6. New Approach with CDMA 
We introduce new approach to hide data and this method use CDMA pro­

cess. We explain CDMA encoding procedure. Precondition is that source is 
digital data. The following shows an example of 8 bit PN code generation. 

1,1,1,1,1,1,1,1) 

1,1,1,1,-1,-1,-1,-1) 

1,1,-1,-1,1,1,-1,-1) 

1,1,-1,-1,-1,-1,1,1) 

1,-1,1,-1,1,-1,1,-1) 

1,-1,1,-1,-1,1,-1,1) 

1,-1,-1,1,1,-1,-1,1) 

1,-1,-1,1,-1,1,1,-1) 
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By this PN code, we represent and encoding 10110010. We replace 0 with 
-1 and 10110010 is (1,-1,1,1,-1,-1,1,-1). The following shows of multiplication 
of PN code and this data 

( 1 ) * ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) = ( 1 , 1 , 1 , 1 , 1 , 1,1,1) 

(-1) * ( 1 , 1, 1, 1,-1,-1,-1,-1) = (-1,-1,-1,-1,1, 1, 1, 1) 

(1) * (1,1,-1,-1, 1, 1,-1,-1) = ( 1 , 1,-1,-1,1,1,-1,-1) 

(1) * ( 1 , 1,-1,-1,-1,-1,1,1) = ( 1 , 1,-1,-1,-1,-1, 1, 1) 

(-1) * (1,-1,1,-1, 1,-1, 1,-1) = (-1, 1,-1,1,-1,1,-1, 1) 

(-1) * (1,-1,1,-1,-1, 1,-1,1) = (-1, 1,-1,1, 1,-1, 1,-1) 

(1) * (1,-1,-1, 1, 1,-1,-1, 1) = (1,-1,-1,1,1,-1,-1, 1) 

(-1) * (1,-1,-1, 1,-1, 1,1,-1) = (-1, 1,1,-1,1,-1,-1, 1) 

The next step is sum of resulted data by position and we get ( 0, 4,-4, 0, 4, 
0, 0, 4). This data is transformed to bit stream. The number of real occurrence 
is 9( these are -8, -6, -4, -2, 0, 2, 4, 6, 8). We need memory to present 9, and 
8 * 4 = 32 bits to encode 8 bit by 8 bit PN code. The following figure shows 
process on codes. 

Decoding is executed by specified PN code and we explained the fifth bit 
extraction. In the following figure, we divide bit stream mto three bit unit. 
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After mapping this data, we obtained (1,3,-5,1,3,1,1,3). Multiply this by the 
fifth PN code (1,-1,1,-1,1,-1,1,-1) in order. 

(1,3,-5,1,3,1,1,3) * (1,-1,1,-1,1,-1,1,-1) = (1,-3,-5,-1,3,-1,1,-3) 

Sum result of (1,-3,-5,-1,3,-1,1,-3) is 1 - 3 - 5 - 1 + 3 - 1 + 1 - 3 = - 8 . 
Devide this number by 8, we obtain -1 and extracted bit is 0. 

We insert new type identifier(code OxFFFFFFFF) into file extension. In de­
coding process, to compare between existed data and new type data, we insert 
4 byte identifier in new type data. To solve the problem that make difference 
between StegoWaveK and CDMA method, we need following steps. 

1) In cover-data, we extract on bit. 

2) If previous two byte of extracted data is not OxFFFF, then this data is 
existed type and process is continued. 

3) If previous two byte of extracted data is OxFFFF, we start to extract two 
new bit from data. 

4) If previous four byte of extracted two bit data is OxFFFFFFFF, then this 
is new type data and we apply proper method to data procesing. 

5) If previous four byte of extracted two bit data is not OxFFFFFFFF, this 
is incorrect data type and send the error message. 
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We experiment many data by new method, compare exited method by five 
criteria. We modify the process to level up information hiding. 

7. Conclusion 
The audio steganography that hides data uses the wave file as cover-data; the 

cover-data has the same size as the size of the stego-data file in the suggested 
system; and most listeners and users do not tell any diiBference in the soimd 
quality. Therefore, they cannot recognize that data is hidden in stego-data. 
Also, none of the HVS system or the HAS system can analyze the wavelength 
that had been analyzed through a simple audio editing tool in an intuitive way. 
Therefore, it can be useful to send secret data. The commercialized steganog­
raphy software uses only certain types of wave files as the cover-data. As one 
bit of the secret message is inserted into the Lowbit of the cover-data, the cover 
data can be easily filtered. Also, as one bit is inserted to hide the secrete mes­
sage, the cover-data size increases. StegoWaveK model suggested in this study 
has been specially designed for Korean users to improve problems of existing 
commercial audio steganography softwares have. Firstly, to solve the problem 
that the secret message can be hidden only m the wave file of which Fmt Chuck 
is composed of 16 bytes, StegoWaveK model processes the wave file by Chunk. 
Secondly, to improve the capacity of the cover-data and to prevent the attacker 
from filtering the cover-data, the writer designed and implemented DME mod­
ule and applied it. With DME module, users can decide the critical value and 
the insertion algorithm to hide the secret message based on the cover-data and 
characteristics of the secret message. This will make it difficult to tell whether 
there is hidden data as in the case of the open key steganography, although the 
suggested model uses the private key steganography. Thirdly, in StegoWaveK 
model, encoding is performed to prevent the attacker from visually checking 
characteristics of the secret message before the secret message was hidden and 
to prevent the attacker from checking contents of the secret message even if 
he/she might succeed in gaining the secret message from the stego-data and 
the cover-data. Lastly, while data is only visually hidden through character­
istics of the file m Windows O/S, StegoWaveK model hides data m the audio 
data that is often used. Although the hidden data does not exist in the com­
puter any longer, the user can extract data whenever he/she wants without any 
loss of the hidden data. Therefore, StegoWaveK model can be useftil to hide 
important design drawmgs, program files, and confidential documents. More 
studies shall be performed relating to migration to the embedded system in the 
future. By introducing new methods suggested in [37], or by using loss-free 
compression programs such as TIFF with high performance, it would be pos­
sible to improve performance of StegoWaveK system. More researches shall 
be made also to develop more convenient user interfaces. With StegoWaveK 
system, it is possible to hide personal information of multimedia content users 
at the cyber training and various kinds of other information that can be used by 
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the evaluation system. StegoWaveK model can be also utilized as a multi-level 
personal information protection system that can protect personal information 
at several levels. We try to apply, experiment, and evaluate new mrthod in 
order to level up information hiding. 
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Abstract Software based Distributed Shared Memory (DSM) systems have been the fo­
cus of considerable research effort, primarily in improving performance and 
consistency protocols. Unfortunately, computer clusters present a number of 
challenges for any DSM systems that are not solvable through consistency pro­
tocols alone. These challenges relate to the ability of DSM systems to adjust 
to load fluctuatirais, computers being added/removed from the cluster, to deal 
with faults, and the ability to use DSM objects larger than the available physical 
memory. We present here a proposal for the Synergy Distributed Shared Mem­
ory System and its integration with the virtual memory, group communication 
and process migration services of the Genesis Cluster Operating System. 

Keywords: Distributed Shared Memory, Cluster Computing, Operating Systems 

1. Introduction 
Traditionally, parallel processing has been the monopolised by the super­

computer and MPP machines, architectures that have been shown to be too ex­
pensive and very diflScult to scale. The cluster is an architecture that is proving 
to be an ideal alternative to the supercomputer. A dedicated cluster is generally 
built using commodity components, such as using fast computers and intercon­
nected with fast networks. The success of this architecture for building very 
high performance parallel machines is shown by the (increasing) number of 
the world's fastest computers that are built using the cluster architecture [22]. 
On the other hand, non-dedicated clusters based on common PCs and networks 
are widely available in many organisations. These clusters form a valuable and 
inexpensive resource that is not being taken advantage of 

DSM is a parallel programming model that can be easily employed to har­
ness the computational resources of a cluster. This is achieved by making the 

http://edu.au
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memory resources on each (distributed) computer available to the other com­
puters in the cluster. In the ideal case of a DSM system, programmers only 
need to focus on the computation to be performed and synchronisation issues. 
The DSM system ensures the memory is consistent between all computers, by 
communicating changes between the shared DSM memory objects. 

The area of software DSM has been the focus of considerable research for 
many years, in particular in the mid to late 1990s. Unfortunately, the primary 
thrust of this work has only been with the execution performance and proto­
cols employed to maintain consistency between the shared DSM objects [9] 
[4] [11]. We identified a need for addressing not only high performance but 
also ease of programming, ease of use and transparency and developed a soft­
ware DSM system within an operating system (rather than as middleware) this 
offers services that satisfy these requirements [19]. A need for a more inte­
grated approach to building DSM system was also advocated in [9]. A strong 
assessment of software DSM was presented in [6]. Our response, based on our 
research, to that assessment is the subject of another paper. Here we address 
technological issues of software DSM, which will be used later to specify our 
response. 

The major technological problems that exist with currently available soft­
ware DSM systems are: 

• DSM systems are difiicult to program and use, and do not support trans­
parency; 

• DSM objects are fixed to a computer and unable to be moved, leadmg to 
load imbalances; 

• Poor (practically no) support for virtual memory; 

• Poor support from fault tolerance services such as check-pointing; and 

• Poor use of group communication in consistency protocols. 

The cuhnination of these problems is that many DSM systems are inflexible 
in their operation and are unable to benefit from the advanced services available 
in some modem operating systems. A common cause for this is that many 
DSM systems are implemented at the user level not fully integrated with the 
operating system. 

The goal of this paper is to present the design of the Genesis Synergy Dis­
tributed Shared Memory System, an advanced DSM system that addresses 
these problems. This paper is structured as follows. Section 2 presents re­
lated work in the area of DSM, especially those systems that address some of 
the problems identified. Section 3 mtroduces the cluster architecture, DSM 
and parallel processing. Sections 4 and 5 present the Genesis Cluster Oper­
ating Systems developed and the design of the Genesis Synergy Distributed 
Share Memory System (SDSM), respectively. Section 6 summarises our work 
and details our fiiture work. 
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2. Rela ted Work 

Much of the effort in software DSM research has concentrated on improv­
ing performance of the systems, rather than reaching a more integrated DSM 
design [9]. The well known DSM systems, Munin [4] and TreadMarks [15], 
have neglected ease of use, availability, transparency and fault tolerance. Both 
of them were developed based on the middleware approach. 

User friendliness has not been addressed in either system. Application de­
velopers using Munin or TreadMarks must have significant understanding of 
both the application they are developing and the DSM system. In Munin pro­
grammers must label different variables according to the consistency protocol 
they require and in both systems they are required to have substantial input 
into the initialisation of DSM processes. Programmers must either enter the 
number of computers required to execute an application including the names 
as command line arguments or create a computer list file that contains a list of 
the computers that comprise the cluster [15], [4]. 

Many DSM implementations only support the running of applications in 
which the problem size is limited to that which will fit into the memory on the 
local machine. One exception is JIAJIA [18], a software based DSM which 
uses Scope Consistency, which is one of the few DSM systems which discusses 
the use of Virtual Memory to increase the size of DSM applications to larger 
than the size of local memory. Virtual memory is implemented in JIAJIA but 
the performance tests carried out are for application sizes which did not use 
the virtual memory facility so the influence of virtual memory is never actually 
tested. This still makes the use of virtual memory open. 

Research has been carried out on Network RAM [ 16] which uses DSM-type 
mechanisms to cache pages selected for replacement in the memory of remote 
computers rather than writing them to disk [13]. The purpose of this research 
was not to measure the performance of the applications but to examine the 
problems of fault tolerance when using remote computers merhories as caches. 
Similarly, BFXM is a parallel file system model based on the mechanism of 
DSM that links the memory of all computers into a large cache reducing the 
need to save pages to disk [12]. A spin-off irom this project might be to use 
these mechanisms to improve the fault tolerance and execution speed of non-
DSM applications. 

Load balancing in DSM systems has been presented in [23], thread migra­
tion and loop scheduling in [17] [10] [21] [8], migrating or replicating pages 
in [2] [5], migration and replication of objects in [3]. In [8] the work described 
involves the comparison of performance between the migration of threads and 
data in the MCRL muhithreaded DSM multiprocessor system. Many existing 
DSM systems allow users to create a set of DSM processes on designated com­
puters. The set of processes remain on these computers until they exit [4] [11] 
[18]. 
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The need for availability, transparency and fault tolerance in DSM-based 
clusters has been strongly advocated in [14]. However, availability and trans­
parency are still not provided and fault tolerance is poor. A variety of tech­
niques for detecting and correcting faults are presented, however, their imple­
mentation is so difficult that they are not in place [20]. Application developers 
experience difficulties using checkpoint systems, they must port library code 
and applications, there are restrictions imposed by these libraries, and their ap­
plications must be recompiled or relinked. Because of these difficulties, only 
few developers employ checkpointing in their applications [1]. 

3. Cluster Architecture 
We introduce in this section the characteristics of a computer cluster, parallel 

applications and their relationship to DSM. 

3.1 Cluster Types 
Computer clusters fall into two broad classes, dedicated and non-dedicated. 

Dedicated cluster are specifically built to execute applications in a batch man­
ner, where a given application is allocated the whole or subset of the cluster to 
solely execute on until completion. Only a single process runs on a computer. 
In non-dedicated clusters applications are able to share constituent computers 
within the cluster with other separate applications. 

3.2 DSM and Parallel Processing on Clusters 
Parallel processing can be divided into the initialisation, execution and ter­

mination phases. The initialisation phase involves mapping processes to com­
puters, instantiation of these processes on these computers, and, in the case of 
DSM, the creation and initialisation of sharable objects. The execution phase 
involves a set of processes executing in parallel. During execution it may be 
necessary to reallocate parallel processes to improve the overall execution per­
formance and utilisation of resources. The co-ordination role of DSM parent 
process ends after the initialisation phase. During the execution and termina­
tion phases it performs in the same way as a child [19], Finally, in the termi­
nation phase each parallel process completes the work and blocks at a barrier. 

3.3 Effects of Non-dedicated Clusters on DSM 
A non-dedicated computing cluster has a number of characteristics that have 

a considerable impact on the execution performance and flexibility of DSM 
based parallel applications. A primary cause of this impact is due to the shared 
nature of a non-dedicated cluster. 

The structure and configuration of clusters can be complex and dynamic, as 
computers are added or removed. Progranmiers and users of DSM applications 
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rely on this configuration information in the development and execution of 
their programs. This adds to the burden of the DSM programmer and user. 

The load of shared clusters can fluctuate dramatically, especially with a high 
number of interactive users who log in and out. This can result in the cluster 
having highly overloaded computers, whilst often there exists lightly loaded, or 
idle, computers within the cluster. If not corrected, these load imbalances can 
lead to the processes executing on the overloaded computers experiencing un­
acceptable low levels of performance; thus slowing down the overall execution 
of the parallel application. 

The sharing of computers within a non-dedicated cluster increases the com­
petition for resources, primarily memory resources. Although the memory 
resources of modem computers (PCs) are considerable, the secondary storage 
space available on these computers is often many orders of magnitude larger. 
Therefore it is desirable to support virtual memory; enabling physical mem­
ory resources to be shared efficiently between the most active processes. In 
terms of DSM, this would also allow the allocation of shared DSM objects that 
exceed (in size) the amount of physical memory available on a given computer. 

Faults (hardware/software) can cause the termination of DSM (or any) ap­
plications running on a non-dedicated cluster (although, dedicated cluster also 
suffer from this). With the increasing scale of clusters, the potential for faults, 
both hardware and software, also increases. In the case of non-dedicated clus­
ters, interactive users increase the chance of causing errors through software 
faults, as well as user error such as turning off a computer. 

Non-dedicated clusters often rely on commodity networks for the intercon­
nection the computers. Compared with specialised high performance (and ex­
pensive) networks, the data rates and latencies of the commodity networks are 
significantly worse. Adding to this basic problem, non-dedicated clusters exe­
cuting multiple applications on shared computers can substantially increase the 
load on the network. The network load has a negative impact on the protocols 
used to maintain consistency of DSM objects. 

4. The Design of the Genesis DSM 

4.1 Genesis Overview 

Genesis is microkernel based operating system specifically designed and 
developed for the management of a computer cluster [7]. In this section we 
briefly discuss those components that are directly related to DSM, as shown in 
Figure 13.1. 

4.1.1 Microkernel . The microkernel is a small section of code 
that provides the bare minimum set of services needed to support the execution 
of processes. These services include handling of interrupts and exceptions, 
low level page management, scheduling and context switching of processes, as 
well as local inter-process communication. The remaining services normally 
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provided by an operating system are provided by the kernel and system servers 
and form the core of Genesis. 

4.1.2 Kerne l Servers. The primary resources of a computer are 
managed and controlled in Genesis by a set of privileged, cooperating kernel 
server processes called managers. Those directly related to DSM include: 

• Space Manager a space is a region of memory, thus the role of this 
server is to manage the allocation, sharing and revocation of memory 
resources. It also supports virtual memory by mapping memory pages 
to disk. DSM is a component of the Space Manager. 

• Process Manager manages the information related to process control, 
execution and relationships. 

4.1.3 Sys tem Servers. The highest level management processes 
in the Genesis system are the system servers. The system servers that affect 
the proposed SDSM include: 

• Migration Manager coordinates the movement of an executing process 
from one computer to another. Process migration is an advanced service 
that enables dynamic load balancing as well as fault recovery (restoring 
checkpointed processes and moving processes of failing computers). 

• Execution Manager - creates a process from a file (similar to the fork() 
and exec() combination in Unix) and duplicates a process either a heavy­
weight or medium-weight (similar to fork() in Unix). In particular, it 
coordinates the single, multiple and group creation and duplication of 
processes on both local and remote computers, as directed by the Global 
Scheduler. 

• IPC Manager supports remote inter-process communication through the 
discovery and re-direction of messages to processes located on remote 
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computers. It also supports group communication within sets of pro­
cesses. 

• Global Scheduler supported by the Execution and Migration Managers 
is able to provide load balancing decisions at the instantiation of a pro­
cess (initial placement decisions) as well as during the execution of pro­
cesses (dynamic load balancing and load sharing). These services are 
critical in spreading the computation load evenly over the cluster. 

" Checkpoint Manager enables checkpoints (by exploiting process dupli­
cation carried out by the Execution Manager) of processes to be taken, 
cooperates with other Checkpoint Managers to synchronise the build­
ing of a coordinated checkpoint for the whole parallel application, and 
storage of the checkpoint. In the event of a fault, the checkpoint can be 
restarted using services provided by the Migration Manager. 

4.1.4 User Processes . User processes form the remaining en­
tities in Genesis and access the services provided through the system servers, 
kemel servers (via RPCs) and the microkernel (via system calls). User appli­
cations are built to execute on the cluster as a whole and are unaware of which 
workstation they are executing on. This is achieved by making every resource 
in Genesis uniquely identifiable over the entire distributed cluster. 

4.2 Genesis DSM 

We decided to embody DSM within the operating system in order to create a 
transparent, easy to use and program environment and achieve high execution 
performance of parallel applications [19]. Since DSM is essentially a memory 
management function, the Space Manager is the server into which the DSM 
system was integrated. This implies that the programmer is able to use the 
shared memory as though it were physically shared; hence, the transparency 
is provided. Furthermore, because the DSM system is in the operating system 
itself and is able to use the low level operating system fiinctions high efficiency 
can be achieved. 

In order to support memory sharing in a cluster, which employs message 
passing to allow processes to communicate, the DSM system is supported by 
the IPC Manager. However, the support provided to the DSM system by this 
server is invisible to application programmers. Furthermore, because DSM 
parallel processes must be properly managed (including their creation, syn­
chronisation when sharing a memory object, and co-ordination of their exe­
cution) the Process and Execution Managers support DSM system activities. 
The placement of the DSM system in Genesis and its interaction with the basic 
servers are shown in Figure 13.2. 

When an application using DSM starts to execute, the parent process ini­
tialises the DSM system with a single primitive fimction. This function creates 
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shared DSM objects and a set of processes. The latter operation is performed 
by the Execution Managers of remote computers, selected by the Global Sched­
uler based on the system load information. 

The granularity of the shared memory object is an important issue in the 
design of a DSM system. As the memory unit of the Genesis Space is a page, 
it follows that the most appropriate object of sharing for the DSM system is a 
page. 

The Genesis DSM system employs release consistency model (the memory 
is made consistent only when a critical region is exited), which is implemented 
using the write-update model [19]. Synchronisation of processes that share 
memory takes the form of semaphore type synchronisation for mutual exclu­
sion. The semaphore is owned by the Space Manager on a particular computer 
which implies that gaining ownership of the semaphore is still mutually exclu­
sive when more than one DSM process exists on the same computer. Barriers 
are used in Genesis to co-ordinate executing processes. Processes block at a 
barrier until all processes have reached the same barrier; the processes then 
all continue execution. Barriers are also controlled by the Space Manager but 
their management is centralised on one of the computers in the cluster. 

In code written for DSM as in code written for execution on any shared 
memory system a barrier is required at the start and end of execution. Barriers 
can also be used throughout the execution whenever it is necessary that pro­
cesses have completed a particular phase of the computation before the start of 
the next one. 

5. Genesis Synergy DSM 

We claim that the facilities provided by Genesis, such as virtual memory, 
process migration and process check-pointing; can be combined with the Gen­
esis DSM facility to form an advanced Synergy DSM (SDSM) service. The 
SDSM addresses many of the problems traditional DSM systems experience 
on non-dedicated clusters (as described in Section 3.3). Our previous research 
[19] has shown the advantages of providing a DSM service fully integrated 
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into the operating system. In this section we describe the design of the Genesis 
Synergy DSM system. 

5.1 Easy to Program and Use DSM 
The first problem addressed by the Genesis SDSM relates to the role of the 

programmer/user. Genesis transparently supports the addition and deletion of 
computers from a cluster. The user is not required to identify available com­
puters to run their application. This operation is performed automatically by 
the operating system, which hides from the user the individual computers and 
presents a view of single large virtual computer. By hiding the architectural 
details of the cluster, this greatly reduces both the programming and execution 
burden of the user. DSM processes of a parallel application are created con­
currently on available computers by the Execution Manager thus improving 
the initialisation performance. 

Coding of DSM applications has been made very easy as the semaphore-
based mutual exclusion approach is in use to achieve synchronisation of shared 
DSM objects. The programmer is only required to add one statement into code 
of a parent and another statement into code of a child to allow the system to 
initialise parallel applications on a cluster. 

5.2 DSM and Load Balancing 
The second problem area addressed by the design of the Genesis SDSM is 

that of load imbalances between computers of the cluster which causes a reduc­
tion in the overall performance. Genesis supports process migration, enabling 
processes from over loaded computers to be moved to idle or lightly loaded 
computers; dynamically balancing the load over the cluster or load sharing by 
using idle computers. The Global Scheduler and Process Migration Manager 
are the kernel server processes that provide this service. 

To support the migration of processes accessing shared DSM objects, the 
process migration service must also support the movement of the shared DSM 
objects. Two issues are introduced here, the movement of a process and its 
DSM object to a computer that is currently not being used by another process 
of the DSM parallel application; and when the destination computer already 
has one (or more) of the processes of the DSM parallel applications and thus, 
aheady has a DSM object on that computer. In the first instance, the DSM 
object is simply migrated to the destination computer, updating the DSM data 
structures in the Space Manager to reflect this change. In the second instance, 
since the DSM object is a copy of the same data on both computers it is not nec­
essary to migrate the DSM object to the destination computer, just the process. 
The migrated process, once on the destination computer, can then physically 
share the original DSM object. This actually requires the migration of less 
data than in the first case. Figure 13.3 demonstrates this situation, where user 



198 PARALLEL AND DISTRIBUTED COMPUTING 

process 2 is migrated to a computer already executing a process of the same 
parallel application. 

User 
Proc 1 

User 
Proc 2 < 

Wit 
DSM 

Object 

i Migrate 

1 
Not 

i Migrated 

Physical 
Sliare 

User 
Proc 2 

it 
D5U 

Object 

Computer 1 Computer 2 

Figure 13.3. DSM and Process Migration 

5.3 DSM and Virtual Memory 
Virtual memory is a service which improves the utilisation of physical mem­

ory resources by writing infrequently used memory pages to disk, thus freeing 
these pages to be used by other processes. Another benefit allows processes to 
use spaces whose size exceeds the amount of physical memory within a given 
computer. 

Figure 13.4. DSM and Virtual Memory 

It is possible for a shared DSM object to use the services of virtual memory, 
thus gainmg the benefits of an overall improvement of memory utilisation and 
the use of very large DSM objects. To achieve this, the DSM system can 
mark a page to be flushed to disk. Before this page can be written to disk, it 
must be synchronised with the other DSM objects; this is a normal part of the 
DSM consistency operation. Once made consistent, it can be then put to disk; 
this status is then recorded in the DSM data structures (held within the Space 
Manager). This is a simple extension to the currently available consistency 
protocols, where a page is either owned locally, or owned remotely. Where a 
page is located on disk, it is as if the page is remote to all of the DSM objects. 
Figure 13.4 pictorially represents the mapping of portions of DSM spaces to 
disk, where the disk can either be local (to each computer) or a remote shared 
disk. 
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5.4 DSM and Fault Tolerance 
As the number of computers within a cluster and the execution time of the 

parallel application increases, the probability that an error will occur (hardware 
or software) also increases. It is not satisfactory to simply restart a parallel ap­
plication in event of a fault, therefore a mechanisms is required to recover from 
this situations. A common method used to provide a level of fault tolerance is 
that of process checkpointing and recovery. 

Genesis uses coordinated checkpointing that requires that non-deterministic 
events such as process interacting with each other or with the operating system 
are prevented during the creation of checkpoints. The messages used for the 
interaction are then included in the checkpoints of the sending process. The 
checkpointing facility provides high performance and low overhead by allow­
ing the processes of a parallel application to continue their execution during 
the creation of checkpoints. 

The creation of checkpoints is controlled by the Checkpoint Manager that is 
located on each computer of a cluster, and invokes the kernel servers to create a 
checkpoint of processes on the same computer. Furthermore, one Checkpoint 
Manager (coordinating manager) located on the computer where the parallel 
application was created coordinates the blocking of non-deterministic events, 
creating checkpoints for an application, and releasing the non-deterministic 
events. The coordinating Checkpoint Manager directs the creation of check­
points for a parallel application by sending requests to the remote Checkpoint 
Managers to perform operations that are relevant to the current stage of check­
pointing. 

Applications are recovered form faults by restoring checkpointed processes. 
The Migration Manager is employed to provide this service. 

5.5 DSM and Group Communication 
Genesis also supports group communication services, where a single mes­

sage can be delivered to multiple destinations, greatly reducing the load on the 
network. This enables fast and efficient communication of DSM update in­
formation, as needed by the consistency protocols. Li Genesis, rather than to 
save checkpoints on a central disk, they are stored in memories of some com­
puters of the cluster. For this purpose at-least-k delivery semantics of group 
communication is used to deliver the checkpoint data to remote computers. 

To track the DSM processes of a parallel application, group membership 
management mechanisms are used. This is achieved by creating and managing 
a process group on behalf of the application. The application processes are 
then enrolled in this process group as they are created and withdrawn when 
they exit. 
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6. Summary and Future Work 
We illustrate in this paper the detailed design of an advanced, dynamic and 

adaptive distributed shared memory system called the Genesis SDSM. The 
design of this system is an outcome of our identification and investigation of 
problems that are present in existing software based DSM systems. We realised 
that many of these issues could be addressed by combining and integrating into 
the existing DSM system the services that are provided by the Genesis cluster 
operating system. 

