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Preface

It was 60 years ago that a system was first termed “self-organizing” in modern sci-
entific literature.* Since then, the concept of self-organization has developed in many
directions and affected diverse fields, ranging from biology to physics to social sci-
ences. For example, in his seminal book At Home in the Universe, Stuart Kauffman
argued that natural selection and self-organization are two complementary forces nec-
essary for evolution: “If biologists have ignored self-organization, it is not because
self-ordering is not pervasive and profound. It is because we biologists have yet to
understand how to think about systems governed simultaneously by two sources of
order ... if ever we are to attain a fina theory in biology, we will surely, surely
have to understand the commingling of self-organization and selection.”? A similar
dilemma can be rephrased for various fields of engineering: If engineers have ignored
self-organization, it is not because self-ordering is not pervasive and profound. It is
because we engineers have yet to understand how to think about systems governed
simultaneously by two sources of order: traditional design and self-organization.

Without claiming an undue comprehensiveness, this book presents state-of-the-
practice of self-organizing systems and suggests a high-level breakdown of applica-
tions into two general areas:

e Distributed management and control
e Self-organizing computation

Each of these areasis exemplified with a selection of invited contributions, written and
peer-reviewed by international expertsin their respective fields, convincingly demon-
strating achievements of self-organizing systems. The overall selection balances many
aspects. modelling vs. simulation vs. deployment, as well as macro- vs. microscale.
We begin with more established fields of traffic management, sensor networks,
and structural health monitoring, building up towards robotic teams, solving chal-
lenging tasks and deployed in tough environments. These scenarios mostly belong to

LAshby, W. R. (1947). Principles of the Self-Organizing Dynamic System. Journal of Gen-
eral Psychology, 37:125-128.
2Kauffman, S. (1995). At Home in the Universe, p. 112. Oxford University Press, New York.



VI Preface

macro-level, where multiple agents (e.g., robots) themselves may contain compli-
cated components. Nevertheless, the main topic is self-organization within a multi-
agent system, brought about by interactions among the agents. The second half of the
book follows with a deeper look into the microlevel, and considers local interactions
among agents such as particles, cells, and neurons. These interactions lead towards
self-organizing resource management, scheduling, and visualization, as well as self-
modifying digital circuitry, immunocomputing, reaction-diffusion computation, and
eventually to artificial life.

We believe that the broad range of scales at which self-organizing systems are
applied to real-world problemsis one of the most convincing arguments for acceptance
of the unifying theme—practical relevance and applicability of self-organization.

Sydney, April 2007 Mikhail Prokopenko
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1

Design vs. Self-organization

Mikhail Prokopenko

1.1 Introduction

The theory of self-organization has sufficiently matured over the last decades and
is beginning to find practical applications in many fields. Rather than analyzing and
comparing underlying definitions of self-organization—a task complicated by a mul-
tiplicity of complementary approaches in the literature (see, e.g., recent reviews by
Boschetti et al. 2005; Prokopenko et al. 2007)—we investigate a possible design space
for self-organizing systems and examine ways to balance design and self-organization
in the context of applications.

Typically, self-organization is defined as the evolution of a system into an orga-
nized form in the absence of external pressures. A broad definition of self-organization
is given by Haken: “a system is self-organizing if it acquires a spatial, temporal or
functional structure without specific interference from the outside. By ‘ specific’ we
mean that the structure or functioning is not impressed on the system, but rather that
the system is acted upon from the outside in a nonspecific fashion. For instance, the
fluid which forms hexagons is heated from below in an entirely uniform fashion, and
it acquires its specific structure by self-organization” (Haken 1988).

Another definition is offered by Camazine et a. in the context of pattern formation
in biological systems. “Self-organization is a process in which pattern at the global
level of a system emerges solely from numerous interactions among the lower-level
components of the system. Moreover, the rules specifying interactions among the sys-
tem’s components are executed using only local information, without reference to the
global pattern” (Camazine et al. 2001).

In our view, these definitions capture three important aspects of self-organization.
Firstly, it is assumed that the system has many interacting components (agents) and
advances from aless organized state to a more organized state dynamically, over some
time, while exchanging energy, matter, and/or information with the environment. Sec-
ondly, this organization is manifested viaglobal coordination, and the global behaviour
of the systemisaresult of the interactions among the agents. In other words, the global
pattern is not imposed upon the system by an external ordering influence (Bonabeau
et al. 1997). Finaly, the components, whose properties and behaviours are defined
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prior to the organization itself, have only local information, and do not have knowledge
of the global state of the system; therefore, the process of self-organization involves
some local information transfer (Polani 2003).

Self-organization within a system brings about severa attractive properties, in par-
ticular, robustness, adaptability and scalability. In the face of perturbations caused by
adverse external factors or internal component failures, arobust self-organizing system
continues to function. Moreover, an adaptive system may reconfigure when required,
degrading in performance “gracefully” rather than catastrophically. In certain circum-
stances, a system may need to be extended with new components and/or new connec-
tions among existing modules. Without self-organization such scaling must be preop-
timized in advance, overloading the traditional design process.

Itisinteresting at this stageto contrast traditional engineering methods with biolog-
ical systemsthat evolve instead of being built by attaching separately predesigned parts
together. Each biological component is reliant on other components and co-evolves to
work even more closely with the whole. The result is a dynamic system where com-
ponents can be reused for other purposes and take on multiple roles (Miller et al.
2000), increasing robustness observed on different levels: from a cell to an organism
to an ant colony. Complementarity of coevolving componentsis only one aspect, how-
ever. As noted by Woese (2004), “Machines are stable and accurate because they are
designed and built to be so. The stahility of an organism lies in resilience, the home-
ostatic capacity to reestablish itself.” While traditionally engineered systems may still
result in brittle designsincapable of adapting to new situations, “ organisms are resilient
patterns in a turbulent flow—patternsin an energy flow” (Woese 2004). It is precisely
this homeostatic resilience that can be captured by self-organization.

However, in general, self-organization is a not a force that can be applied very
naturally during a design process. In fact, one may argue that the notions of design and
self-organization are contradictory: the former approach often assumes a methodical
step-by-step planning process with predictable outcomes, whereas the latter involves
nondeterministic spontaneous dynamics with emergent features.

Thus, the main challenge faced by designers of self-organizing systems is how
to achieve and control the desired dynamics. Erring on the one side may result in
overengineering the system, completely eliminating emergent patterns and suppress-
ing an increase in interna organization with outside influence. Strongly favouring the
other side may leave too much nondeterminism in the system’s behaviour, making its
verification and validation almost impossible. The balance between design and self-
organization is our main theme, and we hope to identify essential causes behind suc-
cessful applications and propose guiding principles for future scenarios.

1.2 Background

Self-organization occurs in both biological and nonbiological systems, ranging from
physics and chemistry to sociology. In nonbiological systems, it is produced by aflow
of energy into or out of the system that pushes it beyond equilibrium: the winds that
produce characteristic ripples in sand, the temperature gradients that produce Bénard
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convection cells in a viscous fluid, the thermodynamic forces that lead to crystal
growth, and characteristic molecular conformations are all examples of these external
energy inputs. However, the nature of the outcomes depends critically on the inter-
actions between the low-level components of the systems—the grains of sand, the
molecules in the fluid, the atomsin the crystals and molecules—and these interactions
are determined by the laws of nature and are immutable (Prokopenko et al. 2006c¢).

In biological systems, on the other hand, the interactions among components of
a system may change over generations as a result of evolution. There are selection
pressures shaping adaptation of the system (abiological organism) to the environment.
These selection pressures lead to self-organization that is desirable for the survival of
the system in the environment in which it has evolved, but which may be undesirable
in other environments. Similarly, when using evolutionary methods for the design of
applied self-organizing systems, there is a need to identify appropriate selection pres-
sures (described more systematically in Section 1.3). These pressures constrain and
channel components' interactions to produce desirable responses (Prokopenko et al.
2006¢).

Self-organization istypically (but not necessarily) accompanied by the emergence
of new patterns and structures. An important distinction between two kinds of emer-
genceisidentified by Crutchfield (1994):

e Pattern formation, referring to an external observer who is able to recognize how
unexpected features (patterns) “emerge” during a process (e.g., spiral waves in
oscillating chemical reactions). These patterns may not have specific meaning
within the system, but take on a special meaning to the observer when detected.

e Intrinsic emergence, referring to the emergent features which are important within
the system because they confer additional functionality to the system itself, e.g.,
support for global coordination and computation: for example, the emergence of
coordinated behaviour in aflock of birds allows efficient global information pro-
cessing through local interactions, which benefits individual agents.

In turn, the functional patterns emerging intrinsically can be further distinguished in
terms of their usage: one may consider an exploitation of the patterns while the sys-
tem is near an equilibrium or an exploration of patterns during the system’s shift away
from an equilibrium. Examples of exploration include autocatalytic processes lead-
ing to optimal paths' emergence, self-organized criticality phenomena, self-regulatory
behaviour during coevolution, etc., whereas exploitation may be used during travers-
ing of the optimal paths, self-assembly along optimal gradients, replication according
to error-correcting encodings, and so on.

Self-organization has been the topic of many theoretical investigations, but its
practical applications have been somewhat neglected. On the other hand, there are
many studies reporting various advances in the field, and the lack of a common design
methodology for these applications across multiple scales indicates a clear gap in the
literature. The following short review pinpoints relevant works which, nevertheless,
may set the scene for our effort.

Zambonelli and Rana (2005) discussed a variety of novel distributed computing
scenarios enabled by recent advances in microelectronics, communication, and



6 M. Prokopenko

information technologies. The scenarios are motivated by a number of challenges
which, on the one hand, make it impossible for application components to rely on a
priori information about their execution context, and on the other hand, make it very
difficult for engineers to enforce strict microlevel control over the components. These
challenges call for novel approaches to distributed systems engineering, and a point
is made that the industry has also realized the importance of self-organization and
decentralized management approaches (the Autonomic Computing program at |IBM
Research, the Dynamic Systems Initiative at Microsoft, and the Adaptive Enterprise
strategy from HP). Zambonelli and Rana (2005) conclude that, “perhaps one of the
barriers for real-world adoption is the lack of support in existing distributed systems
infrastructure to enable these techniques to be utilized effectively.” One of the aims of
our effort is to explore directions towards a better adoption of self-organization as a
concept for engineering distributed systems. In addition, we intend to consider several
novel applications, extending the range of applicability of self-organizing systems.

Sahin and Spears (2004) consider swarm robotics—the study of how a swarm
of relatively simple physically embodied agents can be constructed to collectively
accomplish tasks that are beyond the capabilities of a single agent. Unlike other stud-
ies on multirobot systems, swarm robotics emphasizes self-organization and emer-
gence, while keeping in mind the issues of scalability and robustness. These emphases
promote the use of relatively simple robots, equipped with localized sensing ability,
scalable communication mechanisms, and the exploration of decentralized control
strategies. While definitely very valuable in addressing the task in point, this work
does not expand into related areas (which are out of its scope), thus leaving interscale
relationships indistinct.

Self-organizing computation is another example of an emerging application
domain. Czap et al. (2005) argue that since self-organization and adaptation are
concepts stemming from nature, conventional self-organization and adaptation prin-
ciples and approaches are prevented from being directly applicable to computing and
communication systems, which are basically artificial systems. Their book discusses
these challenges, as well as arange of state-of-the-art methodol ogies and technol ogies
for the newly emerging area of Self-Organization and Autonomic Informatics. What
may be lacking, however, isawell-grounded connection to other application areas and
identification of possible overlaps.

In summary, self-organization is a multifaceted phenomenon, present in many
fields, operating at multiple scales, and performing diverse roles. We hope that the
practical case studies described in this book may not only illustrate the richness of the
topic, but also provide guidance to thisintricate area.

1.3 Evolutionary Design

One way to address the “design vs. self-organization” dilemmaisto consider possible
parameters that guide the design of a self-organizing system. Let us begin with a quo-
tation from a topical review by Scaruffi (2003), who considered the task of a “design
without adesigner”:
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The physicist Sadi Carnot, one of the founding fathers of Thermodynamics,
realized that the statistical behavior of a complex system can be predicted
if its parts were al identical and their interactions weak. At the beginning
of the century, another French physicist, Henri Poincaré, realizing that the
behavior of a complex system can become unpredictable if it consists of few
partsthat interact strongly, invented “ chaos’ theory. A systemissaid to exhibit
the property of chaosif aslight changeintheinitial conditionsresultsinlarge-
scale differencesin the result. Later, Bernard Derridawill show that a system
goesthrough atransition from order to chaosif the strength of the interactions
among its parts is gradually increased. But then very “disordered” systems
spontaneously “crystallize” into a higher degree of order.

An important lesson hereisthat there are transitions separating ordered and chaotic
regimes, and by varying control parameters (e.g., the system composition and the
strength of interactions within it) one may trigger these transitions. This observa-
tion by itself is not sufficient to identify the generic design space. However, sev-
eral approaches, also reviewed by Scaruffi, further develop this idea. In particular,
synergetics—a theory of pattern formation in complex systems, developed by Haken
(1983b)—is relevant. Following the Ginzburg-L andau theory, Haken introduced order
parameters in explaining structures that spontaneously self-organize in nature. When
energy or matter flows into a system typically describable by many variables, it may
move far from equilibrium, approach athreshold (that can be defined in terms of some
control parameters), and undergo a phase transition. At this stage, the behaviour of
the overall system can be described by only a few order parameters (degrees of free-
dom) that characterize newly formed patterns. In other words, the system becomes
low-dimensional as some dominant variables “enslave” others, causing the whole sys-
temto act in synchrony. A canonical exampleislaser: abeam of coherent light created
out of the chaotic movement of particles.

The “endlaving principle’ generalizes the order parameter concept: in the vicinity
of phasetransitions, afew slower and long-lasting components of the system determine
the macroscopic dynamics, whereas the faster and short-lasting components quickly
relax to their stationary states (Jirsa et a. 2002). The fast-relaxing components repre-
sent stable modes, e.g., the chaotic motion of particles. The slower components rep-
resent unstable modes, i.e., the coherent macroscopic structure and behaviour of the
whole system (see also this volume Chapter 2). Thus, the order parameters can be
interpreted as the amplitudes of these unstable modes that determine the macroscopic
pattern and the dynamics of the endaved fast-relaxing modes. In particular, the sta-
tionary states of fast-relaxing components are determined by the order parameters.

It can be argued that alayered hierarchical structure emerges where “higher” levels
(the order parameters) “control” or “force order upon” lower levels (short-lasting and
fast-relaxing components) (Liljenstrom and Svedin 2005). However, we may also point
out the circular nature of the mechanism: the dynamics of microscopic short-lasting
components brings the system to the phase transition, forcing it over a threshold and
stimulating macroscopic pattern formation. When new macroscopic patterns emerge,
the order parameters enforce the downward enslavement (Haken 1983a):
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Because the order parameter forces the individual electrons to vibrate exactly
in phase, thus imprinting their actions on them, we speak of their “endave-
ment” by the order parameter. Conversely, these very electrons generate the
light wave, i.e., the order parameter, by their uniform vibration.

The collective synchronization of oscillators is another example of such circular
causality. It is well known that coupled limit-cycle oscillators tend to synchronize
by altering their frequencies and phase angles (Kuramoto 1984; Pikovsky et al. 2001).
Given apulse, initially afew oscillators become synchronized, then amean field forms
that drives other oscillatorswhich, in turn, contribute to the mean field. Thus, such self-
organization can be better characterized in terms of tangled hierarchies exhibiting the
Strange Loops described by Hofstadter: “an interaction between levels in which the
top level reaches back down towards the bottom level and influences it, while at the
same time being itself determined by the bottom level” (Hofstadter 1989).

Importantly, tangled hierarchies with circular causality between microscopic and
macroscopic levelsresult in stable behaviour. For example, asnoted by M.J.M. Volman
(1997) in the context of neurobehavioural studies:

Endaving provides a parsimonious solution to the degrees of freedom prob-
lem: only one or afew variables have to be controlled by the central nervous
system. Two variables play an essentia role: the order parameter or collective
variable, and the control parameter. The collective variable captures theintrin-
sic order of the system. The control parameter is the parameter that induces a
phase transition from one stable state of the system to another.

A self-organized low-dimensional system with fewer available configurations may
be more efficient than a high-dimensional disorganized system which may, in prin-
ciple, access more configurations. The reason for such higher efficiency is explained
by Kauffman (2000), who suggested that the underlying principle of self-organization
is the generation of constraints in the release of energy. According to this view, the
constrained release allows for such energy to be controlled and channelled to perform
some useful work. Thiswork is “propagatable” and can be used in turn to create bet-
ter and more efficient constraints, releasing further energy, and so on. Importantly, the
ability to constrain and control the rel ease of energy providesthe self-organized system
with a variety of behaviours that can be selectively chosen for successful adaptation
(Prokopenko et al. 2007), thus conforming with Ashby’s law of requisite variety.

These observations further advance our search for a suitable design space: con-
trol parameters become optimization variables, while order parameters contribute to
(multi)objective functions. The overall optimization is to be solved under the con-
straints generated by the release of energy from components in the system. The
three elements (variables, objective functions, and constraints) constitute the design
space. This approach suggests considering evolutionary design as the methodology for
designing self-organizing systems. Typically, evolutionary design may employ genetic
algorithms in evolving optimal strategies that satisfy given fitness functions by explor-
ing large and sophisticated search-space landscapes (Crutchfield et al. 1998; Miller
et al. 2000). With selection and genetic variation of microscopic components, evolu-
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tionary design is capable of discovering macroscopic patterns that correspond to order
parameters.

There is a fundamental reason for employing evolutionary methods in designing
self-organizing nonlinear systems. As pointed out by Heylighen (2000), many intrica-
cies associated with nonlinearity (e.g., limit cycles, chaos, sensitivity to initial condi-
tions, dissipative structures) can be interpreted through the interplay of positive and
negative feedback cycles. In turn, both types of feedback provide a selective advan-
tage: when variations positively reinforce themselves (e.g., autocatalytic growth) the
number and diversity of configurations are increased to the point where resources may
become insufficient, and competition may intensify. On the other hand, when vari-
ations reduce themselves via negative feedback, configurations become more stable.
Therefore, a self-organizing system with both types of feedback is a natural target for
evolutionary design.

Heylighen further notes that the increase in organization can be measured quanti-
tatively asadecreasein statistical entropy, exported by the self-organizing system into
its surroundings. Prigogine called systems which continuously export entropy in order
to maintain their organization dissipative structures (Prigogine 1980), and formulated
the minimum entropy production principle: stable near-equilibrium dissipative sys-
tems minimize their rate of entropy production. While the practical applicability of
this principleis still a subject of ongoing debate, we believe that it identifies a generic
guiding rule for evolutionary design, suggesting the incorporation of minimization of
entropy rate in the employed fitness functions.

Consequently, we may approach evolutionary design in two ways: viatask-specific
objectives or via generic intrinsic selection criteria (Prokopenko et a. 2006a,b). The
latter method—information-driven evolutionary design—essentially focuses on infor-
mation transfer within specific channels, enabling “propagatable” work, i.e., self-
organization. Various generic information-theoretic criteriamay be considered, e.g.:

e Maximization of information transfer in perception-action loops (Klyubin et al.
2004, 2005).

e Minimization of heterogeneity in agent states, measured with the variance of the
rule-space’s entropy (Wuensche 1999; Prokopenko et al. 2005d) or Boltzmann
entropy in agent states (Baldassarre et al. 2007); see aso this volume Chapter 7.
Stability of multiagent hierarchies (Prokopenko et al. 2005d).

Efficiency of computation (computational complexity).
Efficiency of communication topologies (Prokopenko et al. 2005b,c); see also this
volume Chapter 4.

e Efficiency of locomotion and coordination of distributed actuators (Der et al. 1999;

Tanev et al. 2005; Prokopenko et al. 2006a,b); see also Chapter 6.1

The solutions obtained by information-driven evolution can be judged by their degree
of approximation of direct evolutionary computation, where the latter uses task-
specific objectives. A good approximation indicates that the chosen criteria capture
information dynamics of self-organization within specific channels.

Chapter numbers refer to other chapters within this volume.
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In summary, design is possible even when the target is a far-from-equilibrium non-
linear system with multiple independent and interacting units. One should not avoid
far-from-equilibrium dynamics and symmetry-breaking behaviour, but rather exploit
the opportunitiesfor creating stable patterns out of fluctuations.? The regions of macro-
scopic stability correspond to order parameters. These regions are separated by phase
transitions that can be quantified via entropy rate and induced by varying the control
parameters. In short, one should design local rules of interaction among microscopic
components (including the constraints and control variables) in such away that macro-
scopic patterns (measured via the objective functions) self-organize globally, being
then selected by information-driven evolution.

Example: Self-organizing L ocomotion

Different internal channels through which information flows within the system may
be chosen for a specific analysis. For example, let us consider a modular robotic sys-
tem modelling amultisegment snakelike (salamander) organism, with actuators (“ mus-
cles’) attached to individual segments (“vertebrag”). A particular side-winding loco-
motion emerges as a result of individual control actions when the actuators are cou-
pled within the system and follow specific evolved rules, as described in Chapter 6
as well as by Tanev et a. (2005). There is no global coordinating component in the
evolved system, and it can be shown that as the modular robot starts to move across
the terrain, the distributed actuators become more coupled when a coordinated side-
winding locomotion is dominant. The periodicity of the side-winding locomotion can
be related to order parameter(s). Faced with obstacles, the robot temporarily loses the
side-winding pattern: the modules become less organized, the strength of their cou-
pling (which can be selected as a control parameter) is decreased, and rather than
exploiting the dominant pattern, the robot explores various alternatives. Such explo-
ration temporarily decreases self-organization within the system. When the obstacles
are avoided, the modules “rediscover” the dominant side-winding pattern by them-
selves, manifesting again the ability to self-organize without any global controller. Of
course, the“magic” of this self-organization isexplained by properties defined apriori:
the control rules employed by the biologically inspired actuators have been obtained
by a genetic programming algorithm, while the biological counterpart (the rattlesnake
Crotalus cerastes) naturally evolved over a long period of time. Our point is simply
that these transitions can be quantitatively measured within the channels of interest
(e.g., viageneralized entropy rate and excess entropy) and used in information-driven
evolutionary design (Prokopenko et al. 2006a,b).

1.4 Information Dynamics

The generation of constraintsin the release of energy explains why alow-dimensional
self-organized system with fewer available configurations is more efficient than a

2According to Prigogine (1980), a thermodynamic system can be in a steady state while
being not in equilibrium.
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high-dimensional disorganized system. One quantitative interpretation of this is that
many actual configurations of a disorganized system may not be statistically different
(Prokopenko et a. 2007). On the other hand, as the system self-organizes, it reaches
aprogressively larger number of statistically different configurations. In other words,
an increase in organization can be measured via an increase in statistical complexity
of the system’s dynamics (Crutchfield 1994; Shalizi 2001; Shalizi et al. 2004). The
latter approach isformalized within the computational mechanics methodol ogy, which
equates statistically different configurations with causal states.?

Recently, Correia (2006) analyzed self-organization motivated by embodied sys-
tems, i.e., physical systemssituated in the real world, and established four fundamental
properties of self-organization: no external control, an increase in order, robustness,*
and interaction. All of these properties are easily interpretable in terms of information
dynamics (Prokopenko et a. 2007). Firstly, the absence of external control may corre-
spond to spontaneous information transfer within the system without any flow of infor-
mation into the self-organizing system. Secondly, an increase in order or complexity
reflects simply that the statistical complexity isincreased internally within the system:
Coystem(ty) > CRYs'™(ty), for ty > ty, where C5Y5'°™ (t) isthe statistical complexity
at time ¢. In general, the distinction between these two requirements may be relaxed
(Prokopenko et al. 2007), resulting in the requirement that in a self-organizing system
the complexity of external influence Cinfluence js gtrictly less than the gain in internal
complexity, ACEYStem = Csystem (ty) — CRYs*e™(t, ), within the system:

influence system
Cinfluence - A s

Thirdly, a system is robust if it continues to function in the face of perturbations
(Wagner 2005)—in terms of information dynamics, robustness of a self-organizing
system to perturbations meansthat it may interleave stages of an increased information
transfer within some channels (dominant patterns are being exploited) with periods of
decreased information transfer (alternative patterns are being explored). Finaly, the
interaction property is described by Correia (2006) as follows: minimization of local
conflicts produces global optimal self-organization, which isevolutionarily stable. Fol-
lowing the review by Prokopenko et al. (2007), we note that minimization of local
conflicts corresponds to a reduction of assortative noise (or honassortativeness within
the system, thus increasing the information transfer within the system.

Example: Self-organizing Traffic

In the context of pedestrian traffic, Correia (2006) argues that it can be shown that the
“global efficiency of opposite pedestrian traffic is maximized when interaction rate is
locally minimized for each component. When this happens two separate lanes form,
one in each direction. The minimization of interactions follows directly from maxi-
mizing the average velocity in the desired direction.” In other words, the division into

SStatistical complexity is also an upper bound of predictive information, or structure, within
the system (Biaek et al. 2001; De Wolf and Holvoet 2005).
“4Although Correiarefers to this as adaptability, he in fact defines robustness.
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lanes results from maximizing velocity (an overall objective or fitness), which in turn
supports minimization of conflicts. A practical case study of self-organizing traffic,
presented in Chapter 3, considers ways to minimize conflicts as well, e.g., via“pla
toons” or “convoys’ of cars that move together, improving the traffic flow.

Another example is provided by ants: “Food transport is done via a trail, which
is an organized behaviour with a certain complexity. Nevertheless, a small percentage
of ants keep exploring the surroundings and if a new food source is discovered a new
trail is established, thereby dividing the workers by the trails (Hubbell et al. 1980) and
increasing complexity” (Correia 2006). Here, the division into trailsis again related to
an increase in fitness and compl exity.

These examples demonstrate that when local conflicts are minimized, the degree of
coupling among the components (i.e., interaction) increases and the information flows
more easily, thus increasing the information transfer. This means that self-organization
as a dynamic process tends to increase the overall diversity of a system (more lanes
or trails), while keeping the interplay among different channels (the assortative noise
within the system, the conflicts) in check. In summary, self-organization can be quanti-
tatively studied viainformation dynamics when the appropriate channels are identified
(Prokopenko et al. 2007).

Example: Self-organizing Computation

In illustrating the phenomenon of self-organizing computation we employ Cellular
Automata (CA)—discrete spatially extended dynamical systems that are often used
as models of computational, physical, and biological processes—see, e.g., (Mitchell
et al. 1993) and Chapter 14. The main conjecture within this application domain isthat
physical systems achieve the prerequisites for computation (i.e., transmission, stor-
age, modification) in the vicinity of a phase transition between periodic and chaotic
behaviour (Langton 1991).

In classifying CA rules according to their asymptotic behaviour, the following
qualitative taxonomy is typically employed: class | (homogeneity), class Il (period-
icity), class Il (chaos), and class IV (complexity) (Wolfram 1984). The first class
consists of CA that, after a finite number of time steps, produce a unique, homoge-
neous state (analogous to “fixed points’ in phase space). From almost all initial states,
such behaviour completely destroys any information on the initial state, i.e., complete
prediction istrivial and complexity islow. The second class contains automata which
generate a set of either stable or periodic structures (typically having small periods—
analogous to “limit cycles’ in phase space); each region of the fina state depending
only on afinite region of the initial state; i.e., information contained within a small
region in the initial state suffices to predict the form of aregion in the final state. The
third class includes infinite CA producing aperiodic (“chaotic”) spatiotemporal pat-
terns from almost all possible initial states; the effects of changes in the initia state
almost always propagate forever at afinite speed, and a particular region depends on a
region of the initial state of an ever-increasing size (analogous to “chaotic attractors”
in phase space). While any prediction of the “final” state requires complete knowl-
edge of the initial state, the regions are indistinguishable statistically as they possess
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no structure, and therefore the statistical complexity islow. The fourth class deals with
automata that generate patterns continuously changing over an unbounded transient.

Thefourth class CA existing near the phase transition between periodic and chaotic
behaviour was shown to be capable of universal computation (Wolfram 1984). These
CA support three basic operations (information storage, transmission, and modifica
tion) through static, propagating, and interacting structures (blinkers, gliders, colli-
sions). Importantly, the patterns produced along the transient are different in terms
of generated structure, and, in fact, their structural variability is the highest of all
the four classes—i.e., the information transfer and the complexity of the class IV
automata are the highest. Casti (1991) developed an analogy between the complex
(class 1V) automata and quasi-periodic orbits in phase space while pursuing deeper
interconnections between CA, dynamical systems, Turing machines, and formal logic
systems—in particular, the complex class IV automata were related to formal sys-
tems with undecidable statements (Godel’s theorem). These interconnections are also
explored in Chapter 15, which investigates the concept of emergence and the limits of
algorithmic approaches.

1.5 Discussion and Conclusion

Our analysiswould beincomplete without adiscussion of afew obstaclesthat prevent a
straightforward application of self-organizing systemsin industry. The limits of algo-
rithmic approaches to emergence studied in Chapter 15 may manifest themselves in
many different ways. Firstly, the “numerous interactions among the lower-level com-
ponents’ (Camazine et al. 2001) that are essential for self-organization may often be
costly in terms of communication overhead. For example, many decentralized multia-
gent (e.g., peer-to-peer) clustering algorithms deployed in sensor networks form stable
clusters only after a significant number of messages (Prokopenko et a. 2005a), poten-
tially incurring a prohibitive cost. This highlights even more the role of selecting the
most important information channels and communication topologies, reducing local
conflicts (assortative noise) and maximizing information transfer.

Secondly (and thisis probably the most principled impediment), self-organization
results in nondeterministic outcomes. In fact, thisis one of its strengths, and as noted
earlier, far-from-equilibrium dynamics and symmetry-breaking behaviour may lead to
stable patterns that can and should be exploited. However, in order to be adopted by
industry, nondeterminism of self-organizing patterns requires an appropriate verifica-
tion of the outcomes, and the search for the most suitable verification methodology
is gtill open. For example, Chapter 5 investigates self-organizing collaboration within
amultiagent system using analytical techniques, in an attempt to provide a verifiable
optimal solution to a decentralized decision problem.

Finaly, a complete self-organizing system would typically depart too strongly
from incremental advancements accepted by an industry. A more realistic approach
suggests, instead, the deployment of hybrid systems (e.g., such as the one described
in Chapter 4) where self-organization is used within separate components, provid-
ing a convenient mechanism for managing communication overheads and verification
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requirements. Such hybrid systems are an intermediate step on the path towards com-
plete self-organizing solutions, e.g., a completely self-organizing computation within
reaction-diffusion media, explored in Chapter 14.

In summary, we believe that information-driven evolutionary design can produce
self-organizing systems that can be as reliable as traditionally engineered verifiable
(provably-correct) systems, and as resilient as homeostatic biological organisms.
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2

Foundations and For malizations of Self-organization

Daniel Polani

2.1 Introduction

In the study of complex systems, the relevance of the phenomenon of self-organization
is ubiquitous. For example the stripe formation in morphogenesis (Meinhardt 1972,
1982), reaction-diffusion automata (Turing 1952), the reorganization of a self-
organizing Kohonen map, the seemingly effortless distributed organization of work in
an ant colony, the formation of flows in pedestrian movement patterns (Helbing et al.
2005), the maintenance and creation of the complexities involved in the maintenance
of lifein living cells al produce behaviour that, in one way or another, can be called
“organized” and if the source of organization is not explicitly identified outside of the
system, it can be called “self -organized.”

Strangely enough, as much agreement as there is on visual inspection about
whether self-organization is present or absent in a system, as little agreement exists
concerning the precise meaning of the word. In other words, whereas the phenomenol -
ogy of the phenomenon is pretty much agreed upon, its formal foundations are the
subject to delete.

Among other problems, this causes a certain amount of confusion. For instance, the
difference between the notions of emergence and self-organization is being strongly
emphasized (Shalizi 2001), notwithstanding the frequent co-occurrence of these
notions. On the other hand, without a clear formal definition of self-organization and
emergence, it is difficult to make strong points in favour (or against) a separation of
these notions.

With recent interest in the exploitation of aspects of self-organization for engineer-
ing and other applications, the importance of characterizing and understanding the
phenomenon of self-organization has even increased. It is no longer sufficient to char-
acterize a system in “ivory-tower” fashion to be in one group or another according to
some human classification. Rather, it becomes necessary to work towards a predictable
and structured theory that will also admit useful predictions about the performance of
a system. The advent of nanotechnology and bio-inspired engineering architectures
increases the immediate practical relevance of understanding and characterizing self-
organization.
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In view of the various streams and directions of the field of self-organization, it
is beyond the scope of the present introductory chapter to review all the currents
of research in the field. Rather, the aim of the present section is to address some of
the points judged most relevant and to provide a discussion of suitable candidate for-
malisms for the treatment of self-organization. In the author’s opinion, discussing for-
malisms is not just a vain exercise, but allows one to isolate the essence of the notion
one wishes to develop. Thus even if one disagrees with the path taken (as is common
in the case of not yet universally agreed upon formal notions), starting from opera-
tional formalisms serves as a compass to guide one towards notions suitable for one's
purposes. This is the philosophy of the present chapter.

