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Preface

I was a graduate student in the Department of Computer Science at the University
of Waterloo in 1977. One day, Prof. Bill Nicoll, whom I later learned was one of the
founders of the University and of the Department of Mechanical Engineering,
knocked on my door with his ever smiling face and humble posture. I could not
know this would be a turning point in my life.

He told me he had seen my technical note published by the University on the
finite element solution of the convective diffusion equation. He then asked if I
would like to join his team in the Mechanical Engineering Department and continue
my Ph.D. studies there. He also mentioned his plans to visit Prof. D.B. Spalding in
London to do a joint study in computational fluid dynamics, and asked if I would be
able to accompany him. His offer came as a great surprise, since, as I explained, I
had no knowledge of fluid dynamics. I was only a mathematician with some spe-
cialization in numerical analysis. He assured me that this would not cause a problem
since I would be working on the numerical aspects of the subject. He added that I
would also improve myself in due course by taking certain graduate courses in
fluids. He gave me one of his latest papers and asked me to examine the partial
differential equations in the paper and contact him later.

After I examined the paper I decided to accept the offer, but there was a serious
problem. At the time I was newly wed and my wife, Ümit, was expecting our first
child in a couple of months; therefore, I had to discuss the issue with her. To my
surprise she accepted the idea without hesitation. Soon, I visited Prof. Nicoll in his
office and told him of my decision. I expected that it would take some time for my
transfer to another faculty, but right away he took me to my new office, which it
was already prepared, and insisted that I start work immediately.

Sometimes after my transfer, I learned that the principal of the University ini-
tially had rejected my transfer based on his belief that a mathematician would not be
successful in engineering. But Prof. Nicoll had insisted that if engineers were
successful in mathematics, mathematicians could well succeed in engineering, thus
initiating my career in the field of computational fluid dynamics.
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Unfortunately, our collaboration with Prof. Nicoll ended after his sudden and
unexpected death a couple of months later.

The second turning point in my life was when I met another wonderful man,
Prof. George D. Raithby, with whom I worked closely for about four fruitful years
until completion of my Ph.D. thesis. He was more than a supervisor to me. He was
a friend who insisted being called ‘George’; something that, out of respect, I
initially had difficulty in doing. Together we completed a comprehensive analysis
of the available computational procedures for the solution of incompressible fluid
flow problems. We came up with some new ideas on improving the performance
of these procedures.

In appreciation of his valuable help, I studied hard to complete my thesis. I well
remember that on one occasion, while working late in my office, that the University
security officer came and asked me to “ring my poor wife at home as she was
worried about my whereabouts.”

All the hard work paid off as we came up with a good job which was accepted
without any amendment by the examiners. After I finished my Ph.D., Prof. Raithby
told me that this was the first time, in the history of the University that a Ph.D.
thesis was accepted with no amendments whatsoever. The key to my success was,
without doubt, his gentle and kind encouragement and guidance.

I would have dearly liked to have continued working with him to realize the
ideas I then had in my mind on the development of new schemes on the subject; of
which, arising from my unique situation as a numerical analyst, the feeling that a
procedure which would directly make use of the most naive form of the discretized
governing equations may work better. After all, as Albert Einstein’s said “God does
not play dice.” In fact, every physical process in nature works in a superbly
designed mathematical mechanism. Therefore, why do we try to make physically
unrealistic assumptions about nature, instead of making use of this nice formulation
in its primitive form?

Unfortunately, my new adventure in founding the Eastern Mediterranean
University (EMU) in my native country, Cyprus, prevented me from continuing to
work on this subject, at least for some time. This was mainly due to the lack of
computing machines at EMU such as those at the University of Waterloo.

It was only after the introduction of personal computers at EMU in the early 90s
that I was able to return to the subject and start to implement some of these ideas by
directly attacking the primitive form of the equations. In the meantime, a few papers
were published by Prof. Raithby and his colleagues. They were reporting that
keeping more effects of the coupling between the pressure and velocity fields
significantly decreased the need for high under-relaxation by enhancing the range of
convergent relaxation parameters. I shared their belief. Surprisingly, however, the
overall convergence of the proposed procedures was not much of an improvement
on the segregated ones.

Unfortunately, after these findings were published, researchers reverted to the
old procedures and thus research in this regard was terminated. There was an
unspoken acceptance that any attempts to solve the equations in their primitive form
were to no prevail.
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I had the feeling that something was going wrong, not with the basic idea, but
with the solution procedures themselves. Otherwise, considering the indications, the
performances would have been much better. I encouraged one of my Master stu-
dents, Türkan Güngörmüş, to work with me to understand this dilemma, but our
efforts were not fruitful and resulted in similar conclusions.

I did not give up. After further work on the subject, I realized that the main
culprit was sneaking in the reordering of the equations. In fact, the reordering
applied was worsening the diagonal dominancy of the coefficient matrix, thus
slowing the convergence of the iterative process.

Based on this observation, I decided to accept the primitive form as it is, and try
some new ideas on the solution algorithm. A natural equation for pressure lay there
in the equations, but the main diagonal sub-matrix for pressure was null. Although
it was possible to collect nonzeros to the sub-matrix, it would result in a Poisson
form, which I would not prefer. Then, I noticed that an incomplete decomposition
of the primitive matrix helps, not perhaps in creating nonzero terms in the null part
of the original coefficient matrix, but in the main diagonal coefficients of the
sub-matrices of the incomplete decomposition. That would be enough for me.

It was not really easy to see what the underlying equations were, so I had to
work on long sheets of joined-up squared papers. I multiplied the decomposition
matrices and equated them to the primitive matrix. There it was. I had a few
nice-looking equations that would give me what I was looking for.

It was a quick implementation of the algorithm that gave me the actual surprise.
The algorithm had worked well; it was converging twice as fast when compared to
the best segregated procedure. Furthermore, the range of convergent relaxation
parameters was broadly widened. This was like replacing my old car by one with a
turboprop.

The most satisfying side of this achievement was that at last we got rid of the
Poisson-type equations.

It was only then that I went back and examined what the mechanism of the
derived equations was doing to invoke such a remarkably well-working procedure.

I realized that the mechanism engineered by the equations not only brings
together the effects of the coefficients from the velocity field, but also all of the
effects of the mass conservation constraint and all of the effects of the coefficients
of the pressure terms in the momentum equations.

After the publication of my first paper on the subject, I concentrated on the
improvement of the algorithms by trying various kinds of placements of the vectors
in the incomplete decompositions. This turned out to be fruitful, from which came
the procedures named FICS (Fully Implicit Coupled Procedure) in this book. The
procedures converged about 20 times faster than the segregated procedures and
convergence was achieved even without any relaxation. Although the derivation
of the relevant formulas was not straightforward, the derived formulas were so
simple that they allowed an easy implementation of the solution process.

Following this achievement, I decided to share my findings with other
researchers. It was not possible to fully express myself in a journal paper form, so I
decided to write a book about the subject.
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While working on the manuscript of the book, I was still skeptical on the actual
physical reason for the overwhelming performance of the procedures. Numerically,
there was no problem and everything was working much finer than I would ever
dream of. However, there should have been a meaningful physical explanation to
this as well. Finally, I realized that the procedures were actually centralizing on the
most fundamental flow property of incompressible fluids.

This important property, which was unfortunately overlooked in the past decades
by researchers, including myself as well, was in fact, one of the fundamental rules
of fluid flow.

A fluid particle may only move from one point to another if there exists a
pressure difference between the two points. The movement is initiated and dictated
by the pressure differences characterized by the pressure derivative terms in the
momentum equations. While this movement is underway, the particle’s velocity
components must obey the mass conservation constraint. Thus, the effects of the
pressure derivative terms in the momentum equations and those of the velocity
derivative terms in the mass conservation equation are equivalently important.
These effects are related directly to the fluid flow, but not to the physical fluid
properties governed by the diffusion and convection terms.

Therefore, in order that a solution procedure be more efficient, instead of con-
centrating on the convection and diffusion terms, as was done with the segregated
procedures, it should have concentrated on the correct imposition of the pressure
changes as well as the mass conservation constraint in all stages of the solution
process. The physical properties could perhaps be taken care of in due course.

To put it more precisely, the effect of the pressure terms, in parallel to the mass
conservation principle, should have been regarded as a constraint, perhaps to be
better named as “pressure conservation constraint.”

The mechanism engineered by the new family of procedures was in fact,
incorporating this new viewpoint into the solution process. Consequently, this
constituted an efficient remedy for all of the problems that were encountered in the
classical segregated procedures. The endeavor of creating an explicit pressure
Poisson equation in these procedures was actually disrupting the vitally important
coupling between the velocity and pressure fields.

Presentations in journal article form do not contain any details, but only vast
amounts of references to previously published articles. Consequently, a novice
engineering graduate or a field engineer needs to spend months researching these
multifarious papers in order to grasp the details involved in the solution processes.
These efforts usually end up in a complete frustration and failure to actually
implement the procedures.

Books written in this area are usually engineering based and do not address
mathematically oriented researchers. They do not either contain adequate infor-
mation regarding the computer implementation of the procedures. As a mathe-
matician, I accept that some knowledge in the engineering side helps, but when it
comes to the development of better numerical algorithms, engineering matters
become less important.
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Postgraduate books written by mathematicians, on the other hand, are often too
general. They are too much theoretically oriented and consequently suffer from
heavy mathematical notation. As a result, engineers without deep mathematical
theory cannot make direct use of the material.

I always recall and believed in Prof. Nicoll’s thoughts; mathematicians with a
good knowledge of numerical analysis have much to contribute to the field but
always in collaboration with engineers. From such a collaboration more fruitful
results will emerge.

On the other hand, it is unfortunate that an experienced researcher or an
application specialist is usually reluctant to try and adapt to a new solution pro-
cedure. There is already a working procedure at hand, so why spend valuable time
on trying to switch to a completely new algorithm even if the new algorithm may
work better?

Being aware of all of these facts, I decided to write the book in order to aid both
researchers and engineers in this regard. Strictly speaking, I would have never
attempted to write such a book if the performances of the new procedures were not
so wonderful. My decision came only after realizing that the new procedures would
be foundational to a new generation of efficient and robust solvers for fluid flow
problems.

With this in mind, I tried to design the book in such a way that a novice
researcher can easily find only the specific material required in order to be able to
write his own code, without much mathematical frustration. For the experienced
researcher, I included various hints and tips so that the algorithms can be adapted to
their existing codes quickly, without any problem or fear of failure. For this pur-
pose, I have included FORTRAN codes for some of the procedures which may be
called up directly. The only thing that an experienced researcher might need to do is
to incorporate the boundary conditions describing the physical problem in a proper
fashion and then call the routine, as described in the book.

I tried to do my best in smoothly introducing the new procedures and in
designing the book so that it can further be used as a graduate textbook for engi-
neers as well as mathematicians. With its present form, I hope that it can help in
bridging the gap between the two disciplines and also act as a reference book for the
experienced researchers.

I wish to acknowledge the late Prof. Bill Nicoll who introduced me to this
fantastic field of science and to Prof. George D. Raithby for his enthusiastic
encouragement that helped me progress in the field.

I would also like to express my special thanks to my wife Ümit, my son Erden,
my daughter Eliz, my daughter in love Esin and my grand daughter Derin for their
patience and loving encouragement during the course of writing the book. They
deserved much more attention than I could devote to them during this time, but now
I hope I will be able to redeem myself.
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Chapter 1
Introduction

1.1 Scope of the Book

Fluid flow processes play a very important role in all aspects of human life. Nearly
all industrial applications such as automotive design and machinery, factories,
nuclear reactors, bridges, aircraft and ships, involve, one way or another, for their
proper, economic and efficient functioning, fluid flow within or outside of each
component. This may be air, water, gas, oil or even blood. At this point, under-
standing how the fluid flows in or around the objects and how much pressure is
exerted on certain components plays a very important role in the efficient design of
such equipment. Without this understanding, designing such equipments would
never have been possible.

In early stages, such designs were accomplished by laboratory experiments. For
this, first a prototype of the equipment had to be built and then tested in a suitable
environment. The resulting deficiencies, then had to be corrected, and the equip-
ment be redesigned and retested until the required performance was obtained. This,
however, was a very expensive, time consuming and elaborate process.

Nowadays, thankfully, we have at our disposal a complete set of mathematical
equations fully describing the physical properties of such fluid flows. These extend
from simple boundary layer flows to the most complicated turbulent flows, be it two
or three dimensional, time dependent or time independent. To these formulations
are also added equations describing such extra processes as heat transfer or
chemical processes inherent in the physical processes. Therefore, the design of such
machinery is theoretically possible by predicting the behavior of the fluids
involved, even before any physical prototype is built and tested. This can be
accomplished simply by solving those equations under certain boundary conditions
describing the physical situation under consideration.

With the availability of powerful computers nowadays, this seems to be a very
attractive alternative. However, and this is a big however, there are certain
important conditions that must be satisfied for this alternative to be realized.

© Springer International Publishing Switzerland 2016
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1. A numerical procedure, or a method is required in order to efficiently solve those
nonlinear, coupled partial differential equations.

2. This procedure needs to be easy to understand and implement with a suitable
computer code, even by a novice researcher who is not much of a professional in
mathematics or numerical analysis.

3. The procedure must be robust, that is to say, it must work under tough condi-
tions without much risk of possible divergence.

4. The method must be applicable to three-dimensional, as well as to
two-dimensional problems.

5. The procedure must be applicable to steady as well as unsteady problems.
6. The procedure should require least computer storage, and it must be very fast.
7. Solution of other coupled equations describing varying physical properties and

running parallel to the basic flow equations must also be possible.
8. Finally, there must be a well established, easy to understand reference guide for

the user, in order to help with all aspects of the setup and implementation of the
procedure.

In the heart of the complete set of partial differential equations lie a set of
equations called momentum and mass conservation equations. The momentum
equations mainly describe the behavior of the velocity components under pressure
differences which may occur between various points of the flow field. These
equations involve certain physical characteristics of the flow field and the fluid
itself. These may either be constants or variables, or they may even be supplied by
other phenomena such as heat transfer and turbulence.

To complement the momentum equations, there exists an additional equation
called the mass conservation equation. This equation, although innocent looking
and very simple both physically and mathematically, describes a strong connection
between the velocity components of the flow. It does not, however, contain a term
involving pressure so that it cannot be used as an explicit equation for pressure. So,
since the momentum equations are described mainly for the velocities, there seems
no direct way of calculating pressure. Indeed, this is a big problem and it is the main
cause of the poor performance of most of the methods developed for solving these
equations.

Various methods that have been developed and used extensively for the past fifty
years or so are mostly based on a ‘divide and conquer’ strategy. This strategy
provided a partial solution to the problem, but unfortunately its nature did not
permit the development of high performance methods. Researchers, perhaps
because they had no other choice, have spent much effort in revising these methods
in an effort to handle the problem in a more efficient fashion. Since all of these
efforts were circling around the basic old philosophy, not much advancement in
computational efficiency was achieved. The problem was actually very well known,
but not much effort has been spent toward answering the question of why these
procedures were so slow and unreliable.

In recent years, the Author of the book has come up with reasonable answers to
the above problem. It was only after the main reason of the poor performances was
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understood, that an alternative, well established mechanism could be developed to
handle the problem in an efficient way. In contrast to the long-established,
old-fashioned approaches of the past, the new procedures, thus constructed are
based on a completely new way of looking at the problem, in which the discretized
forms of the governing differential equations are solved in their primitive forms
through a fully implicit, coupled mechanism. This mechanism enforces the full
realization of any change in pressure or velocity components at all other points in
the flow field even before the actual solution starts. The new strategy resulted in fast
convergence rates and enhanced durability. Indications are that this new generation
of procedures will be candidates for efficient use in the near future.

In order that a new procedure be widely utilized by researchers, the formulation
of the mechanisms involved, together with any relevant details of the various
aspects of the application, must be clearly understood. This, however, can be
achieved by a proper guidance and detailed explanation of certain important aspects
of the procedure. Without this proper guidance, the reader cannot easily adapt to the
new procedure. Worse than this, the procedure might end up waiting in the dusty
shelves of the literature. Hence the necessity for a book such as this.

Discretization of the governing equations, application of the involved boundary
conditions, formation of a matrix system and solution of the resulting system of
linear equations are the four basic steps in a solution procedure. Each of these steps
involves various, finely tuned mathematical as well as computational details. An
engineer without a fresh, broad and to-the-point background of such details, would
never be able to form a proper solution routine. We recall the old saying that quotes
‘The devil and perfection lay in the details’.

The book is designed exactly to address the above described problems. The first
three steps in the solution process are given only with sufficient, but necessary
details in order not to suffocate the reader with some irrelevant material. The last
step, being the most important one, is given special attention. The underlying
philosophy and the details of the construction of the procedures are given in an
elaborate but easy to follow fashion. In this way the reader is smoothly introduced
to a family of superbly efficient procedures whose performance and durability is far
superior to any rivals.

What is presented in the book is not just a new single solution procedure, but
actually a new mechanism which is based on a completely novel viewpoint, leading
to a family of possible procedures. Hence, the mechanism paves the way for
researchers to be able to construct their own varying procedures, depending on
certain demands. In this regard, it is open for further ideas towards advancement.

From the possible family of procedures, one is so simple to construct and apply
that it may take only a few hours for its adaptation to an existing code. Although it
is a fully coupled procedure, it may be implemented like a point-by-point solver
while requiring no extra storage for solution. This feature, combined with a high
overall performance and speed, paves the way for its application to complicated
grid structures in a straightforward manner. Furthermore, it is envisaged that it may
even be utilized for some on-board, case oriented applications such as automatic
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shape changing mechanisms while functioning. This is a very important feature that
could not even be imagined with a classical procedure.

The book is mainly designed to introduce the new family of procedures and the
underlying philosophy. With its present form, it can also be regarded as a reference
book for scientists, engineers and researchers working in the area of computational
fluid dynamics. It is hoped that it will become an indispensable reference for such
people who intend to write their own code with the aim of solving their problems
using the most up-to-date computing methods in this field.

With this book as a reference, a novice, new to the field, will be able to
understand all the necessary formulations and be empowered to implement the new
procedures. The experienced reader, on the other hand, will be able to adapt the new
procedures quickly to his own working code, with no hassle.

The book may also be used as a graduate textbook for engineers and
mathematicians.

The Author feels that the book will fill a big gap in the literature in this field. In
the meantime, it may also take the opportunity to demonstrate that Computational
Fluid Dynamics is not just a tool for solving field problems, but also an enjoying
area of engineering.

1.2 Outline of the Book

The book is designed in an orderly manner in order to explain step-by-step each and
every aspect of the solution procedure in the simplest easy-to-follow form.
Therefore, the user is urged, in the first reading, to follow the chapters of the book
in sequence. Thereafter, it can be considered as a reference book in which the index
will quickly direct one to a specific chapter or section that applies to the relevant
application. The reader is assumed to have a suitable knowledge of the governing
partial differential equations and the conditions under which they can describe a
specific physical problem. Only a minimum knowledge of university level math-
ematics, such as calculus, differential equations, linear algebra and numerical
analysis is assumed.

The underlying basic mathematical preliminaries are given in Chap. 2. In Chap. 3,
the basic governing partial differential equations are given. These are the momentum
and mass conservation equations, the solution of which is the core of all simulations
of flow situations. The properties of, and the difficulties involved in their solution
process are described.

Discretization of the governing equations is presented in detail, in Chap. 4.
Suitable grid arrangements and profile assumptions are followed by a full
description of the discretization process of all of the governing equations, including
the mass conservation equation.

Some important preparatory operations such as boundary condition application
and relaxation enforcement are discussed in Chap. 5.
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Construction of a block matrix system by assembling the discretized forms of the
governing equations is presented in Chap. 6. The difficulties involved in the
solution of the block system are discussed.

The basic strategy used in the procedures, named the Fully Implicit Coupled
Solution (FICS), is given in Chap. 7, in which detailed derivations and formulations
are described. Variations and alternate configurations of the procedures are dis-
cussed. A distinct, very simple mechanism, named Simple Implicit Coupled
Solution (SICS) is also introduced in a separate section.

In Chap. 8, various benchmark problems are introduced, and their solutions are
given in order to aid the reader in the early stages of implementation and testing of
the code. Convergence characteristics, solution costs and durability tests are pre-
sented in a comparative way. A section in this regard is devoted to the SICS
procedure.

Chapter 9 involves discussions and recommendations for the application of the
presented procedures for situations involving time dependency and the incorpora-
tion of other dependent variable equations into the momentum equations. Since the
procedures can be extended for use in the solution of three dimensional problems as
well, a special section is devoted to aid in this respect by formulating a three
dimensional version of one of the procedures, namely SICS. A discussion on the
adaptation of the block solution procedure for the readers already working with
some other solution schemes is also included.

Throughout the main chapters, reference to any of the huge amount of literature
is avoided intentionally. In this respect, the book is designed as a comprehensive
and complete reference for the subject. However, a brief summary with a critical
review of the history of the development of the procedures used in the literature in
the previous decades is included in Appendix A for the interested reader. A brief
overview of the construction of two basic such procedures is presented in
Appendix B.

In complement, complete FORTRAN subroutines are provided for two of the
block solution procedures, in Appendix C. The routines are ready to be used, with
explanations of the input and output data.
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Chapter 2
Preliminaries

The governing differential equations in fluid flow problems contain first and second
order partial derivative terms. In order to obtain the solution of these equations, a
process called ‘discretization’ must be applied onto these equations. This process
involves the approximation of the derivative terms at each point of the solution
region, by discrete functional values on and around these points. For this purpose,
finite difference approximations of the derivative terms are required. These
approximations can be obtained in various ways. One way is to use a quadratic
interpolation function. Another way is to utilize Taylor series approximations
around the point at which the approximation is made. This requires some knowl-
edge of Taylor series. Utilizing quadratic interpolation is easier for the novice
reader, but many are generally accustomed to using Taylor series. Taylor series has
an advantage that the truncation error associated with the approximations is readily
obtained. Here we will present both methods and leave the choice to the reader.

Moreover, in various stages of the block solutions, certain techniques are
required for the solution of linear systems of equations which contain matrices of
some special forms.

This chapter is devoted to the presentation of the mathematical preliminaries to
be utilized for these purposes.

2.1 Quadratic Interpolation

Suppose we are given three points x1, x2 and x3 in the x direction, and corre-
sponding discrete functional values for a function f ðxÞ as f1 ¼ f ðx1Þ, f2 ¼ f ðx2Þ and
f3 ¼ f ðx3Þ. If this is the only knowledge about the function f ðxÞ, then the
Fundamental Theorem of Linear Algebra can be used to pass a parabola of the form

f ðxÞ ¼ aþ bxþ cx2 ð2:1Þ

© Springer International Publishing Switzerland 2016
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from all of the three points ðx1; f1Þ, ðx2; f2Þ and ðx3; f3Þ. We can obtain this parabola
by substituting these values into Eq. (2.1) as

f1 ¼ aþ bx1 þ cx 2
1

f2 ¼ aþ bx2 þ cx 2
2

f3 ¼ aþ bx3 þ cx 2
3

ð2:2Þ

These equations are linear in a, b and c, and thus can be easily solved. Solving
these equations for a, b and c, replacing in Eq. (2.1) and rearranging terms give

f ðxÞ ¼ ðx� x2Þðx� x3Þ
ðx1 � x2Þðx1 � x3Þ f1 þ

ðx� x1Þðx� x3Þ
ðx2 � x1Þðx2 � x3Þ f2 þ

ðx� x1Þðx� x2Þ
ðx3 � x1Þðx3 � x2Þ f3 ð2:3Þ

This equation is called the Lagrangian Polynomial. It is of a more suitable form
for our purposes in the discretization of the derivatives in the governing differential
equations.

Using this polynomial, we will derive expressions for the first and second order

derivative terms df
dx and

d2f
dx2 of f ðxÞ.

2.2 Approximations Using Lagrangian Polynomial

For notational purposes which will be clear later on in our formulations, we assume
a grid arrangement with suitable notations as shown in Fig. 2.1.

The points W, P and E are the points x1, x2 and x3 at which f ðxÞ is given as
f1 ¼ fW , f2 ¼ fP and f3 ¼ fE, respectively. Points w and e are at midway between the
points W and P, and P and E, respectively. Also note that dw ¼ x2 � x1 and
de ¼ x3 � x2.

Differentiating f ðxÞ in Eq. (2.3) with respect to x gives

df
dx

¼ ðx� x3Þþ ðx� x2Þ
ðx1 � x2Þðx1 � x3Þ fW þ ðx� x3Þþ ðx� x1Þ

ðx2 � x1Þðx2 � x3Þ fP þ
ðx� x2Þþ ðx� x1Þ
ðx3 � x1Þðx3 � x2Þ fE

ð2:4Þ

Fig. 2.1 Grid arrangement in the x direction
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Now, the value of @f
@x at the point x2 ¼ P can be calculated by replacing x by x2 in

Eq. (2.4). This gives

df
dx

����
P
¼ ðx2 � x3Þþ ðx2 � x2Þ

ðx1 � x2Þðx1 � x3Þ fW þ ðx2 � x3Þþ ðx2 � x1Þ
ðx2 � x1Þðx2 � x3Þ fP þ ðx2 � x2Þþ ðx2 � x1Þ

ðx3 � x1Þðx3 � x2Þ fE

ð2:5Þ

Replacing differences in xi’s with the corresponding di’s, gives

df
dx

����
P

¼ � de
dwðde þ dwÞ fW þ de � dw

dedw
fP þ dw

deðdw þ deÞ fE ð2:6Þ

For the second order derivative d2f
dx2, we differentiate

df
dx in Eq. (2.4) with respect to

x which gives

d2f
dx2

¼ d
dx

df
dx

� �
¼ 2
ðx1 � x2Þðx1 � x3Þ fW þ 2

ðx2 � x1Þðx2 � x3Þ fP

þ 2
ðx3 � x1Þðx3 � x2Þ fE ð2:7Þ

d2f
dx2

���
P
can now be obtained as

d2f
dx2

����
P

¼ 2
dwðde þ dwÞ fW � 2

dedw
fP þ 2

deðdw þ deÞ fE ð2:8Þ

For a function f ðxÞ which is given continuously over the space x, the expressions
given in Eqs. (2.6) and (2.8) for any three consecutive data points W, P and E, are
only approximations to the corresponding derivatives. Therefore, their use in the
governing differential equations leads only to approximations of the corresponding
derivative terms. These approximations are exact only if the function f ðxÞ is a
quadratic polynomial function, that is to say, a parabola of the form
f ðxÞ ¼ aþ bxþ cx2. Now, if the function is known to behave in a widely different
form, the above approximations will not be appropriate because of the resulting
poor approximations. In such a case, a numerical simulation of the unknown
function f ðxÞ in which these approximations are used may not only give unrea-
sonable results, but may well lead to unexpected divergence in the numerical
solution as well. Therefore, if the behavior of the function is known, or even
anticipated, a more suitable form of these approximations should be generated. The
approximations will still be a linear combination of the three functional values, but
with a slight alteration of the weighting factors. We will address this issue in
Chap. 4 for the functions involved in the governing equations.

2.2 Approximations Using Lagrangian Polynomial 9
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If we let de ¼ dw ¼ h in the above formulations, that is to say, if equidistant
spacing between the xi’s is used, then Eqs. (2.6) and (2.8) become

df
dx

����
P
¼ fE � fW

2h
ð2:9Þ

and

d2f
dx2

����
P
¼ fW � 2fP þ fE

h2
ð2:10Þ

respectively. These are the so called ‘central difference’ approximations for the

derivative terms df
dx and

d2f
dx2 at a point P.

In the following chapters, for the sake of generality, we will use the
non-equidistant spaced approximations as given in Eqs. (2.6) and (2.8).

2.3 Approximations Using Taylor Series

The Taylor’s Theorem statest that under certain conditions, the value of a function
at a point x + h, say f(x + h), can be written in an infinite series form which contains
the function and its derivatives at the point x as follows:

f ðxþ hÞ ¼ f ðxÞþ h
df
dx

����
x
þ h2

2!
d2f
dx2

����
x
þ h3

3!
d3f
dx3

����
x
þ � � � ð2:11Þ

If h is small enough and the higher order derivatives are bounded, we can write
an approximation to f(x + h) by dropping the terms containing derivatives of order
three and higher, as

f ðxþ hÞ � f ðxÞþ h
df
dx

����
x
þ h2

2!
d2f
dx2

����
x

ð2:12Þ

If we apply this formula by considering Fig. 2.1, we can write

fE � fP þ de
df
dx

����
P

þ d2e
2!

d2f
dx2

����
P

ð2:13Þ

and

fW � fP � dw
df
dx

����
P
þ d2w

2!
d2f
dx2

����
P

ð2:14Þ
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To obtain an approximation for df
dx

��
P; we can now manipulate Eqs. (2.13) and

(2.14) by eliminating the terms d2f
dx2

���
P
. For this, we multiply Eq. (2.13) by 2

d2e
and

Eq. (2.14) by � 2
d2w

and add the two resulting expressions side by side. We get

2

d2e
fE � 2

d2w
fW � 2

d2e
� 2

d2w

" #
fP þ 2

de
þ 2

dw

� �
df
dx

����
P

ð2:15Þ

Rearranging Eq. (2.15), we can write

de þ dw
dedw

df
dx

����
P

� � 1

d2w
fW þ d2e � d2w

d2ed
2
w

fP þ 1

d2e
fE ð2:16Þ

from which,

df
dx

����
P
� � de

dwðde þ dwÞ fW þ de � dw
dedw

fP þ dw
deðdw þ deÞ fE ð2:17Þ

This is the same as the expression derived in Eq. (2.6).

To obtain the approximation for d2f
dx2

���
P
, this time we must eliminate the terms df

dx

��
P.

For this, we multiply Eq. (2.13) by 1
de

and Eq. (2.14) by 1
dw

and add the two
expressions side by side. We get

1
de

fE þ 1
dw

fW � 1
de

þ 1
dw

� �
fP þ de

2
þ dw

2

� �
d2f
dx2

����
P

ð2:18Þ

Rearranging Eq. (2.18) gives

de þ dw
2

� �
d2f
dx2

����
P

� 1
dw

fW � de þ dw
dedw

� �
fP þ 1

de
fE ð2:19Þ

from which

d2f
dx2

����
P

� 2
dwðde þ dwÞ fW � 2

dedw
fP þ 2

deðdw þ deÞ fE ð2:20Þ

which is the same as the expression derived in Eq. (2.8).
For the purposes that will be clear later on, it is beneficial to consider approx-

imations for the above derivatives in the y direction as well. This will aid in our
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notational convention to be used for the partial derivatives in the governing dif-
ferential equations of our interest.

This time we consider a grid arrangemet in the y direction as shown in Fig. 2.2.
Suppose that we are given a function f ðyÞ. Now, following similar derivations as

shown above, we can write approximations for the derivatives df
dy and

d2f
dx2 at the point

P as follows:

df
dy

����
P

� � dn
dsðdn þ dsÞ fS þ

dn � ds
dnds

fP þ ds
dnðds þ dnÞ fN ð2:21Þ

d2f
dx2

����
P

� 2
dsðdn þ dsÞ fS �

2
dnds

fP þ 2
dnðds þ dnÞ fN ð2:22Þ

Fig. 2.2 Grid arrangement in
the y direction
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2.4 General Elimination Technique for Linear Systems

A linear system of equations with N equations and N unknowns can be written as

a11x1 þ a12x2 þ � � � þ a1NxN ¼ b1
a21x1 þ a22x2 þ � � � þ a2NxN þ ¼ b2

..

.

aN1x1 þ aN2x2 þ � � � þ aNNxN þ ¼ bN

ð2:23Þ

in which aij, i ¼ 1;N and j ¼ 1;N are constant coefficients and xi, i ¼ 1;N are the
unknown variables. A solution to this system is the set of xi values which satisfy all
of the equations simultaneously. This system is written in a compact form called a
matrix equation as follows:

a11 a12 � � � a1N
a21 a22 � � � a2N
..
. ..

. . .
. ..

.

aN1 aN2 � � � aNN

2
6664

3
7775

x1
x2
..
.

xN

2
6664

3
7775 ¼

b1
b2
..
.

bN

2
6664

3
7775 ð2:24Þ

The matrix

A ¼
a11 a12 � � � a1N
a21 a22 � � � a2N
..
. ..

. . .
. ..

.

aN1 aN2 � � � aNN

2
6664

3
7775

is called the coefficient matrix and

Aaug ¼
a11 a12 � � � a1N
a21 a22 � � � a2N
..
. ..

. . .
. ..

.

aN1 aN2 � � � aNN

b1
b2
..
.

bN

2
6664

3
7775

is called the augmented matrix of the system.
One of the basic strategies for solving the above system directly is to apply a

series of operations, called elementary row operations onto the rows of the
augmented matrix and update it to an equivalent form that is easier to solve. The
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following operations are used for this purpose, each of which does not have any
effect on the solution set of the equations:

1. Multiply all entries in a row by a nonzero constant
2. Replace one row by adding to it another row, coefficient by coefficient
3. Interchange the places of two rows

The aim in the first step of the solution process is to eliminate all of the nonzero
coefficients in the lower triangular part of the augmented matrix which corresponds
to the matrix of the original system. To eliminate the coefficient a21 of the aug-

mented matrix, i.e., to make it zero, we multiply row 1 by � a21
a11

Aaug0 ¼
a11 a12 � � � a1N
0 a

0
22 � � � a

0
2N

..