The Genesis SDSM system provides a distributed shared memory system 
that is easy to program and use; has DSM processes that can be migrated 
from heavily loaded to idle or lightly loaded computers; supports the creation 
and use of DSM objects that are larger than the amount of physical mem­
ory available on the computers; supports the checkpointing of DSM process 
and recovery from faults; and finally, possesses the ability to improve consis­
tency protocols and execution performance of checkpointing through the use of 
group communication mechanisms. These advanced features combine to form 
a unique DSM system that is fially transparent, reliable and able to support the 
execution of high performance parallel applications on non-dedicated (shared) 
computer clusters. 

Currently the Genesis cluster operating system executes on both the Sim3/50 
and Intel x86 platforms. Individually, the advanced services of DSM, process 
migration, load balancing, virtual memory, check-pointing and group commu­
nication have all been implemented and tested [7]. We are at the stage of 
integrating the DSM system with the virtual memory and modifying the con­
sistency code to utilise group communication and to support the migration of 
DSM spaces. 
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Abstract We have developed distributed search engine, called Cooperative Search Engine 
(CSE), in order to retrieve fresh information. In CSE, a local search engine 
located in each Web server makes an index of local pages. And, a meta search 
server integrates these local search engines in order to realize a global search 
engine. However, in such a way, the communication delay occurs at retrieval 
time. So, it is thought to be difficult to search fast. However, we have developed 
several speedup techniques in order to realize real time retrieval. By the way, 
distributed search engines such as CSE are essentially fault tolerant. However, 
the meta server is single point of failure in CSE. So, we propose redundancy of 
meta search servers in order to increase availabiHty of CSE. In this paper, we 
describe reliability of CSE and their evaluations. 
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1. Introduction 
Search engines are very important for Web page retrieval. Typical search 

engines employ a centralized architecture, in which a robot collects Web pages 
and an indexer makes an index of these pages so that they can be searched 
quickly. The update interval is defined as the period between which a page is 
published and when it first becomes available to be searched. A centralized 
architecture has the problem that this update interval is very long. As an exam­
ple, Google used to have an update interval of 2 to 3 months[l], and currently 
it is still approximately 2 or 3 weeks [2]. We developed a distributed search 
engine, called Cooperative Search Engine (CSE)[3] [4], in order to reduce this 
update interval. 

In CSE, a local search engine located in each Web server makes an index 
of local pages. Furthermore, a meta search engine integrates these local search 
engines in order to realize a global search engine. Although this mechanism 
reduces the update interval, the communication overhead increases. As a re­
sult, CSE is currently available for intranet information retrieval in small-scale 
networks that consist of less than 100 servers. However, large international 
enterprises often have more than 100 servers in their domain. 

In order to improve the scalability of CSE, we have developed several tech­
niques such as Score based Site Selection (SbSS)[8], and the Persistent Cache 
[10] method. In SbSS, when a second or subsequent page is retrieved in a 
"Next 10" search, a client sends a query to at most the top 10 sites having the 
highest rank scores of all servers. As a result, CSE can realize this scalability 
on retrieving the second or subsequent pages of a search result. The Persis­
tent Cache method keeps valid data after it is updated and thus realizes the 
scalability once the same page is retrieved again. 

Another problem existing with centralized search engines is that they have a 
single point of failure. In such engines, the whole system stops when a server 
stops. On the other hand, in a distributed search engine, the whole system 
can continue to fiinction even if a few servers stop working. In this sense, 
distributed search engines are more reliable than centralized search engines. 

In CSE, a local native search engine is running on each web server. These 
engines are integrated by a single meta search server, called a Location Server. 
The Location Server selects suitable sites using Forward Knowledge, and queries 
are then sent on to these sites. There is only one Location Server in CSE mak­
ing it a potential point of failure as if the Location Server stops, no documents 
can be searched for. In this paper, we propose a new reliable architecture for 
CSE based on increasing the redundancy of the Location Servers. 

The remainder of this paper is organized as follows: We present an overview 
of CSE and describe its behavior in Section 2. We propose reliable architecture 
in Section 3, and evaluate it in Section 4. In Section 5, we survey the related 
works on distributed information retrieval. Finally, we summarize conclusions 
and future works. 
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2. Cooperative Search Engine 
In this section, we explain the basic idea of CSE. In order to minimize the 

update interval, every web site creates indices via a local indexer. In order 
for the sites to be cooperative, each site sends the information about what (i.e. 
which words) it knows to the manager. This information is called Forward 
Knowledge (FK), and is Meta knowledge indicating what each site knows. FK 
is the same as Forward Information (FI) used in Ingrid[13]. When searching, 
the manager informs the client of which sites have documents containing any 
word in the query, and the client then sends the query to each of those sites. As 
a result of this two-pass communication when searching, the retrieval time of 
CSE is longer than that of a centralized search engine. 

CSE consists of the following components (see see Figure 14.1). 

Location Server (LS): this manages FK exclusively. Using FK, LS performs 
Query based Site Selection as described later. LS also has a Site selec­
tion Cache (SC) which caches the results of site election. 

Cache Server (CS): this caches FK and retrieval results. LS can be thought 
of as the top-level CS. It realizes "Next 10" searches by caching retrieval 
results. Furthermore, it realizes a parallel search by calling LMSE, men­
tioned later, in parallel. CS has two sorts of caches. One is a Retrieval 
Cache (RC) which caches the retrieval results of some specific queries. 
The other is a Site selection Cache (SC). This has the same function as 
SC of LS. SC of CS is a partial and/or incomplete copy of SC of LS 

Local Meta Search Engine (LMSE): this receives queries from a user, sends 
them to CS (User I/F in Figure 14.1), and performs the local search pro­
cess by calling LSE which is mentioned later (Engine I/F in Figure 14.1). 
It works as the Meta search engine that abstracts the difference between 
LSEs. 

Local Search Engine (LSE): this gathers documents locally (Gatherer in 
Figure 14.1), makes a local index (Indexer in Figure 14.1), and retrieves 
documents using this index (Engine in Figure 14.1). In CSE, Namazu 
[5] can be used as an LSE. Furthermore we are currently developing an 
original indexer designed to realize high-level search functions such as 
parallel search and phrase search. 

Namazu is widely used as the search service on various Japanese sites. 
Next, we explain the update process. In CSE, the Update I/F of LSE carries 

out the update process periodically, and the algorithm for this process is as 
follows. 

1) Gatherer of LSE gathers all the documents (Web pages) in the target 
Web sites using direct access (i.e. via NFS) if available, using archived 



206 PARALLEL AND DISTRIBUTED COMPUTING 

HTTP 
User 
Agent 

LMSEo 

, 'J Userl/F | 
1 Engine I/F | 

LSEo 
Engine 

indexer 

Gatlierer 

LMSE1 
User I/F 

Engine I/F 

LSE 1 
Engine 

Indexer 

Gatlierer 

LMSE 2 
User I/F 

Engine I/F 

^r=¥ 
LSE 2 

Engine 

Indexer 

Gatlierer 

Figure. I4.I. The Over\'iew of CSE 

access (i.e. via archiving CGI) if it is available but direct access is not 
available, and using HTTP access otherwise. 

In archived access, a special CGI program that provides mobile agent 
place functions is used. A mobile agent is sent to that place. The agent 
archives local files, compresses them and sends back to the gatherer. 

2) Indexer of LSE makes an index for the gathered documents using paral­
lel processing based on the Boss-Worker model. 

3) Update phase 1: Each LMSEi updates as follows. 

(a) Engine I/F of LMSEi obtains from the corresponding LSE the total 
number Ni of documents, the set Ki of all the words appearing in 
all documents, the number nk,i of documents containing the word 
k, and the value TFk^i = max^gjo tf{d, k) for each k E Ki, where 
D is the set of all the documents. This information is then sent to 
CS along with the URL of the sending sLMSE. 

(b) CS then sends the contents received fi'om each LMSEi to the upper-
level CS and also caches this information. The transmission of the 
contents is terminated when it reaches the top-level CS (namely, 
LS). 

(c) LS calculates the value of idf{k) = log(J^ Ni/ ^ Uk^i) from N^^i 
and Ni for each word k. 

4) Update phase 2: Each LMSEi updates as follows 

(a) LMSEi receives the set of Boolean queries Q which has been 
searched and the set of idf values from LS. 

(b) Engine I/F of LMSEi obtains firom the corresponding LSE the 
highest score raaxdeo Si{d, q) for each q € {Q, Ki}, Si{d, k) is a 
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Table 14-1- The Evaluation of Update Times 

Gathering Indexing Transfer Index Total 

Namazu full 
Namazu 

CSE 
Parallel CSE 

0:25:50 
0:19:51 
0:00:09 
0:00:02 

0:20:32 
0:01:27 
0:01:27 
0:00:37 

0:00:00 
0:00:00 
0:00:18 
0:00:11 

0:46 
0:21 
0:01 
0:00 

22 
18 
54 
50 

[h:m:s] 
[h:m:s] 
fh:ni:s] 
[h:m:s] 

score of document d containing k, D is the set of all the documents 
in the site, and sends to CS all of them together with its own URL. 

(c) CS sends all the contents received from each LMSEi to the upper-
level CS. The transmission of the contents is terminated when they 
reach the top-level CS (namely, LS). 

Note that the data transferred between each module are mainly used for dis­
tributed calculation to obtain the score based on the tf • idf method. We call 
this method the distributed tf • idf method. The score based on the distributed 
tf • idf method is calculated at the search process. So we will give the detail 
about the score when we explain the search process in CSE. 

As an experiment, homepages (8000 files, 12MB) of about 2000 users were 
moved from a server of computer center of our school to a PC (Celeron 300MHz, 
128MB of memory, FreeBSD), and parallel processing is performed with two 
PCs (A PC same as above and Celeron 400MHz dual, 128MB of memory, 
FreeBSD). The result of this experiment is shown in Table 14.1, where fol­
lowing 4 cases are used for comparisons: Full update with wget and Namazu, 
Simple update with wget and Namazu, CSE without parallel processing and 
CSE with parallel processing. As a result, simple update greatly shortens the 
index update time compared with full update, direct access greatly shortens 
the document collection time compared with HTTP access, and the parallel 
processing reduces the total updating time to about a half 

The performance of the search process in CSE is sacrificed in order to im­
prove the performance of the update process. This search process is explained 
below. 

1) When LMSEQ receives a query from a user, it sends the query to CS. 

2) CS obtains from LS all the LMSEs expected to have documents satisfy­
ing the query. 

3) CS then sends the query to each of the LMSEs obtained. 

4) Each LMSE searches for documents satisfying the query using LSE, and 
the results are returned to CS. 
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5) CS combines all of the results received from the LMSEs, and returns 
themtoLMS'E'o. 

6) LMSEQ then displays the search results to the user. 

Under this search process, the communication delay increases, slowing the 
retrieval response of CSE. This problem is alleviated using the following tech­
niques. 

Query based Site Selection (QbSS) [6] CSE supports Boolean search based 
on Boolean formulae. The operators "and," "or," and "not" are available, 
where "not" does not mean negation but rather the binary operation that 
represents the difference between two objects. Let SA and SB be the 
set of target sites for search queries A and B, respectively. Then, the 
set of target sites for queries "A and B", "A or B", and "A not B" are 
SA n SB, SA U SB, and SA, respectively. This form of selecting target 
sites, can reduce the number of messages required in the search process. 

Look Ahead Cache in "Next 10" Search [7] To shorten the delay of the search 
process, CS prepares in the background the next results for a "Next 10" 
search. That is, the search result is divided into page units, and each 
page unit is cached in advance by a background process without increas­
ing the response time. 

Score based Site Selection (SbSS) [8] In a "Next 10" search, the score of the 
next ranked document in each site is gathered in advance, and requests 
to sites with low-ranked documents are suppressed. This suppression 
means the network traffic does not mcrease unnecessarily. For example, 
there are more than 100,000 domain sites in Japan. However, using this 
technique, approximately ten sites are sufficient to handle requests on 
each continuous search. 

Global Shared Cache (GSC) [9] When an LMSE sends a query to the nearest 
CS, many CSs may send the same requests to LMSEs. Therefore, in 
order to globally share cached retrieval results among CSs, we proposed 
a Global Shared Cache (GSC). In this method, LS records the authority 
CSa, of each query, which is the CS that initially accepted a specific 
query and sent it to LS. The LS then informs the other CSs that CSa, is 
the retrieval target site instead of the LMSEs. The other CSs then cache 
the cached contents of CSg,. 

Persistent Cache [10] There is at least one CS in CSE in order to improve 
the retrieval response time. However, the cache quickly becomes invalid 
because the update interval is very short, and the valuable first page is 
also lost. Therefore, we need a persistent cache, which holds valid cache 
data before and after updating. 

These techniques are applied to the following cases. 
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i/(it's the first page of "Next 10" search) 
if (its query contains operators "and" or "not") 

if (it has been searched once) 
i/(searched before update) 

Persistent Cache 
else II searched after update 

Global Shared Cache 
fi 

else II it has not been searched yet 
QbSS 

fi 
else II query does not contain "and" or "not" 

SbSS 

else II 2nd or later page 
LAC 

fi 

QbSS can reduce a set of LMSEs to 40% theoretically, and to less than theo­
retical value if documents are not balanced among LMSEs. In our experiments, 
QbSS has reduced it to about 10%. 

Next, we describe about the efficiency of score based site selection. We 
evaluated the performance of score based site selection with three PCs (Pen­
tiums IGHz, 256MB of memory PC for CS and LMSEs, Pentiums 933MHz 
dual, 1GB of memory PC and Pentiums l.lSGHz dual, 1GB of memory PCs 
for LMSEs. FreeBSD is installed into all PCs.). The result of this evaluation is 
shown in Figure 14.2. In Figure 14.2, there are 4 lines as follows; the retrieval 
time of 1st page without score based site selection, the retrieval time of second 
or later page without score based site selection, the retrieval time of first page 
with score based site selection, and the retrieval time of second or later page 
with score based site selection. Here, note that these retrieval times are nor­
mally hidden seemingly because CS retrieves in background, in order words, 
during users brows previous retrieval results. As shown at Figure 14.2, score 
based site selection is effective when retrieving second and later pages. 

Next, we evaluate the effect of Global Shared Cache (GSC). Table 14.2 
shows the response times of GSC and without GSC. In case of without GSC, 
the response time is shortest if hit, however, the response time is longest if not 
hit. In case of GSC, if GSC is introduced by a LS, the response time is much 
shorter than the longest one. 

Then, we describe the evaluation of persistent cache. To compare the re­
trieval times between before update and after update, we compared the retrieval 
times between normal cache and persistent cache in case of 20 sites of LMSEs. 
Here, "yl and B" is used as a conjunctive query, QbSS could not select sites 
since all sites have documents which contain keyword A and B. Furthermore, 
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Figure 14.3. The Scalability of Nonnal 
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Table 1.4.2. The Response Time of Global Shared Cache 

Without GSC (Hit) Without GSC (No Hit) GSC 

Response Time [sec] 0.45 4.67 0.66 

since the highest score of yl and B is the same in these 20 sites, SbSS could not 
select these sites. In addition, assume that the number of retrieval results in a 
page is 10. It means that the request is sent to only 10 sites in persistent cache. 
In normal cache, however, the request must be sent to all 20 sites. Figure 14.3 
shows the scalability of normal cache and persistent cache. If the number of 
sites is increased to 50, normal cache spends more than 5 seconds. However, 
persistent cache spends only the same time as the case of 10 sites. 

3. Reliability 
Here, we describe the design of reliable architecture. First, we define types 

of faults as silent failures of both nodes and links in this paper. These failures 
occur at run time. If something is repaired, it is regarded as adding new one. 

In distributed systems, a link fault cannot be different from delay caused 
by a node fault. If a failed link exists, though a node is not actually failed, it 
may seem failed. However, there may be another route to deliver messages. In 
such a situation, it is possible to increase reliability by forwarding messages. 
As such a system, there is P2P network. We employ basic mechanism of P2P 
network. 

As described in previous section, LS is single point of failure in CSE. So, 
LS must be redundant. CS need not be redundant because at least one unfailed 
CS is needed. LMSE cannot be redundant because LMSE is depended on 
each Web server. Even if a LMSE has failed, CSE does not stop searching 
documents except a part of documents. In addition, a reference to LS group 
must be redundant. The relationship among these components is shown as 
Figure 14.4. 
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Figure 14-4- The Relationship among Components 

A LMSE selects a CS from multiple CSs and sends a query to it. A LMSE 
selects a LS from multiple LSs and sends an update message to it. A LS broad­
casts update messages to other LSs. When new LS begins to run, its reference 
is notified to other LSs by broadcasting. Here, there are two kinds of reliable 
group communication. One is anycast in which a message is sent to one of 
multiple servers. Another is broadcast (or multicast) in which a message is 
sent to all servers. 

Anycast is realized as repeating unicasts until a message is sent successfully. 
The way of broadcasting is dependent on the number of LSs, topology (i.e. 

rank, the number of links), routing and so on. There are two kinds of routing 
methods: breadth first routing and depth first routing. Furthermore, breadth 
first routing is dependent on Time-To-Live (TTL). 

Depth First Routing (DF) In DF, a node receives a message including the list 
of visited nodes, and adds itself to the list, and forwards that modified 
message to unvisited nodes. Therefore, DF is suited when there are few 
nodes. 

Breadth First Routing with TTL = 0 (BFO) In BFO, a node sends a mes­
sage to other nodes directly. BFO is the best way when there is no link 
fault. 

Breadth First Routing with TTL = L (BFL) In B¥L, when a node has re­
ceived a message with TTL = L, a node broadcasts a message with 
TTL = L - 1 to all neighbor nodes if TTL > 0. BFL is available even 
if there are many nodes. However, in BFL, the number of messages 
exponentially increases. 

Link faults may cause to divide a network into some sub networks. In dis­
connected networks, meta index can be shared by using broadcast. In order to 
solve this problem, we employ the following way. At updating time, a LMSE 
sends meta index to a CS. A CS sends meta index, which is received from 
multiple LMSEs, to a LS at once. A LS forwards meta index to other LSs by 
broadcasting. A LS replies the list of LSs that have received meta index to the 
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CS. The CS searches a CS which can deliver a message to undelivered LSs, 
and delegates that CS to deliver a message to undelivered LSs. Since the num­
ber of CSs is larger than the number of LSs, the possibility that a message is 
delivered to all LSs is thought to be high. 

4. Evaluations 
First, we discuss only node fault. 
When the number of LSs N is equivalent to the number of links L, the 

system does not stop while either at least one LS is running or at least one CS 
is running. Therefore, system fault rate F is defined as follow: 

(N+M 

where / is fault rate of elements (LS or CS), N and M are the number of LS 
and CS respectively. 

We show the relationship of system fault rate to fault rate of nodes in case 
of M = 2N as Figure 14.5. Since this relationship is independent on routing, 
the relationships of DF, BFO, and BF32 are equivalent to Figure 14.3. If A'' is 
greater than or equal to 32, then system fault rate is less than 0.1. Therefore, 
the scale of system is enough when N = 32. 

Next, we discuss only link fault. We show the relationship of reachability 
to fault rate of links in case of N = 32 as Figure 14.6. Here, we define the 
reachability as the rate of nodes which have received a broadcast message. In 
BFO, there are many nodes which caimot receive a message. Next, we show the 
relationship of the number of messages to fault rate of links in case of iV = 32 
as Figure 14.10. The number of messages in DF is nearly equal to the number 
of messages in BFO, and it is very smaller than the number of messages in 
BF32. Therefore, DF is the best. 

The relationship between the fault rate and L (when N = 16) is shown in 
Figure 14.7. The larger L is, the higher the reliability of the system becomes. 
Moreover, the relationship between the fault rate and L in the case of N = 
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4,8,16 is shown in Figure 14.8. It is clear that the system fault rate depends 
more heavily on L than it does on N. It is therefore unnecessary to increase N 
in order to increase the system reliability. Although increasing N is useful for 
load balancing, it also increases the number of messages. We conclude that N 
should be less than or equal to 16 and L should be equivalent to N. 

Next, we discuss both node fault and link fault. We show the relationship 
of system fault rate to fault rate of elements (nodes and links) as Figure 14.9. 
In case of N = 32, if fault rate of each element is less than 0.9, then system 
fault rate is also less than 0.25. This result is worse than Figure 14.3 because 
link faults prevent CS from communicating with LS. Although we can think 
the way that CS communicates with LS through other CSs, it is impossible be­
cause CS must communicates with LS in order to communicate with other CSs. 
Therefore, when both nodes and links are failed, CSE can search documents 
if and only if there is at least one pair of CS and LS, which can commimicate 
with each other. 
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5. Related Works 
Many researchers have already studied distributed information retrieval and 

as a result the following systems have been developed: Archie, WAIS, Whois-H-, 
and so on, however these are not search engines for Web pages. FK, introduced 
by Whois++, is a basic concept in distributed information retrieval. Several 
FK-based distributed Web page retrieval systems such as Harvest, Ingrid, and 
so on, have been developed. In Whois++[l 1], FKs are grouped as a centroid 
and each server transfers queries using FK if it does not know their destina­
tions. This technique is known as query routing. 

In Whois++, FKs are grouped as a centroid and each server transfers queries 
using FK if it does not know their destinations. This technique is known as 
query routing. 

The most famous research on distributed information retrieval is Harvest 
[12]. Harvest consists of Gatherer and Broker components. A Gatherer col­
lects documents, summarizes them in Summary Object Interchange Format 
(SOIF), and transfers them to a Broker. SOIF is the summary of a document, 
which consists of the author's name, the title, key words and so on. In prac­
tice, a Gatherer needs to send almost the full text of all collected documents to 
a Broker, because the full text must be included in the SOIF to support Har­
vest's full text search. A Broker makes an index internally, accepts a query, 
and retrieves the requested information by cooperating with other Brokers. In 
Harvest, both Glimpse and Nebula are employed as search engines in the back 
end of the Brokers, which effectively perform the indexing and searching tasks. 
The index size of Glimpse is very small and Nebula can search documents very 
quickly. In Harvest, the Gatherer component itself can access documents di­
rectly. However, because Gatherer does not make an index, it needs to send the 
index to a Broker. Therefore, Harvest cannot reduce the update interval more 
effectively than CSE. 

Ingrid[13] is the information infrastructure developed by NTT, which aims 
to realize topic-level retrieval. Ingrid links collected resources to each other, 
making an original topology, and FI servers manage this topology. The Ingrid 
navigator communicates with the FI servers in order to search the way to a 
specific resource. Searching the way in Ingrid is equivalent to determining 
the LMSEs to be searched in CSE. Ingrid is flexible but its communication 
latency is long because searching the way is carried out sequentially. In CSE, 
only LS performs the searching, so although it may become a bottleneck its 
communication latency is short. 

In distributed systems, there are two kinds of faults. The first is a fail-silent 
fault, and the other is a Byzantine fault. In the case of a Byzantine fault, it is 
well known that a 1-fault tolerant algorithm does not exist theoretically[14]. 
However, if the semantics of the correctness for the algorithm are redefined, 
several algorithms such as Perry's global coin toss[15] and so on are available. 
Unfortunately, these methods are not well suited for CSE because they are not 
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scalable. Another approach is fault avoidance by voting outputs of redundant 
modules[16]. However, in this approach, we need more than 3 tasks that pro­
cess the same work and hence the resources are not used efficiently. 

In group communication, ISIS[17] is well known. ISIS supports several 
atomic broadcast communication methods: ABCASTCBCAST and so on. How­
ever, with these methods the slowest site becomes the bottleneck. We do not 
employ group communication because such a bottleneck is not feasible for 
CSE. 

P2P networks also realize fault tolerant communication. Napster, Freenet 
[18], gnutella, JXTA[19] and so on are well known P2P systems. In particu­
lar, gnutella is a pure decentralized file sharing system. However, such P2P 
systems are not efficient because the number of messages is very large. Fur­
thermore, in P2P, consistency is not always guaranteed because the reachable 
area of a message is eliminated with TTL (Time-To-Live). The completely 
connected network we employed in this paper does not realize the best perfor­
mance but it maintains consistency. 

6. C o n c l u s i o n s 

In this paper, we describe scalability and reliability of CSE. In order to 
increase scalability, we employ several techniques, especially SbSS and per­
sistent cache. SbSS realizes scalable retrieval of second or later pages. The 
persistent cache realizes scalable retrieval of first page after updating once. 
Furthermore, in order to increase reliability, we employ redundant location 
servers, depth first message routing, multiple links of LS in both CS and LMSE 
in order to increase availability of CSE. As this result, for an instance, when 
the system consists of 32 LSs with their fault rate 90%, fault rate of the whole 
system is about 25%. Therefore, we conclude that our method realizes enough 
availability. 
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Abstract Distributed systems depend on consistent global snapshots for process recovery 
and garbage collection activity. We provide exact conditions for an arbitrary 
checkpoint based on independent dependency tracking within clusters of nodes. 
The method permits that nodes (within clusters) can independently compute de­
pendency information based on available (local) information. 

The existing models of global snapshot computations provide the necessary 
and sufficient conditions. But, these require expensive global computations. The 
proposed computations can be performed by a node to identify existing global 
checkpoints. The nodes can also compute conditions to make a checkpoint, or 
conditions, such that a collection of checkpoints, can belong to a global snapshot. 

Keywords: Consistent global state, distributed systems, garbage-collection, global check­
pointing, process recovery, process failure. 

1. Introduction 
In centralized systems, checkpoints and process restart, provide fault toler­

ance against process crashes [28]. In contrast, distributed systems consist of 
a collection of processes. These communicate with each other by exchanging 
messages. As a result, a process state often becomes dependent on another 
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process. In cases of failures, the states of dependent processes are likely to 
become inconsistent, due to failures and restarts. 

Consider that, a process sends a message and fails. Due to recovery from a 
checkpoint, it loses knowledge of the message sent. Such a message is called 
an orphan message and the receiving process, an orphan process. To over­
come the inconsistency, the change resulting from the receipt of such a mes­
sage must be undone. In a similar manner, a restart may cause a process to 
lose some messages received before the failure. Such messages are known as 
lost messages. In order to get the lost messages, the senders must be made 
to restart from an earlier checkpoint. In both cases, a non-fail process rolls 
backwards, so that the system state becomes consistent. Sometimes the state 
of a process transitively depends on the state of another process. Also con­
sidering a failure and subsequent roll backs, an attempt to recover may result 
in unbounded cascading of process roll backs. This problem is referred to as 
domino effect [27, 29]. 

Distributed systems use process recovery mechanisms for recovery from 
transient failures. The mechanisms need to be based on periodic creation and 
saving of globally consistent snapshots [19]. Many applications including 
parallel debugging, distributed simulation, and fault tolerant computing also 
rely on globally consistent snapshots of the system state [4,6,18,23]. A global 
snapshot is a collection of checkpoints, one for each process. It is consistent, if 
all the (process) checkpoints occurred simultaneously, or have the potential to 
occur simultaneously. If any of the local checkpoint happens before another, 
the snapshot looses consistency and is rejected. In some situations, the rejec­
tion may lead to rollback propagation, and may force the processes to start 
execution from the beginning [37]. 

The necessary and sufficient conditions based on 'happens before' relation 
are well defined [19, 21, 24]. However, the computation procedure involves 
complex global calculations that make online detection of global snapshot dif­
ficult [22,23, 24, 36]. 

New studies corroborate the necessity of incorporating missing message de­
pendencies, in addition to sender dependencies [15, 34,3]. In [16] a algorithm 
based on pessimistic message logging has been presented. However, failures 
occur rarely. Based on this assumption, we consider optimistic message log­
ging, in which messages are logged asynchronously, and not frequently [7]. 

By using an improved criterion for independent dependency tracking, the 
generation of insignificant checkpouits can be prevented [24]. The recovery 
process is also freed of chances of repeated roll backs, by virtue of a consistent 
snapshot. The computation facilitates an improved garbage collection mecha­
nism [34]. It evolves the necessary and sufficient conditions for independent 
recovery [3,35]. The proposed technique has been shown to compare well with 
other studies (please see section on "A Comparison with Previous Studies"). 