The chapter is structured as follows. in Section 2.2, we present several central
conceptual issues relevant in the context of self-organization. Some historical remarks
about related work are given in Section 2.3. To illustrate the setting, a brief overview
of some classical examples for self-organizing processes is given in Section 2.4.
Sections 2.5 and 2.6, we introduce the two main information-theoretic concepts of
self-organization that the chapter aimsto discuss. One concept, based on the e-machine
formalism by Crutchfield and Shalizi, describes self-organization as an increase
in (statistical) complexity with time. The other concept suggests measuring self-
organization as an increase in mutual correlations (measured by multi-information)
between different components of a system. In Section 2.7, finally, important properties
of these two measures as well as their distinctive characteristics (namely their power
to identify temporal vs. compositional self-organization) are discussed; Section 2.8
offers some concluding remarks.

2.2 General Comments

In line with the comments above, the present chapter does not attempt to answer
the question: “What is self-organization?’ Instead, the question is “Where do we
agree self-organization exists?’ or “What are candidate characterizations of self-
organization?.” Rather than attempting to give ultimate answers, a number of sugges-
tions are offered that can form a starting point for the development of the reader’s own
notion.

The distinction between self-organization and emergence is emphasized time and
time again (Shalizi 2001); thisis sometimes confusing, given that often both appear in
similar contexts and that there is no universally accepted formal definition for either
of them. This distinction emphasizes that there is a general desire to have them carry
different meanings.

Self-organization, the main focus of the present chapter, is a phenomenon under
which a dynamical system exhibits the tendency to create organization “out of itself,”
without being driven by an external system, in particular, not in a “top-down” way.
This requires clarification in regard to several questions:

'Emergenceis briefly discussed in Sections 2.5.2 and 2.6.1.
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1. What is meant by organization?

2. How and when to distinguish system and environment?
3. How can external drives be measured?

4. What does top-down mean?

Question 1 is clearly related to the organizational concept of entropy. However,
it is surprisingly not straightforward to adapt entropy for use in measuring self-
organization, and some additional effort must be made (Polani 2003). Thisisthe ques-
tion that the present chapter focuses on. All the other questions are only mentioned
briefly to provide the reader with an idea of what further issues in the context of for-
malization of self-organization could and should be addressed in future.

Question 2 s, basically, about how one defines the boundaries of the system, which
isrelated to the question of autonomy (Bertschinger et a. 2006). Once they are defined,
we can ask ourselves all kinds of questions about the system under investigation and
its environment, its “outside” A complication is brought into the discussion through
thefact that if organization is produced inthe “inner” system out of itself (the“self” in
self-organization) in areal physical system, disorder has to be produced in the outside
world, due to the conservation of phase space volume (Adami 1998).

However, for many so-called self-organizing systems the physical reality is quite
detached, i.e., conservation or other thermodynamic laws are not (and need not be)
part of the model dynamics, so Landauer’s principles (Landauer 1961; Bennett and
Landauer 1985) areirrelevant in the general scenario: for instance, acomputer emul at-
ing a self-organizing map produces much more total heat in its computation than the
minimum amount demanded by Landauer’s principle due to the entropy reduction of
the pure computation. In other words, the systems under consideration may be arbitrar-
ily far away from thermal equilibrium, and, worse, there may be a whole hierarchy of
different levels of organization whose constraints and invariants have to be respected
before one can even consider coming close to the Landauer limit.2

Therefore, unlesswe are aiming for an understanding of nanosystems, whereissues
of Landauer’s principle could begin to play a role, we can and will ignore issues
of the “compulsory” entropy production of areal physical system that exhibits self-
organization. In particular, the systems we consider in the following pages are general
dynamical systems. We do not require them to be modelled in athermodynamically or
energetically consistent way.

The response to question 3 is not as straightforward, a difficulty that is conceded in
Shalizi et a. (2004), who suggest studying causal inference as a possible formalism to
investigate the influence of an environment on a given system. In fact, the concept of
information flow has recently been introduced to address exactly this question (Ay and
Wennekers 2003; Klyubin et al. 2004; Ay and Krakauer 2006; Ay and Polani 2007),
providing an information-theoretic approach to measure causal inference. At this point
these notions are still quite fresh and not much is known about their possible rele-
vance for characterizing self-organizing systems, athough it is an interesting avenue
for future work.

2As an example, the energy balance of real biological computation process will operate at
the ATP metabolism level and respect its restrictions—but thisis still far off the Landauer limit.
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Question 4 again introduces an interesting and at the same time unclear notion of
“top-down.” Roughly, top-down indicates a kind of downward causation (Emmeche
et a. 2000), where one intervenes to influence some coarse-grained, global degrees
of freedom to achieve a particular organizational outcome; or else, the external exper-
imenter “micromanages’ the system into a particular state. For this latter view, one
could consider using a formalization of an agent manipulating its environment (Klyu-
bin et al. 2004). Thisis again outside of the scope of the present chapter. Nevertheless,
it is hoped that this section’s brief discussion of general conceptual issues highlights
some related open questions of interest that may prove amenable to treatment by a
consistent theoretical framework.

2.3 Related Work and Historical Remarks

Shalizi et a. (2004) track the first use of the notion of “self-organizing systems’ back
to Ashby (1947). The bottom-up cybernetic approach of early artificia intelligence
(Walter 1951; Pask 1960) devoted considerable interest and attention to the area of
self-organizing systems; many of the questions and methods considered relevant today
were appropriately identified almost half a century ago (e.g., Yovits and Cameron
1960).

The notions of self-organization and the related notion of emergence form the back-
bone for the studies of dynamical hierarchies and, in particular, those types of dynam-
icsthat lead to climbing the ladder of complexity as found in nature. Notwithstanding
the importance and frequent use of these notions in the relevant literature, a math-
ematical definition that is both precise and useful remains elusive. While there is a
high degree of intuitive consensus on what type of phenomena should be called “ self-
organizing” or “emergent,” the prevailing strategy of characterization is along the line
of “I know it when | seeit” (Harvey 2000).

Specialized formal literature often does not go beyond pragmatic characterizations;
e.g., Jetschke (1989) defines a system as undergoing a self-organizing transition if
the symmetry group of its dynamics changes to a less symmetrical one (e.g., a sub-
group of the original symmetry group; Golubitsky and Stewart 2003), typically occur-
ring at phase transitions (Reichl 1980). This latter view relates self-organization to
phase transitions. However, there are several reasons to approach the definition of self-
organization in a different way. The typical complex system is not in thermodynamic
equilibrium (see aso Prigogine and Nicolis 1977). One possible extension of the for-
malism is towards nonequilibrium thermodynamics, identifying phase transitions by
order parameters. These are quantities that characterize the “deviation” of the system
in a more organized state (in the sense of Jetschke) from the system in a less orga-
nized state, measured by the absence or presence of symmetries. Order parameters
have to be constructed by explicit inspection of the system since a generic approach is
not available, although an e-machine-based approach such asin Shalizi (2001) seems
promising. Moreover, in complex systems, one cannot expect the a priori existence or
absence of any symmetry to act asauniversal indicator for self-organization; in general
such a system will exhibit, at best, only approximate or imperfect symmetries, if any
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at al. Without a well-founded concept of characterizing such imperfect “soft” sym-
metries, the symmetry approach to characterizing self-organization is not sufficient to
characterize general complex systems.

2.4 Examplesfor Self-organization

We now consider a number of examples of systems which are typically regarded as
self-organizing. Since the field lacks a consensus on suitable formal definitions, it is
helpful to consider examples of the phenomenaat hand, where thereisless controversy
as to whether or not they exhibit the desired behaviour.

2.4.1 Bifurcation

Consider adynamical system with state x(¢) € R™ at time ¢, whose state dynamics is
governed by adifferential equation

x = F(x, p), (2.2)

where I’ : R™ x R — R" is a smooth function, 1 € R is a so-called bifurcation
parameter, and the dot denotes the usual time derivative. For a fixed u, this defines
a particular dynamical system, which, among others, exhibits a particular fixed point
profile, i.e., a set of points {x° € R" | F(x°) = 0}. The existence of fixed points
engenders apossibly highly intricate structure of the system state space R™. Of partic-
ular importance are the so-called stable and unstable manifolds. The stable manifold
of afixed point x° is the continuation (forward in time) of the local eigenspaces of
the Jacobian DF| , for negative eigenvalues, the unstable manifold is the continu-
ation (backward in time) for positive eigenvalues (see Jetschke 1989, or any good
book about dynamical systems for details). The important part of this point is that the
structure of the invariant (stable and unstable) manifolds structures the state space in
a characteristic way. A very simple example is shown in Fig. 2.1: even in this simple
example, the state spaceis split into four regions. With a more intricate fixed-point (or
attractor) structure that profile can be quite more complex.

Fig. 2.1. Stable and unstable manifold of afixed point x°
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The importance of the above observation stems from a number of facts. In the
example shownin Fig. 2.1, there are only positive or negative eigenval ues of the Jaco-
bian DF|,,. However, if we consider ;. to be a parameter that is scanned through, the
eigenvalue spectrum of the Jacobian changes smoothly, and eigenvalues may change
sign, i.e., may crossthe O level. Generically, an eigenval ue changing sign on changing
e will travel with nonzero speed through 0, i.e,, for which DF,| , # 0, where DF),
is the partial derivative of the Jacobian with respect to p. If thisis the case, the num-
ber or character of the fixed points may change, sometimes dramatically, and with it
the whole split of the space into attractor regions of different character. This process
is known as bifurcation. In systems which have a fast dynamics F' parametrized by a
slow-varying (and perhaps externally controlled) parameter 1., the appearance of new
fixed pointsis often interpreted as a process of self-organization.

2.4.2 Synergetics

The concept of a slow-varying parameter has been made part of the above analysis
by a number of approaches, most notably the synergetics approach (Haken 1983), but
it is aso known under the names of slow manifold and fast foliation (Mees 1981).
If we consider a dynamical system where the Jacobian of F' has a few eigenvalues
very closeto 0 and alarge number of strongly negative eigenval ues, those components
of = which fall into the degrees of freedom of the strongly negative eigenvalues will
vanish quickly, reducing the essential dynamics of the system to the low-dimensional
submanifold of the whole system, which correspondsto its“slow” degrees of freedom.
In the more colourful language of synergetics, these “slow” degrees of freedom are the
“master” modes that “enslave’ the fast, quickly decaying modes that belong to the
strongly negative eigenvalues.

Synergetics provided an historically early formal and quantitative approach for the
treatment of self-organization phenomenaby decomposing apossibly large system into
hierarchically separate layers of dynamics. It has been successfully applied to a num-
ber of physical systems and models, including laser pumping, superconductivity, the
Ginzburg-Landau equations, and the pattern formation and the Bénard instabilities in
fluids (Haken 1983). However, it only works properly under certain conditions (namely
the particular structure of the eigenval ue spectrum) and there are self-organization phe-
nomenait failsto capture fully (Spitzner and Polani 1998).

2.4.3 Pattern Formation in Spatial Media

To define the dynamical system concept from Sections 2.4.1 and 2.4.2 one requires the
concept of smooth manifolds, i.e., a space with consistent differentiable structures. If
one adds the requirement that F' obey given symmetries, i.e., that there is a symmetry
group I" such that v € I" operateson R™ and (2.1) obeys

(7x) = F(yx, )

for all v € I, then it can be shown that thisimposes restrictions on the solution space,
including the bifurcation structure (Golubitsky and Stewart 2003).
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A special, but important case is a spatial symmetry governing the state space of
the dynamics. In the most general case, the state space is not the finite-dimensional
space R™, but rather the space C™ (R*, R) of sufficiently smooth functions on R¥, the
symmetries are the Euclidean symmetries (translations and orthogonal rotations) on
R¥, and (2.1) actually becomes a partial differential equation.® In a discrete approxi-
mation one can replace the space R* by a lattice L = {Zle livi | l; € Z} for linear
independent v; € R (Hoyle 2006), and thus reobtain a finite-dimensional version of
(2.1); this time the n components of space no longer form an unstructured collection,
but rather are organized as a lattice and subject to its symmetries. Here, the system
dynamics together with the symmetries governing the system give rise to particular
stable states and attractors, where, due to their easily visualizable spatial structure, it
is easy to detect phenomena of self-organization.

A classical example for such amodel is Turing's reaction-diffusion model (Turing
1952). He was among the first to study the dynamics of reaction-diffusion systems
as possible models for computation, and his particular interest was pattern formation
in biological scenarios. At a time when there was still a debate as to what would be
the most adequate model for computation, Turing's suggestion of a spatially organized
computational medium with an activator and an inhibitor substance with differing dif-
fusion coefficients provided a wide range of spatial organization dynamics. There are
different instances of reaction-diffusion machines, depending on the chemical dynam-
ics. Figure 2.2 shows some Turing patterns emerging from having an activator and an
inhibitor with concentrations a, b, respectively, computed from the definition of their
rates of change,

Fig. 2.2. Turing patterns of the concentration a of the activator, as emerging from Eq. (2.2) for
different parameters k. See (Bar-Yam 1997) for a discussion on how to obtain different patterns.

3Here we ignore technical details necessary to properly define the dynamics.
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% = 6140+ k1a? /b — kqa (2.2
o _ 89 Ab + kza® — kab, (2.3)
ot

in the discrete approximation of a square lattice (Bar-Yam 1997). The starting config-
urations were randomly initialized concentration fields for ¢ and b. The simulations
show that the dynamics is constrained to produce structured patterns from virtually
arbitrary initial states.

Other reaction-diffusion systems exhibiting spatial self-organization phenomena
are, for instance, the Belousov-Zhabotinsky reaction, which can be implemented in
vitro. Reaction-diffusion processes are believed to influence the morphogenetic pro-
cessesin living things (Meinhardt 1982) and, as such, are of central importance for an
understanding how of morphological complexity can be obtained by “unpacking” the
relatively compact genotype.

2.5 Information-Theoretic Approachesto Self-organization

The models from Section 2.4 have in common that they require the dynamical system
to “live” on a differentiable manifold to describe self-organization. In addition, the
synergetics model of self-organization requiresaparticular grouping of the eigenval ues
of the Jacobian, and the pattern formation models require the presence of a spatially
structured state space. These are relatively specific requirements. In aunified treatment
of self-organization, it would be very limiting to exclude self-organization in discrete,
not differentiable, worlds. Similarly, it would be inappropriate to assume that systems
must have a Euclidian spatial organization similar to reaction-diffusion systems. It is
easy to envisage scenarios where a system may possess other topological/structural
properties, such as socia or food web networks.

In addition, the example systems from Section 2.4 were implicitly assumed to be
deterministic, which is usualy far too strong an assumption. Neither this assumption
nor the assumption from the last paragraph needs to hold. One can imagine self-
organization in an agent system (such as relevant for engineering problems) which
is neither deterministic nor organized on aregular spatial structure, and certainly noth-
ing can be assumed in terms of distributions of eigenvalues close to fixed points (if
these exist at al).

Can anything at all be analyzed in such structurally impoverished scenarios?
Indeed, it turns out that a lot can still be said with much less structure, and the tool-
box of choice is information theory. In the following, we outline two approaches for
modelling self-organization using information theory.

Information theory operates on probability distributions. These require only min-
imal structure (a probability measure) on the space of interest and make no assump-
tions about differentiability or spatial structure. Information theory has crystallized as
a promising common language for the study of general systems—to tackle issues of
complex phenomena exhibiting a wide variety of seemingly incompatible properties.
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2.5.1 Notation

Dueto space limitations, the formalization of the exposition isrestricted to aminimum.
Consider a random variable X assuming values x € X, X being the set of possible
values for X. For smplicity, assume that X isfinite. Define the entropy of X by

==Y p(x)logp(x

zeX

and the conditional entropy of Y as

H(Y|X) =Y pla)HY|X =),
zeX

with
HY|X =2):=-Y p(ylz)logp(y|z)
y€eY
for x € X. The joint entropy of X and Y is the entropy H(X,Y") of the random
variable (X, Y"). The mutual information of random variables X and Y isI(X;Y) :=
HY)-H{Y|X)=HX)+ HY)—- H(X,Y). A generdlization is the intrinsic
information: for random variables X, .. ., X, theintrinsic or multi-information is

I(Xy;.. 3 X [ZH 1 H(Xy,...,Xp).

In Tononi et a. (1994) this notion is aso known e.g., as integration. Similar to
the mutual information, it is a measure of the degree of dependence between the
different X;.

2.5.2 Sdf-organization as Increasing Statistical Complexity

One influential approach to the study of complex systems and the notions of self-
organization and emergence is based on the e-machine formalism, which provides a
model to describe complex tempora processes (Crutchfield and Young 1989). Using
this formalism, Shalizi (2001) develops a quantifiable notion of self-organization. In
the following, we briefly describe the e-machine formalism and the ensuing model for
self-organization.

Consider a stochastic process (with, say, infinite past and future):

X =.. . xXt3) xt=2 x0-1) x) x+) x+2) x+3)

Denote the (ordered) sequence of variablesup to X ) by X (past) and the sequence of
variables from X *+1) upwards by X (future). Consider the equivalence relation that
identifies all pasts = for which the probability distribution P()_(>|‘E) of the possible
futures is exactly the same. This equivalence relation partitions the pasts into disjoint
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sets, which, for the sake of simplicity, we name . Any past = isamember of exactly
one equivalence class z.

To construct an e-machine from a given process X, define an automaton such
that its states are identified one-to-one by the equivalence classes & arising from the
above procedure. When a transition from ¢ to ¢ + 1 is made, it means replacing a
past... X (=3 x(t=2) x (=1 x() pyapast... X(#2) x0t-1 x® X+ and
thus it acts as atransition from an equivalence class z to an equivalence class 2/, cor-
responding to the new past. Together with labelling the transition by the realization
() of X (41 this defines the automaton.

The e-machine, when it exists, acts as the unique minimal maximally predictive
model of the original process (Shalizi and Crutchfield 2002), including highly
non-Markovian processes which may contain a significant amount of memory.*
It allows one to define the concept of statistical complexity as the entropy
H(X) = — 3. p(#)logp(Z) of the states of the e-machine. This is a measure of
the memory required to perform the process X.

Note that the statistical complexity is, in general, different from another impor-
tant quantity, known, among other names, as excess entropy and is given by n(X) :=
I(X: X) (see, e.q., Grassberger 1986). One awayshasy(X) < H(X) (Shalizi 2001).
The interpretationa distinction between statistical complexity and excess entropy is
subtle. Of the selection of interpretations available, the author prefersthe view inspired
by the “information bottleneck” perspective (Tishby et a. 1999; Shalizi and Crutch-
field 2002): The excess entropy isthe actual information contained in the complete past
(for agiven time) about the complete future as it could be reconstructed if the complete
past were available as a whole. As opposed to that, to obtain the statistical complex-
ity one has to force this information through the “bottleneck” given by the e-machine
state at the present time slice, which has to provide sufficient statistics about the past
concerning the future constrained to the current time. Because of the constraint of this
bottleneck to the present time dlice it is, in general, less parsimonious in description
than the “idealized” excess entropy, which, in principle, assumes availability of the
whole process (past and future) to produce its prediction. In the bottleneck picture, we
have the sequence

~ — —
X+—X—X,
wherethe left arrow indicates the projection of X tothe e-machine state and the arrows
between the past and future variables indicate their informational relation. The process
of “squeezing” their mutual information into the bottleneck variable X produces in
general a variable with a larger entropy than the actual mutual information content
between X and X . (Thisisageneral property of the information bottleneck, of which
the relation between statistical complexity and excess entropy isjust aspecia case.)

In computing the e-machine, the picture of an infinite time series is idealized. In

the empirical case one would consider finite time series, giving rise to a “localized’

“Note that, in general, the construction of an e-machine from the visible process variables
X isnot necessarily possible, and the reader should be aware that the Shalizi/Crutchfield model
isrequired to fulfil suitable properties for the reconstruction to work. | am indebted to Nihat Ay
and Wolfgang Lohr for pointing this out to me.
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e-machine, operating on a certain window size. Here, one would expect to encounter a
slow drift superimposed on the fast dynamics of the process, which will slowly change
the localized e-machine with the passing of time. Shalizi (2001) calls a system self-
organizing if this statistical complexity grows with time. We will call this flavour of
self-organization SC-self-organization (‘ SC’ for statistical complexity).

This approach basically considers organization to be essentially the same as com-
plexity. In this model, self-organization is an intrinsic property of the system and
unambiguously measurable. In particular, this approach makes the relation to emer-
gence unambiguously clear, as Shalizi gives a definition of emergence based on the
e-machine notion in the same work. In essence in the e-machine perspective, emer-
gence is present if there is a coarse-grained description of the system that is more
predictively efficient than the original description of the process, i.e., if it has a higher
ratio n(X)/H(X) of excess entropy vs. statistical complexity, a better ratio between
the total amount of process information that ideally needs to be processed and the
process memory that is actually necessary to achieve it.

This approach to emergence is descriptive, asit characterizes a property of the par-
ticular description (i.e., perspective or “coordinate system”) through which one looks
into a system. As opposed to that, self-organization in the e-machine model isapurely
intrinsic property of the system. Through this split into description and intrinsic proper-
ties, Shalizi (2001) arguesthat while emergence may allow oneto simplify descriptions
of asystem, there may be cases of self-organization which humans do not recognize as
such because there is no appropriate simplified (emergent) coordinate system through
which the self-organization would become apparent. It is only visible through the e-
machine construction. This provides a transparent picture how self-organization and
emergence turn out to be two mathematically distinct concepts that represent different
aspects of a system. While thisis amotif that one finds repeatedly emphasized in the
scientific discourse, it is rarely formulated in such compelling and crisp language.

One interesting aspect of the e-machine view is how it reflects the bifurcation
concept from Section 2.4.1. Consider as process an iterator map for ¢ — oo. As
long as there is only a single fixed-point attractor, the e-machine will (asymptotically)
have only one state. As a hifurcation into two fixed-point attractors occurs, these two
attractors will be reflected by the e-machine. With the bifurcation behaviour becom-
ing more intricate (as would happen, say, in the logistic map example with an adi-
abatically slowly growing bifurcation parameter), the e-machine also grows in com-
plexity. In this way, the e-machine can grow significantly in size and in statistical
complexity.

2.5.3 Observer-Induced Self-organization

Conceptually, the pattern formation which we gave in Section 2.4.3 as a prominent
example of self-organization does not fit smoothly into the picture of growing stetis-
tical complexity. One reason is that statistical complexity by its very foundation is a
concept that operates on a process that has no a priori structure on the X (), except for
the ordered-ness (and, implied, directed-ness) of time.
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Quite different from that, spatial pattern formation inextricably requires a spatial
structure on its state space X. The patterns that devel op during the experimentsformin
space, and space has strong structural constraints, So Shalizi (2001), spatia e-machine
developed ato deal specifically with this problem. Thus, the spatial structureis brought
in explicitly as part of the model.

An alternative approach to modelling self-organization using information theory is
suggested in Polani (2003). This approach no longer considers an unstructured dynam-
ical system on its own, but adds the concept of an observer which acts as a particular
“coordinate system” through which the given system is represented at a given time
step. For this model of self-organization, an observer or coordinate system needs to be
specified in addition to the dynamics of the system. The suspicion that observers may
be of importance in characterizing complex systems has been voiced quite afew times
in the past (Crutchfield 1994; Baas and Emmeche 1997; Harvey 2000; Rasmussen
et a. 2001). In formalizing thisidea here, we follow the particular flavour from Polani
(2003).

2.6 Organization via Observers

A (perfect) observer of a (random) variable X isacollection Xy, X5, ..., X} of ran-
dom variablesallowing full reconstruction of X, i.e., forwhich H (X |X1, Xa, ..., Xx)
vanishes. We define the organization information with respect to the observer as the
multi-information I(Xy;...;Xx). We call a system self-organizing (with respect to
the given observer) if the organization information increase with respect to the observer
variables is positive as the system dynamics progresses with time. 7(Xy;...; X)
quantifies to what extent the observer variables X1, Xs,..., X depend on each
other. We call this flavour of self-organization O-self-organization (O for observer
based).

The set of observer variables can often be specified in a natural way. For instance,
systems that are composed of many, often identical, individual subsystems have
a canonical observer, defined via the partition of the system into subsystems. For
instance, the observer variables could denote the states of agentsthat collectively make
up a system. An increase in the multi-information of the system with respect to the
agent states then indicates an increasing degree of coordination among the agents, this
is consistent with our intuitive understanding of self-organization. Reaction-diffusion
systems are also naturally described in this framework. Each point in space becomes
an observer variable; in the attractor states with spot-and-wave patterns, these observer
variables are intrinsically correlated.

Note, however, that for the multi-information not to vanish, it is still necessary that
the whole system have some degree of freedom and that there is not just a single fixed
pattern that the system converges to. This makes sense, since otherwise one would just
be talking about a single attractor, and thustrivial, system.

Using the self-organizing map as the model system and the individual neuron
weights as observer variables, Polani (2003) discussesin detail the advantage of multi-
information as a measure for self-organization, as compared to other information-



2 Foundations and Formalizations of Self-organization 31

theoretic candidates for such a measure (except for the comparison with SC-self-
organization, which is discussed in the present chapter for the first time). Many of
the arguments carry over to other typical scenarios.

Note that compared to SC-self-organization (Sec. 2.5.2), O-self-organization is dif-
ferent in several respects. SC-self-organization does not require observers, and arises
from the intrinsic dynamics of the system. This is orthogonal to the view of O-self-
organization. In principle, the need for fewer assumptions by SC-self-organization is
a conceptual advantage. On the other hand, to model the appearance of regular pat-
terns (e.g., of a reaction-diffusion system) as a self-organization process one must
in any case specify the extra spatial structure in which the patterns appear. In O-
self-organization, this can be directly made part of the specification. Thus, O-self-
organization would be a natural candidate for these types of scenarios.

2.6.1 Observer Dependence

For the observer-based measure, a central question is how the measure changes as one
moves from one observer to another; i.e., what happens to the measure on a change
of the “coordinate system.” It turns out that it is possible to formulate an interesting
relation between fine-grained observers and a coarse-graining of the same observers.
We discuss this relation in the following.

Let X;,i =1...k beacollection of jointly distributed random variables; this col-
lection formsthe fine-grained observer. Obtain the coarse-grained observer by group-
ing the X; according to

Xty Xy Xiogts ooy Xigy oo Xbp 115+ X (2.4)
N ™ —/_/
X X2 %

k

That is, each of the coarse-grained variables X, j = 1...k is obtained by grouping
severa of the fine-grained variables X; together.
Then the multi-information of the fine-grained observer can be expressed as®

k
I(X1; Xo; .. Xp) = I(Xy; Xo; oo X5) + ZI(ij_l+1; LX), (25)

Jj=1

(where we adopt the convention &, := 0 and k; := k). Relation (2.5) states that
the multi-information as a measure of self-organization in the fine-grained case can be
expressed as the multi-information for the set of coarse-grained variables, corrected by
the intrinsic multi-information of all these coarse-grained variables, or in other words,
“the fine-grained system is more than the sum of its coarse-grained version.” The proof
is sketched in the appendix.®

SThis is a generalization of Eq. (3) from Tononi et al. (1994) for the bipartite case to the
multipartite case.

5This property is related to a property that can be proven for graphical models, see, e.g.,
Proposition 2.1in Slonim et a. (2001).
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Equation (2.5) expresses the way that the intrinsic information of a system changes
under a “change of coordinates’ by regrouping the random variables that represent
the system. This*“bookkeeping” of multi-information, while changing the basis for the
system description in general, only appliesto regrouping of variables, but not to recod-
ing. Under recoding of variables (i.e., re-representing the variables X; by random vari-
ablesY; = fi(Xy,..., X, ..., Xk), where f; is some deterministic function), there
is no canonical way of transforming multi-information in a smple and transparent
manner.

To see that, note that recoding may entirely remove dependencies between the
recoded X; (e.g., in independent component analysis, Comon 1991). In fact, further
reguirements can be added to the component independence; indeed, this has been pro-
posed as a way of discovering degrees of freedom representing emergent levels of
description (Polani 2004, 2006). In this sense, O-self-organization is distinct from and
effectively conjugate to the “emergent descriptions’ concept. This dichotomy mirrors
the anal ogous dichotomy exhibited by the formalization of self-organization and emer-
gence using the e-machine formalism (Sec. 2.5.2).

2.7 Discussion

2.7.1 SC- and O-Self-organization

We have emphasized that self-organization is a phenomenon that is often discussed in
conjunction with complex systems. While there is a manifold selection of processes
that are associated with this phenomenon, most notions used to characterize self-
organization are either too vague to be useful or too specific to be transferable from
one system to another. The information-theoretic notions of (statistical complexity)
SC-self-organization (Shalizi 2001; Shalizi et a. 2004) and that of (observer-based)
O-self-organization (Polani 2003) strive to fill this gap. Although similar to each other
in the general philosophy, they are essentially “orthogona” as quantities.

SC-self-organization takes in asingle time series and measures the growth in statis-
tical complexity with time. O-self-organization requires an observer, i.e., a set of vari-
ables through which the system state is observed. Such a set of variablesis often natu-
raly available, for instance, in multiagent systems. Similar to SC-self-organization, O-
self-organization seemsto capture essential aspects of self-organization—for instance,
the freezing of seemingly unrelated degrees of freedom (the observer variables) into
highly coordinated global behavior.

Whereas SC-self-organization concentrates on the complexity of the temporal
dynamics, O-self-organization concentrates on the compositional aspects of the sys-
tem (this compositionality can, but need not, be spatial). This distinction is also what
indicates the use of each of the measures. If one focuses on the tempora dynam-
ics, SC-self-organization may be more relevant; whereas for spatial or compositional
dynamics, O-self-organization may be the measure of choice. As the precise mathe-
matical conceptualizations of self-organization are relatively recent, it will take some
time until enough experience is accumulated to make an informed decision asto which
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measure is appropriate to use in agiven constellation, or whether still other, more suit-
able measures need to be discovered.

A word of caution at this point: the calculation of multi-information is difficult if
the number of variablesis large (Slonim et a. 2005). Particularly in unorganized and
random states, a Monte-Carlo estimate of the entropies and multi-information islikely
to be undersampled and to overestimate the organization of the system in that state.
Research is under way to develop general methods that are able to properly estimate
the organization of unstructured states (and to distinguish them from organized states).

2.7.2 Introducing Observers

For O-self-organization, we have assumed the existence of natural observers. What if
none exist? Which ones should be introduced and used? The multi-information term
consists of the entropies of the individual variables as well as the entropy of the joint
variables. The latter depends only on the total system, not the observer. It is there-
fore the entropies of the individual variables that will change if we choose differ-
ent observers. In general, it is quite possible to choose observers in such a way as
to make them independent, but while this choice of observer is interesting (it essen-
tially corresponds to independent component analysis, Sec. 2.6.1), it makes the system
maximally un-self-organized. This clearly shows that O-self-organization is not intrin-
sic. It israther “in the eye of the beholder” (Harvey 2000), but in a formally precise
way.

Now, for O-self-organization to be present at all, the whole system must have some
degree of uncertainty; otherwise the individual variable entropieswill collapse and the
multi-information will vanish. Thisisaproperty of the whole system. Thus, one could
consider anatural observer to be one that maximizes the multi-information (as opposed
to minimizing it), thus making the system as self-organized as possible. If thisisthe
case, O-self-organization could be viewed as the opposite of independent component
decomposition.

But there is yet another way of constructing a natural observer: if one considers
units (agents) that operate in the system and possess sensors and actuators, the former
attaining information about the system and the latter acting upon and modifying the
system, then the perception-action loop of these agents forms a structured informa-
tion channel. It can be shown (Klyubin et a. 2004) that maximizing the information
flow through this channel allows the units to extract features from the system that are
pertinent to its structure.

This view is particularly interesting since it does not look at a system with a pre-
ordained temporal dynamics, but rather the units (agents) have the option of choosing
their own actions. Neverthel ess, once they perform the information flow maximization,
they attain perceptual properties especialy appropriate for the system at hand. The
thus attained filters or feature detectors could act as another form of natural observer
variables for the given system. Similarly, principles of informational organization can
lead to joint coordination of a sensorimotor device (Klyubin et al. 2005; Prokopenko
et al. 2006) and direct systems to equipment with embodiment-appropriate pattern
detector loops.
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2.8 Conclusion

The present chapter discussed the general problem of defining self-organization and
presented two operational approaches, both based on information-theoretic princi-
ples. One approach, based on the e-machine formalism, defines self-organization as
an intrinsic property of a system—as a growth of the memory required to process
a time series of random variables. The other approach defines self-organization via
an observer, in typical cases redlized as a family of variables of more-or-less simi-
lar type; a growing coordination among these variables with time is then identified as
self-organization. Depending on one’s aims, one will choose one or the other model
to identify self-organization in a system. In particular, SC-self-organization will be the
approach of choice if oneisinterested in characterizing the increase in complexity of
the temporal dynamics, whereas O-self-organization emphasi zes the self-organization
process in a system composed of many individual subsystems.