. ..
. . .

. ..
.

aN1 aN2 � � � aNN

b1
b

0
2

..

.

bN

2
6664

3
7775

and add it to row 2. We get
We note that all the coefficients in row 2 have changed now. Then we proceed to

eliminate a31, a41
until aN1, in the same way. At the end of this process, the augmented matrix

becomes

Aaug0 ¼

a11 a12 � � � a1N
0 a

0
22 � � � a

0
2N

..

. ..
. . .

. ..
.

0 a
0
N2 � � � a

0
NN

b1
b

0
2

..

.

b
0
N

2
6664

3
7775

We repeat the elimination process for the coefficients a32, a42 until aN2. The
whole process is continued until the coefficient aN;N�1 is eliminated.

The complete process is named as the forward elimination, after which we have
an upper triangular matrix, in which all of the coefficients in the lower triangular
part are zeros.

Aaug0 ¼

a11 a12 � � � a1N
0 a

0
22 � � � a

0
2N

..

. ..
. . .

. ..
.

0 0 � � � a
0
NN

b1
b

0
2

..

.

b
0
N

2
6664

3
7775

Now the second step in the solution process is to obtain the solution to the
original system by applying a back substitution process. For this, we solve xN
from the Nth equation, xN�1 from equation (N − 1) etc., until x1.
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An algorithm for the complete solution process can now be written as follows:
Forward elimination:

for k=1,N-1

for i=k+1,N

t=a(i,k)/a(k,k)

a(i,k)=0

for j=k+1,N

a(i,j)=a(i,j)-a(k,j)*t

end j

b(i)=b(i)-b(k)*t

end i

end k

Backward substitution:

x(N)=b(N)/a(N,N)

for i=N-1,1,-1

sum=0

for j=i+1,N

sum=sum+a(i,j)*x(j)

end j

x(i)=(b(i)-sum)/a(i,i)

end i

The process described is named as the Gauss Elimination method in the
literature.

We note that the third elementary row operation has not been utilized in this
process. If, however, any diagonal coefficient aii becomes zero at any stage of the
forward elimination process, row i must be interchanged by another row having a
nonzero coefficient on the main diagonal. Otherwise, a division by zero will occur
while the back substitution process is performed. Luckily enough, as we will see
later on, the matrix systems that are involved in incompressible fluid flow solutions
do not pose this problem, if of course, the systems are formed properly. Hence this
issue will not be elaborated any further.
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2.5 Solution Techniques for Special Linear Systems

Within the block solution procedures described later, various linear sub-systems
whose matrices are of a certain special form need to be solved. Therefore, a brief
review of the techniques used to solve such systems is appropriate.

Type 1: Lower triangular systems with two off-diagonal vectors
Suppose we have a system of linear equations given as

c1
b2 c2

b3 c3
� �

amþ 1 � �
� � �

� � �
aN b3 cN

2
66666666664

3
77777777775

x1
x2
x3
�
�
�
�
xN

2
66666666664

3
77777777775
¼

r1
r2
r3
�
�
�
�
rN

2
66666666664

3
77777777775

This matrix contains only two vectors in the lower triangular part and the upper
triangular part is completely zero. One of the vectors is just below the main
diagonal vector, and the other is far below by m columns. All other coefficients in
the lower diagonal part are zeros. Here it is possible to store the complete matrix by
utilizing only three vectors in computer’s memory.

The system can be solved easily by a forward substitution sweep using the
following algorithm:

x(1)=r(1)/c(1)
for i=2,m

x(i)=(r(i)-b(i)*x(i-1))/c(i)
end i
for i=m+1,N

x(i)=(r(i)-a(i)*x(i-m)-b(i)*x(i-1))/c(i)
end i

Type 2: Upper triangular systems with two off-diagonal vectors
In this case we consider the following linear system of equations:

c1 d1 e1
c2 d2 �

c3 d3 �
� � eN�m

� �
� �

� dN�1

cN

2
66666666664

3
77777777775

x1
x2
x3
�
�
�
�
xN

2
66666666664

3
77777777775
¼

r1
r2
r3
�
�
�
�
rN

2
66666666664

3
77777777775
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Here we have only three vectors in the upper triangular part. All other coeffi-
cients, including those at the lower triangular part are zeros. For this system, a
backward substitution sweep is applied, using the following algorithm:

x(N)=r(N)/c(N)
for i=N-1,N-m+1,-1

x(i)=(r(i)-d(i)*x(i+1))/c(i)
end i
for i=N-m,1,-1

x(i)=(r(i)-d(i)*x(i+1)-e(i)*x(i+m))/c(i)
end i

Type 3: A tri-diagonal system
Suppose we are given the following system which contains a diagonal vector and
two off-diagonal vectors just below and above this diagonal vector as follows:

b1 c1
a2 b2 c2

a3 b3 c3
� � �

� � �
� � �

� � cN
aN b3

2
66666666664

3
77777777775

x1
x2
x3
�
�
�
�
xN

2
66666666664

3
77777777775
¼

r1
r2
r3
�
�
�
�
rN

2
66666666664

3
77777777775

This system can be solved by a forward sweep to eliminate the coefficients ai,
followed by a backward sweep to obtain the solution. An algorithm similar to the
one used in the Gaussian Elimination method can be used here. Application of the
usual algorithm as given above however, would change the values of the coeffi-
cients of the vectors. But for reasons that will be clear later on, we do not want to
spoil the original values of the coefficients of the three vectors. We can achieve this
by not actually updating the ai’s and utilizing an auxiliary vector t for keeping the
updated versions of the bi’s. The ci’s do not change, so they are kept untouched.
The following algorithm performs the forward elimination and backward substi-
tution processes.

t(1)=b(1)
for i=2,N

q=a(i)/t(i-1)
t(i)=b(i)-c(i-1)*q
r(i)=r(i)-r(i-1)*q

end i
x(N)=r(N)/t(N)
for i=N-1,1,-1

x(i)=(r(i)-c(i)*x(i+1))/t(i)
end i
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Type 4: Lower triangular systems with three off-diagonal vectors
Suppose we are given the system

c1
b2 c2

b3 c3
em � �
amþ 1 emþ 1 � �

� � � �
� � � �

aN eN b3 cN

2
66666666664

3
77777777775

x1
x2
x3
�
�
�
�
xN

2
66666666664

3
77777777775
¼

r1
r2
r3
�
�
�
�
rN

2
66666666664

3
77777777775

In this case the matrix is similar to that given in Type 1, but it contains an
additional vector just above the lower far-diagonal vector. This system can be
solved by a forward sweep using the following algorithm:

x(1)=r(1)/c(1)
for i=2,m-1

x(i)=(r(i)-b(i)*x(i-1))/c(i)
end i
x(m)=(r(m)-e(m)*x(i-m+1)-b(i)*x(i-1))/c(i)
for i=m+1,N

x(i)=(r(i)-a(i)*x(i-m)-e(i)*x(i-m+1)-b(i)*x(i-1))/c(i)
end i

Type 5: Upper triangular systems with three off-diagonal vectors
The system to be solved is given by

c1 d1 y1 e1
c2 d2 � �

c3 d3 � �
� � � eN�m

� � yN�mþ 1

� �
� dN�1

cN

2
66666666664

3
77777777775

x1
x2
x3
�
�
�
�
xN

2
66666666664

3
77777777775
¼

r1
r2
r3
�
�
�
�
rN

2
66666666664

3
77777777775

In this case, the coefficient matrix is similar to that in Type 2, but it contains an
additional vector just below the far-diagonal vector. The algorithm given below
uses a backward substitution sweep to solve this system:

x(N)=r(N)/c(N)
for i=N-1,N-m+2,-1

x(i)=(r(i)-d(i)*x(i+1))/c(i)
end i
i=N-m+1
x(i)=(r(i)-d(i)*x(i+1)-y(i)*x(i+m-1))/c(i)
for i=N-m,1,-1

x(i)=(r(i)-d(i)*x(i+1)-y(i)*x(i+m-1)-e(i)*x(i+m))/c(i)
end i
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Chapter 3
Governing Differential Equations

The basic governing differential equations for fluid flow consist of a set of
momentum equations, and a mass conservation or continuity equation.

In order to be able to devise a useful solution strategy for these equations, it is
necessary to have a broad and precise understanding of the special features of these
equations. For sure, a correct diagnosis to the difficulties involved can bring a more
efficient remedy for the solution of these equations.

With the above in mind, we first introduce the basic governing equations for an
incompressible fluid flow. The formulations are for two-dimensional problems
since a two-dimensional representation is more feasible for a better understanding
of the special techniques used in the solution procedures. This is followed by a
discussion of the special features of the equations and the difficulties involved
regarding their solutions. This discussion will help in realizing an insight into the
choice of the solution procedures presented in the remaining chapters.

3.1 Governing Equations

The partial differential equations governing the two-dimensional, mean motion of a
steady flow of an incompressible fluid may be written as

@

@x
Kx

@u
@x

� �
þ @

@y
Ky

@u
@y

� �
� @

@x
quuð Þ � @

@y
quvð Þ � @p

@x
¼ 0

u momentum equationð Þ
ð3:1Þ

@

@x
Kx

@v
@x

� �
þ @

@y
Ky

@v
@y

� �
� @

@x
quvð Þ � @

@y
qvvð Þ � @p

@y
¼ 0

m momentum equationð Þ
ð3:2Þ
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@u
@x

þ @v
@y

¼ 0 mass conservation equationð Þ ð3:3Þ

In the above equations x is the horizontal space coordinate, y is the vertical space
coordinate, u and v are the mean velocity components in the x and y directions,
respectively. Kx and Ky are the eddy diffusivity coefficients for momentum in the
x and y directions, respectively. q and p are density and pressure.

For a particle in a flow field to be able to move from one point to another, there
must exist a pressure difference between the two points, represented by the pressure
differential terms on the right sides of the two momentum equations. If the pressure
differences are all zero and there are no other external forces acting on the field, the
fluid remains at standstill. The higher the pressure difference between the points, the
higher the velocity in that direction. Therefore, it is obvious that there exists a very
important relationship between the velocity field and the pressure field.

The mass conservation equation completing the set, includes only the velocity
field components and mainly describes that mass should be preserved in all of the
cells of the flow field and also globally over the solution region. Mass preservation
means that any amount of fluid flowing into a fluid cell must flow out of the cell as
well.

3.2 Characteristics of the Governing Equations

To understand the mechanism of the solution procedures discussed in the following
chapters, and why such a mechanism is used, the characteristics of these equations
should be examined more closely. First, we note the followings:

1. Both of the momentum equations are nonlinear in u and v due to the products in
the terms containing first order derivatives. Therefore, any numerical approxi-
mation scheme to be utilized must incorporate a linearization process to deal
with the nonlinearities. This can be accomplished by some kind of ‘overall
iterations’.

2. Due to some high pressure differences, abrupt changes in the velocity field may
occur from one overall iteration to another. The effect of these changes must be
fully transformed and distributed to the whole of the flow field. If this cannot be
done efficiently, these changes may need to be artificially suppressed by certain
amounts. Otherwise the process may collapse.

3. All the unknown functions u, v and p appear in the two momentum equations.
Due to the presence of the second order derivative terms for u and v, these
equations seem to stand mainly for the functions u and v.

4. Any changes in pressure, represented by the pressure difference terms in the
momentum equations cause changes in the velocity components as well.

5. The most innocent-looking equation is the mass conservation equation. It con-
tains only the unknowns u and v. It represents a very strong relationship between
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u and v through the first order derivatives. In addition to obeying this dictation,
the velocity components must also satisfy the momentum equations.

6. Despite its importance, however, the mass conservation equation does not
contain the pressure function. Therefore, it is clear that virtually there exists no
explicit equation describing the behavior of the pressure field, in contrast to its
importance in the development of the velocity field.

7. From the momentum equations point of view, it is noteworthy that not the
pressure itself, but actually the pressure differences affect the velocity field.
Therefore, it is not important what the pressure magnitudes are. This is called
the relativeness of the pressure values. The deciding factor for the velocity field
are the pressure changes between two neighboring points in the flow field.

3.3 The Velocity-Pressure Coupling Problem

It is in fact a reality that, the mass conservation equation plays a very important role
in the behavior of the velocity field, but it has no direct effect upon the pressure
field. On the contrary, it is merely a rude constraint on the velocity field invoked by
the pressure differences. This constitutes a one-way relationship, since the con-
straint does not contain pressure.

The absence of the pressure function in the mass conservation equation causes a
very important problem. In fact, despite that there exists a very strong coupling
between the velocity and pressure fields, there is no explicit equation for pressure.
In the literature, this is called the velocity-pressure coupling problem. Owing to its
importance and the difficulties involved in its cure, some researchers describe this
problem as the ‘bottle-neck’ of the solution of fluid flow problems.

However, as we will demonstrate later on, the above observation is actually an
illusion which misled researchers and diverted their attention to ‘creating’ an
equation for pressure.

For decades, researchers have proposed various methods for dealing with this
problem. In fact, any numerical scheme which does not pose a remedy for this
problem cannot be used efficiently for the solution of any fluid flow problem. Such
a scheme must posses a strong capability for the treatment of this problem. Here we
will not attempt to go into the details of such previous schemes, but rather give a
brief summary of the common drawbacks of these procedures.

Considering that there exists no explicit equation for pressure, researchers tend
to produce (or rather ‘invent’) an equation for it. A brief review of two of the widely
used ones is given in Appendix B. Such ‘fictitious’ equations were first used to
correct the velocity field. Then, they were used to update the pressure field. But the
various procedures for generating such equations were cumbersome, complicated
and confusing, not even mentioning the physical destruction of the unrealistic
assumptions they involved.
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The equations, thus generated for pressure are of elliptic type (or Poisson-type)
whose solution is a more challenging problem as compared to the solution of the
momentum equations with an assumed pressure field. This is because the involved
boundary conditions for these ‘pressure’ equations are of Neumann-type, that is to
say, at all of the boundaries, pressure differences must be set to zero. Pressure can
only be set to a fixed value at only one point within the solution domain.

The numerical solution of the Poisson-type equations, furthermore, poses
important convergence problems. Firstly the methods for solving such elliptic
equations are very slow or even divergent if no strong relaxation is used. The
relaxation parameters need to be finely tuned since convergence intervals of the
relaxation parameters used are very narrow. Realizing these deficiencies, some
more efficient solution methods were even generated for these equations.

Luckily however, some strategies involved in these methods have been used in
the development of the type of procedures presented in this book.

There is a well-known, basic, but very important property of the flow of an
incompressible fluid, which was unfortunately overlooked in the past decades. In
fact, it was this negligence that prevented the development of more efficient pro-
cedures for the solution of field problems.

It is well known that a fluid particle may only move from one point to another if
there exists a pressure difference between the two points. The movement is initiated
and dictated by the pressure derivative terms in the momentum equations, and then
guided by the diffusion and convection terms. While this movement is underway,
the particle’s velocity components must obey the mass conservation constraint.
Thus, the effects of the pressure derivative terms in the momentum equations and
those of the velocity derivative terms in the mass conservation equation are
equivalently important. These effects are related to the fluid flow itself, but not to
the physical properties which are governed by the diffusion and convection terms.
Therefore, in order that a solution procedure be more efficient, instead of concen-
trating on the convection and diffusion terms, as is done with the segregated pro-
cedures, it must concentrate on the correct imposition of the pressure changes as
well as the mass conservation constraint in all stages of the solution process.

This observation asserts that the priority must be given to the fluid flow prop-
erties rather than the physical properties of the fluid itself. To put it more precisely,
the effect of the pressure terms, in parallel to the mass conservation principle, must
be regarded as a constraint, perhaps to be better named as the ‘pressure conservation
constraint’. The importance of this issue will be more appreciated while we
introduce the new solution strategy in Chap. 7.

On the other hand, it is clear by examining the governing equations that a
pressure change at a point in the solution domain does not only affect the velocities
at nearby points, but also the velocities at all other points in the solution domain.
Therefore, any such changes must immediately be appreciated by the mechanism of
the numerical procedure and transported to all of the points in an efficient fashion.
In a point by point or line by line solution procedure, this appreciation cannot be
realized immediately at all points.
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The main problem in the segregated type procedures is the dissatisfaction of the
mass and momentum conservation constraints while the solution is progressing. In
such procedures, the constraints are only satisfied when and if complete conver-
gence is reached. This ‘if’, however, is of utmost importance which deserves much
attention.

The flow development in an incompressible fluid is characterized by sudden and
perhaps ‘unexpected’ changes in either the velocity field or the pressure field. If the
procedure used lacks the ability to quickly and efficiently distribute the effect of
these changes through the solution region, the mass and momentum constraints will
be violated at the corresponding control volumes. This violation, especially of the
mass conservation constraint, even at one single control volume, may cause a
deadly numerical crash.

Although very well known, an efficient solution to this crucial problem was
never pursued. The problem was ‘wiped out under the rug’ by resorting to an ‘easy’
solution. This ‘corner cutting’ solution was to ‘suppress’ the changes by some
heavy under relaxation process, in an effort to avoid divergence. Such a suppres-
sion, although it may succeed, inevitably and dramatically slows down the solution
process. Physically, this sums up to a rude numerical intervention into the natural
behavior of the flow field.

Then, why should we interfere with the natural development of the flow field?
Isn’t there some way of preserving its natural behavior without resorting to phys-
ically unrealistic assumptions or interventions? The answers to the above questions
are: No, we must not interfere much, and yes, there is some way of preservation.

With the introduction of the so called ‘Block Implicit Decomposition’ in the last
decade, many such problems have been overcome.

The general principle in this strategy is to let the pressure differences act freely
onto the velocity field, but in the meantime, take necessary precautions to distribute
the resulting effects correctly and efficiently to the whole field.

Some properties and advantages of these procedures which are presented in
Chap. 7, may be summarized as follows:

1. The governing equations are taken ‘as is’. After proper discretization of each
equation, the resulting discretized equations involving velocity components and
pressure, are accepted as they are given. That is to say, no artificial pressure
equation is derived and no unrealistic assumptions are made. The main
advantage here is that since no assumptions are made, convergence is not
suppressed but rather encouraged.

2. The numerous relaxation parameters and the need for their tuning is avoided.
Some relaxation, of course, is necessary for the nonlinearities and for speeding
up the convergence in the solution process. However, the strong implicitness
realized with such procedures so broadened the range of these few parameters
that, with acceptance of some slightly slower convergence, any or no relaxation
would suffice. Relaxation need only be applied for further speeding up
convergence.

3. The derivations and application of the solution mechanism are extremely simple.
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Chapter 4
Finite Difference Formulations

This chapter is devoted to introduce, in full, the discretization process for the
governing equations, utilizing some enhanced versions of the approximations
derived in Chap. 2. The chapter is designed as follows: In Sect. 4.1, the momentum
equations given in Eqs. (3.1) and (3.2) are manipulated in order to impose the mass
conservation condition in Eq. (3.3). The grid arrangement and certain profile
assumptions suitable for discretization are given in Sects. 4.2 and 4.3. The dis-
cretization of the three governing equations are given in detail in Sect. 4.4.
A discussion of the special profile assumptions for the velocity components is
included in Sect. 4.5.

4.1 Manipulation of the Momentum Equations

Before continuing any further, the following manipulation of the momentum
equations is appropriate:

First, we note that the term @
@x quuð Þ in Eq. (3.1) can be written as

@

@x
quuð Þ ¼ q

@

@x
u2
� � ¼ 2qu

@u
@x

; ð4:1Þ

upon differentiation of the term @
@x u2ð Þ with respect to x.

On the other hand, the term @
@y quvð Þ in Eq. (3.1) can be written as

@

@y
quvð Þ ¼ q

@

@y
uvð Þ ¼ q u

@v
@y

þ v
@u
@y

� �
ð4:2Þ
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Adding Eqs. (4.1) and (4.2) gives

@

@x
quuð Þþ @

@y
quvð Þ ¼ 2qu

@u
@x

þ q u
@v
@y

þ v
@u
@y

� �

¼ q 2u
@u
@x

þ u
@v
@y

þ v
@u
@y

� �
ð4:3Þ

Now noting from Eq. (3.3) that @v
@y ¼ � @u

@x and replacing @v
@y by � @u

@x in Eq. (4.3)
we get

@

@x
quuð Þþ @

@y
quvð Þ ¼ q 2u

@u
@x

� u
@u
@x

þ v
@u
@y

� �

¼ q u
@u
@x

þ v
@u
@y

� �
ð4:4Þ

Then Eq. (3.1) becomes

@

@x
Kx

@u
@x

� �
þ @

@y
Ky

@u
@y

� �
� q u

@u
@x

þ v
@u
@y

� �
� @p

@x
¼ 0 ð4:5Þ

As an exercise, the user may now be able to manipulate the corresponding terms
in Eq. (3.2) to get

@

@x
Kx

@v
@x

� �
þ @

@y
Ky

@v
@y

� �
� q u

@v
@x

þ v
@v
@y

� �
� @p

@x
¼ 0 ð4:6Þ

Although the mass conservation condition has already been imposed on the
momentum equations, Eqs. (4.5) and (4.6) are going to be used as the main gov-
erning equations along with the mass conservation Eq. (3.3). It should have been
clear in the reader’s mind that this imposition may help in the robustness of the
procedures used, and in fact it does.

The main aim here is to present an efficient solution procedure of Eqs. (4.5) and
(4.6) under the constraint of the mass conservation equation given in Eq. (3.3).

4.2 Grid Arrangement for the Solution

The first step in any numerical solution procedure is to decide on a suitable grid
system which extends over the whole of the solution domain. The solution domain
is ‘discretized’ into a finite number of grid points placed within the domain of
interest. Since the mass conservation constraint states on its own that the amount of
fluid entering a fluid cell must be equal to the exiting fluid, it is reasonable and
advantageous to choose the grid structure in such a way that this condition is easily
and exactly fulfilled at each cell. If in addition, necessary precautions are taken at
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the boundaries of the flow region, then the constraint will also be satisfied globally.
This can be accomplished by ensuring that the entering and exiting fluid velocity
components are placed at the correct positions.

The second step is to locate the velocity and pressure variables so that they can
be coupled more tightly.

With these in mind, the following ‘control volume’ and ‘staggered grid’
approach widely used in the literature is quite adequate. Typical of such a control
volume and storage configuration is shown in Fig. 4.1.

In Fig. 4.1, we note that the velocity components u and v and the pressure
variable p are located at different grid points in the domain, but u and v exactly at
the faces of the control volume. This may look a little bit of unusual for the novice
reader, but the advantages and simplicity of such a placement will be clear very
soon.

The following convention is then used: the value of u stored at a point numbered
by (P) is the ‘actual’ u value at the midway between the points designated by
(P) and (E); the value of v velocity stored at (P) is the ‘actual’ v value at the midway
between the points designated by (P) and (N). This, naturally, necessitates the use
of different grid configurations for the discretization of the two momentum equa-
tions and for the mass conservation equation.

Fig. 4.1 Typical control
volume and storage
configuration
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4.3 Profile Assumptions for the Discretizations

It was mentioned in Chap. 2 that certain problems may be encountered in the
solution process if the approximations of the derivatives do not incorporate the
expected behavior of the unknown function. In our case, the expected behavior is
not perhaps a simple quadratic one, so that a direct quadratic interpolation may not
be so advantageous. Hence, we will resort to a slight revision of the quadratic
approximation in regard of the velocity components as follows.

We suppose that U stands either for u or v and let this function prevail over the
grid shown in Fig. 2.1. Also we suppose that U satisfies the differential equation

d
dx

K
dU
dx

� �
� d
dx

qu�Uð Þ ¼ 0 ð4:7Þ

Note that this equation represents a one dimensional form of the two momentum
equations in which the pressure terms are eliminated.

Let K, u� and q be constants, and let x2 ¼ 0 and x3 ¼ L in Fig. 2.1. Suppose also
that U satisfies the boundary conditions

Uð0Þ ¼ UP andUðLÞ ¼ UE:

A slight refreshment of college differential equations knowledge can give the
exact analytical solution of this problem over the interval ð0; LÞ ¼ ð0; deÞ as

U� UP

UE � UP
¼ e

qu�
K x � 1

e
qu�
K L � 1

ð4:8Þ

Now an expression for Ue can be written by noting that L ¼ de and the coor-
dinate of the point e is de, as

Ue � UP

UE � UP
¼ e

qu�de
2K � 1

e
qu�de
K � 1

ð4:9Þ

from which

Ue ¼ UP þðUE � UPÞ e
qu�de
2K � 1

e
qu�de
K � 1

ð4:10Þ

or

Ue ¼ ð1� hÞUP þ hUE ð4:11Þ

in which
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h ¼ e
qu�de
2K � 1

e
qu�de
K � 1

ð4:12Þ

Letting re ¼ qu�ede
K and h ¼ 1

2 � ae, Eq. (4.11) can be written as

Ue ¼ ð1
2
þ aeÞUP þð1

2
� aeÞUE ð4:13Þ

in which

ae ¼ 1
2
� ere=2 � 1

ere � 1
ð4:14Þ

A similar expression for Uw can be written as

Uw ¼ ð1
2
þ awÞUW þð1

2
� awÞUP ð4:15Þ

in which

aw ¼ 1
2
� erw=2 � 1

erw � 1
ð4:16Þ

where

rw ¼ qu�wdw
K

ð4:17Þ

We note that instead of a straight averaging of the functional values around the
points e and w, a variable averaging is used depending on the values of ae and aw in
Eqs. 4.13 and 4.15, respectively.

Using these interpolations, we now work out approximations for the differential
terms dU

dx

��
e and

dU
dx

��
w:

First we write Eq. 4.8 as

U ¼ UP þðUE � UPÞ e
qu�
K x � 1

e
qu�
K L � 1

ð4:18Þ

Differentiating U with respect to x we get

dU
dx

¼ ðUE � UPÞqu
�

K

e
qu�
K x

e
qu�
K L � 1

ð4:19Þ

Now dU
dx

��
e can be written by letting x ¼ de=2 and L ¼ de, as
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dU
dx

����
e

¼ ðUE � UPÞqu
�
e

K

e
qu�e
2K de

e
qu�
K de � 1

ð4:20Þ

or

dU
dx

����
e
¼ be

UE � UP

de
ð4:21Þ

in which

be ¼ re
ere=2

ere � 1
ð4:22Þ

The coefficients a’s and b’s are called weighting factors. When r ¼ 0, the cal-
culation of these coefficients will give an overflow on a computer due to the 0/0
condition. However, as r ! 0, a ! 0 and b ! 1. Moreover, since the calculation
of the exponentials in these factors is machine-expensive, the following approxi-
mations have been used in the literature, which do not include the above drawback
(see Appendix A):

a ¼ r2

10þ 2r2
ð4:23Þ

and

b ¼ 1þ 0:005r2

1þ 0:05r2
ð4:24Þ

The exact and approximate values for the weighting factors a and b are shown in
Fig. 4.2.

Similar approximations for dU
dx

��
w can be be written as

Fig. 4.2 Weighting factors a
and b
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dU
dx

����
w

¼ bw
UP � UW

dw
ð4:25Þ

It is left to the reader to write corresponding approximations in the y direction as
well.

Equations (4.13), (4.15), (4.21) and (4.25) together with the weighting factors as
described in Eqs. (4.23) and (4.24) will be utilized in the next section for the
discretization of the governing differential equations.

4.4 Discretization of the Governing Equations

This section is fully devoted to the details of the discretization of the governing
Eqs. (4.5), (4.6) and (3.3) for all points in the solution domain. The formulations are
given in detail.

4.4.1 Discretization of the u-Momentum Equation

To begin with the discretization of the u-momentum Eq. (4.5), we consider the
‘control volume’ around an arbitrary point P in the solution domain as shown in
Fig. 4.3.

Here we note that the value of the unknown u at the point P, denoted by uP, has
four neighboring functional values, denoted by uE, uW , uN and uS at the east, west,

Fig. 4.3 Control volume for
u velocity
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north and south sides, respectively. These points are placed midway between the
two neighboring grid points, or the pressure points, in both directions.

Now we use the approximations derived in Eqs. (4.13), (4.15), (4.21) and (4.25)
to approximate each term in the u momentum equation as follows:

@

@x
Kx

@u
@x

� �
P
¼ Kx

@

@x
@u
@x

����
P

� �
� Kx

Dx
@u
@x

����
e

�@u
@x

����
w

� �

¼ Kx

Dx
be

uE � uP
de

� bw
uP � uW

dw

� �
ð4:26Þ

@

@y
Ky

@u
@y

� �
P
¼ Ky

@

@y
@u
@y

����
P

� �
� Kx

Dy
@u
@y

����
n

�@u
@y

����
s

� �

¼ Ky

Dy
bn

uN � uP
dn

� bs
uP � uS

ds

� �
ð4:27Þ

u
@u
@x

þ v
@u
@y

� �
P
� u�P

@u
@x

����
P
þ v�P

@u
@y

����
P

¼ u�P
ue � uw
Dx

h i
þ v�P

vn � vs
Dy

� �

¼ u�P
Dx

ð1
2
þ aeÞuP þð1

2
� aeÞuE

n o
� ð1

2
þ awÞuW þð1

2
� awÞuP

n oh i
� v�P
Dy

ð1
2
þ anÞuP þð1

2
� anÞuN

n o
� ð1

2
þ asÞuS þð1

2
� asÞuP

n oh i
ð4:28Þ

A discussion on the relationship between the weighting applied in the above
discretizations, with those that were present in the approximation of the derivatives
in Eqs. (2.6) and (2.8) is provided in Sect. 4.5.

Here we note that u�P and v�P are the values of uP and vP that were assumed to be
‘constant’ at the discretization level. Actually, while the solution progresses, they
will be values from the previous iteration level, or values at the initial level. The
starred values become equal to the un-starred ones at the overall convergence level.

Continuing, the term involving pressure can be approximated as

@p
@x

����
P
� pe � pw

Dx
¼ pE � pP

1
2ðde þ dwÞ ð4:29Þ

Substituting the approximations in Eqs. (4.26)–(4.29) into Eq. (4.5) we get

32 4 Finite Difference Formulations

http://dx.doi.org/10.1007/978-3-319-29895-5_2
http://dx.doi.org/10.1007/978-3-319-29895-5_2


Kx

Dx
be

uE � uP
de

� bw
uP � uW

de

� �
þ Ky

Dy
bn

uN � uP
dn

� bs
uP � uS

ds

� �

� qu�P
Dx

ð1
2
þ aeÞuP þð1

2
� aeÞuE

n o
� ð1

2
þ awÞuW þð1

2
� awÞuP

n oh i
� qv�P

Dy
ð1
2
þ anÞuP þð1

2
� anÞuN

n o
� ð1

2
þ asÞuS þð1

2
� asÞuP

n oh i
þ pE � pP

Dx
¼ 0 ð4:30Þ

Now multiplying all sides in Eq. (4.30) by the product DxDy and collecting
terms we get

KyDx
bs
ds

þ qv�PDxð12þ asÞ
� �

uS

þ KxDy
bw
dw

þ qu�PDyð12þ awÞ
� �

uW

� KxDy
be
de
þ bw

dw

	 

þKyDx

bn
dn

þ bs
ds

	 

þ �

PDy ð12þ aeÞ � ð12 � awÞ
� �þ qv�P ð12þ anÞ � ð12 � asÞ

� �
2
4

3
5uP

þ Kx
be
de

� qu�Pð12� aeÞ
� �

uE

þ KyDx
bn
dn

� qv�PDxð12 � anÞ
� �

uN

þ Dy½ �pP � Dy½ �pE ¼ 0

ð4:31Þ

Equation (4.31) can now be written as

Au
SuS þAu

WuW þAu
PuP þAu

EuE þAu
NuN þApu

P pP þApu
E pE ¼ buP ð4:32Þ

in which

Au
S ¼ Dx Ky

bs
ds

þ qv�Pð12þ asÞ
� �

ð4:33aÞ

Au
W ¼ Dy Ky

bs
ds

þ qu�Pð12þ awÞ
� �

ð4:33bÞ

Au
E ¼ Dy Kx

be
de

� qu�Pð12� aeÞ
� �

ð4:33cÞ
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Au
N ¼ Dx Ky

bn
dn

� qv�Pð12 � anÞ
� �

ð4:33dÞ

Apu
E ¼ �Dy ð4:33eÞ

Apu
P ¼ Dy ð4:33fÞ

Au
P ¼ �ðAu

S þAu
W þAu

E þAu
NÞ ð4:33gÞ

and

buP ¼ 0 ð4:33hÞ

The validity of Eq. 4.33g is easy and it is left to the reader as an exercise.
There is an important issue to be discussed here, before going any further. We

note from Sect. 4.3 that the factor r, defined by r ¼ qud=K, always carries the sign
of u. On the other hand, a, when defined exactly by Eqs. (4.14) and (4.16) in terms
of r, carries the sign of r too. Therefore a carries the sign of u as well. However, if
the approximation for a as described in Eqs. (4.23) and (4.25) are used, as is done in
Eqs. (4.33a–4.33d), a will still be positive in a case when u is negative. This
discrepancy will lead to physically unrealistic results at the points where the
velocities u� and v� are negative. To correct this deficiency, Eqs. (4.33a–4.33d)
must be updated as follows:

Au
S ¼ Dx Ky

bs
ds

þ 1
2
qv�P þ qv�P

�� ��as
� �

¼Dx
ð1þ 0:005r2s Þ
ð1þ 0:05r2s Þ

Ky

ds
þ 1

2

�
P
þ 1

2
qv�P
�� �� r2s

5þ r2s

� �
ð4:33a0Þ

Au
W ¼ Dy Ky

bw
dw

þ 1
2
qu�P þ qu�P

�� ��aw
� �

¼Dy
ð1þ 0:005r2wÞ
ð1þ 0:05r2wÞ

Ky

dw
þ 1

2
qu�P þ 1

2
qu�P
�� �� r2w

5þ r2w

� �
ð4:33b0Þ

Au
E ¼ Dy Kx

be
de

� 1
2
qu�P þ qu�P

�� ��ae
� �

¼Dy
ð1þ 0:005r2e Þ
ð1þ 0:05r2e Þ

Kx

de
� 1

2
qu�P þ 1

2
qu�P
�� �� r2e

5þ r2e

� �
ð4:33c0Þ

Au
N ¼ Dx Ky

bn
dn

� 1
2
qu�P þ qv�P

�� ��an
� �

¼Dx
ð1þ 0:005r2nÞ
ð1þ 0:05r2nÞ

Ky

dn
� 1

2
qu�P þ 1

2
qv�P
�� �� r2n

5þ r2n

� �
ð4:33d0Þ
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4.4.2 Discretization of the v-Momentum Equation

The discretization of the v momentum equation is much the same as for the
u momentum equation. The only difference is that this time we consider the control
volume for the v variable as shown in Fig. 4.4.