The present proposal is based on the hypothesis that the recovery model 
for a distributed system with n processes, should be identical to a system with 
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one process. That is, as in the case of a one process system, each process 
should track its total dependencies, at all times. For this purpose, we propose 
to eliminate the anomaly caused by orphan messages and lost messages, by 
introducing total dependency tracking (TDT). The TDT is based on tracking 
sender dependencies and receiver dependencies for each process, against 
each acknowledged message. Conventional proposals based on [19] consider 
sender messages and acknowledgments, but do not introduce tracking receiver 
dependencies, as an initial step to include least overheads. However, suflicient 
conditions need additional dependency tracking [24]. The additional tracking 
of receiver dependencies, serves to eliminate the occurance of lost messages, 
at the onset. Further, it solves the problems associated with checkpoints, [39] 
namely: 

1) Optimal process recovery considering current states of non-failed pro­
cesses, and recoverable states of failed processes; 

2) generating a consistent global snapshot of system state, given a target set 
of local checkpoints; 

3) given a process finding (minimum, maximum) consistent global check­
points that are consistent with respect to a given state of this process; 

4) Independent and autonomous calculation of recoverable state, or snap­
shots by any process; and 

5) allow decentralized calculations in a mix of piece-wise deterministic and 
non-piece-wise deterministic executions, by forcing processes to take 
select checkpoints. 

Our study is aimed at minimizing overheads, the number of roll backs [10, 
32], at generating distributed recovery mechanisms [33], and recovery among 
network clusters. The contents of the paper are organized as follows. The next 
section outlines the recovery models that deal with domino effect. Section 3 
introduces the model of recovery and the total dependency graph. Sections 4 
discusses the algorithms for process recovery. In section 5, a comparison is 
made between the algorithm and other related techniques. Section 6 contains 
performance considerations and comparisons. In section 7, as an application 
of the recovery model, a large network of processes, has been considered for 
recovery fi-om failures. In section 8, based on the new model, the garbage 
collection procedures are presented. Finally, section 9 consists of summary 
and conclusions. 

2. Background 

In techniques based on asynchronous message logging, messages are stored 
in a volatile log. At irregular intervals, each process saves its log on a stable 
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storage [9, 26] . On recovery from a failure, a process restores its status to 
the latest checkpoint and replays the logged messages to roll forward. This 
technique is called optimistic message logging. Models based on optimistic 
message logging can be found in [8,10, 12, 13, 32, 33]. In such an approach, 
the recovery mechanism detects and eliminates the orphan and lost messages, 
on recovery [2, 25, 17]. 

The recovery mechanisms restore the state of the system in the event of a 
failure by using check-pointing and message logging [8, 10, 12, 13, 26, 32, 
33]. A checkpoint stores the state of the system in stable storage. As check-
pomts incur a significant overhead within the system, these are supplemented 
by asynchronous message logging. In case of asynchronous message logging, 
messages are stored in volatile storage (buffer). Occasionally, the contents 
are transferred to stable storage, before the buffer is full. A failed process 
recovers by restoring its status to an appropriate check-point and replaying the 
messages logged in stable storage. Since a number of messages are exchanged 
by processes while executing a task, it is necessary to contain the number of 
messages stored at various sites. This requires identifying messages which are 
no longer needed for process recovery. This identification and deletion of these 
messages is termed as garbage collection. 

In recovery models proposed by [10, 12, 13], the authors have presented 
garbage collection mechanisms as a part of the process recovery mechanism. 
Also, these are centralized in nature, and use coordinator-based garbage collec­
tion and recovery. Other mechanisms of process recovery also perform garbage 
collection [33, 32]. The proposed model does not depend on a coordinator. 

2.1 Global Snapshot Algori thms for Large 
Networks 

There are two existing models for adoption of a global recovery model for 
large distributed systems. In the first model, each process attaches a vector of 
size 'n' to its messages, where 'n' is the number of processes in the system. 
At every instant of time, a process knows (also declares) its dependencies with 
respect to each of the other processes. After a failure, a globally consistent state 
of processes is computed and restored [8, 32, 34,35,33]. In the second model, 
each process keeps track of its dependencies with respect to its communicating 
set of neighbors. The processes attach a single integer to outgoing messages 
indicating their current level of messages received. But this model requires 
coordinated recovery in the event of a failure [10]. 

With the increase in the number of processes in the system, attaching a vec­
tor of size 'n' introduces an initial overhead. Also, the coordinated recovery 
is costly. In addition, the probability of a failure in the system increases, this 
makes the use of these models difficult to manage as the system may end up in 
recovery phase most of the time. For this reason, most of the computations ini­
tiated by a group of processes need to be confined to a specific set of processes, 
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when the system is large [8,14,20]. The processes are often organized as clus­
ters in large distributed systems to increase fault-tolerant capability [14]. Thus, 
a system can be viewed as non-overlapping clusters of nodes. Communication 
between these clusters is not ruled out. 

An abstract model for recovery among clusters is presented by Lowry, et al. 
[20]. However, it causes false dependencies, leading to unnecessary roll-backs 
in the system. To avoid false dependencies, the authors have proposed the use 
of pessimistic gate ways, and dependency tracking. This model is similar to the 
concept of "out side world" as proposed by Strom and Yemini [33]. A model 
of the system is presented in section 8, using the proposed total dependency 
tracking. 

3, System JModel 

In the proposed technique, each node maintains information related with 
sender dependencies which are transitive. This is a common feature of con­
ventional recovery techniques. In addition, in the proposed approach, the re­
ceiver dependency information is also maintained in the same fashion. This 
combination facilitates independent recovery for the participating nodes in the 
event of a failure. A brief description of the model is presented in the following 
sections. 

A distributed system consists of a collection of processes. There is no 
sharable memory or universal clock in the system. The communication chan­
nels are assumed to be first in first out (FIFO). That is, the messages are re­
ceived by a site B are always in the same order in which these have been sent 
by the sender site A. In addition, we assume that the channels are reliable, and 
these do not loose messages. Also, processes in the system are fail-stop pro­
cesses [30, 31]. That is, if a process fails, it stops and does not feed erroneous 
information into the system. 

3.1 Message Dependencies 

The period of execution of a process is divided into intervals, called states of 
a process. Each state is a count of messages received by it. In a state, a process 
can send any number of messages to other processes. The state is initialized 
to '0' at the beginning. Thus, when a process pi, receives a message, the state 
of process pi changes as, state(pi) = state(pi) + 1. We represent any state ' j ' of 
process pi as PL Continuation of P- depends on the following factors: 

1) forward continuation of the state of any process px, which has sent a 
message to pi (sender dependency); and 

2) forward continuation of new states of all the processes which have ac­
knowledged messages sent by process pi (receiver dependency). 
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Any failures and recovery for any of the processes, makes it necessary that 
process pi rolls back to adjust its own state. 

3.1.1 Sender Dependency. 
In Figure 15.1 (casual ordering), the process state P / depends on Pf, on 

account of a state change by message m3. hi the event of failure of process 
p3, if p3 restarts from state '0', pi becomes an orphan process. Similarly, 
Pf depends on Pf. Thus, Pi transitively depends on Pi. This is termed as 
transitive sender dependency. 

3.1.2 Receiver Dependency. 
In Figure 15.1(Zig zag ordering), the process state P / depends on Pf be­

cause of message m2. On failure of process p2, m2 becomes a lost message. 
Process pi should roll back and send the message m2 again. Similarly, P^ 
depends on Pf. This implies P^ transitively depends on Pf. This is termed as 
transitive receiver dependency. 
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Figure 15.1. A. Messages in Casual Ordering. B. Messages in Zig Zag Ordering, 

3.2 Recoverable States of a Process 

Each process stores the received messages in a volatile storage. At irregular 
intervals, the process transfers the messages to a stable storage. Any message 
'm' is called a logged message, if and only if, its data, information about the 
new state dependencies (sender and receiver), and the sequence number have 
been transferred to stable storage. This is denoted by logged(piJ). 

Definition 1. Inconsistent State of a Process. Any process state that de­
pends (directly or transitively) on an unlogged process state (or a lost state of 
a failed process) is called an inconsistent state. 
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Figure 15.2. Interacting processes. 

Definition 2. Current Stable State of a Process. The most recent state of 
a process ( or a recent message ) stored in stable storage is the current stable 
state of the process. 

All processes independently take a checkpoint at the beginning and many 
times during execution. When process pi recovers from a failure, it restores its 
status to the latest checkpoint taken in say state 'j-a'. Further, it replays the 
messages logged and regains state ' j ' . 

The system state in case of failure free execution, is a collection of all the 
process states in the system. It is termed as the global state. After all the 
messages (still in the channels) are delivered to their destinations, and all ac­
knowledgments are delivered to the respective senders, the global state is a 
consistent system state. The system state in case of failures, is the state to 
which the processes in the system are restored. Such a system state is consis­
tent, if the system is free from orphan messages and lost messages [2]. Models 
to deal with orphan messages are discussed in [1, 5], 

When a process fails, the messages in its volatile log are lost. It leads to 
lost messages. After recovering from a failure, the recovered state of a pro­
cess, does not depend on any failed state of other processes. In the following 
subsections, we present a method for identifying dependencies of state among 
processes, as described in Definition 1. 

3.3 Dependency Graph of the System State 
Consider the Figure 15.2, messages have been sent with acknowledgments 

received. Process state P / depends on Pf (sender dependency due to message 
m3). As per the notion, it also depends on its own previous state, PQ . Similarly, 
P / depends on Pf (receiver dependency due to message ml). Dependencies of 
various states are progressively determined by taking cumulative sum of pre­
vious dependency with existing dependency, as is described in section 4 and 
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Figure 15.3. Total Dependency Graph. 

Appendix. 

Definition 3. Total Dependency Graph (TDG). A dependency graph is a 
digraph G = (V,E), where V is the set of nodes labeled P-. Consider E as a set 
of directed edges (P-, P̂ *̂ ), such that P- directly depends (sender/ receiver) on 
P^. Also, E contains the pair (P]+i,PJ), for all j > 0. In Figure 15.3 a TDG 
of the communicating processes of Figure 15.2 is shown. (Please also see the 
notion of R graph in [39]) 

From the TDG, it can be observed that P2 depends (directly) on P / and P2. 
Also, PI depends on Pf (sender dependency), P^ (receiver dependency), and 
PQ (its own previous state). 

Reachability (R). If node P- depends directly (or transitively) on Py, then 
there is an edge (or a path) from P^^ to Py in the dependency graph represented 
byR(PJ,P-). 

Reachability Graph (RG). Reachability graph RG(P]) of a node P] is a 
graph containing Pj and a set of reachable nodes "(/'(F' < F) and edges £ ' 
, such that there are no outgoing edges to RG(Pj) from (G-RG(P?)). Note that 
RG(P-) includes all nodes Pj,, where j ' < j . In Figure 15.4., graphs GI and 
Gil are two examples of RG(P2). 

Definition 4. Minimum Reachability Graph (MRG). The reachability graph 
RG(Pj) with least number of nodes is called the minimum reachability graph, 
MRG(PJ). 
In Figure 15.4, the graph Gil is a MRG(P2). Thus, no node within the graph 



Global Snapshots in Distributed Systems 225 

Figure 15.4- Minimum Reachability Graph. 

MRG(P?) is dependent on any node within (G • MRG(P])). 

Given MRG(Pj ), If there exists R(PJ,P^), such that P^ is the earliest state 
that is lost due to a failure, then for all ' i ' and ' j ' , Pj is an inconsistent state. 

Looking at Figure 15.3, if P2̂  becomes a lost state (or an inconsistent state), 
no other process state depends on it directly ( also indirectly). The MRGs of 
other process states do not include the node P2. Similarly, if Pf is lost, the 
process state that has an edge, or a path ( reachability ) directed at this node 
will become an inconsistent state. Thus, the following nodes that include Pi 
in their MRGs, will become inconsistent. 

p i p i p 2 p 3 
•" 1 > -* 2 ' -^2 ' -̂  1 

Definition 5. Consistent System State (after recovery from a failure). The 
consistent system state after a failure is represented by Minimum Reachability 
Graph at each node Py, such that, 

MRG{Py) does not contain any of the lost or failed states. 

4. Independent Node Recovery After a Failure 
On detecting a system failure each process transfers its current state logs 

to stable storage. In order to achieve a state that will be a part of consistent 
global state, each process examines, if its highest state is a consistent state. If 
the highest state is found to be consistent, no process roll-back is necessary. 
Otherwise, the next highest process state is tested for consistency (by compar­
ing its MRG with the known lost states). That is 

Mpx A y, MRG{Py) does not contain a lost state. 
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Definition 6. Recoverable Process State . The highest state of process pk, 
Pi' in the graph G is the recoverable state of pk. That is, P;'^^ is either an 
inconsistent state, a lost sate, or a non-existent state. 

The highest state '1' of a process pk in graph G is the optimal recovery 
state of process pk. In order to restore status after the event of a failure, the 
site restores its status to a checkpoint C (taken before the recoverable process 
state P^ ) and replays the logged messages to recover upto Pj'. This is termed 
as process rollback. 

4.1 System Recovery Computation 
After a failure in state ' j ' , a process pi recovers to a state j'{j' < j ) depend­

ing upon its stable state (recent checkpoint and logged state). Process pi send a 
recovery message with new state / , to all other processes in the system. Each 
process attempts to find its states that are consistent with respect to j ' . Ap­
pendix describes the procedure that generates a cumulative dependency vector, 
giving for each process state the highest state of other processes that exist on a 
reachability path. 

Thus, given j ' , the process px identifies its highest state 'y' that does not 
depend on any lost state of pi. The process px rolls back to the state 'y'j such 
that (please also see appendix) 

(T;W) < j'-

Referring to Figure 15.A.3, if Pf is a failed state and on recovery process P2 
recovers as Pf based on an earlier log(or Checkpoint), the recovery algorithms 
at PI roll-backs, process PI to P^. Process P3 continues without a roll-back 
asPf 

4.2 Proof of Correctness 
Theorem 2.0 . The algorithm results in consistent system state. 
Proof . We prove this by considering the following contradictions: 

• on recovery fi-om a failure, an orphan message (Mo) exists within the 
system; 

• on recovery, the system state results in a lost message(Ml). 

Case 1 : Let P- be a state formed on receipt of message Mo sent in Py. As­
sume Mo is an orphan message. Due to the existence of Mo, an edge (Pj,Py) 
exists in the dependency graph. The edge (P^,Py) must belong to MRG(P^). 
Hence, P j is a lost state and can not be a part of process recovery state of pi. 
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Case 2 : Let process pi in state ' j ' have a lost message Ml, sent by process px 
(in state 'y')- Because of Ml, there exists an edge (P^^i,Pj). This edge must 
belong to MRG(P-). Hence, Py+i is an inconsistent state and cannot be part 
of process recovery state of pi. 

5. A Comparison with Previous Studies 

The proposed approaches require computation of dependency information 
and maintenance of status vector. Although, most of the other existing ap­
proaches do not use the dependency graphs, the related dependency informa­
tion is captured in different forms and data structures [17]. 

Drawbacks associated with conventional dependency tracking are highlighted 
by Netzer [24]. A notion of zigzag path has been introduced, that can capture 
the transitive receiver dependencies. This is shown to be a necessary modifi­
cation for the exiting dependency tracking mechanisms. The existing use of 
casual paths to define happens before relationship as a notion, only captures -
transitive sender dependencies. 

Earlier Dependency Graph Approaches : Casual dependency tracking (as 
described above) by attaching the current state of the sender to each message, 
and maintaining dependency vectors is proposed by Johnson and Zwaenepoel 
[11]. By replaying the messages logged in stable storage, a process can achieve 
a maximum recoverable system state. The recovery model requires logging the 
dependency vector and also the messages. An alternate method of dependency 
tracking by including the fiiU dependency vector with each message sent has 
been introduced by Strom and Yemini [33]. 

Sistla and Welch [32] have proposed two alternative recovery algorithms. 
The first algorithm tags each message sent with a transitive dependency vec­
tor, as also in the Strom and Yemini [33] model. The second algorithm tags 
each message with the sender's current state interval index, its message logging 
progress. Also, to find out the current recovery state, each process exchanges 
additional messages, in order to distribute the complete transitive dependency 
information. 

Johnson and Zwaenepoel [10] base their recovery on a central coordinator. 
The dependency vector and log information is sent to the coordinator, by each 
process. A recent survey of recovery techniques can be found in [23]. 
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6. Performance Study and Related Work 
Lemma 1 . The system recovery requires (n-1) messages for each process's 

recovery after its failure. 

Proof . When a process recovers from a failure, it informs all other (n-1) 
processes of its recovery state. Each process independently rolls back to a re­
coverable process state. If k processes fail, the number of messages generated 
in the system will be k(n-l). 

The technique can be compared with other similar techniques. Strom and 
Yemini [33] have proposed a model of decentralized recovery. In this model, 
each process keeps track of the number of messages it has sent to the other 
processes in the system. In the worst case, a process may undergo 0(2") roll­
backs. The number of messages generated can be as high as (n2") during 
the recovery process. Sistla and Welch [32] have proposed a recovery model, 
which generates O(n^) messages, when 0(n) extra information is attached to 
a message. It generates O(n^) messages, if 0(1) information is attached with 
the message. 

The model by Johnson and Zwaenepoel [10] is a centralized recovery model. 
Also, it takes into account the stable states of non-failed processes rather than 
current states in determining the system state. Thus, the maximum recover­
able system state is not optimal. The sender appends each message with an 
0(1) extra information, containing its status. During recovery the centralized 
controller generates 0(n) messages. Juang and Venkatesan [12] use a model 
in which an 0(1) extra information is attached to each message, but a pro­
cess failure may generate O(n^) messages in worst case. A process in the 
worst case undergoes 'n' roll-backs. Another model proposed by Juang and 
Venkatesan [13], generates messages of the order of 0(V . E), where V is the 
number of processes and E the number of communication links in the system. 
The number of messages generated is 0{v?) in best case, when the network is 
tree cormected, and O(n^) when the network is fully connected. Each process 
undergoes 'n' roll-backs during recovery. 

Table 1.1 compares the message complexities of various techniques. The 
cost of processing within the proposed model is the least of all, and compares 
well with the centralized recovery technique [10]. Further, in case of Johnson 
and Zwaenepoel [10], each process periodically sends the dependency vectors 
and new log information to the central controller to determine the recoverable 
system state. 

Time Complexity : Assume that, the messages take one unit time to tra­
verse through a link. The message processing time at each site is negligible. 
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Table 15.1. Comparison of Recovery Techniques 

Model 

Strom and 
Yemini 

Size of 
Vector 

' attached 
to a 
message 

0(n) 

Messages 
generated 

during 
recoveiy 

0(n2") 

Num­
ber 
of 
roll­
backs 

2" 

Need a 
Coord­
inator 
to re­
cover 

no 

Added 
over­
head 
depend­
ency 

no 

Optim-
ality: 
(Reco­
very 
State 

current 
states 
[33] 

Sistla and 
Welch 

LO(n) 
2. 0(1) 

0(n') 
0(n-') 

no 
no 

no 
yes 

stable 
states 
[32] 

Johnson and 
Zwaenepoel 0(1) 0(n) yes yes 

stable 
states 
[10] 

Juang and 
Venkatesan 0(1) 0(r//) yes 

stable 
states 
[12] 

Juang and 
Venkatesan nil O(n ' ) yes yes 

stable 
states 
[13] 

Proposed 
Model 0(n) 0(n) 

current 
states 
[3] 

The failed process, on recovery needs to send its recovery state to all the pro­
cesses in the system. The time required for this purpose, is the time required to 
inform the farthest process in the system. Assuming 'd' as the diameter of the 
system, the time complexity of the proposed algorithm for general networks is 
0(d). For tree networks, the time complexity is 0(h), where 'h' is the length of 
the longest branch or height of the tree. For ring networks the time complexity 
is 0(n), where 'n' is the number of processes in the ring. 

7. System Recovery Within Large Networks 

The system recovery after a failure is carried out within a cluster, where 
optimistic message logging and check-pointing are used. For messages pass­
ing across the cluster boundary, the pessimistic message logging and check­
pointing are used, to avoid propagation of process dependencies. 
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7.1 Recovery Within a Cluster 

The recoverable state of a cluster is the union of recoverable states of all 
processes within the cluster. 

7.2 Recovery Across Cluster Boundaries 

Assume that, process pi in state ' j ' (in cluster A) has sent a message 'm' 
to process px in state 'y-1' (in cluster B). The new state of process px is 'y'. 
Since inter-cluster communication is pessimistic, process pi makes states in 
MRG{Pj) stable before it sends a message in state ' j ' . Also, the receiving 
process px, on receiving the message, makes its new state 'y' recoverable by 
making states in MRG{Py) stable. So, the inter cluster message can never be 
an orphan or lost message. In this way, a failure in a cluster does not affect 
the states of processes in other clusters. So, the processes in the system do not 
need to keep track of dependencies with respect to processes in other clusters. 

7.3 An Example 
Consider a four process distributed system in which there are two clusters A 

and B. In Figure 15.5, message 'm' represents a inter cluster message. Before 
process pA2 sends message 'm' to process pBl in cluster B, it makes all nodes 
in MRG{PA\) stable. Thus, PA\ becomes a recoverable process state (Fig­
ure 15.6). On receiving the message, process pBl processes the message and 
determines the new state PB^. Before sending an acknowledgment it makes 
the states in MRG{PB\) stable, so that it becomes a recoverable process state. 
Thus, the message 'm' can not be a orphan message or a lost message in the 
event of a failure of any process in any of the two clusters. 

7.4 Global Recovery From Failures 

As processes fail inside a cluster, message dependencies do not propagate 
across cluster boundaries. After a failure in state ' j ' , a process pi restores its 
status to the latest checkpoint (say 'C'), replays messages logged to regain 
some state (say j ' ) such that j ' < j . Process pi sends a recovery message with 
new state j ' to all other processes in the cluster. 

Each process finds its states which are consistent with respect to j ' . For a 
given j ' , the process px identifies its highest state 'y' that does not depend on 
a failed state, such that, 

2] < 
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Figure. .15.5. Messages in Clusters A and B. 
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Figure 15.6. Dependency Tracking Across Clusters A and B. 

In order to restore its state to 'y', process px initially restores its status to the 
highest checkpoint ' C taken before the state 'y', replays the logged messages 
(if any), and rolls forward to state 'y'. 

Lemma 2. The model generates (n-1) messages for each failure within a 
cluster. 

Proof. When a process recovers from its failure, it informs all the other (n-
1) processes in the cluster of its recovery state. It sends one message to each 
process, which is the minimum overhead for communicating a recovery after a 
failure. Each process independently determines its latest recovery state. Each 
process rolls back to this state by using its own checkpoints and message logs. 
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8. Garbage Collection 

Most existing approaches to garbage collection in distributed systems are 
ad hoc approaches and exist as a related component of the process recovery 
techniques [10, 33, 38]. 

Conventional Garbage Collection : In a model of garbage collection pro­
posed by Venkatesan and Juang [38], two proposals have been introduced for 
garbage collection. In the first proposal, if all stable storage is fiill, all processes 
in the system are forced to fail. On system recovery, each process identifies the 
latest recovery checkpoint and clears of the earlier checkpoints and messages. 
In the second approach, each process is forced to take a checkpoint and log 
messages to generate a globally check-pointed state (stable check-point). 

The proposed technique incurs least amount of overheads for implementing 
garbage collection by using dependency tracking in the background. It sup­
ports independent garbage collection without global synchronization activity. 

8.1 Global Snapshot of Consistent System State 
Definition 7. Stable Checkpoint. A check-point of process P- is called 

a stable check-point Cj, if MRG (P-) contains nodes, which represent stable 
states of processes (at various sites). 

yP^that e MRG{P^), the MRG{P^) also € MRG{PJ) 
(by the definition of reachability graph). 

Theorem 1.0 Given that a stable check-point exists at P-. Then, P- is a re­
coverable process state, process pi need not rollback firom Pj in the event of a 
failure of any process. 

Proof. For process pi to rollback fi^om state P-, there are two possibilities. 
Either Pj is a lost state, or it depends on a lost state of some other process. 

• P- can not be a lost state as it is a stable state. 

• Assume that, it depends on a lost state Py (say). This implies that there 
exists a path from Pj to Py in the total dependency graph. Therefore, 
MRG (Pj), includes the node Py. Hence, P^ is a stable state and not a 
lost state. 

Assume that P j is the latest stable state of pi, for which a stable check-point 
Cj exists. In the event of a failure of process pi, it will start again fi-om check­
point Cj and replay the later messages stored in stable storage to attain the 
state P-. Thus, all the messages received and the check-points taken before Cj 
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are no longer needed for recovery, and can be declared as garbage. These can 
be deleted. 

8.2 Garbage Collection Algorithm 
This approach is more suitable for appHcations in which message transfer 

costs are high. Also, in some environments, there can be a large number of 
active processes that compute over a long period of time. Also, the volume of 
messages exchanged between processes can be high. 

procedure G ARBAGE-COLLECT(Pj); 
begin 

for all 'k' (1 < fc < j) do 
check if, process states in MRG(P^) are stable (belong to 

the state status vector); 
if 'yes' then 

IDENTIFY latest check-point taken before P | and 
the corresponding state k'; 

DECLARE messages and check-points 
corresponding to states < k', as GARBAGE 

else exit. 
end; 

Figure, 15.7. Garbage collection algorithm. 

In this approach, no additional messages are generated for check-points and 
garbage collection. It is assumed that, garbage collection is performed during 
the idle time by a process. Processes are made to attach the state number, 
corresponding to the latest message logged in stable storage, to each message. 
Based on this information, each process maintains a stable state status vector 
of size 'n' which stores the latest stable states of other processes (upto as far as 
is known), through messages received from processes. From the status vector, 
a process can determine, whether the process states included in the MRG (Pj), 
are stable states or are not stable states. For any P j , if all components of 
MRG (P?) are stable states, then for pi, the system can identify the messages 
and check-points that are no longer required for recovery. The highest state j , 
for which a 'stable check-point' exists, is used to delete all the previous check­
points and messages. 

Thus, the routine message transfer activity also carries stable state informa­
tion as logged at a sender site, concerning other processes. An algorithm to 
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carry out garbage collection is shown below (Figure 15.7). 

9. Summary and Conclusion 

A model of recovery has been presented to provide independent and consis­
tent snapshots based on local computations. These system are divided into non-
overlapping clusters of nodes to localize the effects of failures. Within a clus­
ter, asynchronous message logging and check-pointing is used. A distributed 
approach for recovery from failures within a cluster is examined. Message 
logging is used for inter cluster communication to isolate the failures inside in­
dividual clusters. A method for independent recovery by nodes within clusters 
has been studied. A computing process using dependencies among communi­
cating processes has been described from the point of view of implementation. 
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Appendix: Implementation Details 
1. An Algorithm to Compute Recovery State 

A dependency graph is made to capture the transitive dependency information, as described 
earlier (Definition I, and Definition 4). 

1.1 Data Structures 
1.1.1 IVIessage Transfer. 

Message dependencies of a process state are represented as sender and receiver dependen­
cies. For Pj, the dependencies are represented by dependency vectors 5][ l ,n] and ii}[l,n], 
respectively. 

5 j [ l , n ] = (sl,s2,s3,. . . ,sn) 
i i j [ l , n ]= (rl,r2,r3,. . . ,m) 

where 'n' is the total number of processes in the system. Depending upon the exchange of 
messages. Component 'sx' of S] is set to the maximum level of the state of process px (the 
sender), on which PJ depends. In the absence of any messages. If state(pi) does not depend on 
any state of process px, then sx is set to '-'. The value of'-' is kept less than zero for sake of 
comparison. Similarly, the values oiR] are also maintained. 