The advantage of using information-theoretic notions for quantifying self-
organization is that they provide a precise language for identifying the conditions
of self-organization and the underlying assumptions, as opposed to vague or uncom-
putable qualitative characterizations. The quantitative character of information mea-
sures also alows one to actively search for “more self-organized” systemsin a given
context, rather than to just state whether a system possesses or does not possess this
property (as, e.g., an algebraic characterization would do). In addition, theinformation-
theoretic language forces one to specify the assumptions and requirements underlying
the approaches being used.

In short, information theory proves to be a powerful language for expressing self-
organization and other concepts relevant to complex systems. Even if one ultimately
should prefer a different route to the characterization of self-organization in acomplex
system, it is probably a good first bet to strive towards a formulation that profits from
the clarity and transparence of the information-theoretic language.

2.9 Appendix: Proof of the Relation between Fine-
and Coar se-Grained Multi-information

Proof. First, note that a different way to write the composite random variables X ;jis
X; = (Xu,_141,...,Xg,) forj =1...k, giving
H(X;) = H(Xk, 415005 Xiy). (2.6)

J

Similarly, the joint random variable (Xl, ..., Xj) consisting of the composite ran-
dom variables X ; can be seen as a regrouping of the elementary random variables
X1,..., Xy Therefore the joint random variable constructed from the X ; and that
constructed from the X; both have the same entropy:

H(Xy,...,X;) = H(Xy,..., Xp). 2.7)
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For consistency of notation, one writes ky = 0 and k;, = k. One then obtains

k
I(f(uf@;...;f(;c)+ZI(X;Q].71+1;...;X;€J.)
j=1

k E k;
=3 H(X, Xl,...,X,-C)jLZ( 3 H(Xj,)—H(ij_ﬁh...,xkj))
=1 i=1 =k _1+1
= H(X, +Z< H(X, 1+1,...,ij)>—H(f(l,...,f(,;),
JTL =k = ~ heoxn
=Yk | H(X;)

where the first term results from a regrouping of summands, the second term results from
Eq. (2.6), and the third from rewriting the whol e set of random variables from the coarse-grained
to the fine-grained notation, thus giving

k
= H( H(X1,...,Xk)

=1

= I(X1;...; Xp),

which proves the equation.
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Self-Organizing Traffic Lights: A Realistic Simulation

Seung-Bae Cools, Carlos Gershenson, and Bart D’ Hooghe

3.1 Introduction: Catch the Green Wave? Better Make Your Own!

Everybody in populated areas suffers from traffic congestion problems. To deal with
them, various methods have been devel oped to mediate between road users as well as
possible. Traffic lights are not the only pieces in this puzzle, but they are an important
one. As such, different approaches have been used in attempts to reduce user waiting
times and prevent traffic jams. The most common involves finding the appropriate
phases and periods of traffic lights to quantitatively optimize traffic flow. This results
in “green waves’ that flow through the main avenues of acity, ideally enabling carsto
drive through them without facing ared light, as the speed of the green wave matches
the desired cruising speed for the avenue. However, this approach does not consider
the current state of thetraffic. If there is high traffic density, cars entering agreen wave
will be stopped by cars ahead of them or cars that turned into the avenue, and once a
car misses the green wave, it has to wait the whole duration of the red light to get into
the next green wave. On the other hand, for very low densities, cars might arrive at the
next intersection too quickly, and then to stop at each crossing. Thismethod is certainly
better than having no synchronization at all; however, it can be greatly improved.

Traffic modeling has greatly enhanced our understanding of this complex phe-
nomenon, especially during the last decade (Prigogine and Herman 1971; Wolf et al.
1996; Schreckenberg and Wolf 1998; Helbing 1997; Helbing and Huberman 1998;
Helbing et a. 2000), suggesting various improvements in traffic infrastructure. One of
these consists of adapting the traffic lights to the current traffic conditions. Indeed,
modern “intelligent” advanced traffic management systems (ATMS) use learning
methods to adapt phases of traffic lights, normally employing acentral computer (Fed-
eral Highway Administration 1998; Hunt et al. 1981). The self-organizing approach
we present here does not need a central computer, as the global synchronization is
adaptively achieved by local interactions between cars and traffic lights, generating
flexible green waves on demand.

We have previously shown in an abstract simulation (Gershenson 2005) that self-
organizing traffic lights can greatly improve traffic flow for any density. In this chapter,
we extend these results to a realistic setting, implementing self-organizing traffic lights
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in an advanced traffic simulator using real datafrom a Brussels avenue. In the next sec-
tion, we give abrief introduction to the concept of self-organization. The SOTL control
method is then presented, followed by the moreV TS simulator. In Section 3.5, results
from our simulations are shown, followed by discussion, future work, and conclusions.

3.2 Sdf-Organization

The term self-organization has been used in different areas with different meanings,
asis cybernetics (von Foerster 1960; Ashby 1962), thermodynamics (Nicolis and Pri-
gogine 1977), biology (Camazine et al. 2003), mathematics (L endaris 1964), comput-
ing (Heylighen and Gershenson 2003), information theory (Shalizi 2001), synerget-
ics (Haken 1981), and others (Ské&r and Coveney 2003). (For a general overview, see
[(Heylighen 2003).] However, the use of the term is subtle, since any dynamica sys-
tem can be said to be self-organizing or not, depending partly on the observer (Ashby
1962; Gershenson and Heylighen 2003): If we decide to call a “preferred” state or
set of states (i.e., attractor) of a system “organized,” then the dynamics will lead to a
self-organization of the system.

It isnot necessary to enter into a philosophical debate on the theoretical aspects of
self-organization to work with it, so a practical notion will suffice (Gershenson 2006):

A system described as self-organizing is one in which elements interact in
order to achieve dynamically a global function or behavior.

This function or behavior is not imposed by one single or several elements, nor
is it determined hierarchically. It is achieved autonomously as the elements interact
with one another. These interactions produce feedbacks that regul ate the system. If we
want the system to solve a problem, it is useful to describe a complex system as self-
organizing when the “ solution” is not known beforehand and/or is changing constantly.
Then, the solution is dynamically sought by the elements of the system. In this way,
systems can adapt quickly to unforeseen changes as el ementsinteract locally. In theory,
a centralized approach could also solve the problem, but in practice such an approach
would require too much time to compute the solution and would not be able to keep
pace with the changes in the system and its environment.

In engineering, a self-organizing system would be one in which elements are
designed to dynamically and autonomously solve a problem or perform a function
at the system level. Our traffic lights are self-organizing because each one makes a
decision based only on local information concerning its own state. Still, they manage
to achieve robust and adaptive global coordination.

3.3 Sdf-Organizing Traffic Lights: The Control M ethod
In the SOTL method [originally named SOTL-platoon in Gershenson (2005)], each

traffic light, i.e., intersection, keeps a counter «; that is set to zero when the light turns
red and then incremented at each time step by the number of cars approaching only
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the red light (i.e., the next one a car will reach) independently of the status or speed
of the cars (i.e., moving or stopped). When «x; (representing the integral of cars over
time) reaches a threshold 6, the green light at the same intersection turns yellow, and
at the following time step it turns red with x; = 0, while the red light that counted
turns green. In this way, if there are more cars approaching or waiting behind a red
light, it will turn to green faster than if there are only few cars. This simple mechanism
achieves self-organization in the following way: if there are only afew cars, these will
be stopped behind red lights for more time, giving other cars time to join them. As
more cars join the group, cars will wait less time behind red lights. With a sufficient
number of cars, the red lights will turn green even before they reach the intersection,
generating “green corridors.” Having “platoons’ or “convoys’ of cars moving together
improves traffic flow, compared to a homogeneous distribution of cars, since there are
large empty areas between platoons, which can be used by crossing platoons with little
interference.

The following constraint prevents traffic lights from switching too fast when there
are high densities: atraffic light will not changeif the number of time stepsislessthan
aminimum phase, i.e., v; < emin (; 1Sthe time since the light turned green).

Two further conditions are taken into account to regulate the size of the platoons.
Before changing a red light to green, the controller checks if a platoon is crossing
through, in order not to break it. More precisely, a red light is not changed to green
if on the crossing street there is at least one car approaching within a distance w from
the intersection. This keeps crossing platoons together. For high densities, this con-
dition alone would cause havoc, since large platoons would block the traffic flow of
intersecting streets. To avoid this, we introduce a second condition: condition one is
not taken into account if there are more than p: cars approaching the green light. Thus,
long platoons can be broken, and the restriction only comesinto play if a platoon will
soon be through an intersection.

The SOTL method isformally summarized in Algorithm 3.1.

This method has no phase or internal clock. If there are no cars approaching
a red light, the complementary light can stay green. We say that this method is
self-organizing because the global performance is given by the local rules followed

Algorithm 3.1: Self-organizing traffic lights (SOTL) controller.

foreach (time step) do
K t= CAT SapproachingRed in P
if (pi > @min) then
if not (0 < carsapproachingGreen IN w < ) then
if (k; > 0) then
switchlight; ()
Ri; = 0
end
end
end
end
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by each traffic light: they are “unaware” of the state of other intersections and still
manage to achieve global coordination.

The method employsasimilar ideato the one used by Porche and L afortune (1998),
but with a much simpler implementation. There is no costly prediction of arrivals at
intersections, no need to establish communication between traffic lights to achieve
coordination, and not fixed cycles.

3.4 A Realistic Traffic Simulator: moreVTS

Our simulator (moreV TS 2006), (amoreredlistic Vehicle Traffic Simulator) isthethird
in a series of open source projects building on the previous one, developed in Java.
Green Light District (GLD 2001) was developed by the Intelligent Systems Group at
the University of Utrecht (Wiering et a. 2004). It was then improved upon by students
in Argentina within the iAtracos project, which we used as a starting point for our
simulator, which introduces realistic physics into the simulation. Among other things,
acceleration was introduced and the scale was modified so that one pixel represents
1mand one cyclerepresents 1s.

The simulator allows the modeling of complex traffic configurations, enabling the
user to create maps and then run simulations varying the densities and types of road
users. Multiple-lane streets and intersections can be arranged, as well as spawn and
destination frequencies of cars. For implementation details of moreV TS, the reader is
referred to Cools (2006).

The self-organizing traffic light controller described in the previous section was
implemented in moreVTS. Using data provided by the Brussels Capital Region, we
were able to build a detailed simulation of the Rue de la Loi/Wetstraat, a four-lane
one-way westward avenue in Brussels that gathers heavy traffic toward the center of
the city. We used the measured average traffic densities per hour on working days for
2004 (shown in Table 3.1) and the current “green wave’ method, which has a period
of 90s, with 65s for the green phase on the Wetstraat, 19 for the green phase on side
streets, and 6 for transitions. This enabled usto compare our self-organizing controller
with a standard one in arealistic setting. Figure 3.1 shows the simulation view of the
Wetstraat and its surrounding streets.

The data from Table 3.1 is for the cars entering the Wetstraat on the east, so the
spawn rates for the two nodes in the simulation representing this were set according
to these data. For the other nodes, the spawn and destination frequencies were set
based on a field study we performed in May 2006, comparing the percentage of cars

0(1|2|3|4|5| 6 7 8 9 |10 | 11
476|255|145|120|175|598|2933|5270|4141|4028| 3543|3353
12 | 13 | 14| 15|16 | 17 |18 | 19 | 20 | 21 | 22 | 23
3118|3829 3828(3334|3318|3519|3581|3734|2387|1690| 1419|1083

Table 3.1. Average vehicle count per hour at the beginning of the Wetstraat. Data kindly pro-
vided by the Brussels Capital Region.
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Fig. 3.1. Simulation of the Wetstraat and intersecting streets. Cars flow westward on the Wet-
straat. Dots represent traffic lights for each incoming lane at intersections.

that flow through the Wetstraat and those that flow through side streets, entering or
leaving the Wetstraat. These percentages were kept constant, so that when the den-
sity of cars entering the Wetstraat changed, all the other spawn rates changed in the
same proportion. On average, for every five cars flowing through a side street, 100
flow through the Wetstraat. This is not the case of the Kuststraat, a two-way avenue
a the west of the Wetstraat (second and third crossing streets from left to right in
Fig. 3.1), where for 100 cars driving through the Wetstraat, about 40 turn right, 40
turn left, and only 20 go straight, while 20 more drive through the Kuststraat (about
10 in each direction). The precise spawn rates and destination frequencies are given in
Cools (2006, pp. 55-57).

3.5 Results

To measure the performance of the current green wave method and our self-organizing
controller, we used the average trip waiting times (ATWT). The trip waiting time for
one car isthe travel time minus the minimum possible travel time (i.e., travel distance
divided by the maximum allowed speed, which for the Wetstraat simulation is about
6059).

Several simulation runs were performed to find the best parameters for the SOTL
method. For each parameter and traffic density, five simulation runs representing 1 h,
i.e., 3600 cycles, were averaged. The results were robust and consistent, with SOTL
performing better than the green wave method for a wide range of parameters 6 and
@min (Co0ls2006). Only the best resultsare shown in Fig. 3.2, together with the results
for the green wave method. The cruise speed used was 14 m/s, w = 25 and u = 3.
Since some densities from Table 3.1 are very similar, we averaged and considered the
same densities for 2:00, 3:00, and 4:00; 8:00 and 9:00; 10:00, 17:00, and 18:00; 11:00,
15:00, and 16:00; 13:00, 14:00 and 19:00; and 21:00 and 22:00.

As Fig. 3.2 shows, there is considerable reduction in ATWT using SOTL instead
of the current green wave method. The ATWT for the densities at different hours using
SOTL were from 34 to 64% of the ATWT for the green wave method, and on average



46 S.-B. Coolset a.

350
|

300
|

—e— green wave
-+ SOTL, 6=5
--x- SOTL, 6=10

250
|

o—o
0—0\0/ \0—0——0—0 °

0—0—0—0—0— o % - [ e, ek ke g g rkr rkm ok VTTO0—0—9
) * g ge g

50
|

/o

15 20
hour

Fig. 3.2. Average trip waiting times (ATWT) at different hours of the day with green wave and
SOTL controllerswith ¢pmin = 5 and 6 = 5 and 10.

50%. Since the minimum travel time for the Wetstraat is about 1 min, whereas the
overal ATWT for the green wave method is also about 1 min and for SOTL about
half of that, the improvement in the average total travel times would be of about 25%,
i.e., cars under agreen wave method would take 33% more time to reach their destina-
tion than those under SOTL. This shows with arealistic simulation that SOTL greatly
improves traffic flow compared to the current green wave method.

3.6 Discussion

The green wave method works well for regulating traffic on the Wetstraat, since most
of the traffic flows through it. Still, having no concern as to the actual state of the
traffic has several drawbacks. It can give agreen light to a side street even if there are
no cars on it or when a group of carsis about to cross in the other direction. Also, if
the traffic density is high, the speed of the cars will be slower than that of the green
wave. Furthermore, when a car misses a green wave, it has to wait a full cycle to get
into the next one.

Having actual information about the traffic state enables SOTL to adapt to the cur-
rent situation: it only gives green lights on demand, so time is not wasted for streets
without cars, whereas streets with more cars, which thus have more demand, have
more green lights. Cars do have to wait behind red lights, but since while doing so
they are demanding to cross, it is very unlikely that a car will have to wait more than
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dmin- Moreover, when a car is stopped, a platoon is likely to be formed, accelerating
the switching of green lights.

Another advantage of platoons is that they reduce entropy in the city, defined via
the probability of finding a car in any part of the city. If there is maximal entropy,
there is the same probability of finding a car anywhere in the city. This increases the
probability of interference, i.e., that two carswill meet at an intersection, thusrequiring
oneto stop. The opposite extremeislessdesirable: if we have acertainty of the position
of every car, it isbecause they are stopped, i.e., in atraffic jam. However, platoons offer
auseful balance: thereisahigh probability that acar will be closeto another car, i.e., in
agroup. Thus, there are many free spaces left between platoons, which other platoons
can exploit to cross without interference. There will be interferences, but these will be
minimal.

3.7 Future Work

The following list summarizes future work.

e A method similar to SOTL has been used successfully in the United Kingdom for
sometime, but only for isolated intersections (Vincent and Young 1986). Indeed, it
is not obvious to expect that traffic lights without direct communication would be
able to coordinate robustly. In any case, the technology to implement it is already
available, so apilot study could be quickly deployed in areal city. Since the traffic
lights are adaptive, only a few intersections would have to be changed, to adapt
to the control method used in the rest of the city. This also would make it easy to
incrementally introduce them in large cities.

e We have observed that there is a monotonic relationship between the best 8 and
the traffic density (Cools 2006). Exploring this relation better could allow us to
set a variable 0 depending on the current traffic density measured by the traffic
lights. However, since SOTL performs very well for a broad range of parameters,
it does not require the calculation of precise parameters. In other words, SOTL is
not sensitive to small changes in parameters, making it a robust method.

e The SOTL method could also be used to give preference to certain users, e.g., pub-
lic transport or emergency vehicles. Simply, aweight would be given to each vehi-
clein the count &, so that vehicles with preference would be able to trigger green
lights by themselves. They would be equivalent to a platoon of cars, thus being
seamlessly integrated into the system. This might be a considerable improvement
compared to current methods, where some vehicles (e.g., buses in London, trams
in Brussels) have preference and the rest of the users are neglected, in some cases
even when there are no preferred vehicles nearby.

e The “optimal” sizes of platoons, depending on different features of a city, is an
interesting topic to research. The parameters of SOTL can be regulated to promote
platoons of acertain size, so knowing what size should be aimed at would facilitate
the parameter search.
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e It would be interesting to compare SOTL with the Dresden method (Helbing
et a. 2005; Lammer et a. 2006), which couples oscillators using self-organization,
whereas SOTL has no internal phases or clocks.

3.8 Conclusions

In this chapter we presented results showing that a self-organizing traffic light con-
trol method considerably improves the traffic flow compared to the current green wave
method, hamely reducing average waiting times by half. These results are encouraging
enough to continue refining and exploring similar traffic light controllers and to imple-
ment them in real cities, starting with pilot studies. However, we would not like to
further motivate the use of cars with efficient traffic control, since this would increase
traffic densities and pollution even more. Any city aiming at improving its traffic flow
should promote in parallel alternative modes of transportation, such as cycling, walk-
ing, car pooling, and public transport.
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A Self-organizing Sensing System for Structural Health
Monitoring of Aerospace Vehicles

N. Hoschke, C. J. Lewis, D. C. Price, D. A. Scott, V. Gerasimov, and P. Wang

4.1 Introduction

This chapter describes the development and operation of an experimental structural
health monitoring system whose functionality is based on self-organization in a
complex multiagent system. Self-organization within a system of many interacting
components is generaly understood to mean the formation of global patterns, or
the production of coordinated global behaviours, solely from the interactions among
the lower-level components of the system. The important characteristics are that the
resulting patterns or behaviours occur at alarger scale than the individual system com-
ponents and the interactions among the components are not influenced by a central
controller or by reference to the emergent pattern or behaviour; they are purely local
interactions. Self-organization in biological systems has been defined and discussed by
Camazine et al. (2001), and Prokopenko et al. (2007) have discussed self-organization
from an information-theoretic perspective.

The system that is described in this chapter consists of a large number (~200)
of semiautonomous local sensing “agents,” each of which can sense, process data,
and communicate with its neighbours. In this context self-organization means that
the agents will produce a system-level response to external events or damage that is
entirely the result of local communication among the agents and is not influenced by a
central controller or by any system-level design. The main benefits of this approach lie
in scalability (the system performance is not limited by the computational and com-
munication capability of acentral controller) and in robustness (thereisno single point
of vulnerahility, such as would be represented by a central controller).

4.1.1 The Requirements of Structural Health Monitoring

Structural Health Monitoring (SHM) is a new approach to monitoring the integrity
and functionality of structures. It is expected to enhance, and ultimately replace, the
traditional approach of periodic inspection for the maintenance of, e.g., aerospace and
other transport vehicles, bridges, buildings, and other safety-critical infrastructures.
SHM uses information from sensors permanently embedded in the structure to detect
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events or conditions that may lead to damage and/or to detect damage at an early
stage and monitor its development with time. Initially, SHM systems will be used
to plan maintenance as required, rather than the current practice of maintenance at
predetermined intervals, but ultimately it is likely to be used to manage and monitor
materials and structures with self-repair capabilities.

SHM systems will be required to monitor very large numbers of sensors, to use
the information deduced from the sensor data, to diagnose damaging situations and
consequent damage, to form a prognosis of the future safety and functionality of the
structure, and to initiate and monitor mitigation and repair procedures as required.
Different forms of damage can develop on very different spatial and temporal scales
(compare, e.g., the effects of a sudden major impact with those of slowly developing
corrosion or fatigue), and the SHM system must be able to respond effectively in all
cases.

Of paramount importance for SHM of safety-critical structures are the require-
ments for system robustness and scal ability. The system must be capable of continuing
to operate effectively in the presence of damage to itself and/or to the structure, and
it must be able to operate efficiently, both locally and globally, even though it may
be monitoring very large numbers of sensors. These requirements mitigate against the
use of traditional centrally controlled engineered systems, with their inherent points of
vulnerability, in favour of distributed adaptive systems.

4.1.2 The Approach to SHM System Development

CSIRO, with support from NASA, has been developing an experimental structural
health-monitoring concept demonstrator (CD) test-bed system for the detection of
high-velocity impacts, such as may occur due to the impact of a micrometeoroid on
a space vehicle. The distinguishing feature of this system is that its architecture is
based on a complex multiagent system and its behaviours and responses are devel-
oped through self-organization. It has no central controller. This approach endows the
system with a high degree of robustness, adaptability, and scalability.

The test bed has been built as atool for research into sensor design, sensing strate-
gies, communication protocols, and distributed processing using multiagent systems.
Each of the semiautonomous sensing agents contains a suite of sensors to enable it to
gather data related to the state of the structure (generally, but not necessarily, refer-
ring to the agent’slocal region) and to provide afacility to perform some processing of
these data and the ability to communicate with neighbouring agents. These agents may
also have the capability to engage in active tasks (e.g., repair functions), or there may
be other agents to perform these functions. Agents may be embedded in the structure,
eventually being integrated into the materials, or they may be mobile and free to roam
regions of the structure.

A number of recent articles have described the development of the hardware and
software of the basic CD system of embedded piezoelectric sensors and processing
electronicsdistributed throughout the structure, along with some multiagent algorithms
to characterize impacts and subsequent damage, see, e.g., Price et al. (2004), and Scott
et a. (2005), Hoschke et al. (2006), and Prokopenko et al. (2006). The CD system
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has been designed to be highly flexible: by replacing the sensors and their associated
interface and data acquisition electronics, the system can be readily reconfigured for
other applications.

This chapter provides more detail on the system described in our earlier publica-
tions (see references in previous paragraph), with an emphasis on the communications
among agents, the development of the gradient field algorithm for this system, and
the incorporation of a robotic mobile agent which can move over the surface of the
CD skin as an independent agent of the self-organizing system. This mobile agent can
carry out sensing functions that the embedded agents cannot, and it is able to commu-
nicate with embedded agents of the CD structure in its vicinity. It is envisaged as the
forerunner of, eventually, a swarm of small robotsthat will cooperatively perform both
inspection and repair functions. The essential point isthat the functions and behaviours
of the mobile agent (or agents) are determined by self-organization of the entire system
of fixed and mobile sensing agents.

4.1.3 Overview of the Experimental System Operation

The CD system consists of a basic structure to be monitored, which is arigid frame-
work in the form of ahexagonal prism (~ 1 min height and ~ 1 m acrossthe hexagonal
section) covered by an aluminium skin 1 mm thick (Fig. 4.1). Bonded to the inner sur-
face of the aluminium are 768 small (2.5 mm diameter) piezoelectric sensorsin groups
of four, in the form of aregular array. A block of electronics that constitutes an agent
of the system is connected to each group of four sensors. There are 192 such agents,

Fig. 4.1. The hexagonal prism physical implementation of the CD test-bed structure, lying on
its side with the end open to reveal the cellular internal structure of the electronics.
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distributed in a square array with 32 on each of the hexagonal faces of the structure.
Each agent monitorsits group of four sensors, acquires and analyzes the data they pro-
duce, and communicates with its four neighbours. Figure 4.1 is a photograph of this
structure, showing the array of agents covering the inner surface. An agent, together
with the region of the skin that it monitors, is referred to as a cell, though the terms
“agent” and “cell” are used interchangeably throughout this chapter.

An impact on the surface of the aluminium skin excites elastic waves, which are
detected by the piezoelectric sensors. High-velocity impacts are simulated using short
laser pulses and/or steel spheres fired using a light-gas gun. Repeatable low-velocity
impacts are produced using a pendulum. The agents that detect the impact also locate
its position and estimate the severity of the damage from the sensor signals.

A number of multiagent algorithms have been developed (Price et al. 2004; Scott
et al. 2005; Hoschke et al. 2006; Prokopenko et al. 2005b, 2006) to identify impacts,
the extent of the damage caused, and networks of multiple impacts. The state of the
system at any timeis monitored on an external computer (the system visualizer), which
acts as another agent of the system that requests and displays state information from
the embedded agents. The visualizer does not have any control function; it simply
monitors and displays the states of the other agents.

A robot has recently been developed to move around the outer surface of the skin
to provide a mobile sensing capability. At this stage it carries a video camerato record
visual images of damage, but it could carry other sensors as well. This robot can
communicate through the aluminium skin, using ultrasonic signals, to the agent in its
immediate vicinity. It is guided towards damage sites by information it obtains from
the embedded agents as it moves. The necessary information to guide the robot is pro-
duced collectively by the multiagent system—a self-organized response to the detec-
tion of an impact by alocal agent. The robotic agent is not controlled centrally; rather
it navigates purely viathe local information it obtains from the agents in the underly-
ing structure as it passes by, so the robotic movement is a self-organized response of
the system of agents to the impact. This agent-based response of the robot is robust,
scalable, and adaptable, similar to the agent-based response of the system to impact
detection, and the overarching principle of the project.

4.1.4 Structure of the Chapter

The next sections contain more detailed descriptions of the two major components of
the system, the fixed structure with its embedded agents and the mobile robotic agent.
Section 4.2 describes the fixed structure of the CD and its embedded sensing agents,
including details about the sensors, the impacts and their diagnosis, the development
of self-organizing algorithms for robot guidance, and details about the ultrasonic sig-
nals used by the embedded agents to communicate with the robotic agent. Section
4.3 describes the robotic agent—its hardware, its modes of motion, and the ultrasonic
transducers it uses for communication with the fixed agents on the CD structure. The
communications protocol is outlined in Section 4.3.4, followed by a description of the
way in which the communications with the embedded agents are used by the robot
for stepping and navigation. The intended future use of a video camera by the robot
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for damage inspection is outlined. These sections are followed by a short description
of the system visualizer (Section 4.4), a summary of what has been achieved, and an
indication of the next stepsin this development program.

4.2 CD Embedded System Components. Hardware and Software

4.2.1 CD Architectureand Hardware

Theinitial goal of the test bed isto detect and characterize impacts on the skin, as well
as to diagnose to the accumulated damage. The skin consists of 48 aluminium panels
(eight on each side of the hexagon), each of which containsfour “cells’ (Fig. 4.2). Cells
arethefundamental building blocks of the system—the el ectronic modul esthat contain
the sensing, processing, and communication electronics. Each cell is an agent of the
distributed multiagent system, and communicates with its four immediate neighbours.

Each cell occupies an area of ~ 100 mm x 100 mm of the skin, mounted on the
inside of which are four piezoelectric polymer (PVDF) sensors to detect the acoustic
waves that propagate through the skin as aresult of an impact. Thus the complete test
bed contains 192 cells. One of the panels and its four cells are shown in Fig. 4.2.

The cell electronics are constructed as two submodules mounted directly on top of
each other. One of the submodules, called the network application submodule (NAS),
contains the communi cations and processing hardware, while the data acquisition sub-
module (DAS) contains the analogue el ectronics and digitization hardware specific to

Fig. 4.2. Aluminium panel containing four cells. Each cell consists of a data acquisition sub-
module (DAS) below a network application submodule (NAS). Each cell is connected to itsfour
immediate neighbours, viathe ribbon cablesthat can be seen in the photograph, to form asquare
network array.
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the attached sensors. A benefit of this division is that the NAS is flexible enough for
almost any SHM sensor network application, and only the DAS needs to be changed
to accommodate the different sensors that may be required in different applications.
Further details of the electronics can be found in Hedley et a. (2003).

4.2.2 Piezoelectric Sensors

The aluminium panelsthat form the CD skin have the dimensions 200 mm x 220 mm x
1 mm. Each panel has an array of piezoelectric sensors bonded to one side. This array
consists of sixteen polyvinylidene fluoride (PVDF) discs (110 pm thick, 2.5 mm in
diameter, coated on one side with silver ink, while the other side is bonded to the
aluminium) and four lead zirconate titanate (PZT) discs (0.5 mm thick, 2.5 mm in
diameter, with fired-on silver electrodes on the two flat faces). These are bonded to
the panels in the arrangement shown in Fig. 4.3. The sensors that detect the elastic
waves caused by impacts were made from PVDF, as this piezoelectric materia has
high sensitivity as a receiver (but is a relatively poor transmitter), is inexpensive, is
relatively easy to fabricate into transducers, and would not significantly mass load
the surface. The single transducer at the centre of each cell, designed primarily as a
transmitter to communicate with the robot and, at a later stage, to generate signals for
damage evaluation, ismadefrom PZT, which isamore efficient transmitter than PVDF.
In the fully populated demonstrator there are 48 panels, and therefore 768 PV DF and
192 PZT transducers.
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Fig. 4.3. Location of sensors on aluminium panel: + PVDF transducers; O PZT transducers; o
holes for attachment of electronics; x small divots for precise location of DAS boards.
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The initia role of the PVDF sensors was simply to enable the detection, charac-
terization, and location of impacts on the aluminium skin. Each group of four PVDF
sensors in each cell would detect elastic waves resulting from an impact travelling
through the aluminium plate, and the agent would use this information to determine
the location and severity of the impact. This role has now been expanded, and these
sensors also act as the receivers of communication signals from the mobile robotic
agent.

The PZT transducers, located in the centre of each group of four PVDF sensors,
fulfil anumber of functions. They can be used as transmitters to send ultrasonic waves
through the panel for subsequent detection by the PVDF sensors before and after
impacts on the panels. This allows firstly the calibration of the PVDF sensors (or at
least a measurement of their sensitivity), and secondly the possible determination of
the state of damage of the panel after the impact has occurred. The PZT transducer
in each cell is also used to transmit communications from the embedded agent to the
mobile agent when it is positioned on the skin in the region of that cell.

4.2.3 Impacts and Simulated Damage

As outlined above, the CD’s present function is to detect impacts and diagnose the
level of damage to its operation. The software system has been designed to distinguish
between hard impacts (those with a high impulsive force) resulting in damage to the
panel (a critical impact, requiring attention by the robot, or ‘mobile agent’), lesser
impacts (low impulsive force) resulting in damage that does not need immediate repair
(a noncritical impact), and electronics and/or communications failures not caused by
an impact. During system development so far, real damage has been avoided, so that
costly panels would not have to be replaced. The simulation of the two levels of dam-
age has been done by using a pendulum to strike the panel with either a high impulsive
force (for a ‘critical’ or ‘hard’ impact), or a low impulsive force (for a ‘noncritical’
or ‘soft’ impact). Neither of these types of impact causes damage to the panel, but
they do generate elastic waves in the panel of higher or lower amplitude, respectively.
By manually attaching a red marker to the cell that has suffered a hard impact (or a
green marker for alow impact), avisual difference between critically and noncritically
‘damaged’ cellsis provided. This allows the secondary inspection system (using the
robot with asmall video camera and simple frame-grabbing software to determine the
colour of the marker) to visually distinguish between the conseguences of hard and soft
impacts by colour recognition rather than by visually detecting real damage such as a
penetration of the panel. The location and diagnosis of the damage by this secondary
inspection technigue can then be compared with estimates made from the piezoel ectric
sensor data.

During system devel opment and testing, repeatable ‘hard’ and ‘soft” impacts were
applied by using a pendulum apparatus, which could be set to deliver any impulsive
force repeatedly and reliably, only limited by the highest potential (and hence kinetic)
energy obtainable from the pendulum. The apparatus was held against a panel (using
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three felt-covered stand-offs), and the pendulum was drawn back to the desired and
repeatable height for striking the panel with the selected impulsive force.

Subsequent to such an impact, the PVDF sensor data was used to estimate the
position (using the triangulation method outlined in Prokopenko et a. 2006) and sever-
ity (using self-organized maps, as described in the next subsection) of the measured
impact.

4.2.4 Impact Signalsand Sensor-based Diagnosis. Use of Self-organized
Maps (SOMs)

A general discussion of the approach to damage diagnosis by self-organization isgiven
in Price et a. (2004). In this case self-organizing maps (Kohonen maps; Kohonen
2001, 2003) have been implemented to classify impact severity, distinguishing critical
impacts, which have ruptured the skin, from noncritical impacts. A previous discussion
of the application of SOMsto the analysis of impact datais given in Prokopenko et al.
(2005b). Electronic failures, which are detected when a cell loses its communication
capability, are distinguished from critical impacts that have damaged the electronics
by the absence of an impact recorded by a neighbouring cell.