Here it is important to note that the values of the mesh differences de, dw, dn, ds,
Dx and Dy are not the same as in the discretized forms of the u momentum equation
due to the different control volumes used. Therefore the reader must be careful
while calculating the coefficients for each momentum equation.

We consider the ‘control volume’ around an arbitrary point P in the solution
domain and note that the neighboring functional values of vP at the east, west, north
and south sides of the point P are vE, vW , vN and vS, respectively. As in the
u momentum equation these points are placed midway between the two neigh-
boring pressure points on the north and south sides of the control volume.

With these in mind, the approximations derived in Eqs. (4.13), (4.15), (4.21) and
(4.25) are now used to approximate each term in the v-momentum Eq. (4.6) as
follows:

@

@x
Kx

@v
@x

� �
P
¼ Kx

@

@x
@v
@x

����
P

� �
� Kx

Dx
@v
@x

����
e
�@v
@x

����
w

� �

¼ Kx

Dx
be

vE � vP
de

� bw
vP � vW

de

� �
ð4:34Þ

Fig. 4.4 Control volume for
v velocity
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@

@y
Ky

@v
@y

� �
P
¼ Ky

@

@y
@v
@y

����
P

� �
� Kx

Dy
@v
@y

����
n

�@v
@y

����
s

� �

¼ Ky

Dy
bn

vN � vP
dn

� bs
vP � vS

ds

� �
ð4:35Þ

u
@v
@x

þ v
@v
@y

� �
P
� u�P

@v
@x

����
P
þ v�P

@v
@y

����
P

¼ u�P
ve � vw
Dx

h i
þ v�P

un � us
Dy

� �

¼ u�P
Dx

ð1
2
þ aeÞvP þð1

2
� aeÞvE

n o
� ð1

2
þ awÞvW þð1

2
� awÞvP

n oh i
� v�P
Dy

ð1
2
þ anÞvP þð1

2
� anÞvN

n o
� ð1

2
þ asÞvS þð1

2
� asÞvP

n oh i
ð4:36Þ

The term involving pressure is approximated as

@p
@y

����
P
� pN � pP

Dy
ð4:37Þ

Substituting the approximations in Eqs. (4.34)–(4.37) into Eq. (4.6), multiplying
by DxDy and rearranging we get

Dx Ky
bs
ds

þ qv�Pð12þ asÞ
� �

vS þDy Kx
bw
dw

þ qu�Pð12þ awÞ
� �

vW

� Kx
be
de
þ bw

dw

	 

þKyDx

bn
dn

þ bs
ds

	 

þ qu�PDy ð12þ aeÞ � ð12 � awÞ

� �þ �
PDx ð12þ anÞ � ð12 � asÞ

� �
2
4

3
5vP

þDy Kx
be
de

� qu�Pð12� aeÞ
� �

vE

þ Ky
bn
dn

� qv�Pð12� anÞ
� �

vN

þ Dx½ � pP � Dx½ � pN ¼ 0

ð4:38Þ

which can be cast into

Av
SvS þAv

WvW þAv
PvP þAv

EvE þAv
NvN þApv

P pP þApv
N pN ¼ bvP ð4:39Þ
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in which

Au
S ¼ Dx Ky

bs
ds

þ qv�Pð12þ asÞ
� �

ð4:40aÞ

Au
W ¼ Dy Ky

bs
ds

þ qu�Pð12þ awÞ
� �

ð4:40bÞ

Au
E ¼ Dy Kx

be
de

� qu�Pð12� aeÞ
� �

ð4:40cÞ

Au
N ¼ Dx Ky

bn
dn

� qv�Pð12 � anÞ
� �

ð4:40dÞ

Apv
N ¼ �Dx ð4:40eÞ

Apv
P ¼ Dx ð4:40fÞ

Av
P ¼ �ðAv

S þAv
W þAv

E þAv
NÞ ð4:40gÞ

and

bvP ¼ 0 ð4:40hÞ

Here also we note that if the approximations for the weighting factors a and b are
used as described in Sect. 4.3, then Eqs. (4.40a–4.40d) must be updated similarly as
discussed in the previous subsection. This is straightforward and it is left to the
reader.

Fig. 4.5 Control volume for
mass conservation
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4.4.3 Discretization of the Mass Conservation Equation

For the discretization of the mass conservation Eq. (3.3) we use the mass control
volume shown in Fig. 4.5.

We get

ue � uw
Dx

þ vn � vs
Dy

¼ 0 ð4:41Þ

Since this equation is going to be used together with the discretized forms of the
momentum equations, it is now suitable to divert to the same notation for node
numbering. Noting that the actual velocity values lie exactly at the four faces of the
control volume for mass conservation, we can write ue ¼ uP, uw ¼ uW , vn ¼ vP and
vs ¼ vS. Therefore Eq. (4.41) can be written as

uP � uW
Dx

þ vP � vS
Dy

¼ 0 ð4:42Þ

Multiplying Eq. (4.42) by DxDy and rearranging, we get

�Dy½ �uW þ Dy½ �uP þ �Dx½ �vS þ Dx½ �vP ¼ 0 ð4:43Þ

which can be written in the form

ACu
W uW þACu

P uP þACv
S vS þACv

P vP ¼ bpP ð4:44Þ

in which ACu
W ¼ �Dy; ACu

W ¼ Dy; ACv
S ¼ �Dx; ACv

W ¼ Dx and bpP ¼ 0.
We note here that bpP is zero, but we will demonstrate later that it may become

nonzero for a point neighboring a boundary, upon implementing certain boundary
conditions regarding the velocities at the boundary.

4.5 A Discussion on the Profile Assumptions

Before closing the chapter, a discussion of the approximations for the first and
second order derivatives performed in the above sections and their relationship with
the quadratic interpolations mentioned in Chap. 2 is appropriate.

Letting U stand either for u or v, we will work out approximations for @U
@x

��
P and

@2U
@x2

���
P
. Similar discussions can be made for the derivatives in the y direction.

Considering the approximation made in Eq. (4.28) regarding @U
@x

��
P with the

approximations in Eqs. (4.13) and (4.15) in Sect. 4.3, we can write
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@U
@x

����
P

� Ue � Uw

Dx
¼ Ue � Uw

ðde þ dwÞ=2
¼ 2

de þ dw
ð1
2
þ aeÞUP þð1

2
� aeÞUE � ð1

2
þ awÞUW � ð1

2
� awÞUP

h i
¼ 2

de þ dw
�ð1

2
þ awÞUW þðae þ awÞUP þð1

2
� aeÞUE

h i

¼ �ð1þ 2awÞ
de þ dw

UW þ 2ðae þ awÞ
de þ dw

UP þ ð1� 2aeÞ
de þ dw

UE ð4:45Þ

Now replacing ae and aw in Eq. (4.45) by ae ¼ de�dw
2de

and aw ¼ de�dw
2dw

gives the
approximation in Eq. (2.6) which was obtained by using straight quadratic
interpolation.

For @2U
@x2

���
P
, we consider the approximation in Eq. (4.26) to formulate

@2U
@x2

����
P

¼ @

@x
@U
@x

����
P

� �
� 1

Dx
@U
@x

����
e

�@U
@x

����
w

� �

¼ 1
Dx

be
UE � UP

de
� bw

UP � UW

dw

� �

¼ 2
de þ dw

be
UE � UP

de
� bw

UP � UW

dw

� �

¼ 2
de þ dw

bw
dw

UW � be
de

þ bw
dw

� �
UP þ be

de
UE

� �

¼ 2bw
dwðde þ dwÞUW � 2bwðbedw þ bwdeÞ

dedwðde þ dwÞ UP þ 2be
deðde þ dwÞUE ð4:46Þ

If we set be and bw to unity in Eq. 4.46, we obtain the approximation in
Eq. (2.20), which was obtained by straight quadratic interpolation.

This provides an insight into the difference between a straight quadratic inter-
polation and the ‘weighted’ averaging interpolation. In both of the approximations
we use three functional values. The difference is in the choice of the weighting
factors.

The weighted averaging interpolation is named as the ‘weighted approximation’
in the literature (see Appendix A) and is almost classical for the solution of field
problems.
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Chapter 5
Preparations for Solution

Before commencing with the setting up of the block coupled system to be utilized
later on, there are three basic steps to be completed.

Firstly, we note that the discretized equations constructed in the previous chapter
are written only for one grid point, but are applicable to every point in the whole of
the solution space. Therefore, it is necessary to apply these to each grid point
interior to the solution region.

Secondly, it is well known that a physical fluid flow problem is not only
characterized by the governing equations, but also complemented by certain
boundary conditions to be applied along with these equations. The boundary
conditions must be reflected into the equations for the points neighboring a
boundary of the solution region. Boundary condition implementation, especially in
the context of the coupled solution strategy introduced in Chap. 7, comprises a very
important stage in the solution process. Therefore, it is necessary to examine the
ways of implementing the boundary conditions of varying types efficiently and
correctly into the discretized forms of the equations.

Finally, considering the nonlinear structure of the governing equations and the
iterative nature of the solution procedures used, certain relaxation need to be
implemented onto the discretized equations.

After these steps have been completed, all of the equations will then be
assembled into a general matrix system to be solved by a suitable procedure.

The aim in this chapter is to introduce the ways of implementing certain
preparatory processes in order to address these issues.

5.1 The Solution Region

The solution region of a certain physical problem is the area within which the
governing equations are valid. For our purposes here, we will assume that such a
region can be covered by a rectangular area, or can be regarded as a subset of such
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an area. Without loss of generality, we will assume that we are given the region
defined by R ¼ ðx; yf g; 0� x� xm; 0� y� ynÞ for some positive values xm and yn
as shown in Fig. 5.1.

The solution region is subdivided into a finite number of rectangular subinter-
vals, named as ‘mass control volumes’. The grid system is formed in such a way
that the ‘real’ boundary lines on the east, west, north and south boundary lines pass
through midway from the two outermost lines of the grid nodes denoted by small
circles. We suppose that the number of nodes, denoted by empty circles, in the
x and y directions of the solution region are m and n, respectively. This means that
there are a total of N ¼ m� n inner nodes within the region altogether. The nodes
outside the solution region marked with a minus sign are ‘fictitious’ nodes and they
are not included in the set of actual nodes. Therefore, no equations are included for
the variables at those nodes.

Now the set of discretized forms of the governing equations, Eqs. (4.32), (4.39)
and (4.44) should be applied to all of these nodes using the control volumes defined
in Figs. 4.3, 4.4 and 4.5, respectively. There is no need for writing any equation for
the fictitious points. This will be handled while imposing the relevant boundary
conditions on each boundary as will be shown in the following section. Since we
will have N equations for each of the variables u, v and p, the total number of
variables will be 3N.

5.2 Boundary Conditions

Boundary conditions are necessary to describe certain physical conditions for the
fluid flow problem under consideration. These conditions must be adequately
interpreted and applied in the discretized forms of the governing differential
equations.

The application of the boundary conditions for the dependent variables is a bit
different from that used for equations which contain only one set of dependent
variables of the same kind. Hence it is anticipated that some difficulties may be

Fig. 5.1 A rectangular area
of solution
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realized in applying the boundary conditions within the context of our coupled
primitive system.

The aim in this section is to provide the readers with sufficient information on
the correct application of the boundary conditions. In the subsections that follow,
we first give a description of how a general boundary condition is applied.
Following this, we discuss the implementation on various special cases.

Considering the importance of the correct implementation of the boundary
conditions, the reader is urged to go through these sections thoroughly. Later on, the
sections may serve as a reference when need arises.

5.2.1 Types of Boundary Conditions

Boundary conditions in a fluid flow are necessary in order to impose certain
physical constraints describing, for example, obstacles around or within the flow
region, enforced inflow or outflow velocity profiles or free surfaces. Some types of
obstacles are ‘building blocks’, ‘wind-breaks (shelterbelts)’ and ‘steps’ as shown
Fig. 5.2.

Such obstacles are defined by setting the velocity components u and v equal to
zero at the surfaces of the obstacles.

Examples for a constant velocity profile are the inflow and outflow velocities
u ¼ uin and v ¼ uout, at the inlet and outlet openings of a ‘Tank problem’ shown in
Fig. 5.3.

An enforced ‘wind flow’ profile, say for air with density of q ¼ 1:18 kg/m3 and

at 15 �C may be described by the formula uin ¼ uf
j ln y

y0

� �
, where uf ¼ 0:31m/sec is

the friction velocity, j ¼ 0:4 is the von Karman’s constant, y0 ¼ 0:007m is the
roughness parameter and y is the height above the ground, is shown in Fig. 5.4.

A typical free surface is the east side or ‘downstream’ if the side is chosen far
enough from the areas of any velocity changes. Such surfaces are characterized
mathematically by imposing the conditions @u

@x ¼ 0 and @v
@y ¼ 0 at those surfaces.

Furthermore, at the north side of such a region, conditions for the velocity com-
ponents must be set to u ¼ uin and @v

@y ¼ 0.

Fig. 5.2 Types of obstacles
in a flow field
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In general, a physical boundary condition can be described by the general
formula

AU ¼ B
@U
@n
þC; ð5:1Þ

in which A, B and C are constants, n may stand either for x or y, and U may stand
for either u, v or p. If B ¼ 0, the condition is said to be a ‘Dirichlet’ condition, if
A ¼ 0, the condition is called a ‘Neumann’ condition, otherwise it is called a
‘mixed’ type.

Suppose we have a general formula describing the behavior of U at a point P,
neighboring the east face, shown with its neighboring points S, W, E and N in
Fig. 5.5.

ASUSþAWUW þAPUPþAEUE þANUN ¼ bP ð5:2Þ

The boundary condition (5.1) for this case is written as

AU ¼ B
@U
@x
þC ð5:3Þ

Fig. 5.3 Inlet and outlet
boundary conditions

Fig. 5.4 Enforced wind flow
and free surface flow
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First we write an approximation for (5.3) at the point P as

AUP ¼ B
UE � UP

Dx
þC ð5:4Þ

Solving UE in terms of UP from (5.4) we get

UE ¼ FþGUP ð5:5Þ

in which F ¼ �CD and G ¼ DAþ 1, where D ¼ Dx=B.
Now substituting UE from Eq. (5.5) into Eq. (5.2) gives

ASUSþAWUW þAPUPþAEðFþGUPÞþANUN ¼ bP ð5:6Þ

or

ASUSþAWUW þðAPþAEGÞUPþð0ÞUE þANUN ¼ bP � AEF ð5:7Þ

The computational application of this change for the equation of UP can now be
done in three steps as

1. Update AP by AP  APþAEG
2. Update bP by bP  bP � AEF
3. Set AE  0.

5.2.2 Application of Various Types of Boundary Conditions
into the Momentum Equations

Since the discretized forms of the two momentum equations are similar, let U stand
either for u or v. Then an equation for U can be written as

ASUSþAWUW þAPUPþAEUE þANUN þAp
WðSÞpPþAp

EðNÞpE ¼ bP ð5:8Þ

Type 1: No slip type
Consider the boundary condition on a south side boundary as shown in Fig. 5.6.

Fig. 5.5 General boundary
conditions at a surface
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Considering the numbering of the nodes, Eq. (5.8) can be written, by using a
simple change of notation, as

A53U3þA54U4þA55U5þA56U6þA57U7þAp
53p3þAp

55p5 ¼ b5 ð5:9Þ

Here two conditions are demanded to be imposed. These are U3 ¼ �U5 for U
and p5 ¼ p3 for p. Replacing U3 by �U5 and p3 by p5 in Eq. (5.9) gives

A53ð�U5ÞþA54U4þA55U5þA56U6þA57U7þAp
53ðp5ÞþAp

55p5 ¼ b5 ð5:90Þ

To impose the condition on U, A55 is first replaced by A55 � A53, followed by
setting A53 to zero. The condition on p is imposed by first replacing Ap

55
by Ap

55
þAp

53
,

followed by setting Ap
53
to zero. Equation (5.9) then becomes

ð0ÞU3þA54U4þðA55 � A53ÞU5þA56U6þA57U7þð0Þp3þðAp
55þAp

53Þp5 ¼ b5
ð5:10Þ

The implementation of this process can be summarized as follows:

1. Update A55 by A55  A55 � A53

2. Update Ap
55 by Ap

55  Ap
55 � Ap

53
3. Set A53  0
4. Set Ap

53  0

Type 2: Gradient type boundary condition
This type of a condition is shown in Fig. 5.7 at a north side boundary.

Fig. 5.6 No-slip boundary
conditions

Fig. 5.7 Gradient type
boundary conditions
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Considering again the numbering of the nodes, Eq. (5.8) can be written as

A57U7þA54U4þA55U5þA56U6þA52U2þAp
55p5þAp

52p2 ¼ b5 ð5:11Þ

Here again two conditions are demanded to be imposed. These are U2 ¼ U5 for
U and p5 ¼ p2 for p. To impose the condition on U, A55 is first replaced by
A55þA52, followed by setting A52 to zero. The condition for p is imposed by first
replacing Ap

55
by Ap

55
þAp

52
, followed by setting Ap

52
to zero. Equation (5.11) then

becomes

ð0ÞU7þA54U4þðA55þA57ÞU5þA56U6þA52U5þðAp
55þAp

52Þp5þð0Þp2 ¼ b5
ð5:12Þ

5.2.3 Application of Boundary Conditions into the Coupled
Equations

Now we turn our attention to the discretized momentum and mass conservation
equations in (4.32), (4.39) and (4.44). A boundary condition set for a point
neighboring a boundary must be imposed on the whole set of these equations.

If we had an explicit equation for pressure, we would also need to impose certain
conditions on these equations as well. Considering the relativeness of the pressure
values in an incompressible flow problem, the only condition to be imposed is to set
the pressure value at only one reference point in the solution domain, while letting
the pressures be ‘free’ by specifying @p

@n ¼ 0 at the boundaries. Surprisingly enough,
in contrast to certain procedures described in the literature in which special
‘equations’ are derived for pressure, this last condition need not even be set in the
special solution procedures described in this book, since there is no explicit
equation for pressure. Pressure boundary conditions are only reflected in the
pressure terms of the two momentum equations as discussed below.

Boundary conditions for the velocity components must be imposed not only on
the momentum equations, but also on the mass conservation equations.

We will consider various conditions, but it must hereby be stated that a certain
combination of these conditions may appear in actual flow problems. Nevertheless,
the examples presented give the reader all the knowledge on how other combina-
tions will be treated.

Case 1: South face Consider the boundary conditions on the south side of the
rectangular region as shown in Fig. 5.8.

5.2 Boundary Conditions 47

http://dx.doi.org/10.1007/978-3-319-29895-5_4
http://dx.doi.org/10.1007/978-3-319-29895-5_4
http://dx.doi.org/10.1007/978-3-319-29895-5_4


The discretized mass and momentum equations for the point denoted by (5) can
be written as follows.

Au
52u2þAu

54u4þAu
55u5þAu

56u6þAu
57u57þApu

55p5þApu
56p6 ¼ bu5

Av
52v2þAv

54v4þAv
55v5þAv

56v6þAv
57v7þApv

55p5þApv
57p7 ¼ bv5

ACu
4 u4þACu

55 u5þACv
52v2þACv

55v5 ¼ 0

Conditions @p
@y ¼ 0, u ¼ 0 and v ¼ 0 on the boundary can be expressed as

p5 ¼ p2, u5 ¼ �u2 and v2 ¼ 0, respectively. Here nothing has to be done for the
pressure condition since p2 does not appear in the equations. Only the conditions
for the velocities are applied onto the momentum equations as well as onto the mass
conservation equation by updating the above equations as follows:

ð0Þu2þAu
54u4þðAu

55 � Au
52Þu5þAu

56u6þAu
57u57þApu

55p5þApu
56p6 ¼ bu5

ð0Þv2þAv
54v4þAv

55v5þAv
56v6þAv

57v7þApv
55p5þApv

57p7 ¼ bv5
ACu
4 u4þACu

55 u5þð0Þv2þACv
55v5 ¼ 0

The coding for these changes is implemented as follows:

Au
55  Au

55 � Au
52

Au
52  0

Av
55  Av

55 � Av
52

Av
52  0

Acv
52  0

Case 2: East face Consider the conditions given on the east face as shown in
Fig. 5.9. The discretized mass and momentum equations for the point denoted by
(3) can be written as follows.

Fig. 5.8 South-face
boundary conditions
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Au
31u1þAu

32u2þAu
33u3þAu

34u4þAu
35u5þApu

33p3þApu
34p4 ¼ bu3

Av
31v1þAv

32v2þAv
33v3þAv

34v4þAv
35v5þApv

33p3þApv
35p5 ¼ bv3

ACu
32 u2þACu

33 u3þACv
31v1þACv

33v3 ¼ 0

Conditions @p
@x ¼ 0, @u

@x ¼ 0 and @v
@x ¼ 0 on the boundary can be expressed as

p4 ¼ p3, u4 ¼ u3 and v4 ¼ v3, respectively. These conditions are applied by
updating the above equations as follows:

Au
31u1þAu

32u2þð0Þu3þðAu
34þAu

33Þu4þAu
35u5þðApu

33þApu
34Þp3þð0Þp4 ¼ bu3

Av
31v1þAv

32v2þð0Þv3þðAv
34þAv

33Þv4þAv
35v5þApv

33p3þApv
35p5 ¼ bv3

ACu
32 u2þACu

33 u3þACv
31v1þACv

33v3 ¼ 0

Case 3: North face Consider the conditions given on the north face as shown in
Fig. 5.10. The discretized mass and momentum equations for the point denoted by
(5) can be written as follows.

Au
52u2þAu

54u4þAu
55u5þAu

56u6þAu
57u7þApu

55p5þApu
56p6 ¼ bu5

Av
52v5þAv

54v4þAv
55v5þAv

56v6þAv
57v7þApv

55p5þApv
57p7 ¼ bv5

ACu
54 u4þACu

55 u5þACv
52v2þACv

55v5 ¼ 0

Conditions @p
@y ¼ 0, and @v

@y ¼ 0 on the boundary can be expressed as p5 ¼ p7 and
v7 ¼ v5, respectively. The condition u ¼ uwall is different. Considering that the
points (7) and (5) are equidistant from the wall face, the relationship
uwall ¼ ðu7þ u5Þ=2, or u7 ¼ 2uwall � u5 can be used. Applying these conditions to
the above equations give

Fig. 5.9 East-face boundary
conditions
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Au
52u2þAu

54u4þðAu
55 � Au

57Þu5þAu
56u6þð0Þu7þApu

55p55þApu
56p6 ¼ bu5 � 2Au

57uwall
Av
52v5þAv

54v4þðAv
55þAv

57Þv5þAv
56v6þð0Þv7þðApv

55þApv
57Þp5þð0Þp7 ¼ bv5

ACu
54 u4þACu

55 u5þACv
52v2þACv

55v5 ¼ 0

The algorithm for the implementation is obvious to the reader by now.

Case 4: West face Consider the conditions given on the west face as shown in
Fig. 5.11. The discretized mass and momentum equations for the point denoted by
(3) can be written as follows.

Fig. 5.10 North-face boundary conditions

Fig. 5.11 West-face
boundary conditions
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Au
31u1þAu

32u2þAu
33u3þAu

34u4þAu
35u5þApu

33p3þApu
34p4 ¼ bu3

Av
31v1þAv

32v2þAv
33v3þAv

34v4þAv
35v3þApv

33p3þApv
35p5 ¼ bv3

ACu
32 u2þACu

33 u3þACv
31v1þACv

33v3 ¼ 0

Conditions @p
@x ¼ 0, u ¼ uin and v ¼ 0 on the boundary can be expressed as

p2 ¼ p3, u2 ¼ uin and v2 ¼ �v3, respectively. To reflect these conditions, the above
equations should now be updated to as

Au
31u1þð0Þu2þAu

33u3þAu
34u4þAu

35u5þApu
33p3þApu

34p4 ¼ bu3 � Au
32uin

Av
31v1þð0Þv2þðAv

33 � Av
32Þv3þAv

34v4þAv
35v3þApv

33p3þApv
35p5 ¼ bv3

ð0Þu2þACu
33 u3þACv

31v1þACv
33v3 ¼ �ACu

32 uin

The coding of the implementation is as follows:

bu3  bu3 � Au
32uin

Au
32  0

Av
33  Av

33 � Av
32

Av
32  0

bp3  bp3 � ACu
32 uin

ACu
32  0

Case 5: Boundary conditions at an inlet Consider a typical inlet corner and
suitable conditions as shown in Fig. 5.12.

The discretized mass and momentum equations for the point denoted by (3) can
be written as follows.

Fig. 5.12 Boundary
conditions at an inlet
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Au
31u1þAu

32u2þAu
33u3þAu

34u4þAu
35u5þApu

33p3þApu
34p4 ¼ bu3

Av
31v1þAv

32v2þAv
33v3þAv

34v4þAv
35v3þApv

33p3þApv
35p5 ¼ bv3

ACu
32 u2þACu

33 u3þACv
31v1þACv

33v3 ¼ 0

The conditions given can be represented as u3 ¼ �u5, v3 ¼ 0, p5 ¼ p3, p2 ¼ p3,
and u2 ¼ uin. The above equations should now be updated to reflect these condi-
tions as

Au
31u1þð0Þu2þðAu

33 � Au
35Þu3þAu

34u4þð0Þu5þApu
33p3þApu

34p4 ¼ bu3 � Au
32uin

ð0Þv1þð0Þv2þð1Þv3þð0Þv4þð0Þv3þð0Þp3þð0Þp5 ¼ 0

ð0Þu2þACu
33 u3þACv

31v1þð0Þv3 ¼ �ACu
32 uin

It is noteworthy here that with the application of the boundary conditions of
Type 4 and 5 in the discretized form of the mass conservation equation, the right
hand side of the equations becomes nonzero. Therefore we must rewrite the general
form of Eq. (4.44) for mass conservation at a grid point P as

ACu
W uW þACu

P uPþACv
S vSþACv

P vP ¼ bpP ð5:13Þ

and apply the updates as usual.
Application of such a condition at an outlet can be accomplished in a similar

manner. There may be, of course, more number of grid points at an inlet or at an
outlet. In such a case, the process must be repeated for each such point.

Case 6: Boundary conditions at a wind-break We consider the no-slip type
boundary conditions on a wind-break as shown in Fig. 5.13.

Application of these boundary conditions is much different from the two cases
discussed above. In those cases, the ‘outer’ nodes were not actually used, that is to
say, their equations were not constructed in the overall formulation of the difference
equations. In this case the difference equations are formed for both of the involved
nodes numbered 4 and 5. The variable on the right hand side of node (4) is

Fig. 5.13 Boundary
conditions at a wind-break
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‘fictitious’ for the variable at the node (5), and the variable on the left hand side of
node (5) is ‘fictitious’ for the variable at the node (4). Therefore, the variables at the
nodes (4) and (5) must be completely isolated from the effects of each other by
updating their corresponding difference equations. Denoting the ‘fictitious’ nodes
by (4′) and (5′) in a respective form, the difference equations at the nodes (4) and
(5) are written as

For node (4)

Au
41u1þAu

43u3þAu
44u4þAu

450u50 þAu
47u7þApu

44p4þApu
450p50 ¼ bu4

Av
41v1þAv

43v3þAv
44v4þAv

450v50 þAv
47v7þApv

44p4þApv
450p50 ¼ bv4

ACu
43 u3þACu

44 u4þACv
41v1þACv

47v7 ¼ 0

For node (5)

Au
52u5þAu

540u40 þAu
55u5þAu

56u6þAu
58u8þApu

55p5þApu
56p6 ¼ bu5

Av
52v2þAv

540v40 þAv
55v5þAv

56v6þAv
58v8þApv

55p5þApv
58p8 ¼ bv5

ACu
540u40 þACu

55 u5þACv
52v2þACv

55v5 ¼ 0

To impose the conditions given as u ¼ 0, v ¼ 0 and @p
@x ¼ 0 in Fig. 5.13, we must

impose u4 ¼ 0, v4 ¼ �v5 and p4 ¼ p5 onto the above two sets of equations as
follows:

For node (4)

ð0Þu1þð0Þu3þð1Þu4þð0Þu50 þ ð0Þu7þð0Þp4þð0Þp50 ¼ ð0Þ
Av
41v1þAv

43v3þðAv
44 � Av

450 Þv4þð0Þv50 þAv
47v7þðApv

44þApv
450 Þp4þð0Þp50 ¼ bv4

ACu
43 u3þð0Þu4þACv

41v1þACv
47v7 ¼ 0

For node (5)

Au
52u5þð0Þu40 þAu

55u5þAu
56u6þAu

58u8þApu
55p5þApu

56p6 ¼ bu5
Av
52v2þð0Þv40 þ ðAv

55 � Av
540 Þv5þAv

56v6þAv
58v8þApv

55p5þApv
58p8 ¼ bv5

ð0Þu40 þACu
55 u5þACv

52v2þACv
55v5 ¼ 0

This completes the process.

Case 7: Treatment for the nodes within a building block There may be cases in
which a ‘building block’ is placed in the flow field under consideration, as shown in
Fig. 5.14.

In such a case, the discretizated set of equations for the variables at the nodes
adjacent to the boundary of the building block, but outside the block, are treated in a
similar way as described in the above cases. The nodes which reside within the
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block (empty circles) are actually outside of the solution region. These nodes are
‘fictitious’ to the respective inner nodes. However, the equations for these nodes
still need to be kept in the set of overall discretized equations in order to be able to
keep the integrity of the structured form of the resulting matrices to be constructed.

The discretized momentum equations for such a point, denoted by P, may be
set as

ð0ÞuSþð0ÞuW þð1ÞuPþð0ÞuE þð0ÞuN þð0ÞpPþð0ÞpE ¼ ð0Þ
ð0ÞvSþð0ÞvW þð1ÞvPþð0ÞvE þð0ÞvN þð0ÞpPþð0ÞpN ¼ ð0Þ

There is no need to perform any changes to the mass conservation equation for
the point P.

These equations are really ‘dummy’ equations. They only act to define the
building block in the flow field. If a point-by-point implementation is used with a
block coupled procedure, which is possible as we will see in Chap. 7, there will be
no need for setting up of a ‘dummy’ equation for such points.

5.3 Incorporating Relaxation

The governing momentum equations pose very strong nonlinearities due to the
product terms appearing in the first order derivatives of the velocity components. In
some physical considerations, even these nonlinearities may appear in the deriva-
tive terms of the second order as well. These nonlinearities tend to undermine an
iterative solution of the whole discretized system, especially in the very early stages
of the iterations in which the changes in the dependent variables are high. To avoid
divergence, these changes must be slowed down. This is accomplished by a process

Fig. 5.14 Boundary
conditions on a building block
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called under-relaxation which must be applied in the discretized forms of the
momentum equations.

