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Preface

Biomedical research is at a critical point at present. The research has led
to an enormous amount of data and models describing these data, but ap-
proaches for application, formalization and integration of this knowledge from
the molecular to the system level are still topics of ongoing research and cer-
tainly far from fully developed.

Also in cardiology the different anatomical and physiological constituents
as well as the coupling between them are being researched in increasing detail
and are often described using computer-based models. But for this domain an
integrative framework is still missing.

The application of computer-based modeling as a research, development
and clinical tool often necessitates the coupling of various models from differ-
ent levels. Describing the interactions between these models, which are both
physically sound and computationally efficient, determines the applicability
of such promising computer-based attempts.

My hope is that this book will contribute to the comprehension, spread and
impact of computer-based modeling in cardiology, both from a teaching point
of view and by summarizing knowledge from several, commonly delimited
topics relating to the cardiac manifoldness.

The book evolved from revision and extension of my professorial disserta-
tion (Habilitationsschrift) “Mathematical Modeling of the Mammalian Heart”
written in 2002. This dissertation was based on notes for the lectures “Com-
putational Biology: Bioelectromagnetism and Biomechanics,” “Simulation of
Physical Fields in the Human Body,” and “Anatomical, Physical and Func-
tional Models of the Human Body,” which I gave at the Universität Karlsruhe
(TH) from 1998 to 2003.

Salt Lake City, 1 February 2004 Frank B. Sachse
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1

Introduction

1.1 Motivation

Modeling of the heart allows the gain of knowledge concerning the interplay of
anatomical structures and physical phenomena, which contribute to cardiac
physiological and pathophysiological behavior. Applications of this knowledge
are found in biomedical research, education and training as well as in devel-
opment and approval of drugs and medical devices.

An important application of modeling in biomedical research is to un-
derstand mechanisms of heart failure, which is a leading cause of death in
humans. Usage of appropriate models simplifies development and validation
of drugs and medical devices. Modeling allows the exploration of a product’s
side effects, which is of particular importance for the product’s approval.

Cardiac models provide a simplified description of the heart and can exist
in a physical and mathematical representation. E.g. in clinical research the
modeling of human hearts commonly refers an animal’s heart, which is applied
in an experiment. Mathematical models are commonly computer-based and
applied in numerical simulations.

Modeling of the heart is subject of manifold, often interdisciplinary re-
search activities undertaken in academic and commercial fields. The activities
range from the description of molecular structures and interactions to recon-
struction of gross anatomy and whole heart electro-mechanic behavior.

Explorations of the heart were performed as early as in the middle ages
and the renaissance. Initially, the explorations consisted of anatomical studies
by dissection of animals. First models of cardiac anatomy and physiology were
constructed (Fig. 1.1), which are now considered as outdated resulting from
new insights. Nevertheless, over centuries mediaeval graphical reconstructions
of the heart served as foundation for medical education parallel to or substi-
tuting dissection of cadavers.

In recent decades new insights in the function and structure of the heart
have been gained by the availability of new measurement techniques. The
molecular structure and arrangement of cardiac cells have been explored e.g.
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(a) (b)

Fig. 1.1. Drawings of Leonardo da Vinci. (a) Upper part of anatomical drawing of
woman’s torso with heart, blood vessels and kidneys [1]. The heart is divided into
two chambers connected to blood vessels. (b) Model of heart’s function [2]. The heart
was considered as a furnace with inlets and outlets. An exchange of air is performed
through connections to the lungs, which are viewed as chimney. The transport of
heat to the body is made by blood flowing through the vessels. The model was
subsequently modified by Leonardo da Vinci to incorporate new perceptions.

with new imaging techniques. Electrophysiological behavior has been mea-
sured at levels ranging from molecular, cellular to whole hearts. Mechanical
properties and cardiac mechanics have been scanned by a variety of exper-
iments. In recent time data concerning gene and protein expression in car-
diac cells is raised under physiological and variant pathophysiological circum-
stances.

Many of these measurements have been used to describe mathematically
the properties and behavior of cardiac tissue. Mathematical descriptions can
be applied to simulate tissue behavior. The increase in computing capability
in recent years has simplified and speeded up significantly the realization
of simulations. On the one hand, these simulations offer the possibility of
reconstruction of previously performed measurements. On the other hand, a-
priori unknown behavior can be predicted and complex phenomena can be
studied.

The topic of this work is the computer-based, mathematical modeling of
the heart. The application of modeling as a research, development and clinical
tool is stressed as a promising attempt to address many problems in cardiology,
heart surgery and biomedical engineering.

The modeling includes the areas of anatomy, electrophysiology, excitation
propagation, force development and mechanics as well as the coupling of these
areas (Fig. 1.2). The work shows knowledge at molecular, cellular and macro-
scopic level, how these areas can be studied with measurements, and how
these areas can be modeled with mathematical methods. Detailed informa-
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Cellular force

Cellular

electrophysiology

development

Deformation

Excitation

propagation

Anatomy

Fig. 1.2. Overview of modeling of cardiac electro-mechanics. Anatomical informa-
tion determines modeling of cellular electrophysiology, excitation propagation, force
development and deformation. The influence of the different areas to each other is
depicted by arrows.

tion of phenomena on each of these levels is necessary to understand the ideas
behind the modeling.

Special attention is given to macroscopic and integrative modeling with the
aim of reconstruction of whole heart behavior. At macroscopic level anatom-
ical models provide a basis for electrophysiological and mechanical models.
Of particular interest is the assessment of influence of cardiac deformation
to initiation and propagation of electrical excitation and to the force develop-
ment. Variant simulation studies are demonstrated, which provide information
about this assessment.

1.2 Organization

In the first section of this work a foundation of mathematics and numerics
is provided. Mathematical definitions and formulations as well as numerical
techniques are explained, which are relevant for modeling of cardiac electro-
physiology and mechanics. The focus is particularly on the finite element and
finite differences method, which are the standard techniques for solving many
tasks in mechanical and electrical engineering. With the next two sections the
theory of electric fields and continuum mechanics is introduced regarding the
numerical calculation in anisotropic biological media, particularly with the
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finite element method. In the following section an overview of digital image
processing techniques is given, which are of pragmatic importance in conjunc-
tion with data from medical imaging systems. The section ‘cardiac anatomy’
offers detailed information of molecular and cellular structures as well as of
gross anatomy. Models are introduced resulting from the application of digi-
tal image processing to images of human and animal hearts. The next section
gives an introduction to cardiac electrophysiology at different levels. A multi-
tude of cellular and excitation propagation models is introduced. The section
‘cardiac mechanics’ presents experiments concerning deformation and models
of mechanical properties of myocardium. Simulations illustrate the connec-
tion between arrangement of cardiac fibers and deformation. The final section
concerns the coupling of electrophysiology and mechanics. The modeling of
cardiac electro-mechanics is presented at different levels and with various tech-
niques. Simulations depict the phenomena of coupled electro-mechanics and
are contrasted with results from non-coupled models.



2

Mathematical and Numerical Foundation

2.1 Overview

The mathematical modeling of biological systems is a subtopic of computa-
tional biology. This kind of modeling permits new insights into biological sys-
tems with the aid of numerical methods and computer systems. The modeling
necessitates knowledge concerning useful mathematical notation and efficient
numerical treatment of the occurring equations. The topic of this chapter is
to give a summary and description of these mathematical fields, which are of
importance in the context of this work for the mechanical and electrophysio-
logical modeling of a specific biological system, i.e. the mammalian heart.

The Einstein summation convention is introduced, which allows a concise
notation for equation systems comprising summations. The usage of the sum-
mation convention is useful, e.g. in continuum mechanics. An introduction to
tensor algebra is given because many of the physical quantities in electromag-
netism and mechanics are represented as tensors, to incorporate the effects of
coordinate transformations.

Methods for the numerical solving of linear equation systems are presented
in detail. A focus of the description is given to methods, which allow the
solution of very large, sparse systems. The numerical integration of equations
is described, which is an important technique e.g. for the application of the
finite element and finite differences method.

The theory of differential equations is presented in conjunction with nu-
merical methods convenient for solving large, coupled equation systems. Or-
dinary differential equations are used in the context of this work to describe
the electrophysiological behavior of cells. Commonly, five to seventy coupled
differential equations of first order are combined to a system and numerically
solved. The solvability of these systems strongly depends on the efficiency of
the solving methods. Partial differential equations are the mathematical foun-
dation for modeling of electromagnetic fields and mechanical behavior. The
differential equations can be numerically handled using the finite element and
finite differences method.
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2.2 Einstein Summation Convention

The Einstein summation convention was introduced by Albert Einstein in
the formulation of the theory of relativity [3]. The convention reduces the
complexity of equations by omitting the traditional sign Σ for summation.
Instead of this sign twice occurring indices designate the summation. Both,
subscripts and superscripts, are taken into account, e.g.:

∑

i

aixi ≡ aixi

∑

i

aixi ≡ aixi

∑

i

aix
i ≡ aix

i

∑

i

aixi ≡ aixi

∑

i

∑

j

aijxiyj ≡ aijxiyj

The range of summation as well as the differentiation between superscripts and
exponents are context dependent. The repeated indices are so-called dummy
indices, which can be renamed arbitrarily taking already existing names into
account.

The handling of equation systems is simplified by the usage of free indices.
These occur solitary in the equations and the range of free indices is context
dependent. Commonly, the same range as for the summation of the dummy
indices is assumed, e.g.:

yi = aijxj with i, j = 1, 2, 3 ≡
y1 = a11x1 + a12x2 + a13x3

y2 = a21x1 + a22x2 + a23x3

y3 = a31x1 + a32x2 + a33x3

2.3 Tensor Algebra

Definition. Tensors are introduced to describe mathematical and physical
quantities under coordinate transformations. Depending on the type and or-
der of a tensor specific laws for the transformation of tensor coefficients have
to be obeyed.

Coordinate Transformation. A transformation in a region of R
n from one

coordinate system to another is given by:

x̄i = x̄i(x1, x2, . . . , xn) (2.1)

with 1 ≤ i ≤ n. The Jacobian matrix J of the coordinate transformation
combines its first-order partial derivatives and is given by:
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J =
[

∂x̄i

∂xj

]

The determinant of the Jacobian matrix is named the Jacobian of the co-
ordinate transformation. If the Jacobian J does not vanish, the coordinate
transformation is called bijective. Then, an inverse coordinate transformation
can be defined as:

xi = xi(x̄1, x̄2, . . . , x̄n) (2.2)

with an attributed inverse Jacobian matrix J̄ :

J̄ =
[

∂xi

∂x̄j

]

The determinant of the inverse Jacobian matrix J̄ is referred to as the inverse
Jacobian J̄ .

The coordinate systems of the transformation in equations 2.1 and 2.2 are
arbitrary, e.g. Cartesian, affine and curvilinear. A coordinate system is called
rectangular or Cartesian if the distance d between any two desired points A
and B is determined by:

d =
√

∆i∆i

with ∆ ≡ B−A. An affine coordinate system is constructed if a linear transfor-
mation is used in equation 2.1. Nonlinear transformations lead to curvilinear
coordinate systems, e.g. polar, cylindrical and spherical systems. In this work
specific coordinate transformations are described in the area of continuum
mechanics (Sect. 4.2.1) and digital image processing (Sect. 5.3.2).

First Order Tensors. A vector T i associated to a point x is called a contravari-
ant tensor of first order or contravariant vector, if it changes its coefficients
under the coordinate transformation in equation 2.1 according to the following
laws of transformation:

T̄ i = T j ∂x̄i

∂xj

Similarly, a vector Ti is called a covariant tensor of first order or covariant
vector, if it changes its coefficients under coordinate transformations according
to the following laws of transformation:

T̄i = Tj
∂xj

∂x̄i

Tensors of Arbitrary Order. Tensors with order higher than one can be of
mixed type, i.e. contravariant of order p and covariant of order q. A definition
of tensors of arbitrary order n = p + q is given by [3]:

T̄
i1...ip

j1...jq
= T

k1...kp

l1...lq

∂x̄i1

∂xk1
· · · ∂x̄ip

∂xkp

∂xl1

∂x̄j1
· · · ∂xlq

∂x̄jq



8 2 Mathematical and Numerical Foundation

Table 2.1. Tensors of different order and type. A tensor T is transformed to the
tensor T̄ obeying a type and order specific law of transformation.

Order Type Law

0 invariant T̄ = T

1 contravariant T̄ i = T j ∂x̄i

∂xj

1 covariant T̄i = Tj
∂xj

∂x̄i

2 contravariant T̄ ij = T kl ∂x̄i

∂xk
∂x̄j

∂xl

2 covariant T̄ij = Tkl
∂xk

∂x̄i
∂xl

∂x̄j

2 mixed T̄ i
j = T k

l
∂x̄i

∂xk
∂xl

∂x̄j

4 contravariant T̄ ijkl = T mnop ∂x̄i

∂xm
∂x̄j

∂xn
∂x̄k

∂xo
∂x̄l

∂xp

4 covariant T̄ijkl = Tmnop
∂xm

∂x̄i
∂xn

∂x̄j
∂xo

∂x̄k
∂xp

∂x̄l

The index position indicates the tensor type. A superscript denotes a con-
travariant tensor, a subscript a covariant tensor. Exemplary definitions of
tensors with orders zero up to four, which are the relevant cases in the con-
text of this work, are given in table 2.1.

Symmetry Properties. A tensor is symmetric concerning some indices, if the
interchange of the indices does not change the tensor coefficients. The tensor
is anti-symmetric or skew-symmetric, if the interchange of indices leads to
a change of the sign of tensor coefficients. E.g. a second order tensor Tij is
symmetric, if Tij = Tji. The tensor is anti-symmetric, if Tij = −Tji.

Affine and Cartesian Tensors. Affine tensors are subject to linear coordinate
transformations resulting in a Jacobian matrix J given by:

J =
[

∂x̄i

∂xj

]
=
[
ai

j

]

with constant, scalar coefficients ai
j . The Jacobian J does not vanish, i.e.

|ai
j | �= 0.

Cartesian tensors are resulting from orthogonal coordinate transforma-
tions. These take a Cartesian system into another, where the origins of the
Cartesian systems remain the same. Hereby, the Jacobian matrix of the trans-
formation J and its inverse Jacobian matrix J̄ are connected by:

J̄ = J−1 = JT

Therefore, the transformation laws of contravariant Cartesian tensors T i and
covariant Cartesian tensors Ti are equal, e.g. for tensors of first order:

T̄ i = T j ∂x̄i

∂xj
= T jai

j



2.4 Numerics of Systems of Linear Equations 9

T̄i = Tj
∂xj

∂x̄i
= Tja

j
i

Because of the equality the notation of these tensors can be simplified. Com-
monly, Cartesian tensors are notated using subscripts.

Invariants of Second-Order Tensors. The eigenvalues λ of symmetric, real
tensors of second order Tij are given by:

|Tij − λδij | = 0

The definition of the determinant allows to formulate the characteristic poly-
nomial:

λ3 − IT λ2 + IIT λ − IIIT λ = 0

with the invariants IT , IIT and IIIT of the symmetric, real tensors of second
order Tij defined as:

IT = tr(Tij) = Tii

IIT =
1
2
(TiiTjj − TijTij)

IIIT = det(Tij)

The invariants are independent of the chosen coordinate system.

2.4 Numerics of Systems of Linear Equations

2.4.1 Definition

The efficient numerical solution of systems of linear equations is a fundamental
task in different areas of computational physics and biology. A system of linear
equations is defined as:

a11x1 + a12x2 + · · · + a1NxN + b1 = 0
a21x1 + a22x2 + · · · + a2NxN + b2 = 0

...
aM1x1 + aM2x2 + · · · + aMNxN + bM = 0

with the a-priori known coefficients aij and bi as well as the unknowns xj .
The number of lines is M and the number of unknowns equals N .

The system of linear equations can be described using another notation:

N∑

j=1

aijxj + bi = 0 with i = 1, . . . , M summation convention

aijxj + bi = 0 Einstein Summation convention
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Ax + b = 0 matrix formulation

with the matrix A = [aij ] as well as the vectors b = [bi] and x = [xj ].
A matrix A is named symmetric if it is equal to its transpose:

A = AT

with AT = [aji]. A matrix A is quadratic if its number of rows M equals the
number of columns N , i.e. M = N . A matrix A is called positive-definite, if

∀
x �=0

xT Ax > 0

Positive-definiteness of a matrix A is ensured, if the ‘larger’ condition is
weakened to a ‘larger equal’ condition. Diagonal dominance of a matrix is
fulfilled, if

|aii| >

N∑

i=0,i�=j

|aij |

Often, matrices with only a small number of elements not equal to zero are
subject to numerical treatment. This kind of matrix is called sparse. Efficient
methods for storing and numerical solution were developed [4, 5].

A special class of sparse matrices is band diagonal, where nonzero elements
are found only in some diagonal lines parallel to the main diagonal [5]. The
bandwidth of a band diagonal matrix m is given by:

∀
i∈{1,..,N},j∈{1,..,N},|i−j|>m

aij = 0

Direct and iterative methods are distinguished to solve systems of lin-
ear equations. Direct methods are based on the successive elimination of the
unknown, e.g. with Gauss and Cholesky algorithm. Iterative methods use
an iterative refinement of approximate solutions. Representatives of iterative
methods are the steepest descent and conjugate gradient techniques as well
as the more historical approaches of Jacobi, Gauss-Seidel and successive over-
relaxation. Further representatives are the multigrid methods.

2.4.2 Direct Methods

Gauss Algorithm. The Gauss Algorithm is a well-known representative of
the direct methods and can be described by factorization of the positive defi-
nite, symmetric matrix A into the diagonal matrix left D, the lower triangular
matrix L and its transpose, upper triangular matrix LT :

A = LDLT
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The matrix L is given by:

L =





1 0 . . . . . . . . . 0
l2 1 1 0 . . . . . . 0
l3 1 l3 2 1 0 . . . 0
. . . . . . . . . . . . . . . . . .

lN−1 1 lN−1 2 lN−1 3 . . . 1 0
lN 1 lN 2 lN 3 . . . lN N−1 1





The matrices D and L result from the so-called Gaussian elimination, where
the elements below the main diagonal of the matrix A are eliminated succes-
sively. This leads to the upper triangular matrix R:

A = LR

with following shape

R =





r1 1 r1 2 r1 3 . . . r1 N−1 r1 N

0 r2 2 r2 3 . . . r2 N−1 r2 N

0 0 r3 3 . . . r3 N−1 r3 N

. . . . . . . . . . . . . . . . . .
0 0 0 . . . rN−1 N−1 rN−1 N

0 0 0 . . . 0 rN N





The matrix R can be expressed by the diagonal matrix D and the transpose
of the lower triangular matrix L:

DLT = R

The solution of the equation system is achieved in three steps using two aux-
iliary vectors. In each step one of the matrix factors is applied. In the first
step the auxiliary vector z is determined by:

−Lz + b = 0

The second step serves to calculate the auxiliary vector y:

−Dy + z = 0

The third step delivers the solution vector x:

LT x + y = 0

A disadvantage of the Gauss algorithm is the destruction of band diagonal
properties. Commonly, the matrix L is filled with nonzero elements in the
whole lower triangular area and the matrix R in the whole upper triangular
area.
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Cholesky Algorithm. The Cholesky algorithm uses a factorization of the
matrix A into the lower triangular matrix L and its transpose LT :

A = LLT

The matrix L is given by:

L =





l1 1 0 . . . . . . . . . 0
l2 1 l2 2 0 . . . . . . 0
l3 1 l3 2 l3 3 0 . . . 0
. . . . . . . . . . . . . . . . . .

lN−1 1 lN−1 2 lN−1 3 . . . lN−1 N−1 0
lN 1 lN 2 lN 3 . . . lN N−1 lN N





The matrix L results from a process, the so-called ‘taking the square root’
[5], where line-wise its elements are calculated. At first for each line the i-th
diagonal element lii is determined with:

lii = (aii −
i−1∑

k=1

l2ik)1/2

The non-diagonal element lij of the i-th line and j-th column is given by:

lij =
1
ljj

(aij −
j−1∑

k=1

likljk)

The solution of the equation system is achieved in two steps using a single
auxiliary vector. In each step one of the two matrix factors, L and LT , is
applied. In the first step the auxiliary vector y is determined:

−Ly + b = 0

The second step delivers the solution vector x:

LT x + y = 0

The Cholesky algorithm necessitates positive-definiteness and symmetry of
the matrix A as well as respects the band diagonal properties. The numerical
expense of the Cholesky method is found to be half of the expense of the
Gauss algorithm.

2.4.3 Iterative Methods

Definition. Iterative methods use an iterative refinement of approximate so-
lution x(k). The 0-th approximate solution x(0) or so-called start vector is
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given, e.g. set with a random and zero vector as well as with results from pre-
calculations with similar and simplified matrices. A sequence of approximate
solutions is calculated:

x(0) → x(1) → · · · → x(n)

The error of an approximate solutions e(k) is defined as:

e(k) = x − x(k)

with the exact solution x. The error e(k) is also called the correction. The
common goal of iterative methods is to reduce the error iteratively.

The residuum of an approximate solutions r(k) is defined as:

r(k) = Ax(k) + b

An iterative method is called convergent if the same solution is found
independently of the start-vector x(0) for k → ∞. A method shows linear
convergence if the following inequation is fulfilled for all but finite k:

‖e(k+1)‖ ≤ ξ‖e(k)‖
where ‖ ·‖ denotes some norm and ξ the contraction number. The contraction
number is larger or equal to the convergence rate. The term convergence rate is
also referred to as the velocity of convergence and the velocity of iteration [6].
Because the error e(k) is commonly not known during a solution process, an
approximate convergence rate defined with the residuum is frequently applied.