The message losses owing to asynchronous message logging, and duphcate messages need 
to be taken care by application programs [25]. Therefore, each process appends a sequence 
number to the message to be sent. Also, each message is attached with a vector T, which is a 
combination of S and R vectors of the sender. This total dependency vector is determined by 
taking the piece-wise maximum of sender and receiver dependency vectors. 
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max{S],Rf), "ii,j. 

Figure 15.A.1. Random Messages and Total Dependency Graph . 

1.1.2 State Vector . 
Each process maintains a vector of size 'n', say M[n], in which the 'i'th element contains the 

highest sequence number of the message received from process pi. In case of a duplicate mes­
sage, the receiver sends an old copy of the acknowledgment, with the corresponding (previous) 
dependency vectors, from its message log. 

1.1.3 Log Status Vector. 
In addition to this state vector, each process also maintains a Log Status Vector that indicates 

the known stable state of any process pi, as its 'i'th element. 

1.2 The Algorithm 

Each node in the system, maintains dependency vectors S and R. These vectors are updated 
with each message exchange. At any moment, T,' vector for a process pi indicates existence of 
a path between Pj and states of other processes in the system. 

1.2.1 Normal Process Execution . 
Consider the system shown in Figure 15.A.2. The message transmission is shown by using 

dark lines with acknowledgments sent through dashed lines. Let process pi send a message 
'ml' to process pk. On receiving the message, process pk determines its new state '1' and its 
new dependency vectors Si and Ri, and appends the total dependency vector to the acknowl­
edgment ml'. Process pi collects the acknowledgment for the messages sent and computes the 
dependency vectors in volatile storage. The receiver dependency is estabhshed, at the time at 
which the acknowledgment is received. 

Let us assume that process pi in state 'j-l' receives a message 'm2'. As a result, process 
pi changes its current state to ' j ' . P] directly depends on Py (sender dependency) and Pi 
(receiver dependency). The elements of sender dependency vector, S], for the new state ' j ' 
are computed by taking piecewise maximum of 

1) sender dependency vector of its previous state, S'j_j; and 
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S '(0,-,-) 

R^(-,-,0) 
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Rp,l,l) 

Figure 15.A.2. Interacting Processes. 

2) total dependency vector of the sender process px, Ty 

sm 
max{Si^i[t],Ty{t]), Vi = 1, • • • ,n A t ^ i 
j , fort = i 

where, S] [t] = state(pt) on which P] depends. The receiver dependency vector R] can be 
constructed by taking piecewise maximum of 

1) receiver dependency vector of its previous state, JR}_I ; and 

2) total dependency vectors of all the receivers of messages from which acknowledgments 
have been received by process pi in its last state, 'j-l', say, for all k, T)* . 

m 
maa;(ii}_iM,r,*[t]), Vt 1, ,n At ^ i, 
Vfc, 3 pi in state 'j — 1' received acknowledgment from pk. 
j,fort = i. 

where, R) [t] = state(pt) on which P] depends. Also, as mentioned earlier, the total depen­
dency vector can be determined as follows. 

Tj = m.ax{S},Rf),\fi,j. 

Messages and acknowledgments carry the total dependency vector indicating the state in 
which the message has been sent. The dependency graph is also given in Figure 15.A.1. 

1.3 Case Example 
Let us consider system consisting of three processes pl,p2 and p3 and several messages, ml 

to m5 (Figure 15.A.2). For each message, the sender and receiver dependencies can be con­
structed by using the following steps. 

Event 1 : Process p2 receives ml with dependency vector Tg. 
Sf = max (5g, T^) and ijf= B^ 
new state(p2) = 1; 5f [1]= 1; RJ[1]= 1 
Process p2 sends acknowledgment to process pi by attaching the vector Ti = (0,1,-). 
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Figure .15.A.3. Total Dependency Graph with Cumulative State Dependencies 

Event 2 : Process p3 receives message m2 with dependency vector Ti. 
Sf = max(5g,rf) and -R?=flg 
new state(p3) = 1; 5? [3]= 1; il?[3] = 1 
Process p3 sends an acknowledgment to p2 by attaching dependency vectors Ti = (0,1,1). 

Event 3 : Process pi receives a message m3 with dependency vector Tf . Also, Process pi 
has received acknowledgments to its message from processes p2 in state '0'. 
Si = maxiSi,T^) and R \ = max(Rl,T}) 
new state(pl) = 1; 5j[l] = 1; i?} = 1 

The process attaches Tî =( 1,1,1) to the acknowledgment. 

In Figure 15.A.3, the total dependency graph of Figure 15.A.2 is shown along with total 
dependency vectors. 



IV 

APPLICATIONS 



Chapter 16 

I N T E R A C T I V E DATA M I N I N G BASED ON 
P C CLUSTER E N V I R O N M E N T 

Zhen Liu 
Faculty of Human Environment, 
Nagasaki Institute of Applied Science, 536 Aba-machi, Nagasaki 851-0193, Japan 
liuzhen@cc.nias.ac.jp 

Minyi Guo 
Department of Computer Software, 
The University of Aizu, Aizu-Wakamatsu City, Fukushima 965-8580, Japan 
minyi@u-aizu.ac.jp 

Abstract In order to realize high performance and high effectiveness data mining, not only 
a parallel and distributed environment, but also an interactive and dynamic visual 
data mining support are necessary. In this chapter, a scheme of interactive data 
mining support system in high performance parallel and distributed computing 
environment is proposed. The overall architecture and the mechanism of the 
system are described. 

Keywords: Data mining. Visualization, Interactive, Parallel and distributed processing, PC 
cluster 

1. Int roduction 
The quantity of data has been increasing at a high speed along with the 

progress of database technology and data collection technology. It has been 
estimated that the amount of data in the world double every 20 months. The 
size and number of databases probably increase even faster [1]. Enterprises 
store more and more data in data warehouse for decision support purposes. It 
is not realistic to expect that all these data can be carefiilly analyzed by human 
analysts and users due to the increasing of large amount of data. 
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The huge size of real-world databases systems brings the following prob­
lems in data using, and creates both a need and an opportunity for a partially-
automated form of data mining: (1) Data quantitative problem, (2) Data quali­
tative problem, and (3) Data presentation problem. 

The data quantitative problem causes the decline of the processing speed 
having to do with a system that the accumulated amount of data becomes enor­
mous too much. Also, there is a limit in the judgment and the ability to process. 
To solve this, it is necessary to develop the technique to improve processing ef­
ficiency. And the system that facilities the processing of data and judgment for 
the human being must be developed too. The data qualitative problem occurs 
because the complicated relation exists between the attributes or the data in the 
large-scale databases. The near combinations exist infinitely as the relations of 
data, attributes of data and the combinations of them are very complicated. As 
it is impossible to verify all of them, it is necessary to improve the processing 
efficiency. Also, when the pattern among the detected data is too complicated, 
the thing that one finds some meaning fi-om there becomes difficult. This is the 
data presentation problem. It is necessary to provide a complicated detection 
result in the form which is easy for the human being to understand to cope with 
this. It can expect the squeeze of further data, a new discovery and so on. 

An effective way to enhance the power and flexibility of data mining in data 
warehouses and large-scale databases is to integrate data mining with on-line 
analytical processing (OLAP), visualization and interactive interface in a high 
performance parallel and distributed environment. 

2. Rela ted Technologies of Effectiveness D a t a 
Mining 

2.1 Parallel and dis t r ibuted processing 
technology 

Parallel and distributed processing are two important components of a suc­
cessful large-scale data mining application because that the computation re­
quirements are very large, and the enormity of data or the nature of data col­
lections often requires that the data be stored across multiple storage devices. 

A distributed application can be viewed as a collection of objects (user inter­
face, databases, application modules, users). Each object has its own attributes 
and has some methods which define the user behavior of the object. For exam­
ple, an order can be viewed in terms of its data and the methods which create, 
delete, and update the order object. Interactions between the components of 
an application can be modeled through "messages" which invoke appropriate 
methods. 

Parallel processing is performed by simuhaneous use of more than one CPU 
to execute a program. Ideally, parallel processing makes a program run faster 
because there are more engines running it. Most computers have just one CPU, 
but some models have several. With single-CUP computers, it is possible to 
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perform parallel processing by connection the computers in a network. For 
example, some parallel data mining researches are doing on PCAVS (Personal 
ComputerAVork Station) clusters [5] [6]. In recent years, more and more works 
are focused on paralleling data mining. The study field is wide-ranging from 
the designing of parallel processing system to the parallel realizing of various 
data mining algorithms [4][5][6][7]. 

2.2 On-Line Analytical Processing 
OLAP was introduced by E. F. Codd [8][9], the father of relational databases 

in 1993. He came to the conclusion that relational databases for OLTP (On-
Line Transaction Processing) had reached the maximum of their capabilities in 
terms of the views of the data they provided the user. The problem stemmed 
principally from the massive computing required when relational databases 
were asked to answer relatively simple SQL queries. He also came to the view 
that operational data are not adequate for answering managerial questions. He 
therefore advocated the use of multi-dimensional databases. His conversion to 
the DSS/EIS viewpoint gave legitimacy to the data warehouse based concepts. 
The basic idea in OLAP is that managers should be able to manipulate enter­
prise data across many dimensions to understand changes that are occurring. 

As the facility of powerful multidimensional analysis for data warehouse, 
it is necessary to adopt on-line analytical processing technology in data ware­
house and large-scale database. OLAP provides such facilities as drilling, piv­
oting, filtering, dicing and slicing so the user can traverse the data flexibly, 
define the set of relevant data, analyze data at different granularities, and visu­
alize the results in different forms. These operations can also be applied to data 
mining to make it an exploratory and effective process. Together with OLAP, 
data mining functions can provide an overview of the discovered knowledge 
such that the user can investigate fiirther on any interesting patterns or anoma­
lies. Because with OLAP operations, the size of the data set is relatively more 
compact. So that, the mining integrated with OLAP technology can do insure 
faster response than mining in the raw data directly. 

2.3 Visualization technology and interactive 
interface 

Visualization is to display data successfully in the screen of the computer 
for grasping the nature of the enormous data intuitively. In the past, so-called 
scientific visualization which deals with a great deal of numerical data such as 
the simulation result was to do mainstream being if saying visualization. 

Numerical data are rarely comprehensive in raw forms: tables of numbers 
tend to confuse the content and hide the essential patterns present without the 
data. In addition, for many applications each data point has associated with 
it more attributes than can be adequately described by the standard row and 
column. A multi-dimensional data enables each data point to be characterized 
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by a potentially imlimited number of patterns, visualization technology used in 
data mining can lead itself to slicing and pivoting among multiple dimensions 
to display the data in any number of forms. 

Visualizing data helps user quickly determine what the data really mean; it 
literally transforms data into information. Visualization becomes even more 
powerful as the amount of raw data increase, especially if the visualization in 
interactive. The purpose of visualization is to transform data into information 
that forms a critical component within the decision making process. 

3. Interactive Data Mining Scheme 

3.1 Key technologies 
In order to develop an interactive data mining support system in high per­

formance parallel and distributed computing environment successfully, the fol­
lowing key problems must be considered firstly: (1) On-line data mining, (2) 
Data parallelism, (3) Visual data mining, and (4) Interactive interface. 

Data mining and OLAP are all analytical tools, but obvious differences exist 
between each other. The analysis process of data mining is completed automat­
ically. It is only needed to extract hidden patterns, and predict the future trends 
and behaviors without giving exact query by user. It is of benefit to finding 
unknown facts. While OLAP depends on user's queries and propositions to 
complete analysis process. It restricted the scope of queries and propositions, 
and affects the final results. On the other hand, to data, most OLAP systems 
have focused on providing access to multi-dimensional data, while data mining 
systems have deal with influence analysis of data along a single dimension. It 
is an effective way to enhance the power and flexibility of data mining in data 
warehouse by integrating data mining with OLAP to offset their weaknesses 
[10]. 

Data parallelism refers to the execution of the same operation or instruction 
on multiple large data subsets at the same time. This is in contrast to control 
parallelism, which refers to the key idea in data parallelism is that the whole 
data set is partitioned into disjoint data subsets, each of them allocated to a 
disjoint processor, so that each processor can apply the same operation only 
to its local data. From the point of view of the application programmer, au­
tomatic parallelization is an important advantage of data parallelism. In the 
control-parallelism paradigm the application programmer is in charge of all 
inter-processor communication and synchronization, which makes program­
ming a time-consuming, error-prone activity. A major advantage of the data 
parallelism is machine-architecture independence. Data parallelism should be 
possible to add a number of processor nodes (CPU+RAM) to the system pro­
portional to the amount of data increase, to keep the query-response time nearly 
constant, although there will be some increase in query-response time due to 
the increase in inter-processor communication time caused by adding more 
processors to exploit data parallelism. 
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Visual data minmg is different from scientific visualization and it has the 
following characteristic: (1) wide range of users, (2) wide choice range of the 
visualization techniques, and (3) important dialog fimction. The users of scien­
tific visualization are scientists and engineers who can endure the difficulty in 
using the system for little at most. However, a visual data mining system must 
have the possibility that the general person uses widely and so on easily. It is 
almost that the simulation results are represented in 2D or 3D visualization. 
However, it is more ordinary that the objects are not actual one in the infor­
mation visualization. Moreover, it is possible to make a completely different 
expression form, too. The purpose of the information visualization becomes a 
point with important dialogs such as repeating data more in another visualiza­
tion by changing the way of seeing data and the technique of the visualization 
and squeezing it because it is not visualization itself and to be in the discovery 
of the information retrieval and the rule is many. 

The idea of the interactive data mining support system is based on the fol­
lowing viewpoints: (1) data mining is a multi-step process, and (b) the hu­
man user must be allowed to be front and center in the mining process. In 
the interactive data mining support system, data mining is performed not by 
one-sidedly on the side of the system by the algorithms, but showing it by the 
visualization in the form for which it is easy to judge a temporary processing 
result for the human being and feeding back the judgment and the knowledge 
of the human being into the side of the system. 

3.2 The overall architecture and mechanism 
The architecture of the interactive high performance data mining support 

system is suggested as shown in Figure 16.1. It mainly consists of: 

1) Parallel database: the platform of the on-line analytical data mining; 

2) Parallel database server: a horizontal-partitioning; 

3) Data Mining Agent: performing analytical mining in data cubes aided 
by OLAP engine; 

4) OLAP Engine: providing fast access to summarized data along multiple 
dimensions; 

5) PGUI (Parallel Graphic User Interface): transforming multidimensional 
data into understandable information and providing parallel data mining 
visualization. 

6) Applications Programming Interface (API): aggregation of instructions, 
functions, regulations and rules for on-line data mining, supporting in­
teractive data mining. 
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Figure 16.1. Overall architecture of the system 

The system has both of on-line data mining and parallel data mining fea­
tures. Mainly components of the system is parallel database sever, API and 
PGUI which will be illustrated in the following subsections. 

Data mining agent performs analytical mining in data cubes with the aid of 
OLAP engine. Data mining agent and the OLAP engine both accept user's on­
line queries through the user interface and work with the data cube through the 
applications programming interface in the analysis. Furthermore, data min­
ing agent may perform multiple data mining tasks, such as concept descrip­
tion, association, classification, prediction, clustering, time-series analysis, etc. 
Therefore, data mining agent is more sophisticated than the OLAP engine since 
it usually consists of multiple mining modules which may interact with each 
other for effective mining. 

Since some requirements in data mining agent, such as the construction of 
numerical dimensions, may not be readily available in the commercial OLAP 
products, particular mining modules should be built in model base. Although, 
data mining agent analysis may often involve the analysis of a large number 
of dimensions the finer granularities and thus require more powerfiil data cube 
construction and accessing tools than OLAP analysis, there is no fiindamental 
difference between the data cube required for OLAP engine and that for data 
mining agent. Since data mining agent is constructed either on customized 
data cubes which often work with relational database systems, or on top of 
data cubes provided by the OLAP products, it is suggested to build on-line 
analytical mining systems on top of the existing OLAP and relational database 
systems, rather than from the group up. 
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3.3 Parallel database server 
Generally, there are two types of parallel database server, specialized hard­

ware parallel database server and standard hardware parallel database server. 
The major types of the former are Intelligent Disks, Database Filters and Asso­
ciative Memories. The major types of the later are Share-memory, Shared-disk, 
and Shared-nothing [12]. 

Figure 16.2. Parallel and distributed processing server. 

The parallel and distributed processing server is a cluster of shared-nothing 
multiprocessor nodes as shown in Figure 16.2. The main memory is distributed 
among the processors, and each processor manages its own disk. In the archi­
tecture, all processors can access their corresponding disks in parallel, min­
imizing the classical I/O bottleneck in database systems. Each processor can 
independently process its own data, and the processors communicate with each 
other via the Master only to send requests and receive results. This avoids the 
need for transmitting large amounts of data through the Master. It takes advan­
tages of high-performance, low-cost commodity processors and memory, and 
it fit to be realized with PC/WS cluster. 

3.4 Interactive interface 
Numerical simulation and analysis usually consistent of three main stages: 

(1) generating computational grids, (2) solving physical equations, and (3) vi­
sualizing the result data. As the rapid arising of the process capability of com­
puters, the computational grid is becoming more and more complicated, and 
the data amount of computational result is becoming large and large. The par­
allel visualization subsystem offers an effective visualization platform and an 
interactive exploration for various types datasets arising fi^om parallel data min­
ing for users. The framework of the parallel visualization subsystem is shown 
in Figure 16.3. 

The concurrent visualization with calculation on the high performance par­
allel and distributed system is supplied with the parallel visualization subsys-
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tem. It outputs to clients graphic primitives rather than resulting images. On 
each client, the users can set viewing, illumination, shading parameters, and so 
on, and display the graphic primitives. 

The parallel visualization subsystem also provides the follows features for 
users. 

1) Data partition visualization, 

2) Dynamic communication trafi&c visualization, and 

3) Dynamic visual presentation of parallel data mining process. 

Combination Module 

Decimation Module 

Visualization Module 

Computation process 

Mesh Data 
Analysis Data 

Figure 16.3. Parallel visualization subsystem. 

Basing on parallel visualization subsystem, an interactive Application Pro­
gramming Interface (API) is provided. The basic function of the API is that of 
a PGUI (Parallel Graphic User Interface). It includes direct operation, dynamic 
search, continuous operation, and reversible operation, and so on. 

The interactive dialog will be realized with a GH-SOM (Growing Hierar­
chical Self-Organization Map) model. SOM (self-Organization Map) is an 
artificial neural network model that proved to be exceptionally successftil for 
data visualization applications where the mapping from a usually very high-
dimensional data space into a two-dimensional representation space is required. 
The GH-SOM was proposed by Dittenbach [12]. It uses a hierarchical struc­
ture of multiple layers where each layer consists of a number of independent 
self-organization maps. One SOM is used at the first layer of the hierarchy. 
For every unit in this map a SOM might be added to the next layer of the 
hierarchy. This principle is repeated with the third and further layers of the 
GH-SOM. Each layer in the hierarchy consists of a number of independent 
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self-organizing maps which determine their size and arrangement of units also 
during the unsupervised training process. The GH-SOM model is especially 
well suited for application which have large-scale dataset. It will be applied in 
a high performance parallel and distributed computing environment. 
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Abstract The mobile Internet penetrates into the every day life in a drastic pace. This 
emergence of new technologies easily triggered the new social problems like 
unsolicited bulk email. The author analyzes the mobile Internet transition from 
the social process viewpoint. A 2-year analysis of mobile email transition ob­
served on a conmiercial mobile web service shows the two-staged transition to 
cope with the bulk email problems. Changing the Internet identity such as email 
address has cognitive and social aspects. From the results, the author proposes 
an identity transition factor model to describe the social process of the forced 
email address changes in the mobile Internet. 

Keywords: Mobile Intemet, Unsolicited bulk mail, long-term transition 

1. Introduction 
The mobile Intemet penetrates into the every day life in a drastic pace. In 

the last five years, significant efforts were devoted to ensure interoperability 
in the mobile handsets [1] [5]. A growing number of information appliances, 
especially mobile handsets, appear with Intemet capabilities. The number of 
so-called non-PC Internet-enabled devices like mobile handsets and game con­
soles is expected to reach a billion in 2006 [2]. The market penetration rate of 
cellular telephones has reached 80% or higher in many parts of Asia and Eu­
rope. In Japan, the market penetration rate of Intemet-enabled mobile handsets 
in the total mobile handsets reached 84% in Jime 2003. It is reported that there 
were 64 million Intemet-enabled mobile handset users. This emergence of new 
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technologies easily triggered the new social problems like UBE(Unsolicited 
Bulk Email). The PC Internet users have experiences with UBE from early 
days of the Internet. However, the emerging new users in the mobile Internet 
were shocked with these unsolicited attacks from strangers. In the mobile In­
ternet, due to the display and storage limitations, UBE causes serious problems 
for end users. In addition, people in the early days of the mobile Internet were 
unprepared against the UBE attacks. It accelerated the UBE attacks in some 
cases. In the PC Internet, it is common to filter or ignore the UBE messages. 
In the mobile Internet, the burden for these routine works is prohibiting. This 
causes the frequent mobile Internet email address changes for mobile Internet 
users. The identity change forced by the uncomfortable experience is a sig­
nificant step for end users. It unpacts their social lives in the mobile Internet. 
The research about the identity transition is an important research source to 
understand the ftindamental aspects of the mobile Internet. UBE in the mo­
bile Internet is rarely studied because it is hard to store all UBE evidence and 
analyze them in the handset. In this study, we call the Internet users using 
micro-browsers on a mobile handset as mobile Internet users. 

2. UBE in the Mobile Internet 
UBE is very common in PC Internet users [3] [4]. It was called as spam 

mail in the slang. It is commonly unsolicited mail delivery originated from 
strange mass advertisers. Over a span of time, various techniques like Internet 
search, aggregating mail exploder addresses, common name guessing, virus-
based personal information search and brute-force trials. The struggle against 
UBE in the PC Internet continues in spite of the social awareness against UBE. 
There are some techniques to block UBE like white-list-filtering or black-list-
filtering, which are not perfect. When the mobile Internet emerged, the users 
were xmprepared against UBE attacks. Due to the input limitations, the shorter 
names were preferred. In addition, as the identity cognition, the telephone 
number was preferred as the main part of the email address because they were 
easy to memorize for people. The mobile telephone number is 11-digit long in 
Japan. However, the first 3 digits are used for the mobile carrier identification 
code. Therefore, it had the same strength as the 8-digit number. It was vulner­
able to the attacks. These considerations for the mobile Internet characteristics 
were volatile against the UBE attacks. In the early days, some mobile carri­
ers set the initial email address as identical as the telephone number except 
the mail domain name. It was easy to memorize, however, very vulnerable to 
UBE attacks The fixed-length numeric characters are easy to generate and test 
for brute force attacks. The brute force attack is to try all potential addresses 
including telephone numbers, and store the delivery results on a database. The 
unique features of the mobile Internet make the social impact distinguished. 
There are three social issues in UBE in mobile Internet. First, the mobile In­
ternet has an always-on feature. Therefore, UBE is more intruding for the end 
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users. Second, the mobile handsets are poorly equipped with anti-UBE facili­
ties. The feature and user interface is limited by CPU power, available storage, 
and battery power. The manual sorting and filtering needs more cognitive cost 
for end users in the limited user interface environment like mobile handsets. 
Third, in many cases, the mobile carriers charge every packet to the end users. 
The charges outrage the users who pay for the unsolicited mail. It causes eco­
nomic damages. These three factors impacted the end users, gradually forced 
them to change their identity, the email address in the mobile Internet. In ad­
dition, the mobile UBE have hidden effects. It causes the problems of the 
gateway between the Internet and the mobile carriers because the attacks come 
from the Internet side. This leads to the delays of the mail exchange between 
the mobile carrier and the Internet. 

During the mobile Internet emergence, the strong market growth attracted 
many UBE-based underground advertisement business as well as common 
content providers. In Japan, the harms done by mobile Internet UBE became 
apparent in the spring of 2001. People witnessed the forced email address 
change because many people received more than 100 UBE messages every 
month. This UBE phenomenon is based on a guess on mail address and brute 
force attacks. Gradually, end users change their mail addresses in order to es­
cape from the uncomfortable experience. It is recommended to use a mixed 
character mail address with alphabets, numbers and special characters like a 
period or an underscore. In addition, it is recommended to use a longer email 
address that is robust against brute force attacks. The suggested length was 
increased against stronger brute force attacks evolved. Now, the recommended 
length of mail address is more than 12. In a side effect, mobile Internet content 
providers lost a lot of customer email addresses, which are crucial in mobile e-
commerce to ensure the interactions with close end-user contacts. The author 
performed a preliminary analysis on the email address change in the mobile 
Internet in 2001-2002 [7]. In this preliminary study, the author found that the 
drastic email address changes in a short span of time under the UBE in the 
mobile Internet. 

3. Mobile Internet Identity 
The significance of the mobile Internet identity depends on the mobile Inter­

net life style. In the early stage of the mobile Internet, it was apparent that the 
mobile Internet email address was not an integrated part of personal identities. 
It is not used in the real world commimication. When it had some problems, 
it was easy to change. When the mobile Internet penetrates into the every-day 
world, it increased the significance and relations to the social contexts. First, it 
is the 24-hour contact point for people. Second, it is troublesome to notify the 
new email address for people to communicate by email. Another issue is UBE 
awareness. Without UBE threats, it is imcommon to include various special 
characters in the email address for robustness. When the people depend on the 
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mobile email and are aware with the UBE threats, they will use the longer and 
complicated email address and change it less frequently. 

The first template for the mobile Internet email addresses is either telephone 
number or PC-world familiar email address. Under the UBE threats, the users 
are forced to have a very artificial identity for their personalized communica­
tion life. This complicates the cognitive aspect of the email address transition 
in the mobile Internet. The change frequency and choice of email address com­
plexity are the indicators about the people's experience of the mobile Internet 
and UBE. 

4. Long-term Address Transition Analysis 
The author analyzes the email address transition analysis on the commercial 

charged service provided for the two different carriers. The carrier A charged 
by per-packet base, and the carrier B did not charge on the incoming mail. The 
target service is a business-oriented information service listed on the mobile 
carrier ofiicial site in both carriers. There is a news alert service. For this 
service, one third of the users registered their mobile handset email addresses. 
There are two logs for the mail address, one for the mail regisfration log, and 
the other from the alert sending log. The author examines the mail registration 
logs for the service in the carrier A from August 2000 to July 2001 and one in 
the carrier B from October 2000 to July 2002. In addition, the author examines 
the alert mail origination log for the comparison between the static registration-
based analysis and the dynamic active sending-based analysis. The purpose of 
the study includes: 

• Monthly transitions of the mail address patterns, 

• Comparison of the carrier A user behavior and the carrier B user behav­
ior, and 

• Comparison of the static mail address pattern analysis and the dynamic 
mail address pattern analysis. 

The author is engaged in the mobile web side user behavior studies since 
2001 [6] in order to the user identifier-based tracking analysis. On the transi­
tion analysis, the author performs the monthly transition over a span of time 
on 

• Mail address length, and 

• Mail address character pattern. 

In character patterns, the addresses are categorized in the four patterns: 

• Numeric only, 

• Combination of alphabet and numeric characters, and 
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• Other patterns including three common punctuation characters(".", "_", 

Originally, the initial mail address was all numeric, which was identical to 
the user's telephone number The new system to use more robust initial mail 
addresses started in July 2001 after the significant damages cased by mobile 
BSE. 

5. Case Studies in the mobile email addresses 
There are three case studies. The first one is the study for monthly logs for 

mail registration in the carrier A. It outlines the general trend for new mail 
address registration/update. The second one is the study for real origination 
use log every month. The valid addresses used for the notification service is 
analyzed. It outlines the active user mail address behavior. The third one is 
the mail registration every month for the carrier B. It outlines the inter-carrier 
difference on the UBE attack impact. The average mail address length did 
not show the significant change over a span of period. The length of telephone 
numbers is 11. Usually, the alphabetic address is shorter than that. The average 
length is almost stable during the period in this observation. 