Under-relaxation should not be applied to the mass conservation equation.
Although there are various ways of applying under-relaxation, one convenient

way will be described here and applied throughout the book. Let one of the dis-
cretized forms of the two momentum equations be represented in the compact form

APUPþ
X

AnbUnb ¼ b ð5:14Þ

We write this equation in an alternate form as

UP ¼ b�P
AnbUnb

AP
ð5:15Þ

Let U�P represent the value of UP obtained from a previous iteration. Adding and
subtracting U�P on the right hand side of Eq. (5.15) gives

UP ¼ U�Pþ
b�P

AnbUnb

AP
� U�P

� �
ð5:16Þ

The expression in the parenthesis represents the change in UP which has been
obtained in the previous iteration. The value of UP can now be modified by mul-
tiplying the term in paranthesis by a constant factor a, called the relaxation factor.
Equation (5.16) then becomes

UP ¼ U�Pþ a
b�P

AnbUnb

AP
� U�P

� �
ð5:17Þ

which can be written as

AP

a
UP ¼ b�

X
AnbUnbþð1� aÞAP

a
U�P ð5:18Þ

This operation amounts to letting only a percentage of the changes to be reflected
to the variable UP. If a ¼ 0:6 for example, it will amount to letting only sixty
percent of the changes to be reflected. This means a forty percent clip-off from the
changes.

Now we write Eq. (5.18) in a more convenient form by letting a ¼ E
1þE, as

follows

1þE
E

APUP ¼ b�
X

AnbUnbþ 1
E
APU

�
P ð5:19Þ

This formulation of the relaxation process is called the E-factor formulation in
the literature (see Appendix A).
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For the application of the above described relaxation, it suffices to update the
central coefficient AP by 1þE

E AP and the corresponding right hand side coefficient b
by b� 1

E APU�P in each of the discretized forms of the momentum equations (Eqs. 4.32
and 4.39).

Noting that E ¼ a
1�a, Fig. 5.15 represents a graphical relationship between

a and E.
If 0\a� 1 the relaxation is called under-relaxation. Under-relaxation helps in

slowing down the rapid changes that may occur during an iterative process and
avoids divergence. It can be seen from Fig. 5.15 that for under-relaxation, the
E factor must be greater than zero. A very high value of E means that no relaxation
is applied.

If a[ 1, the process is called over-relaxation and it helps in speeding up an
already convergent iterative process. From Fig. 5.15 it is clear that over-relaxation
cannot be applied with the E-factor formulation. Nevertheless, for incompressible
fluid flow problems, only under-relaxation is necessary.

Fig. 5.15 Relaxation factors
a and E
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Chapter 6
Assembling the Discretized Equations
into a Block Matrix System

In the previous chapter, a set of three equations for one grid point of the solution
region was obtained. Equations of the same type apply as well for all the grid points
in the region. Therefore the next step in the solution process is to use the general
forms of the discretized equations obtained and write explicit linear algebraic
equations for the unknown variables at all the grid points in the solution region. The
step is completed by assembling all of these equations into a global block matrix
form. This is accomplished in this chapter.

6.1 The Numbering Scheme

The numbering scheme plays some vital roles in the solution process. Firstly, it
gives a knowledge of the location, and therefore, of the relationship between the
neighboring points in the solution region. Secondly, it helps to correctly place the
corresponding coefficients of the discretized equations into the respective places of
the vectors forming the matrix system. Thirdly, and most importantly, it helps to
shape up (or structure) the resulting matrices. This helps in determining a certain,
efficient way for the solution of the resulting system. The structure of the resulting
block system is very important in the solution process. Solution of linear
unstructured systems is much more difficult and time consuming compared to the
structured ones.

The boundary lines of the solution region are placed midway between the two
outermost rectangular grid lines. Equations are written only for the points that lie
inside of the rectangular boundary. The grid points which lie at the outside of the
solution region are treated as ‘fictitious’ grid points. Therefore, only the ‘inner’
nodes in the solution region are to be numbered.

To obtain a useful structure for the resulting matrix, a suitable numbering
strategy must be chosen. For our purposes here, among various types of strategies,
we choose to begin numbering the nodes starting from the lower left corner and
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continuing until the lower right corner. This completes the numbering of the nodes
in the lower line. We continue this numbering, going line by line in the upper
direction until completing numbering of the uppermost line.

Now let the number of nodes in one horizontal line be m, and the number of
nodes in a vertical line be n. Therefore, there results a total number of N ¼ m� n
grid points. Let us number the horizontal and vertical lines by j ¼ 1; n and i ¼ 1;m,
respectively. Therefore the number of a nodal point in the solution region repre-
sented by the indices ði; jÞ is given by k ¼ Nði; jÞ ¼ iþðj� 1Þ � m.

We demonstrate this strategy on an ðm; nÞ ¼ ð5; 4Þ grid as shown in Fig. 6.1.
Here we have a total of N ¼ 20 nodes. The four neighboring points at the south,
west, east and north sides of a point numbered by k are numbered as k − m, k − 1,
k + 1 and k + m, respectively. Furthermore, the point at the southeast of the point
k is numbered by k − m + 1 and the one at the northwest is numbered by k + m − 1.

6.2 Construction of the Block Matrix System

We first write the u momentum equations starting from the point numbered by
1 and going up to N. We continue writing corresponding equations for the v mo-
mentum equations and then followed by the mass conservation equations, in the

Fig. 6.1 Grid numbering strategy
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same manner. Now with a simple change of notation for the coefficients which will
aid us in storing all the coefficients in vector form, the three equations for a node
numbered, say k, will be written as

Au
Skuk�m þAu

Wk
uk�1 þAu

Pk
uk þAu

Ek
ukþ 1 þAu

Nk
ukþm þAp

Wk
pk þAp

Ek
pkþ 1 ¼ buk ; k ¼ 1;N;

ð6:1aÞ

Av
Sk vk�m þAv

Wk
vk�1 þAv

Pk
vk þAv

Ek
vkþ 1 þAv

Nk
vkþm þAp

Skpk þAp
Nk
pkþm ¼ bvk; k ¼ 1;N;

ð6:1bÞ

AC
Wk
uk�1 þAC

Ek
uk þAC

Sk vk�m þAC
Nk
vk ¼ bpk ; k ¼ 1;N; ð6:1cÞ

Now these equations are transferred into the appropriate places of a block matrix
system whose structure is shown in Fig. 6.2.

The transfer starts from node 1 and goes up to node N.
The matrix that has been obtained in this way will be named to have the

primitive form.

Fig. 6.2 The general block matrix system
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It is important to note here that the coefficients from the discretized equations are
transformed to and kept in vector form. This will aid in the formulation of the
solution process and help minimize the storage needed.

For ease of demonstration on how this is exactly done, we will assume a simple
ðm; nÞ ¼ ð3; 3Þ grid with 9 nodes as shown in Fig. 6.3.

In this example, we note that we have 9 equations for u, 9 equations for v,
followed by 9 equations for mass conservation. Eventually, we have a 27 × 27
matrix system. Then, the block matrix system for this 3 × 3 grid will be as shown in
Fig. 6.4.

We represent this system in a submatrix form as shown in Fig. 6.5 for further
ease of reference.

Before continuing any further, we must note the following important observa-
tion. In our block system, we have 3N equations and 3N unknowns. Therefore, our
block matrix will have dimensions of 3N × 3N. This amount, however, is not
tolerable even with small scaled problems. Therefore, a storage strategy in full
matrix form is completely out of question.

The most efficient and useful strategy is to keep each set of the individual
coefficients in vector form as shown in Fig. 6.4. The procedures that are presented
in the next chapter are most suited for this vector representation.

Fig. 6.3 A simple 3 × 3 grid
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6.3 Disadvantages of the Block Matrix

In order to be able to devise an efficient solution procedure for the linear system of
equations obtained, we need to know the properties of the coefficient matrix. In this
regard, the advantages and disadvantages of the block matrix obtained above, must
be examined. The disadvantages will guide us on eliminating inefficient solution
methods, while the advantages may help in constructing efficient ones.

Fig. 6.4 Block 27 × 27 system for the 3 × 3 grid

Fig. 6.5 Submatrix form of
the block matrix system
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In this section we consider the disadvantages.
The block matrix system in Fig. 6.5 can be written as

A½ � Xf g ¼ Bf g ð6:2Þ

where Xf g ¼ u; v; pf g is the block solution vector containing the unknown
velocities and pressures. To appreciate how huge this matrix may be, suppose we
have a two dimensional problem involving, say, only 30 interior nodes in each of
the two directions. In such a case there would be 30 × 30 × 3 = 2700 unknowns, and
A would be a 2,700 × 2,700 matrix with 7.29 million coefficients. Of these,
however, less than 17,000 are nonzeros, so that only about one in each 450 coef-
ficients is nonzero. The reader can imagine the case when, say, 1,000 nodes are
chosen in each direction.

For a three dimensional problem, if, typically, we choose 30 points is the third
direction, A would become a 81,000 × 81,000 matrix with 6,561,000,000 coeffi-
cients of which less than 702,000 are nonzeros. In such a case, less than one in
every 9112 coefficients are nonzeros. This means that only 0.011 % of the matrix
contains nonzero coefficients.

The above observation shows that the matrix A is extremely sparse, that is to say,
the percentage of the zero terms is quite low.

It is clearly easy to conclude that not only the storage of this much of coefficients
into a computer’s memory is void, but also and most importantly, the solution of
such a system is an extremely challenging problem.

There are, of course, various types of solution procedures that can be applied for
the solution of general matrix systems. The utilization of a direct Gaussian elimi-
nation method that does not exploit the sparsity of the matrix A is completely
impractical even for small sized problems. In the meantime the elimination process
will bring nonzero coefficients to the places of the block matrix that were originally
zeros. These extra nonzero terms will need extra storage and extra time for their
re-elimination. Moreover, the execution time with such solvers will be very high.
Therefore the utilization of such solvers for the present block system is quite out of
the question.

To decrease the size of storage needed, one alternative may be to rearrange the
equations so that A has a minimum bandwidth and to solve the set with a band
solver. This may greatly reduce the storage and computing time since many of the
nonzeros will no longer be included in the solution process. Still, the storage and
time required for the solution may be prohibitive. Moreover, besides being com-
plicated and requiring extensive memory space, an efficient and professionally
written code for such a band solver may be out of reach of a humble researcher.

It is possible to obtain an alternative structure for the matrix A by a reordering of
the equations within the block system. One way is to write the momentum and mass
conservation equations in sequence, say, as for u1; v1; p1, followed by u2; v2; p2 etc.
This produces a five-block-diagonal matrix, each of whose coefficients are actually
3 × 3 matrices. To obtain an idea on how the resulting matrix really looks like, the
reader may try the creation on the example 3 × 3 grid used above.
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This system can be solved iteratively or directly by treating the 3 × 3 submatrices
as block coefficients of the new block matrix. Alternatively, the solution can be
obtained by using a coupled direct-and-iterative solution approach. An iterative
approach for the overall block system with 3 × 3 block submatrices, complemented
by direct solution of the inversion process for the 3 × 3 submatrices may be
considered. In such procedures, the zero terms appearing in the block 3 × 3
sub-matrices must be dealt with care. Attempts have been made in the past to apply
such procedures. However, the experience of the Author and others show that
the convergence rate of such procedures is low, and solution times are high (see
Appendix A).

Turning back to the primitive form of the equations, let us consider the possi-
bility of applying an iterative solution technique. In order that an iterative process
works properly and convergently, the matrix of the system must possess two
important properties. The matrix must not have any zero coefficients in its main
diagonal and the matrix must be diagonally dominant. Diagonal dominancy is a
condition saying that the magnitude of the main diagonal coefficient in each row of
the coefficient matrix is greater than the sum of the magnitudes of the off-diagonal
coefficients in that row. If the first condition is violated, the procedure will not work
at all due to division by zero. If the second condition is violated, then the process
will diverge. If the diagonal dominancy is weak, that is to say, if in most of the rows
the magnitude of the main diagonal coefficient is equal to the magnitudes of the
sums of the off-diagonal coefficients, then the iterative process may converge very
slowly. In such a case the solution cost will be high.

In our case, direct application of an iterative solver is not possible because of the
presence of zero terms in the main diagonal. Moreover, none of the rows of the
block matrix are diagonally dominant. The third block row representing mass
conservation is straightforwardly non-diagonally dominant. The first two row
blocks too, are not diagonally dominant due to the coefficients in the submatrices
A13 and A23. Pivoting (i.e. interchanging the places of rows and columns) may help
in transporting nonzero coefficients to the main diagonal. However, the penalty of
this action will be a de-structuring of the original matrix, leading to a series of
further problems. In such a case still, the diagonal dominance will not be achieved.

Researchers, in the past decades, considering the fact that there exists no ‘actual
equation’ for pressure, worked out alternative procedures, called segregated solu-
tion procedures. All of these procedures, a summary of two of which is given in
Appendix B, start by calculating a velocity field by assuming that a preliminary
pressure field is given. This is followed by ‘creating’ a pressure equation by sub-
stituting the new velocity field into the mass conservation equation, but this time
keeping the pressure terms in the momentum equation as variable unknowns.

Unluckily, however, the pressure field obtained from the solution of such
‘pressure’ equations in fact does not correlate with the velocity changes, so that it
needs correction, which in turn necessitates the creation and solution of a ‘pressure
correction’ equation of the same type as the pressure equation.

Since the equations obtained for this purpose, however, are of the Poisson-type
(or elliptic), their solution is highly problematic. The problem is much more
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destructive in our case. The reason for this is that the pressure is ‘free’ at all
boundaries, or mathematically speaking, all boundary conditions are of the form
@p=@n ¼ 0. At only one reference point in the solution region the value of pressure
can be set to a fixed value, say zero. Therefore, all of the rows of the corresponding
matrices for pressure and pressure correction will be weakly diagonally dominant,
except the one at the reference point. This causes very slow convergence rates for
an iterative solution process applied to these equations.

Although highly efficient solution procedures have been developed for the
solution of the Poisson-type equations, the rate of convergence of the overall
solution is still low.

It is very important to note at this stage that the ‘segregation’, thus imposed,
effectively decouples the velocity and pressure variables. The strong coupling,
however, was the most important property of the flow field, which should have been
carefully preserved and perhaps utilized beneficially.

Despite their drawbacks, the segregated type of procedures had to be used in the
past, perhaps since no alternative was formulated.

Then, there remains only one alternative for the solution of the primitive system.
This is to find some way of bringing nonzeros to the main diagonal block submatrix
of the mass conservation equations, but in the meantime provide, perhaps implic-
itly, diagonal dominancy to the resulting system and then resort to an iterative
process. While this is done, the strong coupling between the velocity and pressure
fields should be preserved.

The procedures which will be introduced in Chap. 7 constitute an up-to-date
remedy for all of the above mentioned deficiencies.
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Chapter 7
The Solution Procedure: Block Incomplete
Decomposition

It was pointed out previously that looking at the governing differential equations
themselves is misleading since it gives the impression that there is no equation for
pressure. This illusion is due to the fact that there is no equation which contains
dominant derivatives for pressure. It is not further possible to obtain such an
equation by manipulating the governing differential equations.

Luckily enough, however, it is possible to obtain the pressure field implicitly,
not by concentrating on the differential forms of the equations, but rather on the
primitive form of their discretized counterpart. In fact, if we take a closer look at
the lower block row and the rightmost block column of the block matrix formed in
the last chapter, we see that, although implicit, in fact there is an equation for
pressure. The only thing missing is some way of getting nonzero coefficients onto
the main diagonal of the block lower right part of the primitive matrix. As we
discussed before, there may be some way of achieving this, but the penalties
are high.

The alternative to this is to divert attention from the primitive matrix and con-
centrate on some equivalent and useful partitioning of the matrix whose corre-
sponding sub-matrices may contain nonzeros. This may even help, though
indirectly, in gaining some kind of diagonal dominance as well.

On the other hand, it is important to note that actually the magnitudes of pres-
sures are not so important for the velocity field. Rather, the pressure differences
between the grid points are vital on how the velocity field will act. Therefore,
instead of running after an explicit pressure field, it would be more meaningful to
let the pressure differences act freely on their own to affect the velocity field, but in
the meantime focus attention on conserving mass.

At this point, a ‘tool’ is required to achieve the above ideals. In fact, the ‘in-
nocent looking’ mass conservation equation and its transposal part containing the
effects of the pressure differences are the two main parts of this tool.
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The splitting technique, hereby named as the incomplete decomposition process
that is described in the following sections provides an efficient mechanism for this
purpose.

7.1 Properties and Advantages of the Block Matrix

In this section, instead of its disadvantages, we will concentrate on the useful
properties of the block matrix system created in the previous chapter. After
understanding the beneficial facts, it will be much easier to appreciate why and how
the solution mechanism is formed.

Firstly, we note that the coefficients in each of the submatrices of the block
matrix A are represented ready for use as vectors. There are five vectors for u and
two vectors for pressure in the u momentum equations. Similarly, we have five
vectors for v and two vectors for pressure in the v momentum equations. For mass
conservation we have two vectors for u and two vectors for v. Therefore the
complete block matrix can be cast into a total of eighteen vectors, each of
dimension N. For a three dimensional problem this amounts to 24 vectors.

Some saving in memory can be obtained by not storing the vectors in the
submatrices for pressure and mass conservation, since their coefficients may be
calculated when the need arises. This is because they only contain the grid sizes of
the control volumes.

Secondly, when we look at the last block row of the block matrix as a system
with the right hand side vector, we can easily see that this last equation really acts
on its own as an equation for pressure. This is true, despite the very unusual, but
interesting fact that pressure itself does not appear in the equation. However, the
right hand side vector of this row, bp, contains the effects of the boundary condi-
tions for the velocity field, which were enforced onto the mass conservation as well.
From this, it is clear that the coefficients of the vector bp, together with the mass
conservation constraint itself, will affect the pressure field.

A question may be asked at this point: what about the boundary conditions for
pressure? To answer this question, we note that the boundary conditions for
pressure are imposed not onto the mass conservation equations, but rather, onto the
two momentum conservation equations through their pressure terms as seen pre-
viously. Therefore, there are no means to worry about these conditions in regard of
the mass conservation equation. The effects of the boundary conditions will be
transferred through the implicitness of the cascaded process of the algorithm
applied.

There exists, however, another issue to worry about. This is how we should take
care of the relativeness of the pressures. It is surprising to note here that nothing
needs to be done in this respect. In fact, pressures will set themselves implicitly
while the solution progresses. Although the magnitudes of pressures may differ, the
relative changes do not differ. This is due to the fact that only pressure differences
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appear in the momentum equations. However, since some high velocity changes
may be expected especially at the early stages of the solution process with some
inconvenient under-relaxation, the magnitudes of the pressures may tend to
increase, mostly expected in the areas of the fluid where separation or swirling
exists. This increase may not affect the solution, but may cause overflow in com-
puter’s memory, resulting in an unnecessary complete crash. Noting that some
pressures will be negative and some will be positive, it will be enough, at some
appropriate stage of the solution process, to set the pressure at a reference point, to
some finite value (say 0). Subtracting a certain value from all of the values of
pressures at all nodes is an alternative way of treatment. This will not make any
effect on the momentum equations.

There remains a final, but most important problem to be addressed. For the
solution of the pressure field, we need to have nonzero coefficients in the main
diagonal sub-matrix A33 in Fig. 6.5. Although not beneficial, there is, in fact, one
way of achieving this by directly working on the primitive matrix.

For this we may consider applying a standard elimination process on the system
in Fig. 6.5 to eliminate A31 and A32 by using the two momentum equations. This
provides an explicit equation for pressure as � A13A�1

11 A31 þA23A�1
22 A32

� �
p ¼

bp � buA�1
11 A31 � bvA�1

22 A32. Now the pressure field can be obtained by solving this
system. After the pressure field is thus obtained, a back-substitution process then
will yield the velocity components. The pressure and velocity fields, thus found
surely will satisfy mass and momentum conservations simultaneously, of course
with the provided u* and v* values. The whole process, then, needs to be repeated
using the new velocity field in order to treat the nonlinearities in the momentum
equations.

Mathematically everything seems perfect with this process. However, although
the above remedy seems adequate and appealing, we need to answer the following
questions before attempting such a solution: How are we going to obtain the
inverses of the main diagonal block sub-matrices? Moreover, what will the structure
of the matrix in parentheses be? These are, for sure, challenging questions to
answer. In fact, this will be like, with an old saying, ‘facing with a hail squall while
running away from rain’. By embarking on such an adventure, eventually we will
fall into a trap similar to the ones in the segregated procedures.

One way out of this dilemma may be to transfer all of the off-diagonal coefficients
in the main block diagonal matrices of the momentum equations to the right hand
side vectors of the system and later resort to an iterative sequence. The inversion of
the updated block matrices A

0
11 and A

0
22 is now easy since they contain only a main

diagonal vector. Once that the problem with the inversions is eased in this way, the
linear system constructed for pressure will be of the usual Poisson-type. This is still a
serious problem since the matrix on the left hand side will be loosely diagonally
dominant, a property which leads to slow convergences in an iterative solution
process. For this reason, and because we have set forward for getting rid of a
Poisson-type equation, the above alternative will not be pursued any further.
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If we can afford the solution of a Poisson-type equation, the performance of such
a procedure will surely be much better than that of a segregated procedure. This is
because not much harmful assumptions have been made in due course and that
mass and momentum conservation will be simultaneously satisfied at the end of
each block solution.

It would be most appreciative if we can find some way of solving the primitive
equations without the need for solving a Poisson-type equation. For this, in the
sections that follow, we will resort to an alternative, simple, yet extremely powerful
strategy, which provides the solution of the coupled system in its primitive, original
form.

Nevertheless, the above discussion provides an extremely important observation
which should not be missed. By looking at the expression in parenthesis of the
above equation, we can immediately realize an equivalent symmetric effect of the
mass conservation and pressure terms through the submatrices A13; A31 and
A23; A32 which multiply the inverse momentum matrices on the left and right. This
observation clearly asserts our claim in Sect. 3.3 that the pressure effects are as
important as those of the mass conservation principle.

The mechanism involved in the procedures presented in the following sections
explores this physically crucial and critical property of the flow of incompressible
fluids in an efficient way.

7.2 General Incomplete Decomposition

Let us be given a general linear system of equations denoted by

AX ¼ B ð7:1Þ

The solution of such a system by a classical method may not be feasible,
especially when the matrix A is sparse. It may be possible at times that the matrix
A can be easily decomposable into two submatrices L and U such that

A ¼ LU ð7:2Þ

In this case, Eq. (7.1) can be written as

LUX ¼ B ð7:3Þ

Now letting

UX ¼ Y ð7:4Þ
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reduces Eq. (7.3) to

LY ¼ B ð7:5Þ

Then the solution of the system (7.1) can be accomplished in two steps:

Step 1: Solve LY ¼ B for the intermediate vector Y
Step 2: Solve UX ¼ Y for the unknown vector X

The benefit of this type of an approach is twofold. Firstly, if the forms of the
matrices L and U are adequately selected, the solutions in the above two steps may
be easy and fast. Secondly, the decomposition process may need to be done only
once for a complete problem, if many systems need to be solved which involve the
same matrix.

If the matrices L and U are strictly lower and upper triangular, the procedure is
named as the LU decomposition, and is very well known in the literature. In this
case, the two lower and upper triangular systems are easy to solve, requiring a
forward and a backward substitution (or a linear sweep), respectively.

Although not usual, however, the two matrices L and U may not be lower or
upper triangular, but of some other suitable form. The only criterion in the choice of
how their structure will be is that the solution of the corresponding two systems be
straightforward. For example, a tri-diagonal or similar form may even be much
appreciated, if possible.

The above process constitutes a direct solution to the given system, which, of
course is the most appreciative. However, in some cases, a complete decomposition
of the above type may not be possible. Even if it may be possible, the structure of
the two matrices may be such that too many extra nonzero coefficients may appear
in the places which contain zeros in the original matrix. Thus, the solution of the
two systems may not be efficient due to high storage and time requirements. In such
a case an alternative is to use an ‘incomplete’ decomposition, details of which we
now present.

Let A be decomposed as

A ¼ LUþD ð7:6Þ

in which D will hereby be named as the defect matrix and the L and U matrices as
the strength matrices. The vectors of the defect matrix will be called the defect
vectors and the vectors of the strength matrices the strength vectors.

Then the system in Eq. (7.1) can be written as

LUþDð ÞX ¼ B ð7:7Þ

There are two equivalent methods for obtaining the solution of this system with
an iterative process, each of which has its own advantages and disadvantages:
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Method 1
Write the Eq. (7.7) as

LUX ¼ B� DX ð7:8Þ

The solution of the original system (7.1) can now be accomplished by the
successive iteration

LUXðnþ 1Þ ¼ B� DXðnÞ ð7:9Þ

Then, the solution can be obtained in three steps as follows:

Step 1: Solve LY ðnþ 1Þ ¼ B� DXðnþ 1Þ for Y ðnþ 1Þ

Step 2: Solve UZðnþ 1Þ ¼ Y ðnþ 1Þ for Zðnþ 1Þ

Step 3: Update X by Xðnþ 1Þ ¼ 1� að ÞXðnþ 1Þ þ aZðnþ 1Þ

The iteration thus formed starts with a preliminary assumption Xð0Þ and con-
tinues until satisfactory convergence is achieved. The parameter a is a relaxation
factor which may have a value larger than 0 and less than or equal to 1.

Method 2
For this method we first subtract LUXðnÞ from both sides of Eq. (7.9) to get

LUXðnþ 1Þ � LUXðnÞ ¼ B� DXðnÞ � LUXðnÞ ð7:10Þ

from which we can write

LU Xðnþ 1Þ � XðnÞ
� �

¼ B� LUþDð ÞXðnÞ ð7:11Þ

Replacing LU + D by A and letting dnþ 1 ¼ Xðnþ 1Þ � XðnÞ we get

LUdðnþ 1Þ ¼ B� AXðnÞ ð7:12Þ

Now, one iteration of the solution process consists of the following steps:

Step 1: Solve LY ðnþ 1Þ ¼ B� AXðnþ 1Þ for Y ðnþ 1Þ

Step 2: Solve Udðnþ 1Þ ¼ Y ðnþ 1Þ for dðnþ 1Þ

Step 3: Update X by Xðnþ 1Þ ¼ XðnÞ þ adðnþ 1Þ

The two methods are equivalent and they produce the same results. To decide on
which method to prefer depends on the number of operations performed to calculate
the right hand side in Step 1. Normally Method 1 would be preferred since the
number of defect vectors in D is expected to be less than those in the matrix
A. Consequently, the number of operations to calculate the right hand side in Step 1
of Method 1 will be much less than that of Method 2.
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On the other hand, it can be observed that the right hand side of the system in
Step 1 of Method 2 is the residual of the original system. The residual is an
indication of the level of convergence of the iterations. In our case, the level of
convergence also characterizes the simultaneous satisfaction of the mass and
momentum conservations, which is physically more explanatory. Therefore, if the
residual is calculated for convergence checking, it might be readily used in the
solution as well. This would require no extra effort. In this case, the use of Method 2
is more feasible.

There is one more important advantage of Method 2. In this method, the cal-
culation of the residuals in Step 1 does not involve the utilization of the defect
vectors that will be constructed in the special procedures devised for our special
block matrix system. Since the defect vectors are not needed elsewhere, they need
not be calculated or stored at all. This is an important saving in memory usage and
computational effort.

For these reasons, the use of Method 2 is advisable and will be utilized in what
follows.

The right hand side of the system in step 1 of Method 1 is not the residual of the
block system. Therefore, with Method 1, some other criteria may be used for
convergence testing. A good practice is to use the maximum pressure differences
test given by

maxi pnþ 1
i � pni

�� ��\e ð7:13Þ

for some suitable small value of e.
Before commencing with the application of the above process to our special

primitive form, we note that the only necessary and sufficient condition for the
process to converge is

ðLUÞ�1D
�� ��

2\1 ð7:14Þ

In plain words, this condition states that if the effect of the defect matrix D is less
than the effect of the product LU, then the process converges.

7.3 An Incomplete Decomposition of the Block
System (BIP)

Once that we have decided on the main general strategy, it is the time to delve into
the details of the incomplete decomposition process that is suitable for our block
coupled system. In fact, there exist various ways of doing this, each of which leads
to a different procedure.

The main decision here is on the choice of the shapes of the strength matrices
L and U. The shape of the resulting defect matrix then is established by this choice.
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We now give a complete detail of the incomplete decomposition process for our
block matrix system composed in the previous chapter, by considering one of the
possibilities for the shapes of L and D. In later sections, we present some other
choices as well.

Consider taking the L, U and D matrices as shown in Figs. 7.1, 7.2 and 7.3,
respectively.

In order to see the relationship between the coefficients of A and those of
L, U and D, it is necessary to multiply the matrices L and U, add D, and equate
the result to A. This operation results in the following equations

Ap
Wi

¼ Au
Pi
hi; i ¼ 1; N ð7:15aÞ

Ap
Ei
¼ Au

Pi
fi; i ¼ 1; N � 1 ð7:15bÞ

Ap
Si ¼ Av

Pi
ki; i ¼ 1; N ð7:15cÞ

Ap
Ni
¼ Av

Pi
ni; i ¼ 1; N � m ð7:15dÞ

Fig. 7.1 Block strength
matrix L for BIP

Fig. 7.2 Block strength
matrix U for BIP
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AC
Wi
fi�1 þAC

Ei
hi þAC

Sini�m þAC
Ni
ki þ gi ¼ 0; i ¼ 1; N ð7:15eÞ

AC
Ei
fi þ sigi ¼ 0; i ¼ 1; N � 1 ð7:15fÞ

AC
Wi
hi�1 þ tigi ¼ 0; i ¼ 2; N ð7:15gÞ

AC
Siki�m þ qi ¼ 0; i ¼ 1þm; N ð7:15hÞ

AC
Ni
ni þ ri ¼ 0; i ¼ 1; N � m ð7:15iÞ

At a first glance, it is not really obvious to realize how these equations are
constructed. It is advisable at this point that the reader uses the matrix obtained for
the 3 × 3 grid as given in Fig. 6.4, then fully construct the corresponding matrices
L, U and D by using the shapes given in Figs. 7.1, 7.2 and 7.3. The full shapes are
given in Figs. 7.4, 7.5 and 7.6.

The construction of the Eqs. (7.15a–7.15d) is straightforward and needs no
further elaboration. For the rest of the equations, the highlighted 5-th row of the
matrix L in Fig. 7.4 in the third row-block is taken and turned clockwise by 90
degrees, then multiplied coefficient by coefficient by each column of the third
block-column of the matrix U in Fig. 7.5. After obtaining the equations for this 5th
row, the general equations for the coefficients in the ith row can be obtained by
replacing the subscripts denoted by 5 by i, so that 2’s become i − m and 4’s become
i − 1, noting that m = 3.

It will be much easier for the reader to work with a 4 × 4 or better with a 5 × 5
system and using the 7th block-row or the 13th block-row, respecticely, of
L31 L32 L33½ �. This will require four large 48 × 48 or 75 × 75 squared papers put
together side by side for the matrices A, L, U and D. We leave this to the enthu-
siastic reader, since the dimensions of the pages of the book are too limited for such
a representation. However, for the construction of the more complicated versions

Fig. 7.3 Block defect matrix
D for BIP
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that we will present later on, the utilization of a 75 × 75 case is advisable for a full
appreciation of the construction of the formulations.

Note: The novice reader may initially choose to work the process with an easier
version by setting ti and si to zero. This, in fact, will lead to a version which will be
given special attention later on.

Now the coefficients of the nine vectors, hi; fi; ki; ni; gi; ti; si; qi and ri can be
computed from Eqs. (7.15a–7.15i) as follows:

hi ¼ Ap
Wi

.
Au
Pi
; i ¼ 1; N ð7:16aÞ

fi ¼ Ap
Ei

.
Au
Pi
; i ¼ 1; N � 1 ð7:16bÞ

ki ¼ Ap
Si

.
Av
Pi
; i ¼ 1; N ð7:16cÞ

Fig. 7.4 Full form of the block strength matrix L for BIP
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ni ¼ Ap
Ni

.
Av
Pi
; i ¼ 1; N � m ð7:16dÞ

gi ¼ � AC
Wi
fi�1 þAC

Ei
hi þAC

Sini�m þAC
Ni
ki

� �
; i ¼ 1; N ð7:16eÞ

si ¼ �AC
Ei
fi
.
gi; i ¼ 1; N � 1 ð7:16fÞ

ti ¼ �AC
Wi
hi�1

.
gi; i ¼ 2; N ð7:16gÞ

qi ¼ �AC
Siki�m; i ¼ 1þm; N ð7:16hÞ

ri ¼ �AC
Ni
ni; i ¼ 1; N � m ð7:16iÞ

Fig. 7.5 Full form of the block strength matrix U for BIP
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At this point, a brief discussion of the above equations is essential:

1. The coefficients hi, fi, ki and ni can be computed directly, without any problem.
2. The coefficients gi contain coefficients hi, fi, ki and ni with varying subscripts,

and hence for some subscripts they will not be defined. For example fi�1 is not
defined for i ¼ 1, and ni�m is not defined for i ¼ 1;m. Therefore, gi must be
calculated separately for this range of the subscripts.