Steepest Descent Method. The steepest descent method applies a mini-
mization of the quadratic form F :

F (x) =
1
2
xT Ax + bT x

concerning the vector x to solve the equation Ax + b = 0 (Fig. 2.1). A
minimum is found if the gradient of the quadratic form F equals zero:

∇F (x) = Ax + b = 0

The minimization is performed iteratively starting with the approximate so-
lution x(0). The k-th solution x(k) is calculated using the gradient of the
quadratic function r(k−1) at the previous solution x(k−1):

r(k−1) = ∇F (x(k−1)) = Ax(k−1) + b

The k-th solution x(k) is determined by moving from the previous solution
x(k−1) in direction of the gradient r(k−1):

x(k) = x(k−1) + α(k)r(k−1) (2.3)
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Fig. 2.1. Exemplary quadratic form in two dimensions. The value of the function

F (x) = 1
2
xT Ax + bT x with the vector x =

(
x1

x2

)
, the matrix A =

(
8 1
1 1

)
, and

the vector b =

(
2
1

)
is plotted in the domain [−1, 1][−1, 1]. The minimum of the

function F corresponds to the solution of the equation system Ax + b = 0.

where the scalar factor α(k) is chosen by a minimization of the quadratic
form F :

∂F

∂α(k)
(x(k)) = 0 (2.4)

Hence, the factor α(k) is determined by:

α(k) = − r(k−1)T r(k−1)

r(k−1)T Ar(k−1)

The iteration is commonly stopped, if some norm of the residuum ‖r(k)‖
becomes smaller than a given threshold or the iteration number k is larger
than a given value.

The steepest descent method necessitates positive-definiteness of the ma-
trix A. Commonly, the method shows a small convergence rate [5]. The matrix
A is unchanged during the solving process. Vector-vector and matrix-vector
multiplications are the principle operations.

Conjugate Gradient Method. The conjugate gradient method uses like
the steepest descent method a minimization of the quadratic function F :

F (x) =
1
2
xT Ax + bT x

to determine a solution of the system of linear equations Ax + b = 0. The
matrix A has to be symmetric and positive-definite.

The first step of the conjugate gradient method is the determination of
the quadratic function’s gradient r(0) at a given initial solution x(0):

r(0) = ∇F (x(0)) = Ax(0) + b
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The minimization in direction of the gradient r(0) delivers a new approximate
solution x(1) similar to the steepest descent method (equations 2.3 and 2.4). A
secondary vector p(k) is used in the conjugate gradient method to determine
the direction of a correction. Initially, the vector p(1) is set to the negative of
the residuum r(0).

In the k-th step the solution x(k) is determined by

x(k) = x(k−1) + α(k)p(k)

where the minimization of the function F in direction of p(k) delivers the
scalar factor α(k):

∂

∂α(k)
F (x(k)) = 0

The factor α(k) is calculated with the residual r(k−1) and the direction p(k):

α(k) = −r(k−1)T r(k−1)

p(k)T Ap(k)

The k-th direction p(k) is determined with the residual r(k−1), the direction
p(k−1) and the scalar factor β(k−1).

p(k) = −r(k−1) + β(k−1)p(k−1)

The factor β(k−1) results from the condition that the directions p(k) and p(k+1)

should be conjugate, i.e.:
p(k)Ap(k+1) = 0

Therefore, the factor β(k−1) is given by:

β(k−1) =
r(k−1)T Ap(k−1)

p(k−1)T Ap(k−1)

The k-th residual is defined by:

r(k) = r(k−1) + α(k)Ap(k)

The process constructs a sequence of directions, which are pairwise conju-
gated, and residuals, which are orthogonal [4]. Therefore, the process termi-
nates theoretically after N steps. Although numerical problems may increase
the iteration number, in many practical cases a prior termination is possible,
e.g. when a sufficient accuracy is achieved.

Different variants of the conjugate gradient methods are developed, e.g.
the biconjugate gradient method allows the treatment of systems with non-
definite as well as asymmetric matrices [5].
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Jacobi Method. The Jacobi method converges if the matrix A is diagonally
dominant. The method is performed by decomposition of the matrix A into
the sum of the lower triangular matrix L, the diagonal matrix D and the
upper triangular matrix U :

A = L + D + U

Starting with a given vector x(0) the k-th approximate solution x(k) is deter-
mined with the scheme:

x(k) = D−1(−(L + U)x(k−1) + b)

Alternatively, the equation system can be described in summation formula-
tion, where the i-th coefficient of the solution vector xi is given by:

xi = − 1
aii



bi +
n−1∑

j=0,j �=i

aijxj





The coefficients of the first approximate solution vector x
(1)
i are determined

by:

x
(1)
i = − 1

aii



bi +
n−1∑

j=0,j �=i

aijx
(0)
j





with the coefficients of the initial solution vector x
(0)
j . Similarly, the k-th

solution vector’s coefficients x
(k)
i can be achieved using the previous solution

vector x
(k−1)
i :

x
(k)
i = − 1

aii



bi +
n−1∑

j=0,j �=i

aijx
(k−1)
j





Similar to the other iterative methods, the iteration is commonly stopped, if
some norm of the residuum r(k) becomes smaller or the iteration number k
becomes larger than a given value. The method is only of theoretical interest
because the convergence rate is small. E.g. with N×N matrices resulting from
finite difference approximations (Sect. 2.7.4) of a partial differential equation,
i.e. the Poisson equation, the number of iterations r to reduce the error by
the factor 10−p is given by [5]:

r 
 1
2
pN2

Gauss-Seidel Method. The Gauss-Seidel method is closely related to the
Jacobi method. In contrast to the Jacobi method where the new solution
takes knowledge only of the previous solution, the Gauss-Seidel method takes
already calculated coefficients of the new solution into account. The matrix
decomposition is given by:
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(L + D)x(k) = −Ux(k−1) + b

In summation formulation the k-th step the new coefficients x
(k)
i are deter-

mined by:

x
(k)
i = − 1

aii



bi +
i−1∑

j=0

aijx
(k)
j +

n−1∑

j=i+1

aijx
(k−1)
j





The method increases the convergence in comparison with the Jacobi method.
In the upper example the number of iterations r is halved. A further advantage
is that the new and previous solution can share their storage. Nevertheless,
the Gauss-Seidel method is unemployable for large problems because of its
small convergence rate.

Successive Overrelaxation. Successive overrelaxation improves the Jacobi
and Gauss-Seidel method. Successive overrelaxation applies a weighting on
the difference ∆ between the previous solution x(k−1) and an approximation
obtained with the methods. The weighted difference is added to the previous
solution to achieve the new solution x(k):

x(k) = x(k−1) + ω∆

The weighting is done with a factor ω. The differences ∆J and ∆GS for the
Jacobi and Gauss-Seidel method, respectively, are given by:

∆J = D−1(−(L + U)x(k−1) + b) − x(k−1)

∆GS = (L + D)−1(−Ux(k−1) + b) − x(k−1)

In matrix formulation the k-th step the new coefficients x
(k)
i are determined

by:

x
(k)
i = x

(k−1)
i + ω



− 1
aii



bi +
n−1∑

j=0,j �=i

aijx
(k−1)
j



− x
(k−1)
i





x
(k)
i = x

(k−1)
i + ω



− 1
aii



bi +
i−1∑

j=0

aijx
(k−1)
j +

n−1∑

j=i+1

aijx
(k−1)
j



− x
(k−1)
i





for the Jacobi and Gauss-Seidel method, respectively.
The successive overrelaxation converges if the matrix A is positive-definite

and the weighting factor ω in the interval ]0 : 2[. The appropriate selection
of the factor ω is of importance to obtain large convergence rates. The op-
timal setting of the factor ω depends on the matrix properties. For a factor
ω less than one the method performs a so-called underrelaxation, which is of
interest for example in the multigrid methods. For a factor ω equal to one
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the successive overrelaxation reduces to the Jacobi or Gauss-Seidel method.
Commonly, the factor ω is determined by numerical experiments. For some
classes of matrices an analytical determination of the optimal factor exists.

Optimal parameterization delivers a number of iterations r to reduce the
error by the factor 10−p in the upper problem, which is linearly dependent on
the number of unknowns N . The number r is given by:

r 
 1
3
pN

Multigrid Method. Multigrid methods are applied for the solution of sys-
tems of linear equations resulting from discretization of partial differential
equation [7, 6], e.g. with the finite element (Sect. 2.7.3) and finite differences
method (Sect. 2.7.4). The methods necessitate the generation of different ap-
proximations of the linear equation systems, which can be achieved e.g. by
simplification and coarsening of the spatial discretization. The h-th approxi-
mation of the linear equation system is given by:

Ahxh + bh = 0

The motivation of multigrid methods can be understood by an frequency
analysis of approximate solution’s errors. Depending on their frequency the
errors are reduced differently. E.g. the Jacobi and Gauss-Seidel methods de-
crease rapidly errors of high frequency while neglecting errors of low frequency.
Therefore, it can be of advantage to reduce the errors in an appropriate spa-
tially discretization.

Three types of operators are used in multigrid methods:

• Restriction
• Prolongation
• Smoothing

The restriction operator transfers values from fine to coarse discretized do-
mains. The prolongation operator transfers values from coarse to fine domains.
Commonly, the restriction as well as the prolongation operator are linear and
global. The smoothing operator has the task of reducing efficiently high fre-
quency errors in the different domains.

Two-Grid Method. The simplest multigrid method is the two-grid method.
At first, the residuum r

(0)
h in the fine discretized domain is determined:

r
(0)
h = Ahx

(0)
h + bh

with the startvector x
(0)
h . The residuum is then transferred to the coarse

domain using a restriction operator. The restriction operator performs an
averaging and resampling of the residuum. In a three-dimensional domain,
each of the following two operators R3×3×3 and R2×2×2 can be applied to
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generate a coarse approximation r
(0)
h−1. The operators are represented by a

matrix:

R2×2×2 =
1
8





(
1 1
1 1

)

(
1 1
1 1

)





R3×3×3 =
1
8








0.125 0.25 0.125
0.25 0.5 0.25
0.125 0.25 0.125








0.25 0.5 0.25
0.5 1 0.5
0.25 0.5 0.25








0.125 0.25 0.125
0.25 0.5 0.25
0.125 0.25 0.125









The expense of the operator is determined by the type and sparsity of the
matrix. The coarse residuum r

(0)
h−1 is used as the right hand side of the equation

system:
Ah−1v

(0)
h−1 = −r

(0)
h−1

The equation system is solved exactly, e.g. with direct methods, to deter-
mine the coarse correction v

(0)
h−1. The correction v

(0)
h−1 is transferred to the

fine discretized domain by a prolongation operator resulting in the correction
v

(0)
h . Each of the following operators represented by the matrices P2×2×2 and

P3×3×3 can be used to perform the transfer, which can be understood as
interpolation starting from a coarse domain into a fine domain.

P2×2×2 =





(
1 1
1 1

)

(
1 1
1 1

)





P3×3×3 =








0.125 0.25 0.125
0.25 0.5 0.25
0.125 0.25 0.125








0.25 0.5 0.25
0.5 1 0.5
0.25 0.5 0.25








0.125 0.25 0.125
0.25 0.5 0.25
0.125 0.25 0.125









The expense of a prolongation operator is determined by type and sparcity of
the transfer matrix. The correction v

(0)
h is added to the start vector to obtain

the new approximation x
(1)
h :
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x
(1)
h = x

(0)
h + v

(0)
h

Additionally, the new approximation x
(1)
h is smoothed to reduce high fre-

quency error, e.g. with the Jacobi and Gauss-Seidel method.
The scheme of the two-grid method consists of residuum calculation, re-

striction, exact solution, prolongation and smoothing. This scheme is repeated
until some stop criterion is fulfilled.

Multigrid Method. The crucial point concerning the efficiency of the two-grid
method is the exact solution in the coarse domain. Substituting the step of
exact solution by a recursive application leads to multigrid methods. Multigrid
methods can be classified by the number of domains and by the strategy
traversing through these domains [5].

Full-Multigrid Method. The full-multigrid method starts with the solution in
the coarsest domain, e.g. by direct methods. The solution is transferred to the
next finer domain with an appropriate prolongation operator. Here, the two-
grid method is applied. The scheme is iteratively applied until a solution in the
finest domain is achieved. In each domain the multigrid method is applied. The
solutions in the different domains are transferred with a prolongation operator.
The full-multigrid method offers the advantage that the determination of an
appropriate start vector is automatically performed.

2.4.4 Singular Value Decomposition

The singular value decomposition is a further technique to solve systems of
linear equations, which is commonly applied in cases where the upper direct
and iterative methods fail. These methods fail e.g. if the matrix A is not
square, if the rank of the matrix A is not maximal and if the column vectors
are nearly linear dependent [8].

Any M × N matrix A with M > N can be decomposed in a column-
orthonormal M ×N matrix U , a diagonal N ×N matrix D and the transpose
of a column-orthonormal N × N matrix V [5]:

A = UDV T

Column-orthogonality of the matrices U and V is defined as:

UT U = I

V T V = I

with the identity matrix I. Caused by the column-orthonormality of the ma-
trices V and U their inverses are equal to their transpose:

UT = U−1

V T = V −1
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The diagonal matrix D has the following form:

D =





λ1 0 · · · · · · 0

0 λ2
. . .

...
...

. . . . . . . . .
...

...
. . . λN−1 0

0 · · · · · · 0 λN





The diagonal elements λ1 . . . λN , the so-called singular values, are positive or
zero.

If the matrix A is square and the singular values are positive, the decom-
position allows to determine the inverse of the matrix A:

A−1 = V D−1UT

In the case of a square, symmetric matrix A, the orthogonal matrices are
identical:

U = V

Different numerical techniques are used to perform a singular value decom-
position depending on the numbers of columns versus the numbers of rows
[5, 9].

2.5 Numerical Integration of Functions

2.5.1 Definition

The numerical integration of functions, the so-called quadrature, is an integral
part of many numerical methods, e.g. of the finite element method to solve
partial differential equations as well as of the Runge-Kutta method applied to
solve ordinary differential equations [9]. The task of a numerical integration of
an integrable function f in the interval [a, b] is to determine an approximate
solution for the integral I:

I =
∫ b

a

f(x) dx

An approximate solution Ĩ can be calculated by the summation of weighted
function values:

Ĩ =
N∑

i=1

wif(xi) (2.5)

with the weighting factors wi, the integration points xi ∈ [a, b] and their
number N . These parameters are variables and their choice is specific to the
numerical technique for the integration of functions.
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The numerical techniques can be classified by the positions of the integra-
tion points as well as on the assumptions and demands on the properties of the
function f . Methods are distinguished with equidistant and non-equidistant
integration points. The equidistance of integration points restricts the free
variables in equation 2.5 to the weighting factors wi and the number of inte-
gration points N .

2.5.2 Trapezoidal Rule

The trapezoidal rule uses an equidistant decomposition of the interval I [9].
In each partial interval the integral I is approximated by the values of the
function f at the interval limits:

I =
∫ b

a

f(x) dx ≈ 1
2
(b − a) (f(a) + f(b))

with the limits a and b as well as the length of the partial interval b − a.
Summation over the whole integral delivers the approximate integral Ĩ:

Ĩ = h

(
1
2
f(x0) +

N−1∑

i=1

f(xi) +
1
2
f(xN )

)

with the distance between sampling points h = b−a
N and the sampling points

xi = a + ih.
The approximation neglects components of the function f resulting from

its derivatives with order greater or equal than two. The neglect can be shown
by Taylor series expansion [8, 9]. The approximation can be improved by
increasing the number of integration points N .

2.5.3 Simpson’s Rule

An equidistant decomposition of the interval I is used in the Simpson’s rule
[9]. Each partial interval is approximated with the values at the interval limits
and center:

∫ b

a

f(x) dx ≈ 1
6
(b − a)

(
f(a) + 4f(

a + b

2
) + f(b)

)

The formula for numerical integration by Simpson’s rule with a number N of
equidistant integration points xi is given by:

Ĩ = h

(
1
6
f(x0) +

4
6
f(x1) +

2
6
f(x2) + . . .

+
2
6
f(xN−2) +

4
6
f(xN−1) +

1
6
f(xN )

)

with the distance between sampling points h.
The approximation by Simpson’s Rule does not take into account com-

ponents of the function f resulting from its derivatives with order greater or
equal to four [8, 9].
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Table 2.2. Gauss quadrature. Dependent on the domain and the polynomial order
the integration points and weights are determined.

Domain Polynomial Points Weights
Order

[−1, 1] 1 0.0 2
[0, 1] 1 0.5 1

[−1, 1] 3 ±0.57735 1, 1
[0, 1] 3 0.211325, 0.788675 0.5, 0.5

[−1, 1] 5 ±0.77459, 0.0 0.5, 0.5, 0.8
[0, 1] 5 0.112705, 0.887295, 0.5 0.27, 0.27, 0.4

2.5.4 Gauss Quadrature

The Gauss quadrature uses non-equidistant integrations points xi. In contrast
to the former methods all parameters in equation 2.5 are variables and their
values are determined by the assumption underlying the Gauss quadrature.

The Gauss quadrature uses N integration points xi and N weights wi

to determine exactly a polynomial q of order 2N − 1. In the interval [−1, 1]
the integration points xi are uniquely defined as zero points of the Legendre-
polynomial PN (table 2.2):

PN (x) =
1

2NN !
dN

dxN

(
x2 − 1

)N

The weights wi are determined by:

wi =
∫ 1

−1

N∏

j=1,j �=i

(
x − xj

xi − xj

)2

dx

The Gauss quadrature is not restricted to the domain [−1, 1]. It can be
extended for the calculation of integrals in arbitrary one-dimensional domains
(table 2.2) as well as in multidimensional domains. E.g. an integration in
triangular-, tetrahedron-, quadrilateral- and hexahedron-shaped domains can
be performed.

2.6 Numerics of Ordinary Differential Equations

2.6.1 Definition

An ordinary differential equation of order n is defined as:

dny

dxn
= f(x, y,

dy

dx
,
d2y

dx2
, . . . ,

dn−1y

dxn−1
) (2.6)
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with the function y depending only on one variable x, i.e. y = y(x). The order
n indicates the maximal order of the derivatives of the function y. Commonly,
the function f is nonlinear.

A so-called initial value problem consists of solving the equation 2.6 con-
cerning the unknown function y with initially given values b0, . . . , bn−1:

y(x0) = b0, . . . ,
dn−1y(x0)

dxn−1
= bn−1

The equation 2.6 can always be transformed to a system of first order
differential equations introducing the new functions y0, . . . , yn [5, 9]:

y0 ≡ y, y1 ≡ dy

dx
, y2 ≡ d2y

dx2
, . . . , yn ≡ dny

dxn

The resulting system of first order differential equations is given by:

dy0

dx
= y1

dy1

dx
= y2

...
dyn−2

dx
= yn−1

dyn−1

dx
= f(x, y0, . . . , yn−2)

The initial values b0, . . . , bn−1 are attributed to the new functions y0, . . . , yn−1:

y0(x0) = b0, . . . , yn−1(x0) = bn−1

The following overview of methods for numerical solving of ordinary differ-
ential equations is reduced to the treatment of first order equations. This
reduction is motivated both by the availability of the upper transformation
and by the common occurrence of the first order equation type.

2.6.2 Euler Method

The Euler method solves the first order differential equation:

dy

dx
= f(x, y)

with the initial value y(x0) = b0 by propagation through successive points,
where the step-size h is constant. The solving scheme works iteratively using
the known value of the function yn ≈ y(xn) at xn to calculate the next value
yn+1 ≈ y(xn+1) at xn+1:
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0 1 2 3 4 5

y

h h h h h xx x x x x x

20

n

31 4 5y y

y

y y yy

y(x)

Fig. 2.2. Euler method for numerical solution of ordinary differential equations.
The exact solution y(x) is indicated by a dotted line. The numerical solution yn is
shown as a solid line. The solution function yn is given by the values y0, . . . , y5 which
are calculated sequentially at points x0, . . . , x5. The distance between the points h
is constant during the propagation.

yn+1 = yn + hf(xn, yn) (2.7)

with the distance h between xn and xn+1. The distance h is kept constant
during the progress (Fig. 2.2).

The properties of the Euler method can be studied using the Taylor series
expansion for the function y [8, 9]:

y(x + h) = y(x) + h
1
1!

dy

dx
(x) + h2 1

2!
d2y

dx2
(x) + h3 1

3!
d3y

dx3
(x) + . . . (2.8)

A comparison with the upper scheme (equation 2.7) shows that the Euler
method neglects terms with derivatives of order greater or equal to two. The
truncation error E is given by:

E = y(x + h) − yn+1 = h2 1
2

d2y

dx2
(x) + h3 1

6
d3y

dx3
(x) + . . . (2.9)

The truncation error E can be quadratically reduced by bisection of the dis-
tance h. Alternatively, a reduction of this error can be achieved by introduction
of higher order terms in equation 2.7.

Another source of error is the inaccuracy of floating point arithmetic, e.g.
by non-representability of numbers. This so-called rounding error is not lim-
ited to the application of the Euler method but inherent in the floating point
arithmetic. The error can be reduced by careful selection of distance values,
data type and implementation of the function f .

2.6.3 Runge-Kutta Method

The Runge-Kutta method allows like the Euler method the numerical solution
of the first order ordinary differential equation:
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x xx  +h/2n n+1n

y

x

n+1n

ny

yy

y(x)

Fig. 2.3. Second order Runge-Kutta method for numerical solution of ordinary dif-
ferential equations. The solution function yn is determined by the values yn and
yn+1. The distance h between the points xn and xn+1 is constant during the prop-
agation. The numerical solution yn is shown as a solid line. The exact solution y(x)
is indicated by a dotted line.

dy

dx
= f(x, y) (2.10)

by propagation through different points, where the step-size h is constant.
The method uses the value yn and multiple evaluations of the function f to
determine the new value yn+1 at xn+1. The number of evaluations determines
the order the Runge-Kutta method.