The aim of this signal-based diagnosisisto identify high- and low-severity impacts
in different regions of a panel: specifically, whether an impact has occurred within the
cell that has recorded the signals or within one of the other three cells of the panel.
In general, a cell’s sensors will detect an impact that occurs anywhere on the panel
on which the cell is located, but usually not if the impact occurs on another panel.
The diagnosis should be able to uneguivocally identify the cell on which the impact
occurred (even if that cell has been damaged to the extent that it can no longer commu-
nicate), an approximate position within that cell, and whether the impact was of high
or low severity.

Training of the self-organized maps was done on asingle panel, using hard and soft
impacts produced by the pendulum apparatus at a number of locations within each of
the four cells on the panel.

Theinitial aim was to use the SOM to identify the following four conditions:

A soft impact occurred within the cell.
A hard impact occurred within the cell.
A soft impact occurred outside the cell.
A hard impact occurred outside the cell.

If this diagnosis can be made for each cell on a panel that has suffered an impact, then
the cell on which the impact occurred can be identified unambiguously.

For aparticular cell onthe panel, 100 soft and 100 hard impacts at random positions
within the area of the cell were sampled. These samples covered most of the cell’sarea
thoroughly, giving roughly threeimpacts per square centimetre within the cell. Further,
for impacts outside the cell, 100 soft and 100 hard impacts were sampled from the areas
of the three remaining cells.

An impact event is recognized when a sensor signal threshold is exceeded. The
cell’s DAS board then acquires 256 samples from each of its four sensors. It cannot be
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assumed that any of the signals reflect an accurate time of arrival of the impact pulse
because of the use of a constant threshold. In order to reduce the memory requirement
for each SOM and maximize the size of the SOM array that can be stored, the string
length was reduced to 64 by four-point subsampling of each 256-sample signal. A data
input vector used for training the SOM consists of the 64-point data string from each
of itsfour sensorsin the relevant cell. Thisallowed a10 x 10 SOM array to be stored
in binary format in 50 kB of flash memory on each agent.

For the purpose of forming the data vectors, the four sensors were ordered based
on time of arrival of the signal (because the training set is taken for one particular
orientation and the cells on the CD are not always in the same orientation). This makes
the SOM orientation independent, but at the expense of geometric information about
the direction of the position at which the impact occurred.

In order to improve the efficiency and effectiveness of the learning process, the
10 x 10 SOM was trained in an unconventional way. The 10 x 10 array was divided
into four 5 x 5 arrays, with each of these smaller SOMs assigned to learning only one
of the four conditions listed above that isto beidentified. Each of the 5 x 5 blocks was
then trained separately using the subset of the training signals that corresponded to the
particular block, e.g., the 5 x 5 block assigned to soft impacts within the sensing cell
was trained using only the signals produced by soft impacts within the sensing cell.
The boundaries of the 5 x 5 blocks were wrapped around (top to bottom, left to right)
to provide continuity at the edges. The four 5 x 5 blocks were then assembled into
asingle 10 x 10 SOM array. While the conventional approach to SOM formation is
purely unsupervised, data-driven learning, the present approach may be considered to
be adding an element of supervision to the learning process.

Training of each of the four 5 x 5 SOMs was controlled by the following parame-
ters:

e Theneighbourhood function isaconstant over the 5 x 5 block, independent of loca-
tion in the array and training iteration number. This was a simplifying assumption
resulting from the small size of the blocks.

The maximum number of training iterations (epochs) was T' = 2500.
The learning rate function 7(t), which is required to decrease with increasing train-
ing iteration number, was taken as

n(t) = 0.10 - ~1/7),

The trained vectors thus produced were stored as a SOM on each of the agents on
the CD. When identifying the type of impact, the four smaller SOMs are evaluated as
asingle 10 x 10 SOM.

In order to evaluate the accuracy with which signals can be identified with the
resulting SOM, only half of the training signals were used to train the SOM and the
other half were used to evaluate the accuracy of recall and precision. Severa separate
runs showed a consistent accuracy of ~ 93 + 1%, independent of the signal trigger
threshold over arange from ~ 1.2% to ~ 3.6% of the maximum signal amplitude.
Given that each impact is detected by four cells, the probability of an incorrect assign-
ment of an impact location is very small.
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For greater accuracy, the SOM on each agent could have been trained separately,
which would have individualized the SOMs to take account of the inevitably differ-
ent sensitivities of the sensors in different cells. Ultimately, it is expected that SOMs
will learn on-line, so even if they are initially trained with a common data set, the
subsequent learning will develop a set of individualized SOMs.

So far the SOM-based impact diagnoses have proved to be highly reliable, but tests
to date have all been carried out using the same impact mechanism with which they
were trained. It remains to be seen whether the SOMs will retain this high accuracy
with impacts of different origin but similar spectral characteristics.

4.2.5 Self-organized Robot Guidance: Gradient Field Algorithms

There are two related methods by which navigation of the robot can be achieved,
both directed by self-organization. Firstly, algorithms based on ant colony optimization
(ACO) (Dorigo and Di Caro 1999; Dorigo and Stitzle 2004; Prokopenko et a. 2005a)
have been developed in earlier work to link subcritical impact locations by asimulated
pheromone trail and a dead-reckoning scheme (DRS) that form a minimum spanning
tree (Prokopenko et al. 20053). The decentralized ACO-DRS algorithm has low com-
munication cost, is robust to information loss within any individual cells, and alows
navigation around critically damaged regions in which communication capability has
been lost.

An alternative scheme evaluated by Prokopenko et a. (2005a) is a distributed
dynamic programming algorithm, employing a gradient field (GF) set by each impact
cell.

Although the concept of the robot following the self-organized pheromone trails
produced by ACO is appealing, there is a trade-off between the low communication
cost of the ACO-DRS agorithm and a better quality of the minimum spanning tree
approximation computed by the gradient-based algorithm (Prokopenko et a. 2005a).
The GF algorithm also ensures that each cell in the system has avalid gradient value:
the ACO-DRS agorithm does not guarantee a pheromone value in every cell.

The approach that has been implemented is the GF algorithm. The basic princi-
ple of gradient propagation is very simple. All cells are initiated with a high integer
value for the gradient (255). When a cell detects an impact, its gradient value is set to
zero. At each time step, each cell compares its gradient value with that of each of its
neighbours. If acell finds a neighbour with agradient value lower than its own, it takes
this value plus one asits new gradient value. Thisis repeated at subseguent time steps
until a stable gradient field is produced over the whole array of cells; i.e., the gradient
produced by the impact propagates throughout the system of agents. It is independent
of the number of neighbours each cell has, so it isrobust in the presence of failed cells.
Multiple impacts produce a gradient field with multiple minima, analogous to a topo-
graphic map of a surface with minimathat correspond to impact sites or the surface of
atrampoline that has a number of separated weights on it.

Figure 4.4 illustrates a grid of 23 x 15 simulated cells, each containing a number
representing the value of the gradient field (at that cell position) that has resulted from
three impacts (denoted by black cells). The positions of two robots are denoted by
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Fig. 4.4. A grid of simulated cells showing the value of the gradient field in each cell result-
ing from three impacts (black cells). The initial positions of two robots are shown with white
sguares. Crosses denote cellsthat are not operational. The paths taken by the robotsto theimpact
sites are shown in dark grey.

the two white cells, and the shortest paths found by the robots from these positions to
the impact sites are shown in dark grey. Nonoperational cells that are unavailable for
the robot to traverse are denoted by crosses. As each damaged cell is attended to, the
gradient field will be updated and the robot(s) will move to the remaining damaged
site(s).

The modification to the gradient field (when the damage is repaired or inspection
shows that it can be ignored) is achieved as follows. The previously impacted cell
resets its impact flag and then increases its gradient to a value that is one greater than
that of its neighbour with the lowest gradient value. All cellsthen check all their neigh-
bours. If acell has a gradient value lower than those of al its neighbours, and it has
not been impacted, its gradient value is incremented by one. The new gradient values
reach equilibrium in less time than it takes the robot to perform one step. Repetition
of this algorithm removes the minimum associated with the repaired cell. This action
is analogous to one of several separated weights being removed from the surface of a
trampoline.

To allow the robot to identify and respond to different classes of events, a gradient
field could be set up with minima of varying depths corresponding to the sever-
ity/importance of each event. However, steps would have to be taken to avoid the
complication of the robot being attracted to nearby minima in preference to more
distant, but perhaps more important, minima. A simple solution to this problem is
to model different classes of events on separate gradient fields and set al minima on
asingle gradient field to be equally important (deep). The multiple classes of gradi-
ent field may all model different routes to their respective sites of importance. This
approach means that the robot makes the decisions on which gradient to follow. One
way to process this gradient information is for the robot to respond to events in order
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of priority by exhausting one class of gradients before switching to a gradient class
with lower priority, and so on. It should be noted that each time the robot puts its foot
onto the panel, the value of the gradient field for each type of damage is communicated
toit. If, for example, the robot is following a lower-priority gradient field such as the
‘noncritical impacts’ field and a critical impact occurs, the appearance of the updated
critical impact field values will cause the robot to follow this higher priority field on
its next and subsequent steps.

This multiple gradient field solution has been implemented and currently the robot
responds to four classes of gradient/event:

e High-severity impacts, representing critical damage—perhaps penetrating impacts
and/or cell destruction.

e Low-severity impacts, representing noncritical damage—nonpenetrating impacts
and damage which does not affect system behaviour.

e Damage not caused by an impact, such as communications and/or electronic fail-
ure.

e Dock: modelsthe shortest routeto the robot’s docking station for recharging, down-
time, etc.

The robot can adopt different criteriato prioritize the order in which it visitsimpact
sites. A possible modification to the behaviour outlined above would be to alow the
robot to visit sites of lesser importanceif they are on or near the intended path to asite
of greater importance.

Major benefits of this algorithm are its stability and its fast dynamic response.
A mobile agent in the system can determine the direction of the shortest path to the
nearest impact location through interrogation of the local cell group. Thisisanaogous
to a ball on a slope; the ball need not know where the bottom of the hill is to know
which way to roll—simply knowing the gradient of itslocal piece of hill issufficient. In
the GF agorithm, the shortest distance to an impact location can be determined simply
from the value of the gradient in a particular cell, since each cell increments the lowest
gradient value of its group of neighbours by one unit. Note that this algorithm, with
a separate gradient field for each type of damage, does not suffer the ‘local minima
problem’. Within each gradient field each damage site has equal priority, with the same
‘depth’ or field value, damage of different priority is represented by values contained
in different fields.

Figure 4.5 shows areal gradient field produced on the CD as a result of two non-
critical impacts, located in the black cells. The gradient value at each cell isindicated
by the shade of grey. White cells are those with which the robot cannot communicate.
This may be due to electronic failure or, as is the case here, sensors have not yet been
fitted.

4.2.6 Communicationswith the Robot: Distinguishing |mpact
and Communication Signals

Communication between an embedded agent (cell) and the robot utilizes ultrasonic
signals propagated through the aluminium skin of the cell. The robot transmits and
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Fig. 4.5. Animage of the gradient produced by two noncritical impactsthat occurred at the black
cells. The squaresindicate the cells on the surface of the hexagonal prism testbed. The gradient
values are shown as shades of grey, with alower gradient being darker. The white cells are those
with which the robot cannot communicate. Absent cells in the image are those that have been
physically removed from the CD.

receives ultrasonic signals using transducers mounted in the centre of each foot. Fur-
ther details about the robot’s transducers and the communi cations sequences are given
in the next section. The agent transmits via the PZT element in the centre of the cell
and receives signals through one of the four PVDF elements that are used for impact
detection.

A communication is initiated when the robot places one of its feet on the region
of skin monitored by agent A, say. In order to initiate a communication sequence,
the robot then transmits a tone burst from the ultrasonic transducer in this foot (see
Sec. 4.3), which consists of five cycles at a driving frequency of 400 kHz. This cor-
responds approximately to the lowest-order radial mode of the robot transducer disc,
and it excites the zeroth-order antisymmetric (A4,) guided elastic wave mode of the
auminium plate (Rose 1999). The agent A distinguishes this signal from that due to
an impact on the basis of its spectral content.

A five-cycle tone burst has a spectral width of ~ 20% of the centre frequency, and
this will be increased by the spectral response of the transmitting and receiving trans-
ducers. Nevertheless, it is expected to have significantly different spectral characteris-
tics to an impact-generated signal. At this stage the agents use a simple combination of
the responses of two band-pass filters with different cut-off frequencies to distinguish
impact events from communications events, but more sophisticated processing could
be implemented readily.

A communications sequence is completed when the agent receives a specific
acknowledgement signal from the robot. The issue of an impact that occurs during
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a communications sequence has not yet been dealt with; at this stage it may result in
a corrupted communications packet, but will not otherwise be recorded. Thisisnot an
urgent issue for the present system, since the robot foot would shield the cell during
a communications segquence, though an impact might damage the robot. However, it
raises potential issues of impact damage to the robot, as well as to the cell when much
smaller robots are in use.

More details of the cell-robot communications are given in the next section.

4.3 The Mobile Robotic Agent

4.3.1 Development of the Mobile Agent

An important feature of the CD system is an ability to support mobile (robotic) agents
that can roam the exterior surface of the test bed, communicating with the fixed agents
embedded in the underlying structure. The function and operation of such an agent
is described in this section, and it should be emphasized that it is not controlled cen-
trally, but rather cooperatively with the network of fixed local agents with which it
communicates.

It should also be emphasized that the system described here is no more than a test
bed, whose primary purposeisto investigate the practicality of the self-organized com-
plex system approach to damage diagnosis and response. Thus, details of the specific
hardware implementation (such as the use of air suction for the robot’s attachment,
which is obviously inconsistent with a space-based application) are not considered to
be important at this stage. While the present implementation of the robot is bulky and
representsasingle point of failure, the eventual aim isto develop aswarm of very small
robots that can perform internal or external tasks cooperatively. The work described in
this chapter represents afirst step towards that ultimate goal.

Why is a robotic agent needed in an SHM system? When sensing impacts using
passive sensors, the information received may be insufficient to characterize the dam-
age, and where damage is detected it may need to be repaired. One approach to obtain-
ing additional damage data and to providing a crude repair capability is the develop-
ment of a mobile robot that can move around the outside skin (Fig. 4.6).

The robot moves rather like an inchworm, with its design based on an articul ated
box section with six degrees of freedom. The joints are driven by commercial model
aircraft servos and have no position feedback to the controlling processor. The robot
is equipped with six suction cups on each of its two feet, and a pneumatic system
with a variable speed vacuum pump and electrically controlled valves that allow it to
selectively attach and detach its feet to and from the surface. To allow the robot to
find the surface and attach to it reliably, there are two optical range finders on each
foot that measure the distance to the surface and the angle of the surface. A lithium
polymer battery supplies power to the robot for approximately 30 min of operation
before recharging is necessary.

The robot has two modes of locomotion. The first is very much like an inchworm,
as mentioned above: to move forward the robot alternately stretches out and contracts
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Fig. 4.6. The robot on a horizontal bench (upper), and on a vertical face of the test bed (lower).

whilst detaching and attaching its feet in sequence. The second mode requires the
robot to detach one foot, pivot 180° around the other (attached) foot and then reattach
the first. It can change direction by pivoting through any angle up to 360°. Initially
the robot will carry two small video cameras, one on each foot (Fig. 4.7), which will
send images back to the network for further analysis. In future other sensors may be
included, such as an active ultrasonic transducer that can interact with the piezoel ectric
receivers embedded in the skin for ultrasonic damage evaluation.

The robot communicates with the fixed agents in the network using piezoceramic
(PZT) ultrasonic transducers in both feet (Fig. 4.8) to pass messages through the
aluminium skin to the underlying cells. The development and performance of these
transducers is described below. The fixed agents receive messages via one of the four
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Fig. 4.7. Close-up of one foot of the robot, showing the inspection video camera (foreground),
and one of the optical range finders (right).

piezoelectric polymer sensors that are used for detecting impacts. A fifth transducer,
in this case a piezoceramic, has been added at the centre of each cell for transmission
of messages from the cell to the robot.

4.3.2 Ultrasonic Transducer

An ultrasonic transducer is mounted on both of the robot’s feet for communicating
with the cell on which it is placed and indicating its foot position to the cell.

T,

Fig. 4.8. The ultrasonic transducer mounted in the centre of the robot’s foot.
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Thetransducer’s active element isa5-mm-diameter, 2-mm-thick PZT ceramic disc,
the outer surface of which is covered by a bonded wear plate of alumina (aluminium
oxide), to protect the transducer from abrasion from the aluminium skin of the CD.
The transducer housing is spring-loaded and inserted into a threaded rod, with two
thumbscrews on the outside enabling the position of the transducer with respect to the
footplate of the robot to be varied. This construction allows variation of the force with
which thetransducer is pressed against the CD skin, in order to maximizethe ultrasonic
coupling and minimize wear. Note that the design aim was to use dry coupling, i.e., to
couple this transducer to the aluminium skin without any fluid couplant.

Thistransducer has its lowest-order thickness resonance just under 1 MHz (at 960
kHz). The lowest-order radial resonance of the disc occurs at 460 kHz, and is reduced
to ~ 400 kHz when bonded into the transducer housing.

In order to maintain efficient transmission of ultrasound between the transducer
and the aluminium skin, it isimportant to ensure that the transducer face sitsflat on the
auminium surface. While the robot’s foot has been designed to try to assist this—by
the inclusion of stops between the (flexible) suction pads (as can be seen in Fig. 4.8),
which are pulled onto the aluminium skin by the applied vacuum—gravity, slight dif-
ferences in the suction force at each pad, and surface irregularities on the aluminium
may all contribute to preventing this from happening. Consequently, to ensure max-
imum coupling, a flexible head for the transducer has been developed using a ball-
and-socket coupling mechanism supported by a silicone rubber boot bonded to both
ends of the interconnecting parts. This head has been designed to give an angular vari-
ation of at most 4° in any direction with respect to the axis of the transducer (Fig.
4.9). Limiting this range is important in order to prevent any damage to the connec-
tions to the transducer’s electrodes; the ball-and-socket construction and the flexible
boot are designed to achieve this. This has proved to be a simple, inexpensive, and
highly effective method of ensuring good coupling between the transducer face and

Fig. 4.9. Robot transducer mounted on a flexible head.



68 N. Hoschke et al.

the aluminium. Further details about the development, construction, and performance
of this transducer will be reported elsewhere.

4.3.3 Communication with the Embedded Agents

The 2.5-mm-diameter, 0.5-mm-thick PZT elements bonded to the inside of the alu-
minium panels are used as transmitters, both for communicating with the robot and,
in principle, for active ultrasonic evaluation of damage. (A problem with the original
design of the DAS boards prevents their use as ultrasonic receivers.) These elements
have their lowest frequency resonance near 1 MHz, which is the fundamental radial
mode of the disc. Their other major resonance is the first-order through-thickness reso-
nance at about 4 MHz. In between these two are various higher-order radial modes, but
the separation of the first radial and through-thickness modes is sufficient to prevent
significant mixing of these modes. The 1-MHz radia resonance, with a wavelength
equal to the disc diameter (~ 2.5 mm), couples efficiently with the large in-plane com-
ponent of the Ay waveguide mode of the auminium panel at this wavelength and
frequency combination.

The electronics of the DAS board has low-pass filters on the receiver channels
to attenuate any frequency components above 1.55 MHz. This is necessary because
the analogue-to-digital converters on the Texas Instruments TM S320F2812 DSP chips
that control the DAS are operated at a sampling frequency of 12.5 MHz. (They have a
maximum sampling rate of 16.6 MHz, but other constraints prevented operation at this
rate.) Thisallows each of the four channels (one for each of the four PV DF transducers
on each cell) to be sampled at 3.125 MHz, which means that the highest frequency that
can be sampled without aliasing is about 1.56 MHz (the Nyquist frequency for this
sampling rate).

For these reasons the Ay guided mode of the aluminium panel at ~1 MHz, with a
phase velocity of ~ 2.5 mm/us and substantial in-plane and out-of-plane displacement
components, was chosen as the communications channel.

The robot transducer has its lowest-order thickness resonance at 960 kHz, and this
couples well into the panel Ay mode for communications.

The lowest-order radial resonance of the robot’s transducer occurs at ~ 400 kHz.
This resonance aso couples efficiently into the Ay plate mode, which has a lower
phase velocity (~ 1.75 mm/us) at this frequency and has been used for generating the
signals that initiate a communications sequence and enable the position of the robot
foot to be determined by triangulation (see below).

The sequence of events for a communication between the robot and an embedded
cell/agent is described in the Table 4.1.

The times of arrival of the tone-burst signal at the agent’s four PVDF sensors,
which are required for triangulation as outlined in Step 4 in Table 4.1, are calculated
by cross-correlation with a binary 400-kHz tone-burst filter. The peaks in the cross-
correlations give the arrival times at the sensors. Triangulation is then done using a
look-up table, as described by Scott et al. (2005) and Prokopenko et al. (2006).

The ultrasonic communications signals employ a 967.7-kHz carrier signal intro-
duced into the aluminium skin. When the robot is transmitting, the carrier is generated
by the robot’s transducer and is received by the four PV DF impact sensors in the cell
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Table 4.1. Sequence of communication events.

Sequence  Embedded agent/cell action

Robot action

1
2

Agent awaits a detectable event.

The agent detects a signal and decides
whether it is a tone burst or an impact
(see Section 4.2). If an impact, it pro-
ceedsto locate and diagnose the impact.
Agent performs a triangulation proce-
dure to determine the position of the
robot transducer relative to the four
PV DF sensors, based on the differences
in the times of arrival of the tone burst.

The agent transmits (using its central
PZT transducer) a packet of data that
contains:

e The coordinates of the robot trans-
ducer relative to the centre of the
cel.

e Thegradient field values of the cell
and of its (connected) neighbours.

The agent waits for an acknowledge-
ment signal.

If acknowledgement received, go back
to Step 1.

If not, wait for a preset time (~0.5 ),
then retransmit packet asin Step 5.

If acknowledgement still not received,
go back to Step 1.

Robot moves foot to cell location.
When robot foot is attached, the robot
transmits atone burst (five cycles at 400
kHz) to initiate communications.

The robot switches its transducer elec-
tronics to receive mode, and waits to
receive a packet of data.

The robot receives the data packet. If a
packet isnot received, the robot makes a
small random move of its foot and tries
Step 2 again.

The robot sends an acknowledge signal
and, based on the data in the packet,
decides on its next action. Alternatives
are as follows:

e Repositionitsfoot on thecell if itis
sufficiently far off-centrethat it can-
not make the next step.

e Step to the next cell asindicated by
what it determinesto be the highest-
priority gradient field values.

e Cease stepping and manipulate the
camera (or other sensors).
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to which the relevant robot foot is attached. When the cell is transmitting, the carrier is
generated by the cell’s centre PZT transducer and received by the robot’s transducer.

The carrier is Binary Phase Shift Key (BPSK)-modulated at a rate of 100 baud,
which is slow enough to allow ultrasonic reflections within the panel to decay before
the next symbol is sent. The effective data rate for the channel is approximately 80
bits/s, the reduced rate compared to the baud rate being due mainly to the synchroniza-
tion and checksum bits used.

4.3.4 Motion: Stepping and Navigation

The robot can move with six degrees of freedom: it can rotate each leg about a hori-
zontal axis, and each foot has two independent rotations, one about a horizontal axis
and one about a vertical axis. The higher-level steps are defined in terms of these fun-
damental motions.

Because the robot has no global navigation capabilities and can only move from
one cell to the next using dead reckoning, large positional errors could rapidly accumu-
late as the robot moves over the surface. To avoid such positional errors, the underlying
cell measuresthe robot’sfoot position by triangulation, as described above, and reports
it to the robot. The robot can then either physically correct its foot position or take it
into account in calculating the step required for the next move.

A complication with thismethod of positional feedback isthat the cell and the robot
must have common knowledge of the orientation of the cell relative to other cells and
the structure. One way to avoid thisissue isto build the CD structure with all cellsina
prescribed orientation. However, it can be argued that this solution isinconsistent with
the concept of an adaptive, self-organizing structure, and a more satisfactory solution
involves the cells cooperatively determining their relative orientations. This is also
necessary for algorithms such as ant colony optimization.

Nevertheless, there is aneed for the robot to have some basic knowledge about the
structure, sinceit cannot be allowed to step on the gaps between panels, and it needsto
know where the face edges of the prism are located in order to be able to step from one
face to another. A robot with more computational power than the present one could,
for example, useits video camerato resolve local issues such as these, but for thetime
being the robot has been given this basic knowledge of the cell layouts.

The robot’s navigation and functions are determined cooperatively with the local
agents embedded in the test-bed skin with which it isin contact. The robot navigates
around the surface of the test bed using gradient field data available from the under-
lying cell to which it is attached at the time. These data are specific to the cell’s local
neighbourhood and do not contain any global information about the system. Further
information about the gradient fields was provided in Section 4.2 above.

4.3.5 Manipulation of Camera and I mage Data Transmission

It isintended that the robot will use its video cameras to image the “damage” (at this
stage ared or green spot stuck to the skin at the impact location), but the implementa-
tion of this has not yet been completed. The concept is that when the robot arrives at
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the neighbourhood of a damaged cell, asindicated by aminimum (zero) in the gradient
field, instead of putting its foot down on the damaged cell it will hold it above the cell
in an orientation such that the video camera (Fig. 4.7) can be directed at the damage.
A routine has been written to recognize the colour of the damage indicator spot from
its video image.

In the initial implementation of this damage-imaging capability the data will be
sent viaa2.4-GHz wirelesslink to the system visualizer PC for analysis, but thelonger-
term aim is for the image data analysis to be carried out on the robot. Use of the
visualizer for thisfunction would giveit an essential rolein the operation of the system,
whichisnot intended. It also creates apotential single point of failure. While at present
the robot represents a single point of system failure, the intention isto eventually have
large numbers of robots that can share the damage evaluation task and minimize the
system’s vulnerability to robot failure.

4.4 The System Visualizer

As described in earlier reports (Price et a. 2004; Prokopenko et a. 2006), the system
visualizer isacomputer that is used for initializing the multiagent system and display-
ing the state of the system, but plays no essential role in the operation of the system. It
can be attached viaa USB port at a number of points around the edge of the CD sys-
tem (in principleit could be anywhere), and its function isto request state information
from the embedded agents and display it.

The visualization function has now been extended to show the robot position, and
thisisillustrated in Fig. 4.10. This information is not obtained from the robot itself,

Fig. 4.10. Visualizer screen (left), showing an animation of the robot inits actual position on the
CD structure (right).
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which in principle does not need to know its absolute position on the structure, but
from the agents with which the robot is communicating. Thus, an observer does not
need to be able to see the robot to be able to monitor its activities. This principle can
of course be extended to more than one robot.

Four views of the concept demonstrator have been devel oped to display and debug
the gradient algorithm. Each view uses a different colour and represents the value of
the gradient field on a particular cell by the shade of colour (Fig. 4.5). Lighter shades
represent higher gradient values, which are further away from impact locations. Cells
that the robot cannot reach because they have no DAS board attached are displayed
in white. By double-clicking on a cell in the display the numerical values of the cell’s
gradients are displayed.

As was pointed out in the previous section, it is intended that, as an initial short-
term measure, the visualizer will analyze video image data from the robot to determine
the severity of the damage. This is to be used to confirm (or otherwise) the damage
diagnosis made by utilizing impact data from the embedded piezoel ectric sensors. The
longer-term intention is for this analysis to be carried out by the robot (or robots).

Thisimage analysisroleis enabled by an image capture card with a2.4-GHz wire-
less link to the video cameras on each foot of the robot. The images transmitted from
the robot can be viewed in a new window that has been incorporated into the visual-
izer display. A Matlab routine that enables the colour of the “damage” indicator (as
described in Sec. 4.2) to be identified has been compiled and added to the visualizer.

In the present simplified situation, identification of the colour of the damage indi-
cator will provide an authoritative diagnosis of the damage that will supersede the ten-
tative diagnosis made from data from the embedded piezoel ectric sensors. However,
the situation may not always be as clear-cut as this. An optical image may underes-
timate internal structural damage within a material (e.g., in laminated composites),
and the use of other sensor modalities for this secondary sensing may also give rise
to ambiguities or uncertainties in some cases. In the longer term, it will be desirable
to make a diagnostic decision based on all of the available sensor data, possibly with
the assistance of material or structural models. The use of data from multiple sensing
modalities for damage diagnosis and prognosis will be the subject of future work.

In cases when major damage occurs suddenly, which will usually be the result of
an externa influence such as an impact, it may be necessary to initiate aresponse to an
initial indicator (such as the sensing of the impact) without waiting for a subsequent
detailed inspection and diagnosis. In such a perceived emergency situation, a precau-
tionary principle must clearly be adopted; rapid action should be taken first and amore
detailed diagnosis made later.

4.5 Conclusions
This chapter has described the development of the first stages of an experimental

structural health monitoring system whose operation is based on self-organization
in a complex multiagent system. Damage identification, location, and the first stage
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of evaluation have been demonstrated, as has the deployment of a secondary robotic
inspector. Thisisal achieved without central control.

The main thrust of recent work has been the devel opment of amaobile robotic agent
and the hardware and software modifications and devel opments required to enable the
fixed and mobile agentsto operate as asingle, self-organizing, multiagent system. This
single-robot system is seen as the forerunner of one in which larger numbers of small
robots perform inspection and repair tasks cooperatively, by self-organization.

While the goal of demonstrating self-organized damage diagnosis has not yet been
fully achieved, much of the work required for the final element—enabling the robot to
point the video camera and transmit an image—has been either completed or planned.
It is expected that it will be completed shortly. Nevertheless, what has aready been
achieved is an important step.

The next steps in the development of the system are as follows:

e Completion of the present task of achieving camera operation and integration of
diagnostic information.

e Adaptation of the system to incorporate a more realistic damage scenario. Work on
corrosion monitoring at ‘hot spots' in aircraft is in progress (Muster et a. 2005;
Trego et a. 2005), and health monitoring of thermal protection systemsin vehicles
such as the space shuttle is being undertaken.

e Damage diagnosis based on datafrom multiple sensing modalities. Thiswill beini-
tially addressed through work on amore realistic damage scenario, but the devel op-
ment of ageneral framework for the use of multiple data sets for damage diagnosis
isasignificant problem.

e Expansion of the single-robot capability to accommodate multiple robots that are
capable of cooperative solution of tasks such as inspection and repairs.

e Whilethese are al substantia steps, the developments reported here represent an
important advance and a sound base from which to make further progress.

While the present demonstration system is clearly not suitable for large-scale
implementation in a current aerospace vehicle, it is envisaged that the sensing, compu-
tation, and self-repair functions of the embedded system will eventually be integrated
into advanced materials. Recent advances in materials science and nanotechnology
give confidence that thiswill be achieved in the foreseeable future, aswill the devel op-
ment of microsized, intelligent robots. We believe that the basic approach outlined in
this chapter—devel oping self-organizing, adaptive solutions in distributed multiagent
systems—will form the basis of future developmentsin this area.

Conversely, it is our view that structural health monitoring is an interesting and
fertile application areain which to study engineered self-organization. The wide range
of spatial and temporal scales on which events can occur and damage devel op, and the
consequent variety of responses and response requirements, ensure that this general
application will provide a more complete challenge for self-organized sensing and
response than many others.
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Decentralized Decision Making for Multiagent Systems

George Mathews, Hugh Durrant-Whyte, and Mikhail Prokopenko

5.1 Introduction

Decision making in large distributed multiagent systemsisadifficult problem. In gen-
eral, for an agent to make agood decision, it must consider the decisions of all the other
agents in the system. This coupling among decision makers has two main causes: (i)
the agents share a common objective function (e.g., in ateam), or (ii) the agents share
constraints (e.g., they must cooperate in sharing afinite resource).

The classical approach to thistype of problemisto collect al the information from
the agents in a single center and solve the resulting optimization problem [see, e.g.,
Furukawa et al. (2003)]. However, this centralized approach has two main difficulties:

e The required communication bandwidth grows at least linearly with the number of
agents.

e The resulting optimization complexity is generally exponential in the number of
agents.

Thus, for a sufficiently large number of agents this problem becomes impractical to
solve in a centralized fashion.

However, these difficulties can be overcome by alowing the agents to cooperate
or self-organize in solving this distributed decision problem. The main issue in this
decentralized approach is identifying which agents need to communicate, what infor-
mation should be sent, and how frequently.

This chapter approaches the multiagent collaboration problem using analytical
techniques and requires that several assumption be made about the form of the prob-
lem: (i) the decisions of the individual agents are represented by elements of a con-
tinuous and finite-dimensional vector space; (ii) the agents are coupled via a shared
objective function that is continuous and twice differentiable, and (iii) there are no
interagent constraints.

With these assumptions, this chapter presents fundamental results on the structure
of the decentralized optimal decision problem. A simple and intuitive decentralized
negotiation algorithm is presented which enables multiple decision makers to propose
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and refine decisions to optimize a given team objective function. A convergence anal-
ysis of this procedure provides an intuitive relationship between the communication
frequency, transmission delays, and the inherent interagent coupling in the system.