3. The coefficients si, ti, qi and ri must be calculated after all the coefficients hi, fi,
ki, ni and gi are calculated. When Method 2 is used for the solution, the coef-
ficients qi and ri need not be calculated.

4. With a properly formed primitive matrix, the coefficients gi will not become
zero, hence the solution of the system in Step 1 will not produce any problem. In
addition, the tri-diagonal solution of the system in Step 2 will not produce any
zeros on the main diagonal of U.

A discussion of the mechanism experienced with these equations is left to
Sect. 8.3, until after applications are presented.

Fig. 7.6 Full form of the block defect matrix D for BIP
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7.4 The Block Solution Procedure

Now that the decomposition has been performed, the following steps are followed
to complete one iteration of the solution process:

1. Calculate the ‘residual vector’ RðnÞ ¼ B� AXðnÞ, using the already calculated
values of XðnÞ ¼ uðnÞ; vðnÞ; pðnÞ

� 	
, or use some initial values, when n ¼ 0.

2. Solve the system LY ðnþ 1
2Þ ¼ RðnÞ to obtain the vector Y ðnþ 1

2Þ ¼ uðnþ 1
2Þ; vðnþ 1

2Þ;
�

pðnþ 1
2ÞÞ. This is straightforward and requires a forward solution in three steps:

a. Solve uðnþ
1
2Þ

i by using uðnþ
1
2Þ

i ¼ RuðnÞ
i

.
Au
Pi

b. Solve vðnþ
1
2Þ

i by using vðnþ
1
2Þ

i ¼ RvðnÞ
i

.
Av
Pi

c. Solve pðnþ
1
2Þ

i by using pðnþ
1
2Þ

i ¼ RpðnÞ
i � AC

Wi
uðnÞi�1 þAC

Ei
uðnÞi þAC

Siv
ðnÞ
i�m þ

�h
AC
Ni
vðnÞi

�i.
gi

3. Solve the system Udðnþ 1Þ ¼ Y ðnþ 1
2Þ to obtain the vector dðnþ 1Þ ¼

d
ðnþ 1Þ
u ; d

ðnþ 1Þ
v ; d

ðnþ 1Þ
p

� �
. This requires a backward solution in three steps:

a. Solve the tridiagonal system by a forward and backward process for cal-
culating the velocity and pressure differences

i. Eliminate ti by a forward elimination
ii. Set dðnþ 1Þ

pN ¼ 0

iii. Solve backward to obtain dðnþ 1Þ
p for i ¼ N � 1 down to 1.

b. Solve for dðnþ 1Þ
v by backward substitution

c. Solve for dðnþ 1Þ
u by backward substitution

4. Update X by Xðnþ 1Þ ¼ XðnÞ þ adðnþ 1Þ to get Xðnþ 1Þ ¼ uðnþ 1Þ; vðnþ 1Þ; pðnþ 1Þ� 	
Note that Step 3a(ii) is to cure the relativeness of the pressures and to avoid

overflow in the process of solution.
The above steps are repeated for n ¼ 1; 2; . . ., until a satisfactory level of con-

vergence of the approximations is established. Complete convergence is achieved
when the residual vector denoted by RðnÞ ¼ B� AXðnÞ in Step 1 becomes zero, or
becomes close to zero within machine accuracy.

When convergence is achieved, the simultaneous satisfaction of the mass and
momentum conservations is guaranteed within the block solution. However, it is
not really necessary to bring the residuals to zero in the block solutions, since the
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results at the end of a block solution will not be the actual solution of the flow field.
This is due to the nonlinearities in the governing differential equations, discussed
previously.

7.5 Complete Solution of the Flow Field

For the complete solution of the flow field, it is necessary to recalculate the coef-
ficients in the discretization equations and repeat the solution process described in
Sect. 7.4 above. This is required for the treatment of the nonlinearities resulting
from the first order derivative terms appearing in the momentum equations. A full
iteration process consisting of

1. Forming a new block matrix system by refreshing the coefficients using the
recently calculated velocity field

2. Applying block implicit solution

will be named as an ‘overall iteration’.
The convergence of the overall iterations to the actual flow field, then, may be

described by a condition, assuring that the changes in the flow field from one
overall iteration to another are small enough, or negligible.

A suitable criterion for this is the maximum absolute difference in the pressure
field between two overall iterations, normalized by the head of the ‘entering’
fluid as

ep ¼
maxi psþ 1

i � psi
�� ��
1
2
qu2ref

ð7:17Þ

in which uref is some fixed velocity value given at some reference point in the
solution region. This, usually, is the value of the velocity at an entering point of the
solution region.

7.6 A Family of Procedures: BIPEN, FICS-1, FICS-2

A question which the reader may have asked for himself at this point is why the
strength vectors in the L and U matrices are so placed, and isn’t there other ways of
selection, or places that other vectors may be employed in these matrices?
Furthermore, how are the places of the vectors in the defect matrix selected?

We first answer the latter question. The vectors in the defect matrix, and the
places at which they are placed are not actually decided beforehand, but rather
established by the places of the strength vectors in the L and U matrices. The reader
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may have already gained an insight into this subject while working on the con-
struction of the formulas.

The following considerations may be useful in the selection of these vectors:

1. Less number of vectors means less extra storage and computing time. More
number of strength vectors may give more durable and faster convergence,
provided that extra storage is tolerated.

2. Less number of defect vectors may mean smaller defective effects leading to a
faster convergence of the solution process.

3. For some selections of the strength vectors, impossibilities may arise. This, for
example, may occur if any strength vector is chosen at the upper part of L, and at
the much lower part of U.

To answer to the former issue; yes, although not much, there are of course a
variety of ways and places that the strength vectors in the L and U matrices can be
placed.

All other sub-matrices remaining the same as described in Sect. 7.3, we now
consider some examples of other possible ways of placement of the strength and
defect vectors by taking the L33, U33 and D33 sub-matrices as shown in Figs. 7.7,
7.8 and 7.9.

The vectors shown in these matrices will not all need be used at the same time.
They are represented here for the sake of general reference. The choice of these
vectors lead to different solution procedures. A list of some possible choices is
given in Table 7.1. The places of the coefficients of the vectors in the corresponding
diagonal row i of the respective submatrices are shown in the last row of the table.

Fig. 7.7 Possible choices for
L33
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The choice given in the row denoted by BIP leads to the method that was
described in the previous section. BIPEN, FICS-1 and FICS-2 are enhanced ver-
sions, so named in the literature (see Appendix A).

Letting Gi ¼ AC
Wi
fi�1 þAC

Ei
hi þAC

Sini�m þAC
Ni
ki; hi ¼ Ap

Wi

.
Au
Pi
; fi ¼ Ap

Ei

.
Au
Pi

ki ¼ Ap
Si

.
Av
Pi
and ni ¼ Ap

Ni

.
Av
Pi
, the formulas for the strength and defect vectors for

BIPEN, FICS-1 and FICS-2 are given as follows:

Fig. 7.8 Possible choices for
U33

Fig. 7.9 Possible choices for
D33
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BIPEN Strength vectors Defect vectors

ai ¼ �AC
Si ki�m ei ¼ �aiti�m

gi ¼ �Gi di ¼ �aisi�m

ti ¼ �AC
Wi
hi�1

.
gi ri ¼ �AC

Ni
ni

si ¼ �AC
Ei
fi
.
gi

FICS-1 Strength vectors Defect vectors

ai ¼ �AC
Si ki�m di ¼ �aisi�m

bi ¼ �AC
Wi
hi�1 yi ¼ �bici�1

gi ¼ �Gi � aici�m � bisi�1

si ¼ �AC
Ei
fi
.
gi

ci ¼ �AC
Ni
ni
.
gi

FICS-2 Strength vectors Defect vectors

ai ¼ �AC
Si ki�m zi ¼ �xisi�mþ 1

xi ¼ �aisi�m mi ¼ �biwi�1

bi ¼ �AC
Wi
hi�1 � aiwi�m

gi ¼ �Gi � aici�m � xiwi�mþ 1 � bisi�1

si ¼ � AC
Ei
fi þ xici�mþ 1

� �.
gi

wi ¼ �bici�1=gi

ci ¼ �AC
Ni
ni
.
gi

Running indices for the strength and defect vectors are as follows:

Strength vectors

ai : mþ 2; N xi : i ¼ m� 1; N bi : i ¼ 2; N

gi : i ¼ 1; N ti : i ¼ 2; N si : i ¼ 1; N � 1

wi : i ¼ 1; N � mþ 1 ci : i ¼ 1; N � m

Defect vectors

ei : i ¼ mþ 2; N qi : i ¼ mþ 1; N di : i ¼ m; N

yi : i ¼ 1; N � m ri : i ¼ 1; N � m� 1 zi : i ¼ m� 1; N

mi : i ¼ 1; N � mþ 1
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7.7 Storage Requirements and Complexity

When a new procedure is forwarded, among other things, the researcher is inter-
ested basically on how costly the procedure is. The cost of a procedure mainly
depends on the storage that would be required to store the extra vectors and on the
total time spent for a complete solution. These, in turn, not only depend on the
procedure itself, but also on the implementation and the programming technique
used. These issues are discussed in this section.

7.7.1 Storage Requirements

To determine the storage requirements of the procedures, we must first determine
the minimum (or necessary) requirements. Following this we must concentrate on
how much storage we might save by certain clever arrangements.

By examining the primitive block matrix system, it is easy to conclude that
storage for the vectors in A11 and A22 is compulsory. The three vectors on the
right hand sides must also be stored. The vectors in A31, A32, A13 and A23 may,
or may not be stored. The coefficients of these vectors contain only the grid sizes.
Therefore, they may not be stored, but calculated when need arises in the calcu-
lation of the strength vectors. However, these vectors contain the effects of the
boundary conditions on velocity and pressure. So, if it is decided that storage will
not be used for these vectors, special precautions in programming must be taken
while the boundary conditions are implemented.

The strength vectors in L33 and U33 need storage. Storage for three, four, five
and seven of these vectors for the BIP, BIPEN, FICS-1 and FICS-2, respectively, is

Table 7.1 Various choices for the strength and defect vectors
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required. The coefficients of the vectors h, k, f and n need not be stored, since they
may be calculated directly within the formulas of the strength and defect vectors.

If Method 2 is used in the block solutions, none of the defect vectors need
storage, since they are not used. We note that, only the residual vector is used to
calculate the right hand side of the lower triangular system.

Considering the above observations, with a professional and clever program-
ming strategy, only a handful of vectors need to be employed in the solution
procedures. Nevertheless, a novice user is advised hereby to store all the vectors in
the primitive matrix and the strength matrices, at least until he is fully confident of
the proper functioning of the algorithm.

7.7.2 Complexity

‘Complexity’ is a notational term used by computer scientists to define the number
of operations performed in an algorithm. In our case, it represents mainly the total
number of multiplicative operations, i.e., multiplications and divisions. If the
algorithm gives the solution in a fixed, specified number of operations, the com-
plexity would be used as an indication of the speed of the algorithm.

The complexity, as described above, is not solely an indication on the speed of a
procedure used for the solution of fluid flow problems. This is because the number
of (block) inner iterations and the number of overall iterations that need to be
performed are not known apriori. All of these depend on the nature of the physical
problem and the ability of the solution procedure to cope with the problem. For
example, in large problems, the effects of the changes at some grid point in the
solution region may not be appreciated quickly at all points, leading to slower
convergence. Convergence may also be slowed down if a non-optimized relaxation
parameter is used. These factors may increase the total number of overall iterations,
as well as the operations performed in the inner iterations.

However, since most of the time in the solution process is spent in the inner
iterations, it is useful to have an idea of the complexity of the algorithms used in the
block solutions. Table 7.2 gives the number of multiplicative operations (�N)

Table 7.2 Complexity of the algorithms
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performed to calculate the coefficients of the strength and defect vectors and the
operations performed in the solution stages, for each procedure.

In this table, multiplications by a constant parameter are not included. Also not
included is the number of operations performed for residual calculation.

We also note that the coefficient calculations are done once in a complete block
solution. This is followed by a series of residual calculations, forward sweeps and
backward substitutions for the solution. The number of preparatory operations
performed elsewhere is not of much importance.

7.8 The Simplest Case (Simple Implicit Coupled
Solution—SICS)

This section is intentionally devoted to introducing a procedure which has some
very special properties. These properties, together with the benefits that are supplied
with, are discussed at the end of the section, after the derivations are formulated.

First let the strength matrices be of the form

With this choice of the strength matrices, the shape of the defect matrix becomes
as follows:
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Now we multiply L and U, add D and equate to A to obtain the formulas for the
coefficients of the strength vectors h, f, k, n and g, and those for the defect vectors
q, r, s and t:

hi ¼ Ap
Wi

.
Au
Pi
; i ¼ 1; N ð7:18Þ

fi ¼ Ap
Ei

.
Au
Pi
; i ¼ 1; N � 1 ð7:19Þ

ki ¼ Ap
Si

.
Av
Pi
; i ¼ 1; N ð7:20Þ

ni ¼ Ap
Ni

.
Av
Pi
; i ¼ 1; N � m ð7:21Þ

gi ¼ � AC
Wi
fi þAC

Ei
hi þAC

Sini þAC
Ni
ki

h i
; i ¼ 1; N ð7:22Þ

qi ¼ �AC
SiA

p
Si�m

; i ¼ mþ 1; N ð7:23Þ

ri ¼ �AC
Wi
Ap
Wi�1

; i ¼ 2; N ð7:24Þ

si ¼ �AC
Ei
Ap
Ei
; i ¼ 1; N � 1 ð7:25Þ

ti ¼ �AC
Ni
Ap
Ni
; i ¼ 1; N � m ð7:26Þ

Although the defect vectors will not be employed in the solution process, they
are given here for the sake of completeness. The locations of these coefficients in
the ith row of D33 are shown below for easy reference.

7.8.1 The Solution Algorithm (SICS)

The algorithm of the above solution process is straightforward to the experienced
reader. To aid the novice reader and to demonstrate its simplicity, we provide a
complete description below.
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We let

XðnÞ ¼ uðnÞ; vðnÞ; pðnÞ
� �

;

Y ðnÞ ¼ ûðnÞ; v̂ðnÞ; p̂ðnÞ
� �

;

dðnÞ ¼ dðnÞu ; dðnÞv ; dðnÞp

� �

and

RðnÞ ¼ RuðnÞ ; RvðnÞ ; RpðnÞ
� �

;

in which

Ru
i ¼ bui �

X
j

Au
jiuj;

Rv
i ¼ bvi �

X
j

Av
ji vj; j ¼ S; W ; P; E; N

and

Rp
i ¼ bpi �

X
j¼W ;E

AC
ji uj �

X
j¼S;N

AC
ji vj; i ¼ 1; N

are the residuals of the block system at the nth block iteration level. The 0th level
indicates the values from the previous outer iteration.

The Algorithm (SICS):

Step 0: Calculate vectors hi, fi, ki, ni and gi using Eqs. (7.18)–(7.22)
Step 1: Solve LY ðnþ 1Þ ¼ B� AXðnÞ for Y ðnþ 1Þ

a. Given XðnÞ ¼ ðuðnÞ; vðnÞ; pðnÞÞ, calculate RðnÞ ¼ ðRuðnÞ ;RvðnÞ ;RpðnÞ Þ
b. Solve LY ðnþ 1Þ ¼ RðnÞ for Y ðnþ 1Þ

i. ûðnþ 1Þ
i ¼ Ru

i

.
Au
Pi
; i ¼ 1; N

ii. v̂ðnþ 1Þ
i ¼ Rv

i =A
v
Pi
; i ¼ 1;N

iii. p̂ðnþ 1Þ
i ¼ Rp

i � AC
Wi
ûi�1 þAC

Ei
ûi þAC

Si v̂i�m þAC
Ni
v̂i

h i
; i ¼ 1;N
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Step 2: Solve Udðnþ 1Þ ¼ Y ðnþ 1Þ for dðnþ 1Þ

a. Let dðnþ 1Þ
pN ¼ 0

b. dðnþ 1Þ
pi ¼ p̂ðnþ 1Þ

i =gi; i ¼ N � 1; 1; �1

c. dðnþ 1Þ
vi ¼ v̂ðnþ 1Þ

i � kid
ðnþ 1Þ
pi

þ nid
ðnþ 1Þ
piþm

h i
; i ¼ 1; N

d. dðnþ 1Þ
ui ¼ ûðnþ 1Þ

i � hid
ðnþ 1Þ
pi

þ fid
ðnþ 1Þ
piþ 1

h i
; i ¼ 1; N

Step 3: Update X by Xðnþ 1Þ ¼ XðnÞ þ adðnþ 1Þ

a. uðnþ 1Þ
i ¼ uðnÞi þ adðnþ 1Þ

ui ; i ¼ 1; N

b. vðnþ 1Þ
i ¼ vðnÞi þ adðnþ 1Þ

vi ; i ¼ 1; N

c. pðnþ 1Þ
i ¼ pðnÞi þ adðnþ 1Þ

pi ; i ¼ 1; N

7.8.2 Properties and Benefits of SICS

There are a couple of unique properties of SICS, which deserve much attention.
Firstly, by a closer examination of the solution process, the reader can conclude

that no extra storage is necessary even for the coefficients of the vectors h, f, k, n
and g. Although they may be computed once and for all for a complete block
solution and stored, they may also be calculated wherever the need arises, if such
storage is not tolerable.

Secondly, in this procedure, only 8 N multiplicative operations are performed for
coefficient calculation and 11 N operations for each block inner iteration, excluding
the residual calculations. The complexity of the procedure is much favorable
compared with the complexity of the former procedures.

Thirdly, although the process is a block-wise or a field-wise one, its imple-
mentation can be accomplished in a point-wise fashion as well. This is an important
feature which will aid in its efficient application to complicated grid arrangements
and unstructured grids.

Point-wise application can be accomplished by performing the block solution by
calculating Ru

1, R
v
1 and R

p
1 followed by updating u1, v1, p1, then by calculating R

u
2, R

v
2

and Rp
2 followed by updating u2, v2, p2, etc. The algorithm developed in the pre-

vious subsection may be modified to invoke the point-wise application as follows:
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Algorithm (SICS): Point-wise Application

Step 1:              for i=1,N 

Calculate by 
u
iR  , 

v
iR  and 

p
iR

 Solve ( 1)ˆ /
i

n u u
i i Pu R A

( 1)ˆ /
i

n v v
i i Pv R A

( 1)
1ˆ ˆ ˆ ˆ ˆ

i i i i

n p C C C C
i i W i E i S i m N ip R A u A u A v A v

                       Calculate vectors coefficients
ih ,

if ,
ik ,

in  and 
ig  using Eqs. (7.18)-(7.22)  

Step 2:           Solve ( 1) ( 1)ˆ /
i

n n
p i ip g

( 1) ( 1) ( 1) ( 1)ˆ
pi pi i m

n n n n
v i i iv k n

1

( 1) ( 1) ( 1) ( 1)ˆ
pi pi i

n n n n
u i i iu h f

Step 3:          Update ( 1) ( ) ( 1)

i

n n n
i i uu u

( 1) ( ) ( 1)

i

n n n
i i vv v

( 1) ( ) ( 1)

i

n n n
i i pp p

end i 

( 1)n
Nt p

for i=1, N 
( 1) ( 1)n n
i ip p t

end i 

The above properties renders the SICS procedure much distinguishable from the
previous procedures and especially from the classical segregated type procedures.

88 7 The Solution Procedure: Block Incomplete Decomposition



Chapter 8
Applications and Testing

In order to apply any of the procedures described to a fluid flow problem, it is
necessary to develop a suitable computer program for this purpose. After the initial
stage of writing such a program, the code must be tested on some benchmark
problems in order to assure its correctness. A benchmark problem is a problem for
which solutions were obtained and their correctness established by some previous
research. In addition, a benchmark test problem must possess certain characteristics
such as equal or differing mesh sizes, various kinds of boundary conditions and
varying physical properties. If the code is successful in obtaining correct solutions
for these problems, it is most likely that it will work perfectly for other problems
as well.

For this purpose, two benchmark problems widely used in the literature are
employed in this book. To assist the reader in the application and testing process,
some results and comparisons will be given in detail, accompanied by some useful
graphics and tables.

8.1 Benchmark Fluid Flow Problems

Problem 1: The Square Tank problem

We consider a square tank full of water. Water enters the tank at one corner, is
deflected by the opposing wall and flows out of the diagonally opposite corner. One
large circulation zone is developed within the tank. It is experienced that due to this
circulation zone, enormous pressure changes occur in the early stages of the iter-
ative solution. This may cause divergence if proper relaxation is not used.
Therefore, this problem is a superb test problem for the durability and toughness for
any numerical procedure.

© Springer International Publishing Switzerland 2016
Z. Mazhar, Fully Implicit, Coupled Procedures in Computational Fluid Dynamics,
Fluid Mechanics and Its Applications 115, DOI 10.1007/978-3-319-29895-5_8
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Figure 8.1 shows the general flow pattern and the boundary conditions imposed.
The physical constants here are those for water; q ¼ 998:2 kg=m3 and
Kx ¼ Ky ¼ 0:001001 kg=m�sec. To the interest of an engineer, we note that the
Peclet number for this problem is Pe ¼ quinL=K ¼ 3988:8.

As shown, only one grid point is located at the center of the inlet and outlet
openings and a 10 × 10 interior grid is used. This means that there are 100 interior
control volumes or as much pressure points. If the number of grid points in each
direction is increased, the number of grid points at the two openings should also be
adjusted. For example, if a 20 × 20 grid is utilized, then one more grid point at each
opening must be used.

For this problem, equal spacing is used in both directions.
It is much advisable for the reader to start testing the computer code with this

problem and with a 10 × 10 grid arrangement. The grid sizes for this case are Dx ¼
Dy ¼ 0:004 m, that is to say xi ¼ 0:002þ iDx; i ¼ 0; 9, yi ¼ 0:002þ iDy; i ¼ 0; 9.

The exact solution to this problem was obtained by driving the solution to a very
tight convergence. Numerical results for u, v and p are shown in Tables 8.1, 8.2 and
8.3, for the case of a 10 × 10 grid. In these tables, the indices on the first column and
the last row show the pressure point numbers in the y and x directions, respectively.

Fig. 8.1 General flow pattern for the Square Tank Problem
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For the purposes of demonstration and reference, three different grid sizes will be
considered for this problem; 10 × 10, 20 × 20 and 40 × 40.

Problem 2: The Shelterbelt problem

In this problem, a dense shelter is placed vertically at the bottom of a flat surface,
opposing an approaching velocity field. When the flow encounters the shelterbelt, it
must pass over it. High pressure differences are encountered in the vicinity of the
top of the shelterbelt. The flow separates at the tip of the shelterbelt and forms a
swirling separation bubble between the top of the shelterbelt and a reattachment
point, expected at a couple of shelterbelt heights downwind from the shelterbelt.
This bubble is characterized by a low velocity reverse flow near the ground. After
the reattachment point, the flow readjusts itself towards a profile similar to that at
the upstream of the shelterbelt.

The geometry of the problem and the associated boundary conditions are shown
in Fig. 8.2.

Assuming that the associated fluid is air, a density of q ¼ 1:18 kg=m3 is used. At
the inflow, an initial boundary condition for u is used as

uðyÞ ¼ u�
j
ln y=y0ð Þ ð8:1Þ

where u� ¼ 0:31 m=sec is the friction velocity, j ¼ 0:4 is the von Karman’s
constant, y0 ¼ 0:007 m is the roughness parameter and y is the height above the
ground. Initially, the u velocity is set as uniform across horizontal lines, whereas the
v velocity and pressure are set to zero everywhere.

The choice of the diffusion coefficients Kx and Ky is important because they play
a vital role in the flow development. If the flow is turbulent, for example, they will
include the effects described by means of a turbulence model through some extra

Fig. 8.2 Shelterbelt geometry and boundary conditions

94 8 Applications and Testing



governing partial differential equations. The use of a turbulence model to describe
these coefficients does not hinder the way in which the velocity-pressure coupling
problem is handled, and therefore is left beyond the scope set up in this book.
Instead, we utilize some semi-constant diffusion coefficients as described in
Fig. 8.2. These were found to yield a physically reasonable flow field.

For this problem, significant grid refinements need to be done in the neigh-
borhood of the shelterbelt and near the ground. The grid ratios (Dx=Dy) for the
pressure control volumes may change from 0.1 to 10.

A sample of the grid arrangement for this problem is given in Fig. 8.3.
The shape of the resulting flow field is shown in Fig. 8.4.

Fig. 8.3 Sample grid arrangement for the Shelterbelt Problem

Fig. 8.4 General flow pattern for the Shelterbelt Problem

8.1 Benchmark Fluid Flow Problems 95



T
ab

le
8.
4

E
xa
ct

u
ve
lo
ci
ty

va
lu
es

fo
r
12

×
9
Sh

el
te
rb
el
t
pr
ob

le
m

9
6.
16

71
6.
16

71
6.
16

71
6.
16

71
6.
16

71
6.
16

71
6.
16

71
6.
16

71
6.
16

71
6.
16

71
6.
16

71
6.
16

71

8
5.
98

35
5.
98

45
6.
00

81
6.
03

28
6.
05

78
6.
08

05
6.
10

53
6.
13

40
6.
16

12
6.
18

30
6.
19

43
6.
19

43

7
5.
78

08
5.
81

42
5.
86

28
5.
90

42
5.
93

69
5.
96

03
5.
98

65
6.
01

81
6.
04

58
6.
06

98
6.
08

50
6.
08

50

6
5.
57

31
5.
63

80
5.
72

13
5.
78

97
5.
83

92
5.
87

11
5.
90

19
5.
92

87
5.
94

33
5.
95

32
5.
96

18
5.
96

18

5
5.
27

87
5.
37

45
5.
49

80
5.
61

36
5.
69

85
5.
74

14
5.
76

62
5.
75

74
5.
72

44
5.
68

83
5.
66

92
5.
66

92

4
4.
99

17
5.
07

18
5.
15

88
5.
30

26
5.
47

27
5.
48

90
5.
42

58
5.
27

86
5.
12

47
5.
01

15
4.
94

70
4.
94

70

3
4.
46

73
4.
37

54
4.
16

01
4.
06

88
4.
53

47
4.
15

33
3.
70

48
3.
26

68
3.
00

31
2.
89

30
2.
85

94
2.
85

94

2
3.
68

03
3.
12

23
2.
42

33
1.
58

90
0.
00

00
0.
38

70
0.
76

58
1.
09

09
1.
33

93
1.
46

11
1.
50

39
1.
50

39

1
2.
62

16
1.
92

57
1.
32

27
0.
71

37
0.
00

00
−
0.
24

70
−
0.
11

62
0.
29

33
0.
59

67
0.
73

31
0.
77

74
0.
77

74

1
2

3
4

5
6

7
8

9
10

11
12

96 8 Applications and Testing



T
ab

le
8.
5

E
xa
ct

v
ve
lo
ci
ty

va
lu
es

fo
r
th
e
12

×
9
Sh

el
te
rb
el
t
pr
ob

le
m

9
0.
04

79
0.
09

06
0.
08

63
0.
07

62
0.
05

79
0.
04

02
0.
03

97
0.
04

11
0.
03

26
0.
01

89
0.
00

74
0.
00

00

8
0.
04

79
0.
09

06
0.
08

63
0.
07

62
0.
05

79
0.
04

02
0.
03

97
0.
04

11
0.
03

26
0.
01

89
0.
00

74
0.
00

00

7
0.
03

72
0.
09

17
0.
11

34
0.
11

48
0.
10

93
0.
10

29
0.
09

48
0.
08

13
0.
06

17
0.
03

76
0.
01

65
0.
00

00

6
0.
04

55
0.
12

09
0.
16

19
0.
17

17
0.
16

78
0.
15

95
0.
14

58
0.
12

00
0.
08

75
0.
05

56
0.
02

71
0.
00

00

5
0.
06

41
0.
16

96
0.
23

33
0.
25

21
0.
24

41
0.
22

56
0.
19

70
0.
14

82
0.
09

93
0.
06

20
0.
03

23
0.
00

00

4
0.
09

20
0.
22

95
0.
32

15
0.
36

54
0.
35

29
0.
29

96
0.
23

14
0.
14

05
0.
07

73
0.
04

26
0.
02

28
0.
00

00

3
0.
12

79
0.
26

96
0.
37

13
0.
47

82
0.
52

73
0.
32

21
0.
16

13
0.
03

72
−
0.
00

48
−
0.
00

61
−
0.
00

30
0.
00

00

2
0.
15

97
0.
23

51
0.
27

90
0.
42

45
0.
88

57
−
0.
07

24
−
0.
21

23
−
0.
19

33
−
0.
11

04
−
0.
04

16
−
0.
01

31
0.
00

00

1
0.
12

88
0.
13

05
0.
12

92
0.
17

91
0.
27

45
0.
12

78
−
0.
05

45
−
0.
10

78
−
0.
06

07
−
0.
02

20
−
0.
00

67
0.
00

00

1
2

3
4

5
6

7
8

9
10

11
12

8.1 Benchmark Fluid Flow Problems 97



T
ab

le
8.
6

E
xa
ct

pr
es
su
re

va
lu
es

fo
r
th
e
12

×
9
Sh

el
te
rb
el
t
pr
ob

le
m

9
0.
77

16
1.
29

20
1.
71

12
1.
62

77
1.
64

14
1.
56

16
0.
96

45
0.
74

62
0.
62

66
0.
44

61
0.
18

58
0.
00

00

8
1.
62

31
1.
67

52
1.
65

40
1.
47

91
1.
29

66
1.
11

23
0.
94

58
0.
75

88
0.
54

13
0.
32

98
0.
09

82
−
0.
06

01

7
2.
24

92
2.
13

57
1.
85

46
1.
48

85
1.
18

64
0.
94

87
0.
77

88
0.
58

47
0.
35

13
0.
14

21
−
0.
05

58
−
0.
19

28

6
2.
99

06
2.
75

37
2.
22

76
1.
59

74
1.
09

68
0.
73

36
0.
50

06
0.
26

32
0.
04

53
−
0.
09

86
−
0.
25

73
−
0.
40

72

5
3.
97

60
3.
58

06
2.
78

47
1.
79

29
0.
91

27
0.
27

64
−
0.
05

42
−
0.
32

22
−
0.
40

03
−
0.
36

84
−
0.
45

80
−
0.
65

38

4
5.
30

53
4.
61

04
3.
57

51
2.
26

93
0.
58

94
−
0.
93

69
−
1.
29

07
−
1.
35

82
−
0.
93

85
−
0.
60

13
−
0.
57

97
−
0.
81

24

3
6.
95

38
5.
61

45
4.
42

17
3.
45

64
0.
81

59
−
5.
07

28
−
3.
82

45
−
2.
52

48
−
1.
21

76
−
0.
60

82
−
0.
56

69
−
0.
79

70

2
8.
78

78
6.
10

31
4.
73

20
4.
59

47
4.
85

40
−
6.
57

30
−
4.
98

72
−
2.
50

91
−
0.
97

76
−
0.
43

61
−
0.
49

89
−
0.
75

96

1
10

.0
64

4
6.
12

44
4.
73

84
4.
81

96
5.
45

98
−
6.
04

73
−
5.
07

15
−
2.
55

28
−
0.
93

04
−
0.
38

95
−
0.
47

91
−
0.
74

96

1
2

3
4

5
6

7
8

9
10

11
12

98 8 Applications and Testing



This problem and the grid arrangement used, is typical of many fluid flow
situations such as flow past various structures, flow over backward facing steps and
flow through parallel, symmetrically placed shelters in tunnels. It includes fully
developed areas of flow in addition to a recirculating flow zone. In this regard, it is a
much suitable test problem which can easily be extended to more complicated flow
situations and flow geometries.

Three grid sizes of 12 × 9, 26 × 19 and 39 × 30 are employed for this problem.
The exact solutions were obtained by driving the solution to a tight convergence.
For reference purposes, numerical results for the resulting velocity and pressure
fields with the 12 × 9 grid are shown in Tables 8.4, 8.5 and 8.6.

For the 12 × 9 grid, the x and y coordinates of the grid points utilized are

x: �14:0;�10:0;�6:0;�3:0;�0:9; 0:9; 2:0; 4:5; 7:7; 12:0; 17:0; 22:0ð Þ

and

y: 0:5; 1:0; 2:0; 4:0; 6:0; 9:0; 12:0; 16:0; 20:0ð Þ

8.2 Testing Criteria

In order to be able to obtain an idea of the performances and of the relative solution
economies of the procedures, a suitable testing criterion must be used. In this
section, this criterion is set up, followed by the presentation of the preparatory
findings to be used in an overall comparison.

There are some considerations that must be taken into account while testing the
performance of a procedure.

The cost of the solution of a problem depends mainly on the amount of time
required for the complete solution. The total time, on the other hand, depends on
various considerations.