The idea behind the Runge-Kutta method is an integration of equation
2.10 in the interval [xn, xn+1]:

yn+1 − yn =
∫ xn+1

xn

f(x, y)dx

with the known value yn and the unknown value yn+1. The right hand side
of the equation is treated with numerical integration methods similar to the
quadrature methods (Sect. 2.5). The integration points and the weighting
values are optimized to minimize approximation errors.

The properties of the Runge-Kutta method can be examined by applying
the Taylor series expansion for the function y [9], in a similar way like the
study of the properties of the Euler method (equation 2.8).

The second order Runge-Kutta method uses a first evaluation of the func-
tion f at the point xn, which is afterwards used at the point xn + 1

2h for a
second evaluation (Fig. 2.3):

k1 = hf(xn, yn)

k2 = hf(xn +
1
2
h, yn +

1
2
k1)

yn+1 = yn + k2
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Using the Taylor series expansion it can be shown that the second order
Runge-Kutta method neglects terms with derivatives of order greater or equal
to three.

A third order Runge-Kutta method uses three evaluations of the function
f at the points xn, xn + 1

3h and xn + 2
3h to determine the value of yn+1:

k1 = hf(xn, yn)

k2 = hf(xn +
1
3
h, yn +

1
3
k1)

k3 = hf(xn +
2
3
h, yn +

2
3
k2)

yn+1 = yn +
1
4
(k1 + 3k3)

A fourth order method, the so-called classical Runge-Kutta method, is
given by:

k1 = hf(xn, yn)

k2 = hf(xn +
1
2
h, yn +

1
2
k1)

k3 = hf(xn +
1
2
h, yn +

1
2
k2)

k4 = hf(xn + h, yn + k3)

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4)

Four evaluations are necessary to proceed from the point xn to the point xn+1.
Commonly, Runge-Kutta methods with an order higher than four are not

applied because of their large numerical expense. An extension of the Runge-
Kutta method allows adaptive control over the propagation process by chang-
ing of the step-size h [5, 9]. The extension uses an estimation of the truncation
error (equation 2.9) to increase or decrease the step-size. The truncation error
can be estimated by comparing the results achieved by Runge-Kutta methods
of different order.

2.7 Numerics of Partial Differential Equations

2.7.1 Definition

In contrast to an ordinary differential equation, where the unknown is a func-
tion y of only one variable x, i.e. y = y(x), a partial differential equation
describes a function u of two or more variables x1, x2, . . . , e.g. in the two-
dimensional case u = u(x1, x2). Similarly, the order n of a partial differential
equation indicates the maximal order of the derivative of the function.
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As an example, a second order linear partial differential equation in the
region Ω ⊂ R

2 is given by [9]:

A(x1, x2)
∂2u

∂x 2
1

+ 2B(x1, x2)
∂2u

∂x1∂x2
+ C(x1, x2)

∂2u

∂x 2
2

+ D(x1, x2)
∂u

∂x1
+ E(x1, x2)

∂u

∂x2
+ F (x1, x2) u = G(x1, x2)

with the functions A, B, C, D, E, F , and G. Depending on the values of these
functions and assuming that A2 +B2 +C2 �= 0 in Ω, this equation is classified
into three types:

• AC − B2 > 0: elliptic
• AC − B2 < 0: hyperbolic
• AC − B2 = 0: parabolic

The classification influences the choice of numerical treatment of the partial
differential equation.

A representative of an elliptic differential equation is the so-called Poisson
equation. In a two-dimensional formulation the equation is given by:

∂2u

∂x 2
1

+
∂2u

∂x 2
2

= G(x1, x2) (2.11)

If the right hand side of the equation is equal to zero, the Poisson equation
reduces to the Laplace equation:

∂2u

∂x 2
1

+
∂2u

∂x 2
2

= 0 (2.12)

The Poisson and Laplace equations are frequently applied to describe station-
ary and quasi-stationary physical phenomena, e.g. time independent electric,
magnetic and temperature fields. For this purpose the equations are extended
to represent three-dimensional fields and to incorporate material specific be-
havior.

A prototypical hyperbolic differential equation is the wave equation:

∂2u

∂t2
= v2 ∂2u

∂x2
(2.13)

with the constant velocity of wave propagation v. The wave equation can be
used to describe instationary processes, e.g. the propagation of electromag-
netic waves and acoustical resonance phenomena. Appropriate initial values
must be given to ensure uniqueness.

A representative of a parabolic differential equation is the diffusion equa-
tion:

∂u

∂t
= D

∂2u

∂x2
(2.14)

with the constant diffusion coefficient D. The diffusion equation models in-
stationary phenomena, which are found for heat and mass transfer processes.
The solution depends on given initial values.
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Γ

Ω

Γ

Γ

Fig. 2.4. Exemplary two-dimensional boundary value problem. The partial differ-
ential equation is defined in the region Ω with the boundary Γ . The boundary Γ is
sub-divided in three partial boundaries ΓD, ΓN , and ΓC . For each of these a specific
type of boundary condition is defined.

2.7.2 Initial Values and Boundary Conditions

The solution of partial differential equations is dependent on the definition
of initial values and boundary conditions. E.g. the uniqueness of the solution
of elliptical equations is ensured only if appropriate boundary conditions are
attributed [4, 9].

Initial values specify the solution function u and its derivatives for the
time t = 0 (Sect. 2.6). Initial values can be applied everywhere in the region
Ω and at its boundary Γ .

Boundary conditions specify the solution function u at the boundary Γ of
the region Ω (Fig. 2.4). The boundary Γ is split up in three partial boundaries
ΓD, ΓN , and ΓC :

Γ = ΓD ∪ ΓN ∪ ΓC

where different types of boundary conditions are defined, i.e. Dirichlet, Neu-
mann and Cauchy conditions.

A Dirichlet condition specifies the values at parts of the boundary ΓD ⊂ Γ
with the function φ:

u(x) = φ(x) for x ∈ ΓD

A Neumann condition defines the values of gradients in normal direction n of
the partial boundary ΓN ⊂ Γ with the function γ:

∂u

∂n
(x) = γ(x) for x ∈ ΓN

The Cauchy condition is the general formulation of boundary conditions:

∂u

∂n
(x) + α(x)u(x) = β(x) for x ∈ ΓC
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with the functions α and β defined at the partial boundary ΓC ⊂ Γ . The
Cauchy condition includes the Dirichlet and Neumann condition as special
cases.

2.7.3 Finite Element Method

Overview. The finite element method is one of the numerical methods used
to solve partial differential equations. The ideas underlying the finite element
method are introduced with the classical work of Ritz and Galerkin.

The method can be subdivided into consecutive steps:

• Discretization of the spatial domain
• Element-wise interpolation of the solution function
• Determination of element equations
• Assembling of system equations
• Incorporation of boundary conditions
• Solution of system equations

The name of the method comes from the first step of the proceeding, where
the spatial domain is discretized in finite elements. Appropriate interpolation
methods of the solution function dependent on element type are assigned.
The element equations characterize the element’s contribution to the equa-
tions describing the whole system. Each element’s contribution is determined
as a function of variables and assembled into the system equations. These
equations are modified to incorporate boundary conditions and solved to de-
termine the unknown function.

Classical Work

Ritz Method. The Ritz method is a historical approach to indirectly solve
partial differential equations. The method approximates the unknown function
u by a linear combination of N +1 orthogonal functions φi weighted with the
factors ai:

u = φ0 +
N∑

i=1

aiφi (2.15)

The functions φi are defined over the whole spatial domain Ω as well as
they are chosen appropriately in dependence of the application and boundary
conditions. E.g. the Dirichlet conditions have to be respected by the function
φ0 and the other functions φi have to be zero.

The approximation in equation 2.15 substitutes the unknown function u
in a functional Π which is equivalent to the differential equation. The factors
ai are determined in such a way that the functional is stationary:

∂Π

∂ai
= 0 (2.16)
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Example. The Ritz method is applied to solve the elliptical differential equa-
tion (equation 2.11) in the domain Ω with consideration of boundary condi-
tions:

∂2u

∂x 2
1

+
∂2u

∂x 2
2

= G(x1, x2)

The equivalent function Π is given by:

Π =
∫∫

Ω

1
2

(
∂u

∂x1

)2

+
1
2

(
∂u

∂x2

)2

+ G(x1, x2)u dx1 dx2

This equation is modified by substitution with the linear combination of
weighted orthogonal functions φi (equation 2.15). The stationary condition,
i.e. derivation of Π by the weighting factors ai (equation 2.16), constructs
a system of equations, which can be solved either exactly or approximately
delivering the weighting values ai for the determination of the unknown func-
tion u.

Galerkin Method. The Galerkin method, which is also known as the method
of weighted residuals [4, 10], is a further classical method to indirectly solve
partial differential equations. The method is based on the Ritz approach by
using the approximation of the unknown function u with a linear combination
of weighted orthogonal functions (equation 2.15).

An approximate solution ũ of an arbitrary differential equation D(u) = 0
with the exact solution u is analyzed introducing the residuum R:

R = D(ũ) (2.17)

Herewith, the Galerkin method consists of solving the system of integrals:
∫

Ω

φiR dΩ = 0 (2.18)

The dimension of the system is N + 1. The residuum R is weighted with the
approximation functions φi.

Example. The Galerkin method is applied to solve the elliptical differential
equation (equation 2.11) in consideration of boundary conditions:

∂2u

∂x 2
1

+
∂2u

∂x 2
2

= G(x1, x2)

which can be reformulated for simplicity as:

Lu = G(x1, x2) (2.19)

with the elliptical operator L given by:

L ≡ ( ∂
∂x1

∂
∂x2

)( ∂
∂x1
∂

∂x2

)
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(a) (b) (c)

Fig. 2.5. Exemplary three-dimensional finite elements. The spatial domain Ω is
subdivided in appropriate elements with assigned node points indicated by black
spheres. Commonly, in three-dimensional domains (a) tetrahedron, (b) hexahedrons
and (c) prisms are used.

The residuum R derived from equation 2.19 is defined as:

R = G(x1, x2) − Lu (2.20)

The equation is modified by substitution with the linear combination of
weighted orthogonal approximation functions φi:

R = G(x1, x2) − L

(
φ0 +

n∑

i=1

aiφi

)

This equation is substituted in equation 2.18. The resulting equation system
can be solved either exactly or approximately to give the weighting values ai.

Discretization of the Spatial Domain. The spatial discretization or mesh-
ing step in the finite element method consists of subdividing the domain Ω
with appropriate elements occupying the domains Ω(m):

Ω =
⋃

m∈{1,...,N}
Ω(m)

with N as the number of elements. The elements are non-intersecting:

Ω(m) ∩ Ω(n) = 0

for m, n ∈ {1, . . . , N} and m �= n.
Commonly, geometrically simple elements of varying size and shape are

applied (Fig. 2.5). In three-dimensional domains tetrahedrons, hexahedrons
and prisms are frequently employed. In two-dimensional domains triangles
and quads are used. A distinction between structured and unstructured sub-
divisions is made leading to meshes with homogeneously distributed, uniform
elements and arbitrary elements, respectively.

The node points are assigned to the elements and mostly lie at their cor-
ners. Further element types include node points inside or located at edges.
Attributed to the node points are node variables, which describe the values of
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the solution function. E.g. node variables represent potentials of electric fields,
spatial displacements in structure mechanics, and velocities in fluid mechan-
ics. Commonly, adjoining elements share node points and the attributed node
variables.

The spatial discretization is a determinant for the accuracy of a finite ele-
ment analysis. The decrease of element size by increasing the element number
can lead to a higher accuracy. This kind of refinement of the discretization is
known as the h-method. The shape of the elements has to be taken into ac-
count, e.g. elements with very large or small angles can lead to ill-conditioned
equation systems. An adaptation to spatial and field particularities is of ad-
vantage, e.g. an increase of elements in regions with large inhomogeneity of
geometry and with large alteration of the solution function will improve the
accuracy of the analysis.

Element-Wise Interpolation of the Solution Function. The interpo-
lation allows the determination of the solution function u at an arbitrary
point x in the domain Ω. In contrast to the Ritz approach (equation 2.15),
where the approximation functions φi are defined over the whole domain Ω
and weighted by factors ai, the interpolation functions used in the finite el-
ement methods are local. Interpolation functions are defined only inside the
domain Ω(m) of each m-th element and weighted by the values of the node
variables u

(m)
i assigned to node points x

(m)
i . The element-wise interpolation

is commonly carried out by summation of shape-functions H
(m)
i :

u(x) =
N∑

i=1

H
(m)
i (x) u

(m)
i

with the node variables number N . The choice of appropriate shape-functions
is influenced by the aspired order of interpolation, the dimension of the spatial
domain and the traits of the solution function.

In the following section the description primarily treats the most common
type of node variable. This type of node variable specifies directly the value
of the unknown function u at the node points x

(m)
i :

u(x(m)
i ) = u

(m)
i

with the node variables u
(m)
i . Node variables specifying derivatives of the

unknown function u are discussed in detail e.g. in [4].
The assumption leads to requirements for the shape-functions H

(m)
i deter-

mining their values at the node points x
(m)
i :

H
(m)
i (x) =

{
1 : x = x

(m)
i

0 : x = x
(m)
j , j �= i

(2.21)
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A further, pragmatic requirement is, that the sum of the shape-functions H
(m)
i

at an arbitrary point is given by:

N∑

i=1

H
(m)
i (x) = 1 (2.22)

Definition of Shape-Functions. These requirements allow a definition of shape-
functions assuming an interpolation operator P for the solution function u:

u(x) = P(x, a(m)) (2.23)

with the a-priori unknown parameter vector a(m). Commonly, the interpola-
tion operator P is polynomial, e.g. linear, quadratic and cubic.

Substituting the requirements (equation 2.21) for the node variables u
(m)
i

at the given node points x
(m)
i allows an equation system for the m-th element

to be set up:

u
(m)
i = P(x(m)

i , a(m))

The equation system is transformed in such a way, that the parameter vector
a(m) is determined as a function of the node variables u

(m)
i . These parameter

functions are substituted in the equation 2.23. The resulting equation is rear-
ranged to separate the coefficients of the node variables u

(m)
i . The coefficients

are identical to the shape-functions.

Example for Line Element. In a one-dimensional domain Ω = [0, 1] a linear
interpolation at point x is given by:

u(x) = a
(m)
0 + a

(m)
1 x (2.24)

with the two scalar constants a
(m)
0 and a

(m)
1 . The scalar constants are a-priori

unknown. The following equation system is set up from the requirements
(equation 2.21) for the node variables u

(m)
0 and u

(m)
1 at the node points x

(m)
0 =

0 and x
(m)
1 = 1.

The requirements are substituted in the interpolation function (equation
2.24):

u
(m)
0 = a

(m)
0

u
(m)
1 = a

(m)
0 + a

(m)
1

which can be represented in matrix notation as:
(

u
(m)
0

u
(m)
1

)
= A

(
a
(m)
0

a
(m)
1

)
with A =

(
1 0
1 1

)
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Fig. 2.6. Natural coordinates in (a) triangle, (b) quadrilateral and (c) tetrahedron.
The coordinates describe uniquely a point x inside the element by areas constructed
with the node points xi and the point x.

Inversion of the matrix A delivers the equation system:

A−1

(
u

(m)
0

u
(m)
1

)
=

(
a
(m)
0

a
(m)
1

)
with A−1 =

(
1 0
−1 1

)

which describes the constants as a product of the matrix A−1 and the vector
of node variables u(m). Substitution of the constants in equation 2.24 and
rearrangement:

u(x) = u
(m)
0 + (u(m)

1 − u
(m)
0 )x

= u
(m)
0 (1 − x) + u

(m)
1 x

allows the determination of the shape-functions H
(m)
0 and H

(m)
1 , which are

given by:

H
(m)
0 (x) = 1 − x

H
(m)
1 (x) = x

These shape-functions fulfill obviously the second requirement (equation 2.22).

Natural Coordinates. Shape-functions can alternatively be derived using nat-
ural coordinates of an element [4, 10]. Natural coordinates serve to describe
uniquely a point x inside of the element (Fig. 2.6). The dimension of the natu-
ral coordinate system depends on the number of node points, e.g. three natural
coordinates describe a point inside a triangle, four coordinates describe a point
inside of a quadrilateral and a tetrahedron, eight coordinates are attributed
in a hexahedron. In two- and three-dimensional elements shape-functions are
identified by the ratio of areas and volumina, respectively. In two-dimensional
elements the natural coordinates are also known as area coordinates [10].

In a triangle three areas Ai are constructed with the point x and the three
corner points (Fig. 2.6 a). The ratio ξi of these areas to the whole triangle
area A is given by [4]:
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Fig. 2.7. One-dimensional shape-functions. (a) Linear, (b) quadratic, and (c,d) cu-
bic shape-functions allow the determination of the solution function u at an arbitrary
point x in a one-dimensional domain Ω starting from values of node variables ui.
The shape-functions shown in (a), (b) and (c) result from node variables specifying
the function u at two, three and four, respectively, node points. The shape-functions
depicted in (d) accrues from nodes variables defining the functions u as well as its
first derivatives at two node points.

ξi =
Ai

A
Obviously, the ratios fulfill the requirements for a shape-function (equation
2.21). Concerning a unit triangle, the shape-functions Hi are identical to the
area ratios ξi:

Hi = ξi

Similar approaches serve to determine the shape-functions of polygons and
polyhedrons.
One-Dimensional Shape-Functions. The determination of shape-functions can
be achieved by taking into account the requirements (equation 2.21) or by the
approach of the natural coordinates. Linear shape-functions for unit line ele-
ments result from the first order polynomial as interpolation function for the
solution function u:

u(x) = a0 + a1x

with the constant parameters a0 and a1. Two node variables, one assigned
to each of the two node points, specify the solution function u. The shape-
functions H0 and H1 are given by (Fig. 2.7 a):



2.7 Numerics of Partial Differential Equations 37

H0(x) = 1 − x (2.25)
H1(x) = x

Quadratic shape-functions for line elements use a second order polynomial:

u(x) = a0 + a1x + a2x
2

with three constant parameters ai. The solution function u is determined with
one node variable at three node points. The shape-functions Hi are given by
(Fig. 2.7 b):

H0(x) = (x − 1)(2x − 1)
H1(x) = −4x(x − 1)
H2(x) = x(2x − 1)

A third order polynomial is applied to determine cubic shape-functions:

u(x) = a0 + a1x + a2x
2 + a3x

3

with four parameters ai. Hereby, four node variables specify the solution func-
tion u. The cubic approach leads to the shape-functions (Fig. 2.7 c):

H0(x) = −1
2
(x − 1)(3x − 2)(3x − 1)

H1(x) =
9
2
(x − 1)x(3x − 2)

H2(x) = −9
2
(x − 1)x(3x − 1)

H3(x) =
1
2
x(3x − 2)(3x − 1)

Alternatively, an element can be defined with two node points, where at
each point a node variable fixes the value of the function u and a secondary
node variable defines the derivative of the function u:

H0(x) = (1 − x)2(1 + 2x)
H1(x) = x(1 − x)2

H2(x) = x2(3 − 2x)
H3(x) = −x2(1 − x)

The usage of this element type is recommended if the continuity of the first
derivative at the node points is required.

Two-Dimensional Shape-Functions. Bilinear shape-functions for unit quadri-
laterals result from the following polynomial as interpolation function for the
solution function u:

u(x1, x2) = a0 + a1x1 + a2x2 + a3x1x2
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Fig. 2.8. Two-dimensional shape-functions in quadrilaterals. The bilinear shape-
functions (a) H0, (b) H1, (c) H2 and (d) H3 allow the interpolation of function u at
an arbitrary point x in a two-dimensional domain Ω = [0, 1][0, 1]. The interpolation
uses values of node variables ui located at the vertices of the quadrilaterals.

with the constant parameters ai. The shape-functions Hi are given by
(Fig. 2.8):

H0(x1, x2) = (1 − x1)(1 − x2) (2.26)
H1(x1, x2) = x1(1 − x2)
H2(x1, x2) = (1 − x1)x2

H3(x1, x2) = x1x2

Three-Dimensional Shape-Functions. Trilinear shape-functions for unit hexa-
hedrons result from the following polynomial as interpolation function for the
solution function u:

u(x1, x2, x3) = a0 + a1x1 + a2x2 + a3x1x2 + a4x3 + a5x1x3

+a6x2x3 + a7x1x2x3

with the constant parameters ai. The shape-functions Hi are given by:

H0(x1, x2, x3) = (1 − x1)(1 − x2)(1 − x3)
H1(x1, x2, x3) = x1(1 − x2)(1 − x3)
H2(x1, x2, x3) = (1 − x1)x2(1 − x3)
H3(x1, x2, x3) = x1x2(1 − x3)
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H4(x1, x2, x3) = (1 − x1)(1 − x2)x3

H5(x1, x2, x3) = x1(1 − x2)x3

H6(x1, x2, x3) = (1 − x1)x2x3

H7(x1, x2, x3) = x1x2x3

Determination of Element Equations. The element equations are com-
monly derived for each element applying the Galerkin method to transform
partial differential equations into an integral or using the stationarity condi-
tion of a functional Π analog to the Ritz approach. Because these methods
require the integration over an element’s domain Ω(m), an interpolation of the
solution function u based on the variables at the node points is performed. The
shape-functions serve to interpolate the solution function u. The interpolation
can be expressed as vector multiplication:

u = u(m) T H(m) (2.27)

with the vector of node variables u(m) and the vector of shape-functions H(m).
The interpolation is substituted into the integrals. The integrals are trans-
formed in such a way that a linear system of the node variables results. In the
following description, element equations for exemplary elements and equations
are derived.