The registration mail address patterns are easier to analyze because each 
user registers only once. The average length transition fi-om August 2000 to 
July 2002 is depicted in Figure 17.1. 
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Figure 17.1. 
July 2002 

Average Length of local-part in the service A registration from August 2000 to 

The mail address length range is moving to the longer one. The length range 
transitions in "len < 8", "8 < len < 12", "12 < len < 16", and "len > 16", 
where len denotes the length of the local-part email address, are presented in 
Figure 17.2. The longer addresses increase. The numbers of users in the "12 < 
len < 16" range increased significantly in May and June 2001 and continued 
to increase until February 2002. On the contrary, the "len < 8" range was 
stable until October 2001. During the period between October 2001 and July 
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2002, the range shows decrease with some fluctuation. The "len <8" range is 
a mail address similar to the PC Internet. The range "8 < len < 12" includes 
the telephone number-based 11-digit numeric addresses. It shows the constant 
decrease trend from 70% to 30%. 
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Figure, 17.2. 
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Local-part Length Ranges in the service A registration from August 2000 to 

The character patterns in mail addresses are depicted in Figure 17.3. In the 
year 2000, the trend was stable. 80-85%) of users used numeric only addresses. 
10-15%) of users used alphabet only addresses. This trend drastically changed 
in the period between May and July 2001. After August 2001, the numeric 
only is stable. Now two thirds of users use some special characters like ".", 
"-", and "-" in their addresses. Also, it should be noted that the initial mail 
address has been not in numeric only since July 2001. However, the increase 
showed in May 2001. Therefore, it can be observed that the user behavior to 
change their addresses against UBE influences the trend. 
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Figure 17.3. Local-part Character Patterns in the service A registration from August 2000 to 
July 2002 
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A comparison study is done on another carrier, the carrier B. This carrier has 
the special charging policy that the incoming mail communication fee is fi-ee. 
The mail address relatively shorter addresses in the similar transition pattern. 
In the carrier B, no alert service is provided and the users are voluntarily asked 
to register their email addresses. One fifth of the users registered their email. 
However, the low use of the registered address shows the instability of the 
registered address patterns. 

The average length from November 2000 to July 2002 is shown in Figure 
17.4. 
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Figure 17.4- Average Length of local-part in the service B during Nov 2000 and July 2002 

The local-part length ranges are shown in Figure 17.5. The address range 
transition is depicted in Figure 17.5. It is not stable, however, it should be 
noted that the shorter addresses are unchanged or even increased. These re­
sults indicates the sensitivity of the address transition patterns. However, the 
firm statistic results cannot be obtained due to the different contexts in the two 
services. 

The local-part character patterns are shown in Figure 17.6. The drastic ad­
dress change occurred in June and July 2001, slightly later than the previous 
case studies. 

The registration can partially capture the user behavior when users newly 
register or update their mail address updates. The commercial service observed 
in this study provides the mail alert service. It is an optional service. In this 
service, the users can receive notification mail every time a new content with 
the user's registered keywords. This provides the email addresses used in this 
notification service. It means the active mail addresses, because it is neces­
sary to update the current mail address to enjoy the notification function. It 
reflects the current mail addresses, and also is influence by the active users' 
behavior. The registration mail addresses may be unchanged during the user's 
update of mail addresses to avoid junk mail when the user does not subscribe 
this particular notification service. The length ranges transition is presented in 
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Figure 17.5. Local-part Length Ranges in the service B registration during Nov 2000 and 
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Figure 17.6. Local-part Character Patterns in the service B registration during Nov 2000 and 
July 2002 

Figure 17.7. The average length monthly transition is depicted in Figure 17.9. 
Finally, the mail address patterns transition is depicted in Figure 17.8. Com­
pared to the registration, the origination log has the tendency that the address 
pattern changes are observed slightly delayed. One of the reasons include that 
the UBE forced the user to change their addresses, however, it gave the re­
consideration opportunity for end users in the current subscription services. 
Therefore, the sudden rise of UBE impacted the precious resource of the mo­
bile web content providers. The result shows that the registration-based metrics 
are more sensitive in the heavy UBE condition. 
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Figure 11.1. Average Length of local-part in the service A alert mail origination log from 
August 2000 to July 2002 
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Figure 11.8. Local-part Character Patterns in the service A alert mail origination log from 
August 2000 to July 2002 

6. Evaluation 

6.1 Findings 

In order to test the changes of the average length of the local-part email ad­
dresses, the author performs the Student's t-test with Welch's approximation 
method assuming that the mother standard deviation is unknown. It tests the 
difference of the average mail address length chosen in the different stages 
Each month's average length of the mail addresses for the mail alert service 
origination log is tested against the first month data in August 2000, and the 
last month data in July 2002. The origination log is used because it reflects 
the real active mail address use. The degree of the freedom is significantly 
larger than 20, therefore, the t-distribution is close to the normal distribution. 
In the confidential interval with 0.05, the null hypothesis against the same av­
erage length with July 2002 is denied in the range of August 2000 and January 
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Figure 17.9. Local-part Length Ranges in the service A alert mail origination log from Au­
gust 2000 to July 2002 

2001 where t-value is in the range between 3.1416 and 6.1708 with the degree 
of the freedom is in the range between 186 and 346. In addition, the similar 
null hypothesis against the same average length with August 2000 is denied 
in the range of October 2001 to July 2002 where t-value is in the range be­
tween 2.1257 and 6.1708 with the degree of the freedom in the range between 
189 and 286. The average length grows gradually over a long span of time. 
This statistic significance of the length transition was not found m the prelimi­
nary study. Therefore, there are two stages for the transition, one for character 
pattern change and the other for length change. The latter takes longer to be 
realized. The BSE impacted the choice of the address length. It is a statistically 
significant change over a more-than-a-year span of time. The registration log 
and origination log is not completely identical. Using the similar t-test with 
Welch approximation method, the August 2000 data has the t-value = 2.4668 
with the degrees of fi-eedom = 510. The July 2002 data has the t-value = 1.3773 
with the degrees of fireedom = 105. In the July 2002 data, the null hypothesis is 
not denied, however, the null hypothesis is denied in the case of August 2000. 
Evaluation on the case studies are categorized in the three aspects: 

• Long-term address pattem transition, 

• Inter-carrier comparison on the trafiic chargmg policy, and 

• Evaluation of the mail log analysis on anti-UBE behaviors. 

The mail address length is not sensitive to the mobile UBE attacks. The 11-
digit telephone number address is already too long to make it longer for end 
users. It is clear that users adopt special character patterns in addresses to pre­
vent brute force attacks. The mobile handset mail characteristics may have 
some implications on this forced behavior. More than 50% of users use non-
alphanumeric characters in their addresses. In the low UBE environment, the 
ratio was under 10%. The transition took two to three months. The social pro-
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cess to propagate the criteria of the robust email address choice is interesting 
and for further studies. About the methodology, the mail address observation 
captures the user behavior diffusion in mail address changes. The mail log is 
commonly available on most systems. Therefore, it is easy to use for the first 
step study without intrusion to mobile users. The mail registration and real 
mail use are different aspects of the mobile mail services. This study shows 
little difference between these two factors. It is easier to analyze the mail ad­
dress transition at the mail registration base when there are millions of users 
that are not uncommon in the top mobile content providers. 

6.2 Limitations 
To evaluate the limitations of this study, the following three aspects should 

be considered: 

• Fairness in the case study samples, 

• Fairness about the inter-carrier comparisons, and 

• Social processes for the propagation of the renewed criteria for email 
address choice. 

The first limitation is the evaluation of the samples. The case studies in this 
study focused one particular commercial mobile service due to the log avail­
ability. The second limitation is the bias in the inter-carrier comparisons. The 
study shows the impact of the charging policy on the email address transition 
patterns. It needs more studies to make further conclusion. 

This study examines the result of the user behavior, not the behavior itself 
The social aspects of the email address transition like know-how propagation, 
education and interactive processes are for further studies. Further research 
topics include the following issues: 

• User cognitive difference between PC-based Internet UBE and mobile 
UBE, 

• User mental model about changing mail addresses in different stages, 
and 

• Social effects for mail address change behavior diffusion under UBE 
attacks. 

The tradeoff between the UBE attack damage and the forced mobile Internet 
identification update is an interesting topic. The long-term observation is im­
pacted by the carrier policy to enforce certain types of email address choices. 
The consistent observation over multiple years is difiicult to design. 

6.3 An Identity Transition Factor Model 
The change of the mobile Internet identity depends on both of cost models 

and cognitive models. An identity transition factor model is depicted in Figure 
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17.10. From the finding in the address transition, the identity transition has 
two phases, one for the complexity and the other for the longer address. The 
choice criteria in the email address are a combination of the wider choice of 
characters and the length of the address. This reflects the cost aspects and the 
cognitive and social aspects of the address choice criteria. The choice criteria 
reflect the culture and economic envu-onment. This study shows that the charge 
policy may impact the choice of the address. It can indicate the know-how and 
awareness propagation, educational eflforts by carriers, cost consideration, and 
the UBE threat strength. 
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Figure 17.10. An Identity Transition Factor Model 

7. Conclusions 

The author notices the importance of the identification of the mobile Inter­
net characteristics. In this study, the author uses long-term transition analysis 
on the mobile Internet email address statistics. The author performs the analy­
sis on the registered email address in several commercial mobile Internet web 
sites for 2 years. The analysis is based on the static one with registration log 
and the dynamic one with origination log. The observation indicates the two-
stage changes of the mobile Internet email address choice by end users. As 
a methodology, email address transition analysis is general and applicable to 
the wide range of email based mobile web services. The dynamic aspect from 
origination log and the static aspect fi^om registration log show slightly dif­
ferent side of the email address transition. The email address transition is a 
mixture of the cost, cognitive and social aspects of the UBE situation. An 
identity transition factor model is proposed. The mobile Internet diffusion is 
a global phenomenon. Therefore, the email address transition may reveal dif­
ferent cultural aspects of the mobile Internet identity in the virtual world. The 
further studies will include user mental and social model of the email choice 
behaviors in the mobile Internet. The issues around the mobile Internet identity 
including email address choice include research topics about the user behavior 
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on the 24-hour virtual society. The author expects that a simple methodology 
like the address transition analysis will reveal the variety of the cultural and 
social aspects of the mobile Internet that will emerge in a worldwide manner 
in the near future. 
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Abstract This chapter presents two approaches for an efiBcient polygonal approximation 
on distributed computers of surfeces defined by the Function Representation 
model. The first algorithm uses a dynamic distribution of the geometric grid 
elements to allow maximum efficiency on grid of computers. The second algo­
rithm targets parallel computers and cluster of computers and tries to minimize 
conmiunications by distributing the geometric grid elements statically. Potential 
applications for these software algorithms are rendering in CAD system, and 
computer graphics animation for solids with complex surfaces. 

Keywords: Function Representation, HyperFun, parallel processing, polygonization, ren­
dering 

1. Introduction 
A new shock wave of technological advances denotated by digitally en­

hanced processes and devices is increasing the need for computational re­
sources, a need that may be answered by grids of computational clusters called 
computational farms. Sudden advances in technology such as volumetric scan­
ning will thrust digital modeling representation forward beyond virtual sur­
faces of polygons to flmctionally based synthetic objects requiring also more 
and more intensive processing. 
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So called Function Representation (F-Rep), introduced by [7], and its asso­
ciated modeling language HyperFun, introduced by [8], are promising applica­
tions for modeling complex shapes and solids. Rendering and visualization of 
F-Rep synthetic objects, as well as simulation involving such objects are time 
consumming processes but these time performances can be greatly improved 
on distributed or parallel environments. 

Parallel processing for efficient rendering m computer graphics has been 
often considered in the past: [9], and [10], suggested parallel algorithms to 
compute radiosity, [11], and [12], parallel algorithms for ray tracing, finally 
[13], and [14], proposed parallel processing for global illumination model. 

Parallel rendering of shapes defined by Function Representation has been 
considered by [4]; they discussed the parallel implementation of a ray tracer 
using a shared memory approach with the network system Linda. [5], and [6], 
considered static and dynamic load balancing implementations for the origi­
nal polygonizer of [1]. The implementation targeted a network of computers 
hooked on a Local Area Network (LAN), like the ones available in a university. 

This chapter presents two approaches for an efficient polygonization of Hy­
perFun models on distributed architectures. One relies on dynamic load bal­
ancing, the other one on static load balancing. Both approaches uses a message 
passing interface for the communication between the nodes. 

The approach using dynamic load balancing targets cluster of heterogeneous 
computers and more generally heterogeneous computers hooked on a LAN. 
With dynamic load balancing the application may be able to adapt if the work­
load of some of the computers evolve during runtime, which may happen when 
using for example computers from an university, or if the application wants to 
use free CPU cycles from hooked computers. 

The second approach uses a semi-static load balancing (it is not fiiUy static 
since there is a rebalancing before the computation of triangle patches) and 
tries to minimize the number of communications between the node for maxi­
mal speed of execution. It targets parallel computers or cluster of computers 
dedicated for this task, which means that the application has not been designed 
for handling runtime modification of the workload for some of the nodes. What 
is more, the application has been designed to take into consideration heteroge-
neousity of computers, and to adapt the distribution of the computing according 
to the computational power of each nodes. 

2. Polygonal approximation of F-Rep objects 
Given a F-Rep object F, the problem is stated to approximate its implicit 

surface (the locus of points for which the F-Rep is null), by a set of polygons. 
The main points of the implicit surface piecewise analytical description method 
proposed by [2], and [1], are reminded here. First, the location of the vertices 
are computed, then they are connected together to form a triangle. 
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A parallelepiped containing the object is given in the three dimensional Eu­
clidean space; by introducing a regular point grid the parallelepiped is repre­
sented as a set of Gx x Gy x Gz cells. 

The polygonal approximation of the surface can be obtained by visiting all 
cells and finding all the surface patches belonging to an individual cell. 

2.1 Finding the vertices 
A three dimensional array M of size Gx x Gy x G^ is filled with the value 

of F at each node of the grid. The detection of a sign change between two 
adjacent nodes indicates the existence of a vertice on the edge of the cell join­
ing the two nodes; its approximate position on the edge is obtained by a linear 
interpolation. See Figure 18.1 for an illustration of these ideas. 
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Figure 18.1. Detected vertices with sign changes on the grid 

2.2 Creation of the triangles 
The vertices need to be connected to form a triangular patch of the surface 

using a connectivity graph in each cells of the grid. Such a graph has twelve 
nodes (one for each edges of the cell) and is created by considering for each of 
the six faces of a cell the three following possible cases: 

• no vertex on the face. 

• two vertices on the edges of the face. 

• four vertices on the edges of the face. 

The last case is ambiguous because there are two possible ways to connect 
the edges, as shown in Figure 18.2. The ambiguity is overcome by using the 
bilinear contour method as proposed in [2], [1], and [3]. The contours of the 
connection can be represented locally by parts of an hyperbola. An ambiguous 
face corresponds then to the case when both parts of the hyperbola intersect 
a face. In that case, the hyperbola is of type: v = f ^ , with ^ € [0,1] and 
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Figure 18.2. An ambiguous face 

- 3 G [0,1]. The correct choice for the connections is made by comparing 
the abscissa u for which v = 1, with the abscissa of the center of the hyper­
bola, given by —3 If u is bigger than the threshold, then the orientation A is 
used, otherwise orientation B is used. The Figure 18.3 shows the correspond­
ing orientations. From the connectivity graph a set, of disconnected non planar 
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/ 

Figure 18.3. Bilinear contours method 

polygons approximating the implicit surface can be produced. It is straightfor­
ward to obtain a mesh of triangles by creating fictuous edges. 

2.3 Computing normals and triangle orientation 
In order to obtain smoother surface on a display, normals at each vertices 

of the triangle may be required. At one vertex, the normal is obtained by 
computing the normalized gradient of the function F. The gradient is usually 
obtained numerically by finite differences. 

All the triangles need also to have the same orientation (clockwise or counter­
clockwise) for avoiding problems with illuminations while visualizing the mesh. 
The average of the normals at the vertices is computed and compared with the 
normal computed from the vertex coordinates (in the triangle {A, B, C) the 
normal is given by AB A AC). If they have a different orientation, the triangle 
is reversed by exchanging two vertices. 
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3. A dynamic load balancing approach for the 
polygonization of functionally defined objects 

3.1 Overview 
A dynamic load balancing approach has been considered for a distributed 

polygonization of the shape of functionally defined objects. Such an approach 
targets more specifically dedicated cluster of heterogeneous computers or het­
erogeneous computers hooked on LAN, like for example computers on a net­
work university. This distributed approach extends the original polygonization 
algorithm with two steps, the distribution of element of the grid scene between 
the workers, and the gathering of the elements computed by each workers. 

The original grid is broken into some cubic blocks, distributed over the 
nodes. The size of the blocks is a parameter left to the control of the user 
and should be such that the computational time on the slowest machine would 
not exceed the length of the average computational time for all the others. 

Each nodes do the computation on its own blocks exactly in the same way as 
it was done with the single processor version of the polygonizer of HyperFun 
and creates some parts of the polygonal mesh. Finally, the server node gathers 
all the parts, patches them and creates the final polygonal mesh. 

3.2 The distribution of the blocks 
One of the important issues to parallel performance is load balancing. If the 

distribution of work is not balanced, nodes which do not have enough compu­
tation finish their tasks earlier than nodes with heavy computation, and these 
lighter, early nodes must wait for the overloaded, late ones. This imbalance is 
a waste of computing resources and causes a decline in performance. 

In case of the polygonization of implicitly defined surfaces, the number of 
computed elements, such as vertices or triangles, is different in each block and 
difficult to anticipate before calculation. As a consequence the workload dif­
fers between the nodes when they are processing blocks of the same size. In or­
der to avoid some nodes remaining idle, we used a server with a pool of blocks 
to which each idle workers make requests, after having finished their previ­
ous tasks. Therefore the block distribution is dynamically balanced among the 
nodes during nmtime. 

Such a dynamic distribution presents other advantages: it makes possible 
to add new nodes during runtime. It makes also possible to use efficiently the 
system on a network of computers whose workload may evolve during runtime, 
like for instance when using the computers fi'om the network of a university. 

3.3 Gathering Parts of the Mesh 
The computed mesh data uses a simple data structure in order to reduce the 

cost of transporting and translating the data: 
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• vertices,which have an index number 

• normals for each of the vertices 

• triangle data, which are represented by an index of a set of three vertices 

One of the problems, in gathering parts of the mesh to the master node 
is the numbering of the vertices index, because, before gathering, the index 
of vertices is local to each node and not independent of the vertices of other 
nodes. Vertices are distributed on each node and the local index number is 
changed to a global index number., Each node. Pi, P2, • • • Pn, builds an index 
of the array of vertices it owns and broadcasts this index to other nodes by 
turns. Each node changes its local index number to a global index number as: 

n - l 

(index in Pj array) + y^(size of array P,) (18.1) 

3.4 Test Environment and Result 
The tests with the dynamic load balancing approach were done on a set of 

40 Sun workstations (Fujitsu GF 400S model 10) cormected by Ethernet. 

Figure I8.4. Screenshot. of "Core" with a 100 x 100 x 100 grid 

To make the test, two HF models, the model called "noisy-sphere" and the 
more complex one called "core" (see Figure 18.4), were polygonized with 
100 X 100 X 100 resolution grid. The timing results for these different ob­
jects with different numbers of nodes are shown in Figure 18.5. 

Using the distributed approach, the speed of polygonization of models is 
increased. The time to polygonize was reduced from 147 seconds (1 node) to 
9 seconds (40 nodes) in the case of "noisy-sphere," and from 382 seconds (1 
node) to 15 seconds (40 nodes) in the case of "core." 

Then, the speed up of polygonization is considered. The relative speed up 
with N nodes S{N) is defined as: 
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Figure 18.5. Execution time in function of the number of nodes 

S {N)==TI/TN 

Ti : Time with 1 node 
TN • Time with A'' nodes 

(18.2) 

The desired speed up using N nodes is A'' times. The relative speed up graph 
of each model and a desired linear speed up are shown in Figure 18.6 

In the case of "noisy-sphere", the speed up increases with the number of 
nodes like the theoretical y = x linear ratio, when the number of nodes is 
below 16. For a number of nodes above 16, the speed up is still increasing 
Imearly with the number of nodes, but with a smaller coefficient. In the case 
of "core", the speed up increase is even closer to the theoretical expectations 
when the number of nodes is less than 16; when the number of nodes is more 
than 16, the speed up keeps increasing linearly with the number of nodes, but 
with a smaller coefficient. The speed up with 40 nodes is 15 times (37.5% of 
desired linear) in the case of "noisy-sphere", and 25 times (62.5% of desired 
linear) in the case of "core." 

These resuhs show that the approach is effective to speed up the polygoniza-
tion of HyperFun models. It is even more effective if the model is complex. 
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Figure 18.6. Speed up in function of the number of nodes 

4. A parallel algorithm for the polygonlzation of 
functionally defined objects 

4.1 Overview 
This section describes a parallel version with a quasi static load balancing 

of the algorithm reminded in section 2. Remember that the analyzed space 
is divided by a finite tridunensional grid, thus forming naturally "elementary 
cells". The basic idea is that each processor will be provided with a pool of 
these cells (illustrated by Figure 18.7), and compute, for each of them, the 
in-bound vertices and triangles. The cells assigned to a processor are said to 
"belong" to it, as well as the in-bound vertices and triangles. Finally, these 
computed data will be sent back to the master. 

Another important aspect of the problem is that each processor has a local 
numbering of vertices, and that we must create a global numbering for dealing 
with shared vertices. 

We will discuss the following points: 

• dispatching the cells among processors, 

• determining the ownership of shared vertices, 
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m converting the local numbering of vertices to a global one. 
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Figure 18.7. The master delivers cells to the slaves 

4.2 Initialization 
The processors are organized in a Master - Slave architecture: PQ is the 

master, and P i , . . . , P„ are the slaves. PQ sends some information to each of 
them: 

Wi the weight of the current processor, 

pw: the sum of the weights of the previous processors, 

UiK the sum of the weighs of all processors, 

c: the number of cells (in fact, the grid dimensions Gx x Gy x G^ = c). 

The notion of weight has been introduced for the case when the system is 
used on a cluster of heterogeneous computers. The amount of work of each 
node should be proportional to its computational power. The problem of as­
signing a correct weight to each of the nodes has been solved by running a test 
fimction on all the nodes during a small amount of time (usually from 30 to 60 
seconds) and see how many time this function has been computed. 

In the following algorithm, every processor, including the master PQ will 
run what we call "the worker's algorithm" described in the next subsection 
4.3. With the informations received, each processor can find the cells assigned 
for his work. The cells of the scene (corresponding to the grid) are implicitly 
numbered: each worker Pj will initially own ex f^ cells, starting from the 
cell number c x ^ . Actually, this cell dispatching makes each processor own 
"slices" of the grid (mostly contiguous cells). 

4.3 Worker's algorithm 
Finding vert ices. Every worker will now consider each of the ex '^ 
cells assigned to it. For each of them, it will compute the function values of 
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the F-Rep object at the 8 comers, in order to detect sign changes on each edge 
(as described in [1], reminded in section 2 and illustrated on Figure 18.1 page 
269). Actually, since neighboring cells are used, the 8 values won't have to be 
computed every time for each cell: a value computed for a cell will be re-used 
for the next neighboring cell. This is the point of using contiguous cells. 

Now the slave considers the 12 edges of the cell, and detects if they support 
vertices or not. What is more, we also need the coordinates of all vertices. 
Since an edge belongs to 4 cells (as shown in Figure 18.8 page 276), a vertex 
located on it will be detected 4 times. In order to determine which processor 
has to really compute its coordinates (we say that this processor owns it), we 
set up an ownership rule. As shown in Figure 18.9 (left part), for each cell, we 
systematically consider the same 3 edges (in bold on the figure), and they are 
said to belong to the processor computing this cell. In that way, a processor 
detecting a vertex on an edge will immediately know if it belongs to itself 
or not (in fact, by knowing that this edge is among the 3 owned segments or 
not). As shown in the right half of Figure 18.9 (case of a 2 x 2 x 2 grid), 
this will determine the ownership of almost every edge. Some of the edges 
on the scene's faces will be "forgotten" (those not in bold on the figure). This 
problem is solved by making the last slave going through those segments for 
finding vertices. If a vertex is detected on an edge owned by a processor, its 
coordinates will be computed. Otherwise, the processor simply knows that it 
exists, without knowing its coordinates. 
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Figure 18.8. Ownership of a vertex among 4 cells 
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Guessing t h e number of tr iangles. At the same time, while 
finding vertices inside the cells, each worker guesses how many triangles can 
be formed inside it. It finally sums these numbers, thus knowing approximately 
the number of triangles to be found inside all its cells (as well as the individual 
numbers for each of them). 

Re-dispatching cells. Now that all workers have detected the vertices 
inside their owned cells, we must reconsider the cell dispatching. Remember 
that the cells were initially distributed in a very basic way: each processor 
received "slices" of the model. This implies that some of them (like those in 
the middle of the scene) found many more vertices than others (like those on 
the edges of the scene). Therefore, before going on with the algorithm, we 
have to redistribute the cells so that all processors will probably find the same 
number of triangles in the next stage (the notion of weights, as described in 
4.2, is also used for redistributing cells according to the computing power of 
each processor). 

To achieve this redistribution, all slaves send their approximate number of 
triangles to the master. It now has to compute a set of (sendingWorker, re-
ceivingWorker, numTriangles) triplets, representing the cell transfers among 
workers: this means that for each triplet, the processor PsendingWorker must 
send enough of its own cells to PreceivingWorker SO that numTriangles will 
be transferred inside them. The master forms a table of these triplets, and sends 
them to all slaves. 

Now each slave reads this table and acts as the master decided. When a 
worker sends a cell to another, it sends: 

• the cell coordinates, 

• the coordinates of the owned vertices inside this cell (they are 3 at most), 

• the list of the other vertices on the cell edges (they are 12 at most). 

A worker that sends a cell has to "forget" it (it doesn't own it any more): it has 
transfered all the information related to it to a new worker, which is now its 
new owner. 

At the end of this re-dispatching step, many cells are transfered to new work­
ers, so that the number of triangles inside them is approximately the same. For 
a worker, there is no distinction between the cells it owned since the beginning 
of the algorithm (those of the "slice" initially assigned) and those it received 
from other workers (if any). 

Finding t r iangles . Then each slave goes through its owned cells (the 
initial and the newly acquired ones). The detected vertices inside them are 
grouped in triangles. A "triangle" is composed of 3 vertices: a "vertex" is ref­
erenced by the cell edge it is located on. Each processor builds a triangle table 
(3 columns, for storing these edge numbers) and a vertex table (4 columns: 
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the edge number of the vertex and its 3 coordinates). The vertex table must 
be sorted by increasing number of their edges, and contains only the vertices 
owned by the processor. 

Note that for the moment, vertices are referenced by the segments of the 
grid where they are located. This represents a first global numbering, but we 
can not keep it: we want a new numbering in order to avoid the numbers of the 
segments supporting no vertex. The aim of this final numbering is that triangles 
should store the 3 vertex numbers, that we could use for directly accessing their 
coordinates in a contiguous array. 

Compu t ing normals . If the user asked for it, each worker goes 
through its owned vertices, and computes the normals of the F-Rep at these 
points. These normal coordinates are stored with the vertex coordinates them­
selves, and are part of the output. 

Global number ing of ver tex. Now each processor has a sorted table 
of its own vertices; these n + 1 tables are disjointed and each row contains 4 
fields: the global number of the edge supportmg the vertex, and the 3 coordi­
nates. The processors also have disjointed triangle lists, each row containing 
the 3 edge numbers corresponding to the vertices on them. 