The algorithm is applied to the control of multiple mobile robots undertaking an
information-gathering task. The specific scenario considered requires that the robots
actively localize a group of objects. For this scenario the interagent coupling loosely
relates to the amount of overlap between the information that two agents receive when
undertaking their respective plans. This requires communications only between cou-
pled agents and results in a more scalable system.

Section 5.2 defines the multiagent decision problem and introduces the decentral -
ized optimization algorithm to solve it. This section also defines the interagent cou-
pling metric and its relationship to the communication structure. Section 5.3 exam-
ines the full dependency between the rate an agent can refine its decision with the
communication frequency, transmission delays, and the interagent coupling of the sys-
tem. A decomposition of the objective function is introduced in Section 5.4 that is
used to explicitly specify what each agent must communicate. An approximation tech-
nique is proposed to enable each agent to calculate the interagent coupling on-line.
An overview of the decentralized decision-making or negotiation algorithm is given
in Section 5.5. This summarizes exactly what each agent must know about the other
agents and details the local procedure executed by each agent. Section 5.6 describes
the general multiagent information-gathering control problem and formulates it as a
decentralized sequential decision problem. This is specialized for an object localiza-
tion problem in Section 5.7, with results given in Section 5.8. Section 5.9 provides a
summary and directions for future work.

5.2 Asynchronous Decision Making

Consider asystem of p agents at some specific instant in time; each agent 7 isin charge
of alocal decision variable v; € V,. As stated in the Introduction, it is assumed that
the set of feasible decisionsfor agent 7 is a Euclidean space of dimension n;,i.e., V; =
R™i . Thismay be relaxed such that V; isaconvex subset of 1™, but for simplicity this
case isignored. The global decision vector, v = [v{,v3,...,v]]7, isdefined on the
product space V =V x --- x V,, = R", wheren = n; + - - - 4+ ny.

The system asawholeisrequired to sel ect the decisions such that agiven objective
function J : V4 x --- x V, — R is minimized. The objective function captures the
goals of the system and will generally incorporate a model of how the agents interact
with the environment using their sensors and actuators. The optimal decision problem
isgiven by

v* = arg {/IIGI{} J(v), (5.1

where v* isthe desired optimal global decision.

Assumption 1 (Objective Function) The objective function J is twice differentiable,
convex, and bounded from below.
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Under the convexity assumption, Eq. (5.1) isequivaent to requiring the gradient vector
to vanish:
VJ(v*)=0. (5.2

In terms of each agent’slocal decision, this can be written as
ViJ(v¥) =0 Vi, (5.3

where V;J(v) € R™ represents the components of the gradient vector in the subspace
V;. Itisthis optimality condition that is considered throughout this chapter.

5.2.1 Local Decision Refinement

The proposed solution method for the optimization problem allows each agent to sub-
mit an initial decision and then to incrementally refine this, while intermittently com-
municating these refinements to the rest of the system. The distributed nature of the
problem requires that each agent execute and communicate asynchronously; thus the
information it has about other agents may be outdated. This requires that each agent
maintain a local copy of the team decision vector, which is given at a discrete time ¢
for each agent i as

() = ['vit),.... vp(t)] (5.9)
= [1V1 (Th;(t)),...,pr(Tpi(t))]. (55)

In general apresuperscript represents a copy held by a specific agent, while a subscript
represents a specific agent’s decision [e.g., “v;(¢) represents agent i's local copy of
agent j’s decision]. The variable 7;;(¢) in Eq. (5.5) represents the time agent i's local
copy ‘v, (t) was generated by agent j and hence 'v;(t) = v, (7;;(t)). It is assumed
that 7;;(t) = t, and thus agent ¢ always has the latest copy of its decision variable.

The time variable ¢ is used simply to represent when discrete events take place
(such as when an agent computes an update or communicates) and does not require
each agent to have accessto aglobal clock or to perform a periodic synchronization.

To formalize the intuitive notion of decision refinement, a local update rule
fi:V — V; will be defined for each agent that modifies its local decision ?v;, based
on its copy of the global decision vector *v. To alow each agent to perform updates
asynchronously a set of times 7}; is associated with each agent 4 that represents when
the agent computes alocal update:

vyt 4+ 1) = {f;’fz(tv)@) iefléee T (5.6)

For the update to be beneficial, it should decrease the value of the objective function.
Thus, a steepest descent update is used:

fi (ZV(t)) = iVi(t) — Y VlJ(’v(t)), (57)

where ~; isastep size.
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However, since only local and possibly out-of-date information is available, it is
not trivial to guarantee that this will decrease the value of the objective function cor-
responding to the latest decisions from all agents. The rest of this section develops
conditions that will guarantee this property and the overall convergence of the algo-
rithm by providing limits on the step size ;.

5.2.2 Communication

Communication is initiated by agent i sending a message, at some time t € T/,
to agent j containing its latest decision ‘v;(t). After some communication delay
b;;(t), agent j receives it and incorporates it into its local copy of the team deci-
sion vector. Thus, when the message is received 7 v; (¢ + b;;(t)) = v;(t), and hence
75 (t + b;(t)) = t. For each agent to obtain the decisions of every other agent, each
agent must communicate with every other agent.

Assumption 2 (Bounded Delays) There exist finite positive constants B;; such that
t— Tij (t) < Bij Viv.ja 2 (58)
Thus, the age of agent j’s local copy of agent 4’s decision is bounded.

Informally, Assumption 2 can be relaxed such that B;; represents the time difference,
measured in numbers of updates computed by agent i, between ‘v, (¢) and 7v;(t).

If the agents compute updates and communicate at a fixed frequency, these can be
approximated by knowing: (i) the number of iterations R; computed by agent 7 per
second, (ii) the number of communicated messages C;_.; from ¢ to j per second, and
(i) the delivery delay D;_.; between agent 7 sending and j receiving a message in
seconds, using

. R,
Bij =

i—j

5.2.3 Interagent Coupling

For each pair of agents, the magnitude of interagent coupling is captured by a single
scalar that represents the maximum curvature of the objective function in the subspace
containing the decision variables of the two agents.

Assumption 3 (Coupling) For every i and j, there exists a finite positive constant
K;;, such that
x; VEI(v) x5 < [[xill Kij [1;]] (5.10)

for all v € V and all column vectors x; € V; and x; € V;. The matrix V;.J(v)
corresponds to the n; x n; submatrix of the Hessian of the objective function. The
vector norms are defined as the Euclidean I? norm.

Itis noted that the coupling constants are symmetric, and hence K;; = Kj;.
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If the actual Hessian is available, then the limit can be computed using

Kij = r‘{lg‘\}f HVZZJ'J(V)HM J (5.11)

where ||-|| ,, represents the induced matrix norm and is given by

Al = e | Az]|, (5.12)

where x is avector of appropriate dimension.

5.2.4 Asynchronous Convergence

The amount of interagent coupling and the magnitude of the communication delays
play an important role in the amount each agent may refine its local decision. Intu-
itively, if the decisions of two agents are highly dependent, they should communicate
more often while refining their decisions.

Equation (5.10) defined a metric K;; measuring interagent coupling for a given
multiagent decision problem. Similarly Eq. (5.8) encapsulated the effects of asyn-
chronous execution and communication delays between two agents using B;;. These
are now used to provide an intuitive limit on the refinement step size y; introduced in
Eq. (5.7).

Theorem 1 (Convergence). Assumptions 1 to 3 provide sufficient conditions for the
distributed asynchronous optimization algorithm defined by Eq. (5.7) to converge to
the global optimum, defined by Eq. (5.3), for all ; € (0, I;), where

2
K+ Y Kij(1+ By + Bji)
i

I (5.13)

The convergence of this type of algorithm was first proved by Tsitsiklis et al. (1986).

This theorem provides a unified way of relating the inherent interagent coupling and
communication structure with the speed at which an agent can refineitslocal decision.
Based on Theorem 1 an algorithm can be devel oped by defining the step size as

p
Kii+ ) Kij(1+ Bij + Bji)
i

yi = (5.14)

for some 3 € (0, 2).

5.3 Communication Structure

For the general problem under consideration, for each agent to receive the decisions
of every other agent, there must exist a communication channel among all the agents
in the system. Regardless of the implementation, the only relevant features of this
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communication network are the interagent communication frequency and transmis-
sion delays.

The communication frequency is directly controllable by the agents, whereas
the transmission delays are determined by properties of the communication network
and/or the nature of the physical communication medium.

For simplicity, this work assumes that the communication network is fully con-
nected and that the transmission delays are fixed for any pair of agents. Although
this may seem unredlistic it will be shown later that for most realistic scenarios each
agent will only be coupled to agents in a local neighbourhood and hence will only
be required to communicate to them. This assumption also allows the (higher-level)
problem of network formation and routing to be ignored.

5.3.1 Communication Rate

The rate at which agents communicate has a significant impact on the convergence
rate of the optimization process. Although a detailed analysis of the convergence rate
is beyond the scope of thiswork, it is reasonable to assumethat it is proportional to the
step size; (larger stepswill generally allow the agents' decisionsto be refined faster).

The step size for agiven agent ¢ isdetermined by Eq. (5.14), where the delay terms
can be approximated by Bij, defined in Eq. (5.9). When these are combined, the step
size obeysthe relation

R;
é:&ﬁiy%0+c +RiDi_j +

R
— J+&@ﬂ) (5.15)
i i

i—7 O_]—>7

If it is assumed that the computation rates (R; and 1;) and interagent communication
delays (D;_,; and D;_, ;) arefixed, this becomes

B _ R; R,
o K + E Kij| Wi + 701‘—»]‘ + c) (5.16)
JFi

where W;; = 1+ R;D;_,; + R;D;_,; and is a constant. Thus, from Eq. (5.16), the
step size ~y; is maximized when all the communication rates are also maximized; i.e.
every agent communicates to every other agent after every local iteration.

However, this policy is impractical for large systems containing many agents.
Potentially this can be overcome by allowing each pair of agents to communicate at a
rate proportional to the coupling, i.e.,

Ci_,j = niKij (517)

for some constant ;. However, thiswill also be impractical for large systems since the
step size will be directly related to the number of agents. This can be demonstrated by
considering all agents to have a fixed computation rate (i.e.,, R, = Randn; = n, Vi)
and substituting Eq. (5.17) into Eq. (5.16):
R
g = K;; +ZKijWij —|—2(p— 1)5 (518)
! i
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Thus, for large p, the last term will dominate causing the step size ~y; to approach 0
regardless of how small the actual interagent coupling may be. Hence, a communica
tion rate proportional to the coupling is generally too low.

To overcome this it is proposed to set the communication rate proportional to the
square root of the coupling:

Oiﬁj = Ui\/Kij, (519)
which represents a compromise between fast convergence, requiring a high communi-
cation rate, and the practical requirements of aslow communication rate. The step size
~;, and hence the possible convergence rate, is now only dependent on the coupling,
which isin turn determined by the inherent complexity of the problem. This can be
demonstrated by substituting Eq. (5.19) into Eqg. (5.16):

i i
The constant n; can be chosen such that the strongest coupled agent is sent a message
after every local iteration or to satisfy some bandwidth limitations.

5.4 Modularization

Until now it has been implicitly assumed that each agent has a full representation of
the system’s objective function. In general this requires the state and sensor/actuator
models of al agents. This may not be a problem for a small number of agents, but
poses a significant issue for alarge distributed system.

Ideally, each agent should only require amodel of itself and relatively little knowl-
edge of the other agents. This issue has been examined by Mathews et al. (2006),
who identified a composable or partially separable form of the objective function that
enables this type of modularization.

5.4.1 Partial Separability

The partially separable objective function allows the effects or impacts of each agent
to be separated and evaluated independently. The objective function then becomes a
function of the composition of these individual impacts.

Definition 1 (Partial Separability). A partially separable! system has an objective
function of the form

J(V) = ’L/)(Tl (Vl) * TQ(VQ) koo k Tp(Vp)), (521)

where 7; : V; — Jis the i agent’s impact function and maps a decision to an element
of an impact space J. An element o € J of this space will be referred to as an impact.
The composition operator * : J x J — J allows impacts to be summarized without
losing any task-relevant information. The generalized objective function ¢ : J — R
maps a combined team impact to a scalar cost.

The function becomes fully separableif J = R, * = + and « islinear.
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An agent’simpact function is an abstraction of its state and sensor/actuator models
and maps a decision onto a task-specific impact space. It is assumed that each agent
1 only has knowledge of its own impact function 7; and thus requires the impacts
a; = T,;(v;) from every other agent j # 4 for the objective function to be evaluated.
Thus, instead of each agent maintaining a local copy of every other agent’s decision
vector v, it ssimply maintains their impact ;.

This definition allows one to abstract away state and sensor/actuator models of
the other agents and defines a common language of impacts that the agents use to
communicate. For simplicity, the cumulative composition operator () will be used,
such that Eg. (5.21) can be written as

J(v) = w(é Ti(vi)). (5.22)

Example: Collision Avoidance

To provide an example of an impact, consider amultiagent path-planning scenario with
a separation requirement. For this task the objective function will be dependent on the
separation between the agents, which in turn requires the individual paths (possibly
represented by a fixed number of points) from all the agents. In this case each agent
abstracts away its motion model and corresponding control inputs. Thus, an agent’s
path can be considered asits impact, and the composition operator simply collects the
paths. The generalized objective function is used to calculate the associated cost of
these specific paths.

It is noted that for this example the size of the impact space is proportional to the
number of agents (the number of paths is the same as the number of agents). This
differs from the example presented in Section 5.7, which has a composition operator
given by addition. For this case the size of the impact space is independent of the
number of agents (the sum of many numbersis still a number).

5.4.2 Modular Decision Refinement

With the use of the partially separable form of the objective function, the local deci-
sion refinement process, presented in Section 5.2.1, can be modified such that each
agent 7 is only required to maintain a local copy of the impact of every other agent
{for;(t) : V j # i}. Thisinformation is updated via messages from the other agentsin
the system and may contain delayed information (according to Assumption 2).

From this, the local decision refinement equations for agent 4 [corresponding to
Eq. (5.7)] becomes

fi(v(t)) = "i(t) —visi(t), (5.23)
wheres; (t) isthe local steepest descent direction V;J (“v(t)) and is given by

si(t) = Vi (Ti(Va(0) = (e (1)). (5.24)

J#
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Calculation of the step size +; requires the coupling terms K;;. If the system is static,
e.g, for amonitoring and control system for adistributed processing plant, these can be
calculated in advance during the design phase by solving Eq. (5.11). However, for the
majority of multiagent systems this will not be the case and the coupling terms must
be calculated on-line.

5.4.3 On-line Coupling Estimation

Since no single agent has an explicit representation of the full objective function, it
is not possible for any agent to solve Eq. (5.11) for the coupling terms. Rather, these
terms are approximated using a finite difference evaluated locally by each agent from
two successive iterations and communications.

Consider the Taylor expansion of J about a decision vector v with a perturbation
Av = [Av], ... AvI]T:

Jv+Av)=J +ZAV Vid (v

=1

l\J\H

Xp:zp: Av; V2 v) Av,. (5.25)

The use of the coupling K;; gives amaximum bound on the value of the last term [see
Eq. (5.10)]. It is proposed to approximate the coupling by simply estimating this term
over successive iterations.

If only perturbations in the decisions of agents ¢ and ;j are considered, then the
cross-derivative term can be estimated using a backwards difference approximation,

AviTijJ(v)Avj ~ J(v*) 4 J(vP) — J(vP) — J(v),
where ve® = v, v = v — Av;, v® = v — Av;, and vt = v — Av, — Av;; note
that the increments are assumed to be added on to the correct components in the team
decision vector.

For a system with a partialy separable objective function, the i agent, at iter-
ation ¢, can estimate its coupling to any other agent j using the Iocal decisions vt
and “v¢ from the two previous iterations, with corresponding |mpacts ‘ab = T;("vD)
and ‘o = 7;(*v¢), and a decision mcrement with norm d; = ||*v¢ —* ”H Also
requi red are the previous two impacts * o and ’o/‘ communlcated from agent j with a
corresponding decision increment with norm d; us ng

U('ag) + (o) —v(faft) — v(ag?)

i _
Kij(t) = T , (5.26)
iy
where
’ozi}“ = oz” * ’af * ”a?, ’o/r}b = agj* 704? *’La?,
i _ba i b i a i _ab i a _1_b
art = oz”* a; x"af, oy = a”* af x "
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and ia@— is the combined impact of the rest of the team:

Yogy = @ ‘ag.
qF#i,j
This approximation requires that each agent communicate its local impact ‘a;; € J
and the amount its decision has changed since the last communication d; € R*. It is
also noted that the coupling can only be approximated after two messages have been
received.

This method alows the coupling estimates ‘K’ (t) to track the curvature of the
objective functionin thevicinity of the actual team decision vector and in thedirections
inwhich the decisionsare actively being refined. Thisisin contrast to using an absolute
maximum over all positions and directions, as suggested in Eq. (5.10).

This approximation is used to calculate the step size ; of the subsequent iteration:

_ p
K(t) + YK (t)(1+ By + Bji)
g
The term K, (t), representing the maximum curvature in the subspace of agent i's
decision, is approximated directly by agent i with
1[%““) = ’ Viw(Tt(lvf) * @l()(;l)

J#i

7i(t) (5.27)

’M'

Or, if the Hessian submatrix cannot be cal culated directly, i[{;; can be calculated usi ng
afinite difference approach in amanner similar that for Zf{ij .

The value of 3 can be large for problems with dowly varying Hessians, small
communication delays, and high communication rates. However, for large delays or
rapidly varying Hessians, a value closer to zero should be employed. For the results
presented in this chapter avalue of 3 = 1 was used.

5.4.4 Dynamic Communication

Equation (5.26) allows each agent to approximate the interagent coupling at each iter-
ation ¢ of the algorithm. This, in turn, can be used to calculate an appropriate com-
munication rate using Eq. (5.19). Although this violates the assumption of a fixed
communication rate, which is made when approximating B;; in Eq. (5.9), it will be
approximately true for the iterations around ¢.

This alows the interagent communication rate to dynamically vary throughout the
operation of the algorithm in response to changing interagent coupling.

5.5 Algorithmic Details

A brief illustration of the structure of the final decentralized algorithm is given in
Fig. 5.1. Table 5.1 lists all the functions and variables an agent must maintain,
while the full details of the local algorithm executed by each agent is given by
Algorithm 5.1.
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" Interagent Coupling
Cij

P

P ==
i Impaqtsfrom
'La‘7
Local Gradient
si

New Decision
Vi

New Iteration

1 —t
Communicate to Ag

Fig. 5.1. General structure of the local algorithm executed by the ™ agent. For full details see
Algorithm 5.1.

Table 5.1. Functions and variables maintained by the i agent.

Functions Description
Local impact function (abstraction of sensor and actuator mod-
x:IxJ—17 Impact composition operator
Vi =R Generalized objective function
Variables Description
vi eV, Local decision
d; e R+ Distance local decision moved during last iteration

Set of previous local decisions, corresponding to communica-

i —j . . .
{vi? eviivi#i} tion events to agent j

‘af €J Local impact

ial el Local impact from previous iteration
{faf €7:Vj#i} Set of impacts from other agents

{iaé’- €J:Vj#i} Set of previous impacts from other agents

Set of distances other agents decisions moved between last two

_ Y
{d; e RT :Vj # i} communications

{R; e RT :Vj} Set of computation rates
{Cimj e R 1V #i},
{Cji e RT :Vj#1i} Sets of communication rates

{Din; eRT:Vj#i},
{Dj_; e RT :Vj #1i} Sets of transmission delays
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Algorithm 5.1: Local algorithm run by the " agent.

1: for all j #ido

21:

22:
23:
24:
25:
26:
27:

28:

29:
30:
31
32:
33:
34:
35:
36:
37:
38:
39:
40:

Initialise communication link to j

Determine communication delays D;_.; and D;_.;
Exchange computation rates R; and R ;

NumMsg, < 0

end for _ _
. Initialise decision 'v{  (e.g. using ‘v{ < arg min ¥ (2;(v4)))
repeat '

vi€Vy

for all j #£ido (Estimate interagent coupling)
if NumMsg; < 2then
ZIA{Z] <=0
Bij <=0
Eji <=0
else
Evaluate ‘K;; using Eq. (5.26)
Eij <= Ri/Cij+ RiD; .
Bji <= R;/Cj—i+ R;jDj—i
end if
er)d for
o Hvﬁw(n(zvg) £ O, a)

M

Vi & — — - - (Evaluate step size)
Kii + 32, 'Kij(1 + Bij + Bjai)
si < =V (Ti('vi) * O, "aj)  (Evaluate update direction)
ive < v% 4 s, (Update local decision)
d; < ||visi||  (Save distance decision moved)
‘ol < 'a?  (Save previous local impact)
‘af =Ti(*v¥) (Evaluate new local impact)
for all j #£¢do (Manage communications)
Cij <=m/iKiy (n= R;/max;; \/iK; or is determined by some
bandwidth constraint)
if Required to send messageto j then  (Determined from C;_. ;)
Send mg; = {ia‘;, Hivg — iV7j|’, Cz_,J} tog
‘v, < v?  (Save decision for use in next message)
end if
if Message m;; = {7}, dj*, C}".;} received from j then
‘ab < "a?  (Save previous impact)
‘af <= 7aj"  (Update current impact)
d; < dj"  (Update the distance the decision moved)
Cj—i <= C}",; (Update the communication rate)
NumMsg; < NumMsg; + 1
end if
end for

41: until Converged
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5.5.1 Convergence

Since this algorithm is based on an approximation of Theorem 1, it is no longer theo-
retically guaranteed to converge, but experience has shown that it still converges for a
wide range of problems. This is because the theorem only presents a sufficient condi-
tion for convergence and isin general overly pessimistic.

5.5.2 Termination

If the algorithm converges, it will reach the optimum set of decision only in the limit of
infinite iterations. However, due to the gradient descent property of the algorithm, each
iteration will, on average, reduce the system cost. This ensures that the quality of the
decisions will continue to improve over time. Thus, for time-critical applicationsit is
reasonable for each agent to simply terminate the algorithm and use the final decision
generated.

5.6 Active Information Gathering

The application considered in this work consists of multiple mobile robots undertak-
ing a reconnaissance or information-gathering task. This type of scenario requires the
agents to actively gather information on a particular external random variable x € X.
In general this may include the positions and identities of stationary or mobile objects,
terrain properties of a given region, or even surface information of aremote planet. In
Section 5.7 thiswill be speciaized for the active localization of a group of objects.

5.6.1 Agents

The mobile robotic agents are modelled as discrete time dynamical systems, with the
i agent’s state given by s; € S;. The agent is controlled from discrete time k& — 1 to
k by applying a particular control input u¥ € U,. In genera this causes the agent’s
state to change according to the probabilistic discrete time Markov motion model
P(sF|sF=! ub). However, for simplicity itisassumed that the agent’s motion isknown
with precision i e s = f ( ) Thejoint system staIe and transition model is
given by s¥ = f(s {f B (sEuk) b = st sh

The observatlons made by the z“‘ agent are modelled by the conditional density
P(z¥|x*; sk), which describes the probability of obtaining a particular observation z*
given the external state x* and agents states¥. The notation z"* denotesthe set of obser-
vations from all the agents at time step k, i.e,, z* = {z},...,28} € Z = [[/_, 2.
With the assumption that the observations are conditionally mdependent given the
states x* and s¥, the combined sensor model can be written as P(z"|x*;s*) =

i1 P(2F[x";sf).

The agents are to be controlled such that the combined observations they receive

produce the most informative (or least uncertain) belief about x. To accomplish this
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the distribution’s entropy will be used as a measure of its associated uncertainty. The
entropy of adistribution P(x) isthe negative of the expectation of itslogarithm:

Hpx) = —Ex|[log P(x)]. (5.28)

This can be used for continuous variables, where P(x) isthe probability density func-
tion, or for discrete variables, where P(x) is the probability distribution function. For
adetailed description of the properties of this metric see Cover and Thomas (1991).

5.6.2 Bayesian Filtering

This section details the process of maintaining an accurate belief (as a probability)
about the state x. The Bayesian approach requires that the system be given some prior
belief; if nothing is known this may simply be a noninformative uniform prior. Once
this has been established, the belief at any later stage can be constructed recursively. To
avoid potential confusion, instantiated variables (variables assuming a specific value)
will be denoted using atilde, e.g., P(x) = P(x = X).

Consider the system at a given time step k. The system’s state is given by §* and
the belief about x*, conditioned on all past observations and agent configurations, is
P(x¥|Z*;S*), where Z¥ = {z',...,z*} and S* = {§',...,8F} and Z° = S° =
{0}.

When a joint control action, @**! is taken, the new state of the agents becomes
skt = f(s% a**!), and an observation z**! is taken. To update the belief about
xF*1 it must first be predicted forwards in time using the Chapman-Kolmogorov
equation:

P(xFT1|ZF, SF) = / P(xF1xF) P(x*|ZF; SF)dx". (5.29)
X
The belief can now be updated using Bayes rule:

. N 1 S
PMHZIT ) = S P2 S [[ @ 58, (530)
=1

where zF+1 = {zH 1 ,zy 1} are the actual observations taken by the agents. The
term P(zF Tt x"*1 sF*1) isthe i agent’s observation model evaluated at the actual
observation and agent configuration, resulting in alikelihood over x**1. The normal-
ization constant 1 is given by

w= P(zk+1‘2k; Sk+l)
p
_ / P25 80 [ P+ 55 a1 (5.31)
X

i=1

For all agents to maintain this belief, each agent must communicate the observation
likelihood function A(x**+1) = P(zF"!|x**1 sF+1) after each observation is made.
The field of decentralized data fusion examines efficient ways for this to be commu-
nicated around a sensor network (Manyika and Durrant-Whyte 1994; Liggins et al.
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1997); however for thiswork it is assumed that each agent simply communicates it to
every other agent.

The key problem in this process is deciding on the system’s control inputs u* such
that the uncertainty in the state x is minimized.

5.6.3 Control Parametrization

The objective of the system is to minimize its uncertainty in its joint belief about x.
There are many ways to formally define this control problem, the best being a dis-
counted infinite horizon dynamic programming problem (Bertsekas 2005). However,
for any relatively complex scenario this becomes intractable and approximate tech-
nigques must be used.

Thus, a finite look ahead will be considered and an open loop control policy
for each agent developed. To accommodate feedback, a rolling time horizon will be
employed. This requires that the control policies be recomputed at short intervals to
keep the look ahead approximately constant and allows the system to adapt to changes.

The control policy will be parametrized by a piecewise constant function, defined
over N equal time partitions of M time steps each (Goh and Lee 1988). Thisresultsin
alook ahead of N M time steps. Thus, the open loop control policy for atime interval
[k + 1,k + NM] can be specified with the parameters v = {v¥(1),...,vF(N)} €
V; = (U;)N with actual controls given at each time step k + ¢ by u} ™ = vF([£1),

whereq € {1,..., NM} and [-] represents the roundup operator.

5.6.4 Objective Function

For a given time k, the utility of a future control policy v¥ = {v{,..., vk} e V =
Vy x -+ x V,, and observation series zF 1 NM — fzhH1  gkNM L s propor-
tional to the amount of uncertainty in the resulting posterior belief at time & + N M.
Actions and observations that produce a smaller uncertainty in the posterior belief are
favoured over others. Thus, a suitable cost function may be the posterior entropy:

k( k+1L:k+NM _k
C (Z Fhik , V ): Hp(xk+N1\4‘Zk+1:k+N1W’Sk-+1:k+N1W(Vk)’Zk’gk)
= By log P(xFENM|gF IR ENM LN (1) 78 §F) | (5:32)

However, the actual observations made will not be known in advance. Thus, an
expectation over all possible future observations must be performed, resulting in the

expected team cost or objective function:
Jk (Vk) = Ezk+1:k+NJVI [Ok (Zk+1:k+NM, Vk)] . (533)

The finite horizon optimal control problem, at time &, becomes the parameter opti-
mization problem:
vF" = arg min JE(vF). (5.39)
vkeV
For arolling time horizon, this must be resolved every N, < N M time step.
This parameter optimization problem translates directly to the distributed deci-
sion problem discussed earlier and, provided that the objective function is partially
separable, can be solved using the decentralized optimization algorithm given in

Algorithm 5.1.
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5.7 Example: Object Localization

The proposed decentralized control strategy was implemented in a simulated object
localization task. For this scenario robots equipped with bearing-only sensors (see
Fig. 5.2) and moving in a 2D plane are required to cooperatively localize a collection
of stationary point objects.

The multiagent control problem for this type of scenario was previously examined
by Grocholsky et al. (2003). In thiswork each agent shared past observations but devel -
oped a plan independently. This section extends the work of Grocholsky by applying
the decentralized optimization procedure to find the optimal joint plans.

5.7.1 Modelling
Objects
The state x is separated into m independent objects; thus
X ={Xoy,--sXo,, }- (5.35)
Since the objects are stationary the time index has been dropped.

Each object o, is specified by a 2D position x,,, = [z,,,,,]” that isindependent
of al other objects.

Fig. 5.2. Typical mobile robot equipped with a bearing-only sensor (panoramic camera).
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Agent Motion

The agents are based on an aircraft model and are described by their position and orien-
tation, s = [2¥, ¥, 0F]", travel at a constant velocity V; = 50m/s, and are controlled
via a single scalar defining the robots rate of turn u¥ = 6%. Thus, the deterministic

motion model s* ™! = f;(sF, u* ") isgiven by
. 2V .1, 1
ot =gk L sm(iu;‘HAt) cos(OF Tt 4 iufHAt) (5.364)
2 1 1
Yt = ok 4 le sin(5u uF T AL) sin(0F T 2u§+1At) (5.36b)
oF+1 = gk 4 u’i‘““At, (5.36¢)

where At isthetime between k and k + 1.

Observations

It is assumed that each agent 7 receives an independent bearing observation zk from
each object o, at each time k; thus zF = {z¥  : V j}. The independency assumptlon
allows the observations of the obj ects to be model led separately.

The i" agent’s observation model for object o;, defined as the conditional proba-
bility density, isassumed to be Gaussian and is given by

P(zﬁoj |x0j ; Sf) = N(zﬁoj ihi o (XOJ, ) Rfoj) (5.37)

Here, the notation N (&; me, C¢) represents a Gaussian (or normal) density defined on
the state ¢ with a mean of m, and variance Ce.

The mean observation for agiven object o; with state x,,, when the agent isin state
sk is given by the nonlinear function '

=k k
Zio; = hi,o]‘ (Xoj ) S; )
— ok
= tan ! (Lylk) (5.38)
To, — T}

The variance of the bearing observations is set to Rfjoj = 25° for al agents and
objects.

5.7.2 Filtering

Consider some time k — 1, where the teams belief about x,,; is Gaussian with mean

x5~ and covariance P}

P(x,,|Z" 1 8571) = N(xo, ;1 P, (5.39)

o

Here the notation (-)/*~! represents “ given information up to & — 1
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Since al the objects are independent, the belief is simply given by the product of
the individual probability densities for each object:

P(xFzh s = T Ptz 8. (5.40)

Thus, only the belief P(x}~*Z*~*; S*~") will be considered.

Owing to the static nature of the objects, the prediction step (corresponding to
Eq. (5.29)) can be skipped. If the update step (corresponding to Bayes rule Eq. (5.30))
isimplemented directly, due to the nonlinearity in the observation model, the posterior
will not be Gaussian (even if the prior is Gaussian). The extended Kalman filter (May-
beck 1982) overcomes this by Iinearizing the observation model about some nominal
state nxo , given by the prior mean x'k

Using afirst-order Taylor expansion on h; ., (x,, ,s!) about nx’gj yields

hi,oj (Xoj 5 Sf) ~ 7,Z + Hfoj [Xoj - nxva (541)

where nzf’oj = h,,, (nx’; ,s¥) is the nominal observation and the matrix Hf, =
Vixhi o, (nx’gj , sF) isthe Jacobian of the observation function evaluated at the nom| nal

object state and agent state.
For a bearing observation these become

k k

Yo, — Yi
R = 6

nxoj - xi

and .
k . k k
Hi,, = —— [—sin(uzi,,), cos(nziy,)], (5.43)
n'i,0;

where ,7F, = \/(nyf — y;)? + (wxk, — x})? is the range from the agent to the

nominal object state.

Now, with this linearized model the posterior will remain Gaussian for a Gaus-
sian prior. The following update equations take the prior mean and covariance and an
observation and produce the associated posterior mean and covariance. It is given in
information or inverse covariance form by defining the Fisher information matrix Y
astheinverse covariance,i.e, Y = P!,

p
Y= YET Yoy, ®E,) T H,,
i=1

(5.44)
and
Y/F gk = ylk-t Ikt

+> H=E, )" (RE,) T (7, - +H], %[, (5.45)

o
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An interesting property of this representation is that the updated or posterior informa-
t|on matrix Y‘k (and hence covariance P/F ;) isindependent of the actual observations,

k. taken [see Eq (5.44)]. Thisisan |mp0rtant property and will allow the expected
entropy required for the objective function to be calculated very efficiently.