Line Elements. Different functionals Π(m) for line elements with the domain
Ω(m) are frequently occurring both as part of a complex functional and as
sole contribution [4]:

Π
(m)
1 =

∫

Ω(m)
u dx

Π
(m)
2 =

∫

Ω(m)
u2 dx

Π
(m)
3 =

∫

Ω(m)

(
∂u

∂x

)2

dx

The integrals are transformed to the unit interval Ω0 = [0, 1]:

Π
(m)
1 =

∫

Ω0

uJ dη

Π
(m)
2 =

∫

Ω0

u2 J dη

Π
(m)
3 =

∫

Ω0

(
∂u

∂η

∂η

∂x

)2

J dη

with the Jacobian of the coordinate transformation J . The substitution with
the approximation of the solution functions (equation 2.27) delivers:
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Π
(m)
1 =

∫

Ω0

u(m) T H(m) J dη = u(m) T

∫

Ω0

H(m) J dη

Π
(m)
2 =

∫

Ω0

(u(m) T H(m))2 J dη = u(m) T

∫

Ω0

H(m) T 2 J dη u(m)

Π
(m)
3 =

∫

Ω0

(
∂(u(m) T H(m))

∂η

∂η

∂x

)2

J dη

= u(m) T

∫

Ω0

(
∂H(m)

∂η

∂η

∂x

)T 2

J dη u(m)

The superscript T 2 denotes the transposition of the vector followed by squar-
ing. A quadratic, symmetric matrix results in these cases. The derivatives of
the shape-functions H

(m)
i are directly derived from their definition (equation

2.25).
The integrals can be expressed as linear or quadratic form of the node

variables u
(m)
i :

Π
(m)
1 = u(m) T b(m)

Π
(m)
2 = u(m) T M (m)u(m)

Π
(m)
3 = u(m) T S(m)u(m)

with the vector b(m), the mass element matrix M (m) and the stiffness matrix
S(m). Using linear shape-functions (equation 2.25) in an element of length l
the element vectors and matrices are given by [4]:

b(m) =
l

2

(
1
1

)

M (m) =
l

6

(
2 1
1 2

)

S(m) =
1
l

(
1 −1
−1 1

)

The final step in the derivation of the element equations for a line element
uses the stationarity condition analog to the Ritz approach. Therefore, the
upper functionals Π

(m)
i are either combined or used alone.

Quadrilaterals with Poisson Equation. The functional Π(m) for the m-th ele-
ment is given by (Sect. 2.7.3):

Π(m) =
∫∫

Ω(m)

1
2

(
∂u

∂x1

)2

+
1
2

(
∂u

∂x2

)2

+ G(x1, x2) u dx1 dx2



2.7 Numerics of Partial Differential Equations 41

The integral is transformed to the unit interval Ω0 = [0, 1][0, 1]:

Π(m) =
∫∫

Ω0

(
1
2

(
∂u

∂η1

∂η1

∂x1
+

∂u

∂η2

∂η2

∂x1

)2

+
1
2

(
∂u

∂η1

∂η1

∂x2
+

∂u

∂η2

∂η2

∂x2

)2

+ G(η1, η2)u

)
J dη1 dη2

with the Jacobian of the coordinate transformation J . The substitution
with the approximation of the solution functions (equation 2.27) delivers the
quadratic form:

Π(m) = u(m) T 1
2
S(m)u(m) + u(m) T b(m)

with the matrix S(m) determined:

S(m) =
∫∫

Ω0




(

∂H(m)

∂η1

∂η1

∂x1
+

∂H(m)

∂η2

∂η2

∂x1

)T 2

+

(
∂H(m)

∂η1

∂η1

∂x2
+

∂H(m)

∂η2

∂η2

∂x2

)T 2


J dη1 dη2

and the vector b(m) given by:

b(m) =
∫∫

Ω0

G(η1, η2)H(m)J dη1 dη2

The derivatives of the shape-functions H
(m)
i are determined by their definition

(equation 2.26). The matrix S(m) and the vector b(m) are commonly deter-
mined with numerical integration methods, e.g. Gauss quadrature (Sect. 2.5).
For simple element geometries, e.g. quadrat and parallelogram, an analytical
solution is derivable [4].

Using bilinear shape-functions (equation 2.26) in a unit element and as-
suming G(x1, x2) ≡ 1, the element matrix S(m) and vector b(m) are given
by:

S(m) =
1
3





4 −1 −1 −2
−1 4 −2 −1
−1 −2 4 −1
−2 −1 −1 4





b(m) =
1
4
(
1 1 1 1

)T

The final step in the derivation of the element equations for a Poisson
equation uses the stationarity condition of the equivalent functional Π(m).
The condition delivers the linear equation system:

∂Π(m)

∂u(m)
= S(m)u(m) + b(m) = 0
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Assembling of System Equations. The element matrices and vectors are
assembled to generate the system equations describing the whole domain.
These equations are commonly linear consisting of the so-called system matrix
A and the system vector b:

Au + b = 0 (2.28)

in conjunction with the vector of node variables u. The values of the node
variables ui describe the solution function u and are a-priori unknown.

The system matrix A and system vector b result from a summation of the
element matrices A(m) and element vectors b(m), where the coefficients are
properly sorted:

A =
N∑

m=1

A(m)

b =
N∑

m=1

b(m)

The sorting of the coefficients is dependent on the sorting of the node variables.
Element matrices can consist of stiffness and mass as well as further matrices.

The properties of the system matrix depend on the properties of the ele-
ment matrices. E.g. the assembling of symmetric, positive-definite element ma-
trices leads to a symmetric, positive-definite system matrix. The system ma-
trix A is commonly sparse, where the application of efficient storing schemes is
of advantage. Mostly, the system matrix A is quadratic, but its shape depends
on the shape of the element matrices and the sorting of the node variables.

Incorporation of Boundary Conditions. The incorporation of boundary
conditions can be performed on element or system level by modification of the
corresponding equation systems. Element level modifications influence gener-
ally a group of element equations, e.g. by changing the shape-functions or
replacing equations. System level incorporation can be realized by changing
appropriate equations of the system equations.

If the differential equation is described by a system of linear equations
(equation 2.28) boundary conditions can be created by reducing the dimension
of the system matrix A and system vector b as well as by replacing coefficients
of the system matrix A and the system vector b with appropriate values. E.g.
a Dirichlet condition specifying the value of the node variable uk located at
node point xk is represented by:

uk = c

This substitution changes the vector b to the modified system vector b′ by
adding of the c-fold of the k-th column of the system matrix A. The k-th
element of the vector b′ is removed. The system matrix A′ results from the
matrix A by deleting of the k-th row and column.
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A similar approach can be chosen to represent Neumann conditions. This
method changes the system’s type. The sacrifice of the matrix’s type and
vector’s dimension obstructs a numerical treatment.

Alternatively, boundary conditions can be incorporated with a method
preserving the systems dimension [4]. Preservation is achieved by adding the
c-fold of the k-th column of the system matrix A to the vector b. The k-th
element of the resulting vector b′ is set to c. The k-th row and column of the
system matrix A are filled with zeros. Finally, the k-th diagonal element of
the resulting matrix A′ is set to one.

Solution of System Equations. Depending on the type of differential equa-
tion different types of equation systems can arise. Stationary problems, e.g. on
basis of the Poisson equation, commonly deliver a system of linear equations
(equation 2.28), which is solved with the methods described in Sect. 2.4. The
symmetry, positive-definiteness and sparcity of the system matrix are of ad-
vantage on behalf of the performance of solution and feasibility of numerical
methods. Oscillation problems often result in eigenvalue problems, wherefore
numerical methods beyond the scope of this work are enlisted. An overview
of these methods is given in [4, 5, 9].

2.7.4 Finite Differences Method

The finite differences method can be applied to solve partial differential equa-
tions in a similar way like the finite element method. The method’s name
is motivated by the proceeding, where differential terms are substituted by
approximations primarily consisting of differences. Commonly, in the finite
differences method, the partial differential equations are solved directly at the
node points which are regularly distributed over the spatial domain Ω. The
method can be subdivided into a sequence of steps:

• Discretization of the spatial domain
• Determination of node equations
• Assembling of system equations
• Incorporation of boundary conditions
• Solution of system equations

The finite differences method can be seen as a subclass of the finite element
method, which differs primarily in the first two steps, discretization and deter-
mination of the element matrices. In particular the final steps, incorporation
of boundary conditions and solution of system equations, are equal in the
finite element method and described in Sect. 2.7.3 and 2.7.3, respectively.

Discretization of the Spatial Domain. The spatial domain Ω is sampled
with node points xi. Commonly, rectangular, isotropic and equidistant lattices
are applied, where the node points xi are located at the vertices (Fig. 2.9).
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Fig. 2.9. Exemplary finite differences meshes in (a) two and (b) three dimensions.
The spatial domain Ω is subdivided in a rectangular lattice, where node variables
are assigned to the vertices. The distance between vertices ∆xi in direction of the
edges is equal in isotropic, equidistant lattices.

The regularity of the node point distribution simplifies the discretization of
the partial differential equations.

Adapted meshes were created for specific applications. The adaptation con-
cerns both geometry as well as node variable assignment. Geometrical adapted
meshes are in use e.g. for spherically and cylindrically shaped domains. An
example for adaptation with regard to node variables is the dual mesh for elec-
tromagnetic problems of Yee [11], where node points and attributed variables
of the electric and magnetic fields are shifted to each other.

Determination of Node Equations. The node equations result from a
node-wise discretization of the partial differential equations. The differential
terms are substituted by discrete approximations. Depending on the equation
type spatial and temporal derivatives of different order have to be replaced.
These approximations are simplified in equidistant, isotropic, orthogonal lat-
tices. In irregular meshes approximations can be achieved by appropriate
transformations.

An approximation of the first order spatial derivative in a one-dimensional
domain Ω at the node point xi can be achieved with different schemes. These
schemes differ in the locations of the node variables taken into account. The
schemes are the so-called central, forward and backward difference:

∂u

∂x
(xi) ≈ ui+1 − ui−1

2∆x
central (2.29)

∂u

∂x
(xi) ≈ ui+1 − ui

∆x
forward (2.30)
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∂u

∂x
(xi) ≈ ui − ui−1

∆x
backward (2.31)

with the distance between node points ∆x. The node variables ui−1, ui and
ui+1 correspond to the node points xi−1, xi and xi+1, respectively. In un-
equally spaced meshes this distance differs locally, i.e. a function of the loca-
tion: ∆x ≡ ∆x(x).

The second order spatial derivative in a one-dimensional domain Ω can
be deduced by twice derivation with the upper schemes (equations 2.29-2.31).
Using two-fold central differences the second order derivative at the node point
xi is given by:

∂2u

∂x2
(xi) ≈ ui+1 − 2ui + ui−1

∆x2

The first order temporal derivative at time step ti can be approximated
similar to the upper schemes:

∂u

∂t
(ti) ≈ ui+1 − ui−1

2∆t
central

∂u

∂t
(ti) ≈ ui+1 − ui

∆t
forward

∂u

∂t
(ti) ≈ ui − ui−1

∆t
backward

with the distance between time steps ∆t. The backward scheme is compa-
rable with the Euler method for solving of ordinary differential equations
(Sect. 2.6.2). The second order temporal derivative can be deduced in a simi-
lar way to the upper deduction of the second order spatial derivative.

The derivatives in a two-dimensional domain Ω can be derived straight-
forwardly from the one-dimensional derivatives. In a rectangular, equidistant
mesh, the first order derivatives at the node point xi,j are approximated by:

∂u

∂x1
(xi,j) ≈ ui+1,j − ui−1,j

2∆x1

∂u

∂x2
(xi,j) ≈ ui,j+1 − ui,j−1

2∆x2

with the distance between the node points ∆x1 and ∆x2 in x1 and x2 direction,
respectively. The node variables ui+1,j , ui−1,j, ui,j+1 and ui,j−1 correspond to
the node points xi+1,j , xi−1,j, xi,j+1 and xi,j−1, respectively (Fig. 2.10).

The second order derivatives are given by:

∂2u

∂x2
1

(xi,j) ≈ ui+1,j − 2ui,j + ui−1,j

∆x2
1

(2.32)

∂2u

∂x2
2

(xi,j) ≈ ui,j+1 − 2ui,j + ui,j−1

∆x2
2

(2.33)
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Fig. 2.10. Exemplary numbering of node points in two-dimensional, rectangular,
equidistant mesh. A subarea of a two-dimensional spatial domain Ω is shown, which
is subdivided in a rectangular lattice with quad-shaped cells. The center of the
subarea is node point xi,j . The mesh can be applied in conjunction with the finite
differences method for discretization of Poisson’s equation. Node points are indicated
by black closed circles.

∂2u

∂x1∂x2
(xi,j) ≈ ui+1,j+1 − ui−1,j+1 − ui+1,j−1 + ui−1,j−1

4∆x1∆x2
(2.34)

The second order derivatives are determined by two-fold central differences.
Derivatives in domains of dimension three and larger can be constructed

by applying the upper strategy. The principle of the finite differences method
is not restricted to spatial and temporal derivatives of the node variables,
but can also be applied for derivation of material properties, e.g. electrical
conductivity tensors.

Two-Dimensional Poisson Equation. The Poisson equation can be approx-
imated in an equidistant, isotropic lattice by substituting the second order
derivatives (equation 2.32 and 2.33). At the point xi,j the Poisson equation
is given by:

∂2u

∂x 2
1

(xi,j) +
∂2u

∂x 2
2

(xi,j) = G(xi,j)

Its finite differences approximation leads to:

ui+1,j − 2ui,j + ui−1,j

∆x2
1

+
ui,j+1 − 2ui,j + ui,j−1

∆x2
2

= G(xi,j)

which can be simplified taking the isotropy of the lattice into account, i.e.
∆x2

1 = ∆x2
2, to:
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−4ui,j + ui+1,j + ui−1,j + ui,j+1 + ui,j−1

∆x2
= G(xi,j)

with the distance between node points ∆x. In this equation all quantities
are known except the node variables. The equation can be expressed using a
vector product:

aT
i,jui,j = G(xi,j) (2.35)

with the vector of weightings of node variables ai,j :

aT
i,j =

1
∆x2

(−4 1 1 1 1
)

and the vector of node variables ui,j :

uT
i,j =

(
ui,j ui+1,j ui−1,j ui,j+1 ui,j−1

)

Error Estimation. The properties of the finite differences method can be ex-
amined, similar to the study of the properties of the Euler method (equation
2.8), using the Taylor series expansion for the function u [8, 9]:

u(x + ∆x) = u(x) + ∆x
1
1!

∂u

∂x
(x) + ∆x2 1

2!
∂2u

∂x2
(x) + ∆x3 1

3!
∂3u

∂x3
(x) + . . .

A comparison with the upper approximation for first order derivatives (equa-
tions 2.29-2.31) shows that the finite differences method neglects terms with
derivatives of order greater and equal to two for forward and backward differ-
ences. Hereby, the truncation error E is given by:

E = u(x + ∆x) − un+1 = ∆x2 1
2

∂2u

∂x2
(x) + ∆x3 1

6
∂3u

∂x3
(x) + . . .

The truncation error E can be quadratically reduced by bisection of the dis-
tance ∆x. For central differences terms with derivatives of order greater and
equal to three are neglected:

E = u(x + ∆x) − un+1 = ∆x3 1
6

∂3u

∂x3
(x) + . . .

The truncation error E can be cubically reduced regarding the distance ∆x.
Alternatively, a reduction of this error can be achieved by introduction of
higher order terms in equations 2.29-2.31.

Assembling of System Equations. The element equations are assembled
to generate the system equations describing the whole domain. Similar to the
finite element method, these equations are commonly linear consisting of the
so-called system matrix A and the system vector b:

Au + b = 0
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in conjunction with the vector of node variables u. The values of the node vari-
ables ui represent the solution function u of the underlying partial differential
equation and are a-priori unknown.

The system matrix A and system vector b result from a collection of sorted
vectors ai and coefficients bi corresponding to a node variable:

A =




aT

1
...

aT
N



 , b =




b1

...
bN





The sorting of the coefficients is dependent on the sorting of the node variables.
The properties of the system matrix depend on the properties of the ele-

ment equations. The system matrix A consists commonly of diagonal blocks,
which can be efficiently stored.
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Theory of Electric Fields

3.1 Introduction

A physically based modeling of electrophysiology at level of whole heart as
well as of single muscle and nerve cells necessitates knowledge of electric fields.
Changes of the electric field permit the propagation of excitation through the
heart, from excitable cell to excitable cell, and over a single cell. The electrical
excitation triggers mechanical contraction in muscle cells. Moreover electrical
excitation is a carrier of information over nerve cells.

The theoretical foundation of electromagnetism is established by Maxwell’s
equations in conjunction with material equations and continuity laws. The
Maxwell’s equations integrate electric and magnetic quantities. A derivation of
these equations under geometrically, physically and physiologically motivated
neglects leads to Poisson’s equation.

The modeling of electromagnetic properties of biological tissue plays an
import role in the application of Maxwell’s and Poisson’s equations. Com-
monly, material properties are nonlinear and anisotropic, reflecting molecular
and microscopic organization of cells and tissues. The representation of mate-
rial properties as tensors allows an efficient treatment, both from a theoretical
and numerical point of view. The coefficients of the tensors are dependent e.g.
on the tissue type and arrangement of cells.

A numerical handling of Poisson’s equation is the foundation for different
aspects of electrophysiological modeling of muscle and nerve cells. The mod-
eling includes not only propagation, initiation and manipulation of excitation,
but also the reconstruction of electric and magnetic field distributions result-
ing from occurring electrical sources. The geometrical representation of the
model is of importance referred to the numerical treatment of the model.

Two different strategies for a numerical treatment of electrical tasks are
commonly applied, i.e. finite differences and finite element methods. Both
methods are capable of handling nonlinear and anisotropic material proper-
ties. For both methods a sound mathematical framework exists to determine
the solution. The determination of the underlying equations is influenced by

F.B. Sachse: LNCS 2966, pp. 49–67, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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the representation of the model domain, which includes the distribution of
node variables and of electrical quantities as well as geometrical properties.

3.2 Physical Laws

3.2.1 Maxwell’s Equations

The Maxwell’s equations describe the connection between the electric field E,
the electric flux density D, the electric current density J , the magnetic field
H , the magnetic flux density B, and the electric free charge density ρ. In a
differential or local formulation Maxwell’s equations are given by [12]:

∇× E = −∂B

∂t
(3.1)

∇× H = J +
∂D

∂t
(3.2)

∇ · D = ρ (3.3)
∇ · B = 0 (3.4)

Material equations couple the electric field with the electric flux density
and electric current density, as well as the magnetic field with the magnetic
flux density, respectively. Thereto, the permeability in vacuum µ0, the per-
mittivity in vacuum ε0, and the electric conductivity σ are utilized [12]:

B = µ0(H + M)
D = ε0E + P

J = σE

with the magnetization M and electric polarization P . The values of the
physical constants µ0 and ε0 are specified in table A.2.

Often, the electric polarization P and the magnetization M are linear
functions of the electric field E and the magnetic field H, respectively. In
non-ferromagnetic materials the connection between magnetic field H and
flux density B can be reduced to:

B = µH

with the permeability µ. The connection between electric field E and flux
density D can be simplified in linear, isotropic materials:

D = εE

with the permittivity ε. Thereto, the permeability µ and permittivity ε are
expressed by the product of a material specific factor µr and εr, respectively,
with the permeability in vacuum µ0 and the permittivity in vacuum ε0, re-
spectively:
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µ = µ0 µr

ε = ε0 εr

In a more general manner, the permeability, permittivity, and electric con-
ductivity are described by tensors.

Neglect of Time Dependencies. In static electric and magnetic fields the phys-
ical quantities are constant over time. Maxwell’s equations (equations 3.1-3.4)
can be simplified if time dependencies are negligible:

∇× E = 0
∇× H = J (3.5)
∇ · D = ρ

∇ · B = 0

Therewith, a scalar electric potential function φ can be introduced with the
electric field E as the negative gradient [13]:

E = −∇φ (3.6)

A similar interdependence can be constructed for the magnetic field H under
the assumption that the electric current density J vanishes. Here, the ma-
gnetic field H can be described by the negative gradient of a scalar magnetic
potential function φm [13]:

H = −∇φm (3.7)

3.2.2 Poisson’s Equation for Stationary Current Fields

The Poisson’s equation for stationary current fields describes phenomena re-
sulting solely from the flow of electric current in materials owning electric
conductivity. Further material properties are ignored. A detailed description
of the applicability of the equation in conjunction with biological materials is
given in [14].

The derivation starts with the Maxwell’s equations, whereby time de-
pendencies are neglected. The divergence of equation 3.5 delivers:

∇ · (∇× H) = ∇ · J
The left hand side reduces to zero, because the divergence of a curl operator
vanishes:

∇ · J = 0 (3.8)

In many cases and particularly in bioelectric tasks, the current density J is
decomposed in two parts: the current density resulting from local sources Js

and the ohmic current density Jo:

J = Js + Jo (3.9)
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The divergence of the current density Js is given by:

f = ∇ · Js (3.10)

The quantity f is scalar and named current source density. The ohmic current
density Jo consists of the product of the conductivity tensor σ and the electric
field E. Combining the equations 3.6, 3.8-3.10 yields Poisson’s equation for
stationary current fields:

∇ · (σ∇φ) = f (3.11)

Depending on the properties of the distribution of conductivity and current
source density, different simplifications of Poisson’s equation can be applied.
Assuming that the conductivity is homogeneously distributed and can be de-
scribed by a zero-th order tensor, i.e. scalar, yields:

σ∆φ = f

with the Laplace operator ∆ ≡ ∇2. Assuming absence of sources leads to the
Laplace equation for stationary current fields:

∇ · (σ∇φ) = 0

3.2.3 Electromagnetic Properties of Biological Tissues

Biological tissues show electromagnetic properties, which are dependent on
the species, tissue type and arrangement of tissue constituents as well as on
measurement conditions. A multitude of measurements of electric conductiv-
ity σ, permittivity ε, and permeability µ in macroscopic tissue probes and in
cell suspensions were performed since the exploration of electromagnetic phe-
nomena and the availability of suitable technical equipment. Collections of
measurement data and of experimental descriptions are frequently published
[15, 16, 17, 18, 19, 20, 21].