The vertices have to be numbered globally, instead of the current edge-
numbering; this operation will be distributed. Each worker Po,Pi,.. .,Pn 
builds an array of integers containing the sorted global edge numbers of the ver­
tices it owns. Then it broadcasts this array to the others (first PQ then Pi...). 
This helps making a global implicit numbering of vertices: each vertex (be­
longing to Pi) whose global edge number was broadcasted by Pi will have the 
final global vertex number: 

{index in P^s array) + 2^{size of P^s array) 

When a worker receives such a table, it goes through its own triangle table, and 
replaces the edge numbers by the global vertex numbers (they are easy to find 
because the global edge numbers were sorted), as described above. 

At the end of this renumbering step, appending the vertex tables (in the order 
Po . . . Pn) would create a global vertex array, where their indices would be the 
numbers stored in the triangle tables. This is what we aimed at. 

4.4 Sending the vertices and triangles to the 
master 

Gather ing resul ts . The master PQ is the processor that initiated the 
algorithm, and that must gather the results from the slaves. For the moment, PQ 
has its local table of triangles (like all other workers), where the vertices are 
indexed by the final global numbermg (some of these vertices are owned by 
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the master itself, the others by other workers). Each slave has to send its local 
vertex table to the master, sorted by their global edge numbers (these tables 
contain only locally owned vertices). The master appends each of them at the 
end of its own vertex table. In this way, the indices of the vertices in this final 
whole table will be the same as the global numbers used in the triangle tables. 

Lastly, every slave sends its triangle table to PQ, sequentially. The master 
appends these arrays, starting with its own local triangles. 

At the end of this step, PQ has the global triangle array, containing the global 
vertex numbers (set by the other workers). 

Or ient ing t he tr iangles. If the polygonizer was asked to compute 
the normals associated to the vertices, the triangles are oriented according to 
the average of the normals of the 3 vertices. This means that the master goes 
through the triangle array, and swaps two vertices among the three if the trian­
gle was not correctly oriented. This step proved to be very fast compared to 
the total execution time, in spite of the scalar products, and therefore could be 
left to the master. 

4.5 Results 
Now here are the results of a distributed polygonization with an increasing 

number of processors. The model core.hf(see Figure 18.4) was polygonized 
with a 100 grid on a set of heterogeneous Sun systems (half Sim Ultra Sparc 
5, and half Sun Blades 100). The hosts involved in polygonization were con­
nected on a lOOMb/s commuted LAN (using switches instead of hubs reduces 
collision during the cell re-balancing stage). See Figure 18.10 for the graph 
obtained (polygonization time in fimction of the number of processors). 

The two isolated symbols at the beginning of the graph (labeled IF and IS) 
represent the execution time with only 1 CPU. The first one (IF) is for the 
case of a "Fast" processor (a Sun Blade 100, whose time is 97.5 seconds); 
the second one (IS) is for the case of a "Slow" processor (a Sun Ultra Sparc 
5, whose time is 139.0 seconds). All the next measures correspond to pools 
where these two types of processors are equally mixed. 

The graph looks very much like ay = 1/x function. This means that to 
divide execution time by 2 or 3, you should multiply the number of processor 
by 2 or 3. What is more, the graph is quite smooth: distributing work among 
heterogeneous processors does not cause irregularities. 

5. Conclusion 
Function Representation (F-Rep) and its associated language HyperFun are 

promising for modeling complex shapes and solids. The rendering of such 
objects can be made by polygonization of the surface, but is an intensive com-
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Figure. IS..10. Execution times in llinction of processing power 

putational process. Fortunately, the algorithm for polygonization of the surface 
is based on independent computations on a geometric grid, and thus can natu­
rally be distributed over computers. 

Two implementations have been explored for more efficient rendering by 
distributing the cells of the geometric grid between computers. The first method 
uses dynamic load balancing: a server keeps a pool of the available cells and 
receive requests from the different workers for sending blocks. Then each 
node processes the blocks like in the single processor algorithm. By using a 
dynamic distribution of blocks, this implementation is effective on grid of het­
erogeneous computers. A modification in the runtime workload of the nodes 
(other users) can be handled, it is also possible to add new nodes during the 
processing. 

The second implementation targets parallel computers and dedicated cluster 
of computers (with homogeneous or heterogeneous nodes). The number of 
communication has been minimized to decrease the communication overhead. 

Both implementations present interesting results for practical efficient ren­
dering of complex F-Rep objects. They also suffer from some drawbacks due 
to the way they have been designed. The static approach does not support new 
nodes being added on the fly. It will also behave badly on a network, where 
the workload of some computers will be modified during runtune, like for in­
stance if someone planned to use the application on the network of a university 
when some other users may also use the computing ressources. The dynamic 
approach will handle it correctly, but may suffer from a bigger commimica-
tion overhead and thus may be less efficient in time. Also the efficiency of 
the dynamic approach deeply rehes on the size of a block, which is difficult to 
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estimate and may depend on the model being rendered; if the size of a block 
is too small it could cause a huge communication overhead, inversely if the 
size of a block is too big then the implementation will behave like the static 
approach and loose its advantages. 
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Abstract Digital image registration is a fundamental task in image processing, which is 
concerned with establishment of correspondence, particularly geometric corre­
spondence, between two or more pictures taken, for example, at different times, 
from different sensors or from different viewpoints. Because of the variety of 
the gray levels in images, it's very difficult to match them automatically with 
a satisfactory accuracy. In this chapter, we address the problem of geometric 
registration, in which a spatial transformation is needed to remove the variations 
of the misahgned images. This geometric registration problem is discussed in 
a theoretical modal first, and then a novel efficient geometric registration algo­
rithm based on the shape of the closed-regions is presented. Experiments have 
verified the advantages of this algorithm, but shown that the performance of its 
sequentially execution depends too much on the size of the input images. Its 
time complexity increases exponentially as image size increases, so finally we 
extend the sequential algorithm to a parallel scheme to perform the registration 
task more efficiently. 

Keywords: Images registration, geometric transformation, shape-specific points, differential 
operators, closed-regions, matching degree, parallel execution 

1. Introduction 
Image registration is used to match two or more pictures by establishing 

the relationship between the variations in the images, which is a significant 
component in a wide range of applications such as matching a target with a 
real-time image of a scene for target recognition, monitoring global land us­
age using satellite images, matching stereo images to recover shape for au-
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tonomous navigation, and aligning images for different medical modalities for 
diagnosis. Three major types of variations are distmguished[l]. The first type 
are the variations due to the differences in acquisition which cause the images 
to be misaligned geometrically. To register these images, a spatial transfor­
mation is needed to remove the variations. The second type of variations are 
those which are also due to differences in acquisition, but cannot be modelled 
easily such as lighting and atmospheric conditions. This type usually effects 
intensity values, but they may also spatial, such as perspective distortions. The 
third type of variations are differences in the images that of interest such as ob­
ject movements, growths, or other scene changes. Variations of the second and 
third type of variations are not directly removed by registration. This chapter 
addresses the first type of variations, i.e., geometric registration problem. 

Geometric registration or alignment of remote sensing images with the same 
target or scene accurately is a fundamental task in numerous applications in 
2-D remote-sensing images processing[l][2]. For example, in the fusion of 
remote-sensing images[3], the accuracy of the images registration must reach 
the pixel or sub-pixel level; otherwise it is impossible to continue the conse­
quent process of images fusion. Generally, images registration is to compute 
the parameters of geometric transformation between a pair of images, such as 
rotation, scaling and translation. These images with same targets are taken at 
different times, from different sensors, or from different viewpoints. 

Many different registration algorithms have been presented[4][5][6], which 
can be loosely divided into the following classes: algorithms that use image 
pixel values directly, e.g. correlation methods; algorithms that use frequency 
domain, e.g. FFT-based methods; algorithms that use low-level features such 
as edges and comers, e.g. features-based methods; and algorithms that use 
high-level features such as identified objects or relations between features, e.g. 
graph-theoretical methods. Cross-correlation is the basic statistical approach 
to registration, which gives a measure to evaluate the degree of similarity be­
tween an image and a template. By the convolution theory, we can use the 
products of Fourier transforms to compute correlation. An important reason 
why this metric has been widely used is that it can be implemented by using 
the Fast Fourier Transform (FFT). For an input image with large size, it can 
be implemented efficiently. Template matching using correlation has many 
variations[7]. If the allowable transformations include rotation or scale, for ex­
ample, multiple templates can be used. As the number of template grows, how­
ever, the computational costs quickly become unmanageable. Moreover, using 
correlation has a main limitation of inability to deal with dissimilar images 
since the gray-level characteristics of images are quite different. For this rea­
son, feature-based techniques[8][9][10], which match features extracted from 
images, are more preferable, if images are acquired under different circum­
stances, e.g. varying lighting or atmospheric conditions. Among them, the 
confrol-points-based mapping techniques are the primary approach currently 
taken to register images. The general control-points-based method consists 
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of three stages. In the first stage, features in the image are extracted. M the 
second stage, feature points in the reference image, often referred to control 
points, are mapped with the correspondent feature points in the data image. 
In the last stage, the parameters of the transformation are computed by the 
mapped pairs of the features points in the two images. Control-points-based 
methods are very efiicient for registration and applied widely in the registration 
field. However choosmg appropriate feature points are very difiicult for com­
puters and mapping the feature points in two images usually needs human's 
help. Moreover, feature points are too sensitive to noise. Sometimes it's im­
possible to get valid control points. So some other features in the image, which 
are not sensitive to noise, are more preferred to be used in registration. Among 
them, contours are widely used, because they are not only insensitive to noise, 
but also very easy to extract. In[l 1], closed boundaries are extracted and used 
as matching primitives. Another contour-based method for registering Spot 
and Seasat images is proposed in[8]. The authors in[12] present two contour-
based images registration algorithms: a basic contour matching scheme and an 
elastic contour-matching scheme for optical-to-SAR images registration. The 
basic algorithm presented in[12] uses chain code correlation to match the con­
tours between two images. It doesn't work well for image pairs in which the 
contour information is not well preserved. Moreover, chain code is very sensi­
tive to noise. The computational cost on computing the chain code correlation 
increases rapidly as the complexity of the contours grows. As for the elastic 
contour-matching scheme given in[12], it just works well when optical and 
SAR images have been coarsely aligned. 

In this chapter we present a new registration algorithm that takes full ad­
vantage of shape information of the closed-regions bounded by contours in 
images, which is used to register general remote-sensing images without other 
constraint on the image types. Moreover it can perform the registration task 
automatically and accurately. A preliminary version of our algorithm was pre-
proposed in [13]. 

Experiments have validated the algorithm. The results of experiments also 
showed that if we execute the registration algorithm sequentially, the per­
formance decreases exponentially as the size of input images increases. So 
based on the principle of the new registration algorithm given in this paper, 
we present a scheme to execute our algorithm in parallel on a modified PRAM 
model, which is a theoretical model that plays a central role in studying the par­
allel algorithms. A PRAM[14] is a set of synchronous processors connected to 
a shared memory, whose main feature is the capability for different processors 
to simultaneously access the shared memory. There are several variations of 
PRAM introduced in the literature[14][15]. The parallel computational scheme 
presented here makes a little modification of the PRAM model and adds a con­
troller processor into the model to supervise the progress of the registration 
task. 
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In Section2, the geometric registration is discussed in theory. In Sections, 
the principle of the algorithm is introduced and also the method to get the 
closed-regions in the images is given. More details about how to detect and link 
edges to construct closed boundaries are discussed in Section4. The method 
to match the closed-regions is discussed in Sections. In Section6, we give the 
results of experiments to validate the new registration algorithm. And then we 
propose a parallel computation scheme to extend the algorithm in Section?. In 
Sections how to use feedback technology to improve the registration accuracy 
is discussed. In the last section, we summarize this chapter. 

2 . T h e o r e t i c a l M o d a l o f G e o m e t r i c R e g i s t r a t i o n 

Geometric unage registration is defined as a mapping between two images 
by a geometric affine transformation and an intensity transformation. The goal 
of the registration is to maximize a predefined metric that measures the similar­
ity of the registered images. If we let two images to be registered be 2D arrays 
denoted by their intensity matrices Ii{x, y) and l2{x, y), then the geometric 
registration of these two images can be expressed as this mapping: 

h{x,y) = g{hU{x,y))) (19.1) 

where / is a 2D afiine spatial-coordinate transformation and g is a ID in­
tensity transformation. An afiine transformation composed of a combination 
of rotation, scaling and translation is a linear rigid mapping such that straight 
lines remain straight and parallel lines remain parallel, but rectangles become 
parallelograms. It maps two spatial coordinates x and y, to new coordinates x' 
and y' using four parameters tx, ty, s and 9 as follows: 

where {x', y') is the position after (a;, y) is shifted by tx in the horizontal di­
rection and ty in the vertical direction, rotated by the degree of ^ and scaled by 
the factor of s. This can be rewritten as follows: 

P2 = t + sRpi (19.3) 

where pi, p2 are the coordinate vectors of the two images, t is the translation 
vector, s is a scale factor and R is the rotation matrix. 

Given two matching pairs of points between the reference and data images 
denoted by (x^, y'l) = / ( ^ i , yi) and {x'2, y'2) = f{x2,2/2), we can determine 
the parameters of the afiine transformation as follows: 

e = arctan( ^^ ~ ^^) - arctan( ^^ ~ ^j) (19.4) 
X2 - Xl Xn — X\ 

i / (a ;2-2; i )2-I-(2/2-2/1)2 
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(19.6) 
Ax \ _ / â i \ f cosO sinO \ f x\ 
/\y ) - \ y [ ) ~ ^ ' \ - s i n ^ cos^ ) \ y^ 

Finding the above four parameters of the optimal affine spatial transforma­
tion is generally the critical phase to the geometric registration problem be­
cause the intensity transformation g is not always necessary, and often a simple 
lookup table determined by sensor calibration techniques is sufficient. 

It is very difficult, if not possible, to match the images in the initial do­
main of the pixels because of the variety of gray levels. Therefore, two images 
/ I (reference image) and h (data image) are usually transformed to the fea­
ture domain by an extraction process, where it is easier and more reliable to 
compute the parameters for the registration. The following figure illustrates a 
general model to be used in our registration algorithm. 

Reference Image 
^Feature Extraction 

Data Image 
> Feature Extraction 

Match 
=!r— 

^x^y 
© s 

* Registration 

Figure 19.1. A general geometric registration model 

3. Principle of the New Algorithm 
Control-points-based methods can perform the registration task between im­

ages accurately, but it's very difficult to choose appropriate control points in 
images by computers because there is little shape information in points. The 
closed-regions boimded by contours contain so many points from which suf­
ficient shape information can be extracted. Moreover, choosing and matching 
closed-regions can be done by computers automatically without any human's 
help. So instead of using control points, we take foil advantage of the closed-
regions to perform the registration task. The main steps of this algorithm are 
listed as follows: 

1) Edges are detected and linked in the reference image R and data image 
I respectively. 

2) Valid closed-regions are selected to construct two closed-region set cor­
responding to the reference and data images respectively. 

3) Identify an appropriate closed-regions between the above two sets. 

4) Based on the matched closed-regions, compute the parameters of the 
affine transformation. 

5) Register the images by the affine transformation we found. 
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The data image is the image we want to match with the reference image. As 
shown in the above flow chart, firstly, the algorithm detects and Imks edges 
in the input images. Secondly, we choose the regions boimded by the closed 
contours, which are called closed-regions in this paper. So we get two sets of 
closed-regions, one of which is obtained from the reference image R and the 
other from the data image I. After having obtained the two sets, the original 
input images can be discarded in the following steps of the algorithm. Using 
the technique of matching the closed-regions, which will be discussed in detail 
in Sections, we can easily compute parameters of images registration such as 
the degree of rotation, the factor of scaling and the distances of shifting. 

For detecting the edges in the input images R and I, we can use some dif­
ferential operators[16][18][17] such as Robert operator, Prewitt operator and 
Sobel operator. By these gradient operators, we get not only the magnitudes 
of the edges, but also the directions of them. So the broken edges in a contour 
can be linked by the following method. 

Let {xi, yi) and {x2, V2) be the end points of two broken edges Ei and E2 
respectively. Given the thresholds of the magnitude and the angle degree T and 
A . If the following conditions are satisfied, we link Ei and E2 from {xi,yi) 
to (X2,y2)-

|V/(a;i ,?/ i)-V/(x2,j /2) | < r .j^-^x 
\^{xi,yi) - ip{x2,y2)\ < A 

where / denotes the grayscale distribution of the remote-sensing images, V 
is the gradient operator we choose to detect edges, and (p{xi,yi) denotes the 
angle of the gradient's direction at a given point (a;,, yi). After all the end 
points of broken edges have been checked by the above method, we pick up 
the regions encircled by the closed contours into two sets of closed-regions 
from images R and I respectively. 

4. Edge Detection and Linking 
This section introduces edge detection and linking technology in more de­

tail because this process is critical for our proposed algorithm. As the above 
section described, edges can be detected by some gradient operators. A gradi­
ent operator is the first-order derivative operator. For an image of the intensity 
distribution fimction f{x, y), its gradient at the position of (a;, y) is expressed 
as 

A/(x,j/) = [G. G.r = [ g ^V (19.8) 

where G^, Gy are the components corresponding to the horizontal and vertical 
directions respectively. A / is a vector with the magnitude: 

A / - m a f f ( A / ) = (G2+G2)(l /2) (19.9) 

and angle: 
(t>{x, y) = arctan(Gy/Gx) (19.10) 
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Eq.19.9 is computed using the modulo 2. Another two common computation 
methods use modulo 1 and oo: 

A . _ | ^ / | , | 9 / | 
dx 

A/(oo) = max{| ̂ 1 
dx 

(19.11) 

(19.12) 

In practice, the above partial derivation in the gradient operator is approxi­
mated by the convolution using some local templates. Both of G ;̂ and Gy need 
templates, so each gradient operator consists of two templates. According to 
the size and elements of the templates, numerous gradient operators have been 
proposed, which have different performance in different applicatons. Among 
them, three most useful operators are Roberts cross operator, Prewitt operator 
and Sobel operator which are illustrated in Figure 19.2. 
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Figure 19.2. The templates of some commonly used gradient operator 

Applying a gradient operator on an image results in three images, i.e., the 
edge image whose gray levels reflect the gradient magnitudes of then- corre­
sponding pixels, the binary edge image showing only the location of the edge 
points, and the directional edge image that encodes the direction of the edge 
(angle of the gradient). In general, an edge image shows each object outlined 
in edge points. Since these edges seldom form closed, connected boundaries 
that are required for our algorithm, edge linking is a necessary process that 
associates nearby edge points so as to create a closed, connected boundary. A 
simple linking method based on the magnitude and angle of the gradient has 
been introduced in the previous section to fill the small gaps on the boundaries. 
More sophisticated methods such as heuristic search, curve fitting and hough 
transform can also be applied to achieve better performance. 

5. Matching between the Closed-Regions 
We develop an efficient method to match the closed-regions by shape-specific 

points. From the matched pairs, we can compute the parameters of image reg­
istration. 

We first give the definition of shape-specific points, which plays a key role in 
our algorithm. Given a closed region R, which contains some discrete points 
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denoted by {{xi,yi)\i = 1,2,..., A/'}. Let T be a geometric transformation 
operated on R. Assume R' = T{R), which means R' is a new closed region 
after transforming R by operator T. Given a function / , whose input is a set 
of points and output is one point. Denote two points by p and p', which satisfy 
p = f{R) and p' = f{R'). We say p is a shape-specific point if and only if 
p' = T{p). 

Accordmg to the above definition of the shape-specific pomts, if we let the 
transform T be rotation, scaling, translation or their combinations, it is easy 
to prove that the following points computed by following functions are shape-
specific pomts: 

• Center point 

Centroid point 

a;A = ^ , yA = ^ ^ (19.13) 

1 1 

^^^ w $3'^'^»' y^ ̂  wYl^^yi (19.14) 
i i 

where uii is the distance from the point {xi, yi) to the center point (x^, yA) 
and W = Y,i^i-

Then using the shape-specific points of the closed-regions, we compute the 
parameters of the geometric transformation for a registration. The procedure 
is illustrated in Figurel9.3. As Figurel9.3 shows, let T be the combination 
of these operations that rotates the closed-region clockwise by a degree of 9 , 
scales it a times and translates horizontally and vertically by the distances Aa; 
and Ay. We get a new region r' = T{r) . Let A, B, A' and B' be the shape-
specific points of the two regions respectively, whose coordinates are {XA, J/A), 
(XB^VB), {XA'^VA') and {xB',yB') as illustrated in the figure. The parameters 
of the geometric transformation can be computed as follows: 

• the degree of rotation 

e = a x c t a n ( ^ ^ l ^ l ^ ) - a x c t a n ( ^ ^ : i M ) (19.15) 
XB' - XA' XB - XA 

• the factor of scaling 

^ \/{xB' - XAif + {ys' - VA'Y (19 16) 
\/{xB - XAY + (ys - y^)^ 

the distances of translation 

( i^x\ _l_ f cos9 sin6l \ f XB' \ _ f XB \ . ,„ ,~ 
y A y J - a ' \ - s i n ^ cos^ J \ VB' J \ VB J ^ ^ 
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T 
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Figure 19.3. Computing the parameters of the geometric transforaiation based on shape-
specific points 

After edges are detected and linked, we get two sets of closed-regions, de­
noted by RSR and RSi from the two input image R and / . If we can find a 
matched pair of closed-regions r e RSR and r' G RSi satisfying r' = T{r) 
,the parameters of the geometric transformation T can be computed from the 
above procedure. 

To find the matched pairs between two sets of closed-regions, we give a 
method to measure the matching degree between any two closed-regions. Us­
ing this measurement, we can evaluate whether two closed-regions are a matched 
pair. 

Given two closed-regions rj and r2, we compute the matching degree de­
noted by M(r i , r2) between the two regions as following steps: 

1) Firstly, compute the parameters of a geometric transformation T be­
tween the closed-regions ri and r2 based on their shape-specific points 
as illustrated in Figurel9.3. 

2) Secondly, transform r^ by the operator T with the parameters we've 
got in the above step. Denote the outcome of the transformation by 
rs = T{r2). rs is the transformed version of r2. 

3) Finally, compute the normalized matching degree between ri and r^ as 
follows. 

Suppose ri and rs are located in two bounded rectangles Mi x Ni and M3 X 
TVs as shown in Figurel9.4. Let M = max(Mi, M3) and iV = max(iVi,iVs). 
Define two fiinctions as 

r> / ^ ( 1 (m,n) 6 r i n o lo^ 
Rilm,n) = < „ ) \A (19.18) 

Rs{m,n) = { „ ^ ^ , _ (19.19) 
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!! 

Figure 19.4- Bounded rectangles of the closed-regions 

We let the normalized correlation coeflicient between the regions ri and r^ 
be the matching degree M(r i , ra) between ri and r2, which is computed as 

[ E t i E ^ = i f i i K n ) f l 3 ( m , n ) ] 2 

[ E t i E™=i Rlim, n)\[E^=i E ^ = i Rlim, n)] 
M ^ r i . r a ) - ^ / ^ ^ ^ ^ — ^ ^—^^^ ^ (19.20) 

Obviously, M{ri, r2) is in the range of [0,1]. If (ri, ra) is a matched pair of 
closed-regions which satisfies ri = T{r2), M(r i , ra) equals 1. If they are not 
a matched pair, the matching degree between them is less than 1. So we can 
use this quantity to evaluate whether two close-regions are a matched pair. 

However, in practical applications of registration, M(ri ,r2) cannot reach 
the ideal value of 1 because of the distortion in interpolation and quantization. 
So we give an efiicient way to do the matching work. Given a closed-region 
ri G RSR, let r'l be a closed-region in the set RSj. We say that {ri,r[) is a 
matched pair if and only if the matching degree M (r i, r J) is greater than any 
other pairs {ri,r'2), where r2 € RSj and r'2 ^ r'^. 

After we evaluate the matching degrees between closed-regions, we obtain 
some matched pairs of closed-regions between two input images. Assume sev­
eral matched pairs are got by evaluating their matching degrees. From each 
of them, we can compute a group of geometric parameters using the specific-
points. The average of them are the registration parameters we want to com­
pute. 

6. E x p e r i m e n t s 

We give two experiments to validate the new registration algorithm. One 
is an experiment of computer simulation and the other is an experiment of 
registering two practical remote-sensing images. 

Figurel9.5(b) is a geometric transformed version of Figurel9.5(a). The 
transformation includes rotating clockwise by 10°, scaling to 80% of the orig­
inal size and no translation. We register Figurel9.5(a) to Figurel9.5(b) by the 
presented algorithm. 
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(a) The reference image (b) The data image 

Figure 1.9.5. Test images in the simulation 

Figurel 9.5(a) shows Using Sobel operator to detect and link the edges, after 
which a set of closed-regions is formed. To avoid the interference of noise, we 
just keep large closed-regions, whose sizes exceed a threshold. Similarly pro­
cess Figurel9.5(b). We get two sets of closed-regions from two input images 
respectively. For simplicity of discussion, we assign numbers to the closed-
regions as illustrated in Figurel9.6(a) and Figurel9.6(b). 

(a) In the reference image (b) In the data image 

Figure 19.6. Extracted closed-regions 

By evaluating matching degrees among the closed-regions, we obtain the 
four matched pairs such as (1,6), (2,7), (3,8) and (4,9). From each matched 
pair, we compute a group of parameters of the geometric transformation. Av­
eraging over them, we get the parameters of the geometric transformation for 
registering the input images as follows 

1) Rotation degree 

6 = -(10.7778 + 9.8654 + 9.5037 + 11.4381) 

= 10.3963 w 10 
(19.21) 
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2) Scaling factor 

e = J (0.8178 + 0.8436 + 0.8031 + 0.7646) 

= 0.8071 « 0.8 

3) Translation distances 

Aa; « 0 Ay w 0 (19.23) 

we can see, the accuracy of the new registration algorithm is excellent. 
Note that the closed-regions 5 and 10 are a matched pairs, but our algorithm 

doesn't find them. The reason is that the two regions are cu-cular symmetric 
and the two shape-specific points given in Sections converge into one point. 
For this case, we cannot evaluate the matching degree between them. But 
losing some matched pairs of closed-regions has no effects on the outcomes 
of our algorithm if we get enough matched pairs. Sometimes, we can register 
images accurately even by one matched pair of closed-regions. 

The second experiment is to register two practical remote-sensing images 
by our algorithm. In Figurel9.7(a) and Figurel9.7(b) are the remote-sensing 
images with the same region captured by Landsat and SPOT respectively. The 

(a) By Landsat (b) By SPOT 

Figure 1.9.7. Remote-sensing images registration 

parameters of the geometric transformation computed by the new algorithm 
are listed as follows: 

1) Rotation 6 « -0.2183 

2) Scaling a « 1.2087 

3) Translation distances Aa; « -169 (horizontal shift); Ay « 22 (vertical 
shift) 

The registered image is illustrated as the following figure: 
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Figure 19.8. The registered image 

7. Parallel execution 
The time complexity of the proposed geometric registration algorithm de­

pends a lot on the size of input images. Through the above experiments, we 
can find that 95% of the time is spent on detecting and linking edges. When the 
size of images exceeds 1024 * 1024, the performance of sequentially executing 
the registration algorithm is very bad, sometimes intolerable. So we design a 
scheme to execute the registration algorithm in parallel. 

We first decompose a large image into some small sub-images and assign 
each of them one process to detect and link edges. A controller process is used 
to supervise the progress of the whole scheme, which links the contours on 
the borders between the sub-images, form the set of closed-regions after all 
the sub-processes finish their tasks in their correspondent sub-knages, com­
putes the parameters of the registration. The structure of the parallel scheme is 
illustrated in Figurel9.9. 