5.7.3 Objective Function

The objective function, defined in Section 5.6.4, represents the expected posterior
entropy of the team belief at the end of an V M step time horizon. Since the objectsare
independent (the density can be decomposed into the product of the densities of each
object alone), the entropy becomes a sum of the entropies of each individual object;
thus

m
HP(X|ZIC+NIVI;SI€+NIW) = Z HP(xoj |Zk+N M Ek+NM Y 5 (5.46)
j=1
where the entropy of the Gaussian density for the object stateis given by

) , (5.47)

1
HP(xuj |Zk+NZW;Sk+NJM) = *5 10g<(2ﬂ'e)d1

with d,, = 2 the dimension of the state x,, .

It is noted that the entropy is only dependent on the information matrix Y“”N M
By examining the modelling and filtering equations of Section 5.7.2, it can be seen
that the observations only influence the covariance or information matrix (hence the
posterior entropy) by changing the point at which the observation model is linearized
(through changing the prior densities mean).

Thus, to remove this dependency and the requirement to perform the expectation
in EQ. (5.33), the nominal state, about which the observation model is linearized, will
be given by the mean object state at time k:

WXt =%t Vie{l,...,NM}. (5.48)

9j

Hence, the posterior information matrix will be independent of the observation
sequence z; t VM and may be evaluated directly using

p NM
YN =yl L 3N T (v, (5.49)
=1 l=1

where I;'}!(v}) isthe observation information matrix and is given by
Lo (vi) = ()T (RS ™ HTL (5.50)
The posterior entropy of object o; is now given by

k k
Joj (V ) = HP(in |Zk+N M Ght-N M)

=— % log ((27re)

D (5.51)
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and the final team objective function, corresponding to the joint entropy of all objects,
is

F(vF) = zn: Ty (). (5.52)
j=1

Partial Separability

For each agent to evaluate the objective function, it requires the sum of the observation
information matrices from all other agents and over all steps in the planning horizon.
The actual observation models, HY , and R}, , and the position of the agents s} are
irrelevant once thisinformation is obtau ned.

e Impact Space: Due to this structure, an impact space can be defined that contains
the required matrices for each of the m objects.

9= H M50, (5.53)

where M3, ,, isthe vector space containing all symmetric 2 x 2 matrices.

e Impact Function: The impact function for an agent < maps a decision onto an ele-
ment of this space by summing the individual information matrices Iﬁjf(vf) for
alle{1,...,NM} foreach object j € {1,...,m} and, i.e, ‘

NM
Tk = {> b Ve (1. m (5.54)
=1
e Composition Operator: This operator combinesimpacts from different agents. It is
given by matrix addition and simply adds corresponding observation information
matrices. Thus, if o = 7,(vk) and off = 7),(vF), the composition operator is
given by

NM NM

a’;*a{j:{ZIfﬁ,ﬁ + Yo ;we{L...,m}}. (5.55)
=1

=1

e Generalized Objective Function: This function evaluates the cost (expected pos-
terior entropy) of the agents decisions directly from the combined system impact.

Consider the combined impact o, = (O!_, Y;(v¥), given as
ok = {aTU Vjed{l,. m}}, (5.56)
where o, = Y7 ST TIFTL Now, the generdlized objective function

Yk (ak.) isgiven by duplicate word

m

YH(af) = 3 5 log((2me)*

j=1

’) , (5.57)
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k+NM
Y

where isgiven

YINM =yl 4ag (5.58)

5.7.4 Collaborative Control
With the above definition, the collaborative multiagent decision problem becomes

vF" = arg min ¥ (ok), (5.59)
vkev

where of. = OF_, 7;(vF), and is solved using Algorithm 5.1.

5.8 Results

5.8.1 Two Agents—Single Object

To demonstrate the workings of the decentralized optimization algorithm, a system
comprising two agents observing a single stationary object is considered. The config-
uration is shown in Fig. 5.3. For this scenario each agent has to decide on a control
policy consisting of a single control parameter (N = 1) that defines its rate of turn
over aplanning horizon of 12s.

The optimal joint plans are found by each agent executing Algorithm 5.1. Although
this procedure is designed to allow asynchronous execution, it was executed syn-
chronously. Agents communicated after every loca iteration with an imposed com-
munication delay corresponding to three iterations.

As each agent has only a bearing sensor, individually they have a very poor ability
to localize the object. However, if they cooperate and observe the object from perpen-
dicular directions they can greatly minimize its position uncertainty. However, thereis

200~ Agent 2 -7

e
100~ Agent 1 SRen

Object
Covariance

-100~

150 | | | I | I | | | | ]
-900 -800 -700 -600 -500 -400 -300 -200 -100 o 100 200
x

Fig. 5.3. The dashed trajectories corresponding to the jointly optimal plans. The dotted trajec-
tories represent the optimal solution to the corresponding single-agent problem and were used
to initialize the negotiated solution. The prior probability density of the position of the object is
given by a Gaussian with the mean shown by the cross (x) and the variance by the dotted circle.
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also a dependency on the range at which they observe the object, such that a shorter
range will give asmaller uncertainty in the measured position.

These seemingly opposing objectives are captured by the single objective function
defined in Eq. (5.52). As shown in Fig. 5.3, the optimal decisions cause the agents to
move towards the object and separate, such that a better triangulation angle is obtained.

Although this resulting behaviour is intuitive to the observer, an agent cannot rea-
son about this sort of global behaviour. Each agent only knows about the other through
the communication of abstract impacts; the position of the other agent and its planned
trajectory are completely unknown.

Figure 5.4adisplaysthe evolution of the agents’ decisions throughout the optimiza-
tion procedure. Although the communication delay causes a significant difference in
the perceived trajectories through the decision space, the system still converges to the
optimum. It is noted that one agent never knows about the actual decision of the other;
it only knows its impact. Figure 5.4a simply plots the decision corresponding to this
impact.

Figure 5.4b plots the interagent coupling as approximated by both agents. The
curves have similar shapes, but are not identical because they are measuring the curva-
ture of the objective function at different pointsin the decision space.

5.8.2 Nine Agents—Eighteen Objects

This scenario consists of nine agents cooperatively localizing 18 objects. The agents
start from the left side of Fig. 5.5a, in an arrow formation. They take observations at
arate of 2Hz and plan a trajectory 165 into the future (corresponding to an 800-m
path). The trajectory is parametrized by four variables defining the required turn rates

Coupling Estimate

10 15
Tterations

. x
~0.041 B

Agent 2 Decision (Turn Rate - rad/sec)
o
t 5%
s

I
8
Coupling Estimate

-0.08f BEE

1 L L L L L L L L L - 10 15 20 25 30
-0.1 -008 -006 -0.04 -0 02 0 0.02 0.04 0.06 0.08 0.1 Iterations
Agent 1 Decision (Turn Rate - rad/sec)

@ (b)

Fig. 5.4. (a) Evolution of agents decisions through the globa decision space V during the
optimization procedure, overlaid with contours of the objective function. The true path v =
[*v1,%va]T is shown with circles (o), while the pluses (4-) and crosses (x) represent the per-
ceived path ‘v = ['vy, v2]7 for agentsi = 1, 2, respectively. The difference is caused by
the communication delays. (b) Coupling estimates 'K (top) and 2K>; (bottom) calculated by
agents 1 and 2, respectively.
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for each quarter. Thiscorrespondsto N = 4, M = 8, and At = 0.5 sand resultsin an
optimal planning problem consisting of 36 parameters distributed over the nine agents.

A rolling planning horizon is employed, requiring that a new plan be developed
every second (i.e., N, = 2). When generating the very first plan, the agents initial-
ize their decisions using the locally optimal decision (as discussed in Sect. 5.8.1 for
the two-agent case); however at all later stages the decisions are initialized using the
previous decision.

The snapshots of the system are shown in Fig. 5.5a-d. Figure 5.5d shows the final
state of the system after all the objects have been sufficiently localized, but the current
optimal plans are also shown for completeness.

Figure 5.6 shows some data of atypical run of the optimization algorithm. It plots
the estimated coupling constants, communication events, and the evolution of the deci-
sion parameters from the perspective of a single agent. These data are for agent 6 for
thevery first decision problem (the results of which are shown in Fig. 5.5a8) and demon-
strate the relation between coupling (top graph) and communication frequency (middle
graph). The agent communicates at a high frequency to agent 5, to which it is coupled
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Fig. 5.5. Snapshots throughout the scenario at (@) £k = 0, (b) & = 30, (¢) & = 60, and (d)
k = 90. Current agent positions are shown with a circle (o), and the optimal future planned
trajectory with a dotted line. The current probability density of the location of each object is
represented by its mean (x) and covariance (dotted circle).
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Fig. 5.6. Typica data during a single run of the distributed optimization algorithm. These data
correspond to agent 6 for k = 0, as seen in to Fig. 5.5a. Top: Estimated coupling terms 6f(6j
forj € {1,2,3,4,5,7,8,9}. Middle: Each cross indicates the time a message is sent to each
specific agent in the system (the frequency of these eventsis determined by the coupling metric,
according to Eq. (5.19). Bottom: Evolution of the agent’s decision parameters (corresponding to
the agent’s rate of turn during the planning horizon).

the most, and at a much lower frequency to other agents (especialy agent 1), where
the interagent coupling is smaller.

Figure 5.7 displaysthe interagent coupling for the whole system for each snap shot
in Fig. 5.5. The i™" row of each matrix represents the average of Zf(ij over al theiter-
ations of Algorithm 5.1 for every other agent j. As expected, the matrix is reasonably
symmetric (the coupling terms correspond to cross derivatives, which by definition are
symmetric) and shows alarge amount of structure. The matrix in Fig. 5.7adisplaysthe
intuitive result that agents close to each other are highly coupled (due to the diagonal
structure).

However, agent separation is not directly important; the coupling essentially mea-
sures the sensitivity of the effect of the information that one agent receives from its
observations on the decisions of another. This is demonstrated in the last matrix cor-
responding to Fig. 5.5d. At this time in the mission al the objects are well localized
and for the agents to gather more information (and reduce the uncertainty) about the
positions of the objects, they must travel very close to them. Thus, only agents with
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@ (b)

(© (d)

Fig. 5.7. Coupling matrix for the initial decision problem. The checker board type appearance
(especialy the two minor diagonals) represent that generally agents closer to each other are
more strongly coupled (see Fig. 5.5(a)).

planned trajectories passing by a common object are coupled, e.g., agents 8 and 9 and
agents 3 and 4.

This coupling metric captures how the underlying agent models interact through
the system’s objective function, which is precisely what is important for a multiagent
system undertaking a specific task.

5.9 Discussion and Future Work

This chapter has approached the problem of multiagent decision making and planning
using the tools of asynchronous distributed optimization. This analytical approach led
to the definition of a coupling metric that intuitively links the rate at which an agent
may refineits local decision to its interagent communication frequency and transmis-
sion delays. The coupling is determined by the cross derivatives of the objective func-
tion and captures how the underlying agent models interact with the definition of the
system’s task.

This decentralized negotiation algorithm was used to control a simulated multi-
agent system involving multiple mobile robots undertaking an object localization task.
This example demonstrated that agents are required to communicate often only with
the agents to which they are coupled.
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It is envisaged for much larger distributed systems that sparseness of inter-agent
coupling (e.g., as shown in Fig. 5.7) will be more prevalent, causing each agent to be
coupled only to asmall subset of the system. Thiswill overcome the main requirement
that each agent must negotiate with every other agent, as only agents that are coupled
are required to communicate.

Another extension under investigation is the use of hierarchical clustering tech-
niques, such as described in Balch (2000), to build and maintain dynamic hierarchies
within the system. This can beillustrated by considering the coupling structure shown
in Fig. 5.7b, which can be easily partitioned into three clusters of {1,2, 3,4}, {5,6},
and {7,8,9}. Agents within a cluster are highly coupled and communicate directly
to each other, while intercluster communication is directed via a cluster head, which
summarizes the impacts of al the agents in the cluster. This abstraction of agents to
clusters can be taken to higher levels with clusters of clusters and clusters of clusters
of clusters, and so forth, each participating in higher-level negotiations.
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6

L earning Mutation Strategies for Evolution
and Adaptation of a Simulated Snakebot

Ivan Tanev

6.1 Introduction

Wheselless, limbless snakelike robots (Snakebots) feature potential robustness charac-
teristics beyond the capabilities of most wheeled and legged vehicles—an ability to
traverse terrain that would pose problems for traditional wheeled or legged robots and
insignificant performance degradation when partial damage is inflicted. Some useful
features of Snakebotsinclude smaller size of the cross-sectional areas, stahility, ability
to operate in difficult terrain, good traction, high redundancy, and complete sealing of
the internal mechanisms (Hirose 1993; Dowling 1997).

Robots with these properties open up several critical applications in exploration,
reconnaissance, medicine, and inspection. However, compared to the wheeled and
legged vehicles, Snakebots feature more difficult control of locomotion gaits and infe-
rior speed characteristics. In this work we address the following chalenge: how to
automatically develop control sequences of Snakebot’s actuators that allow for achiev-
ing the fastest possible speed of locomotion.

In principle, the task of designing the code of a Snakebot could be formalized
and the formal mathematical models could be incorporated into direct programmable
control strategies. However, the eventual models would feature enormous complexity
and would not be recognized as having a known analytically exact optimal solution.
The complexity of the model stemsfrom the large number of degrees of freedom of the
Snakebot, which cannot be treated independently of one another. The dynamic patterns
of position, orientation, velocity vectors, and the points and instances of contact with
the surface (and, conseguently, the vectors of resulting traction forces, that propel the
Snakebot) of each of the Snakebot is morphological segments have to be considered
within the context of other segments. Furthermore, often the dynamic patterns of these
parameters cannot be deterministically inferred from the desired velocity characteris-
tics of thelocomotion of the Snakebot. Instead, itslocomotion isviewed as an emergent
property at a higher level of consideration of a complex hierarchical system, compris-
ing many relatively simple entities (morphological segments). Higher-level properties
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of the system as a whole and the lower-level properties of entities it comprises cannot
be induced from each other. Owing to their ability ot find a near-optimal solution in
a reasonable runtime, evolutionary approaches (Takamura et a. 2000; Mahdavi and
Bentley 2003) are considered efficient ways of tackling such ill-posed problems.

As an instance of evolutionary algorithms, Genetic Algorithms (GA) differ from
Genetic Programming (GP) mainly in the genotypic representation (i.e., the chromo-
some) of potential solutions (Goldberg 1989). Instead of representing the solution as
acomputer program (usually a parse tree) featuring arbitrary structure and complexity
asin GP, a GA employs a fixed-length linear chromosome. This difference implies a
favorable computational advantage of the GA over GP for simple problems because
linear chromosomes are computationally can be manipulated and interpreted more
efficiently. For complex tasks, however, such as evolution of locomotion gaits of a
Snakebot, the runtime overhead associated with manipulation of the genotype is neg-
ligible compared to the more significant overhead of the fitness evaluation of evolved
(either simulated or real) artifacts. Moreover, an efficient GA (in terms of computa
tional effort or number of fithess eval uations) often requiresincorporation of computa-
tionally heavy probabilistic learning models (Pelikan et a. 1999) aimed at discovering
and maintaining the complex interrelations between variables in the genome. In addi-
tion, the fixed-length genome usually impliesthat the latter comprises various carefully
encoded domain-dependent parameters of the solution with an apriori known structure
and complexity. This might be aconcern if no such knowledge is available in advance,
but rather has to be automatically and autonomously discovered by the evolving arti-
fact. The latter is especialy true when the artifact has to perform in unanticipated,
uncertain environmental conditions or under its own (possibly degraded) mechanical
abilities.

An example of the successful implementation of evolution (using a GA) and adap-
tation (via hierarchical, two-layered Q-learning) of locomotion gaits of a real-world
snakelike robot was demonstrated by Ito et al. (2003). Each genein the linear chromo-
some represents the angle of the corresponding joint in the snake, and the number of
genes is the same as the number of joints. This work demonstrates the efficiency of a
canonical GA for the particular complexity of the task—evolution of two-dimensional
gaits of a snake having five joints. The efficiency of the GA is adequate even without
the need to consider either the scalability problem (the inflation of search space with
the increase in the number of joints) or the linkage problem (the correlation between
the genes in linear chromosomes). Several similar methods of adaptation combining
evolutionary algorithms (either GA or GP for off-line evolution of a model of the
artifact) and learning (for on-line adaptation of the real artifact) have recently been
proposed (Kimura et a. 2001; Kamio et a. 2003). The learning component in these
approaches is usually intended to tune in on-line and mode the solution obtained off-
line via simulated evolution. Such approaches as an on-line parametric optimization
of asolution viaalocal search are efficient when changes to the fithess landscape are
assumed to be insignificant. However, adaptation to unanticipated, unknown, or uncer-
tain changesin fitness landscapes might require the discovery of completely new solu-
tions, which often could not be achieved by parametric optimization of already existing
solutions. We assume that GP aone, which is able to balance inherently exploration
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(of completely new solutions) and exploitation (of previously obtained solutions) by
maintaining a diverse population of solutions, offers good opportunities to discover
these new solutions.

Aninverse approach, based on evolution (estimation) of the morphol ogy of apoten-
tially damaged robot given a controller (instead of evolving a controller given a mor-
phology of the damaged robot) allows one to evolve a damage hypothesis after failure
and then to reevolve a compensatory neural controller to restore the robots functional-
ity (Bongard and Lipson 2004). Conversely, in our work we adhere to the conventional
approache of employing simulated evolution to develop the compensatory traits of a
controller given the unanticipated changes of morphology due to partial damage of the
Snakebot.

The objectives of our work are: (i) to explore the feasibility of applying GP for
efficient automatic design of the fastest possible locomotion of realistically smulated
Snakebot, and (ii) to investigate the adaptation of such locomotion to challenging
environment and degraded abilities (due to partial damage) of simulated Snakebot.
In Tanev and Ray (2005) we discussed the feasibility of applying an evolutionary
approach for automated development of locomotion gaits of Snakebots. Later we
demonstrated the evolution of nonperiodic postures of the Snakebot and verified the
versatility of genetic programming for evolution and adaptation to environmental chal-
lenges and damages (Tanev et al. 2005). In thiswork we discussthe biologically plausi-
ble (Caporale 2003; Kirschner and Gerhart 2005) nonrandom mutations implemented
through learning mutation strategies (LMS) in GP. We are especially interested in the
implications of LM S on the efficiency of evolution and adaptation of the Snakebot.

The approach we present for incorporating LM S isimplemented vialearning prob-
abilistic context-sensitive grammar (LPCSG), employed to express the preferable syn-
tactical bias of mutation operation in GP. LPCSG is related to approaches that use
a grammar to define the allowed syntax of the evolved artifacts. Examples of such
approaches are grammatical evolution (GE) (O’ Neill and Ryan 2003), grammar-based
genetic programming (Wong 2005), and grammar-based genetic a gorithms (Antonisse
1991). The genotype evolved via GE encodes the sequence of grammar rules that
should be applied during the simulated gene expression phase in order to generate
the phenotype.

From another perspective, our work is aso related to the incorporation of the esti-
mation of distribution algorithms (EDA) for biased mutations in evolutionary compu-
tations, mostly in GA (Pelikan et a. 1999). Motivated by the demonstrated advantages
of both the GE and EDA in GA, we intend to merge the two approaches in away that
alowsfor the biased mutation in GP (rather thanin GA, asin EDA) to be implemented
viaadjustable, learned preferences (rather than “hard coded” in the chromosome, asin
GE) in choosing the appropriate rule from the set of alternative, potentially applicable
grammar rules. Although a few grammar-based EDAS have recently been proposed
(Bosman and de Jong 2004; Shan et al. 2004), in neither of these methods has the
incorporation of LPCSG in GP been explored.

The remainder of the chapter is organized as follows. Section 6.2 emphasizes the
main features of GP proposed for evolution of locomotion of the Snakebot. Section 6.3
introduces the proposed approach of incorporating LPCSG in GP. Section 6.4 presents
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the empirically obtained results of efficiency of evolution and adaptation of the Snake-
bot to challenging environment and partial damage. Section 6.5 discusses an aterna
tive, interactive mechanism for learning the mutation strategies. Section 6.5 draws a
conclusion.

6.2 Genetic Programming for the Design of Snakebot Gaits

6.2.1 Morphology of the Snakebot

The Snakebot issimulated asaset of identical spherical morphol ogical segments (*ver-
tebrae”) linked together via universal joints. All joints feature identical (finite) angle
limits and each joint has two attached actuators (“muscles’). In Snakebot’s initial,
standstill position the rotation axes of the actuators are oriented vertically (vertical
actuator) and horizontally (horizontal actuator) and rotate the joint in the horizontal
and vertical planes, respectively. In view of the representation of the Snakebot, the
task of designing the fastest locomotion can be rephrased as devel oping temporal pat-
terns of desired turning angles of horizontal and vertical actuators of each segment that
result inits fastest overall locomotion. The proposed representation of the Snakebot as
a homogeneous system comprising identical morphological segments is intended to
significantly reduce the size of the search space of the GP. Moreover, because the
size of the search space does not necessarily increase with an increase in the Snake-
bot’s complexity (i.e., the number of morphological segments), the proposed approach
allows achievement of favorable scalability characteristics of GP.

In the representation considered, we use a pyramid approximation of the Coulomb
isotropic friction model. No anisotropic (directional) friction between the morpholog-
ical segments and the surface is considered. Despite the anticipated ease of simulation
and design of eventual morphological segments featuring anisotropic friction with the
surface [using passive wheels (Hirose 1993; Ito et al. 2003) or “belly” scales], such an
approach would have the following drawbacks:

1. Wheels attached to the morphological segments are mainly effective in two-
dimensional locomotion gaits. However, neither the fastest gaits in unconstrained
environments nor the adaptive gaitsin challenging environments (narrow tunnels,
obstacles, etc.) are necessarily two dimensional. In three-dimensional locomotion
gaits the orientation (the pitch, roll, and yaw angles) of morphological segments
at the instant of contact with the surface is arbitrary, which renders the design of
effective wheels for such locomotion gaits a nontrivia engineering task.

2. Wheels may compromise the potential robustness characteristics of the Snakebot
because they can be trapped easily in the challenging environments (rugged ter-
rain, obstacles, etc.).

3. Wheelspotentially reduce the application areas of the Snakebot because their engi-
neering design implies lack of complete sealing of al mechanisms.

4. Belly scales would not promote any anisotropic friction if the Snakebot operates
on asmooth, flat, clean, and/or loose surface. Therefore the generality of locomo-
tion gaits and their robustness with respect to various environmental conditions
would be compromised.
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5. Belly scalesareefficiently utilized as a source of anisotropic friction in some loco-
motion gaits of natural snakes. However, these gaits usually involve alarge num-
ber of complex muscles located immediately under the skin of the snake to lift the
scales off the ground, angle them forward, and then push them back against the
surface. In the Snakebot, implementing actuators that mimic such muscles of nat-
ural snakes would be too expensive and thus infeasible from an engineering point
of view.

6.2.2 Genetic Programming
Algorithmic Paradigm

GP (Koza 1992) is a domain-independent problem-solving approach in which a pop-
ulation of computer programs (individuals' genotypes) is evolved to solve problems.
The simulated evolution in GP is based on the Darwinian principle of reproduction
and survival of the fittest. The fitness of each individual is based on the quality of the
performance of the phenotype of the simulated individual in a given environment.

Set of Functionsand Terminals

In applying GP to the evolution of Snakebot, the genotype is associated with two alge-
braic expressions that represent the temporal patterns of desired turning angles of both
the horizontal and vertical actuators of each morphological segment. Because loco-
motion gaits, by definition, are periodical, we include the periodic functions si n and
cos in the function set of GP in addition to the basic algebraic functions. Termina
symbolsinclude the variablest i e, i ndex of the segment of the Snakebot, and two
constants: Pi and r andomwithin the range [0, 2]. The main parameters of the GP are
shown in Table 6.1.

The introduction of variable t i me reflects our objective to develop temporal pat-
terns of turning angles of actuators. The choice of the trigonometric functionssi n and
cos reflectsour intention to verify the hypothesis, asfirst expressed by Miturich in the
1920s (Andrusenko 2001), that undulate motion mechanisms can yield efficient gaits
of snakelike artifacts operating in air, land, or water.

Table 6.1. Main parameters of GP

Category Value

Function set {sin, cos, nop, +, -, *, [}

Terminal set {time, segment_ID, Pi, random constant, ADF}

Population size 200 individuals

Selection Binary tournament, selection ratio 0.1, reproduction ratio 0.9
Elitism Best four individuals

Mutation Random subtree mutation, ratio 0.01

Fitness Velocity of simulated Snakebot during the trial

Tria interval 180 time steps, each time step accounting for 50 ms of “real” time

Termination criterion (Fitness >100) or (Generations> 40)
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From another perspective, by introducing the trigonometric functions we are
attempting to mimic (at functional, rather than neurological level) the central pattern
generator (CPG) in the central nervous system. The CPG, usually located in the ganglia
or spinal cord of animals, is believed to be necessary and sufficient for the generation
of rhythmic patterns of activities (Levitan and Kaczmarek 2002). CPG for robot con-
trol typically comprises coupled neural controllers, which generate (without the need
for external feedback) the motion pattern of actuatorsin the respective morphological
segments of the artifact. The approach of employing CPG for developing the loco-
motion gaits of the Snakebot would be based on an iterative process (e.g., employing
the machine learning and/or evolutionary computation paradigms) of tuning the main
parameters of CPG, including, e.g., the common single frequency across the coupled
oscillators, the fixed-phase relationship between the oscillators, and the amplitude of
each oscillation. The proposed approach of applying GP for evolution of locomotion
gaits of the Snakebot shares some of the features of CPG-based approaches, such as
the open-loop, sensorless control scheme and the incorporation of coupled oscillators.
Unlike the CPG-based approaches, however, the proposed method incorporates too
little domain-specific knowledge about the task.

The rationale of employing automatically defined functions (ADF) is based on the
empirical observation that although the straightforward, independent encoding of the
desired turning angles of both horizontal and vertical actuatorsallows GPto adequately
explore the huge search space and, ultimately, to discover the areas that correspond to
fast locomotion gaits in solution space, the evolvability of such encoding is relatively
poor. We discovered that: (i) the motion patterns of horizontal and vertical actuators
of each segment in fast locomotion gaits are highly correlated (e.g., by frequency,
direction, etc.), and (ii) discovering and preserving such correlation by GPisassociated
with enormous computational effort. ADF is employed in our approach as a way of
limiting the search space by introducing modularity and reuse of the evolved code to
allow GP to explicitly evolve the correlation between motion patterns of horizontal
and vertical actuatorsin aform of shared fragmentsin algebraic expressions of desired
turning angles of the actuators. Moreover, we observed that the best result is obtained
by: (i) alowing the use of ADF as a terminal symbol in the algebraic expression of
desired turning angle of only the vertical actuator, and (ii) evaluating the value of ADF
by making it equal to the value of the currently evaluated algebraic expression of the
desired turning angle of the horizontal actuator.

Context-Free Grammar for Canonical GP

The context-free grammar (CFG), GG, usually employed to define the allowed syntax
of individuals in GP consists of (N, X, P, S), where N is afinite set of nonterminal
symbols, X isafinite set of termina symbolsthat isdigoint from NV, S isasymbol in
N that isindicated asthe start symbol, and P isaset of production rules, where arule
is of the form

V —w,

with V' anonterminal symbol and w a string consisting of terminals and/or nontermi-
nals. The term “context-free” comes from the feature that the variable V' can always
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be replaced by w, no matter in what context it occurs. The set of nonterminal symbols
of G of GP employed to develop the temporal patterns of desired turning angles of
horizontal and vertical actuators of segments that result in fastest overall locomotion
of the Snakebot is defined as follows:

N={G, STM STML, STM2, VAR, CONST_x10, CONST_PI, OP1, OP2},

where STMis ageneric algebraic statement, STM1 isageneric unary (e.g., Si n, cos,
nop) agebraic statement, STM2 is a generic binary (dyadic, eg. +, —, *, and /)
algebraic statement, VAR is a variable, OP1 is a unary operation, OP2 is a binary
(dyadic) operation, CONST_x10 is arandom constant within therange [0. . . 20], and
CONST_PI equals either 3.1416 or 1.5708. The set of terminal symbolsis defined as

Y ={sin,cos,nop,+,—, = /,ti me,segnent _i d}

where si n, cos, nop, +, —, * and / are terminals that specify the functions in the
generic algebraic statements. The start symbol is GP, and the set of production rules
expressed in Backus-Naur form (BNF) is as shown in Fig. 6.1. GP uses the defined
production rules of G to create the initial population and to mutate genetic programs.
In the canonical GP, the production rules with multiple alternative right-hand sides
(such asrules 2, 4, 6, 7, and 9 shown in Fig. 6.1) are usually chosen randomly during
these operations.

Fitness Evaluation

The fitness function is based on the velocity of the Snakebot, estimated from the dis-
tance that its the center of mass travels during the trial. Fitness of 100 (the one of
termination criteria shown in Table 6.1) is equivalent to a velocity that displaces the
Snakebot a distance equal to twiceits length.

(1) Gp —k 8TM

(2.1-2.5) STM —» STM1|STM2 |VAR|CONST x10|CONST PI
(3) STM1 — OF1 STM

(4.1-4.6) OP1 —» sin|cos|nop|-|sqr|sqrt

(5) STM2 — OPZ2 STM STM

(6.1-6.4) oP2 —» +|-|*|/

[(7.1-7.2) VAR — time|segment_id

(8) CONST %10 —& 0..20

(9.1-9.2) CONST PI — 3.1416|1.5708

Fig. 6.1. BNF of production rules of the context-free grammar G of GP, employed for automatic
design of locomotion gaits of the Snakebot. The following abbreviations are used: STM—generic
algebraic statement, STML—unary algebraic statement, STM2—binary (dyadic) algebraic state-
ment, VAR—variable, OP1—unary operation, and OP2—binary operation.
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Representation of Genotype

Inspired by its flexibility and the recently emerged widespread adoption of document
object model (DOM) and extensible markup language (XML) (Bray et a. 2000), we
represent the evolved genotypes of the Snakebot as DOM parse trees featuring equiv-
alent flat XML text. Both the calculation of the desired turning angles during fitness
evaluation and the genetic operations are performed on DOM parse trees via APl of
the off-the-shelf DOM parser.

Genetic Operations

Selection is a binary tournament. Crossover is defined in a strongly typed way in
that only the DOM nodes (and corresponding DOM subtrees) of the same data type
(i.e., labeled with the same tag) from parents can be swapped. The subtree mutation
is alowed in a strongly typed way in that a random node in the genetic program is
replaced by a syntactically correct subtree. The mutation routine refersto the data type
of the currently altered node and applies the chosen rule from the set of applicable
rewriting rules as defined in the grammar of GP. The selection of the grammar rule
that should be applied to the currently altered tree node during the mutation is ran-
dom in the canonical implementation of GP and biased in the proposed approach of
applying LMS, asis elaborated in Section 6.3.

Open Dynamic Engine

We have chosen Open Dynamics Engine (ODE) (Smith 2006) to provide a realistic
simulation of the physics of applying forces to phenotypic segments of the Snakebot.
ODE isafree, industrial quality software library for ssmulating articulated rigid body
dynamics. It isfast, flexible, and robust and has built-in collision detection.

6.3 IncorporatingLMSin GP

6.3.1 Learning Probabilistic Context-Sensitive Grammar

The proposed approach is based on the idea of introducing bias in applying the
most preferable rule from among the grammar rules with multiple, aternative right-
hand sides (RHS). We presume that the preferences of applying certain production
rules depend on the surrounding grammatical context, defining which rules have been
applied before. The probability distributions (PD) pt, ps, . . ., ply for each context; for
each grammar rule with multiple RHS are initially uniform, and then learned (tuned)
incrementally at each generation from the subset of the best-performing Snakebots.
The learned PD isthen used as a bias to steer the mutation of the Snakebots.

In the proposed approach, the learning probabilistic context-sensitive grammar
(LPCSG), G*, is proposed as aforma model describing such mutations. G* isintro-
duced as a set of the same attributes (N*, X*, P*, S*) asthe CFG G defined in
Section 2.2. The attributes N*, X*, and S* areidentical to the corresponding attributes
N, X, and S of G. The set of production rules P* of G* is derived from P of G as
follows:
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1. Production rules of Pg (Ps C P) of G that have a single right-hand side are
defined in the sameway in Px asin P.

2. Production rules in Py, (Pyy C P) of G that feature multiple right-hand side
aternatives V. — wy|ws| ... |wy are redefined for each instance ¢ of the context
asfollows:

context;V — context; w;,  (p})
context;V — context; wy  (p})

context;V — context; wy  (ply),

where pi, pi, ..., piy (1 pi, = 1) are the probabilities of applying each alternative
rule with the left-hand side nonterminal V' for the given context;.