Electromagnetic properties of tissues are determined by its microscopic
anatomy and its molecular organization. On the one hand classes of tissues
show significant consistence of their principal molecular organization, on the
other hand tissues can vary widely concerning their microscopic anatomy
(Sect. 6.2). Biological tissues like muscle, fat and blood consist of cells sur-
rounded by extracellular fluids. Each cell is enclosed by a membrane, which
is made up of a phospholipid bilayer with pore forming proteins. These pores
connect the intracellular space with the extracellular space, just as they con-
nect in specific cases, e.g. myocardium, the intracellular space of adjoining
cells. The intracellular space includes organelles, which are encapsulated by a
phospholipid bilayer.

This section is focused on macroscopic conductivities. Microscopic anatom-
ical details are blurred and averaged conductivities are assigned to tissues.



3.2 Physical Laws 53

The electromagnetic properties of tissues, i.e. electric conductivity σ, per-
mittivity ε, and permeability µ, can be represented in a generalized approach
by symmetric tensors of second order T (Sect. 2.3):

T =




T11 T12 T13

T21 T22 T23

T31 T32 T33





whereby the coefficients of the tensor Tij are dependent on tissue type and
measurement conditions.

The general approach of representing electromagnetic properties of tissues
by the tensor T allows the representation of anisotropic properties, which are
resulting from the arrangement of tissue constituents, e.g. fiber orientation,
indicated by the averaged principal axis of cells, and lamination, indicated
by the striation of cell clusters. The arrangement is reflected by an appropri-
ate coordinate transformation of the tensor. The coordinate transformation
takes one Cartesian system into another, whereby the origins of the Cartesian
systems are equal. Commonly, the transformation consists of a sequence of
rotations. The tensor T in an arbitrary coordinate system spanned by the
vectors x, y, and z can be described by an orthogonal coordinate transfor-
mation of a tensor Tlocal in a local system spanned by the vectors a1, a2, and
a3:

Tij = Aik Ajl Tlocal,kl

with the constant, scalar coefficients Aij of the rotation matrix A.
Important simplifications of the tensor T are commonly performed in spe-

cific tasks. Usually, in bioelectric tasks an isotropy or transversal isotropy
of the material properties is assumed. Thus, specific tensors and coordinate
transformations of these are applied in the tasks.

Anisotropy. In the anisotropic case the tensor Taniso can be represented in a
local coordinate system built up by the orthonormal vectors a1, a2 and a3

by a diagonal matrix:

Taniso =




Ta1 0 0
0 Ta2 0
0 0 Ta3





with the electromagnetic properties Ta1, Ta2, and Ta3. Theses properties de-
scribe the material in direction of the vectors a1, a2 and a3, respectively.

Transversal Isotropy. In case of transversal isotropy two scalar values, Tfiber

and Ttrans, are sufficient to define the tensor Ttiso of material properties in a
local coordinate system:

Ttiso =




Tfiber 0 0

0 Ttrans 0
0 0 Ttrans




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φ

θ

y

z

x

Fig. 3.1. Rotation in local coordinate system. In case of transversal isotropy the
rotation of a tensor can be defined by two angles, φ and θ. The angles describe a
rotation around the z- and y-axis, respectively.

The first property Tfiber describes the material in fiber orientation. The second
property Ttrans describes the material perpendicular to the fiber orientation.
In the local system the a1-axis is aligned with fiber orientation. The a2- and
a3-axis are chosen to be orthogonal to the a1-axis.

In case of transversal isotropy a matrix A, describing the coordinate trans-
formation, can be defined as product of two rotation matrices:

A = RxzRxy

The two rotation matrices Rxy and Rxz are:

Rxy =




cos φ sin φ 0
−sin φ cos φ 0

0 0 1





Rxz =




cos θ 0 sin θ

0 1 0
−sin θ 0 cos θ





with the angles φ and θ defining a rotation around the z- and y-axis of
the global coordinate system, respectively (Fig. 3.1). An extension for fully
anisotropic cases follows straightforwardly by adding a further angle describ-
ing the orientation around the x-axis.
Isotropy. In the isotropic case the tensor Tiso can be represented by a diagonal
matrix:

Tiso =




c 0 0
0 c 0
0 0 c





whereby the diagonal coefficients Tii are filled with a single value c describing
the electromagnetic property. The tensor is independent of coordinate trans-
forms and its order can be reduced to zero.
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Electric Conductivity. The conductivity of biological tissues can be described
by a symmetric tensor σ of second order. It has the following form in a local
coordinate system with axes a1, a2 and a3:

σlocal =




σa1 0 0
0 σa2 0
0 0 σa3





with a scalar conductivity σa1, σa2, and σa3 in axes direction. In the transver-
sal isotropic case the diagonal element σa2 is equal to σa3. The vector a1

is commonly aligned with the fiber orientation. Thereto perpendicular are
the vectors a2 and a3. In the isotropic case all diagonal elements are equal:
σa1 = σa2 = σa3. Here, the tensor σ can be substituted by a scalar conduc-
tivity.

Presently only the cases of transversal isotropy and isotropy are reported
in macroscopic measurements of tissue conductivities. Transversal isotropy
is documented for some types of tissue, e.g. muscle and nervous tissue. The
conductivity is found to be significantly larger in fiber orientation. E.g. in
low frequency measurements anisotropy factors f = σfiber

σtrans
are reported for

skeletal muscles in the range from 2–10 [19], for extracellular conductivity
of myocardium in the range of 1.4–2.6, and for intracellular conductivity of
myocardium in the range of 5.6–12 [22, 23, 24].

Depending on the frequency content of electrical sources used in mea-
surements different spaces of composite tissue contribute to the conductivity
(Fig. 3.2). E.g. if sources are located extracellularly, low frequency sources
lead to current flow primarily in extracellular space. An increase of frequency
enhances the current flow through the cell membrane and the contribution
of intracellular space. Therefore, the macroscopic conductivity is enlarged. A
further increase results from the contribution of intracellular structures en-
capsulated by a membrane.
Permittivity. The permittivity of biological tissues can be described by a sym-
metric tensor ε of second order. It has the following form in a local coordinate
system:

εlocal =




εa1 0 0
0 εa2 0
0 0 εa3





with a scalar permittivity εa1, εa2, and εa3 in the different axis directions.
Presently, only the cases of transversal isotropy and isotropy are docu-

mented in macroscopic measurements of tissue permittivities. The transversal
isotropy is reported for tissues, which also show an anisotropic conductivity,
e.g. muscle and nervous tissue. The permittivity is significantly smaller in
fiber orientation, e.g. in low frequency measurements the anisotropy factor
f = εtrans

εfiber
ranges from 4–10 for skeletal muscles [19].

In biological materials the permittivity is found to be frequency dependent.
Typically, a decrease is reported for increasing frequency (Fig. 3.3).
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Fig. 3.2. Conductivity of exemplary biological tissues in dependency on frequency
(data from [21]). The conductivity σ of fat, skeletal and heart muscle is shown in
the range from 101 to 1011 Hz.

Fig. 3.3. Permittivity of exemplary biological tissues in dependency on frequency
(data from [21]). The permittivity ε of fat, skeletal and heart muscle is shown in the
range from 101 to 1011 Hz.
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Permeability. The permeability of biological tissue resembles the permeabil-
ity of its principal constituent water. Water shows only weak diamagnetic
properties. Commonly, the permeability in vacuum µ0 is used to describe the
permeability of biological tissues.

3.3 Numerical Solution of Poisson’s Equation

3.3.1 Finite Element Method

The application of the finite element method to solve Poisson’s equations for
electrical current fields starts with a subdivision of the spatial domain into
finite elements (Sect. 2.7.3). An interpolation of the solution function, the
electrical potential φ, is performed via shape-functions, which are selected de-
pendent on the element’s geometry and the order of interpolation. For each
element a system of linear equations is derived, whereby the unknowns are
the node variables, i.e. the values of the solution function at node points. The
derivation of the linear system commences commonly with the setting up of
an equivalent integral, which describes the power of the stationary electrical
current field. This power is defined as the energy transformed by the conduc-
tivity of the medium into heat per time. The stationary condition delivers
the system of linear equations. Finally, the element-wise linear equations are
assembled into the system equations, boundary conditions are incorporated
and the system is solved with iterative techniques (Sect. 2.4.3).

Interpolation via Shape-Functions. The solution function φ is interpolated in
the domain Ω(m) of the m-th element:

φ = H(m) T φ(m)

with the N -dimensional vector of node variables φ(m):

φ(m) =





φ
(m)
0
...

φ
(m)
N





and the N -dimensional vector of shape-functions H(m):

H(m) =





H
(m)
0
...

H
(m)
N





Shape-functions result from the polynomial interpolation of the solution func-
tion φ in the domain Ω(m) of an element (Sect. 2.7.3).
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The gradient of the potential ∇φ can be defined with the upper shape-
functions:

∇φ = ∇
(
H(m) T φ(m)

)
=
(
∇H(m) T

)
φ(m)

with the gradient of the shape-function’s vector ∇H(m):

∇H(m) =





∇H
(m)
0
...

∇H
(m)
N



 =









∂H
(m)
0

∂x
∂H

(m)
0

∂y
∂H

(m)
0

∂z





...



∂H
(m)
N

∂x
∂H

(m)
N

∂y
∂H

(m)
N

∂z









The shape-functions H(m) can also serve as the interpolation of the current
source density f :

f = H(m) T f (m)

starting from the vector of current source densities at node points f (m). Sim-
ilarly, an interpolation of the conductivity σ in the element’s domain can be
performed:

σ = H(m) T σ(m)

with the vector of conductivity tensors σ(m) at node points.

Exemplary Shape-Functions in Hexahedron. Trilinear shape-functions for unit
hexahedrons Hi are given by:

H0(x, y, z) = (1 − x)(1 − y)(1 − z)
H1(x, y, z) = x(1 − y)(1 − z)
H2(x, y, z) = (1 − x)y(1 − z)
H3(x, y, z) = xy(1 − z)
H4(x, y, z) = (1 − x)(1 − y)z
H5(x, y, z) = x(1 − y)z
H6(x, y, z) = (1 − x)yz

H7(x, y, z) = xyz

The gradient of the shape-function’s vector ∇H(m) is defined by:
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∇H(m) =





∇H
(m)
0

∇H
(m)
1

∇H
(m)
2

∇H
(m)
3

∇H
(m)
4

∇H
(m)
5

∇H
(m)
6

∇H
(m)
7





=









∂H
(m)
0

∂x
∂H

(m)
0

∂y

∂H
(m)
0

∂z









∂H
(m)
1

∂x
∂H

(m)
1

∂y
∂H

(m)
1

∂z









∂H
(m)
2

∂x
∂H

(m)
2

∂y

∂H
(m)
2

∂z









∂H
(m)
3

∂x
∂H

(m)
3

∂y

∂H
(m)
3

∂z









∂H
(m)
4

∂x
∂H

(m)
4

∂y

∂H
(m)
4

∂z









∂H
(m)
5

∂x
∂H

(m)
5

∂y

∂H
(m)
5

∂z









∂H
(m)
6

∂x
∂H

(m)
6

∂y

∂H
(m)
6

∂z









∂H
(m)
7

∂x
∂H

(m)
7

∂y

∂H
(m)
7

∂z









=








−(1 − y)(1 − z)
−(1 − x)(1 − z)
−(1 − x)(1 − y)








(1 − y)(1 − z)
−x(1 − z)
−x(1 − y)








−y(1 − z)

(1 − x)(1 − z)
−(1 − x)y








y(1 − z)
x(1 − z)
−xy








−(1 − y)z
−(1 − x)z

(1 − x)(1 − y)








(1 − y)z
−xz

x(1 − y)








−yz

(1 − x)z
(1 − x)y








yz
xz
xy









Equivalent Integral. The equivalent integral Π describes the electrical power
in the domain Ω:

Π =
∫

Ω

1
2
(∇φ)T σ(∇φ) + fφ dΩ (3.12)

with the conductivity tensor σ, the electrical source density current f , and
the electrical potential φ. The integrand is subdivided in two parts: one repre-
senting the conductivity (”ohmic”) part of the electrical power and a second
representing a part resulting from impressed currents.

Commonly, only the equivalent integral Π(m) of the domain of a finite ele-
ment is of interest. This integral Π(m) is transformed into the unit domain Ω0

using the rules of integral transformations to simplify the evaluation (Fig. 3.4).
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(a) (b)

Fig. 3.4. Exemplary coordinate transformation of hexahedron from (a) original
domain Ω(m) to (b) unit domain Ω0. The coordinate transformation is characterized
by its Jacobian matrix J and leads to a transformation of the integral defined over
the domain. Node variables are assigned at the node points indicated by black closed
circles.

The transformation is determined by the underlying coordinate transforma-
tion, which is generally a spatially variant function and characterized by its
first-order partial derivatives combined in the Jacobian matrix J . With the
Jacobian of the coordinate transformation J the integral Π(m) is determined
by:

Π(m) =
∫

Ω0

(
1
2
(∇0 φ)T σ(∇0 φ) + fφ

)
J dΩ0

whereby the transformed gradient operator ∇0 is given

∇0 = J−1∇
Linear System of Equations. The equivalent integral Π(m) is transformed to
a quadratic form:

Π(m) =
1
2
φ(m) T S(m)φ(m) + φ(m) T b(m) (3.13)

with the vector of electrical potentials φ(m), the stiffness matrix S(m) and the
vector b(m). The stationary condition is applied to the integral [25]:

∂ Π

∂ φ
(m)
i

= 0

and used to create the linear system of equations:

S(m)φ(m) + b(m) = 0

In the following the derivation of integral formulations for stiffness matri-
ces and vectors occurring in equation 3.13 is presented for different spatial
arrangements of the potentials, conductivities and current source densities.
The evaluation of the formulations is performed by analytical or numerical
techniques (Sect. 2.5), e.g. Gauss Quadrature, depending on the complexity
of the integrals.
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Fig. 3.5. Exemplary finite element with interpolation of potentials. Node vari-
ables φi describing electrical potentials are assigned at the node points indicated by
black closed circles. (a) A conductivity σ is assigned to the whole element. (b) The
conductivity is interpolated starting from conductivities at node points σi.

Stiffness Matrix for Interpolation of Potential and Constant Conductivity.
The derivation of a stiffness matrix S(m) in the domain Ωm for the integral
Π(m) starts with the substitution of the function φ in the integrand of equation
3.12 with the product of the shape-functions H(m) and the node variables
φ(m) (Fig. 3.5 a):

Π(m) =
∫

Ω0

1
2
(∇0 H(m) T φ(m))T σ(∇0 H(m) T φ(m)) J dΩ0

Here, the conductivity σ is assumed to be constant in the domain Ωm of the
m-th element:

σ(x, y, z) = σconst

The integral is transformed in such a way that the node variables are taken
out:

Π(m) =
∫

Ω0

1
2
(φ(m) T∇0 H(m))σ(∇0 H(m) T φ(m)) J dΩ0

=
1
2

φ(m) T

(∫

Ω0

(∇0 H(m))σ(∇0 H(m) T ) J dΩ0

)
φ(m)

The stiffness matrix S(m) is defined by comparison with equation 3.13:

S(m) =
∫

Ω0

(∇0 H(m))σ(∇0 H(m) T ) J dΩ0
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Fig. 3.6. Exemplary finite element with interpolation of current density sources.
Node variables φi describing electrical potentials are assigned at the node points
indicated by black closed circles. (a) A current density source f is assigned to the
whole element. (b) The current density source is interpolated starting from the
conductivities at the node points fi.

Stiffness Matrix for Interpolation of Potential and Conductivity. In a similar
manner a stiffness matrix S(m) can be derived for the integral Π(m), whereby
the conductivity σ is a spatial function (Fig. 3.5 b). The integral Π(m) is
transformed after the substitution:

Π(m) =
∫

Ω0

1
2
(∇0 H(m) T φ(m))T H(m) T σ(m)(∇0 H(m) T φ(m))J dΩ0

=
1
2

φ(m) T

(∫

Ω0

(∇0 H(m))H(m) T σ(m)(∇0 H(m) T )J dΩ0

)
φ(m)

The stiffness matrix S(m) results from comparison with equation 3.13:

S(m) =
∫

Ω0

(∇0 H(m))H(m) T σ(m)(∇0 H(m) T )J dΩ0

Vector for Constant Current Source Density. The inclusion of a current den-
sity source in the equations system of a finite element necessitates the trans-
formation of the integral Π(m). The factor φ is replaced with the product of
shape-functions H(m) and node variables φ(m):

Π(m) =
∫

Ω0

f H(m) T φ(m)J dΩ0

= f

(∫

Ω0

H(m) TJ dΩ0

)
φ(m)

Here, the current density source f is assumed to be constant in the domain
Ωm of the m-th element (Fig. 3.6 a):
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f(x, y, z) = fconst

The vector b(m) is defined taking equation 3.13 into account:

b(m) = f

∫

Ω0

H(m) TJ dΩ0

Vector for Trilinear Interpolation of Current Source Density. In a similar
manner a vector b(m) can be derived for the integral Π(m), whereby the current
source density f is a spatial function (Fig. 3.6 b):

Π(m) =
∫

Ω0

H(m) T f (m) H(m) T φ(m)J dΩ0

= f (m) T

(∫

Ω0

H(m) H(m) TJ dΩ0

)
φ(m)

The vector b(m) is given by:

b(m) = f (m) T

∫

Ω0

H(m) H(m) TJ dΩ0

3.3.2 Finite Differences Method

The application of the finite differences method to solve Poisson’s equation for
electrical current fields starts with a discretization of the spatial domain by
node points (Sect. 2.7.4). The application necessitates the symbolic evaluation
of Poisson’s equation. Poisson’s equation is a partial differential equation,
which combines the symmetric conductivity tensor of second order σ = [σij ],
the electrical potential φ and the current source density f :

∇ · (σ∇φ) = f

In general all quantities are a function of space and defined everywhere in the
domain Ω. The terms resulting from the symbolic evaluation are discretized
using differences of the upper electrical quantities at specific locations to ap-
proximate the derivatives.

The node point-wise application of the finite differences method leads to a
system of linear equations, where for each point a corresponding linear equa-
tion is generated [5, 26]. The further steps of the method are the assembling of
the point-wise linear equations into the system equations, the incorporation
of boundary conditions and the solving of the system commonly with iterative
techniques (Sect. 2.4.3).

Symbolic Evaluation of Poisson’s Equation. In general, the symbolic evalua-
tion results in a sum of terms with first and second order spatial derivatives
of the electrical potential as well as first order spatial derivatives of the com-
ponents of the conductivity tensor:
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σ11
∂2φ

∂x2
+ σ22

∂2φ

∂y2
+ σ33

∂2φ

∂z2

+ 2σ12
∂2φ

∂x∂y
+ 2σ13

∂2φ

∂x∂z
+ 2σ23

∂2φ

∂y∂z

+
∂σ11

∂x

∂φ

∂x
+

∂σ12

∂y

∂φ

∂x
+

∂σ13

∂z

∂φ

∂x

+
∂σ12

∂x

∂φ

∂y
+

∂σ22

∂y

∂φ

∂y
+

∂σ23

∂z

∂φ

∂y

+
∂σ13

∂x

∂φ

∂z
+

∂σ23

∂y

∂φ

∂z
+

∂σ33

∂z

∂φ

∂z

= f (3.14)

Assumptions about the distribution and character of the conductivity tensor
allow a simplification of the general formula. In the case of an inhomoge-
neous distribution of isotropic conductivity, the conductivity tensor σ can be
represented by a diagonal matrix with σii ≡ σinh. Therefore, terms vanish
with off-diagonal components of the conductivity tensor σ. From the general
formula (equation 3.14) remains:

σinh

(
∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2

)
+

∂σinh

∂x

∂φ

∂x
+

∂σinh

∂y

∂φ

∂y
+

∂σinh

∂z

∂φ

∂z
= f

In the case of a homogeneous distribution of isotropic conductivity the con-
ductivity tensor σ is constant in the domain Ω and can be represented by
a diagonal matrix with σii ≡ σhom. Therefore, terms vanish with first order
spatial derivatives and off-diagonal components of the conductivity tensor σ.
The general formula (equation 3.14) reduces to:

σhom

(
∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2

)
= f

The discretization of the differential terms in the domain Ω is given by
the model representation. Commonly, the domain Ω is decomposed in rectan-
gular lattice consisting of cubic voxels. Each voxel is homogeneous concern-
ing its conductivity. The voxel’s centers serve as node points with associated
node variables describing potentials and conductivity tensors (Fig. 3.7 a). The
derivatives can be approximated by differences using the rules described in
Sect. 2.7.4.

Exemplary Approximations of Derivatives. In a three-dimensional, rectangu-
lar, equidistant mesh a numbering of node points is defined (Fig. 3.8). Using
this numbering the first order derivatives of the potential φ at the node point
xi,j,k are approximated by:

∂φ

∂x
(xi,j,k) ≈ φi+1,j,k − φi−1,j,k

2h
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Fig. 3.7. Exemplary finite differences meshes for discretization of Poisson’s equa-
tion. The two-dimensional spatial domain Ω is subdivided in a rectangular lattice
with quad-shaped cells of length h. A conductivity σi,j is assigned to each cell. The
lattice is isotropic and equidistant. Node variables describing electrical potentials in-
dicated by black closed circles are assigned. (a) The node variables φi,j are located
at centers of cells. (b) The node variable φi,j are placed at the vertices of cells.