Cotrtjuller Pruutjss 
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Figure 19.9. The distribution scheme 

The two input images we want to register are stored in a shared memory. As 
shown in Figure 19.10, the controller process decomposes the input two images 
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into n sub-images with same size respectively and creates a sub-process for 
each sub-image. 

PU ! ?I3 

The r*f''^*;„'f i»»;ig!» 
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Tk« ds,*.» :-.t5t 

Figure 19.10. The decomposed images 

The following steps give the flow of the controller process: 

1) Start all the sub-processes and wait until all of them finish then- tasks. 

2) When all the sub-processes stop, link the contours on the borders be­
tween the sub-images. 

3) Combine all the closed-regions in different sub-images into two set of 
closed-regions correspondent to two input images respectively. 

4) Computing the registration parameters and register the two input images. 

Each sub-process executes the same task as follows: 

1) Detect and link the edges. 

2) Form the closed-regions in the current sub-image. 

We know from experiments that the computational time denoted by Tc of 
detecting and linking edges takes more than 95% of the total time denoted by 
Ts of executing the original algorithm sequentially. In the extension scheme, 
this most time-consuming task is distributed on 2N processors. Let Tr be 
the other part of the total time T .̂ Denoting the computational time spent on 
executing the parallel scheme by T^ , we have 

T, = T, 

T<i=^+Tr 

(19.24) 

(19.25) 

where A'' is the numbers of sub-images in each input image. Because Tc 3> %, 
we get 

T., 
2N + T Tr. 

_ 2N_ 
J-c'T J-r J-c 

1 (19.26) 
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which means the performance of the parallel scheme is about 2N times that of 
the sequential algorithm. 

8. Registration by Feedback 
This section gives a brief discussion on how to increase the registration ac­

curacy by incorporating the feedback technique into our algorithm. The feed­
back technique has been developed successfully for registration based on rigid 
and afiine transformation. 

Obviously, our new algorithm depends on the integrity of the extracted 
closed-regions, but sometimes automatically acquired contours are ambigu­
ous or invalid. For these cases where feature detection and feature matching 
are difficult, the use of feedback between the stages of constructmg the closed-
regions and finding the optunal affine transformation can significantly improve 
the registration accuracy. 

For our algorithm, let T denote the set of thresholds that control the pro­
cess of constructing the closed-regions, and M the measure of how well the 
reference and data images are registered so far. Then we can use the relax­
ation technique over the set T in order to maximize M. M can be computed 
as the normalized correlation between the overlapped regions in the reference 
and data images after registration. Each possible match for a set of thresholds 
defines a displacement which is measured by the fianction M giving a rating 
according to how closely the reference and data images are registered. Each 
match whose displacement is close to the actual displacement will tend to have 
a higher rating. Adjust the set of thresholds to try another match. The pro­
cedure is iterated adjusting the set of thresholds based on the ratings until the 
optimal transformation resulting in the maximized rating is found. 

9. Summary 
The geometric image registration was addressed in this chapter. A new algo­

rithm of remote-sensing images registration was presented in this paper, which 
takes fiill advantage of shape information of the closed-regions in images. With 
this algorithm, we can perform the registration task automatically and accu­
rately. Experiments validated the proposed algorithm. Moreover, we extended 
it to a parallel scheme and got much better performance. The performance of 
our algorithm depends on how the contours are reserved in images. How to 
efficiently detect and link edges is an important topic in the fiiture research. 
Also future work could be on how to incorporate the new algorithm into other 
existing registration schemes. 
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Abstract Grid constitutes a new computing paradigm, which inherits a great number of its 
features from distributed systems. This new paradigm enables resource-sharing 
across networks, being data one of the most important ones. Data-intensive grid 
systems are grid appUcations, whose major goal is to provide efficient access 
to data. Existing data-intensive apphcations have been used in several domains, 
such as physics, cHmate modeling, biology or visualization. The I/O problem is 
not completely solved in this kind of apphcations. This chapter presents MAPFS 
as a flexible and high-performance platform for data-intensive apphcations and, 
more specifically, for data grid appUcations. 

Keywords: Data grid, multiagent architecture, I/O optimizations, dynamic reconfiguration. 

1. Introduction 
Grid computing has become one of the most important topics appeared and 

widely developed in the computing field in the last decade, together with the 
agent technology. 
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The terminology grid was used by first time in the middle 1990's for nam­
ing a distributed infi"astructure, dedicated to scientific research and advanced 
engineering, making usage of Internet [7]. Unlike the conventional networks, 
which are focused on the communication between devices, grid computing 
takes advantage of the low-load periods of all the computers connected to a 
network, making possible computing resources sharing. 

On the other hand, there is a growing interest in the development of high-
performance Input/Output systems, because the I/O phase has become a bot­
tleneck in the computing systems due to its poor performance. The increasing 
importance of the I/O systems can be observed in the names of the different 
periods of the computer science. The period between the 1960's and 1980's 
was named computing revolution age. However, the period beginning in the 
1990's is named information age. This change of mentality has allowed the 
information and I/O systems to take a main role in the computing field. 

Nevertheless, improvements in disk access times have not been proportional 
to the increase of processors performance, which have been enhanced more 
than 50% per year. Despite disk capacity has drastically increased [14], re­
ducing the transference time between 60% and 80% per year, the total access 
time has only been reduced 10% per year, due to its dependence on mechan­
ical systems. Amdahl's law states that the speedup obtained fi'om computers 
is limited by the slowest system component. Thus, it is fiindamental to im­
prove I/O systems performance with the aim of enhancing the whole system. 
This limitation is more relevant in applications creating and operating on large 
amounts of data. Nowadays, there is a huge number of such applications, e.g. 
data mining systems extracting knowledge from large volumes of data. Ex­
isting data-intensive applications have been used in several domains, such as 
physics [13], climate modeling [17], biology [31] or visualization [10]. 

One of the major goals of grid computing is to provide efficient access to 
data, being data-intensive grid applications (or data grids, in short) one of the 
most relevant grid architectures. Data-intensive grid applications try to tackle 
problems originated by the needs of a performance-fiill I/O system in a grid 
infrastructure. In these architectures, data sources are distributed among dif­
ferent nodes. Also, a typical data grid requires access to terabyte or higher 
sizes datasets. For example, high-energy physics may generate terabytes of 
data in a single experiment. Accesses to data repositories must be made in an 
efficient way, in order to increase the performance of the applications usmg 
the grid. Furthermore, data-intensive grid applications have several fimctional 
requirements and access patterns. 

Therefore, the I/O system must be flexible enough to match these demands. 
The usage of hints, caching and prefetching policies or different data distribu­
tion configurations are optional features, which can reduce latency and increase 
I/O operations performance. In order to integrate all these functionalities in 
the storage system, it is possible to use different distributed systems technolo­
gies. Agents technology is very appropriate because of its adaptability to dif-
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ferent domains. Furthermore, the usage of agents provides additional features, 
such as autonomy, reactivity and proactivity [30]. 

Currently, there are different systems that offer services to access resources 
in a data grid. Accessing heterogeneous resources with interfaces and different 
functionalities is solved, in the majority of the cases, by means of new services 
that offer a imiform access to different types of systems. Examples of this kind 
of systems are Globus [28], Storage Resource Broker (SRB) [2], DataCutter 
[4], DPSS [27] and BLUNT [18]. All these systems use replication to improve 
the I/O performance and reliability. 

Many efforts have been made in order to design and implement an integrat­
ing data grid infrastructure [5]. The data access API of this general architecture 
involves a standard interface to storage systems. Nevertheless, this API does 
not support the usage of high-performance I/O operations. 

This chapter presents MAPFS, a multiagent architecture, whose goal is to 
allow applications to access data repositories in an efficient and flexible fash­
ion, providing formalisms for modifying the topology of the storage system, 
specifying different data access patterns and selecting additional functionali­
ties. 

The outline of this chapter is as follows. Section 2 presents MAPFS as a 
flexible infrastructure for data-intensive grid applications. Section 3 describes 
MAPFS architecture, indicating how MAPFS can interact with other data grid 
infrastructures. Section 4 shows the results obtained for the evaluation of ap­
plications using MAPFS. Section 5 shows the related work. Finally, section 6 
summarizes our conclusions and suggests further future work. 

2. ]VIAPFS as a Data-Intensive Grid 
Infr ast r uct ur e 

The previous section states that a key feature of data grids infrastructures is 
the flexibility. MAPFS [24] is a multiagent architecture, which supplies this 
property through several approaches: 

• System topology configuration: Ability to change system topology, set­
ting the I/O nodes and their relationships. This feature is achieved through 
the usage of storage groups. 

• Access pattern specification: Although MAPFS is a general purpose I/O 
system, it can be configured in order to adapt to different I/O access pat­
terns. The main configuration issues of the MAPFS system are: (i)I/0 
caching and prefetching, approach that increases the I/O operations effi­
ciency, because of the optimal usage of disk caches and (ii)usage of hints 
on future access patterns. MAPFS offers an independent API, different 
from I/O operations, that allow applications to configure access patterns, 
which are translated into hints by the I/O system. All these features can 
be configured through the usage of control user operations. 
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• There are different reasons to allow some functionalities (such as caching 
or prefetching) to run in parallel on different nodes and even in the data 
servers. Moving executions to data servers may reduce network latency 
and trafiic. The agent technology is a suitable framework for inte­
grating these functions in the storage system, because of its adaptability 
to different domains and its capability to provide autonomy to the pro­
cesses. 

2.1 Storage Groups as Data Resource-sharing 
A storage group is defined in MAPFS as a set of servers clustered in groups. 

These groups take the role of data repositories. Therefore, storage groups con­
tain a set of files, which is distributed among their nodes. These groups can be 
built applying several policies, trying to optimize the accesses to all the storage 
groups. Some significant policies are: 

• Grouping by server proximity: Storage groups are built based on the 
physical distribution of the data servers. Storage groups are composed 
by servers in close proximity to each other. This policy optimizes the 
queries addressed to a storage group because of the similar latency of 
messages sent to servers. 

• Grouping by server similarity: Storage groups are composed of servers 
with similar processmg capacity. This policy classifies storage groups in 
different categories, depending on their computational and I/O power. 

These two policies are the most appropriate polices in a grid infrastructure, 
because of the geographical and technical differences of the nodes that belong 
to such infrastructure. However, it is possible to extend these policies with new 
ones and use them for building storage groups. 

Storage groups allow MAPFS to reconfigure dynamically data storage servers. 
If the system topology is changed, data must be reconstructed in the new lay­
out, degrading the performance of the I/O system. In order to avoid data recon­
struction, MAPFS defines two types of storage groups: (i)main storage groups, 
which constitute current layouts; and (ii)secondary storage groups, which are 
used for storing old layouts. 

This approach schedules data reconstruction until the system runs a defrag-
mentation operation, which is used for deleting secondary groups and sim­
plifying the storage system description, or when a server or storage group is 
deleted. In this way, storage system description is composed by main storage 
groups, until a new topology change is made in the system. 

2.2 Control User Operations as Applications 
Access Pattern Specifications 

Hints are structures known and built by the I/O system, which are used for 
improving the read and write operations performance. MAPFS uses these hints 
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Figure 20.1. Storage System API 

to access data. For example, storage systems using hints may provide greater 
performance because they use this information to decrease cache faults and to 
prefetch the data most probably used in next executions. In other words, the 
more information it has been used, the less uncertainty in the future access 
guesses and, therefore, the better prefetching and caching results. 

In MAPFS, hints can be obtained in two ways: 

1) Given by the user, that is, the user application provides the necessary 
specifications to I/O system; 

2) Built by the multiagent subsystem. In fact, one of the characteristics of 
agents is their capacity of learning. The creation of hints dynamically 
can be possible due to this feature. If this option is selected, the multia­
gent system must analyze the access pattern of the applications in order 
to build hints improving data access. This feature can be achieved using 
statistical and AI methods on historical logs. 

If hints are provided by the user application, it is necessary for the system to 
provide syntactic rules for setting the system parameters, which configure the 
I/O system. On the other hand, if the multiagent subsystem creates the hints, 
it is also necessary to store them in a predefined way. In any case, lexical and 
syntactic rules must be introduced in the system. 

The system is configured through several operations, which are independent 
of the I/O operations, although these last ones use the former operations. The 
configuration operations are divided into: 

• Hints Setting Operations: Operations for establishing the hints of the 
system. Therefore, they can set and get the values of the different fields 
of the hints. 

• Control User Operations': Higher level operations that can be used di­
rectly by the user applications to manage system performance. 

Figure 20.1 shows the three levels in which the Storage System API is di­
vided. 

As can be seen in the figure, there are three ways of accessing the Hints 
Setting Module: 

1) The I/O operations may ask for hint values and even modify them. 
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2) The control user operations may modify the hints. This is the usual 
method for the user applications to interact with hints. 

3) To make the system flexible, the Hints Setting Module may be accessed 
directly through the Hints Setting API. The multiagent system may build 
and modify these hints through this interface. 

2.3 Agents as Resource Integrators 
The nature of the problem of the creation of a data grid can be solved in a 

more natural way through a distributed system. A multiagent system is inher­
ently distributed. Moreover, the integration between such system and a data 
grid can take advantage of all the features of the agent technology. 

The multiagent system consists of a set of agents, with the following fea­
tures: (i)autonomous behavior, that is, they are able to act theirselves and on 
behalf of other systems, (ii)reactivify, that is, they perceive the changes of the 
environment and they act according to this, (iii)proactivity, that is, the abil­
ity of foreseeing fiiture needs and acting with the aim of solving them and 
(iv)intelligence, because agents attempt to act intelligently on behalf of the 
user or another system. 

MAPFS uses an agent hierarchy, which solves the information retrieval 
problem in a transparent and efiicient way. This hierarchy is composed of: 

• Extractor agents: They are responsible for information retrieval, invok­
ing parallel I/O operations. 

• Distributor agents: They distribute the workload to the extractor agents. 
These agents are placed at the higher level of the agents hierarchy. 

• Caching and prefetching agents: They are associated with one or more 
extractor agents, caching or prefetching their data. 

a Hints agents: They study applications access patterns to build hints im­
proving data access. 

A key point in the deployment of these functionalities to a grid infrastruc­
ture is the need of addressing the problem of the security. Owing to the global 
and wide scope of such infrastructures, security and authorization must be sup­
ported. 

These capabilities are implemented in MAPFS through a new agent sub­
system, named security subsystem. This subsystem interact with distributor 
agents in order to authorize a concrete user the usage of the system. Thus, 
once a distributor agent is authorized on behalf of a user, the rest of the hi­
erarchy is allowed to be used within this session. The beginning and end of 
the sessions are established through the usage of two MAPFS primitives, in a 
similar way to the sessions in a sequential file system. This subsystem uses a 
concrete security policy, which defines the authorization and access controls to 
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Figure 20.2. Taxonomy of agents used in MAPFS 

be used for client access to MAPFS. Different security policies may be used 
through the implementation of suitable security modules. 

Figure 20.2 represents the relation among all MAPFS agents. Nevertheless, 
the taxonomy of agents can be extended to provide additional functionalities. 

Through the usage of the agent hierarchy, MAPFS evolves to a service ori­
ented architecture, providing the following services (related to the different 
kind of agents): (i)caching and prefetching services, with the aim of increasing 
the performance, (ii)security service, in order to give credentials and guarantee 
access rights and denial to the information and (iii)hint service, for providing 
intelligence and learning capacity to the process of accessing data. 

This feature is desirable in grid infrastructures, because user are mainly in­
terested in services. Indeed, the future of the Grid and Web services seems to 
go hand-in-hand to develop an integrated framework [8]. Global Grid Forum 
is currently concerned about the Web-Grid integration in the form of the Open 
Grid Services Interface Working Group [23]. 

3. MAPFS Architecture 
Besides of the flexibility, another desirable feature of data grids is that they 

must be able to use heterogeneous data servers. MAPFS is based on a client-
server architecture using general purpose servers, providing all the MAPFS 
management tasks as specialized clients. 

In the first prototype, we use NFS server. NFS [21] has been ported to dif­
ferent operating systems and machine platforms and is widely used by many 
servers worldwide. Therefore, it is very easy to add new data repositories to 
the data grid infrastructure. The only requirement of these data servers is to use 
NFS and export a directory tree to data grid users. Data is distributed through 
the servers belonging to a storage group, using a stripe unit. Additionally, data 
servers must be authorized by the security subsystem for all the users of such 
repository. Security subsystem may use several authentication and authoriza­
tion mechanisms. MAPFS has configuration information that determines the 
type and level of security services required for a storage group. MAPFS uses 
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these security services to determine user identity. Once the identity and autho­
rization information has been obtained, security subsystem grants or denies the 
access based on an ACL (Access Control List). 

On the client-side, it is necessary to install MAPFS client, which provides 
a parallel I/O interface to the servers. This module is implemented with MPI 
[19], the standard message passing interface, widely used in parallel comput­
ing. This message-passing framework is used with the aim of connecting sev­
eral nodes in a cluster. Nevertheless, this technology is not valid for connecting 
clusters with internal nodes^. In order to provide a global space and dynamic 
resource sharing, we use a grid infrastructure. 

One of the major goals of a data grid infrastructure is to provide access to 
a huge number of heterogeneous data sources. In this sense, it is important 
that MAPFS can interoperate with other grid architectures and give access to 
their data repositories. Because MAPFS is implemented with MPI, its inte­
gration with other grid infrastructures is relatively simple, through the usage 
of MPICH-G2, [6] a grid-enabled implementation of the MPI, which makes 
possible running MPI programs across multiple computers at different sites. 
MPICH-G2 is the second generation of the library MPICH-G. This library 
extends the Argonne MPICH using services from the Globus Toolkit. MPICH-
G2 automatically converts data in messages sent between machines of different 
architectures and supports multiprotocol communication. 

Therefore, MAPFS can be used in two different modes: (i)applications can 
use MAPFS as the main infrastructure, accessing to data from the storage 
groups defined in this system and (ii)appKcations can use MAPFS together 
with other grid architectures. In this case, it is possible to extend the storage 
groups with other nodes accessible through the Globus services. Concretely, 
the Global Access Secondary Storage (GASS) service [3] is used to stage ex-
ecutables to remote machines and to support efficient communication in dy­
namic grid environments. The integration between MAPFS and GASS is not 
redundant, because GASS does not provide the full functionality of a parallel 
file system. MAPFS provides a rich parallel mterface, which can be used in 
wide area computing with the aid of GASS and other Globus services. 

On the other hand, additional multiagent subsystems, such as security sub­
system, provide several functionalities and they are executed on different nodes. 
The most usual configuration is to run these subsystems in data servers, helping 
to reduce network traffic. 

4. MAPFS Evaluation 
In order to validate our implementation, it is necessary to evaluate its per­

formance. Experiments were run in two different storage groups, which use 
the server similarity grouping policy, because of the technical differences of 
both groups. The first storage group (Gi) is composed of four nodes Athlon 
650MHz, with 256 MB of RAM memory, connected by a Gigabit network. 
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Figure 20.3. Speedup of the MAPFS solution (group Gi) versus Local solution 

The second storage group {G2) has six nodes Intel Xeon 2.40GHz, with 1GB 
of RAM memory with a Gigabit network. The storage group G2 provides 
better performance. Nevertheless, the storage group G\ offers higher stor­
age capacity. These two storage groups constitutes our initial trial data grid. 
Our experiment consists in a process per node running a multiplication of two 
matrices, where the matrices are stored in the grid, using MAPFS as underly­
ing platform. The resultant matrix is also stored in a distributed fashion. A 
prefetching multiagent subsystem is used, which is responsible for prefetching 
rows and columns of the matrices. In this case, hints provided by the applica­
tions are the indexes of the matrix row and the matrix column of the element 
calculated in every iteration. Hints are used as data tags for processing the 
elements in an efficient manner, skipping non-related elements in the cache. 

This experiment was compared to another one, which consists in multiply­
ing the same matrices stored in the local disk through the usage of a traditional 
I/O system. The size of the matrices is 100 MB. 

Figure 20.3 shows the speedup of the MAPFS solution for the group Gi 
versus local solution, varying the access size used in the I/O operations. As 
can be seen, the speedup is very close to 4, the number of nodes, which is the 
maximum speedup, limited by the "Amdahl law". 

Figure 20.4 represents the execution time of the groups Gi y G2 for the 
matrix multiplication. As we previously mentioned, the storage group G2 pro­
vides better results. 

In this scenary, we add two servers to the storage group G2, modifying the 
topology of the storage groups. These two servers form a new secondary group, 
G3. The storage group G2 becomes a secondary group. The group G4 is the 
new main storage group with all the nodes from G2 and G3. 

If we use the new group G4, the results of the multiplication improve, be­
cause the system takes advantage of a higher parallelism (higher number of 
nodes). Figure 20.5 shows this comparison. 

A defragmentation operation involves the reconstruction of the secondary 
storage group G2 over the main storage group G4. If the access size is 16K and 
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Figure 20.5. Improvement of the raultiplication adding two servers to the storage group 

the group G2 has 50 GB-size files, the time necessary for the reconstruction is 
around 30 minutes. This operation must be made in low-load periods. 

5. Related Work 
Grids are persistent frameworks that enable applications to integrate re­

sources managed by diverse organizations in widespread ubications. Some 
of the most known grid applications are the Search for Extraterrestrial Intel­
ligence (SETI@Home) project [15], which analyzes data obtained from tele­
scopes in order to explore and explain the origin of life in the universe, or 
Great Internet Mersenne Prime Search (GIMPS) [12], whose goal is discover­
ing the highest prime number. As we can observe, grid computing is used in 
the analysis of different sources of data, taking advantage of computing cycles 
in idle nodes. 

Grid computing focuses on the remote access to computational resources. 
This paradigm is not linked to a concrete technology. Nevertheless, there is a 
de facto standard. Globus. 

Globus is a grid framework proposed by Globus Alliance [11]. Its main pur­
pose is the creation of fundamental technologies behind the Grid, which lets 
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applications share computing, data and tools resources through secure com­
munication charmels, without sacrificing local autonomy. The Globus Toolkit 
includes open-source software services for resource monitoring, discovery, and 
management, m addition with security and file management. 

On the other hand, several researchers and commercial companies are in­
vestigating topics related to data-intensive grids and I/O systems used in com­
putational grids. The problems tackled by these research lines are similar to 
those discussed in this chapter. 

Armada [22] is a framework that allows grid applications to access datasets 
that are distributed across a computational grid. Applications combine mod­
ules called ships into graphs called armadas. These armadas provide a path for 
the application to access data. 

The Remote I/O (RIO) library [9] is a tool for accessing to files located 
on remote file systems. RIO follows the MPI-IO interface and allows any 
application that uses MPI-IO to operate unchanged in a wide area environment. 
MAPFS provides this feature for MPI programs. 

SRB [2] provides a UNIX-style file I/O interface for accessing heteroge­
neous data distributed over wide area nodes. SRB uses replication to improve 
data availability and performance. 

Kangaroo [26] belongs to the Condor grid project [16] and it is a reliable 
data movement system that keep applications running. Kangaroo service con­
tinues performing I/O operations even if the process that initiated these re­
quests fails. 

Legion [20] is an object-oriented infrastructure used in distributed comput­
ing. LegionFS [29] provides UNIX-style I/O operations, using Legion services 
such as naming or security. 

GridFTP [1] is an extension of the standard FTP protocol, providing secure 
and efiicient data management in grid architectures. In order to exhibit this 
behaviour, GridFTP includes among others: (i)Kerberos support, (ii)parallel 
and striped data transfer, (iii)support for reliable and restartable data transfer 
and (iv)instrumentation and monitoring tools. 

Unlike SRB and LegionFS, MAPFS provides a rich parallel I/O interface, 
with operators like collective I/O and non-blocking I/O mechanisms. MAPFS 
also allows applications to access remote data in an efiicient way. Moreover, 
using MPICH-G, it is possible to access to storage groups belonging to other 
data grids. Furthermore, the data access patterns configuration provides flex­
ibility to applications using MAPFS. This characteristic is different from the 
rest of the systems previously described. 

6. Conclusions and Future Work 
In this work we have presented MAPFS, a new infrastructure for data-

mtensive grid applications, which takes advantage of the parallel I/O field and 
distributed systems. MAPFS provides a parallel and high-performance mul-
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tiagent platform for data access with the following properties: (i)system topol­
ogy configuration; (ii)access patterns specifications by applications; (iii) I/O 
caching and prefetching features and (iv)execution of specific fiinctionalities 
on other nodes than the clients. The same application has been evaluated with 
and without MAPFS and the resultant speedup is very close to the maximum 
one. Furthermore, the performance of the system has been evaluated with sev­
eral storage groups, measuring the effects of a topology change. 

This first data grid version uses NFS as storage server file system. However, 
this fact constitutes the major weakness of this version, because NFS is a state­
less protocol, which has no representation of the system calls open and close. 
For this reason, the I/O system does not provide semantics significantly dif­
ferent than those provided by NFS. Furthermore, NFS interface does not show 
any binding between individual operations and processes that initiate them. 
For this reason, security issues have to be performed by another module, that 
is, the security subsystem. 

We consider that using a most appropriate storage file server may improve 
the performance and usability of the global infrastructure. Thus, we are study­
ing different alternatives as future storage file systems. Nevertheless, the factibil-
ity of using NFS on the server-side, keeping the desirable features of MAPFS, 
shows the robustness of our design. 

Finally, it would be interesting to build and evaluate additional subsystems 
with other functionalities, e.g. fault tolerance. 

Notes 
1. We consider internal nodes those nodes with a private IP address 
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Abstract Research on cluster/distributed computing has been fueled by the availability 
of cost-effective workstations and high performance networks. Many parallel 
programming languages and related programming models have become widely 
accepted. However, the high communication overhead is a major problem of 
running parallel apphcations in cluster/distributed computing environments. To 
reduce the communication overhead and thus the completion time of a paral­
lel application, this paper introduces and analyzes an efficient Key Message 
(KM) approach to supporting parallel computing in cluster environments. The 
approach includes the application model and communication model. The ap­
plication model adopts a DAG {directed acyclic graph) task graph to abstract a 
parallel application. The communication model presents a priority-based M/M/1 
queue to analyze the communication delay. Then, with these fundamental mod-
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els and assumptions, an analytical method is presented to verify the performance 
of the approach. It demonstrates that when the network background load in­
creases or the computation to communication ratio decreases, the analysis results 
show a significant improvement on communication of a parallel application over 
the system which does not use the KM approach. 

Keywords: Cluster Computing, Key Message Approach, Communication Optimization, Par­
allel Programming, Modeling Analysis. 

1. Introduction 
Cluster computing systems have become increasingly popular not only be­

cause of the benefit fi^om the high volume economy of existing commodity 
components, but also because they provide the potential to exploit parallelism 
for high performance computing. However, this potential is compromised by 
the underlying high communication overhead, especially with the rapid ad­
vances in hardware and software. The reasons lie in several facts. Firstly, the 
improvement of network bandwidth lags behind that of the overall performance 
of workstations, relatively speaking. Secondly, the underlying communication 
protocols are not amenable to high performance computing. A typical exam­
ple is the TCP/IP protocol stack, which has been proved to be the bottleneck 
in communication that introduces a major delay in the message-passing in a 
parallel application. Finally, the topology of the commimication network is 
not optimized for high performance computing. Under these limitations, the 
current development of the cluster computing systems is usually oriented to a 
class of coarse-grained parallel applications. Thus, to expand clusters to other 
applications, removing the performance barrier of communication systems is 
crucial. 

To reduce the communication overhead, current efforts generally fall into 
three areas. The first is to design a new communication system from scratch 
with an attempt to exploit the special characteristics of the underlying commu­
nication hardware[l, 2,3,18]. The second is to optimize the existing protocols 
to improve the communication performance in cluster environments such as 
Active Message[12],Fast Message[13] and Fast Socket [14]. Although these 
approaches are quite impressive in communication overhead reduction, they 
suffer fi-om the same limitation of not differentiating the types of messages. 
Consequently, all messages transmitted in the network have the same priorities. 
However, under heavy network trafiic load conditions, an important message 
may experience a significant delay due to all earlier unimportant messages that 
are competing for the same communication channel. 