First of all, the code writer must be a professional one. A perfect procedure may
be ruined by an amateur or by an unexperienced code writer. The sequence of the
coding must be designed carefully in order to provide simplicity and to avoid any
unnecessary repetitions or difficult-to-follow complex structures. Professional
computer scientists for sure can distinguish between statements that spend much
time and those which spend less time in execution. Only statements which are easy
to follow and consume the least amount of computer time must be preferred.
Therefore, the amount of total computer time spent for the complete solution to a
problem cannot be considered as the sole criterion for determining the total cost.

Secondly, the amount of time cannot be determined solely by the number of
overall iterations performed. The time spent in each block solution varies for each
procedure, since the mechanism in each is different. Therefore, the number of block
solutions, too cannot be used solely as a criterion for comparison. It can perhaps be
used for an analysis of the overall convergence behavior of the procedure.
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Perhaps the most decisive factor in this regard is the total number of multi-
plicative operations performed in the inner iterations of the block solutions. But this
in turn, depends on the relaxation parameters used. It is the experience of the
Author that, widely varying total costs may result with different relaxation
parameters. Therefore, relative comparisons between the procedures must be
accomplished under optimum conditions for each individual procedure.

The procedures must first be tested to determine their performance for various
values of the relaxation factor E to determine how strong the nonlinearities are
taken care of. If the nonlinearities are not treated well, then the required number of
overall iterations increase. This, in turn, increases the total number of operations.
This process is also necessary to determine the range of this parameter in which
convergence or divergence may occur. It should also be noted that the larger the
range of E values and the larger the optimal E value giving fastest convergence are
measures for the durability and stability of a procedure.

The amount of inner iterations performed to reach a convergence level within the
block solution process is mainly affected by the block relaxation parameter a. Once
an optimum value for the E parameter is fixed, tests must be conducted to determine
the optimum block relaxation parameter a as well. Here again, a procedure can be
regarded as more robust if the range of a values leading to convergence is wider and
the optimum a value is close to 1. We note that an a value of 1 means that no
relaxation is applied.

The number of inner iterations performed in the intermediate block solutions
further depends on the level of convergence to be performed in each level. A low
level of convergence may result in a slow overall convergence, while a high level
will be costly. In fact, it is not necessary to drive these iterations to full convergence
since the overall changes would still continue due to the nonlinearities. Therefore,
unnecessarily high number of iterations must be avoided.

One remedy of this problem is to suitably fix the number of maximum and
minimum inner iterations in the intermediate block solutions. Noting that wild
oscillations in the velocity and pressure differences usually occur in the early stages
of flow development, this may suitably allow more number of iterations to be
performed in these stages. In the meantime it may prevent unnecessary iterations at
the later stages.

Another way may be to fix a certain convergence level, suitable for the mass
conservation or for the pressure differences by using the respective residual errors.
Iterations may be continued until the residuals are dropped by a certain percentage
of their original value at the start of the block solution process.

Due to the fact that the changes in the velocity and pressure fields are high in the
early stages and low in later stages of the flow development, each one of these
criteria has its advantages and disadvantages. In fact, there is no ‘best criterion’ for
this purpose.

In the tests conducted for the purposes of demonstration, a mixture of the above
criteria is used. That is to say, while fixing the minimum and maximum number of
iterations, pressure differences were also monitored. If the pressure differences
have dropped to a prescribed minimal value, the iterations were terminated.
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The iterations were also stopped in a case that the minimal value has not been
reached, but the maximum number of iterations has been performed.

With the above considerations, to begin with, a series of tests were performed for
all problems and for all procedures to determine the range of the convergent E and a
values. The range of convergent parameters thus found are shown in Table 8.7.

Following this, finer tests were conducted to determine the optimal relaxation
parameters which give the fastest convergence. The total number of operations
performed to reach to this level was monitored. The optimal set of the ðE; aÞ
couples that lead to the required convergence level with a minimum number of
operations were then recorded.

The optimal ðE; aÞ couples found in this way are shown in Table 8.8.

Table 8.7 Range of convergent relaxation parameters

Table 8.8 Optimal ðE; aÞ values
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8.3 Performance Analysis and Comparisons

In order to establish the quality of a procedure, the procedure must be examined on
three basic properties: simplicity, durability and speed. Therefore, a performance
analysis must be conducted to assure these properties. In this section, a discussion
on these aspects is first presented, followed by an investigation of the relative
solution economies of the procedures.

For simplicity, the formulation of the procedures must be easy to understand.
Furthermore, the implementation must be straightforward. As we have seen,
although the construction of the formulations were not perhaps so straightforward,
the resulting formulas of the procedures presented are extremely easy.

The simplicity of the formulas reflects itself in the implementations as well. The
computer codes for FICS-2 and SICS are given in Appendix C. It can be seen from
these codes that very few program lines are necessary for the implementation of the
procedures. By examining the algorithm and the coding of SICS, it can be con-
cluded that it is by far the easiest one.

Readers who have an experience with the classical segregated procedures may
better appreciate the simplicity of the new procedures thus presented.

The preparatory stages, such as coefficient calculation and boundary condition
implementation are almost routine in any solution procedure. However, an
advantage with the present procedures is that no pressure boundary condition needs
to be imposed onto the mass conservation equations in the course of obtaining the
pressures implicitly. In the mass conservation equations, only the setting of the
boundary conditions for the velocities is required, but this is quite straightforward.

The elimination of the requirement to form and solve Poisson-type equations is
another major simplifying property of the present procedures. This, for sure, is a big
leap forward and an important addition to the simplicity.

The memory space requirements for the procedures was discussed in Sect. 7.7. It
was seen that not much extra space is required while applying the procedures. The
Author is assured that this is the utmost that can be achieved in any solution
procedure of such a simplicity. The procedure SICS applied in a point-wise way
even requires no extra storage for the block solutions.

In a segregated procedure in which a line-by-line or a point-by-point process is
utilized, less storage may be required than some of the block solution procedures
presented. However, the amount of space saved is often much superseded by the
time required for solution.

The durability of a procedure is another important property that a procedure must
possess. In fluid flow problems, a procedure is expected to withstand the destructive
effects of any (un)expected and wild changes in the flow field. Moreover, the
method must be able to cope with varying grid aspect ratios in all directions.
Finally, it must pose strong convergence characteristics.

If the changes in the flow field are not anticipated at all other grid points in an
efficient way, then inevitably the mass conservation constraint will be violated.
A violation of the incompressibility nature of the fluid, surely must be out of the
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question, since such a violation will lead to divergence. Such violations, no matter
how small they are, must be regarded as ‘little time bombs, ready to explode at any
time’. The presented procedures deal with this problem in the most efficient way.
A discussion on how they cope with this issue is given in Sect. 8.4.

Tests were conducted to determine the behavior of the procedures when widely
varying grid aspect ratios was involved. The tests showed that varying grid aspect
ratios do not change the character of the convergencies in all of the procedures.
Since the symmetric form of the primitive form of the equations was retained and
all of the effects of the mass conservation and pressure terms were carried fully to
the strength vectors, this was actually an expected behavior.

Another factor in the measurement of the durability of a procedure is the range
of the relaxation factors which lead to convergence. The wider the range, the more
durable the procedure is. A narrow range normally is close to the lower limit of the
relaxation parameter. This means that the procedure requires high under-relaxation,
otherwise it will diverge. The Author, in fact, describes relaxation as a rude way of
numerically interfering with the natural behavior of flow development.

If the range is narrow, then the user will need to follow a careful but often
painful course of fine-tuning for the optimum parameters.

In addition, it must be noted that the higher the value of an optimal relaxation
parameter, the least the relaxation is applied. A value of the E factor larger than, say,
1000 virtually means that no relaxation is applied, and an a value equal to 1 means
no relaxation is performed in the block solution. If a is 1, then the ‘differences’
obtained at the end of one inner iteration are fully reflected to the velocity and
pressure variables. If a is 0.6, for example, then only sixty percent of the changes are
allowed to be reflected. This, for sure, will slow down the convergence.

Now is the time to refer back to Table 8.7. A quick examination of this table
leads to the following conclusions:

1. From the last two rows of the table, it can be seen that FICS-2 converges
virtually with any value of the relaxation parameters. This means that it may
converge even without the need of any relaxation.

2. FICS-1 may require a small amount of relaxation in the inner iterations for very
large problems.

3. Both FICS-1 and FICS-2 converge for any value of the relaxation parameter E.
4. The first two rows indicate that BIPEN converges for a wider range of relaxation

parameters than BIP.
5. The maximum value of the convergent relaxation parameters decreases for large

problems in BIP and BIPEN.
6. All procedures converge even when the lowest allowable values of the relax-

ation parameters are used.

Overall, it can be concluded that all of the procedures are highly durable, but the
durability of FICS-2 is strongest.

Lastly, we turn our attention to the speed property for establishing the quality of
the procedures. For this, all of the problems were solved by each procedure, using
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the optimum relaxation couples given in Table 8.8. The overall iterations were
continued until full convergence was obtained.

Figures 8.5 and 8.6 show the number of operations performed versus the con-
vergence level reached, for the Square tank problem and the Shelterbelt problem,
respectively.

The following conclusions can be drawn from these figures:

1. BIP and BIPEN are slower than the other procedures. The speed of these pro-
cedures tends to decrease significantly for larger problems.

2. FICS-2 outperforms all of the other procedures, both in speed and in conver-
gence characteristics.

To provide a better insight into the relative performances of the procedures, the
total number of multiplicative operations to reach a convergence level of e� 10�5,
using the criterion given in Eq. (7.17), was recorded. Table 8.9 gives the relative
costs, in which the total number of operations in each column was divided by the
smallest number on the same column.

The following conclusions can be drawn from this table:

1. FICS-2 is much faster than the other procedures in all cases.
2. BIP is slower than the other procedures in all cases.
3. FICS-2 exhibits much better performance for larger problems.
4. FICS-2 is up to ten times faster than BIP.

Fig. 8.5 Convergence characteristics versus number of operations performed for the Square
Tank problem
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In conclusion, for the benchmark test problems solved, it can be observed that all
of the procedures converge with reasonable cost. The FICS-2 procedure is extre-
mely faster than the other procedures. FICS-2 converges in all cases without
needing any relaxation. The most interesting is that, although all of the procedures
are adequately durable, FICS-2 surpasses the others by far most. The discussion
presented in the following section may give further insight into the superiority of
FICS-2.

Fig. 8.6 Convergence characteristics versus number of operations performed for the Shelterbelt
problem

Table 8.9 Cost comparisons

8.3 Performance Analysis and Comparisons 105



8.4 A Discussion of the Mechanism of the Procedures

It has been seen in the previous section that all the presented procedures show
reasonably good performances in dealing with the velocity-pressure coupling
problem. However, the convergence characteristics vary for each solution proce-
dure. The durability and the cost of the solution depend mainly on these charac-
teristics. These characteristics in turn relate to the mechanisms powered by the
formulations of the strength vectors used in the matrices L and U and the defect
vectors resulting in D.

To obtain a better idea of why these good performances were obtained and why
FICS-2 performs much better than the other procedures, it is necessary to examine
the mechanisms powered by these procedures.

First of all it is obvious to see that if the effects of the strength vectors are
stronger and those of the defect vectors are weaker, then the performance of a
procedure will be better. Therefore, it is now suitable to examine the procedures in
this regard.

A close examination of the equations of the strength vectors in the four proce-
dures reveals the followings:

1. In all of the procedures, the effects of the main diagonal coefficients of the two
momentum equations and the effects of the coefficients of the pressure terms in
these equations are equally carried down to the strength vectors h, f, k and n. The
term G combines these effects with the effects of the mass conservation coeffi-
cients AC. All of these effects are then transferred down to all of the other strength
vectors in a cascaded manner. In this way, the effects of the pressure changes and
those of the momentum conservation are harmonized with the constraint imposed
by the mass conservation in an efficient way. This is the main reason for the good
performances of the procedures. The performance of each procedure now
depends on how this process is continued after the formulation of the term g.

2. The procedure BIPEN differs from BIP in the sense that the defect vector q in BIP
is completely removed from the defect matrix and transferred as is, as a strength
vector, to L as the vector a in BIPEN. The reader may confirm this by noting that
the formula for the coefficients of the vector q of BIP is the same as that of vector
a of BIPEN. Now in BIPEN, instead of the removed defect vector q, came two
other defect vectors e and d just above and below the position of the emptied
place of q. The total effect of the i-th coefficients of the vectors e and d is

ei þ di ¼ �qiðti�m þ si�mÞ ð8:2Þ

Therefore the effect of e and d in BIPEN will be less than the effect of q in BIP if

ðsþ tÞi�m

�� ��\1: ð8:3Þ
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A closer examination of the coefficients resulting in the Square Tank problem,
for example, reveals this sum to be 1

2. This is why the BIPEN procedure is
almost twice as fast and much more robust than BIP, as can be seen in
Table 8.9.

Now comparing BIPEN and FICS-1, we note first that the strength vectors a and
the defect vectors d are the same. In FICS-1, the coefficients of the main diagonal
strength vector g in L is fortified by the sum aici�m þ bisi�1. Furthermore, the
coefficients of the strength vectors in FICS-1 contain all effects from the coeffi-
cients of the mass conservation vectors in a symmetric fashion, a property which
BIPEN does not hold. The number of strength vectors in FICS-1 is increased by 1
by adding the vector b and the number of defect vectors is decreased by 1 com-
pared to BIPEN. All these enhancements provide the increased speed and dura-
bility of FICS-1.
As can be seen from the expressions of the strength vectors, the effect of all of the
coefficients of the primitive block matrix is carried in a fully balanced manner in
both of FICS-1 and FICS-2. This provided an enhanced stability to these proce-
dures. This helps much in dealing efficiently with problems involving varying grid
size ratios in the discretizations.
Comparing FICS-1 and FICS-2, it can be seen that two additional strength vectors
are added in FICS-2, while the number of defect vectors remains the same as in
FICS-1. Moreover, in FICS-2, the place of the two defect vectors is shifted by one
place. These modifications are the major factors of the superior performance of
FICS-2 over FICS-1.

These observations are very important since, with an old saying, ‘a couple of
birds are being killed with one stone’: while a set of equations for the pressure field
is formed implicitly and automatically by the decomposition process, the most
important effects from the momentum equations and all effects from the mass
conservation equation and those from the pressure differences are carried efficiently
into the strength vectors. More important is the fact that these were achieved
without making any unrealistic assumptions about the flow field while forming the
decomposition. This asserts the full implicitness of the solution procedures thus
formed. It also shows that the procedures based on this decomposition are not based
on a point-wise or a line-wise one, but on an actual field-wise one. This means that
with these procedures, any single change of the velocity or pressure at any point of
the solution region immediately affects not only the values at some neighborhood of
this point, but also the values at all of the points of the region.

It is also important to note that at the end of each block solution process, mass
and momentum conservations are simultaneously satisfied. In this way the strong
coupling between the velocity and pressure fields is fully retained and utilized to
encourage faster convergence.

The full implicitness thus realized becomes the main factor for the durability and
rapid convergence of the procedures.
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8.5 Comparison with the Segregated-Type Procedures

A brief history of the solution methods developed for the treatment of the
velocity-pressure coupling problem in the last fifty years, is presented in
Appendix A. Much of these classical methods are of the explicit or semi-explicit
type. Some kind of implicitness has been tried in the past, but the performance of
the proposed methods was not much higher than the former ones. The Author feels
that the book would have had something missing if a comparison of these methods
with the procedures presented in the book is not being provided. This section was
prepared to fill this gap.

It has been demonstrated in the past (see Appendix A) that BIP is more than
twice as fast compared to one of the best performing classical procedures of the
segregated type, namely SIMPLER. FICS-2 then, in consideration of the conclu-
sions drawn in Sect. 8.3, is faster by a factor of twenty. This means some 95 percent
reduction in computing time.

In Appendix B, a summary of the formulation of two of the segregated-type
methods is presented. There are various drawbacks of these methods which are of
utmost importance.

Firstly, and most importantly, the ‘segregation’ performed in these procedures
effectively breaks down the strong coupling between the velocity and pressure
fields, which was actually the most crucial property of incompressible fluid flow
properties.

Secondly, these methods require the solution of some Poisson-type equation.
The solution of these types of equations, however, is known to be one of the most
challenging problems in science. The difficulty in the solution of such equations
increase as the number of fixed boundary conditions decreases. The problem with
pressure solutions is worse since pressure can be fixed at only one point within the
solution region. The relativeness of the pressure field in incompressible flow
problems necessitates that the pressure be let free at all boundaries of the solution
region. Therefore the matrices resulting for the pressure field in segregated-type
solution methods are loosely diagonally dominant. The iterative solution methods
for solving systems of equations with matrices carrying this property, therefore, are
very slow. These methods slow down dramatically with an increase in the number
of grid points used.

Thirdly, the formulation of the Poisson-type of equations in segregated-type
methods is complex and sometimes confusing. Moreover, these equations are
formed based on some type of assumptions made in the velocity field. Any single
assumption to be enforced in a procedure is surely an interference into the natural
behavior of fluid flow development. This interference affects the performance of the
procedure and necessitates an extra effort to balance the resulting deficiencies.

The segregated procedures lack the ability to quickly distribute the effects of the
changes in the velocity and pressure values to the whole of the solution region. The
numerical result of this is the violation of the mass and momentum conservation
principles, which may cause divergence if strong under-relaxation is not applied.
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High relaxation applied presses down the changes, but with the penalty of slowing
the convergence. For example, the SIMPLER method does not converge for the
40 × 40 Square Tank problem if the E factor is chosen larger than 7. Even for the
10 × 10 problem, it diverges if an E factor more than 15 is used. This indicates a
very low performance in durability, in comparison with the stunning performance
of FICS-2.

Moreover, in the segregated type procedures, in addition to the E factor,
relaxation need to be applied in all of the solution procedures for u, v, p and the
pressure correction equations. High relaxation reflects itself in a shrinkage of the
range of convergent relaxation parameters. This, in turn, necessitates a painful
fine-tuning of the relaxation parameters.

The above difficulties are removed completely with the procedures presented in
this book. The strong coupling is by no means interrupted. On the contrary, they are
encouraged, so that the changes are reflected smoothly to the whole of the flow
field. This also avoids any ‘swelling’ in the control volumes and enhances the speed
of convergence.

In the present procedures, the number of required parameters is reduced to two
and the range of parameters leading to convergence is vastly widened. Therefore the
optimization phase of these procedures requires much less effort and time than the
classical segregated procedures.

In the solution procedures presented, no assumptions whatsoever is made
towards either for the pressure or velocity fields. As seen, this is reflected in the
overall performance of the procedures.

8.6 Convergence Characteristics and Performances
of SICS and SIMPLER: A Relative Comparison

The careful reader should have noticed by now that no mention has yet been made
about the performance of the SICS procedure. This was actually intentional. This
procedure deserves more attention owing to its unique, additional features of
unprecedented simplicity, point-wise applicability and its storage saving capability.

On the other hand, the enthusiastic and experienced readers who have been
utilizing the various classical segregated type procedures could not yet find an
actual, relative comparison with the block solution procedures, thus presented,
which may help in their final decision to switch to the new procedures. The book
was mainly designed for introducing the new procedures, but suggestions from
various colleagues encouraged the Author to include a special section for this
purpose.

Considering the limited space allowed, full comparisons of the procedures with
widely varying benchmark problems and extensive criteria may not only be
impossible, but also unnecessarily frustrating. Therefore a careful decision had to be
made for this purpose.
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From the various segregated procedures, the most widely used and typical one is
the SIMPLER method. Hence a relative comparison of SIMPLER and SICS pro-
cedures will be presented here.

The cost of a segregated procedure mainly depends on the linear equation solver
utilized for the solution of the resulting Poisson-type equations. The MSIP solver,
also introduced in Appendix B, is perhaps one of the best performing solution
methods for such equations. Therefore, in order to hold the scales even, the
SIMPLER procedure coupled with MSIP will be used for comparison purposes in
what follows.

As discussed in Sect. 8.2, there are various factors affecting the convergence
behavior of the solution procedures. The relaxation parameters utilized and the level
of convergence allowed in the inner iterations play an important role on the overall
convergence behavior of the procedures. Basing the comparison on the number of
outer iterations would give an indication on the efficiency of the procedures in
treating the nonlinearities in the momentum equations, although the role of the
overall iterations and the inner iterations are much different in SICS and SIMPLER.
For a total cost comparison however, some more meaningful comparison criteria
need to be developed.

For this purpose, the two procedures were extensively tested under all combi-
nations of various parameters, and the cases which lead to least number of multi-
plicative operations were noted. While doing so, most important observations were
noted and reported for the avail of the reader.

The two procedures were also applied to different benchmark problems widely
used in the literature. Since the relative performance characteristics in all problems
have been found to be similar, only results for the square tank problem with varying
grid resolutions will be presented.

The first observation was that SICS converges for any E value in the interval
E 2 ð1;1Þ for all grid resolutions. Although the procedure works with E values
less than 1 as well, convergence slows down considerably, leading to a significant
increase in the total cost. The optimum E values with SICS are 50, 20 and 18 for the
10 × 10, 20 × 20 and 40 × 40 resolutions, respectively. We note that an E value of
50 accounts for only a 2 % suppression, while for an E value of 20, it accounts
for 5 %.

Convergence with SIMPLER could only be achieved for E 2 ð1; 15Þ, E 2
ð1; 10Þ and E 2 ð1; 8Þ for the 10 × 10, 20 × 20 and 40 × 40 resolutions, respec-
tively. In SIMPLER with E values closer to these upper limits, results start to flicker
with no convergence. For values just above the limits, the process diverges
immediately. Interestingly enough, SIMPLER converges faster for E = 4 for all
problems, which accounts to a 20 % suppression of the dependent variables at all
stages.

The optimum a parameters for SIMPLER used in MSIP for the solution of the
u and v velocities, pressure correction and pressure were all found to be 0.65.
SIMPLER diverges with higher a values and it slows down considerably for lower
values.
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The optimum a parameter used in the block solutions with SICS is in the range
(0.80, 0.90). It was interesting to note that for larger problems SICS would diverge
when a a value of 0.9 and a very large E value are used, but convergence with any
E value could still be achieved by slightly lowering the a value to 0.85 or 0.8.

Tests were conducted with these optimal parameters and the convergence
characteristics of the two procedures were monitored.

In Fig. 8.7 we present the convergence behavior of the two procedures with
respect to the number of outer iterations performed.

The number of outer iterations performed to reach an ep � 10�5 are given in
Table 8.10.

The main observation here is that SICS converges in an average of 1.5 m outer
iterations and the convergence behavior is almost linear in all cases. SIMPLER
however, requires an average of 3.7 m outer iterations, while this number increases

Fig. 8.7 Convergence behavior versus number of outer iterations for SICS and SIMPLER

Table 8.10 Total number of outer iterations performed for convergence in SICS and SIMPLER
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considerably when m gets larger. This indicates the superiority of SICS over
SIMPLER in dealing with the nonlinearities in the momentum equations.

The above observations constitute a clear idea on the relative performances of
the procedures on an overall iteration base, but, as we mentioned previously, do not
give an idea about the actual relative cost. For the actual cost comparison, we
present the total number of multiplicative operations performed to reach a certain
convergence level. The results are shown in Fig. 8.8.

In this figure we can appreciate an extremely balanced amount of operations
with SICS, a property which is not present with SIMPLER.

The relative cost of each procedure to reach convergence to ep � 10�5 is shown
in Table 8.11, in which the entries were obtained by dividing the number of
operations in each column by the one with the least amount.

Fig. 8.8 Convergence behavior versus number of operations for SICS and SIMPLER

Table 8.11 Cost comparison for SICS and SIMPLER
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This table proves an absolute superiority in computational cost for the SICS
procedure. It is observed that the relative cost of SIMPLER increases considerably
for larger problems.

Both procedures were tested furthermore with a 100 × 100 grid and it was
observed that SICS performed about 20 times faster than SIMPLER. It is evident
that for larger problems, more than ninety five percent reduction in computing time
may be realized with SICS as compared to SIMPLER.

The poor performance of SIMPLER in distributing the effects of the changes in
the velocity and pressure fields, especially when a large number of grid nodes are
involved, is clearly attested by Table 8.11.

It is no surprise that SICS converges regardless of what value for the E parameter
is used. This is due to the fact that the mass and momentum conservation con-
straints are satisfied simultaneously at the end of each block solution. This is a
demonstration of the robustness of the procedure. We note that this satisfaction is
not pursued in the intermediate stages of solution with SIMPLER, but rather
expected if and when full convergence is achieved.

As expected, faster convergence rates can be achieved with some optimum
values of the relaxation parameters. The optimum E values for SICS are much
higher than that of SIMPLER, which is an assurance of the outperforming ability of
SICS to cope with abrupt changes from one block solution to another. We note that
a larger E value means less under-relaxation, which in turn amounts to less sup-
pression of changes in the flow field.

The high optimum value of 0.8–0.9 for the a relaxation parameter used in the
block solution process is another indication of the robustness of SICS. This
amounts to a small amount of suppression to deal with the adverse effect of the four
defect vectors. When larger problems are considered, inevitably a little more sup-
pression may be required in the block solutions, but this will not be comparable
with that required for SIMPLER.

Further tests conducted proved that SICS is also fully insensitive to widely
varying grid aspect ratios used in the solution region, a property which SIMPLER
does not hold.

Among other advantages of SICS over SIMPLER, such as simplicity and
robustness, we may count the advantage that no extra storage is needed in the block
solutions.
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Chapter 9
Special Cases

In order that a new procedure gain high utilization in research, it is necessary that it
holds the ability to be applied to various more general, as well as to some special
cases. It should be noted that the book was designed to present the newly developed
procedures and to demonstrate their ability to resolve one of the most troublesome
problems in computational fluid dynamics, namely the velocity-pressure coupling
problem. No aim was really sought in presenting solutions to some specialized
physical problems. The space allocated for the book is not adequate for a full
pledged investigation or presentation for all possible applications, but the omission
of some brief ideas in these various aspects would render it somehow incomplete.

For this purpose, in this chapter, certain topics which were not discussed in the
previous chapters will be presented for the sake of completeness and for the ref-
erence of the reader. It is hoped that the introductory ideas and guidelines presented
on how the adaptations are performed will serve as an aid to researchers, while
asserting the applicability of the procedures to further cases.

9.1 Time-Dependent Problems

The governing differential equations whose solutions have been discussed are for
steady state problems. If the flow is unsteady or in other words time-dependent,
then the governing differential equations (Eqs. (3.1–3.3)) will read
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@x
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@y
¼ 0 Mass conservation equationð Þ ð9:3Þ

in which t represents time.
In order that this system govern a true physical problem, in addition to the

boundary conditions for the pressure and velocity components, initial profiles for
the velocity components must be supplied. Let the initial values be given by

u0 ¼ u x; y; t ¼ t0ð Þ; v0 ¼ v x; y; t0ð Þ ð9:4Þ

for all (x, y) values in the solution region and for some initial time t ¼ t0.
Noting the relativeness of the pressure field in an incompressible fluid flow and

the special treatment of this fact in the solution procedures presented, pressures may
be set to zero at the beginning of the block solution. In fact, the fluid is assumed at a
stand still at the beginning.

Given these initial values, it is required to find the values of the velocity and
pressure variables at a time tþDt, where Dt represents a small specified time
step. The process may be repeated until a specified time is reached. We denote the
values of the velocity and pressure variables at this new time level by utþDt, vtþDt

and ptþDt.
The discretization of the governing equations is in parallel to the process

described in Chap. 4. Discretization of the terms on the left hand side of the
momentum equations is the same with one exception: Since now the real
time-dependent solutions are sought, relaxation employed by the E factor is not
necessary. The solutions, starting from an initial time, are obtained by using a time
step Dt and marching in the forward direction to obtain the velocity and pressure
fields as time progresses. This can be achieved simply by setting the parameter E to
a very large value. If the time step Dt is kept sufficiently small, no sudden differ-
ences will be produced in the velocity and pressure fields and the solution process
will be stable.

The discretization of the mass conservation equation is also the same. For the
discretization of the momentum equations, the terms on the right hand sides of the
momentum equations are approximated by
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and
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ð9:6Þ

To visualize the changes to be made, we rewrite here the discretized forms of the
momentum and mass conservation equations for Eqs. (4.32), (4.39) and (4.44) as

Au
SuSþAu

WuW þAu
PuPþAu

EuE þAu
NuN þApu

P pPþApu
E pE ¼ bup ð9:7Þ

Av
SvSþAv

WvW þAv
PvPþAv

EvE þAv
NvN þApv

P pPþApv
N pN ¼ bvP ð9:8Þ

ACu
W uW þACu

P uPþACv
S vSþACv

P vP ¼ bpP ð9:9Þ

Noting that to obtain these equations, we have multiplied both sides of the
discretized equations by DxDy. Therefore, we must also multiply the approxima-
tions from Eqs. (9.5) and (9.6) by DxDy before substituting them instead of the bup
and bvP terms in the right hand sides of Eqs. (9.7) and (9.8), respectively. This gives
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ACu
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P uPþACv
S vSþACv

P vP ¼ bpP ð9:12Þ

The velocity and pressure terms on the left hand sides are written for the time
tþDt, so without any loss in meaning we drop the superscript tþDt from the
velocity components on the right hand sides of Eqs. (9.10)–(9.11) and write the set
of equations as

Au
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ACu
W uW þACu

P uPþACv
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P vP ¼ bpP ð9:120Þ

Now we collect terms and write these equations as
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The implementation of the above process is performed easily by updating the
main diagonal coefficients and the right hand sides of the block system prior to the
application of the boundary conditions as follows:
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buP  buP �
qDxDy
Dt
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t
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P  Av
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Dt

v
t

P

We remind that the E parameter need to be set to a very large value before the
above operations are performed. No other change need to be done in the
formulations.

The next step involves the application of the boundary conditions. This step is
performed in the same manner as applied in the steady-state case. The assembly
process is also the same, giving the coupled block system of equations to be solved
in order to obtain the values of the velocity and pressure variables at the time tþDt.
This process may now be repeated until a required time has been reached.

Time dependency of the problem does not affect the way in which the
velocity-pressure problem is handled. Therefore, no change in the block solution
scheme is required.
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9.2 Stoke’s Flow Equations

A special form of the governing differential equations is when the terms containing
first order derivatives regarding velocities in the momentum equations are not
present. The equations thus formed are called the Stoke’s flow equations and read
as follows, in which the mass conservation equation remains the same.
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These equations are obtained simply by setting q ¼ 0 in the momentum equa-
tions. Therefore, in such a situation, the discretization equations obtained for the
general case will still be valid if they are updated by setting q ¼ 0. Since now there
exist no nonlinearities in the governing equations, the E-factor formulation need not
be applied. To cancel the relaxation induced by the E-factor, it is not necessary to
make any changes in the formulations. This can be achieved simply by setting the
E-factor to a very large value.

However, now, the profile assumptions made in Sect. 4.3 will no longer be valid.
This problem is solved simply by setting the coefficients b in the profile assump-
tions to 1.

With the above three modifications, the general discretization equations apply to
Stoke’s flow problems as well. The way in which the assembly process is per-
formed and the technique used for solving the block system remain the same.

The velocity and pressure fields are obtained in only one single block solution to
a required accuracy.

In summary, it can be concluded that the solution of the Stoke’s flow problem is
straightforward and can be regarded as a special case.

9.3 Turbulent Flows and Heat Transfer

The mathematical description of fluid flows involving turbulence or heat transfer
involves some extra partial differential equations to be introduced, together with the
original mass conservation and momentum equations. These extra equations
depend on the model selected in order to adequately describe the character of
turbulence of the fluid and that of the heat present, and may vary in number. The
effects of turbulence and heat transfer are reflected by the terms Kx and Ky in the
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second order derivative terms of the momentum equations. This difference does not
affect the way in which the velocity-pressure coupling problem is handled, therefore
the solution procedures already presented remain the same.

In addition to the solution process, the extra equations described by the turbu-
lence and heat transfer need to be solved prior to coefficient refreshment in the
overall iterations. The diffusion terms obtained from the solution of these equations
are used in the formulation of the descretization of the momentum equations in the
normal way.

The solution of the extra equations does not pose an important problem since
each of these equations describes a certain single variable. These equations are
usually complemented by some strong boundary conditions, which asserts that the
involved matrices will be strongly diagonally dominant. Therefore, their solution
may be accomplished efficiently by the use of classical linear equation solvers.

9.4 Adaptation to Existing Codes

An engineer who has a working code utilizing any of the classical procedures may
tend to hesitate in trying to adapt his code to a completely new approach. This may
require some valuable time and perhaps any unsuccessful attempts can cause dis-
appointment. However, this is not the case with the present procedures, since the
adaptation process for these procedures is quite fast and easy. To aid the user in this
respect, two working subroutines for the block solution procedures FICS-2 and
SICS are given in Appendix C. The only preparation required for adaptation is the
creation of the additional four vectors for mass conservation and four vectors for
pressure differences, which is straightforward. Some care must surely be given to
the correct implementation of the boundary conditions in the block system.