∂φ

∂y
(xi,j,k) ≈ φi,j+1,k − φi,j−1,k

2h

∂φ

∂z
(xi,j,k) ≈ φi,j,k+1 − φi,j,k−1

2h

with the distance between node points h in x- as well as in y-direction. The
second order derivatives of the potential φ are given by:

∂2φ

∂x2
(xi,j,k) ≈ φi+1,j,k − 2φi,j,k + φi−1,j,k

h2

∂2φ

∂y2
(xi,j,k) ≈ φi,j+1,k − 2φi,j,k + φi,j−1,k

h2

∂2φ

∂z2
(xi,j,k) ≈ φi,j,k+1 − 2φi,j,k + φi,j,k−1

h2

∂2φ

∂x∂y
(xi,j,k) ≈ φi+1,j+1,k − φi−1,j+1,k − φi+1,j−1,k + φi−1,j−1,k

4h2

∂2φ

∂x∂z
(xi,j,k) ≈ φi+1,j,k+1 − φi−1,j,k+1 − φi+1,j,k−1 + φi−1,j,k−1

4h2

∂2φ

∂y∂z
(xi,j,k) ≈ φi,j+1,k+1 − φi,j+1,k−1 − φi,j−1,k+1 + φi,j−1,k−1

4h2

In the general formulation of Poisson’s equation (equation 3.14) first order
derivatives of the conductivity tensor σ occur. The necessary components at
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Fig. 3.8. Exemplary numbering of node points in three-dimensional, rectangular,
equidistant mesh. A sub-volume of a three-dimensional spatial domain Ω is shown,
which is subdivided in a rectangular lattice with cubic cells. The center of the
sub-volume is node point xi,j,k. The mesh is applied in conjunction with the finite
differences method for discretization of Poisson’s equation. Node points are indicated
by black closed circles.

the node point xi,j,k can be taken from the following approximations:

∂σ

∂x
(xi,j,k) ≈ σi+1,j,k − σi−1,j,k

2h
∂σ

∂y
(xi,j,k) ≈ σi,j+1,k − σi,j−1,k

2h

∂σ

∂z
(xi,j,k) ≈ σi,j,k+1 − σi,j,k−1

2h

An alternative to the upper technique with a voxel-centered placement of
node variables is the placement at the vertices of voxels (Fig. 3.7 b). In this
case the conductivity at a node point can be calculated by averaging of adjoint
conductivities. An averaging in a three-dimensional, rectangular, equidistant
mesh is given by:

σ(xi,j,k) = 1
8 (σi,j,k + σi+1,j,k + σi,j+1,k + σi+1,j+1,k

+σi,j,k+1 + σi+1,j,k+1 + σi,j+1,k+1 + σi+1,j+1,k+1)

Applying this operation, the approximation of derivatives of conductivities
can be performed straightforward. A disadvantage of this strategy is the large
periphery around a node point xi,j,k, which has to be taken into account for
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the derivative approximation. A more local strategy consists of the following
approximations:

∂σ

∂x
(xi,j,k) ≈ σi+1,j,k − σi,j,k

h
∂σ

∂y
(xi,j,k) ≈ σi,j+1,k − σi,j,k

h

∂σ

∂z
(xi,j,k) ≈ σi,j,k+1 − σi,j,k

h

A rearrangement of Poisson’s equation is performed after the substitution
of derivatives with the approximations by differences. The rearrangement of
this node point-wise created equation leads to an equation, where main parts
are combined as vector product:

aT
i,j,kφi,j,k = f(xi,j,k)

with the vector of weightings of node variables ai,j,k for the node point xi,j,k.
The components of the vector ai,j,k are a function of the conductivity distri-
bution and the mesh properties.



4

Theory of Continuum Mechanics

4.1 Introduction

Continuum mechanics is a field of physics, which deals with deformation and
flow in a continuous medium under the influence of forces. The continuous
medium occupies a spatial region with boundaries and an assigned volume.
Boundaries and volume may be a function of time. Whereas the term de-
formation describes a change of the medium’s shape starting from an initial
configuration to a subsequent configuration, the term flow describes the con-
tinuing state of the medium’s motion [27].

In the context of a mathematical, mechanical modeling of biological ma-
terials, particularly of tissues found in the heart, a subregion of the theory of
continuum mechanics is of specific importance, i.e. the elasticity theory. This
theory allows a quantitative description of finite deformations of inhomoge-
neous, anisotropic cardiac tissues under the influence of external forces, e.g.
at boundaries to the atrial and ventricular cavities caused by blood pressure,
and of internal forces generated by contractile elements inside of myocytes.

In the following sections the theory of continuum mechanics is introduced,
focusing on its underlying definitions and physical laws as well as on numerical
approaches to describe deformation of materials. The introduction uses ten-
sor algebra (Sect. 2.3) and Einstein summation convention (Sect. 2.2), which
allows a habile description of equations and physical quantities.

The physical quantities strain and stress are illuminated in different config-
urations. Different formulations of stress equilibrium are deduced assuming a
balance of forces and moments. Particularly, the principle of virtual displace-
ments in Lagrangian formulation is introduced, which provides an efficient
scheme for a numerical solution. Medium dependent relationships between
strain and stress, the so-called constitutive relationships, are pointed out by
using elasticity theory. Linear and non-linear relationships are introduced, e.g.
Hooke’s law, hyper-, hypo- and viscoelasticity.

The finite element method is presented as an approach for numerical simu-
lation of deformation. The presentation focuses on the discretization of equa-

F.B. Sachse: LNCS 2966, pp. 69–90, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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Fig. 4.1. Deformation in finite continuous medium. The point P with coordinates
0x in the Lagrangian configuration R0 moves to the coordinates tx in the Eulerian
configuration Rt. The elementary segment d 0x at point P is transformed to the
segment d tx.

tions derived from the total Lagrangian formulation and hyperelastic descrip-
tion of materials. Efficient types of finite elements are described and recipes
are given for the handling of systems of equations resulting from the applica-
tion of the finite element method.

4.2 Definitions and Physical Laws

4.2.1 Deformation Gradient

The finite continuous medium Ω is deformed starting from the reference con-
figuration R0 at time t = 0 [28]. The following configurations Rt are defined
at time t. The reference configuration is named Lagrangian configuration, the
following configurations are so-called Eulerian configurations (Fig. 4.1).

The coordinates of a point P in Ω are described in the Lagrangian con-
figuration R0 by the vector 0x. At time t the motion of point P is defined
by:

tx = tx( 0x, t)

Alternatively, the coordinates of the point P in the Eulerian configurations
are described by the vector tx. At time t the corresponding Lagrangian coor-
dinates of the point P are defined by:



4.2 Definitions and Physical Laws 71

0x = 0x( tx, t)

The displacement vector tu joining the coordinates 0x and tx of the point P
is defined as:

tu = tx − 0x

The deformation gradient t
0X can be defined by differentiating tx( 0x, t)

with respect to the reference configuration coordinates 0x [29] in a cartesian
system:

t
0X =

[
∂ txi

∂ 0xj

]
=





∂ tx1

∂ 0x1

∂ tx1

∂ 0x2

∂ tx1

∂ 0x3
∂ tx2

∂ 0x1

∂ tx2

∂ 0x2

∂ tx2

∂ 0x3
∂ tx3

∂ 0x1

∂ tx3

∂ 0x2

∂ tx3

∂ 0x3





The deformation gradient t
0X is a tensor of second order. The tensor converts

an elementary segment d 0x of the reference configuration R0 into a segment
d tx in the configuration Rt:

d tx = t
0Xd 0x

Alternatively, the deformation gradient can be described by the displace-
ment vector tu:

t
0X =

[
∂ tui

∂ 0xj

+ δij

]
=





∂ tu1

∂ 0x1
+ 1 ∂ tu1

∂ 0x2

∂ tu1

∂ 0x3
∂ tu2

∂ 0x1

∂ tu2

∂ 0x2
+ 1 ∂ tu2

∂ 0x3
∂ tu3

∂ 0x1

∂ tu3

∂ 0x2

∂ tu3

∂ 0x3
+ 1





with the Kronecker delta δ.
The reverse deformation gradient 0

t X can be defined by differentiating
0x(tx, t) with respect to the Eulerian configuration coordinates tx in a carte-
sian system:

0
t X =

[
∂ 0xi

∂ txj

]
=





∂ 0x1

∂ tx1

∂ 0x1

∂ tx2

∂ 0x1

∂ tx3
∂ 0x2

∂ tx1

∂ 0x2

∂ tx2

∂ 0x2

∂ tx3
∂ 0x3

∂ tx1

∂ 0x3

∂ tx2

∂ 0x3

∂ tx3





The reverse deformation gradient 0
t X is a tensor of second order. The tensor

converts an elementary segment d tx of the Eulerian configuration Rt into a
segment d 0x in the reference configuration R0:

d 0x = 0
t Xd tx
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Volume and Surface Changes. The elementary volume d 0V in the Lagrangian
configuration R0 is transformed to the elementary volume d tV in the Eulerian
configuration Rt by:

d tV = tJ d 0V (4.1)

with the Jacobian tJ as the determinant of the deformation gradient t
0X.

Therefore, a volume change resulting from a deformation can be quantified
by the Jacobian tJ . The volume change can also be determined with the mass
conservation principle:

tJ =
0ρ
tρ

with the mass density 0ρ in the Lagrangian configuration R0 and the mass den-
sity tρ in the Eulerian configuration Rt. A Jacobian tJ equal to one indicates
an isovolumetric deformation, which can result e.g. by the incompressibility
of a medium. Values of the Jacobian tJ smaller than or equal to zero are not
common.

The elementary surface d 0S in the reference configuration R0 is trans-
formed to the elementary surface d tS in the current configuration Rt by:

tn d tS = tJ 0
t X

T 0n d 0S

with the surface normals tn and 0n.

Polar Decomposition. A deformation gradient X can be decomposed in a
rotation tensor R and a right stretch tensor U :

X = R U

The right stretch tensor U can be represented by a symmetric, positive
semidefinite matrix, the rotation tensor R by an orthonormal matrix.

The decomposition of the deformation gradient X can be achieved with
the following transformations. The square of the tensor X delivers the square
of the right stretch tensor U :

XT X = (R U)T (R U) = UT U

A diagonalization of UT U = V DV T delivers the orthonormal matrix V
and the positive semidefinite, diagonal matrix D. With the transformation

UT U = V DV T = V D
1
2 D

1
2 V T = (V D

1
2 V T )(V D

1
2 V T )

the stretch tensor U can be constructed taking its symmetry into account:

U = V D
1
2 V T

The rotation tensor R is determined by:

R = X U−1
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4.2.2 Strain Tensors

Cauchy-Green Right Dilation Tensor. The Cauchy-Green right dilation tensor
t
0C describes the changes of squared lengths in the Eulerian configuration.
Here, the stretch tλ of an elementary segment d 0x can be determined by:

tλ =
√

d tx2

=
√

( t
0Xd 0x)2

=
√

d 0xT ( t
0X

T t
0X)d 0x

=
√

d 0xT t
0C d 0x

with the symmetric, second order Cauchy-Green right dilation tensor t
0C de-

fined as:
t
0C = t

0X
T t

0X

Symmetrically, the Cauchy-Green left dilation or Finger strain tensor is
constructed by:

t
0B = t

0X
t
0X

T

Cauchy Strain Tensor. The Cauchy strain tensor 0
t C describes the changes of

squared lengths in the Lagrangian configuration:

d 0x2 = ( 0
t Xd tx)2 = d txT 0

t C d tx

The Cauchy strain tensor 0
t C is of second order with:
0
t C = 0

t X
T 0

t X = t
0B

−1

Lagrangian Strain Tensor. The Green, Green-Lagrange or Lagrangian strain
tensor can be introduced by the difference of the squared lengths of elementary
segments in the Eulerian and Lagrangian configuration:

d tx2 − d 0x2 = d 0xT ( t
0C − I) d 0x

= d 0xT 2 t
0E d 0x

with the symmetric, second order Lagrangian strain tensor t
0E defined as:

t
0E =

1
2
(

t
0C − I

)

Euler-Almansi Strain Tensor. Similarly, the Almansi, Euler-Almansi or Eu-
lerian strain tensor can be introduced by the difference of the squared lengths
of elementary segments in the Lagrangian and Eulerian configuration:

d tx2 − d 0x2 = d txT (I − 0
t C) d tx

= d txT 2 0
t e d tx

with the symmetric, second order Eulerian tensor 0
t e defined as:

0
t e =

1
2
(
I − 0

t C
)
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Linear Strain Tensor. The definition of the linear strain tensor t
0ε assumes

small displacements and displacement gradients:

t
0ε =

[
1
2

(
∂ tui

∂ 0xj

+
∂ tuj

∂ 0xi

)]
=
[
1
2

(
∂ tui

∂ txj

+
∂ tuj

∂ txi

)]

Here, the product terms of the Lagrangian and Eulerian strain tensors con-
cerning the displacement gradients are neglected. The linear strain tensor t

0ε
is used in the classical linear elasticity theory [27].

4.2.3 Stress Tensors

Cauchy Stress Tensor. The Cauchy stress tensor tτ is defined at every point
in the continuous medium Ω and describes the forces per unit surface in
the Eulerian configuration Rt. The stress tensor allows the assignment of a
stress vector tt<n> for an arbitrary oriented surface element with unit normal
vector n:

tt<n> = tτ n (4.2)

If stress vectors of three mutually perpendicular surfaces are known, the tensor
tτ is uniquely defined (Fig. 4.2). Commonly, the stress vectors, which are also
known as traction vectors and surface tension vectors, are different depending
on the orientation of the corresponding surface elements, e.g.:

tt<n> = − tt<−n>

The Cauchy stress tensor tτ is a second order tensor [3]:

tτ =




tτ11

tτ12
tτ13

tτ21
tτ22

tτ23
tτ31

tτ32
tτ33





The diagonal elements of tτ are called normal stresses. The off-diagonal ele-
ments are called shear stresses.

The stress tensor is symmetric:

tτ = tτ T

First Piola-Kirchhoff Stress Tensor. The first Piola-Kirchhoff stress tensor
or Lagrange stress tensor t

0T is a non-symmetric second order tensor, which
refers stresses to the Lagrangian configuration. The stress tensor t

0T is derived
from the Cauchy stress tensor tτ :

t
0T = tJ 0

t X
tτ

with the Jacobian tJ and the reverse deformation gradient 0
t X.

For the deduction of the tensor the mass conservation principle is assumed.
The tensor is used e.g. in measurements of mechanical parameters of a speci-
men, whereby stresses are referred to the specimen’s initial cross section [28].
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Fig. 4.2. Stresses on faces of cube. The stress vectors tt<e1> , tt<e2> , and tt<e3>

are applied to three faces of an infinitesimal cube with the unit normal vectors
e1, e2, and e3. The corresponding components of the Cauchy stress tensor tτ are
indicated on the faces.

Second Piola-Kirchhoff Stress Tensor. The second Piola-Kirchhoff stress ten-
sor t

0S is a symmetric tensor of second order, which refers stresses to the
Lagrangian configuration. The stress tensor t

0S is defined by extension of the
first Piola-Kirchhoff stress tensor t

0T :

t
0S = t

0T
0
t X

T = tJ 0
t X

tτ 0
t X

T

with the Jacobian tJ , the reverse deformation gradient 0
t X and the Cauchy

stress tensor tτ .

4.2.4 Stress Equilibrium

Equations of Motion. The balance of forces in a moving continuum in the
configuration Rt can be described by [27, 28] (Fig. 4.3):

∫

tV

ρ ta d tV =
∫

tV

tfB d tV +
∫

tS

tt<n> d tS

with an arbitrary volume tV enclosed by the surface tS, the mass density ρ,
the acceleration ta, the volume force density tfB, and the surface stress vector
tt<n>. A substitution as described in equation 4.2, i.e. tt<n> = tτ tn with
the unit normal tn of surface tS, the symmetry of the Cauchy stress tensor
tτ , and the application of the divergence theorem of Gauss leads to:

∫

tV

ρ ta d tV =
∫

tV

tfB d tV +
∫

tV

div tτ d tV
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Fig. 4.3. Balance of forces. The equations of motion are determined assuming the
balance of forces in a moving continuum in the configuration Rt. Therefore, the
surface stress vector tt<n> at the differential surface element d tS with normal tn
as well as the volume force density tfB , and the acceleration ta at the differential
volume element d tV are taken into account.

The volume tV was assumed to be arbitrary and therefore, the integrands
vanish. The resulting system of equations is known as the equations of motion:

ρ ta = tfB + div tτ

Principle of Virtual Displacements. Whereas the assumption for the de-
duction of the equations of motion is the balance of force, the principle of
virtual displacements states that the equilibrium of a body is achieved if a
small virtual displacement leads to an equality of the total internal virtual
work and the total external virtual work [29]. The internal work results from
strains and stresses in the medium. The external work is given by forces and
displacements at the surface and inside of the medium. The principle of virtual
displacements is also known as the principle of virtual work.

In the Eulerian configuration at time t the equilibrium of a body can be
expressed using the principle of virtual displacements:

∫

tV

tτij δ teij d tV = tR (4.3)

with the volume tV , the components of the Cauchy stress tensor tτij , the
variation of the strain tensor δteij , and the external virtual work tR. The
variation of the strain tensor is defined as

δ teij =
1
2

(
∂δui

∂txj

+
∂δuj

∂txi

)
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with the components of the virtual displacement vector δui. The external
virtual work R is subdivided in applied force densities tfB

i and surface tensions
tfS

i :
tR =

∫

tV

tfB
i δ ui d tV +

∫

tSf

tfS
i δ uS

i d tSf

with the surface tSf and the components of the virtual displacement vector
at the surface δuS

i .

Total Lagrangian Incremental Formulation. The total Lagrangian in-
cremental formulation uses the principle of virtual displacements in conjunc-
tion with the second Piola-Kirchhoff stress tensor t+∆t

0 S and the Green-
Lagrange strain tensor t+∆t

0 E. Equivalent to equation 4.3, the equilibrium
at time t + ∆t can be defined by [29]:

∫

0V

t+∆t
0 Sij δ t+∆t

0 Eij d 0V = t+∆tR

with the external virtual work t+∆tR. The integration is performed over the
volume 0V at time t = 0, to which all quantities are referred. The external vir-
tual work t+∆tR is decomposed in applied force densities t+∆t

0 fB
i and surface

tensions t+∆t
0 fS

i :

t+∆tR =
∫

0V

t+∆t
0 fB

i δ ui d 0V +
∫

0Sf

t+∆t
0 fS

i δ uS
i d 0Sf

with the surface 0Sf .
Each coefficient of the stress tensor t+∆t

0 S is decomposed in a coefficient
of the stress tensor t

0S and of the incremental stress tensor 0S:

t+∆t
0 Sij = t

0Sij + 0Sij

Similarly, each coefficient of the strain tensor t+∆t
0 E is decomposed in a

coefficient of the strain tensor t
0E and of the incremental strain tensor 0E:

t+∆t
0 Eij = t

0Eij + 0Eij (4.4)

Furthermore, each coefficient of the incremental strain tensor 0E is de-
composed in a linear component 0eij and a nonlinear component 0ηij :

0Eij = 0eij + 0ηij (4.5)

These components are defined corresponding to the Green-Lagrange strain
tensor:

0eij =
1
2
( 0ui,j + 0uj,i + t

0uk,i 0uk,j + 0uk,i
t
0uk,j)

0ηij =
1
2
( 0uk,i 0uk,j)
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whereby the subindex of the coefficients of the incremental displacement vec-
tor 0u and displacement vector t

0u following the comma denotes the differen-
tiation with respect to the reference configuration coordinates 0x.

Using the decompositions a nonlinear equation of motion with incremental
decompositions is derived:
∫

0V
0Sij δ 0Eij d 0V +

∫

0V

t
0Sij δ 0ηij d 0V = t+∆tR −

∫

0V

t
0Sij δ 0eij d 0V

whereby the right hand side of the equation includes only components with
known values at time t. The unknown parameters are found on the left hand
side of the equation. The linearized equation of motion is obtained by using
the approximations 0Cijkl 0ers = 0Sij and δ 0eij = δ 0Eij :
∫

0V
0Cijkl 0ers δ 0eij d 0V +

∫

0V

t
0Sij δ 0ηij d 0V = t+∆tR−

∫

0V

t
0Sij δ 0eij d 0V

whereby the incremental stress-strain tensor 0C is dependent on the stress-
strain relationship of the material:

0Cijkl =
∂ t

0Sij

∂ t
0εrs

4.2.5 Constitutive Relationships

Elasticity and Viscoelasticity. The theory of elasticity assumes that the
relationship between stress and strain in a material is local and history inde-
pendent [28]. Depending on the relationship a distinction between

• linear elastic
• nonlinear elastic

materials is made. Import representatives of nonlinear elastic materials are:

• hyperelastic
• hypoelastic

If strains are small nearly all materials can be sufficiently described with
linear and nonlinear elasticity. Large deformations in rubber-like and concrete
materials are commonly analyzed assuming hyper- and hypoelasticity.

An extension of the theory of elasticity results from the observation that
materials can also show history dependent behavior [30]. Materials exhibiting
this behavior are said to be viscoelastic.
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d

l l+   l∆

d−   d  ∆

Fig. 4.4. Hooke’s law. A bar with initial length l is strained to the length l + ∆l
resulting from applied stresses. The initial bar’s diameter d changes to the diameter
d − ∆d. The relationship between stress and strain is described by Hooke’s law.

Linear Elasticity

Hooke’s Law and Material Constants. According to Hooke’s law the linear
relationship between a strain ε and a stress τ in a bar is defined by [31]:

τ =
1
E

ε

with the elasticity modulus or Young’s modulus E. The strain ε is a one-
dimensional equivalent to the second order linear tensor t

0ε and describes
the ratio between the change of the bar’s length ∆l and the initial length l
(Fig. 4.4):

ε =
∆l

l

The stress τ is a one-dimensional equivalent to the Cauchy stress tensor tτ
and describes the force F per surface A:

τ =
F

A

The change of the bar’s diameter ∆d resulting from the strain is quantified
with Poisson’s ratio ν by:

ν =
−∆d

d

l

∆l

with the bar’s length l and the bar’s diameter d (Fig. 4.4).
The bulk modulus κ describes the volume change resulting from a pres-

sure p:
∆V

V
= − 1

κ
p
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Fig. 4.5. Bulk modulus. The left cube is deformed by pressure indicated by dashed
arrows. The volume change resulting from the deformation depends on the bulk
modulus κ.