To address this problem, the third effort exploits high-level application in­
formation to facilitate the optimization of message passing[16,19]. Compared 
to the previous approaches, this optimization is independent of the underlying 
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hardware and communication libraries, and hence enjoys the advantage of high 
portability and easy implementation. 

A typical study following this dimension is Key Message approach[10]. 
Based on its application and communication models, a kernel algorithm is ap­
plied to a DAG(i.e., directed acyclic graph) task graph[l 1] to optimize the com­
munication time for its original and potential critical paths. Thus, shortened 
communication time of a critical path results in a reduction of its completion 
time. This means that the overall execution time of the parallel application 
is reduced. The philosophy of this optimization is from the observation that 
under networks with heavy traffic, a message generated in the critical path of 
a parallel application (the Key Message) may suffer a significant delay since 
it has to wait until all earlier (possible unimportant) messages are processed. 
Therefore, there may be a performance benefit fi-om the introduction of a prior­
ity queue into the communication system to serve the Key Message first before 
any low priority messages in the queue. 

The benefit of Key Message has been verified on the IBM SP2 and reported 
in [10]. However, it still lacks an accurate modeling analysis through which a 
deep insight into its potential can be gained. The objective of this paper is to 
compensate for this shortage. 

The rest of this paper is organized as follows. Section 2 introduces the 
related work. Section 3 briefly describes the KM approach and illustrates the 
KM algorithm. The performance preliminary modeling analysis is given in 
Section 4. Conclusions and some future directions are presented in Section 5. 

2. Rela ted Work 

The concepts of critical paths and priorities are certainly not new. How­
ever, to our knowledge, there are no existing communication libraries like KM 
that integrate these two concepts to optimize communication time of a parallel 
application in clusters. 

Kale et al. [9] proposed to use the priority-based process scheduler provided 
by the operating system to speedup the processing of parallel tasks. In their 
approach, tasks of a parallel application are assigned higher priority than other 
tasks on a node. However, the underlying communication in these tasks is not 
prioritized. Communication generated by a parallel application and sequential 
tasks on the same node still have the same priority. 

Kwok and Ahmad[4] studied the static scheduling algorithms for allocating 
task graphs to fiiUy -connected multiprocessors. Their proposed algorithm, 
which is called the Dynamic Critical-Path (DCP) scheduling algorithm, uses 
the critical path concept to prioritize the tasks so as to avoid scheduling less 
important tasks before the more important ones. To capture the changes in 
the relative importance of tasks, their priorities can be determined dynamically 
during the scheduling process. Although this algorithm integrates the concepts 



316 PARALLEL AND DISTRIBUTED COMPUTING 

of critical path and priorities, it only focuses on the task scheduling without 
considering the communication optimization. 

In addition to the task scheduling, a number of research efforts target the 
communication scheduling in various software systems by employing priority 
approaches. 

S. Karlsson et al[19]. investigated message behaviors in sottwave Distributed 
Shared Memory (DSM) systems and found that performance critical messages 
can be delayed behind less important messages by the enqueuing behavior in 
the communication libraries, thus limiting the DSM performance. To address 
this problem, they advocated the use of message priorities to reduce the latency 
of performance -critical control messages such as those involved in cache co­
herent protocol. More specifically, messages with a high priority, e.g. control 
messages, are transferred before messages with lower priority, say data mes­
sages. Obviously, in their model, the control message corresponds roughly to 
our Key Message, but it has no related concept of a critical path. All the data 
messages such as page migration have the same priority and are scheduled on 
a First-Come-First-Serve (FCFS) policy. 

GM [ 15] is a message-passing system which provides two levels of message 
priority for Myrinet networks. In GM, message sending is regulated by a sim­
ple token-passing mechanism to prevent GM's bounded-size internal queues 
from overflowing. Typical GM applications use only one GM priority. The 
high priority channel is usually used for control messages or for single-hop 
message forwarding. Communication in GM is "connectionless". There is no 
need for client software to establish a connection with a remote port in order to 
communicate with it: the client software simply builds a message and sends it 
to any port in the network. Message order is preserved only for messages of the 
same priority, from the same sending port, and directed to the same receiving 
port. Messages with differing priorities never block each other. Consequently, 
low priority messages may pass high priority messages, unlike in some other 
communication systems. GM is only available over Myrinet networks. 

Dong et al.[16] studied the communication prioritization in a network of 
workstations. Communication generated by parallel applications was given 
higher priority than those generated from sequential application. Only SPMD 
parallel applications were studied. Effectiveness of their optimization was 
demonstrated by a simulation. The Key Message approach proposed in this 
paper differs from Dong's optimization technique in that messages generated 
from a parallel application are put at different priority levels. The objective of 
our optimization is to shorten the execution time of critical paths in a parallel 
application by identifying key messages that need higher priority in transmis­
sion. In addition, our approach can be applied to SPMD as well as MPMD 
parallel applications. 

Unlike the previous research which prioritizes different types of messages 
for scheduling. Surma et.al[8] studied the message scheduling problem from a 
different angle by employing a priority scheme. The problem they considered 
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was how to improve the communication performance by reducing message 
collisions under tightly-coupled architectures such as a two-dimensional mesh 
processor network utilizing XY-routing. Message collisions resulted from two 
or more parallel messages competing for the same communication channel. As 
a result, one had to be scheduled before the other. The scheduling strategy may 
had a great impact on the final completion tune of the application. To solve this 
problem, they proposed a static-dynamic hybrid approach that utilized known 
information about message traffic patterns to determine priorities for each in­
dividual message that strictly signified the ordering of message transmissions. 
The goal of this approach is to minimize the processing time of all the mes­
sages. However, it is possible to delay the critical path messages due to the 
avoidance of message collisions. 

Although critical path is useful for message optimization, its identifica­
tion is not trivial in practice because of its space requirements and adverse 
impact on application performance, especially for large, long running pro­
grams. Hollingsworth[5] studied this problem for message passing and shared-
memory programs and proposed a runtime, nontrace-based algorithm to com­
pute the critical path profile of executions. Its online version for a variant of 
critical path, called critical path zeroing, is also introduced with its measure­
ments of the reduction of application execution time. Other related work on 
this aspect can be found in [7, 6] 

3. Key Message Approach 

The Key Message approach consists of a fimdamental K^ Message model, 
the underlying Key Message algorithm and Key Message runtime system. In 
this approach, a parallel application is pre-processed to generate a task graph. 
Then, the Key Message algorithm is applied to the task graph, which uses the 
current network load to identify communication that needs to be optimized 
and generates an augmented task graph. Next, using the Key Message APIs, 
an optimized parallel application is generated based on the augmented task 
graph. Finally, the modified parallel application is compiled and Imked with 
the Key Message library to generate the executable that could be executed on 
top of the Key Message runtime system. The KM algorithm is the central part 
of the approach. This paper focuses on the modeling analysis of the algorithm 
based on Key Message model which illustrates a parallel application and an 
underlying communication system. 

3.1 Key Message Model 

As presented, the essence of Key Message algorithm is built on top of its 
Key Message model, which is further divided into an application model and 
a communication model. The application model is represented by a weighted 
DAG task graph, an abstraction of a parallel application. Its weighted node 
signifies the task with computation time, and its directed weighted edge m-
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non-preemptive preemptive-resume 
level 1, tdi 
level 2, td2 

l/M + (Ai + A2)/((/i^ - Ai)/x) 1/(M - Ai) 
l/^l + (Ai + A3)/((/i. - Ai)(/i - Ai - Aa)) P / ( ( M - Ai)(/i. - Ai - A2)) 

Table 21.1. Average Total Delay per Packet Using Priority Policies: Ai is the arrival rate of 
level 1 (liigh priority) packets and A2 the arrival rate of level 2 (low priority) packets, /j, service 
rate. 

dicates the number of packets sent from source task to destination task. The 
communication model is established with a single connection that connects a 
set of processing nodes. The tasks are assumed to be mapped to the nodes and 
enter the task queues located at the nodes. The commimication among tasks 
is through message passing, which is abstracted as a queueing system with a 
single server, multiple queues. Therefore, message transmission delay can be 
obtained following a M/M/1 queue model. In addition to task queue, each node 
also possesses a message queue to receive messages, and each message queue 
has two levels of priorities. Messages from a critical path enjoy a high priority 
when entering the queue, whereas the background traffic messages which are 
assumed to be generated by a Possion process and non-critical-path messages 
are put directly in the message queue with low priorities.' The transmission 
policy at each node is on a priority basis. 

3.2 Illustrating Key Message Algorithm 
The basic idea of the Key Message algorithm is to prioritize the messages 

that are generated in the critical paths of a parallel application. It consists of 
several optimization steps on a task graph. In each step, the algorithm finds a 
critical path in the task graph and optimizes the message passing in the critical 
path by adjusting the edge cost (communication cost) using the total delay 
formulas for priority policy (Table 21.1). Messages that are identified to be on 
a critical path are put in high priority (level 1) and all other messages are in 
low priority (level 2). However, after these steps, the original critical path is 
shortened, and other non-critical paths may become critical. So this algorithm 
is iterative until no more messages need optimization. The algorithm detail can 
be found in[10]. A concrete example of this algorithm is shown in Figure 21.1. 
It describes how to use Key Message algorithm to optimize communication for 
an application. Definitions used in the illustration are as follows: 

• Optimization ratio is defined as the ratio between the number of Key 
Message paths and the total number of paths in a task graph. 

• Improvement ratio is defined as the ratio between the original maximum 
path completion time and the optimized maximum path completion time 
after applying the Key Message algorithm. 

To simplify the explanation, one task is mapped to one node. In this exam­
ple, there are nine tasks. Thus, there are nine nodes. The task weight equals 
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Figure Sl.l. A Task Graph Sampled to Illustrate the Execution of Key Message Algorithm 

the task number as shown in Figure 21.1. The amount of commimication gen­
erated by each task in the task graph is one packet. Service rate and arrival 
rates are assumed as follows^: 

• jU = 10 X 10^ packets/sec; 

• Ai = 0.0001 X 10^ packets/sec; 

• A2 = 9.9 X 10^ packets/sec; 

Using the formula of the delay in an M/M/1 FCFS queue, we get the delay 
time as: 

t^ = (1/(10 - 9.9001)) X 10^-^) = 10.01001001001 x lO^-^^sec 

Using the formula of the delay in an M/M/1 preemptive resume priority 
queue, we have: 

• td^ = (1/(10 - 0.0001)) X 10(-^) = 0.10000100001 X 10(-3)sec; and 

• id2 = (10/((10-0.0001)(10-0.0001-9.9)))xl0(-^) = 10.010110111-
11 X 10(-^)sec 

Step 1: Initialization: 

Initially, the communication costs are all initialized to t^. Function All-
Path(TG) returns the paths in the task graph. The path completion time of all 
paths are calculated using tj, and task weights. Function CriticalPath(PathSet) 
returns path 6-8-9. In this example, the original maximum path completion 
time is the sum of the task weights and the communication cost. Here, the 
task weights is 23 ms (that is 6+8+9 = 23) and the communication cost is 
20.02002002002 ms (that is 1*10.01001001001+1*10.01001001001). In the 
end, the original maximum path completion time is 43.02002002002 ms. 

Then, a re-initialization operation sets all messages generated from the task 
graph to low priority. The path completion times of all paths are changed 
accordingly. After some sets and variables are initialized, the initialization 
step finishes. 

Step 2: Optimization: 
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In this step, the communication between tasks 6 and 8 and between tasks 8 
and 9 is optimized first. All path completion times are updated accordingly. 
After optimization, the path completion time of the critical path 6-8-9 is about 
23.2 ms (that is 23+2*0.10000100001). The completion time of other paths 
(i.e., path 5-8-9,4-7-9,3-7-9) are more than the optimized critical path comple­
tion time. So, they must also be optimized. The procedure of the optimization 
as illustrated above is thus repeated. 

Finally, when optimization terminates, the maximum path completion time 
is 23.2ms and there are six edges optimized. The optimized task graph is 
shown in Figure 21.2, where optimized edges are highlighted. 

X-F '^V 
7 I I S 

Figure 21.2. The Optimized Task Graph to Illustrate the Execution of Key Message Algo-
ritlim 

Step 3: Result calculation: 

In the last step, the original maximum path completion time, the optimized 
maximum path completion time and the sets of optimized and unoptimized 
paths are outputted. Based on this information, the optimization ratio and the 
improvement ratio can be calculated. They are 75%( 6 out of 8 paths are opti­
mized) and 185.4% (43.02/23.2)respectively. 

4. Analysis of Key Message Algorithm 
Analytical study is a widely used mechanism to initially evaluate the perfor­

mance of a particular model or system. The performance of the Key Message 
algorithm based on the Key Message model in terms of the completion time of 
a task graph will be analyzed. A queuing model is used to model the network. 
To focus on the analysis of the communication portion of the completion time, 
and to reduce the complexity of analysis, the analytical study is limited on 
some assumptions and parameters. 

4.1 Assumptions and Parameters 
To simplify the analysis of the Key Message algorithm, the following addi­

tional assumptions are used: 

• The task weight of a task in a task graph is the total delay a task is 
experiencing on a node (i.e., including the task queueing time and CPU 
service time on a node). 
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• The study focuses on the critical path of a task graph. Obviously, af­
ter the communication optimization of the Key Message algorithm, the 
original critical path in the task graph is still the longest path in the task 
graph. The completion time of the critical path is the target of the eval­
uation in the analysis. 

• The analysis focuses only on the case in which only one task is mapped 
to a node. For the case in which multiple tasks are mapped to a node, the 
analysis can also be applied as explained in the following observation. 

Suppose there are T tasks in a task graph of a parallel application, and N 
nodes in a cluster of nodes. If N < T, there are more than one task mapped 
to a node. IfN = T, there is one task per node. The difference between these 
two cases is that the communication cost between tasks that are mapped to the 
same node is zero. After mapping, the modified task graph is still a DAG. So, 
for the case A'' < T, it can be analyzed like the case of N = T. For N > T, 
the number of nodes is more than the number of tasks. In this situation, there 
is still one task per node (the unused nodes are idle), the same as the case of 
N = T. As a result, the analytical method in the case of N = T can be 
applied to the other two cases (i.e., N <T and N > T). Based on the above 
discussion, we can get the following observation: 

Observation 1 In the analysis, we focus on the case ofN = T. The analytical 
method in this case is still useful in the other two cases i.e., N <T andN > T. 

The following information defines a task graph of a parallel application: 

• Tasks in the task graph are numbered fi-om 0 to T — 1, where T is the 
total number of tasks in the graph; 

• Task weight, which is the total delay time incurred by a task at a node; 

« An edge between task i and task j is represented by an ordered tuple 

• Edge weight, which represents the number of packets sent between tasks; 

• A path in the task graph is represented by a list of edges. 

Node and Network Parameters in a cluster are as follows: 

• Number of nodes in the system (A''); 

Network service rate (fi); 

High priority arrival rate (Ai): the summation of the arrival rates of high 
priority messages that are generated by parallel tasks in the cluster; 

Low priority arrival rate (A2): the summation of the arrival rates of exter­
nal background load modeled as a Poisson distribution and low priority 
messages generated by parallel tasks. 

• 

M 
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4 . 2 P a t h C o m p l e t i o n T i m e 

In the analysis, first a DAG task graph is abstracted to a path set 

PathSet = {pi,p2,--- ,Pn} 

A path in a task graph is represented by a list of edges. For example, 
{(^1)^2)5 (22,^3), •••, {ik-ijik)} is a path Pi that starts from task ii and ends at 
task ik- To simplify the presentation of the path completion time of a path in 
the analytical study, a path pi involving k tasks is re-written as: 

Pi = {(*a,Cil), (ti2,Cj2),-• • ,{ti(k-l),Ci{k-l)),Uk] (21.1) 

where, Uj {j = 1,- • • ,k) represents the computation weight of task j in path 
i; Cjj (i = 1, • • • ,k — 1) represents the number of packets task j sends to task 
{j + 1) in path i. 

Then, based on 21.1, a critical path with k — 1 edges can be defined as 
follows: 

CPx = {{txl,Cxl),{tx2,Cx2),--- , (*3;(fe-l)iCa;(A:-l)),ia:fc} 

The path completion time of CPx (that is, PathCompTime{CPx) is denoted 
hyppx-

k-l 

PPx = X](*^J + "̂ xj) + txk (21.2) 

where Cxj (j = 1, • • • ,k — l) represents the total delay time of a message pass­
ing from task j to task {j + 1). Using FCFS M/M/1 queueing delay formula, 
the total delay time of a message passing from task j to task (j + 1) is: 

Cxj == (1 / (M - •̂ )) X Cxj 

where /i is the service rate and A is the arrival rate of packets in a network. 
Since packets arrive independently, the total delay time of a message is Cxj 
times the average delay time of a packet. 

Based on the above analysis, ppx in Formula 21.2 can be changed to 

fc-i 
PPx-fifo = ^ ( t x j + (1/(A« - ^)) X Cxj) + txk (21.3) 

To calculate the communication cost for different priorities, preemptive pri­
ority M/M/1 queueing delay formula is used. Thus, we have: 

• For high priority, 

fc-i 
PPx—high — ^ ( t x j + (l/(/i - Ai)) X Cxj) + txk (21.4) 

3=i 
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• For low priority, 

fe-i 

PPx-low = 5 Z ( t x j + W ( ( M - Al ) ( / i - Al - A2))) X C:,j) + t x t21 .5 ) 

3=1 

In priority M/M/1 queueing, Ai is the arrival rate of messages with a high 
priority in the network, and A2 is the arrival rate of messages with a low priority 
in the network. The total arrival rate is A = Ai + A2. 

4.3 Improvement Ratio 

symbol 
OptP 
O r i P 
OriCompTime 
OptCompTime 

meaning 
the set of optimized paths 
the set of original paths 
the original maximum path completion time 
the optimized maximum path completion time 

Table 21.2. Notations Used in the Analysis 

The notations used in the analysis are shown in Table21.2. Then, according 
to the Key Message algorithm, we have the following equations: 

OriCompTime 

OptCompTim,e 

ImprRatio 

= PathCompTime{CriticalPath{OriP)) 

= PathCompTime{CriticalPath(OptP)) 

= OriCompTime/OptCompTime 

Since the original critical path is still a critical path in the task graph af­
ter the communication optimization using the Key Message algorithm, we get 
that CriticalPath{OriP) = CriticalPath{OptP). The improvement ratio 
(ImprRatio) is the original critical path completion time {OriCompTime) 
divided by the optimized critical path completion time {OptCompTime). The 
OriCompTime is obtained by using Formula 21.3, while the OptCompTime 
is obtained by using Formula 21.4. 

To analyze the efiBciency of the Key Message algorithm, we focus on the 
ImprRatio. Using Formulas 21.3 and 21.4, we have: 

ImprRatio 

= OriCompTime I OptCompTime 
fc-i fc-i 

= (Z](*-J + (V(/" - >)) X Cxi) + txk)/(X^(t=,j + (1/(M - Al)) X c^i) + t,k) 
3 = 1 j = i 

Where X3j=i ('̂ xj) + txk is determined by a task graph. To simplify the above 
equation, we define: 

fc-i 

• txk (21.6) 
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ImprRatio is then re-written as follows: 

fc-i fe-i 
ImprRatio = (A + ^ ( l / ( / x - A)) x Ca;j)/{A + ^ ( l / ( A t - Ai)) x c^j) 

J = l 3=1 

In addition, we also define: 

fe-i 
B = ^ ( l / ( / i - A)) x c,,- (21.7) 

3=1 

k-1 

C = Y,{l/{^l-Xl))xc^j (21.8) 
3=1 

We get: 

ImprRatio = {A + B)/{A + C) 

= {B-C)/{A + C) + 1 (21.9) 

and, 

k-l k-1 

B-C = ^ c , , - X ( ! / ( / . - A ) ) - ^ C , , X ( 1 / ( M - A I ) ) 

3=1 3=1 

k-1 

= ^C, ,X(1/ (M-A)-1/ (M-AI)) 

3=1 

k-1 

= Yl ^^i ^ (•'•/̂ /̂  - Ai - A2) - l/(/i - Ai)) 
3=1 

k-1 

= ^ c ^ j X A 2 / ( ( M - A i - A 2 ) ( / i - A i ) ) 

3=1 

k-1 k-1 

A + C = ^ t x j +txk + ^ C ^ j X ( l / ( ^ - A l ) ) 
3=1 3=1 

We assume a cluster system is stable, that is, n> X. Thus, {B - C)/{A + C) 
is always more than zero. As a result, ImprRatio is more than 1. 

Observation 2 After the optimization in the Key Message algorithm, the to­
tal execution time of a task graph is shorter than that when no Key Message 
algorithm is used. 

According to Formula 21.9, to increase the ImprRatio, the term B — C 
must be increased and the term A + C must be decreased. 
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• For the term A + C, its value becomes smaller when QZjZi 'txj + txk) 
decreases. As a result, the ImprRatio increases. To achieve this, the 
average task weight must decrease. So, if the average task weight in a 
task graph decreases, the Impr Ratio increases. 

• For the term B — C, its value becomes larger when A2 and Cxj increases. 
So, if the arrival rate of low priority packets and average edge weight in 
a task graph increases, the Impr Ratio also increases. 

Based on the above analysis, we can then conclude that the Key Message al­
gorithm achieves a good performance (a high Impr Ratio) under the following 
conditions: 

• For a given task graph, the backgroimd trafiic load is high; or 

• For a certain network traffic load, a task graph is communication inten­
sive (which means the average task weight is small and the average edge 
weight is large). 

4.4 Background Traffic Arrival R a t e vs. 
Improvement Rat io 

Assume that t is the average task weight of all the tasks in the critical 
path and c the average edge weight. That is: t = (X)j=i*a;j)/fc and c = 

( S j = i ^xi)/{k — 1). We use t to replace txj and c to replace Cxj in Formu­
las 21.6, 21.7, 21.8, 21.9. Then we get the following approximation of the 
Im,prRatio: 

fe-i 
A = / ^ txj + txk 

3=1 

W ( f c - l ) t + t 

= fc X t 
fe-1 

B = ^ [ l / ( / / - A)] X c,,-
3=1 

« c X (fc - l)/(/i - Ai - A2) 
fe-i 

C = 5 ] [1 / (M-AI) ]XC, , -

« c x (fc - l)/(j^ - Ai) 
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ImprRatio 

(B - C)/{A + C) + 1 
c X (fc - l)\2/iifj. - Ai - A2)(M - \i){kt + c X (fc -

(21.10) 

Let txj = t + A, Cxj = c + A. Using L'Hospital rule [17], as A -> 0, 
the convergence of the approximation between using the original ImprRatio in 
Formula 21.9 and approxunation ImprRatio m Formula 21.10 is first order. 

c 
6 

t 
4 

M 
100 

Ai 
8.4 

k 
6 

Table 21.S. Sample Parameters for Function ImprRxitio = /(As) 

Formula 21.10 can be re-written as a function (ImprRatio = /(A2)) with 
A2 as a variable and other parameters as constants. For example, when the 
constant parameters are set using the values given in Table 21.3, the function 
ImprRatio = /(A2) is: 

/(A2) = 30 X A2/((91.6 - A2) X 2228.4) + 1 (21.11) 

Its curve (A2 vs. ImprRatio) is shown in Figure 21.3. As can be seen from 
the figure, when A2 increases, the ImprRatio also increases. It also increases 
faster when background traffic becomes heavier. Since the Key Message al­
gorithm prioritizes messages in a parallel application, the messages generated 
from the critical path could jump to the head of queue and are transmitted with 
little queueing time. As a result, when the backgroimd trafiic load is higher, 
the ImprRatio increases. 

Figure 21.3. Background Traffic (A2) vs. Improvement Ratio 
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4.5 Computation to Communication Ratio vs. 
Improvement Ratio 

IJ' 
100 

Ai 
8.4 

A2 
90.45 

k 
6 

Table SI.4- Sample Parameters for Function IrnprRatio — g{r) 

For computation to communication ratio (r = i/c), when average edge 
weight (c) is a constant, the decrease of the average task weight (t) results 
in the decrease of the computation to communication ratio of a task graph. 
To show the relationship between r and IrnprRatio, similarly, when other 
parameters are set using the values shown in Table 21.4, formula 21.10 can 
then be re-written as a function IrnprRatio = fif(r): 

g{Y) = 4.295/(6 X r + 0.055) + 1 (21.12) 

Its curve (r vs. ImprRatio) is shown in Figure 21.4. As can be seen from 
the figure, with the hmcrement of r, the ImprRatio decreases. A very high 
improvement ratio is achieved when the computation to communication ratio 
is very small (< 1). The improvement ratio drops rapidly when the computa­
tion to communication ratio changes from 0.5 to 2. The reduction is slowed 
down with further increase of the computation to communication ratio. This 
phenomenon can be easily explained. Since the Key Message algorithm only 
optimizes the communication, the effect of the optimization will become in­
significant when the computation is the dominating factor in the application. 

Figure 21.4. Computation to Conununication Ratio vs. Improvement Ratio 

4.6 Comparison Study 
In this subsection, we present a comparison study between our BCM approach 

and Dong et al's double queue hscheme (DQS)[16]. Both exhibit similar fea-
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tures but with totally different purposes. DQS is proposed to reduce the effects 
of local jobs' communication on the performance of parallel jobs. It divides a 
single queue of traditional network interfaces into two. One is for the commu­
nication of parallel jobs and the other is for the communication of local jobs. 
Two queues are given different priorities to adjust the allocation of commu­
nication bandwidth among them. By giving the parallel jobs' queue a higher 
priority, through simulation, their study found that scheme improves the per­
formance of parallel jobs considerably with a slight effect on local job com­
munication especially when the size of local jobs' communication is small and 
moderate. However, they based their study on the Single Program Multiple 
Data (SPMD) programming model, and hence the scheme might not be ef­
fective for other programming models. In general, an optimization technique 
should be applicable for both Multiple Program Multiple Data (MPMD) and 
SPMD programming models. Therefore, it is required that an optimization 
scheme identify not only the different priorities of communication between 
parallel applications and local sequential applications, but also the different 
priorities inside a parallel application. It is common that tasks of a parallel 
application can be scheduled at different priority levels, but the underlying 
communication in these tasks is usually not prioritized in DQS scheme. The 
Key Message (KM) approach presented in this paper addresses this problem. 

5. Conclusions 

In this paper, the Key Message approach is evaluated by its modeling analy­
sis. hOur Key Message approach consists of the Key Message model, the Key 
Message algorithm, as well as its runtime system. The Key Message model is 
further divided into an application model and a communication model, which 
are abstracted as a task graph and a priority M/M/1 queue respectively. This 
model forms the basis for the Key Message algorithm to optimize the com­
munication of a parallel application. Our analysis results show that the Key 
Message approach can efiiciently reduce the completion time of a parallel ap­
plication running on cluster envirormients. More specifically, we found that 
the network with a high background trafiic load benefits more from the KM 
approach than those with lower background traflic loads. On the other hand, 
when the ratio of computation to communication is very small, a very high im­
provement ratio is achieved. The essence of this analysis is the simplicity and 
flexibility of our Key Message model, which leaves the communication issues 
to be addressed separately by its communication model. 

Previous research on priority message assignments do not adequately ad­
dress or hsolve the conmiunication optimization problem of parallel applica­
tions running in distributed enviroimients. Compared to the existing solutions, 
for example the work reported in [16], the Key Message approach is more flex­
ible and yields better performance[10]. In future research, the Key Message 
approach will be further investigated in a grid environment. 
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Notes 
1. Note that the assumed number is just for illustrating the algorithm. 
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