While adapting the new procedure, the reader will need to throw away all the
codes for the preparatory stages for the u, v, p and p0, including boundary condition
application for each and the linear solver used to solve the resulting equations. This
surely, will result in an immense amount of reduction in the coding, to the surprise
of the reader.

9.5 Three-Dimensional Problems

An additional advantage of the presented procedures is that they can be easily
adapted to the solution of three-dimensional problems as well. For such problems, a
third governing equation for momentum is added and the mass conservation
equation contains a third term. The equations are given as
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The discretization of these equations is similar to the two-dimensional ones. The
block matrix system is extended to contain the new additions and will be of the
form
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The block submatrices have the following form:

The submatrices L and U are formed similar to what was done in the
two-dimensional case. All the off diagonals of the momentum equations are
transferred to the corresponding places in the defect matrix. The submatrices cor-
responding to pressure and mass conservation are retained as they appear in their
primitive forms.

What remains is the placement of the rest of the strength vectors in the L44 and
U44 submatrices, which can be done in various ways as in two dimensions. The
places of the vectors in the submatrix D44 then will be determined according to the
placement of the respective strength vectors.

When FICS-2 is used, for example, the places of the strength vectors in the L44
and U44 submatrices will be as follows:
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We leave the determination of the places of the defect vectors and the formulas
for the coefficients of these vectors for FICS-2 to the interested reader.

To provide an insight to the reader, however, we provide a full presentation of
the formulas for the SICS procedure below.

Assume that in addition to the notations used previously for SICS in two
dimensions, we introduce Aw

Pi
as the main diagonal vector coefficient for the

w variable. We also use Ap
Di

and Ap
Ui

to denote the main diagonal and the far off
diagonal coefficients, respectively, for the pressure differences in the third
momentum equation. We further introduce AC

Ui
and AC

Di
to denote the main diagonal

and the far off diagonal vector coefficients, respectively, for the mass conservation
equation. We note that these coefficients contain only the grid sizes in the z direc-
tion. In addition, we let the main diagonal and far off diagonal coefficients of the
strength vectors in the matrix U referring to the third momentum equation, be
denoted by ti and si, respectively. The total number of grid points is N ¼ m� n� l
in which l is the number of grid points employed in the z direction.

Then it is relatively easy to visualise the formulas for the coefficients of the
strength vectors h, f, k, n, t, s and g. They are given as

Formulas for SICS: Three dimensional problems:

hi ¼ Ap
Wi
=Au

Pi
; i ¼ 1; N ð9:23Þ

fi ¼ Ap
Ei
=Au

Pi
; i ¼ 1;N � 1 ð9:24Þ

ki ¼ Ap
Si=A

v
Pi
; i ¼ 1; N ð9:25Þ

ni ¼ Ap
Ni
=Av

Pi
; i ¼ 1; N � m ð9:26Þ

ti ¼ Ap
Di
=Aw

Pi
; i ¼ 1; N ð9:27Þ

si ¼ Ap
Ui
=Aw

Pi
; i ¼ 1; N � m� l ð9:28Þ

gi ¼ � AC
Wi
Ap
Ei
þAC

Ei
Ap
Wi
þAC

SiA
p
Ni
þAC

Ni
Ap
Si þAC

Di
Ap
Ui
þAC

Ui
Ap
Di

h i
; i ¼ 1;N

ð9:29Þ

Application of the block solution procedure follows similar steps as in the two
dimensional case. If preferred, the application of the block solution process may be
accomplished in a point-wise fashion as well. To finish with, we give the
block-wise algorithm.
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We let

XðnÞ ¼ uðnÞ; vðnÞ;wðnÞ; pðnÞ
� �

Y ðnÞ ¼ ûðnÞ; v̂ðnÞ; ŵðnÞ; p̂ðnÞ
� �

;

dðnÞ ¼ dðnÞu ; dðnÞv ; dðnÞw ; dðnÞp

� �
and RðnÞ ¼ RuðnÞ ;RvðnÞ ;RwðnÞ ;RpðnÞ

� �
;

in which

Ru
i ¼ bui �

X
j

Au
jiuj;

Rv
i ¼ bvi �

X
j

Av
ji vj

Rw
i ¼ bwi �

X
j

Aw
ji wj;

and

Rp
i ¼ bpi �

X
j¼W ;E

ACu

ji uj �
X
j¼S;N

ACv

ji vj �
X
j¼D;U

ACw

ji wj;

for i ¼ 1; N and j ¼ S; W ; P; E; N; D; U.

The Algorithm (SICS) for three dimensions:

Step 0: Calculate vectors hi; fi; ki; ni; si; ti and gi using Eqs. (9.23)–(9.29)
Step 1: Solve LY ðnþ 1Þ ¼ B� AXðnÞ for Y ðnþ 1Þ

a. Given XðnÞ ¼ uðnÞ; vðnÞ;wðnÞ; pðnÞ
	 


, calculate RðnÞ ¼ RuðnÞ ;RvðnÞ ;RwðnÞ ;RpðnÞ
� �

b. Solve LY ðnþ 1Þ ¼ RðnÞ for Y ðnþ 1Þ

i. ûðnþ 1Þ
i ¼ Ru

i =A
u
Pi
; i ¼ 1;N

ii. v̂ðnþ 1Þ
i ¼ Rv

i =A
v
Pi
; i ¼ 1; N

iii. ŵðnþ 1Þ
i ¼ Rw

i =A
w
Pi
; i ¼ 1; N

iv.
p̂ðnþ 1Þ
i ¼ Rp

i � AC
Wi
ûi�1þAC

Ei
ûiþAC

Si v̂i�mþAC
Ni
v̂iþAC

Di
ŵi�m�lþAC

Ui
ŵi

h i
;

i ¼ 1; N

Step 2: Solve Udðnþ 1Þ ¼ Y ðnþ 1Þ for dðnþ 1Þ

i. Let dðnþ 1Þ
pN ¼ 0

ii. Solve dðnþ 1Þ
pi ¼ p̂ðnþ 1Þ

i =gi; i ¼ N � 1; 1; �1
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iii. Solve dðnþ 1Þ
wi

¼ ŵðnþ 1Þ
i � sid

ðnþ 1Þ
pi

þ tid
ðnþ 1Þ
piþmþ l

h i
; i ¼ 1; N

iv. Solve dðnþ 1Þ
vi ¼ v̂ðnþ 1Þ

i � kid
ðnþ 1Þ
pi

þ nid
ðnþ 1Þ
piþm

h i
i ¼ 1; N

v. Solve dðnþ 1Þ
ui ¼ ûðnþ 1Þ

i � hid
ðnþ 1Þ
pi

þ fid
ðnþ 1Þ
piþ 1

h i
; i ¼ 1; N

Step 3: Update X by Xðnþ 1Þ ¼ XðnÞ þ adðnþ 1Þ

a. uðnþ 1Þ
i ¼ uðnÞi þ adðnþ 1Þ

ui ; i ¼ 1;N

b. vðnþ 1Þ
i ¼ vðnÞi þ adðnþ 1Þ

vi ; i ¼ 1;N

c. wðnþ 1Þ
i ¼ wðnÞi þ adðnþ 1Þ

wi
; i ¼ 1; N

d. pðnþ 1Þ
i ¼ pðnÞi þ adðnþ 1Þ

pi ; i ¼ 1;N
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Chapter 10
Concluding Remarks

A new family of solution procedures has been introduced with a fresh perspective
for the solution of field problems. Among the members of this family, the two most
powerful and distinctive ones are FICS-2 and SICS. The FICS-2 procedure is faster
than SICS, but with a slight disadvantage that it requires a couple of extra vectors.
Luckily enough, the storage is not more than that required by a classical segregated
procedure and can be tolerated.

The demonstrated simplicity, versatility, robustness and speed, combined with
the elimination of the laborious tasks of the setting up and solving Poisson-type of
equations, renders these procedures as efficient alternatives to the classical segre-
gated procedures. Quick adaptation to existing codes together with their direct
applicability to unstructured grids and to three dimensional problems with no extra
computing memory requirements are some of the additional benefits.

The correct diagnosis of the pressure-velocity coupling problem was the starting
point of the adventure. Not perhaps surprisingly, the treatment was based mainly on
the most basic principles of fluid dynamics: fluid flow initiated by pressure dif-
ferences and continued by obeying the mass conservation principle. In this way, the
strong coupling between the velocity and pressure fields was not disrupted, but
rather utilized as a beneficial factor. The incomplete decomposition and block
solution of the primitive form of the discretized equations were merely efficient
mechanisms for this purpose.

The ability of the involved mechanisms to distribute the possible changes to the
whole of the flow field in an efficient and smooth way, is surely one of the most
important properties of the procedures.

In consideration of the performance and versatility thus demonstrated, together
with the new view point presented, the new procedures are expected to be candi-
dates for providing a powerful impulse and a fresh breath into the area of com-
putational fluid dynamics.

Refined for certain physical applications, they may even be considered as an
on-board, dynamic means of CFD designs, perhaps paving the way to shape

© Springer International Publishing Switzerland 2016
Z. Mazhar, Fully Implicit, Coupled Procedures in Computational Fluid Dynamics,
Fluid Mechanics and Its Applications 115, DOI 10.1007/978-3-319-29895-5_10

127



changing mechanisms during operation; something which may stress our imagi-
nation further.

As it is true for any numerical scheme, it is possible to further enhance the
performance of the procedures presented, in various ways. Some suggestions in this
regard may be beneficial to enthusiastic developers. Hence before closing, a few
comments on further enhancements and recommendations are appropriate.

So far the off-diagonal vectors of the discretized forms of the momentum
equations in A11 and A22 have all been kept as defect vectors in D. It is possible to
improve the performance of the procedures by keeping some of these as strength
vectors in the L and U matrices. This can be accomplished, for example, by keeping
the lower diagonal vectors of A11 and A22 in L, and the upper diagonal vectors in U.
The process is similar to the technique used in FICS-1 and FICS-2 and does not
cause any problem. Various tests conducted indicate that some additional ten to
fifteen percent savings in computing time can be realized by this improvement.
While some more durability can be achieved in this way, the increase in extra
storage and formulae may, at times, balance the resulting gains.

A further enhancement can be realized by partially cancelling the effects of the
defect vectors by a linear distribution of the effects to the neighboring grid points. If
the burden of some more complicated equations is envisaged, another five to ten
percent faster convergence rates can be achieved.

Various other ways of replacing the strength and defect vectors may also be
considered. For sure, there is no reason why some other ingenious placement may
not work better.

Could CFD be any simpler and more enjoyable?
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Appendix A
A Critical Survey of Literature—An
Adventure into Perfection

The development of computing techniques for the solution of field problems has an
interesting history. This development can be truly regarded as an adventure into
perfection. The evolution was initiated and supported by valuable contributions of
many researchers. The Author of this book feels that the omission of these con-
tributions would render the study somehow incomplete.

The following brief survey is aimed to serve this purpose and perhaps aid the
readers seeking more information on various aspects that were not adequately
mentioned in the book. The Author tried to do his best in including all of the
historical contributions, but if, however any contributions were omitted, it was
unintentional and apologizes for such in advance.

The survey is not just a plain, historical list of the contributions. It also includes
some useful critical observations and discussions on the strengths and weaknesses
regarding these contributions. The Author sincerely believes that the discussion of
the weaknesses as well does not hinder the importance of the contributions. On the
contrary, a careful assessment of these experiences may assist in the development of
more powerful procedures for the benefit of humanity.

The importance of numerical simulation of incompressible fluid flow problems
became more understood in parallel with the advent of modern computing machines
in the late 60s and early 70s. It was observed that there were two phases that must
be dealt with care for such solutions. The first one of these was to develop the most
suitable discretization technique to be used in order to convert the set of partial
differential equations into a set of simultaneous linear set of equations, which can
describe the velocity and pressure fields adequately. When solved with a certain
accuracy, these equations would give the required solution to the problem.
Depending on the type of discretization, a grid structure was needed to complement
the discretization.

The second phase was to develop a suitable equation solver for the resulting set
of linear equations. In these early years, finite differences were very well known for
a long time since. Later on, the advancement in computing machinery urged
researchers to the development of various methods such as Finite Elements,
Boundary Elements and Finite Volumes. Despite this, the use of finite difference
methodology continued, mainly due to its simplicity and versatility. An important
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feature of finite differences was that the resulting linear set of equations possesses a
well-structured form. This feature enabled the development of more efficient
algorithms for the solution of these equations.

The adventure started with the development of upstream differencing methods
first proposed by Runchal et al. [40] and studied further by Torrance and Rockett
[46] and Raithby and Torrance [37]. Considering the utmost importance of the mass
conservation constraint, the staggered grid arrangement was proposed first by
Harlow and Welch [19]. In this arrangement, the velocity components were placed
exactly on the faces of the control volumes. In this way, the physical meaning of the
constraint was reflected more efficiently into the approximations. These methods
were analyzed and evaluated thoroughly by Raithby [39] after which they became
almost standard in all applications.

The upstream differencing scheme was developed upon realizing that the
assumptions made for the variation of dependent functions over a certain region
play a vital role in numerical development. This was due to the ðquÞ term causing
the nonlinearities in the momentum equations in the convection term. It was real-
ized that in these terms, the use of straight averaging of the dependent variables at
an interface of a control volume was causing difficulties. This was because the
changes of the dependent variables at a grid point were not properly realized at the
points downstream of the flow. There appeared some unexpected negative coeffi-
cients in places where they should have been physically positive. Using the ‘up-
stream’ values instead of straight averages solved the problem.

Mathematically, the problem actually lay in the choice of the linearization of the
dependent functions. If it was known that the dependent functions behave in a
certain shape, the linearization process must have been chosen in such a way as to
reflect this shape. Several schemes were developed for this purpose. The
Power-Law Scheme [32], the Hybrid Scheme [34] and the Exponential Scheme
(named also as the Upstream Weighted Scheme) [37] were then developed for this
purpose.

The Upstream Weighted Scheme, coupled with the staggered grid arrangement
proved to be useful remedies for such problems. These have been used successfully
until nowadays and they are almost classical.

The solution of the nonlinearity problem was straightforward and could be
handled by a suitable iterative approach. However, some fast changes usually
appearing in the early stages of flow development was causing divergence in the
numerical process. In order to obtain convergence, it was necessary to slow down
these changes by the enforcement of some under-relaxation. There was no problem
for time dependent flow situations, since the time step used may have been chosen
smaller in order to cope with such abrupt changes. To avoid divergence and to
provide faster convergence for steady flows, Raithby and Schneider [38] proposed
the E-factor formulation. This provided a remedy for the problem.

Following the formulation of the primitive finite difference equations, the next
phase of the solution process was the solution of the resulting linear system of
equations. Researchers then realized that besides other problems there was an
important and crucial problem with the solution of these equations, no matter what
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discretization technique has been used. This was the velocity-pressure coupling
problem. The real difficulties then started to show up.

The use of direct solution techniques such as Gaussian elimination for the
solution of the primitive system was possible, but costly due to the sparseness of the
matrices involved. The huge amount of storage and computing time required for
solution with some available sparse matrix solvers rendered a direct solution
completely formidable.

The alternative was to utilize an iterative solver. However, various available
iterative solution techniques were not suitable for the purpose. This was due to the
violation of certain conditions necessary for the proper functioning and conver-
gence of the methods. The matrices involved were not diagonally dominant, a
condition which is strictly necessary for the convergence of an iterative process. In
addition, the presence of some zero coefficients in the main diagonals of the
matrices involved, rendered an iterative process completely inapplicable.
Reordering of the equations in order to bring nonzero coefficients to the main
diagonal did not seem favorable either.

In consideration of these difficulties, researchers diverted to a
‘divide-and-conquer’ approach, named as segregated solution. There was no
problem in solving the equations for the velocity components separately if the
pressure field was given. Some assumed velocity and pressure fields would suffice,
which could be corrected afterwards. In addition, an assumed velocity field would
cure the nonlinearities as well. This would then be cast into an iterative scheme in
which mass and momentum conservation would be satisfied gradually, when and if
the process converged.

For this purpose, the velocity and pressure fields need to be corrected. Since the
resulting velocity field would not satisfy the mass conservation constraint at an
intermediate stage of the process, it needed correction. The corrections started on
the intermediate velocity field. It was assumed that the velocity field could be
corrected by the assumption that a pressure correction exists for this purpose. This
involved some assumptions to be made on the velocity field, but nevertheless an
‘equation’ for a ‘pressure correction’ field was at hand. The velocity field was then
updated using this ‘pressure correction’ field.

However, this time the momentum equations would not be satisfied since the
velocity field satisfying momentum had been changed. If the latest pressure field
was ‘corrected’ to surpass the effect of the assumptions made, it would give a better
satisfaction. At first, realizing that the ‘pressure correction’ field had similar char-
acteristics as that of the pressure field, the ‘pressure corrections’ might have been
assumed as ‘pressure differences’, hence they were utilized directly to update the
pressure field. This resembled, with an old saying, the question ‘does the hen come
from the egg or does the egg come from the hen?’

Although not worded or pursued, such a correction field was in fact readily
available by the ‘pressure difference’ terms in the momentum equations.

Nevertheless, despite its slow convergence character, the process was successful.
An improved satisfaction of the mass and momentum conservation was sought from
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one overall iteration to another. The iterations thus formed were continued until and
if convergence resulted.

The slow convergence of the process led researchers to investigate the reasons. It
was decided that the assumptions made in the process were the main culprit.
A series of enhancements were then proposed in order to obtain better convergence
rates by easing the unrealistic assumptions made. The operations were successful,
but of course, with some penalty.

In justifying and appreciating the efforts and assessments of the developments
achieved towards the treatment of the problem, a closer examination of the
pioneering works of researchers is necessary.

Harlow and Welch [19] proposed one of the earliest methods to account for the
velocity-pressure coupling. A Poisson-type equation was derived by combining the
mass and momentum equations. Chorin [7, 8] developed two methods, the first
being for steady state problems, by trying to adapt the ideas of Harlow and Welch
for compressible flows by using an artificial equation of state. While Chorin was
trying to apply his artificial compressibility method to transient problems, he came
up with a ‘velocity correction’ idea. Recognizing the fact that the convective and
pressure terms in the governing equations can be written as a sum of a quantity with
zero divergence and a quantity with zero vorticity; the essential feature of his
procedure was to sequentially use the part with zero divergence to calculate an
intermediate velocity field which had the correct vorticity but did not satisfy mass
conservation, and then to use the part with zero vorticity to correct this intermediate
field to ensure mass conservation. Chorin’s method comprised the basis of several
other procedures, some of them still being used, and therefore is of fundamental
importance.

Amsden and Harlow [1], following Chorin’s ideas, proposed that a potential
function, determined by a Poisson equation, be used for the correction of the
velocity divergence without affecting the vorticity of the intermediate velocity field.

Patankar and Spalding [35] developed the well-known SIMPLE (Semi-Implicit
Pressure Linked Equations) method in which the correct pressure field was written
as the sum of an intermediate pressure field and a correction on this pressure. The
pressure correction, determined by a Poisson equation, was first used to correct the
intermediate velocity field to ensure mass conservation. Then, pressures were
updated by simply adding the pressure corrections to the intermediate pressures.

Later, Briley [3] proposed the use of a potential function to update pressure. This
potential function would be calculated from a Poisson equation.

In their efforts to examine how quickly convergence is promoted with these
methods, Raithby and Schneider [38] came up with new ideas, one of them being
the E-Factor formulation in which a ‘consistent time step’ was used for updating
pressure. This was actually an under-relaxation process. It helped in suppressing the
high velocity and pressure changes that usually appear at the very early stages of
flow development. In this way, divergence of the iterative process was avoided.
They also proposed the procedure called PULS (Pressure Update by Least Squares)
to determine a pressure distribution which satisfies the momentum equations in a
least-squares sense. This method contained Briley’s method as a special case.
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Patankar [36] derived the SIMPLER method which was a revised form of his
original method in which some more realistic assumptions were made in the for-
mulation of the pressure equations. This enhancement was more efficient in
updating the pressure field, but required the solution of another Poisson-type
equation.

When mathematicians are asked, they immediately recall that the Poisson
equation is one of the partial differential equations whose solution is the most
difficult. For the pressure field resulting in incompressible flows, the problem
becomes even more important. It can be seen clearly from the momentum equations
that not the value of pressure at a grid point, but only the amount of ‘pressure
differences’ between the grid points is required to determine the velocity field. This
‘relativeness’ of the pressure values necessitates that the pressure is let ‘free’ at the
boundaries, that is to say, all boundary conditions be of Neumann type, but perhaps
at one ‘reference’ point at which it is set to some fixed value, say zero.

This physical reality however, reflected itself as a mathematical difficulty in the
solution stage. Since all but only one of the linear equations resulting from the
discretization of the Poisson equation were weakly diagonally dominant, iterative
solution of these equations suffered from very slow convergence. Divergence might
even result if strong under-relaxation was not applied. In fact, it was realized that up
to 90 % of the computing time required for the solution of the flow problem was
spent on the solution of these artificially formed Poisson-like equations.

Realizing this deficiency, researchers started to search for some ways of
avoiding the use of a Poisson-type equation. In this regard, Raithby and Schneider
[38] proposed the PUMPIN (Pressure Update byMultiple Path Integration) method.
This method did not require the solution of a Poisson equation. Instead, the pressure
field was updated by starting from the reference point where pressure was set to
zero and integrate the momentum equations along two paths to each interior
pressure point, and then averaging these results to obtain a new pressure field.

Mazhar and Raithby [27] presented NEW-PUMPIN which was a refined version
of PUMPIN in which integrations were not only performed along two paths, but
along all the possible paths to a pressure point in the solution field. The procedure
was based on a binomial weighting technique whose complete pass cost only as
much as one pass of the original method. The new method performed much better
than the original one.

In an effort to obtain an idea of an ideal one on the emerging procedures, Mazhar
[28] examined all of the above described segregated procedures and performed a
comprehensive evaluation of their performances in coping with the
velocity-pressure coupling problem. He concluded that the NEW-PUMPIN per-
formed best for small-sized problems, but for larger problems, the distance of a
single reference point was causing slower convergence rates. This was due to the
inability of the mechanism to quickly and efficiently distribute the changes to the
whole solution field. The PUMPIN method was also causing problems when
obstructions were present in the flow field. In conclusion, the SIMPLER method
was found to be more stable and faster. Research was then concentrated on the
improvement of various aspects in the segregated solution procedures.
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At the time, the iterative procedures like Gauss-Seidel, Successive
Over-Relaxation and the Alternating Direction Implicit methods were used to solve
the Poisson equations. Realizing the slow convergence of these methods,
researchers concentrated on developing better algorithms for solving these equa-
tions more efficiently. Based on an original idea of Stone’s [44] SIP (Strongly
Implicit Procedure), Schneider and Zedan [42] came up with a modified version
called MSIP whose performance was quite satisfactory. The main idea in these
methods was to perform an incomplete decomposition of the form A = LU + D onto
the five-diagonal coefficient matrix A resulting from the Poisson equation, followed
by successive iterations to overcome the effects of the ‘defect matrix’ D. In SIP, the
five strength vectors in L and U were placed in the same places as that of the vectors
of A, resulting in two defect vectors in the matrix D at locations adjacent to the
lower and upper triangular diagonals but closer to the main diagonal. Then the
effect of these defect vectors was partially cancelled by linearly distributing these
effects to the variables at the nearby grid points. In MSIP, two additional strength
vectors were employed, one above the lower diagonal of L and one below the
upper-diagonal of U. In this way, the places of the defect vectors were shifted one
place closer to the main diagonal of D. This was followed by a partial cancellation
of the effects of the defect vectors. With these modifications, MSIP proved to be
much faster than SIP. Moreover, it was observed that it could withstand the
destructive effects of some large aspect ratios of grid sizes in both directions of the
grid.

MSIP was a step forward in the improvement of the solution procedures, as
expected. In fact, if the idea of employing more strength vectors was continued until
the three diagonals close to the main diagonal, this would result in a complete
factorization. However, this would be the same as employing a full banded
Gaussian elimination solution, requiring full storage of the band and resulting in
high cost of computing time. More improvements were also suggested in parallel,
by utilizing a nine-point discretization scheme. However, increasing storage
requirements was discouraging researchers and efforts in this regard were not
continued.

These improvements comprised a leap forward in decreasing the cost in the
solution of the linear equation sets, but they had no contribution towards better
treatment of the velocity-pressure coupling problem. The reason for slow overall
convergence rates and highly confined stability ranges was still not resolved.

Efforts on developing better algorithms for the treatment of the velocity-pressure
coupling problem continued in various ways of easing the effects of the assump-
tions made in the SIMPLE-type methods. In this respect, several enhancements
were proposed. Van Doormaal and Raithby [47] suggested SIMPLEC (SIMPLE-
Consistent) and Latimer and Pollard [25] presented FIMOSE (Fully Implicit
Method for Operator-Split Equations). Latimer and Pollard presented a comparison
of SIMPLER, SIMPLEC and FIMOSE and concluded that the overall performance
of the methods with these enhancements are more or less similar, but that
SIMPLEC produces relatively faster results.
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All of the above enhancements required the solution of two Poisson-type
equations, one for pressure and one for pressure correction. Issa [21] suggested
PISO (Pressure-Implicit by Splitting of Operators) for correcting pressure once
more in each iteration by the use of an additional Poisson equation. This resulted in
a predictor-corrector approach in which a corrector for pressure was used two times
before proceeding with the next iteration of the solution process. Chow (9) sug-
gested some improvements to PISO, which resulted in some ten percent reduction
in computing time as compared with SIMPLER, but admitted that the computation
time used by these methods was too long and that further research was needed in
improving their speed and economy for practical fluid flow problems.

Although working well, these procedures were poor in dealing with the non-
linearities. In contrast to the reference to Implicitness in their code names, these
procedures were of the semi-implicit type. Despite these improvements, segregated
solution procedures continued to involve the decoupling of the velocity and pres-
sure variables. Researchers actually were aware that the coupling was the most
important property of these variables and should have been preserved for a better
and faster interaction between the variables, but the question on how this was to be
done, was unanswered. Attention was then focused on some more implicit schemes.

Raithby and Schneider [38] had already pointed out that keeping more of the
effects of the coupling between the velocity and pressure fields significantly
increases the convergence rates.

The first attempt in this regard was that of Zedan and Schneider [53] in which the
velocity components in the mass conservation equation were replaced by their
respective values from the momentum equations but keeping pressure terms as
unknowns. This resulted in a more implicitly formulated pressure equation which
was solved by an SIP-type procedure. Results were promising, but the procedure
still was of the segregated type.

Galpin, Van Doormaal and Raithby [15] presented CELS (Coupled Equation
Line Solver) in which both of the momentum and mass conservation equations were
let coupled on a grid row or column of the flow region. Then the solution was
performed based on repeated sweeps in both directions of the grid. This indeed
proved to be a more stable algorithm requiring less under-relaxation, as a result that
convergence could be obtained for larger values of the E-factor. However, since the
strong coupling over the whole region was disrupted due to the line-by-line treat-
ment, overall performance of the procedure was almost the same as those of
SIMPLER and SIMPLEC. Nevertheless, the findings helped in recognizing that if
coupling is preserved more implicitly, more robust algorithms could result.

In a continuing effort for this purpose, Zedan and Schneider [52] provided CSIP
(Coupled Strongly Implicit Procedure) which has been a first attempt in which
coupling of the velocity and pressure variables was preserved in the whole domain.
The equations for momentum and mass conservation for each point in the solution
domain were written together by keeping their primitive form in a 3 × 3 submatrix.
That is to say, the variables in the unknown vector was written in the sequence
u1; v1; p1;u2; v2; p2; . . .::; uN ; vN ; pN , and the equations were written sequentially as
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u-eq1, v-eq1, mass-eq1, u-eq2, v-eq2, mass-eq2, …, u-eqN, v-eqN, mass-eqN. This
reordering resulted in a block matrix system whose matrix was five-diagonal, but
whose coefficients were those 3 × 3 submatrices. The solution of this block system
was then performed using an MSIP type procedure in which inversions on the 3 × 3
submatrices were involved. Unfortunately, although the expectations were different,
for some reason this procedure performed purely. The overall computational cost
was about 4–10 times more, compared to that of SIMPLER.

However, a significant, but not pursued conclusion of this study was that the
convergence ranges for the E factor and that of the a parameter used for
under-relaxation in the solution of the linear equation sets were further widened
than the previous methods.

The above observation was really ‘telling something’, but unfortunately, in
consideration of the poor performances of the methods, research toward fully
implicit procedures utilizing the primitive forms of the mass and momentum
equations was somehow relaxed and attention was focussed back onto
segregated-type procedures.

Meanwhile, the use of the segregated-type procedures continued [49].
Suggestions for improvement of these procedures in some refined aspects have also
been made. Chatwani and Turan [5], observing that stronger relaxation in the early
stages of flow development may be helpful, proposed a variable under-relaxation
factor for use in the solution algorithms. Kim and Ro [23] presented an improve-
ment called MCGS (Modified Conjugate Gradient Solution) for the solution of the
Poisson Equations. A block-correction algorithm was presented by Sathyamurty
and Patankar [41]. Kim and Ro [23] proposed their BASIP (Block Aided Strongly
Implicit Procedure) utilizing a combination of SIP and a block solver with some
improvement in solution costs.

Studies on improvements in various aspects and comparisons reported by Galpin
and Raithby [15], were continued by Theodossiou and Soussa [45], Connell and
Stow [9], Henau et al. [20], Deng et al. [13], Wen and Ingham [50] and Choi and
Yo [6].

It was not until 1995 that attention was focused back onto the fully coupled
solution of the momentum and mass conservation equations in their primitive
forms.

In an attempt to uncover the mystery in why the approach presented by Zedan
and Schneider [52] performed so purely, Güngörmüş [17], using similar mecha-
nisms as those used in CSIP, reported similar observations.

Hanby et al. [18] tried the use of the QMR (Quasi Minimal Residual) algorithm
of Freund and Nachtigal [13] for the solution of the equations in their primitive
forms. In parallel to the results obtained by Zedan and Schneider [52] and
Güngörmüş [17], the fully coupled approach proved to be more effective in dealing
with the nonlinearities, but poor in the overall convergence characteristics.

In the meantime, an attempt was made by Lage [24] in an effort towards
improvement of Poisson solvers by performing an adaptive optimization of the
MSIP procedure with some success. Sheen [43] applied the PCGS algorithm,
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reporting some good convergence and stability but lower asymptotic convergence
rates.

It was obvious by the time, but unfortunately not openly worded, that the failure
of the fully coupled approaches with an effort to solve the primitive equations
efficiently, was due to the solution procedures themselves. The question was: why
are such procedures so slow and costly, despite the improvements in stability?

The culprit to this dilemma was discovered in an attempt by Mazhar [29] in
which the primitive equations were solved by an incomplete decomposition tech-
nique applied to the block primitive matrix, similar to that used in the SIP and
MSIP. The main problem was the following:

In the previous studies, the block matrix was formulated by rewriting the
equations in a pointwise way. This was quite all right, but what happened later on in
the solution process was of utmost importance. With this type of ordering, the main
diagonal coefficients of the momentum equations were becoming less effective than
those at the off diagonals. The effects of the diagonal coefficients of the neighboring
points were scattered and distributed to the off diagonals of the block matrix, thus
worsening the diagonal dominancy of the matrix. The result, inevitably, was slower
convergence, which had to be partially treated with strong relaxation.

Mazhar’s formulation of the block system was quite different. The two
momentum conservation equations were written as two consecutive blocks, fol-
lowed by the equations of mass conservation for all points in the solution field. That
is to say, the equations were retained in their original, primitive form, as com-
manded by the governing partial differential equations. Then it was discovered that
an incomplete decomposition works for this block matrix, despite the fact that one
of the main diagonal block sub-matrices referring to pressure was completely null.
With the special incomplete decomposition technique used, nonzero coefficients
were able to be created in all of the main diagonals of the strength matrices L and U,
even at the places corresponding to the null matrix for pressure. More importantly,
with the mechanism involved in this decomposition, the effects of the dominant
diagonal coefficients of the momentum equations, together with the effects of the
coefficients of pressure terms and those of mass conservation were all successfully
transported into the strength vectors of L and U. Moreover, the effect of the defect
vectors was much less than those of the strength vectors.

The results were astonishing. Convergence rates of this fully implicit coupled
procedure were much more than anticipated. On the other hand, the number of
relaxation parameters was reduced to two and the intervals of convergent relaxation
parameters were broadly widened. To the benefit, the procedure did not need the
solution of a Poisson-type equation and the formulation was extremely easy.

The procedure was adapted on the existing codes of some other independent
reasearchers who at first found the claims to be ‘too good to be true’. The procedure
was tested on various problems for about a year with the conclusion that it was in
fact at least twice as fast and much more stable compared to SIMPLER. This was
the procedure named BIP in this book.

With the encouragement of the performance of the procedure, research continued
toward improvement of the mechanism involved. An enhancement to this
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procedure called BIPEN was formulated by Mazhar [30] which proved to be about
40 % faster and more durable than the BIP.