α

Fig. 4.6. Shear modulus. The left cube is deformed by forces indicated by the
dashed arrows. The angle α resulting from the deformation depends on the shear
modulus G.

The bulk modulus can be determined with the elasticity modulus E and the
Poisson’s ratio ν under the assumption that the pressure p acts in different
directions in the same manner (Fig. 4.5), i.e. leading to same volume reduction:

κ =
1
3

E

1 − 2ν

The shear modulus G couples the shear tension τ with the angle α of a
plane perpendicular to the applied forces (Fig. 4.6):

τ = Gα

The shear modulus G is determined with the elasticity modulus E and the
Poisson’s ratio ν as follows:

G =
E

2(1 + ν)

Hooke’s Law in three-dimensional space. A generalization of Hooke’s law de-
livers the relationship between the Cauchy stress tensor tτ and the linear
strain tensor t

0ε:

tτij = Cijkl
t
0εkl (4.6)
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with the fourth order elasticity tensor C. The elasticity tensor is also known as
material tensor and comprises 81 coefficients. Regarding of symmetries allows
the reduction of the number of independent coefficients of the elastic tensor
to 36. The equation 4.6 can be rewritten in a simplified representation:

tτ i = Cij
t
0εj

with the Cauchy stress vector tτ , the linear strain vector t
0ε and the elasticity

matrix C. The Cauchy stress vector tτ is derived from the Cauchy stress
tensor tτ by:

tτ =
(

tτ11
tτ22

tτ33
tτ12

tτ13
tτ23

)

The linear strain vector t
0ε is transformed from the linear strain tensor t

0ε by:

tε =
(

tε11
tε22

tε33 2 tε12 2 tε13 2 tε23
)

In case of isotropic media the elasticity matrix C is symmetric and of
following shape:

C =
E

(ν + 1)(1 − 2ν)





1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 1

2 (1 − 2ν) 0 0
0 0 0 0 1

2 (1 − 2ν) 0
0 0 0 0 0 1

2 (1 − 2ν)





depending on the elasticity modulus E and the Poisson’s ratio ν.
Alternatively, the elasticity matrix C can be expressed with Lamé con-

stants λ and µ:

C =





λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ





The Lamé constants can be derived from the elasticity modulus E and the
Poisson’s ratio ν:

λ =
νE

(1 + ν)(1 − 2ν)

µ =
E

2(1 + ν)
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Generalized Hooke’s Law for Large Deformations. A further generalization of
Hooke’s law is used to describe the stress-strain relationship of large defor-
mations. The second Piola-Kirchhoff stress tensor t

0S is calculated with the
material tensor C and the Green-Lagrange strain tensor t

0E:

t
0Sij = Cijkl

t
0Ekl

Alternatively, the stress-strain relationship for large deformations can be es-
tablished with the deformation gradient t

0X and the Cauchy-Green right di-
lation tensor t

0C.

Nonlinear Elasticity. Whereas the material tensor C is constant in linear
elasticity, the tensor is a function of strain in nonlinear elasticity:

C = C( t
0ε)

The applied strain tensor depends on the type of deformation. E.g. for small
displacements and displacement gradients commonly the linear strain tensor
t
0ε is used. For large deformations the Cauchy-Green right dilation tensor t

0C
and the Green-Lagrange strain tensor t

0E is applied.

Hyperelasticity. If the second Piola-Kirchhoff stress tensor t
0S in a medium

can be determined by derivation from a scalar strain energy density function
t
0W , the medium is said to be hyperelastic [29]:

t
0Sij =

∂ t
0W

(
t
0E
)

∂ t
0Eij

In this definition the strain energy density W is a function of the Green-
Lagrange strain tensor t

0E. Other descriptions of strain, e.g. the Cauchy-Green
right dilation tensor t

0C, are also used as parameters for strain energy density
functions.

Mooney-Rivlin Model. A representative of hyperelastic models is the Mooney-
Rivlin model, whereby the strain energy density function is defined by:

t
0W = C1( t

0I1 − 3) + C2( t
0I2 − 3)

with the material specific constants C1 and C2, as well as the invariants of the
Cauchy-Green right dilation tensor t

0I1 and t
0I2. Furthermore, incompressibil-

ity of the medium is assumed by including the condition t
0I3 = 1 (Sect. 4.2.1).

A variant of the Mooney-Rivlin model reduces the condition of total in-
compressibility and includes the reduced condition into the definition of the
strain energy function [29]:

t
0W = C1( t

0I1 − 3) + C2( t
0I2 − 3) +

1
2
κ( t

0I3 − 1)2

with the bulk modulus κ and the reduced invariants:
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t
0I1 = t

0I1( t
0I3)−1/3

t
0I2 = t

0I2( t
0I3)−2/3

t
0I3 = ( t

0I3)1/2

The Mooney-Rivlin model was developed to reconstruct the mechanical be-
havior of rubber-like materials. Further representatives of hyperelastic models
specifically for the description of cardiac tissue are listed in Sect. 8.2.2.

Hypoelasticity. If the stress increments dτ are determined by the strain in-
crements d t

0ε, the medium is said to be hypoelastic [29]:

dτij = Cijkl d t
0εkl

Commonly, the material tensor C is nonlinearly dependent on the strain,
stress or other parameters. Hypoelastic material models are used to reproduce
the mechanical behavior of concrete and metals.

Viscoelasticity. If the description of the stress-strain relationship includes
derivatives with respect to time, a medium is said to be viscoelastic. Linear
viscoelasticity results in the following stress-strain relationship:

(
A0 + A1

∂

∂t
+ A2

∂

∂t
+ . . .

)
tτ =

(
B0 + B1

∂

∂t
+ B2

∂

∂t
+ . . .

)
t
0ε

with the parameter matrices Ai and Bi.
Viscoelastic behavior leads to phenomena like [30]:

• Stress relaxation. A body is suddenly strained and afterwards the strain
is sustained. The resulting stress decreases over time.

• Creep. A body is suddenly stressed and afterwards the stress sustained.
The resulting deformation is a time dependent process.

• Hysteresis. Cyclic stress of a body leads to differences in the stress-strain
relationship for loading and unloading phases.

4.3 Numerical Solution

4.3.1 Principle

The finite element method is the primary numerical technique to discretize
equations resulting from the principle of virtual displacements. The principle
allows the analysis of large displacements, strains and rotations with nonlin-
ear, anisotropic material properties.

The finite element method necessitates a subdivision of the spatial domain
Ω in finite elements (Sect. 2.7.3). In each element’s domain Ω(m) the solution
as well as stress and strain functions are interpolated starting from node
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Fig. 4.7. Deformation and incremental displacements in hexahedron. The coordi-
nates of node points 0xi in the Lagrangian configuration are changed to the coor-
dinates txi at time t. The incremental displacement 0ui leads to the coordinates
t+∆txi at time t + ∆t.

points. For each element an equations system can be created, wherefore in this
work primarily the total Lagrangian formulation (Sect. 4.2.4) in conjunction
with hyperelastic description of materials (Sect. 4.2.5) is applied. The creation
of the equations system is performed applying the displacement function tu at
time t. The solution function t+∆tu describes displacements at time t+∆t. The
evaluation of integral equations delivers element- and time-step-wise systems
of linear equations. These equations are assembled into the system equations,
which are modified by boundary conditions. The system of equations is solved
with iterative techniques (Sect. 2.4.3). The solving is repeatedly performed,
both, to determine displacements at different times, e.g. with distance ∆t,
and to cope the nonlinearity of material and geometry.

4.3.2 Interpolation via Shape-Functions

Interpolation of Displacement Functions. An interpolation of the displace-
ment function tu starting from node variables can be performed via shape-
functions, which are selected dependent on the element’s geometry and the
order of interpolation. In the following – similar to the sections introducing
the finite element method (Sect. 2.7.3) and its application in electromagnetism
(Sect. 3.3.1) – the shape-functions are arranged to the vector H(m), whereby
the superscript m indicates the element.

In other works, displacement- and strain-interpolation matrices are alter-
natively created for the interpolation [29]. The shape-functions are compo-
nents of a matrix.
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In the three-dimensional domain Ω(m) of the m-th element the displace-
ment function tu is given at any time t by:

tu =




tu1
tu2
tu3



 = H(m) T tU (m)

with the N -dimensional vector of displacement vectors at node variables
tU (m):

tU (m) =





U
(m)
1
...

U
(m)
N



 =








U

(m)
1,1

U
(m)
1,2

U
(m)
1,3





...


U

(m)
N1

U
(m)
N2

U
(m)
N3









and the N -dimensional vector of shape-functions H(m):

H(m) =





H
(m)
1
...

H
(m)
N





The function of incremental displacements 0u is interpolated by:

0u = H(m) T
0U

(m)

with the vector of incremental displacements at node variables 0U
(m).

The shape-functions allow furthermore the interpolation of coordinates of
points tx and temporal derivatives of displacements, e.g. velocity and accel-
eration. Additionally force densities and surface tensions can be interpolated.

Interpolation of Deformation Gradient. Similarly, an interpolation is applied
for the deformation gradient and variant strain tensors starting from node
variables. Therefore, specific derivatives of the shape-functions are developed.
The deformation gradient t

0X (Sect. 4.2.1) is interpolated in the domain Ω(m)

by:
t
0X = ∇H(m) T tU (m) + I

with the identity matrix I and the gradient of the shape-function’s vector
∇H(m):
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∇H(m) =





∇H
(m)
1
...

∇H
(m)
N



 =









∂H
(m)
1

∂ 0x1

∂H
(m)
1

∂ 0x2

∂H
(m)
1

∂ 0x3





...



∂H
(m)
N

∂ 0x1

∂H
(m)
N

∂ 0x2

∂H
(m)
N

∂ 0x3









Interpolation of Green-Lagrange Strain Tensor. The Green-Lagrange strain
tensor t

0E is determined with the definition of the deformation gradient
t
0X

(m):

t
0E =

1
2
(
t
0X

2 − I
)

=
1
2

((
∇H(m) T tU (m) + I

)2

− I

)

=
1
2

((
∇H(m) T tU (m)

)2

+
(
∇H(m) T tU (m)

)T

+ ∇H(m) T tU (m)

)

The decomposition of Green-Lagrange strain tensor t+∆t
0 E at time t+∆t into

the Green-Lagrange strain tensor t
0E at time t as well as a linear part 0e

and a nonlinear part 0η of the incremental Green-Lagrange strain tensor 0E
(equations 4.4 and 4.5):

t+∆t
0 E = t

0E + 0E = t
0E + 0e + 0η (4.7)

can be expressed via shape-functions by:

t+∆t
0 E =

1
2
(
t+∆t

0 X2 − I
)

=
1
2

((
∇H(m) T

(
tU (m) + 0U

(m)
)

+ I
)2

− I

)

=
1
2

((
∇H(m) T tU (m)

)2

+
(
∇H(m) T tU (m)

)T

+ ∇H(m) T tU (m)

+
(
∇H(m) T tU (m)

)T (
∇H(m) T

0U
(m)
)

+
(
∇H(m) T

0U
(m)
)T

+
(
∇H(m) T

0U
(m)
)T (

∇H(m) T tU (m)
)

+ ∇H(m) T
0U

(m)



4.3 Numerical Solution 87

+
(
∇H(m) T

0U
(m)
)2
)

Comparison with equation 4.7 leads to the definition of the linear part 0e:

0e =
1
2

((
∇H(m) T tU (m)

)T (
∇H(m) T

0U
(m)
)

+
(
∇H(m) T

0U
(m)
)T

+
(
∇H(m) T

0U
(m)
)T (

∇H(m) T tU (m)
)

+ ∇H(m) T
0U

(m)

)
(4.8)

and the nonlinear part 0η of the incremental Green-Lagrange strain tensor
0E:

0η =
1
2

(
∇H(m) T

0U
(m)
)2

(4.9)

Interpolation of Stress Tensors. Stress tensors can be interpolated with the
vector of shape-functions H(m) starting from stress tensors at node variables.
In other cases stress tensors are described by a function of strain and can
therefore be determined after interpolation of the strain.

4.3.3 Determination of Element Equations

The section focuses on the discretization of the total Lagrangian incremental
formulation with hyperelastic materials (Sect. 4.2.5). Hence, the equilibrium
at any time is given by [29]:
∫

0V
0Cijkl 0ers δ 0eij d 0V +

∫

0V

t
0Sij δ 0ηij d 0V (4.10)

=
∫

0V

t+∆t
0 fB

i δ ui d 0V +
∫

0Sf

t+∆t
0 fS

i δ uS
i d 0Sf −

∫

0V

t
0Sij δ 0eij d 0V

with the incremental stress-strain tensor 0C, a linear part 0e and a nonlinear
part 0η of the incremental Green-Lagrange strain tensor 0E, the second Piola-
Kirchhoff stress tensor t

0S, the applied force density t+∆t
0 fB

i and the surface
tension t+∆t

0 fS
i . The incremental stress-strain tensor 0C is of fourth order.

The strain and stress tensors are of second order.

System of Equations for Static Analysis. The equation 4.10 can be used to
describe the displacements t+∆tU at time t + ∆t with given displacements
tU for time t. Therefore, an iterative procedure is applied (Fig. 4.8), which is
necessary to incorporate nonlinear phenomena. The phenomena result from
material properties, which can vary with strain or stress.

In each step a system of linear equations is constructed and solved whereby
the unknowns describe incremental displacements 0U

(i). The system of lin-
ear equations is created by the substitution of the strain tensors with the
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fulfilled?

Determine tension

Determine stiffness

matrices and vectors

and material tensors

Stop criterion

Interpolate strain

Initialization
Reset incremental 

displacements

Yes

Determine incremental

displacements

tensor

No

Increment time and

update displacements
Store displacements

Fig. 4.8. Calculation scheme of total Lagrangian incremental formulation. Incre-
mental displacements are determined starting from initial displacements. The in-
cremental displacements are determined iteratively and serve finally to update the
initial displacements. In each step the incremental displacements are the unknowns
of a system of linear equations, which is built up by different stiffness matrices
and vectors. The matrices and vectors are a function of strain, stress and material
tensors.

interpolation starting from node points and the knowledge of the incremental
stress-strain tensor 0C:

( t
0K

(i)
L + t

0K
(i)
NL) 0U

(i) = t+∆t
0 R + t

0F
(i) (4.11)

with the vector of forces at node points t
0F

(i), the unknown incremental dis-
placements 0U

(i) and the external virtual work t+∆t
0 R as well as the linear

incremental stiffness matrix t
0K

(i)
L and the nonlinear incremental stiffness ma-

trix t
0K

(i)
NL. The superscript (i) of same quantities denotes the iteration step.

The iteration can be stopped, if some norm of the residuum of equation 4.11
becomes smaller than a given threshold.

Determination of Matrices and Vectors. The determination of the matrices
and vectors resulting from the total Lagrangian incremental formulation is
generally performed with numerical techniques (Sect. 2.5). A frequently used
technique is the Gauss quadrature.



4.3 Numerical Solution 89

The linear incremental stiffness matrix t
0K

(i)
L is given by:

t
0K

(i)
L =

∫

0V

t
0B

T
L 0C

(i) t
0BL d 0V

whereby the differential operator t
0BL is determined with equation 4.8. The

incremental stress-strain tensor 0C
(i) is assumed to be a function of the strain

and stress, but can also result from a description of the material properties
with generalized Hooke’s law for large deformations. The incremental stress-
strain tensor 0C

(i) can be derived from the second Piola-Kirchhoff stress ten-
sor t

0S
(i):

0C
(i)
ijkl =

∂ t
0S

(i)
ij

∂ t
0Ekl

whereby the superscript of the tensor 0C
(i) denotes the i-th step of the in-

cremental procedure and the subscript refers to indices of the tensor. In case
of hyperelastic materials the tensor 0C can be determined directly from the
strain energy density W :

0C
(i)
ijkl =

∂2 W

∂ t
0Eij ∂ t

0Ekl

The linear operator t
0BL allows the determination of the linear part 0e of

the incremental Green-Lagrange strain tensor 0E starting from the vector of
incremental displacements at node variables 0U

(m):

0e = t
0BL 0U

(m)

The nonlinear incremental stiffness matrix t
0KNL results from:

t
0KNL =

∫

0V

t
0B

T
NL

t
0S

(i) t
0BNL d 0V

whereby the differential operator t
0BNL is determined with equation 4.9. This

nonlinear operator describes the relationship:

0η =
(

t
0BNL 0U

(m)
)2

The vector of external virtual work t+∆tR at time t + ∆t is constructed
starting from the vector of applied force densities t+∆t

0 fB
i and of surface ten-

sions t+∆t
0 fS

i at node points:

t+∆t
0 R =

∫

0V

HT t+∆t
0 fB

i d 0V +
∫

0Sf

HT
S

t+∆t
0 fS

i d 0Sf

with the volume shape-function H and the surface shape-function HS as well
as the surface 0Sf .

The vector of forces at node points t
0F

(i) is obtained by evaluating:

t
0F

(i) =
∫

0V

t
0B

T
L

t
0S

(i) d 0V
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System of Equations for Dynamic Analysis. The inclusion of inertia can be
achieved by extending of equation 4.11:

M ta + ( t
0K

(i)
L + t

0K
(i)
NL) 0U = t+∆t

0 R + t
0F

(i)

with the vector of acceleration ta and the mass matrix M given by:

M =
∫

0V

0ρ HT H d 0V

Here, the mass density 0ρ and mass matrix M are assumed to be constant
over time.
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Digital Image Processing

5.1 Overview

Digital image processing is applied to extract and measure features and struc-
tures in images. Different stages of processing can be distinguished (Fig. 5.1).
The image data is transformed in each processing step.

The first steps, imaging, sampling and quantization, lead to digital images
[32]. The imaging is commonly performed with physical devices transforming
a band of the electromagnetic spectrum into an imaging function, which is
then digitized spatially and concerning its amplitude. The spatial digitization
is frequently called sampling. The digitization of the amplitude is referred to
as quantization.

Subsequently, the digital images are commonly preprocessed to enhance
the image quality for further processing. The images are segmented, which
means subdivided into enclosed components. These components are assigned
to classes by the classification step. All of these stages require the extraction
of features in the images. The results of the digital image processing are
interpreted, whereby a meaning is attributed to image components.

Different levels of processing can be associated with the digital image pro-
cessing. Low-level processing involves automatic methods, which can be ap-
plied without knowledge concerning the image content. Imaging, sampling,
quantization and preprocessing are low-level processing steps. Intermediate-
level processing, i.e. segmentation and feature extraction, requires some back-
ground knowledge of the image content. High-level processing like classifica-
tion and interpretation is strongly dependent on the availability of detailed
knowledge.

In the context of modeling cardiac anatomy, physiology and mechanics
digital image processing is frequently applied in conjunction with medical
imaging systems, e.g. ultrasonic (US), magnetic resonance (MRT), and X-ray
computed tomography (CT). Furthermore, photographic imaging systems are
utilized. A photographic system is applied e.g. in the Visible Human Project of

F.B. Sachse: LNCS 2966, pp. 91–118, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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Segmentation

Sampling and Quantization
Low−level

Feature−

Imaging

Interpretation

processing

Intermediate−
level
processing

High−level
processing

extraction

Preprocessing

Classification

Fig. 5.1. Structure of digital image processing. Starting with imaging, sampling
and quantization the image data passes through the preprocessing, segmentation
and classification steps. The feature extraction is their common element. The data
is finally interpreted e.g. by a human observer. Results of all steps can be applied
for succeeding processing steps.

the National Library of Medicine, Bethesda, Maryland (USA) [33], which pro-
vides a large source of images from inside of human body (Sect. 6.4.5). Gener-
ally, imaging data can have different dimensions, e.g. two-dimensional photos,
three-dimensional X-ray computed tomographies and four-dimensional MR
tomographies.

In the following sections a survey of numerous pragmatic image processing
methods is given. A representation of images suitable for computerized ana-
lysis is described. The topics preprocessing and segmentation are introduced.
The topics representation, detection and interpolation of orientation in images
are presented. These are of importance for modeling fibered structures, e.g.
skeletal and heart muscle.

5.2 Digital Representation of Images

Commonly, digitized images are described as a k-dimensional array of N1 ×
· · · × Nk discrete elements v(i1, . . . , ik) with ij ∈ {1, . . . , Nj} for all j ∈
{1, . . . , k}. Here, the elements represent isotropic equidistant samples of the
original image obtained by an imaging device. In two-dimensions the elements
of an image are called pixels, in three dimensions voxels.



5.3 Preprocessing 93

The elements contain values representing physical quantities, e.g. grey lev-
els in photos, proton densities in MR, and attenuation coefficients in CT to-
mographies. The value range of the elements is limited. Typical ranges are
0–255 and 0–65535, which can be efficiently stored in 1 byte and 2 bytes,
respectively.
Example. A two-dimensional image I with isotropic equidistant elements can
be represented by the N1 × N2 array:

I =





v(1, 1) v(1, 2) . . . . . . v(1, N1 − 1) v(1, N1)
v(2, 1) v(2, 2) . . . . . . v(2, N1 − 1) v(2, N1)

. . . . . . . . . . . . . . . . . .
v(N2 − 1, 1) v(N2 − 1, 2) . . . . . . v(N2 − 1, N1 − 1) v(N2 − 1, N1)
v((N2, 1) v(N2, 2) . . . . . . v(N2, N1 − 1) v(N2, N1)





5.3 Preprocessing

5.3.1 Overview

The preprocessing consists of image transformations aiming at simplifying of
further processing steps. Transformations are applied to correct errors result-
ing from imaging conditions and imaging devices. Further transformations
are performed to enhance the applicability and quality of an image. Different
areas of preprocessing techniques can be distinguished:

• Transformation of coordinates
• Filtering methods
• Matching of images

5.3.2 Transformation of Coordinates

Introduction. Many image processing tasks necessitate the geometrical
transformation of images as well as of points and objects. These tasks include
matching and warping of images, stereo image analysis, and re-sampling tech-
niques. Further applications of the geometrical transformations are found in
computer visualization and computer aided design.