Applying the | F- THEN stimulus-response paradigm, which usually expresses the
reactive behavioral strategies of intelligent entitiesin Al (e.g., software agents, robots,
etc.) to such biased mutation operations in GP and viewing the evolved genotype not
only as an evolving, but also as alearning intelligent entity, we can model the above
sample rule of G* by the following behavioral | F- THEN statement:

The LMS strategy in our approach comprises the dynamic set of | F- THEN rules
created and tuned by parsing the syntax of the best-performing Snakebots of the current
generation. A sample of biased application of production rules of G* according to the
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| B<STM ] B <STM1>
© O BWOPh ] B <OP1>
L L cHtet sqnt . P e clitesty st
BTt 5 ET:':TME
’, "
s * <=SIM2>E N B <O0F2
e===~d aorplea] b s
#“ Contestof ™| j;(lttexln o <STH .
_____ e ST
S "'."‘.ST“>E I B <CONST_PD>
the 2 3.'&'.’?.3 ¢ EVACONST.FD [ L cltew> 15708
% . and the parent , A= -S:M <Htedd 15708 = ‘STMC’D
Seeea- -2 BEW & <CONST_«10>
- ¢hitent> 8
The kltimost non-erminal

IF-THEN Rule of the LMS

_____________________________________________ b)
IF (Context of [STM] is [1.57, &, sqrt]]
THEN Apply Rules With Probabilities [0.34, 0, 0.07, 0.43, 0.16]

# Rule in LPCSG Probability For the Context
2.1 85TM —> STM1 0.34 [1.57, +, sqrt]
2.2 5TM —> 5TM2 0 [1.57, +, sgrt]
2.3 STM —> VAR 0.07 [1.57, +, sqrt]
2.4 5TM —> CONST x10 0.43 [1.57, +, sqrt]
2.5 8TM —> CONST PI 0.18 [1.57. +, sqrt]

Fig. 6.2. Sample of biased application of production rules of G*: the current leftmost nontermi-
nal, as shownin (a) is STM which requires applying one of the production rules 2.1-2.5 (refer to
Fig. 6.1). For the considered context (a), the LM S of applying rules 2.1-2.5 (b) suggests a highest
probability for applying the production rule 2.4, yielding the genetic program as shown in (c).
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if Context of [V] is [context;] then
Appl y Rul es Wt h_Probabilities(pi,pb, ...p).

learned PD and the corresponding | F- THEN rule of LM S for the considered | eftmost
nonterminal and the context are shown in Fig. 6.2.

6.3.2 GP IncorporatingLMS

The principal steps of the algorithm of GP that incorporates LMS via LPCSG are
shown in Fig. 6.3. Asthe figure illustrates, additional St eps 6 and 9 are introduced
in the canonical agorithm of GP. The LMS is updated on St ep 6, and the new
offspring, created by applying the proposed biased mutation viaLPCSG on St ep 9,
are inserted into the aready reproduced—via canonical crossover (Step 7) and
mutation (St ep 8)—growing new population of Snakebots. The parameter Ky /s
defines the ratio of the number of offspring #N 5, created via biased mutation using
LMS and the number of offspring #N¢o created via canonical crossover. Ky s is
dynamically tuned on St ep 6 based on the stagnation counter Cg, which maintains
the number of most recent generations without improvement of the fitness value. In
our implementation, K, 5/s is kept within the range [0, 5], and is defined according to
the following rule;

Kryms =5—smal | er _of (5,CS)

Lower values of K ,s in stagnated population (i.e., for Cg >0) favor reproduction
via canonical random genetic operations over reproduction using biased mutation via
LMS. Aswe investigated empirically, the low values of K1, 5,5 facilitate avoiding pre-
mature convergence by increasing the diversity of the population and, consequently,
accelerating the escape from the (most likely) local optimal solutions discovered by
the steering bias of the current LM S. Conversely, replacing the usually random genetic
operations of canonical GP with the proposed biased mutation when Ky, 5,5 is close
to its maximum value (i.e, for Cg = 0) can be viewed as a mechanism for growing
and preserving the proven beneficial building blocks in evolved solutions rather than
destroying them by the usual random crossover and mutation.

Updating (Fig. 6.3, St ep 6) and applying LMS during the biased mutation
(Fig. 6.3, St ep 9) implies maintaining a table that represents the set of learned
| F- THEN rules. Each entry in the table stores the context, the left-hand side non-
terminals, the list of right-hand side symbols, the aggregated reward values, and the
calculated probability of applying the given production rule for the given context. A
new entry is added or the aggregated reward value of an existing entry is updated by
extracting the syntactic features of the best-performing genetic programs (the mating
pool) of the current generation. The outdated entries, added four or more generations
before are deleted, keeping the total number of entries in the table between 300 and
500. The string of characters, comprising the right-hand side RHS of given production
rule that should be applied to the current leftmost nonterminal (i.e., the corresponding
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Step O Creating Initial Population and Clearing PDD;

Step 1 While (true) do begin

Step 2 Evaluating Population;

Step 3 Ranking Population;

Step 4: if Termination Criteriathen Goto St ep 10;

Step 5: Selecting the Mating Poal;

Step 6: UpdatingLMSand Kz ass;

Step 7 Creating #N¢ o offspring via canonical crossover;

Step 8 Mutating current population via canonical mutation;

Step 9 Creating #N 1 s offspring via mutation of mating pool usingLMS;

Step 10: end;

Fig. 6.3. Algorithm of GP incorporating LMS. St eps 6 and 9 are specific for the proposed
approach. St eps 0, 2--5, 7,and8 arecommon principa steps of canonical GP.

|eft-hand symbol in production rule, LHS) for the given context C is obtained by the
function Get Production([in] C, [in] LHS, [out] RHS), which oper-
ateson the LMStable as shown in Fig. 6.4.

GetProduction([in] €, [in] LHS, [out] RHS)

R :" —
[1.57,+,sqrt], *sT™ \CONST %10/

Context Left-hand side Right-hand side  Aggregated Reward)  Probability

(C) (LHS) (RHS) Value (ARV) Distribution
)
|
o 1157+ 5qn] STV STMI' 19 034 | %
H 157,450 STV 'STM2' 0 000 | |
| 11.57,+.sqn STV VAR 4 007 |

Fig. 6.4. Obtaining the most preferable right-hand side (RHS) of production rule of LPCSG
that should be applied to the leftmost nonterminal (i.e., left-hand symbol, LHS), and the con-
text (C) according to asample | F- THEN r ul e of the current LMS: (1) Selecting the set of
entries associated with the entries featuring the given LHS and C, (2) Choosing an entry from
the obtained result set with a probability proportional to the learned PD, and (3) returning the
RHS of the chosen production rule. The sample | F- THEN rule of the LMS shown here is the
same as depicted in Fig. 6.2.



116 |. Tanev

6.4 Results

This section discusses empirically obtained results verifying the effects of incorpo-
rating LM S on the efficiency of GP applied for the following two tasks: (i) evolution
of the fastest possible locomotion gaits of the Snakebot for various fitness conditions,
and (ii) adaptation of these locomotion gaits to challenging environment and degraded
mechanical abilities of the Snakebot. These tasks, considered asrelevant for successful
accomplishment of anticipated exploration, reconnaissance, medicine, or inspection
missions, feature different fitness landscapes. Therefore, the experiments discussed in
this section are intended to verify the versatility and the scope of applicability of the
proposed approach. In all of the cases considered, the fithess of the Snakebot reflects
itslow-level objective (i.e., what isrequired to be achieved) in these missions, namely,
to be able to move fast regardiess of environmental challenges or degraded abilities.
The experiments discussed illustrate the ability of the evolving Snakebot to learn how
(e.g., by discovering beneficial locomotion traits) to accomplish the required objective
without being explicitly taught about the means to do so. Such know-how acquired
by the Snakebot automatically and autonomously can be viewed as a demonstration
of emergent intelligence (Angeline 1994), in that the task-specific knowledge of how
to accomplish the task emerges in the Snakebot from the interaction of the problem
solver and the fitness function.

6.4.1 Evolution of Fastest Locomotion Gaits

Figure 5 shows the results of the evolution of locomotion gaits for cases where fitness
is measured as velocity in any direction. Despite the fact that fitness is unconstrained
and measured as Snakebot’svel ocity in any direction, sidewinding locomotion (defined
as locomotion predominantly perpendicular to its long axis) emerged in all ten inde-
pendent runs of GP, suggesting that it provides superior speed characteristics for the
Snakebot’s considered morphology. As Fig. 6.5¢ illustrates, incorporating LMSin GP
is associated with computational effort (required to achieve probability of success0.9)
of about 20 generations, which is about 1.6 times faster than canonical GP with CFG.
Sample snapshots of evolved best-of-run sidewinding locomotion gaits are shown in
Fig. 6.5d-g.

In order to verify the superiority of velocity characteristics of sidewinding, we com-
pared the fitness convergence characteristics of evolution in an unconstrained environ-
ment for the following two cases: (i) unconstrained fitness measured as velocity in any
direction (as discussed above and illustrated in Fig. 6.5), and (ii) fithess measured as
velocity in the forward direction only. The results of evolution of forward (rectilin-
ear) locomotion, shown in Fig. 6.6, indicate that nonsidewinding motion, compared to
sidewinding, features much inferior velocity characteristics. The results also demon-
strate that GP with LM S on average converges almost four times faster and to higher
values than canonical GP. Snapshots taken during the motion of a sample evolved best-
of-run sidewinding Snakebot are shown in Fig. 6.6¢ and d.

The results of evolution of rectilinear locomotion of asimulated Snakebot confined
inanarrow “tunnel” are shownin Fig. 6.7. Asthe fitness convergence characteristics of
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Fig. 6.5. Evolution of locomotion gaits for cases where fitness is measured as velocity in any
direction: fitness convergence characteristics of ten independent runs of GP with LMS (a);
canonical GP (b); probability of success (c); and snapshots of sample evolved viaGP with LMS
best-of-run sidewinding Snakebots (d), (€), (f), and (g). The dark trailing circlesin (d), (e), (),
and (g) depict the trajectory of Snakebot’s center of mass.

tenindependent runs (Fig. 6.7aand b) illustrate, GP with LM Sisamost twice asfast as
canonical GP. Compared to forward locomotion in an unconstrained environment (Fig.
6.6), the velocity in this experiment is superior, and even comparable to the vel ocity of
sidewinding (Fig. 6.5). This seemingly anomalous phenomenon demonstrates a case
of emergent intelligence—i.e., an ability of evolution to discover away to utilize the
walls of a“tunnel” as a source of extra grip and as an additional mechanical support
for fast yet unbalanced locomotion gaits (e.g., vertical undulation) in an eventually
unconstrained environment.

0 10 20 30 40 0 10 20 30 40
Generation # Generation #

Fig. 6.6. Evolution of locomotion gaits for cases in which fitness is measured as velocity in
the forward direction only. Fitness convergence characteristics of ten independent runs of GP
with LM S (&), canonical GP (b), and snapshots of sample evolved via GP with LM S best-of-run
forward locomotion (c and d).
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Fig. 6.7. Evolution of locomotion gaits of the Snakebot confined in a narrow “tunnel”: fitness
convergence characteristics of ten independent runs of GP with LMS (@), canonical GP (b), and
snapshots of sample evolved best-of-run gaits at the intermediate (c), and final stages of the trial

().

6.4.2 Adaptation to Unanticipated Challenging Terrain. Generality
of Adapted Gaits

Adaptation in nature is viewed as an ability of species to discover the best phenotypic
(i.e., pertaining to biochemistry, morphology, physiology, and behavior) traits for sur-
vival in a continuously changing fitness landscape. The adaptive phenotypic traits are
the result of beneficial genetic changes that occurred during the course of evolution
(phylogenesis) and/or phenotypic plasticity (ontogenesis—learning, polymorphism,
polyphenism, immune response, adaptive metabolism, etc.) occurring during the life-
time of the individuals. In our approach we employ GP with LM Sfor the adaptation of
the Snakebot to changes in the fitness landscape caused by a challenging environment
and partial damage to one, two, four and eight (out of 15) morphological segments.
In all of the cases of adaptation, GP is initialized with a population comprising 20
best-of-run genetic programs, obtained from ten independent runs of evolution of the
Snakebot in an unconstrained environment, plus an additional 180 randomly created
individuals.

The challenging environment is modeled by the introduction of immobile obsta-
cles comprising 40 small, randomly scattered boxes, a wall with height equal to the
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Fig. 6.8. Adaptation of sidewinding locomotion to a challenging environment: fitness conver-
gence characteristics of ten independent runs of GP with LMS (@), canonical GP (b), and prob-
ability of success (c).
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Before Adaptation

-
After Adaptation via GP with LMS

Fig. 6.9. Snapshots illustrating the sidewinding Snakebot, initially evolved in an unconstrained
environment, before the adaptation: initial (a), intermediate (b and c), final stages of thetrial (d),
and after the adaptation to a challenging environment viaGP with LMS: initial (€), intermediate
(f), and final stages of the trial (g).

0.5 diameters of the cross section of the Snakebot, and a flight of three stairs, each
with a height equal to 0.33 diameters of the cross section of the Snakebot. The results
of adaptation of the Snakebot, shown in Fig. 6.8, demonstrate that the computational
effort (required to reach fitness values of 100 with probability of success 0.9) of GP
with LMS is about 20 generations. Conversely, only half of all the runs of canonical
GP achieve the targeted fitness value, implying that the corresponding probability of
success converges to avalue of 0.5. Snapshotsillustrating the performance of a Snake-
bot initially evolved in an unconstrained environment before and after the adaptation
(viaGP with LMS) to a challenging environment are shown in Fig. 6.9.
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Lateral displacement, Xcs-Xcm

Fig. 6.10. Trajectory of the central segment (cs) around the center of mass (cm) of Snakebot for
sampl e best-of -run sidewinding locomotion before (a) and after the adaptation (b) to achalleng-
ing environment.
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Fig. 6.11. Snapshots illustrating the generality of the sidewinding Snakebot adapted to the
known challenging environment as depicted in Fig. 6.9. Before the adaptation the Snakebot
overcomes an unanticipated pile of boxes more slowly (a, b and c) than after the adaptation (d,
e, and f) viaGP with LMS.

The additional elevation of the body required to negotiate the obstacles faster repre-
sents emergent know-how in the adapting Snakebot. AsFig. 6.10 illustrates, the trajec-
tory of the central segment around the center of mass of the sample adapted Snakebot
(Fig. 6.10b) istwice as high as before the adaptation (Fig. 6.10a).

The generality of the robust sidewinding gaits evolved via GP with LM Sis demon-
strated by the ease with which the Snakebot evolved in known challenging terrain
overcomes various types of unanticipated obstacles, such as a pile of boxes, burial
under boxes, and small walls, asillustrated in Figs. 6.11, 6.12, and 6.13.

6.4.3 Adaptation to Partial Damage

The adaptation of the sidewinding Snakebot to partial damage to one, two, four, and
eight (out of 15) segments by gradually improving its velocity is shown in Fig. 6.14.
Demonstrated results are averaged over ten independent runs for each case of par-
tial damage to one, two, four, and eight segments. The damaged segments are evenly
distributed along the body of the Snakebot. Damage inflicted to a particular segment
implies acomplete loss of functionality of both horizontal and vertical actuators of the
corresponding joint.

As Fig. 6.14 depicts, the Snakebot recovers completely from the damage to a
single segment, attaining its previous velocity in 25 generations with canonical GP
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Fig. 6.12. Snapshots illustrating the generality of the sidewinding Snakebot adapted to the
known challenging environment as depicted in Fig. 6.9. Before the adaptation the Snakebot
emerges from an unanticipated burial under a pile of boxes more slowly (a, b, and c) than after
the adaptation (d, e, and f) via GP with LMS.

Before Adaptation

After Adaptation via GP with LMS

Fig. 6.13. Snapshots illustrating the generality of the sidewinding Snakebot adapted to the
known challenging environment as depicted in Fig. 6.9. Before the adaptation the Snakebot
clears unanticipated walls forming a pen more slowly (a, b, ¢, and d) than after the adaptation
(e, f, and g). The walls are twice as high as in the known challenging terrain, with their height
being equal to the diameter of the cross section of the Snakebot.
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Fig. 6.14. Adaptation of the Snakebot to damage to one (a), two (b), four (c), and eight (d) seg-
ments. Fd isthe best fitness in the evolving population of damaged Snakebots, and Fhisthe best
fitness of 20 best-of-run healthy sidewinding Snakebots.

and in only seven generations with GP with LPCSG, resulting in a mean real time of
adaptation of a few hours of runtime on a PC featuring an Intel® 3GHz Pentium®
four microprocessor and 2GB RAM under Microsoft Windows XP OS. The Snakebot
recovers an average of 94% (canonical GP) and 100% (GP with LMS) of its previous
velocity in the case in which two segments are damaged. With four and eight damaged
segments the degree of recovery is 77% (canonical GP) and 92% (GP with LMS), and
68% (canonical GP) and 72% (GP with LMS), respectively. In all of the cases consid-
ered, incorporating LM S contributes to faster adaptation, and in al cases the Snakebot
recovers to higher values of velocity of locomotion. The snapshots of the sidewinding
Snakebot immediately after damage and after having recovered from the damage of
one, two, four, and eight segments are shown in Fig. 6.15. The views of the recovered
Snakebot (Fig. 6.15b, d, f, and h) reveal the emergent tendency of increasing the wind-
ing angle of locomotion. Moreover, thefrontal view of the Snakebot before (Fig. 6.163)
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Fig. 6.15. Snapshots of the sidewinding Snakebot immediately after damage to one (a), two (c),
four (€), and eight (g) segments and after having recovered from the damage (b, d, f, and h) by
adaptation via GP with LPCSG. The damaged segments are shown in a darker shade.
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Fig. 6.16. Thefronta view of the Snakebot before (a) and after the adaptation (b) to the damage
of a single segment. The corresponding views from above of the sidewinding Snakebot are
shown in Fig. 6.15aand b, respectively.

and after the adaptation (Fig. 6.16b) to the damage of single segment demonstrates the
additional elevation of the adapted Snakebot in a way that is analogous to the adapta-
tion to the challenging environment asillustrated in Fig. 6.10.

6.5 Discussion

The efficiency of incorporating LS in GP depends on several factors, such as the ade-
quacy of the genetic representation of the solution, the size of the search space, and
the characteristics of the fitness landscape. Considering the | atter issue, we believe that
the gradients toward the global optimums are a relevant prerequisite for an efficient
evolution. These nondeceptive fitness gradients seemed to appear in the tasks of evolv-
ing and adapting the Snakebot as elaborated in the preceding sections. However, in
some cases (asillustrated in Figs. 6.9, 6.11, and 6.12) the artifact might be temporarily
trapped by obstacles in the challenging environment. Consequently, the eventual evo-
lutionary modifications to the artifact is locomotion patterns might temporarily yield
anegligible velocity of locomotion and, consequently, negligibly small fitness values,
providing virtually no insight into evolution about the promising areas in the explored
search space. The corresponding fitness landscape would feature wide areas covered
by low plateaus, which might render simulated evolution to a poorly guided or even
arandom search with relatively low computational efficiency. The information-driven
evolutionary design, which introduces spatiotemporal measures of coordination of the
modules that indirectly approximate the fitness function, promises to be an interesting
way to address such a problem (Prokopenko et al. 2006).

An alternative approach to addressing the issue of evolving an initialy trapped
Snakebot isto employ aderivation of the GP with LM S discussed above, in which the
probabilities of applying the production rules are learned interactively from the parsed
syntax of the Snakebots that, according to the human observer, are believed to exhibit
behavioral features that are relevant for overcoming the obstacles (e.g., symmetrical
shape, well-synchronized motion of segments, body elevation, etc.). Because these
features might not necessarily be exhibited by the current best-performing Snakebots,
they would provide the evolution with additional insight about the promising areasin
the fitness landscape. The preliminary results indicate that employing such an inter-
active feature-oriented GP via LMS is associated with improved efficiency in that the
locomotion gaits of the Snakebot evolve faster and to higher velocities than those of
the canonical GP (Tanev 2006).
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6.6 Conclusion

In thiswork we proposed an approach that incorporates LM S implemented via LPCSG
in GP and verified it in terms of the efficiency of evolution and adaptation of locomo-
tion gaits of a simulated Snakebot. We introduced a biased mutation in which the
probabilities of applying different production rules with multiple right-hand-side alter-
natives in the LPCSG depend on the context, with these probabilities being “learned”
from the aggregated reward values obtained from the evolved best-of-generation
Snakebots. Empirically obtained results confirmed that employing LMS contributes
to the improvement of computational effort of both the evolution of Snakebot’s fastest
possible locomotion gaits for various fitness conditions and the adaptation of these
locomotion gaits to a challenging environment and degraded mechanical abilities.

Recent discoveries in molecular biology and genetics suggest that mutations do
not happen randomly in nature (Caporale 2003; Kirschner and Gerhart 2005) |nstead,
some fragments of DNA tend to repel the mutations, whereas other fragments seem
to attract them. It is assumed that the former are related to the very basics of life, and
therefore any mutation within them might be potentially fatal to the species. We con-
sider the ability of the Snakebot to move as an analogy of these very basics of life.
Preserving the corresponding genotypic areas from mutations and focusing on genetic
changes that facilitate the discovery of the beneficial phenotypic properties (e.g., addi-
tional elevation of the body and increased winding angle) of the already evolved fast
locomotion gaits improves the efficiency of evolution and adaptation of the Snake-
bot to challenging environments and partial damage. The proposed approach contains
no domain specifics and therefore can be incorporated into genetic programming for
solving awide range of problems from various problem domains.

Considering the situational awareness as a necessary condition for any intelligent
autonomous artifact, in futurework wewould liketo investigate the feasibility of incor-
porating sensors that allow the Snakebot to explicitly perceive the surrounding envi-
ronment. We are especially interested in sensors that do not compromise the robustness
characteristics of the Snakebot—such as, for example, Golgi’s tendon receptors incor-
porated inside a potentially completely sealed Snakebot.
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Self-Organization as Phase Transition in Decentralized
Groups of Raobots: A Study Based on Boltzmann
Entropy

Gianluca Baldassarre

7.1 Introduction

An important goal of collective robotics (Dudek et al. 1996; Cao et a. 1997; Dorigo
and Sahin 2004; Dorigo et al. 2004) is the devel opment of multirobot systems capable
of accomplishing collective tasks without centralized coordination (Kube and Zhang
1993; Holland and Melhuish 1999; Ijspeert et a. 2001; Quinn et a. 2003). From an
engineering point of view, decentralized multirobot systems have several advantages
vs. centralized ones, at least for some tasks. For example, they are more robust with
respect to the failure of some of their component robots, do not require a control sys-
tem or robot with sophisticated computational capabilities to manage the centralized
control (Kube and Bonabeau 2000), have a high scalability with respect to the whole
system’s size (Baldassarre et al. 2006, 2007a), and tend to require simpler robots, as
due to the more limited need for communication, they can often rely upon implicit
coordination (Beckers et al. 1994; Trianni et a. 2006).

Decentralized coordination is usually based on self-organizing principles. Very
often research on decentralized multirobot systems makes a general claim on the pres-
ence of these principles behind the success of the studied systems, but it does not
conduct a detailed analysis of which specific principles are at work, nor doesit attempt
to measure their effects in terms of the evolution of the system’s organization in time
or to analyze the robustness of its operation vs. noise (e.g., see Holland and Melhuish
1999; Krieger et a. 2000; Kube and Bonabeau 2000; Quinn et a. 2003). This chap-
ter studies some of these issues in a multirobot system that was presented in detail
elsewhere (Baldassarre et a. 2003, 2006, 2007, 2007a). This system is formed by
robots that are physically connected and have to coordinate their direction of motion
to explore an open arena without relying on centralized coordination. The robots are
controlled by an identical neural network whose weights are evolved through a genetic
agorithm. Through this algorithm the system devel ops the capacity to solve the task
on the basis of self-organizing principles. The goal of this chapter is to present some
preliminary results that show how such principles lead the organization of the system,
measured through a suitable index based on Boltzmann entropy, to arise in quite an
abrupt way if the noise/signal ratio of the signal that allows the robots to coordinate is
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slowly decreased. In this regard, the chapter argues, on the basis of theoretical argu-
ments and experimental evidence, that such sudden emergence of organization shares
some properties with the phase transitions exhibited by some physical systems studied
in physics (Anderson 1997).

The rest of the chapter is organized as follows. Section 7.2 presents a qualitative
description of the mechanisms that are usually behind self-organization and an index,
based on Boltzmann entropy, that can be used to measure the synchronic level of the
order of asystem composed of many dynamical parts. Section 7.3 illustrates the robots
forming the multirobot system considered here, the collective task tackled with it, the
neural controller of the robots, and the genetic algorithm used to evolve it. Section
7.4 analyzes the behavior of the single robots developed by the genetic algorithm, and
the effects it has at the collective level. Section 7.5 uses the entropy index to show
that when the noise/signal ratio related to the signal used by the robots to coordinate is
slowly decreased, the level of order of the robotic system behaves as some global orga-
nization parameters observed in phase transitions of some physical systems. Finaly,
Section 7.6 draws the conclusions.

7.2 Mechanisms of Self-Organization, Phase Transitions, and
Indexesto Measure the Organization Level of Collective Systems

Prokopenko et al. (2007) (see aso Chapter 1 in this volume) suggest that self-
organization is characterized by three features: (a) it causes the parts forming a col-
lective system to acquire global coordination; (b) this coordination is caused by the
local interactions and information exchange between the parts composing the system
and not by a centralized ordering mechanism; (c) the system passes from less to more
organized states. This section first tackles points (@) and (b) from a qualitative perspec-
tive by presenting three basic mechanisms that usually underlie self-organization. It
then presents an index based on Boltzmann entropy that can be used to measure the
level of order of acollective system at a given instant of time. Thisindex can be used,
asillustrated in the succeeding sections, to measure the level of organization of a mul-
tirobot system under the action of self-organizing processes and hence to study point
(c). Findly the section presents some theoretical argumentsin favor of the hypothesis
that in some cases the dynamics of order exhibited by self-organizing multirobot sys-
tems might have the features of phase transitions studied in physics. These arguments
are supported by the preliminary experimental results presented in Section 7.5.

7.2.1 Qualitative M echanisms of Self-Organization

Self-organizing processesinvolve systems composed of several, generally similar com-
ponents, and usually (always?) rely on three basic principles (Camazine et a. 2001):
(a) random fluctuations; (b) positive feedback; (c) negative feedback, which will now
beillustrated in detall.

The elements composing self-organizing systems are usually dynamic in the sense
that they can assume one state among a certain number of possible states at each time
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step and pass from state to state in time. Fully disorganized systems are those in which
each component passes from state to state in a random fashion. A typical feature of
such systemsisthat the distribution of the components over the possible states tends to
be uniform, i.e., symmetric (e.g., a group of fish swimming randomly in an aquarium
have a quite uniform distribution in the water).

The symmetry of a collective system formed by components exhibiting a random
dynamics tends to be imperfect in the sense that it tends to have random fluctuations
in time due to noise (e.g., there are some zones of the aquarium with a slightly higher
density of fish). Now consider the possibility that each component of the system does
not move (only) randomly, but tends to assume the states assumed by some other com-
ponents of the system, i.e., it individually follows a conformist rule of the kind, “1 do
what you do” (e.g., fish move to portions of space where other fish are, so as to mini-
mize the chance of being found alone by predators). In this condition, it might happen
that some random fluctuations are amplified: in fact the more components that assume
a certain state vs. other states, the more components among the remaining ones that
will tend to imitate their state, so causing an exponential avalanche effect with a con-
sequent symmetry break of theinitial uniform distribution (e.g., the fish tend to cluster
and form awhole school). The processthat leadsto thisamplificationiscalled positive
feedback. In all real systems, the action of positive feedback tends to be counterbal-
anced by negative feedback. The latter might assume the form of an active process
(e.g., thefish tend to cluster to avoid predators, but they also tend to keep at a certain
minimal distance to avoid collisions) or a passive process (e.g., al fish have converged
to the same zone in space) so the process of convergence stops. Starting from an initial
uniform distribution, and after a first exponential convergence of the elements of the
system to similar states due to positive feedback, negative feedback will start to slow
down the convergence process. In this respect, negative feedback tends to operate with
a strength positively related to the number of elements that have already converged
to the same states (e.g., to avoid collisions the fish’'s “repulsion” behavior might be
implemented with more vigor in space areas with higher densities of conspecifics as
such densities correspond to smaller distances and higher chances of collision). For
this reason negative feedback usually increases to levels that fully counterbalance the
effect of positive feedback. At this point the system'’s overall state usually tends to
reach equilibrium (e.g., the fish school’s density remains within a certain range; for
examples of simulations of flocks, herds, and schools of animals, see the seminal
paper of Reynolds (1987) and the literature that followed it linked in the web page
http://www.red3d.com/cwr/boidy/).

7.2.2 An Index to Measurethe Synchronous L evel of Organization of Collective
Systems Based on Boltzmann Entropy

The index used to measure the level of order of the group of robots studied here is
based on Boltzmann entropy. Note that the index can be used to measure the level of
organization of a collective system independently of the fact that such organization is
the result of the action of self-organizing or of centralized coordination mechanisms.
Boltzmann entropy has been proposed in mechanical statistics to measure the level of
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disorder that characterizes a system formed by a set of N gas molecules that occupy
a given portion of space. This portion of space is divided into an arbitrary number of
cells, C, each having a constant volume. (In general the number of cells will influence
the outcome of the application of the index, but, as we will see, the index can be
suitably normalized to avoid this problem.) The index is based on the assumption that
the elements composing the system move randomly. Thisimpliesthat at any time step
an element can occupy any cell with a constant probability 1/C' (the cell occupied by
the element will constituteitsstate). To give an example of this, consider the case of the
robotic system studied here. This system is composed of N = 40 robots. Each robot
can assume a given direction of motion ranging over a 1D closed space that ranges
over [0°,360°] degrees. If this space is divided into C' = 8 cells of constant size, at
each time step the probability that an element occupies agiven cell isequal to 1/8.

The computation of the index levels is based on the so called microstates and
macrostates of the system. A microstate corresponds to the set of individua states
of the elementsin agiven time step. For example, inasystemwith N =2 and C' = 2,
the microstate is the vector (c1, ¢2), where ¢, is the cell occupied by the element n.
Note that the microstate is a vector and not a set, i.e., the order of the ¢,, states of the
eements is relevant: this is a consequence of the fact that the identity of the elements
is assumed to be distinguishable. So, e.g., given asystem with N = 2 and C = 2,
the microstate where the first element occupies the first cell and the second element
occupies the second cell is different from the microstate where the first element occu-
pies the second cell and the second element occupies the first cell, evenif in both cases
the system has one element in the first cell and one element in the second. As each
element can be in one of C possible different states, the number of different possible
microstatesis OV,

With N; indicating the number of elementsin cell 4, amacrostate of the system is
defined as the distribution (N1, Na, ..., N;, ..., N¢) of the elements over the cells,
without considering the identity of the elements. An example of distribution for the
systemwith N = 2 and C = 2is(0, 2), meaning that there are zero elementsin thefirst
cell and two elementsin the second. Each macrostateis (usually) composed of several
possible microstates as the distribution of elements over the cells that correspond to
it can be obtained in different ways. For example, inthe N = 2,C = 2 system, the
macrostate (1, 1) with one element in each cell is composed of two microstates, i.e.,
(1, 2) and (2, 1). The other two macrostates (2, 0) and (0, 2), respectively, with both
elements in the first and the second cell, are each composed of only one microstate,
respectively, (1, 1) and (2, 2).

Boltzmann entropy E,, refers to the macrostate m of the system at a given time
step and is defined as follows:

E,, =k Infw,,], (7.0

where w,,, is the number of microstates of m, In[-] isthe natural logarithm, and & is a
scaling constant.

As at any time step the probability of having any microstate is constant and equal
to 1/C¥; the probability that the system is in a given macrostate is proportional to
the number of microstates that compose it (this probability is equal to w,,, /C). Now
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consider the possibility that an ordering mechanism (e.g., a flow of energy that goes
through the system) starts to operate on the elements of the system previously sub-
ject only to noise. This mechanism is “ordering” in the sense that it drives the system
toward macrostates composed of few microstates, so it operates against the noise, i.e.,
against the evolution that the system would undergo if driven only by noise. Theimpor-
tant point for Boltzmann entropy is that as the elements of the system wander across
the different states due to noise, and hence the system wanders across the different cor-
responding microstates, at a given time step the system has a high probability of being
in macrostates that are formed by many microstates vs. macrostates that are formed
by few microstates. As Boltzmann entropy is positively related with the number of
microstates that compose the macrostate of the system, it can be considered a measure
of the disorder of the system caused by the random forces acting on its composing
elements and operating against the ordering mechanisms eventually existing within it.
This aso implies that Boltzmann entropy can be used as an index to detect the pres-
ence and level of effectiveness of ordering mechanisms operating in the system: the
lower the value of the index, the stronger the effectiveness of such mechanisms.

Note that highly disordered macrostates correspond to situations in which the ele-
ments of the system tend to be more equally distributed over the cells (i.e., macrostates
composed of many microstates), hence to situations where the system is highly sym-
metric. On the other hand, ordered macrostates correspond to situations where the
system is more asymmetric, e.g., macrostates where the system’s elements gather in
afew cells (i.e., macrostates composed of relatively few microstates). In this respect,
ordering mechanisms operating on the system tend to lead it from symmetric to more
asymmetric global states.