These observations paved the way for further enhancements. It was noticed that
various other ways were possible in the selection of places of the strength vectors in
the L and U matrices. FICS-1 and FICS-2 [31] use similar mechanisms but include
even broader enhancements.

The procedure FICS-1 converged much faster than the former ones and the range
of convergent relaxation parameters was much widened. The climax of these was
FICS-2, which proved to be about twenty times faster than any of the
segregated-type ones. In fact, solutions could be obtained with about 5 % of the cost
of the SIMPLER-type procedures. The method proved to be convergent even
without any relaxation. The elimination of the need for Poisson-type solutions and
the simplicity in the formulation and solution stages were the extra benefits of these
procedures. The broadly expanded ranges of optimal relaxation parameters were a
reference to the high stability of the procedures.

A further enhancement, which was surprisingly the simplest of the family of
procedures, named as SICS, was developed by Mazhar. This procedure was not as
strongly robust as FICS-2, but it had several, important advantages over FICS-2.
Pointwise applicability, simplicity of formulations and elimination of the need for
extra storage were some of the extra benefits.

Despite these developments, the SIMPLER-type procedures are still widely used
in the simulation of fluid flow problems. Efforts even continue on enhancing the
solution of the Poisson-type equations involved in the segregated-type procedures.
The latest of these efforts was reported by Chalhub et al. [4] in which a
semi-analytical formulation was proposed.

Promisingly, on the other hand, coupled algorithms have recently regained some
more attention. Darwish et al. [11] derived a ‘pressure equation’ similar to a seg-
regated SIMPLE algorithm by considering the primitive form of the equations.
Mangani et al. [26], using a SIMPLE type algorithm in a finite volume approach,
reported that implicit block coupling of pressure and velocity variables leads to
faster convergence compared to classical fully uncoupled ones. Ashrafizadeh et al.
[2] reported similar conclusions as well. The work of Darwish et al. [12] involves
extracting an implicit equation for pressure following a segregated mass conser-
vation based algorithm in a finite volume scheme with which 1.3 to 4.6 times faster
convergences are reported.

Although substantial improvement in robustness has been achieved with these
procedures, the overall performances of the proposals are overshadowed by com-
plicated algorithms. The expected high performances were not realized, perhaps
basically because the naïve full implicitness of the coupled primitive equations was
not utilized favorably. The proposed procedures were either carrying some segre-
gation or, even if the coupled forms were used for some implicitness, they were still
pressure-based.

It has been obvious by now that the common approach of trying to obtain an
explicit equation for pressure somehow dissolves the strong coupling inherently.
Hence, it has become clearly understood that the strong coupling in the primitive
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equations is not a disadvantage, but rather it is a property that must be carefully
preserved and advantageously utilized.

The Author of this book feels that the development of the segregated-type or
pressure-based procedures climbed to a saturation, with no further significant
advance. Therefore, much attention must be focused on the latest coupled fully
implicit treatment of the velocity-pressure coupling problem.
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Appendix B
Segregated Solution Procedures: SIMPLE
and SIMPLER

The segregated type procedures have been widely used for over four decades,
despite their slow convergence rates and stability problems. Due to their historical
importance, two of these procedures are presented here, for the sake of complete-
ness and for the interest of the reader.

The discretization of the governing partial differential equations as described in
Chap. 4 resulted in three linear(ized) equations for each grid point interior to the
solution domain under consideration. For each nodal point P, equations of the
following form were obtained:

Au
SuS þAu

WuW þAu
PuP þAu

EuE þAu
NuN þApu

P pP þApu
E pE ¼ buP ðB:1Þ

Av
SvS þAv

WvW þAv
PvP þAv

EvE þAv
NvN þApv

P pP þApv
N pN ¼ bvP ðB:2Þ

ACu
W uW þACu

P uP þACv
S vS þACv

P vP ¼ 0 ðB:3Þ

We note that Eqs. B.1 and B.2 are the same as Eqs. 4.32 and 4.39, respectively.
However, Eq. B.3 differs from Eq. 4.44 in that the right hand side is set to zero. This
is because the boundary conditions have not been applied onto the equation.

The nonlinearity of the differential equations is reflected in the difference
equations by the coefficients which themselves depend on the unknowns.

The earliest procedures for solving these equations which were economically
viable for most applications were proposed by Patankar and Spalding [35] and
Briley [3]. Many variations and enhancements to these ideas have been proposed in
due course as described in Appendix A.

All of these procedures work in the following fashion:

Step 1. Guess a preliminary pressure field p�, or use pressure values available
from a previous solution step.

Step 2. Solve Eqs. (B.1–B.2) using this p� field to obtain a new velocity field.
Denote these velocities by u� and v�:

Step 3. Correct u� and v� velocities to uc and vc such that uc and vc satisfy
Eq. B.3.

Step 4. Update coefficients.
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Step 5. Update pressure field.
Step 6. Repeat Steps 2–5 until convergence.

A complete cycle consisting of Steps 1–6 is called an overall iteration.

Details of Steps 1 and 2: Solution of the momentum equations

To begin with, it is assumed that some knowledge about the velocity and pressure
fields is at hand. If not, some appropriate initialization of the velocity and pressure
fields is necessary. Although not necessary, for most problems, initialization to zero
may be appropriate.

Step 1 of the segregated process is to guess a pressure field. For the first overall
iteration, the pressures may be assumed to be zero. In the later stages, the most
recent pressure values already available from a previous outer iteration are used.

In Step 2, these pressures are used in the two momentum equations so that the
following equations result:

Au
Su

�
S þAu

Wu
�
W þAu

Pu
�
P þAu

Eu
�
E þAu

Nu
�
N þApu

P p�P þApu
E p�E ¼ buP ðB:4Þ

Av
Sv

�
S þAv

Wv
�
W þAv

Pv
�
P þAv

Ev
�
E þAv

Nv
�
N þApv

P p
�
P þApv

N p
�
N ¼ bvP ðB:5Þ

Assembled in a matrix form, these equations become

Au½ � u�f g ¼ bu
�� � ðB:6Þ

and

Av½ � v�f g ¼ bv
�� � ðB:7Þ

These matrix systems are shown explicitly in Figs. B.1 and B.2.

Fig. B.1 Matrix system for u velocity in segregated solution
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The two coefficient matrices are five-diagonal, that is to say, all the coefficients,
except those on the indicated five diagonals are zeros.

Besides these matrices being highly sparse, it is more important to note the
following observation: From the formulation of the coefficients it follows that

Au
P

�� �� ¼ 1þE
E

X
Au
nb

�� �� ðB:8Þ

and

Av
P

�� �� ¼ 1þE
E

X
Av
nb

�� �� ðB:9Þ

in which Anb denotes the coefficients of the four neighboring points of P. Since
ð1þEÞ=E[ 1 for all E[ 0 and limE!1 1þE

E ¼ 1, it follows that

Au
P

�� ��� X
Au
nb

�� �� ðB:10Þ

and

Av
P

�� ��� X
Av
nb

�� �� ðB:11Þ

With a finite value of E, the matrices are strictly1 diagonally dominant, while as
E ! 1 they become loosely diagonally dominant. Convergence of an iterative

Fig. B.2 Matrix system for v velocity in segregated solution

1Matrices whose coefficients satisfy the property in Eqs. (B.10, B.11) are called diagonally
dominant in the literature. The case in which only strict inequality is valid is defined by Varga (48)
as strictly diagonally dominant. On the other hand, Jennings (24) uses the term loosely diagonally
dominant for the case in which only equality holds. For a loosely dominant matrix, the inequality
must hold for at least one row, since otherwise a unique solution to the system with such a matrix
does not exist.
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method for the solution of a system having a strictly diagonally dominant matrix is
faster since the diagonal dominance is stronger. However, if large values of E are
used, the diagonal dominance is weakened, with the consequence that the con-
vergence of a suitable iterative solution scheme slows down considerably. We note
that a very large E value means no under-relaxation, but in such a case, the solution
of the momentum equations will suffer from very slow convergence.

At the end of Step 2, unless the solution has already converged, the resulting *-
velocity field will not satisfy mass conservation, because the p� field was only an
approximation to the true pressure.

Details of Step 3:Velocity Correction

The primary objective in this step is to correct the velocity field obtained in Step 2
in such a way that the corrected velocity field satisfies the mass conservation
constraint. All the available proposals perform this task by postulating the existence
of a function p

0
which satisfies relations of the form

ucP ¼ u�P þ f uP ðp
0
P � p

0
EÞ ðB:12Þ

and

vcP ¼ v�P þ f vPðp
0
P � p

0
NÞ ðB:13Þ

where various fP’s lead to various methods. Here the u and v values superscripted
by c denote the corrected u and v values. Substituting Eqs. (B.12–B.13) into the
mass conservation equation (B.3) results in a finite difference analog of a
Poisson-type equation for p

0
of the form

Ap0
h i

p0f g ¼ bp
0

n o
ðB:14Þ

Since p
0
is assumed to be of the same character as p, boundary conditions for

p can be applied to p
0
as well.

The SIMPLE procedure

Patankar [33] suggested the following scheme for the velocity correction: Consider
Eqs. (B.1 and B.2) in which u’s and v’s are replaced by uc’s and vc’s to write

Au
Su

c
S þAu

Wu
c
W þAu

Pu
c
P þAu

Eu
c
E þAu

Nu
c
N þApu

P pP þApu
E pE ¼ buP ðB:15Þ

Av
Sv

c
S þAv

Wv
c
W þAv

Pv
c
P þAv

Ev
c
E þAv

Nv
c
N þApv

P pP þApv
N pN ¼ bvP ðB:16Þ

Subtracting Eqs. (B.4 and B.5) from Eqs. (B.15 and B.16) respectively, and
rearranging, gives
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Au
PðucP � u�PÞ ¼ �Au

SðucS � u�SÞ � Au
W ðucW � u�WÞ � Au

EðucE � u�EÞ � Au
NðucN � u�NÞ

� Apu
P ðpP � p�PÞ � Apu

E ðpE � p�EÞ
ðB:17Þ

and

Av
PðvcP � v�PÞ ¼ �Av

SðvcS � v�SÞ � Av
W ðvcW � v�WÞ � Av

EðvcE � v�EÞ � Av
NðvcN � v�NÞ

� Apv
P ðpP � p�PÞ � Apv

N ðpN � p�NÞ
ðB:18Þ

Patankar [33] then ‘drops’ the terms containing velocity differences in the right
hand side of Eqs. (B.17 and B.18). Upon defining a p0 by

p ¼ p� þ p0 ðB:19Þ

Eqs. (B.12 and B.13) become, after using Eqs. (4.33e–f) and (4.40e–f) and
rearranging,

ucP ¼ u�P þðp0
E � p

0
PÞDy=Au

P ðB:20Þ

and

vcP ¼ v�P þðp0
N � p

0
PÞDx=Av

P ðB:21Þ

For a mass control volume around the point P, similar equations can now be
written for uce, u

c
w, u

c
n and ucs as follows:

uce ¼ u�e þðp0
P � p

0
EÞDy=Au

e ðB:22Þ

ucw ¼ u�w þðp0
W � p

0
PÞDy=Au

w ðB:23Þ

vcn ¼ v�n þðp0
P � p

0
NÞDx=Av

n ðB:24Þ

and

vcs ¼ v�s þðp0
S � p

0
PÞDx=Av

s ðB:25Þ

Substitution of these values into Eq. (B.3), using ACu
W ¼ �Dy; ACu

W ¼ Dy; ACv
S ¼

�Dx; ACv
W ¼ Dx and rearranging yields
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Dy2=Au
e þDy2=Au

w þDx2=Av
n þDx2=Av

s

� �
p

0
P

¼ ðDy2=Au
eÞp

0
E þðDy2=Au

wÞp
0
W þðDx2=Av

nÞp
0
N þðDx2=Av

sÞp
0
S

� ðu�e � u�wÞDyþðv�n � v�s ÞDx
� � ðB:26Þ

Similar equations are then written for all other mass control volumes. Once these
equations are assembled into a matrix form as

Ap0
h i

p0f g ¼ bp
0

n o
ðB:27Þ

they can be solved to obtain the p0 field. These are then used in Eqs. (B.20 and
B.21) to correct the velocity field.

In the SIMPLE method, Steps 4 and 5 are combined by using Eq. (B.19) to
update pressure.

Patankar discussed the implications of the ‘approximations’ that have been made
by dropping the terms involving velocity differences and noted that it has no effect
on the converged solution. If and when ‘convergence’ is reached, uc’s will approach
u�’s, and the mass source of the u�; v� field will be zero, therefore giving a pressure
correction field of practically zero. In this case it would not make any difference if
any approximations are made or not. If the process converges, it converges to the
correct velocity and pressure fields.

This was quite meaningful. However, Patankar [36], in his own words, admits
that ‘the approximations made lead to rather exaggerated pressure corrections, and
hence under-relaxation becomes essential. Since the influence of the neighbor-point
velocity corrections is removed from the velocity-correction formula, the pressure
correction has the entire burden of correcting the velocities, and this results in a
rather severe pressure-correction field. In most cases, it is reasonable to suppose that
the pressure-correction equation does a fairly good job of correcting the velocities,
but a rather poor job of correcting pressure’.

To improve the slow convergence rate of the algorithm he then proposed a
revised version of the algorithm, named SIMPLER, as follows:

The SIMPLER Procedure

Once the velocity field has been corrected in Step 3 and new coefficients have been
calculated in Step 4, these values are resubstituted into the two momentum equa-
tions to obtain

ucP ¼ uc�P þðpP � pEÞDy=Au
P ðB:28Þ

and

vcP ¼ vc�P þðpP � pNÞDx=Av
P ðB:29Þ
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in which

uc
�
p ¼ � Au

eu
c
E þAu

wu
c
W þAu

nu
c
N þAu

su
c
S

� �
=Au

P ðB:30Þ

and

vc
�
p ¼ � Av

ev
c
E þAv

wv
c
W þAv

nv
c
N þAv

sv
c
S

� �
=Av

P ðB:31Þ

Equations of the form (B.30 and B.31) can be written for the u and v velocities
on the face of a mass control volume around a point P as follows:

uce ¼ uc�e þðpP � pEÞDy=Au
e ðB:32Þ

ucw ¼ uc�w þðpW � pPÞDy=Au
w ðB:33Þ

vcn ¼ vc�n þðpP � pNÞDx=Av
n ðB:34Þ

vcs ¼ vc�s þðpS � pPÞDx=Av
s ðB:35Þ

Substituting Eqs. (B.32–B.35) into the mass conservation equation (B.3), using
ACu
W ¼ �Dy; ACu

W ¼ Dy; ACv
S ¼ �Dx; ACv

W ¼ Dx and rearranging gives, for a pres-
sure point P:

Dy2=Au
e þDy2=Au

w þDx2=Av
n þDx2=Av

s

� �
pP

¼ ðDy2=Au
eÞpE þðDy2=Au

wÞpW þðDx2=Av
nÞpN þðDx2=Av

sÞpS
� ðuc�e � uc�w ÞDyþðvc�n � vc�s ÞDx
� � ðB:36Þ

Similar equations for each pressure point P is written and then assembled into a
matrix form as

Ap½ � pf g ¼ bpf g ðB:37Þ

Eq. (B.37), which is of Poisson type, can now be solved to obtain the ‘new’
pressure field.

The matrices for pressure and pressure correction have similar properties,
although their right hand sides are different. The boundary conditions of pressure
and pressure correction are of zero Neumann type and must be applied to all
equations for the grid points neighboring a boundary.

Furthermore, it can be seen from Eqs. (B.27) and (B.37), that the involved
matrices satisfy the relation

AP

�� �� ¼ X
nb

Anbj j ðB:38Þ

Appendix B: Segregated Solution Procedures: SIMPLE and SIMPLER 147



This concludes that the matrices are loosely diagonally dominant, with only one
exception: At only one reference point, pressure or pressure correction may be set to
a fixed value. This property poses a real challenge to any possible linear equation
solver to be used for the solution of the pressure or pressure correction field.

In the early stages of development, the resulting matrices were solved by using
either the ADI (Alternating Direction Implicit), Gauss-Seidel or the SOR
(Successive Over-relaxation) methods. These methods proved to be very slow,
especially for the pressure and pressure correction. Some gain in speed could be
achieved by applying some considerable over-relaxation, but still the speed was not
satisfactory.

Researchers, noting the special form of the matrices involved in these equations,
tried some new ideas on developing faster methods for these systems. For an
appreciation of the fruitful efforts of these researchers and as an extra aid to the
reader, we present these methods below.

Method SIP (StronglyImplicitProcedure)

It was noted above that the resulting system of equations in the procedures
described involves a five-diagonal matrix. Let such a system be denoted by

AX ¼ r ðB:39Þ

whose graphical form is shown in (Fig. B.3):
The idea of strongly implicitness was first proposed by Stone [44]. Later on,

Schneider and Zedan [42] proposed a modified version of Stone’s method. For the
sake of completeness and a better understanding of the basic ideas, the SIP of Stone
will be presented first, followed by Schnedier and Zedan’s MSIP.

Fig. B.3 Five-diagonal matrix system for SIP
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The Author of this book feels obliged to these pioneers for their fruitful ideas in
respect that some inspiration, perhaps invoked the development of the procedures
presented in the book.

The basic idea in these methods is to modify the given matrix A to a matrix A +
D, such that the modified matrix can be factored into a lower triangular matrix
L and an upper triangular matrix U in less computational effort and lower computer
storage than required to factor the original matrix.

For this purpose, Stone noticed that when the two matrices L and U of the forms

and

are multiplied, a matrix A + D results which is of the form
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Multiplying L and U and equating the corresponding coefficients result in

ai ¼ Ai ðB:40aÞ

aidi�m ¼ Fi ðB:40bÞ

bi ¼ Bi ðB:40cÞ

aiei�m þ bidi�1 þ ci ¼ Ci ðB:40dÞ

cidi ¼ Di ðB:40eÞ

biei�1 ¼ Gi ðB:40fÞ

biei ¼ Ei ðB:40gÞ

As Stone points out, however, it is not possible to ‘choose’ the L and U matrices
such that the modified matrix A + D equals A. Assuming that Ai; Bi; Ci; Di and Ei

are equal to the corresponding terms of the original matrix A, the coefficients of
L and U can be calculated by using Eq. (B.40). The additional terms Fi and Gi are
then accepted as their nonzero values.

As though not so done by Stone, the vectors in the matrix L and U could be
named as strength vectors, and those of D the defect vectors.

It would then be sufficient if a partial cancellation of the adverse effect of the
coefficients of the defect vectors is performed. For this purpose, the numerical
molecule in Fig. B.4 is considered:

The modified matrix A + B has nonzeros not only at the point i and its four
neighboring points, but also at the points i − m + 1 and i + m − 1. To partially
cancel the effect of the variable x at these points, approximately equal terms can be
subtracted. Stone writes Taylor Series approximations for xi�mþ 1 and xiþm�1 as
follows:

Fig. B.4 Numerical molecule
for the Strongly Implicit
Procedure
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xi�mþ 1 ¼ �xi þ xiþ 1 þ xi�m ðB:41Þ

xiþm�1 ¼ �xi þ xi�1 þ xiþm ðB:42Þ

He further notes that it would be beneficial to multiply the right hand sides of
these equations by an a, where 0\a\1, as

xi�mþ 1 ¼ a �xi þ xiþ 1 þ xi�m½ � ðB:41Þ

xiþm�1 ¼ a �xi þ xi�1 þ xiþm½ � ðB:42Þ

Now, multiplying the modified matrix A + B by the vector X and equating to the
right hand side vector r, gives:

Aixi�m þBixi�1 þCixi þDixiþ 1 þEixiþ 1

þ Fixi�mþ 1

þ Gixiþm�1 ¼ ri

ðB:43Þ

Now, partial cancellation can be introduced if equivalent values of xi�mþ 1 and
xiþm�1 are subtracted from Eq. B.43 using Eqs. B.41 and B.42:

Aixi�m þBixi�1 þCixi þDixiþ 1 þEixiþ 1

þ Fi xi�mþ 1 � að�xi þ xiþ 1 þ xi�mÞ½ �
þ Gi xiþm�1 � að�xi þ xi�1 þ xiþmÞ½ � ¼ ri

ðB:44Þ

Collecting like terms gives

ðAi � aFiÞxi�m þðBi � aGiÞxi�1 þðCi þ aFi þ aGiÞxi
þðDi � aFiÞxiþ 1 þðEi � aGiÞxiþ 1

þ Fixi�mþ 1

þ Gixiþm�1 ¼ ri

ðB:45Þ

Hence Eq. (B.40) should be modified to obtain

ai ¼ Ai � aFi ðB:44aÞ

aidi�m ¼ Fi ðB:44bÞ

bi ¼ Bi � aGi ðB:44cÞ

aiei�m þ bidi�1 þ ci ¼ Ci þ aFi þ aGi ðB:44dÞ

cidi ¼ Di � aFi ðB:44eÞ
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biei�1 ¼ Gi ðB:44fÞ

biei ¼ Ei � aGi ðB:44gÞ

Since Fi and Gi are given explicitly from Eqs. (B.44b) and (B.44f) respectively,
the remaining equations can be updated to give

ai ¼ Ai � aaidi�m ðB:45aÞ

bi ¼ Bi � abiei�1 ðB:45cÞ

aiei�m þ bidi�1 þ ci ¼ Ci þ aaidi�m þ abiei�1 ðB45dÞ

cidi ¼ Di � aaidi�m ðB:45eÞ

biei ¼ Ei � abiei�1 ðB:45gÞ

Further arrangement of these equations gives

ai ¼ Ai=ð1þ adi�mÞ ðB:46aÞ

bi ¼ Bi=ð1þ aei�1Þ ðB:46cÞ

ci ¼ Ci þ aiðadi�m � ei�mÞþ biðaei�1 � di�1Þ ðB:46dÞ

di ¼ ðDi � aaidi�mÞ=ci ðB:46eÞ

ei ¼ ðEi � abiei�1Þ=bi ðB:46gÞ

The above equations can be used to calculate the coefficients of the strength
vectors in L and U matrices, which will be used in the forward and backward
substitutions in the following iteration sequence.

THE ITERATIVE PROCEDURE

Adding DX to both sides of Eq. (B.39), one may obtain

ðAþDÞX ¼ rþDX ðB:47Þ

Adding and subtracting AX to the right hand side of Eq. (B.47) gives

ðAþDÞX ¼ ðAþDÞX � ðAX � rÞ ðB:48Þ

Since the left hand side is now factored into L and U, Eq. (B.48) can be
efficiently solved if the right hand side is known. For this, the following iteration
scheme can be used:
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ðAþDÞXðkþ 1Þ ¼ ðAþDÞXðkÞ � ðAXðkÞ � rÞ; ðB:49Þ

where k denotes iteration level. Defining a difference vector and a residual vector
by

dðkþ 1Þ ¼ Xðkþ 1Þ � XðkÞ ðB:50Þ

and

RðkÞ ¼ r � AXðkÞ; ðB:51Þ

Eq. (B.49) becomes

ðAþDÞdðkþ 1Þ ¼ RðkÞ ðB:52Þ

Replacing A + D by LU in Eq. (B.52) leads to

LUdðkþ 1Þ ¼ RðkÞ ðB:53Þ

which can be solved in two steps by

Step 1. Solve LcðkÞ ¼ RðkÞ (lower solve or forward substitution)
Step 2. Solve Udðkþ 1Þ ¼ cðkÞ (upper solve or backward splution)

The last step in one iteration then is to update X by using Eq. (B.50) as

Xðkþ 1Þ ¼ XðkÞ þ dðkþ 1Þ ðB:54Þ

It should be reminded here that the incomplete factorization is performed once
and for all and it is followed by a series of lower and upper triangular matrix
solutions, until convergence.

MethodMSIP (ModifiedStronglyImplicit Procedure)

The SIP method proved to be a very efficient solution strategy for the type of matrix
systems of interest, but it was discovered later on that its performance decreased
when the grid structure beared widely varying grid aspect rations.

To combat this deficiency, Schneider and Zedan [42], noting that the strong
asymmetric influence of the additional terms would require the renumbering of the
grid system after every iteration, considered the numerical molecule shown in
Fig. B.5.

The numerical molecule was for a 9-point formulation. Schneider and Zedan,
while working on a 9-point finite difference formulation for a better approximation,
discovered that the resulting formulations can also be used for a 5-point formulation
as a special case. We will shortly see how this is done.
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The corresponding L and U matrices are now given by

Fig. B.5 Numerical molecule for the 9-point Modified Strongly Implicit Procedure
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whereas the modified matrix (A + D) is of the form

The diagonal vectors shown as solid lines in the matrix (A + D) correspond to
the nine coefficients of the original matrix A. The dotted ones are the defect vectors
regarding the four corner nodes of the numerical molecule.

Multiplying L and U and equating the corresponding coefficients with those in (A
+ D) results in

ai ¼ ASW
i ðB:55aÞ

aifi�m�1 þ bi ¼ Bi ðB:55bÞ

bifi�m þ ci ¼ ASE
i ðB:55cÞ

cifi�mþ 1 i ¼ Ci ðB:55dÞ

aigi�m�1 ¼ AWW
i ðB:55eÞ

aihi�m�1 þ bigi�m þ di ¼ Di ðB:55fÞ

aiui�m�2 þ bihi�m þ cigi�mþ 1 þ difi�1 þ ei ¼ Ei ðB:55gÞ

biui�m þ cihi�mþ 1 þ eifi ¼ Fi ðB:55hÞ

eiui�mþ 1 ¼ AEE
i ðB:55iÞ
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digi�1 ¼ Gi ðB:55jÞ

dihi�1 þ eigi ¼ ANW
i ðB:55kÞ

diui�1 þ eihi ¼ Hi ðB:55lÞ

eiui ¼ ANE
i ðB:55mÞ

For a 5-point formulation, Schneider and Zedan then adopt the numerical
molecule shown in Fig. B.6, in which case ANW

i ; ASW
i ; ASE

i and ANE
i are set to zero in

Eq. (B.55). This also leads to ai ¼ ui ¼ AWW
i ¼ AEE

i ¼ 0.
Therefore, for a 5-point formulation, Eq. (B.55) reduce to

bi ¼ Bi ðB:56aÞ

cifi�mþ 1 i ¼ Ci ðB:56bÞ

bifi�m þ ci ¼ 0 ðB:56cÞ

bigi�m þ di ¼ Di ðB:56dÞ

bihi�m þ cigi�mþ 1 þ difi�1 þ ei ¼ Ei ðB:56eÞ

cihi�mþ 1 þ eifi ¼ Fi ðB:56fÞ

digi�1 ¼ Gi ðB:56gÞ

dihi�1 þ eigi ¼ 0 ðB:56hÞ

eihi ¼ Hi ðB:56iÞ

Fig. B.6 Numerical molecule for 5-point MSIP
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The partial cancellation is done in a similar manner as described for SIP. Taylor
series approximations for xi�mþ 2 and xiþm�2 are written as

xi�mþ 2 ¼ �2xi þ 2xiþ 1 þ xi�m ðB:57Þ

and

xiþm�2 ¼ �2xi þ 2xi�1 þ xiþm ðB:58Þ

After introducing a cancellation factor a in a similar fashion, the modified
equations can be written as

Bixi�m þDixi�1 þEixi þFixiþ 1 þHixiþ 1

þ Ci xi�mþ 2 � að�2xi þ 2xiþ 1 þ xi�mÞ½ �
þ Ci xiþm�2 � að�2xi þ 2xi�1 þ xiþmÞ½ � ¼ ri

ðB:59Þ

Rearranging terms, Eq. (B.59) can be written as

ðBi � aCiÞxi�m þðDi � 2aGiÞxi�1

þ Ei þ 2aðCi þGiÞ½ �xi
þðFi � 2aCiÞxiþ 1 þðHi � 2aGiÞxiþm

þ Cixi�mþ 2

þ Cixiþm�2 ¼ ri

ðB:60Þ

Equating the corresponding terms in Eqs. (B.60) and (B.56) one obtains

bi ¼ Bi � aCi ðB:61aÞ

cifi�mþ 1 ¼ Ci ðB:61bÞ

bifi�m þ ci ¼ 0 ðB:61cÞ

bigi�m þ di ¼ Di � 2aGi ðB:61dÞ

bihi�m þ cigi�mþ 1 þ difi�1 þ ei ¼ Ei þ 2aðCi þGiÞ ðB:61eÞ

cihi�mþ 1 þ eifi ¼ Fi � 2aCi ðB:61fÞ

digi�1 ¼ Gi ðB:61gÞ

dihi�1 þ eigi ¼ 0 ðB:61hÞ

eihi ¼ Hi � aGi ðB:61iÞ
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Algebraic manipulation of Eq. (B.61) gives

bi ¼ Bi � acifi�mþ 1

¼ Bi � abifi�1fi�mþ 1
ðB:62aÞ

bifi�m þ ci ¼ 0 ðB:62bÞ

bigi�m þ di ¼ Di � 2adigi�1 ðB:62cÞ

bihi�1 þ cigi�mþ 1 þ difi�1 þ ei ¼ Ei þ 2aðcifi�mþ 1 þ digi�1Þ ðB:62dÞ

cihi�mþ 1 þ eifi ¼ Fi � 2acifi�mþ 1 ðB:62eÞ

dihi�1 þ eigi ¼ 0 ðB:62fÞ

eihi ¼ Hi � adi�1 ðB:62gÞ

Collecting and rearranging terms once more gives the formulas for the coeffi-
cients of the strength vectors as follows:

bi ¼ Bi=ð1� afi�mfi�mþ 1Þ ðB:63aÞ

ci ¼ �bifi�m ðB:63bÞ

di ¼ ðDi � bigi�mÞ=ð1þ 2agi�1Þ ðB:63cÞ

ei ¼ Ei � bihi�m þ cið2afi�mþ 1 � gi�mþ 1Þþ dið2agi�1 � fi�1Þ ðB:63dÞ

fi ¼ Fi � ciðhi�mþ 1 þ 2afi�mþ 1Þ½ �=ei ðB:63eÞ

gi ¼ �dihi�1=ei ðB:63fÞ

hi ¼ ðHi � adigi�1Þ=ei ðB:63gÞ

Once the factorization is completed, the iteration process described for the SIP
method is applied in a similar fashion.
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Appendix C
FORTRAN Subroutines—
BLOCKSOLFICS2 and
BLOCKSOLSICS

The following FORTRAN subroutines are a complement from the Author of this
book to the readers.

Upon the input of the vectors from the block coupled system, the FICS-2 or the
SICS process is started by calculating the necessary strength and defect vectors and
continued with repeated inner iterations until convergence to a specified level of
convergence specified.

The programs are not meant to be professional ones. They are directly extracted
from the testing codes of the Author. The programs can be written in a more
professional form in order to save computer’s memory.

The subroutine RESIDUAL is common to both subroutines.
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SUBROUTINE FOR FICS-2
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SUBROUTINE FOR SICS
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SUBROUTINE RESIDUAL
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CELS, 135
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Complexity, 82
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D
Defect matrix, 69
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Diagonal dominancy, 63
Diagonal vector, 17
Dirichlet, 44
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37, 78, 116, 119, 121, 129, 131, 133,
134, 141

Divergence, 9, 132
Downstream, 43
Durability, 102
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E-factor formulation, 55
Eddy diffusivity, 20
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Equidistant spacing, 10
Exact solution, 90
Exponential Scheme, 130

F
Far-diagonal, 18
FICS-1, 80
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FIMOSE, 134
Finite difference approximation, 7
Flow geometry, 99
Flow pattern, 90
Flow separation, 94
Fluid flow, 19
Forward elimination, 16
Forward sweep, 17
Free surface, 43
Friction velocity, 43
Fully implicit coupled solution procedure, 5
Fundamental theorem of linear algebra, 7

G
Gaussian elimination, 62
Governing differential equations, 7, 19
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Grid arrangement, 8
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Lower triangular, 16
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Numerical simulation, 9
Numerical solution procedure, 26
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Off-diagonal vectors, 16
Optimal relaxation parameters, 101
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Overflow, 30
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Segregated solution procedure, 63
Shelterbelt, 94
SIMPLE, 132, 141
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Solution domain, 26
Space coordinate, 20
Staggered grid, 27, 130
Steady flow, 19
Stoke’s flow, 119
Storage configuration, 27
Storage requirements, 82
Strength matrix, 69
Strength vector, 69
Strictly diagonally dominant, 144
Successive iteration, 70
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Taylor series, 7
Testing criterion, 99
Three-dimensional problem, 120
Time marching, 116
Tunnel, 99
Turbulence, 119

U
Under-relaxation, 55
Upper triangular, 16, 18
Upstream, 94
Upstream differencing, 130

V
Velocity- pressure coupling problem, 21
Velocity correction step, 144
Von Karman’s constant, 43
Vorticity, 132

W
Weighted approximation, 39
Weighted averaging, 39
Weighting factor, 30
Wind-break, 43
Windbreak, 52
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