The reader should note an important feature of the index of disorder used here:
it allows computation of the level of disorder of a dynamical system at a given time
step, whereas many other indexes applied to dynamical systems, such as the entropy
rate and the excess entropy, are used to capture the regularities of the states visited by
the systems in time (Feldman 1998; Prokopenko et al. 2006). This property allows for
using the index to study how the level of order of systems evolves in time, as done
here and in Baldassarre et al. (2007). Intuitively, the reason the index can compute the
level of disorder of a system at an instant of time, i.e., on the basis of a “synchronic
picture” of it, is that unlike other indexes it does not need to compare the states that
the system assumes in time in order to estimate the probabilities of such states. But
it rather computes such probabilities on the basis of the potential microstates that the
system might have assumed if driven by sheer random forces.

Calculating the specific value of the index for a particular macrostate m assumed
by a system requires computing the number w,,, of microstates that compose it. This
number can be obtained as follows:

N
m — — Nl = N, 7.2
Wm = NTN, . Ng! Z (7.2)

where N; is the number of elements in the cell ¢, and “!” is the factorial operator.
The formula relies on the fact that there are ((N)(N — 1)...(N — Ny + 1))/Ny!
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different possible sets of elements that can occupy the first cell, (N — Ny)
(N—=N;—1)...(N — N, — N>+ 1))/N! different sets of elements that can occupy
the second cell for each set of elements occupying thefirst cell, and so on. The expres-
sion for w,, isgiven by the multiplication of these elementsreferring to al the C cells.
Substituting Eq. (7.2) into the Eq. (7.1) of the index, one has.

NI

C
Ep =k Infwy,] =k In L\M} =k <1n[N!] - Z}m[m!]) . (73

Once N and C are given, the maximum entropy is equa to the entropy of the
macrostate, where the N elements are equally distributed over the cells. This allows
setting & to one divided by the maximum entropy, obtaining, from Eq. (7.3), anormal-
ized entropy index ranging in [0, 1]:

1
! { N! ]
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(v/eme
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Last, the calculation of the index can avoid the computation of the factorials, which
becomes infeasible for increasing integers, by using the Stirling approximation:

E., =k Infw,] = In[wy,]

(7.4)

In[n!] =~ <n + ;) In[n] —n+In [\/ﬁ} . (7.5)

Stirling’'s approximation gives increasingly good results for integers n of increasing
size (e.g., the error of approximation islessthan 0.5% for n > 20).

7.2.3 An Hypothesis: Self-Organization of Multirobot Systems
asa Phase Transition

One of the main contributions of this chapter is to present some preliminary results
that hint at the fact that the self-organization of robotic systems such as those consid-
ered here might have the features of phase transitions such as those studied in physics.
According to Wikipidia (http://en.wikipedia.org/wiki/Phase_transition), a phase tran-
sition can be defined as follows: “In physics, a phase transition, or phase change, is
the transformation of a thermodynamic system from one phase to another. The distin-
guishing characteristic of a phase transition isan abrupt sudden change in one or more
physical properties, in particular the heat capacity, with asmall change in athermody-
namic variable such as the temperature” (italics added). The distinguishing feature of
aphase transition is hence the fast change of avariable related to the collective level of
asystem (e.g., the heat capacity of agas, which isthe capacity of awhole gaseous sys-
tem to absorb energy when temperature changes by a certain amount) when a variable
related to the behavior of the composing elements (e.g., the average noisy movement
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of the molecules of a gas, captured by the temperature) is slowly changed and passes
acritical value that characterizes the phase transition.

The diagram in Fig. 7.1 shows an example of a phase transition in a physical sys-
tem, illustrated through a result obtained in physics with a spin-1 Icing model related
to finite spin systems (Tsai and Salinas 1998). This example shows how the magneti-
zation properties of the spin system undergo an abrupt change when the temperature
of the system is slowly decreased below acritical value.

Here we suggest that the dynamics of organization generated by self-organizing
principles in multirobot systems might share some features with that of the global
organization exhibited by some physical systems undergoing a phase transition. The
suggestion stems from the following considerations: The behavior of individual robots
is affected by noise that influences their sensors’ reading and their actuators perfor-
mance. This noise causes the robots to act in a random disorganized fashion. On the
other hand, the controller of the robots might implement an “ordering mechanism”
of the kind “| do what you do,” which tends to generate self-organization within the
system. However, in order to lead the whole system to successfully self-organize (i.e.,
all robots converge on the same behavior), the ordering mechanism has to overcome
the effects of noise. This requires three conditions: (a) the signal that is perceived by
the robots through the sensors that inform them concerning the behavior of the other
robots (i.e., it allows the robots to know “what you do”) issufficiently high with respect
to noise; (b) the commands issued to the motors (i.e,, the “1 do” part) are sufficiently
effective and succeed in overcoming the noise affecting the actuators' response; (c) the
controller is capable of implementing a “conformist principle” that self-organization
needs to function (i.e., to implement the association “what you do — | do”).
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Fig. 7.1. Example of a phase transition studied in physics. y-axis. a measure of magnetization
(fourth-order cumulant) in a spin-1 Icing model. z-axis. temperature. Reported from Tsai and
Salinas (1998: copyright Brazilian Journal of Physics).
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These considerations suggest the following prediction: in the case in which the
actuators are sufficiently reliable and the controllers are sufficiently effective, if the
noise/signal ratio related to the robots' sensorsis slowly decreased starting from high
values, then the organization of the system generated by self-organizing principles
should emerge abruptly, as in phase transitions studied in physics. The fact that
such order should emerge “abruptly” is due to the fact that once self-organization
succeeds in amplifying some random fluctuations vs. noise, overcoming the “noise
barrier” that initially prevents the emergence of the system’s organization (i.e., that
continuously disrupts the asymmetries generated by the random fluctuations), then
the positive feedback mechanism should generate a self-reinforcing process that will
further strengthen the signal that forces the robots to adopt the same behavior. Con-
sequently, such a signal definitely overcomes noise and the system “remains locked”
in the organized phase, resisting external perturbations due to noise. Section 7.5
presents some preliminary results that support this prediction and the related
explanation.

7.3 Robots and Task

The scenario used for the experiments consists of a group of simulated robots (from
4 to 36, see Figs. 7.2 and 7.6) set in an open arena. The robots are physicaly linked
(they are manually assembled before the evolution and tests) and have to harmonize
their direction of motion in order to move together as far as possible from the initial
position in a given amount of time.

The simulation of the robots was carried out with a C++ program based on
Vortex™ SDK, aset of commercial librariesthat allow programming of realistic sim-
ulations of dynamicsand collisions of rigid bodiesin three dimensions. The simulation
of each robot was based on the prototype of a hardware robot that was built within the
project SWARM-BOT S funded by the European Union (Mondada et a. 2004; see Fig.
7.2). Each robot was composed of acylindrical turret with adiameter of 5.8 cm and a
chassis with two motorized wheels at the two sides and two caster wheels at the front
and at therear for stability. The simulated robot was half the size of the hardware robot,
which decreased the weights of the simulated bodies and so allowed for increasing the
simulation step of Vortex and decreasing the computational burden of the simulations
(see below).

The chassis was capable of freely rotating with respect to the turret through afur-
ther motor. This motor was activated on the basis of the difference of the activation
of the motors of the two side wheels to ease the robots' turning while it was phys-
ically linked to other robots (see Baldassarre et a. 2006 for details). The turret was
provided with a gripper through which the robot could grasp other robots: this gripper
was simulated through arigid joint connecting the robots since our work focused on the
behavior of groups of robots that were physically linked during the whole duration of
the experiments. The gravitational acceleration coefficient was set at 9.8 cm/s? and the
maximum torque of the wheels' motors was set at 70 dynes/cm. These low parameter
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Fig. 7.2. Top: The hardware robots. Bottom: Each simulated robot is made up of a chassis to
which two motorized cylindrical wheels and two smaller caster wheels are attached (the visible
dark-gray caster wheel marks the front of the chassis). The chassis supports a cylindrical turret
(the arrow on the turret indicates its orientation).

settings, together with the small size of the robots, allowed the use of arelatively long
integration time step (100 ms) in Vortex. Thiswas desirable since simulations based on
Vortex are computationally very heavy. The speed of the wheels was updated by the
robots' controllers every 100 ms and could vary within +5 rad/s.

Each robot had only a special sensor called a traction sensor (introduced for the
first timein Baldassarre et al. 2003), which was placed between the turret and the chas-
sis. The sensor indicated to the robot the angle (with respect to the chassis orientation)
and the intensity of the force that the turret exerted on the chassis. During the tests
this force was caused by the physical interactions among the robots, in particular by
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the mismatch of the direction of movement of the robot’s chassis with respect to the
movement of the robots attached to itsturret. Note that if one assumes aperfect rigidity
of the physical links, the turrets and the links of the group of robots formed a whole
solid body, so the traction measured the mismatch of movement between the robot’s
chassis and the rest of the group. Traction, seen as a vector, was affected by a 2D noise
of +£5% of its maximum length.

The controller of each robot was a two-layer feed-forward neural network. The
input layer was composed of four sensory units that encoded the traction force from
four different preferential orientations with respect to the chassis's orientation (rear,
left, front, and right). When the angle was within +90°, each of these units had an
activation proportional to the cosine of the angle between the unit’s preferential ori-
entation and the traction direction. With angles other than +90°, the units had a zero
activation. The units' activation was also multiplied by the intensity of the traction
normalized in [0, 1]. The last unit of theinput layer was a bias unit that was constantly
activated with 1. The two sigmoid output unitswere used to activate thewheels' motors
by mapping their activation onto the range of the desired speed motor commands that
varied +5 rad/s.

The connection weights of the neural controllers were evolved through an evolu-
tionary algorithm (Nolfi and Floreano 2001). Initialy the algorithm created a popula-
tion of 100 random genotypes, each containing a binary encoding of the ten connection
weights of the neural controller (the weights ranged over +10). The neural controller
encoded by a genotype was duplicated for a number of times equal to the number of
robots forming a group, and these identical controllers were used to control the robots
themselves (so the robots were “clones’).

Groups of four robots connected to form aline were used to evolve the controllers.
Each group was tested in five epochs, each lasting 150 cycles (15 s). At the beginning
of each epoch the robots were assigned random chassis orientations. The 20 genotypes
corresponding to the groups with the best performance of each generation were used
to generate five copies each. Each bit of these copies was mutated (flipped) with a
probability of 0.015. The whole cycle composed of these testing, selecting, and repro-
ducing phases was repeated 100 times (generations). The whole evolutionary process
was replicated 30 times by starting with different populations of randomly generated
genotypes. Note that in this evolutionary algorithm one genotype corresponds to one
robot group, and the groups compete and are selected as wholes (the group is the unit
of selection of the genetic algorithm). This allows one to obtain groups composed of
highly cooperating individuals, thus avoiding the risk of the emergence of “free rider”
individuals within them.

The genetic algorithm selected the best 20 genotypes (groups) of the population
of each generation on the basis of a fitness criterion that captured the ability of the
groups to move as straight and as fast as possible. In particular, the Euclidean distance
covered by each group from the starting point to the arrival point was measured and
averaged over the five epochs. To normalize the value of the fitness within [0, 1], the
distance averaged over the five epochs was divided by the maximum distance covered
by asingle robot moving straight at maximum speed in 15 s (one epoch).
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7.4 Analysisof the Emerged Self-Organizing Behavior
at the Individual and Collective Level

The graph of Fig. 7.3 shows how the fitness of the best group and the average fit-
ness of the whole population of 100 groups increase throughout the generations in
one evolutionary run. Testing the best groups of the last generation of each of the 30
evolution replications for 100 epochs showed that the best and the worst group have
performances of 0.91 and 0.81 respectively. This means that all the evolutionary runs
produce groups that are very good at coordinating and moving together.

In what follows the functioning of the evolved behavior is described briefly at the
individual level and then at the collective level, focusing on the controller that emerged
in the 30th run of evolution (one with top fitness). Overall, the behavior of single robots
can be described as a “conformist behavior”: the robots tend to follow the movement
of the group as signaled by their traction sensors. Figure 7.4 shows more in detail
the commands that the controller issues to the motors of the wheelsin accordance with
different combinations of intensities and angles of traction. If arobot is moving toward
the same direction of motion as the group, it perceives a zero or low traction from the
front (around 180°): in which case it keeps moving straight. If the robot is moving
in one direction and the group moves toward its left-hand side, it tends to perceive a
traction from the left (around 90°) and as a consequence turns left. Similarly, if the
robot is moving in one direction and the group moves toward its right-hand side, it
tends to perceive a traction from the right (around 270°) and as a consequence turns
right. Finally, if the robot moves in the opposite direction with respect to the group’s
movement, it perceives a traction from the rear (around 0°), in which case it tends
to move straight, but since this is an unstable equilibrium state situated between the
behaviors of turning left and right, the robot soon escapes owing to noise.
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Fig. 7.3. The fitness (y-axis) of the best robot group (thin curve), and average of the whole
population (bold curve), across the 100 generations of one of the best evolutionary processes
(z-axis).
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Fig. 7.4. The graph shows how a robot’s left motor (bold curves) and right motor (thin curves)
react to a traction force with eleven different levels of intensity (different bold and thin lines)
and angles measured clockwise from the rear of its chassis (z-axis). The speed of the wheels
(y-axis) is scaled between —1 (corresponding to a wheel’s maximum backward speed) and +1
(wheel’s maximum forward speed).

When the evolved robots are tested together, one can observe that they start to pull
and push in different directions selected at random. In fact initially there is symmetry
in the distribution of the directions of motion over 360°. Chance causes some robots
to move in directions. If one of these random fluctuations eventually gains enough
intensity that the other robots feel atraction in that direction, it breaks the initial sym-
metry: other robots start to follow that bearing, and in so doing they further increase
the traction felt by the nonaligned robots toward the same direction. The whole group
will hence rapidly converge toward the same direction of motion: the positive feedback
mechanism succeedsin amplifying one of theinitial random fluctuations, thus causing
an avalanche effect that rapidly |eads the whole group to coordinate.

It is important to note that the common direction of motion that emerges in one
coordinated motion test is the result of a collective decision based on the amplification
of some fluctuations that depend on the robots’ initial random orientations. As a con-
sequence, as shown in Fig. 7.5, if thetest is repeated more times the group’s direction
of motion that emergesis always different.

Moreover, it isimportant to note that in sometestsin which the robots' chassis have
particular initial orientations, the group starts to rotate around its geometrical center.
This collective behavior is a stable equilibrium for the group since the robots perceive
a dlight traction toward the center of the group itself, which makes them move in a
circle around it. The experiments show that the stronger the symmetry of the group
with respect to its center, the more likely that it will fall into this stable state.

The illustrated robots' behavior indicates that the distributed coordination per-
formed by the evolved robots' controller relies on the self-organizing mechanism of
positive feedback. Indeed, the behavior that the robots exhibit at the individual level
is of the type “conform to the behavior of the group,” as requested by the positive
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Fig. 7.5. The absolute angles (with respect to the environment) of the chassis orientations of the
four robots forming a group (y-axis) in two tests (respectively bold and thin curves) in which
theinitia orientations are randomly selected.

feedback mechanism (see Sec. 7.2.1). Moreover at the collective level, as illustrated
in Fig. 7.5, this behavior |eads the robots to amplify some random fluctuations that
eventually move the system away from the initial symmetric state. As a consequence
the system achieves acomplete asymmetric ordered state corresponding to avery good
alignment and coordination of the robots.

7.5 The Emergence of Organization vs. Noise:
A Phase Transition?

This section presents some preliminary results that suggest that the organization gener-
ated by the self-organizing mechanisms presented in the previous sections might have
some features in common with the organization observed in phase transitions of phys-
ical systems. Note that to achieve stability of the data, the tests reported in this section
were carried out with a group of robots formed by far more individuals than com-
posed the group with which the controller was evolved, precisely 36 (Fig. 7.5). This
was possible because, as shown in detail elsewhere (Baldassarre et a. 2006, 2007a),
the evolved controller has very good scaling properties owing to the self-organizing
mechanisms it relies upon.

First of all, let us see how the entropy index was applied to the robotic system. The
possible orientation angle of each robot within the range [0°, 360°] (considered as the
state space of the elements of the system) was divided into eight “cells’ of 45° each.
The 0° angle was set to correspond to 22.5° clockwise with respect to the absolute
angle of one particular robot chosen asthe “pivot” (the angles of the other robots were
then computed anticlockwise with respect to this origin angle). Note that while the
origin angle on the basis of which the cells are computed is arbitrary, the selection
done here ensured that when the group achieved high coordination, the the robots
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Fig. 7.6. A group of 36 robots engaged in the coordinated motion task. The black segments
between the turrets of robot couples represent the physical connection between them.

chassiswerelocated near to the center of thefirst cell and within it (minimum entropy).
Moreover, asthe pivot robot was alwaysin thefirst cell, the number of microstates used
to compute the entropy was computed with respect to N — 1 = 35 and not N robots.

In order to normalize E,,, within [0, 1], the scaling constant % of the index was
set to one divided by the maximum value that In|w,,] [see Eq. (7.1)] could assume
for the system being studied, corresponding to a uniform distribution of the chassis
orientations over the eight cells. In particular, given the small number of robots, for
greater accuracy instead of considering Eq. (7.4) the maximum value was directly
computed on the basis of Eq. 7.2. By considering the most uniform distribution that
could be obtained with the 35 robots composing the system:

k=1/1n[35!/(5! 5! 5! 41 41 41 41 4!)] ~
1/1n[7.509 % 10%6] ~ 1/61.8843 ~ 0.01615

The graph in Fig. 7.7 illustrates the functioning of the index by reporting the level
of entropy measured during 20 coordinated motion tests run with the system formed
by the 36 robots shown in Fig. 7.6. The figure shows how the disorganization of the
group initially decreases exponentially and then stabilizes at a null value when all the
robots have converged to the same direction of motion. [See Baldassarre et al. (2007)
for astatistical analysis and further consideration of these results.)

The tests designed to evaluate whether the self-organization of the robotic system
has the properties of a phase transition relied upon a fine tuning of the ratio between
noise and the signal returned by the traction sensor. (Recall from Sec. 7.3 that such a
signal isused by the robotsto “know” the direction of movement of the other robots so
asto conformtoit.) In particular, the noise/signal ratio was built through the following
procedure (see Fig. 7.8): (a) At each time step, a2D vector similar to the signal’s vector
was randomly generated; this vector had a random direction and a length ranging in
[0, 1]. (b) The controller of the robot was fed with avector equal to aweighted average

(7.6)
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Fig. 7.7. Entropy of agroup formed by 36 robots engaged in a coordinated motion task. The thin
lines refers to the entropy measured in 20 tests each lasting for 200 cycles and were run with
different initial random orientations of the robots' chassis; the bold line is the average of the 20
tests.

of the random vector and the signal vector; this average vector was obtained by mul-
tiplying the length of the two vectors by the respective “weights’ of the average, and
then computing the sum of the resulting vectors with the parallelogram rule. (c) The
weights of this weighted average were equal to e € [0,1] and to (1 — ¢) for the noise
and the signal, respectively: the “noise/signal ratio” manipulated in the experiments
presented below wase.

This computation of the ratio allowed running 20 tests with the 36-robot system
where the noise/signal ratio ¢ was linearly lowered from one to zero during 20, 000
time steps. During these tests the entropy of the group was measured. Figure 7.9 reports
the results of these measurementsin terms of the relationship between the noise/signal
ratio and the level of order of the group (i.e., the complement to one of the normalized
entropy index). A first relevant fact highlighted by the figure is that the system starts
to organize at a very high level of noise/signal ratio, about 0.8, indicating a surprising

() (b) (©) (d)

Fig. 7.8. Scheme of how the signal perceived by each robot was corrupted by noise at each time
step of thetests depending on the noise/signal ratio: (a) an example of traction signal (continuous
arrow) and noise (dashed arrow) represented as vectors; (b) if theratio isequal to zero, the signal
is not corrupted by noise (the signal perceived by the robot is represented by the bold arrow);
(c) if the ratio has an intermediate value, for example 0.5 asin this case, the signal is partially
corrupted by noise; (d) if theratio is equal to one, the signal is completely substituted by noise.
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Fig. 7.9. Relationship between the noise/signal ratio and the level of organization of the group
(equal to the complement to one of the normalized entropy) measured while slowly lowering the
noise/signal ratio from one to zero. Average (bold line) 4 standard deviation (thin lines) of the
results obtained in 20 replications of the experiment.

robustness vs. noise of the self-organizing mechanisms employed by the system. Pre-
vious work (Baldassarre et a. 2006) had already indicated such a direction, but this
result overcomes prior expectations and furnishes a quantitative measure of the level
of such robustness.

The second relevant fact is that when the noise/signal ratio is progressively low-
ered, organization does not increase linearly but rather reachesits maximum level quite
abruptly in correspondence with levels of noise/signal ratio ranging approximately
between 0.6 and 0.8. This suggests that there is a critical noise/signal level in cor-
respondence with which the system exhibits a transition from a disorganized to an
organized state.

To further investigate the possible existence of such a critical value, groups of 20
tests were carried out by setting the noise/signal level to fixed values chosen in the
range between 0.9 and 0.6, at intervals of 0.05, and by measuring the level of entropy
of the system in 10, 000 cycles of simulation. The goal of these tests was to determine
if there was a critical level of noise/signa ratio above and below which the system
exhibited a discontinuous behavior in terms of overall organization. The outcome sug-
gested that this might be the case. In particular, Fig. 7.10, which shows the outcome of
these tests for three levels of noise/signal ratio, indicates that this critical level might
be within (0.75,0.80). In fact, if the noise/signal value is set at 0.80, the entropy of
the system fluctuates in the range of (0.80, 1.00), i.e., around its maximum values. (In
evaluating the level of order corresponding to such noise/signal values, consider that a
level of entropy of 0.9 corresponds to quite uniform distributions of the robots on the
cells, e.g.: 5,6,6,6,6,5,1,0.) On the other hand, for noise/signal values set at 0.75
in 18 out of 20 experiments the entropy level of the system initially decreases from
about 0.95 to about 0.55, indicating that the system self-organizes and then stabilizes
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Fig. 7.10. Level of entropy (100-step moving average) of the 36-robot system in 20 tests lasting
10, 000 steps each, when the noise/signal ratio is set at two different fixed levels, namely 0.80
and 0.75 for the top and bottom graph, respectively. (The level of the noise/signal ratio is indi-
cated on the y-axis of each graph by the bold arrow.) The two bold lines of the bottom graph
refer to two tests where the system first reached an ordered state and then lost it.

at values ranging in (0.45,0.65). (In evaluating the level of order corresponding to
such noise/signal values, consider that alevel of entropy of 0.55 corresponds to quite
concentrated distributions of the robots on the cells, eg.: 0,1,6,20,7,1,0,0.) Once
the system “getslocked” into the ordered state, it tends to resist noise perturbations, as
predicted by the considerations presented in Section 7.2.1. Indeed, entropy rose again
to high valuesin only 2 out of 20 cases after the system reached the ordered state (see
the bold lines in the bottom graph of Fig. 7.10).
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7.6 Conclusions

This chapter presented an evolved multirobot system with decentralized control that is
capable of achieving coordination in order to accomplish a collective task on the basis
of self-organizing mechanisms. These mechanisms were first described at the levels
of individual and collective behavior, and then the effects they produced on the level
of organization of the system were quantitatively analyzed on the basis of an index
based on Boltzmann entropy. Thisanalysis showed that when one slowly decreases the
noise/signal ratio related to the signal that the robots use to coordinate, the dynamics
of the self-organization exhibited by the system resembles the self-organization char-
acterizing physical systems undergoing phase transitions. In particular, the order of the
system tends to emerge quite abruptly when the ratio is lowered below a critical value.

If confirmed, the hypothesis that the dynamics of the level of order of self-
organized multirobot systems might have the features of a phase transition would have
important implications. In fact, it would imply that self-organization of collective sys-
tems tends to manifest in an all-or-nothing fashion depending on the quality of the
signals exchanged by the elements forming the system. Moreover, when such quality
overcomes a critical value, by even a small amount, the organization produced by the
self-organizing mechanisms becomesfully effective and robust vs. noise (asthe system
“locks in” in its state of order). These implications are relevant for engineering pur-
poses. For example, identifying the critical noise-signal level that characterizes adis-
tributed multirobot system might allow for adjusting of the physical setup of the latter
so asto achieve areliable level of robustness of its self-organization. The implications
are also important for scientific purposes, e.g., for investigating self-organization in
collective hiological systems (Bonabeau et a. 1999; Camazine et al. 2001; Anderson
et al. 2002). In fact in some systems of this kind self-organization emerges quite sud-
denly if some parameters of the system change beyond certain thresholds. For exam-
ple, trail formation in ants requires that the number of ants that compose the group,
and hence the amount of pheromone released on the ground, reach a certain level for
the organization of the group to emerge. In fact, given that the laid pheromone trace
slowly vanishes with time, if the number of ants, and hence the level of the released
pheromone, is not high enough, the signal that it furnishes to the antsis too weak to
allow them to self-organize.

The added value of the chapter residesin the techniques it presented. In particular,
such techniques might not only be used to measure the level of organization of decen-
tralized (and centralized) systems, as was done here, but might also be used directly as
a fitness function to evolve systems that exhibit useful behaviors (for some examples
that use entropy indexes differently from the way they are used here, see Prokopenko
et al. 2006) or to explore the self-organization potential of systems. Moreover, the
identification of the critical noise/signal ratio that characterizes a decentralized robotic
system might be away to furnish a quantitative measure of the robustness of the self-
organizing principles that govern it.

Notwithstanding the relevance of al these implications, it is important to note
that the results presented here, in particular those related to the hypothesis according
to which under some conditions self-organization of some multirobot systems might
behave as a phase transition, are in many respects preliminary. For example, further
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research is needed to corroborate or reject the hypothesis itself, to better understand
the behavior of the system in correspondence with the critical level of the noise/signal
ratio, and to better understand the relationship that exists between the level of order of
the system and the role that it playsinitsfunctioning (e.g., in its capacity to displacein
space). Moreover, it might be useful to build a mathematical abstract model of the sys-
tem to carry out an analytical study to ascertain at amoreformal level if it possessesthe
propertiesthat characterize phase transitions. For example, this analysis might identify
some quantiti es associated with the self-organization of the robotic system that behave
similarly to “free energy” or “latent heat” in phase transitions of physical systems. (For
an introduction to these topics, see http://en.wikipedia.org/wiki/Phase_transition.)

A final observation is that experiments similar to those conducted here by slowly
lowering the noise/signal ratio might be also conducted on the actuator’s noise and on
the controller’s effectiveness. In this regard it might be possible to envisage a way to
regulate the “ noise/effectiveness level” of actuators, or the “level of effectiveness’ of
the controller in ways similar to the one used here to regulate the noise/signa ratio
of sensors. These experiments might show that these two manipulations also lead to
phase transitions at the level of the system’s overall organization.
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8

Distributed Control of Microscopic Robots
in Biomedical Applications

Tad Hogg

8.1 Microscopic Robots

The development of molecular electronics, motors, and chemical sensors could enable
the construction of large numbers of devices ableto sense, compute, and act in micron-
scale environments. Such microscopic robots, of sizes comparable to bacteria, could
simultaneously monitor entire populations of cells individually in vivo. Their small
size allows the robots to move through the tiniest blood vessels, so they would be able
to pass within a few cell diameters of most of the cells in large organisms via their
circulatory systemsto perform awide variety of biological research and medical tasks.
For instance, robots and nanoscale-structured materials inside the body could signif-
icantly improve disease diagnosis and treatment (Freitas 1999; Keszler et al. 2001,
Morris 2001; NIH 2003). Initial tasks for microscopic robots include in vitro research
via simultaneous monitoring of chemical signals exchanged among many bacteriain a
biofilm. The devices could aso operate in multicellular organisms as passively circu-
lating sensors. Such devices, with no need for locomotion, would detect programmed
patterns of chemicals as they pass near cells. More advanced technology could create
devices able to communicate to external detectors, allowing real-timein vivo monitor-
ing of many cells. The devices could also have the capability of acting on their environ-
ment, e.g., releasing drugs at |ocations with specific chemical patterns or mechanically
manipulating objects for microsurgery. Extensive development and testing is neces-
sary before clinical use, first for high-resolution diagnostics and later for programmed
actions at cellular scales.

Realizing these benefits requires fabricating the robots cheaply, in large numbers
and with sufficient capabilities. Such fabrication is beyond current technology. Nev-
ertheless, ongoing progress in engineering nanoscal e devices could eventually enable
production of such robots. One approach to creating microscopic programmable
machines is engineering biological systems, e.g., bacteria executing simple pro-
grams (Andrianantoandro et a. 2006) and DNA computers responding to logical com-
binations of chemicals (Benenson et al. 2004). However, biological organisms have
limited material properties and computational speed. Instead we focus on machines
based on plausible extensions of current molecular-scale electronics, sensors, and
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motors (Howard 1997; Collier et a. 1999; Montemagno and Bachand 1999; Craig-
head 2000; Fritz et al. 2000; Soong et a. 2000; Berna et al. 2005; Wang and Williams
2005). These devices could provide components for stronger and faster microscopic
robots than is possible with biological organisms. Thus the focus here is on nonbiolog-
ical robots containing nanoscale sensors and electronics, along with a power source,
within a protective shell. Astechnology improves, such robots could be supplemented
with other capabilities such as communication and locomotion.

As we cannot yet fabricate microscopic robots with molecular electronics com-
ponents, estimates of their performance rely on plausible extrapolations from cur-
rent technology. The focus in this chapter is on robots for biomedical applications
requiring only modest hardware capabilities, which will be easier to fabricate than
more capable robots. Designing controls for microscopic robots is a key challenge:
not only enabling useful performance but also compensating for their limited com-
putation, locomotion, or communication abilities. Distributed control is well suited
to these capabilities as it emphasizes locally available information and achieves over-
all objectives through self-organization of the collection of robots. Theoretical studies
allow developing such controls and estimating their performance prior to fabrication,
thereby indicating design trade-offs among hardware capahilities, control methods,
and task performance. Such studies of microscopic robots complement analyses of
individual nanoscale devices (McCurdy et al. 2002; Wang and Williams 2005) and
indicate that even modest capabilities enable a range of novel applications.

The operation of microscopic robots differs significantly from that of larger robots
(Mataric 1992), especially for biomedical applications. First, the physical environment
is dominated by viscous fluid flow. Second, thermal noise is a significant source of
sensor error and Brownian motion limits the ability to follow precisely specified paths.
Third, relevant objects are often recognizable via chemical signatures rather than, say,
visua markings or specific shapes. Fourth, the tasks involve large numbers of robots,
each with limited abilities. Moreover, atask will generally only require a modest frac-
tion of the robots to respond appropriately, not for all, or even most, robots to do
s0. Thus controls using random variations are likely to be effective simply due to the
large number of robots. This observation contrasts with teams of larger robots with
relatively few members. incorrect behavior by even a single robot can significantly
decrease team performance. These features suggest that reactive distributed control is
particularly well-suited for microscopic robots.

Organisms contain many microenvironments, with distinct physical, chemical, and
biological properties. Often, precise quantitative values of properties relevant for robot
control will not be known a priori. This observation suggests a multistage protocol
for using the robots. First, an information-gathering stage with passive robots placed
into the organism, e.g., through the circulatory system, to measure relevant proper-
ties (Hogg and Kuekes 2006). The information from these robots, in conjunction with
conventional diagnostics at larger scales, could then determine appropriate controlsfor
further actions in subsequent stages of operation.

For information gathering, each robot notes in its memory whenever chemicals
matching a prespecified pattern are found. Eventually, the devices are retrieved and
the information in their memories is extracted for further analysis in a conventional
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computer with far more computational resources than are available to any individ-
ua microscopic robot. This computer would have access to information from many
robots, allowing evaluation of aggregate properties of the population of cells that indi-
vidua robots would not have access to, e.g., the number of cells presenting a specific
combination of chemicals. This information allows estimating the spatial structure
and strength of the chemical sources. The robots could detect localized high concen-
trations that are too low to distinguish from background concentrations when diluted
in the whole blood volume as obtained with a sample. Moreover, if the detection
consists of the joint expression of several chemicals, each of which also occurs from
Separate sources, the robot’s pattern recognition capability could identify the spatial
locality, which would not be apparent when the chemicals are mixed throughout the
blood volume.

Estimating the structure of the chemical sources from the microscopic sensor data
is analogous to computerized tomography (Natterer 2001). In tomography, the data
consist of integrals of the quantity of interest (e.g., density) over alarge set of lines
with known geometry selected by the experimenter. The microscopic sensors, on the
other hand, record data points throughout the tissue, providing more information than
just one aggregate value such as the total number of events. However, the precise path
of each sensor through the tissue, i.e., which vessel branches it took and the locations
of those vessels, will not be known. This mode of operation also contrasts with uses
of larger distributed sensor networks able to process information and communicate
results while in use.

Actions based on the information from the robots would form a second stage
of activity, perhaps with specialized microscopic robots (e.g., containing drugs to
deliver near cells), with controls set based on the calibration information retrieved
earlier. For example, the robots could release drugs at chemically distinctive sites
(Freitas 1999, 2006) with specific detection thresholds determined with the informa-
tion retrieved from the first stage of operation. Or robots could aggregate at the chemi-
cal sources (Casal et a. 2003; Hogg 2006) or manipul ate biological structures based on
surface chemical patternson cells, e.g., asan a