The transformation of coordinates can be defined as:

x′ = T (x)

with the transformation T , the coordinate vectors x and x′. Commonly, the
coordinate vectors x and x′ are real and their dimension is equal.

In the following sections a variety of transformations are introduced, which
are frequently applied in image processing. The transformations are defined
in such a way, that points in a three-dimensional cartesian coordinate sys-
tem are transferred into a three-dimensional cartesian coordinate system. The
transformations can be simplified to two-dimensional and extended to four-
dimensional coordinate systems.
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(a) (b) (c)

Fig. 5.2. An example of affine transformations of images. Points of (a) the origi-
nal, two-dimensional image are transferred via (b) rigid transformation consisting of
translation and rotation and (c) affine transformation including scaling. The trans-
formation leads to a two-dimensional image.

Affine Transformations. An affine transformation TA is defined by [34, 35]:

TA(x) = Ax + b

with the matrix A, the translation vector b = (b1, b2, b3)T and the origi-
nal vector x. The matrix A is used to describe rotation, scaling and shear
(Fig. 5.2). Several transformations can be combined in a single matrix A by
concatenation of rotation, scaling and shear matrices.

Specific cases of affine transformations are the rigid transformations,
whereby angles between lines and distances between points are preserved.
The matrix A of a rigid transformation is restricted to be a concatenation of
rotation matrices. No restrictions are made concerning the vector b.

A rotation with the angle α in the xy-plane is given by the matrix Axy:

Axy =




cos α sin α 0
−sin α cos α 0

0 0 1





A scaling of sx in x-direction, of sy in y-direction and of sz in z-direction
is obtained with the matrix Ascale:

Ascale =




sx 0 0
0 sy 0
0 0 sz





Reflections can be produced by using negative values for sx, sy or sz. Projec-
tions are achieved by setting sx, sy or sz to zero.
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A x-shear is created by the matrix Ashear:

Ashear =




1 a b
0 1 0
0 0 1





with the parameters a and b.

Homogeneous Transformations. Homogeneous transformations incorpo-
rate a larger degree of freedom than affine transformations. A property of
homogeneous transformations is that lines are transferred to lines, but that
parallelism of lines is not preserved.

A homogeneous transformation is performed in three steps. In the first
step the point x = (x1, x2, x3)T is transferred to a point xhom in the four-
dimensional space:

xhom =





x1

x2

x3

1





In the second step the intrinsic transformation Thom is performed:

Thom(xhom) = Axhom

with the 4 × 4 matrix A.
In the final step the result of the transformation Thom, the point x′

hom, is
transferred to the three-dimensional point x′:

x′ =
1

x′
hom,4




x′

hom,1

x′
hom,2

x′
hom,3



 with x′
hom =





x′
hom,1

x′
hom,2

x′
hom,3

x′
hom,4





The matrix A is used to describe translation, rotation, scaling, shear
and perspective [32]. Similarly to affine transformations, several homogeneous
transformations can be combined in a single matrix A by concatenation of
matrices.

A translation with the vector b = (b1, b2, b3)T is determined by the matrix
Atranslation:

Atranslation =





1 0 0 b1

0 1 0 b2

0 0 1 b3

0 0 0 1





A rotation with the angle α in the xy-plane is given by the matrix Axy:

Axy =





cos α sin α 0 0
−sin α cos α 0 0

0 0 1 0
0 0 0 1




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A scaling of sx in x-direction, of sy in y-direction and of sz in z-direction
is obtained with the matrix Ascale:

Ascaling =





sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1





Projections and reflections are created by setting appropriate scaling factors,
in a similarl way as described for affine transformations.

A perspective transformation is determined by the matrix Aperspective:

Aperspective =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 − 1

λ 1





with the parameter λ.

Polynomial Transformations.Polynomial transformations can be regarded
as extension of the linear affine transformation. The transformation of the
point x = (x1, x2, x3)T into the point x′ = (x′

1, x
′
2, x

′
3)

T is given by:

x′
1 = a0 + a1x1 + a2x2 + a3x3

+ a4x
2
1 + a5x

2
2 + a6x

2
3 + a7x1x2 + a8x1x3 + a9x2x3

+ . . .

x′
2 = b0 + b1x1 + b2x2 + b3x3

+ b4x
2
1 + b5x

2
2 + b6x

2
3 + b7x1x2 + b8x1x3 + b9x2x3

+ . . .

x′
3 = c0 + c1x1 + c2x2 + c3x3

+ c4x
2
1 + c5x

2
2 + c6x

2
3 + c7x1x2 + c8x1x3 + c9x2x3

+ . . .

with the parameters ai, bi and ci.

Radial Basis Function Transformations. Transformations of images can
also be performed using the radial basis function transformation. In contrast
to the previously described techniques the transformation shows a scalable
local behavior, which can be of advantage in specific applications e.g. image
warping (Fig. 5.3).

The transformation TRBF is composed of an affine TA and a radial trans-
formation TR:

TRBF (x) = TA(x) + TR(x)
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(a)

            

(b)

Fig. 5.3. Exemplary radial basis function transformation (from [26]). (a) The
original image is transformed to (b) the result image. Given are a point (red cross)
and its transformation (green cross). Obviously, the transformation is local. Distant
areas are not transformed.

The affine transformation TA is responsible for the global behavior and is
given by:

TA(x) = Ax + b

with the matrix A and the vector b.
The radial transformation TR in cooperates local behavior and is deter-

mined by:

TR(x) =




TRX(x)
TRY (x)
TRZ(x)





with the radial functions TRX , TRY and TRZ . The radial functions are con-
structed equal to the function R:

R(x) =
N∑

i=1

aig(|x − xi|)

with the scalar parameters ai, the points xi and the radial basis function g.
The argument of g describes the distance between the point x and the point
xi. Different types of radial basis functions were proposed [36]:

g(t) = e
−t2

σ2

g(t) =

{
1 − ( t

σ )2(3 − 2t
σ )2 0 ≤ t ≤ σ

0 otherwise

g(t) =






6( t
σ )2( t

σ − 1)2 + 1 0 ≤ t < 1
2σ

2(1−t
σ )3 1

2σ ≤ t ≤ σ

0 otherwise

with the parameter σ. The parameter determines characteristics of the trans-
formation, particularly the radial decrease of influence.
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Parameter determination. The parameters of the radial basis function trans-
formation TRBF , i.e. the matrix A and the vector b of the affine transfor-
mation TA, as well as the parameters ai of the radial transformation TR are
determined with the given parameter σ, points xi and their corresponding
points x′

i. In a first step the parameters of the affine transformation TA are
determined, e.g. by least squares methods [5] with a subset of the given points
xi and x′

i. In the second step the parameters of the radial transformation TR

are calculated by solving the following equation system:

N∑

j=1

ajkg(|xi − xj |) = x′
ik − (TA(xi))k

5.3.3 Filtering Methods

Introduction. The task of filtering is the enhancement of image quality and
the extraction of features. Filtering serves to simplify and support subsequent
processing steps. Commonly, filters modify the image elements taking neigh-
boring elements into account.

Different types of filters are distinguished depending on their domain: spa-
tial and frequency domain filters. Filters can be grouped into linear and non-
linear filters. Hybrid filters can be constructed consisting of a sequence of
filters. Filters are called global or local, if the filter operator is equal or not
equal, respectively, over the whole image.

In the following sections different filters are introduced, which are of im-
portance for typical image processing applications. The filters are formulated
to work in a three-dimensional domain.

Linear Filtering. Linear filtering is performed by convolution of the image
I with the filter mask M :

I ′ = M ∗ I

The operation leads to the image I ′. The operator ∗ denotes a convolution.
Linear filters have properties, which simplify their application and theoret-

ical study: linearity, additivity, commutativity and associativity. Further filter
properties, particularly dependence on spatial frequencies, can be studied by
transforming the filter mask M in the frequency domain.

Linearity. The linearity of a filter is guaranteed if the following equation is
fulfilled:

M ∗ (αI1 + βI2) = α(M ∗ I1) + β(M ∗ I2)

with the filter mask M , the images I1 and I2 as well as the factors α and β.

Additivity. The additivity of filters is guaranteed if

(M1 + M2) ∗ I = M1 ∗ I + M2 ∗ I

with the filter masks M 1 and M2
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Table 5.1. Exemplary linear, three-dimensional filters and their 3 × 3 × 3 masks
[26]. The given filter mask for the simple and Sobel gradient allows the extraction
of the image gradient in x-direction. The masks for the y- and z-direction can be
created by rotation about the z- and y-axis.

Filter Mask

Average 1
27








1 1 1
1 1 1
1 1 1








1 1 1
1 1 1
1 1 1








1 1 1
1 1 1
1 1 1









Simple gradient
in x-direction

1
10








0 0 0
1 0 −1
0 0 0








1 0 −1
1 0 −1
1 0 −1








0 0 0
1 0 −1
0 0 0









Sobel gradient
in x-direction

1
12








0 0 0
1 0 −1
0 0 0








1 0 −1
2 0 −2
1 0 −1








0 0 0
1 0 −1
0 0 0









Laplace








0 0 0
0 1 0
0 0 0








0 1 0
1 −6 1
0 1 0








0 0 0
0 1 0
0 0 0









            

(a)

            

(b)

            

(c)

Fig. 5.4. First and second order derivative filters applied on CT data (from [26]).
(a) The original image is filtered with the (b) Sobel- and (c) Laplace-filter. The
Sobel-filter approximates the magnitude of the gradient in the image. The Laplace-
filter approximates the Laplace-operator applied to the image.

Commutativity. Filters are called commutative if

M1 ∗ (M 2 ∗ I) = M 2 ∗ (M 1 ∗ I)

Associativity. Filter are called associative if

M1 ∗ (M 2 ∗ I) = (M 1 ∗ M 2) ∗ I

Typical linear filters are average, gradient, and Laplace-filters (table 5.1).
Average filters perform a low-pass filtering of the image and are applied for
noise reduction and blurring. Small objects and structures consisting of high
frequency components are erased. Gradient and Laplace-filters perform high-
pass filtering of the image and are used for example to detect edges in images
(Fig. 5.4).
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(a) (b) (c)

Fig. 5.5. Comparison of average and median filter (from [37]). (a) An image filled
partly with noise. The image after application of (b) average and (c) median filter.
The average filter shows blurring and noise reduction properties. The median filter
reduces noise, while preserving edges.

Gradient filters approximate the first derivative or so-called gradient of an
image ∇I by applying three unidirectional gradient masks Mx, M y, and Mz :

∇I ≈



Mx

My

M z



 ∗ I

Different types of gradient masks can be derived, e.g. the simple gradient and
the Sobel-filter masks (table 5.1). Commonly, the magnitude of the image
gradient ∇I is determined and used as filter response:

I′ = |∇I|
Laplace filters approximate the Laplace-operator ∆, i.e. divergence of gra-
dient, by convolution with an appropriate mask M . The Laplace-operation
applied to the image I is given by:

I′ = ∆I ≈ M ∗ I

Rank-Order Filters. Rank-order filters replace an element’s value with the
value of an element inside of a given area. The shape of the area is commonly
cubic or spherical. The replaceable element is located centrally in the area.
The values of all elements in the given area are collected and sorted by size.
Rank-order filters are nonlinear. Typical three-dimensional rank-order filters
are median, erosion and dilation filters.
Median. The median filter uses the middle value in the sorting of element val-
ues. The filter reduces noise and preserves edges. Blurring phenomena similar
to linear average filter are not observed (Fig. 5.5).
Erosion. The smallest value in the sorting of element values is selected by
the erosion filter. The choice leads to the reduction of high value areas. Single
elements with relatively high values regarding the neighborhood are erased.
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(a) (b) (c)

Fig. 5.6. Opening operator applied to grey level image (from [37]). (a) Original
image. The image resulting from application of (b) erosion filter and (c) opening
operator. The opening operator consists of an erosion followed by a dilation. Small
artifacts are erased and the object’s area is reduced by the erosion filter. The object’s
area is preserved by the opening operator.

Dilation. The dilation filter uses the largest value in the sorting of element
values. High value areas are extended. Isolated low value elements are re-
moved.

Hybrid Filters. Hybrid filters are constructed by the concatenation of two
and more filters. Partly, the filters are parameterized by feature extraction. In
the following important hybrid filters, i.e. the opening and closing operators
as well as the Canny-Deriche-Monga filter, are introduced.

Opening. The opening operator consists of a sequence of rank-order filters.
The application of n×erosion is followed by n×dilation. The operator allows
the reduction of small junctions and bulges (Fig. 5.6).

Closing. The closing operator consists of a sequence of rank-order filters. The
application of n×dilation is followed by n×erosion. Small gaps are deleted
and objects close to one another are connected.

Canny-Deriche-Monga Filter. The Canny-Deriche-Monga filter was specifi-
cally developed for edge detection. The filter is based on the definition of
different criteria for the computation of edge points [38], which were origi-
nally formulated for one- and two-dimensional data. The criteria are:

• Good detection. The probability of fail and missing detections should be
small.

• Good localization. The detected edge points should be near to the true
edge.

• Single response. Multiple detection responses corresponding to the same
edge point should be avoided.

The algorithm consists of three steps: In a first step gradient filters are
applied to detect edges. The second step serves to remove multiple edge points.
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(a) (b)

(c) (d)

Fig. 5.7. Comparison of different edge detection filters (from [37]). (a) The original
image. The image after application of (b) simple gradient, (c) Sobel-, and (d) Canny-
Deriche-Monga-filter.

A non-maxima suppression of points perpendicular to the edge is performed.
With the final step, missing edge points leading to the so-called streaking were
attached to the edge using adaptive thresholding with hysteresis.

Deriche and Monga extended the approach to three-dimensional domains.
They implemented an efficient version [39], whereby the computational ex-
pense is linearly dependent on the image size.

A comparison of different edge detectors is illustrated in Fig. 5.7. The
filter is utilized amongst other things in conjunction with the subsequently
introduced active contour models for image segmentation.

5.4 Segmentation Techniques

5.4.1 Introduction

Segmentation is defined as the division of an image into objects or regions
[32]. The objects are represented by homogeneous regions. The homogeneity
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(a)

            

(b)

            

(c)
            

(d)

            

(e)

            

(f)

Fig. 5.8. Segmentation of two-dimensional image of CT with thresholding (from
[26]). (a) The original image. The result of a segmentation with relation ‘≥’ and
threshold (b) 1, (c) 40, (d) 60, (e) 80, and (f) 100.

is assessed by attributes like color intensity and gray level in images as well
as the absorption coefficient in CT scans.

Segmentation methods can be classified into automatic, semi-automatic
and manual methods. Automatic methods perform an image segmentation
without any user intervention. Semi-automatic methods need a parameteriza-
tion by the user to guide the segmentation process. Manual methods require
the highest level of user interaction. Commonly, the user defines the segments
interactively.

Segmentation methods can be divided in point, region and edge based
methods. Point based methods use only the attributes of an image element
for its segmentation. With region based methods image elements are attached
to segments in the context of their neighborhood. Edge based methods are
based on the extraction of edges in the image data.

In the following sections different segmentation techniques are described
and their exemplary application with medical images is illustrated. The tech-
niques are pragmatic for segmentation of medical images. Further applications
of these techniques are described in Sect. 6.4.

5.4.2 Thresholding

Thresholding is a point based approach to image segmentation. A voxel is
assigned to a region if the image element’s characteristics are in a relation,
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(a)

            

(b)

Fig. 5.9. Segmentation of three-dimensional CT with thresholding (from [26]).
The result of a segmentation with relation ‘≥’ and threshold (a) 40 and (b) 80. The
first threshold is chosen to segment tissue, the second to segment bone and marrow.
Outlying artifacts are caused by noise.

e.g. ‘<’, ‘≤’, ‘≥’ and ‘>’, to a threshold value. Both, relation and threshold
value are given parameters and commonly kept constant while processing.
Parameters can be determined by image analysis, e.g. histogram evaluation.
The created segments are commonly not contiguous.

An extension of thresholding allows the assignment of an image element
at coordinates x to regions by a function T :

T = T (x, p(x), I(x))

with the characteristic of the adjacent region p(x) and the image value I(x).
The return value of function T identifies the region.

Thresholding can be directly applied e.g. to segment bone structures in CT
(Fig. 5.8 and 5.9). A preprocessing by median filtering is of advantage to re-
duce artifacts caused by noise. An efficient implementation uses precalculated
boolean look-up tables, which use the element’s value as the index.

5.4.3 Region Growing

Region growing is a region based technique for image segmentation. Region
growing means that image elements are collected starting from a set of seed
points (Fig. 5.10). If their neighboring elements match the region character-
istics, they are included within this region and are chosen to be new seed
points. Commonly, in three-dimensional image processing, neighborhoods of
6, 18 or 26 elements are used. In two-dimensional segmentation neighborhoods
of 4 or 8 elements are often applied. The match of region characteristics can
be checked by thresholding techniques. Region growing is an iterative process,
terminating if no neighboring voxels fit in the region characteristics. Each seed
point creates a contiguous segment.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5.10. Segmentation of three-dimensional CT with region growing (from [26]).
Region growing is initiated by setting a seed point at upper skullcap using a 6-
neighborhood and given threshold. The image sequence (a-h) shows different stages
of the region growing process. In contrast to the application of threshold techniques
a single region without outlying artifacts is constructed.

Region growing can be employed e.g. to segment bone structures in CT
(Fig. 5.10). Commonly, preprocessing of the image data is performed.

An efficient implementation provides the usage of a special data structure,
the so-called ring buffer, for the management of the seed point set. A ring-
buffer provides fast insertion and removal of seed points using a first-in-first-
out strategy. The ring-buffer consists of a static array of elements, which has
to be chosen sufficiently large, and of two indices, one for insertion and one
for removal of elements. Initially, the indices are set to zero. The insertion and
removal indices are incremented by insertion and removal, respectively. Index
overflows are handled by setting the index to zero. The number of elements
is determined by the distance of the insertion and removal index.

5.4.4 Watershed

The watershed algorithm is an edge based segmentation technique. In the
first step the magnitude of the image gradient Ig = |∇I| is determined. In the
second step all image elements are scanned and segmented.

Image elements are assigned to a region, which have a continuous descend-
ing path to a common minimum. The path is iteratively constructed starting
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(a) (b) (c)

(d) (e) (f)

Fig. 5.11. Image segmentation with active contour model (from [37]). (a) Two-
dimensional image with initial contour. Assigned to the contour is an energy, which
is minimized concerning the geometry. The resulting advance of the contour is shown
in (b)-(f). The energy includes stretch and image energies.

at the position of the image element p. Here, the image gradient ∇Ig(p) is
determined, e.g. by applying the Sobel-filter. If the gradient is zero, a mini-
mum is found and the image elements are assigned to a region. Otherwise, a
step in gradient direction is performed leading to a new position p′ and the
next iteration step is executed setting p = p′. The step size is chosen in such
a way that an adjacent image element is hit.

Commonly, the segmentation achieved with the watershed algorithm leads
to a large number of regions. The fusion of elements can be performed with
manual and automatic methods [40].

5.4.5 Deformable Models

Traditional Active Contour Models. Active contour models are edge
based methods for image segmentation by iterative adaptation of a surface to
edges of an object (Fig. 5.11 and 5.13). The method benefits from knowledge
concerning surface characteristics of objects. The application also requires
knowledge of the position and the shape of the objects.
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(a) (b)

Fig. 5.12. Potential function for active contour models (from [26]). (a) The original
image with red, green and blue channels. (b) Image with height information derived
from gradient magnitude of red-channel |∇I(x)|. The potential function used in
active contour models is the negative gradient magnitude weighted by a parameter.

Two-dimensional active contour models. In two-dimensional space the geom-
etry of an active contour model can be described by the function v [41, 42, 43]:

v(s) =
(

vx(s)
vy(s)

)
(5.1)

with the parameter s ∈ [0, 1]. Commonly, the contour is closed, i.e. v(0) =
v(1).

Attributed to the contour is an energy E:

E(v) = Einternal(v) + Eexternal(v)

which is divided in an internal and external energy, Einternal and Eexternal,
respectively.

The internal energy Einternal is the sum of the stretch and bending energy.
The stretch energy Estretch is defined as:

Estretch(v) = ωstretch

∫ 1

0

∣∣∣∣
∂v

∂s

∣∣∣∣
2

ds

with the weighting parameter ωstretch. The parameter controls the tension of
the active contour. The bending energy Ebend is given by:

Ebend(v) = ωbend

∫ 1

0

∣∣∣∣
∂2v

∂s2

∣∣∣∣
2

ds

with the weighting parameter ωbend. The parameter controls the bending rigid-
ity, which influences the contour’s smoothness.

The external energy Eexternal can consist of image energy Eimage, balloon
energy, gravitation energy, attractor energy etc.. Variant formulations and
combinations of these energies are reported [44, 45, 46, 47].
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The image energy connects the active contour with the image I via the
potential function p:

Eimage(v) =
∫ 1

0

p(v(s))ds

The potential function p uses the negative magnitude of the image gradient
(Fig. 5.12):

p(x) = −ωp|∇I(x)|
with the weighting parameter ωp. The potential function p provides minima at
edges. Alternatively, the potential function can be constructed after smoothing
of the image [48]:

p(x) = −ωp|∇G ∗ I(x)|
with the Gaussian mask G.

The advance of a contour is resulting from iterative minimization of the
energy E concerning the geometry v. The minimization can be performed
e.g. with finite element methods (Sect. 2.7.3) and finite differences methods
(Sect. 2.7.4) by discretization of the Lagrange equation of motion:

µ
∂2v

∂t2
+ γ

∂v

∂t
− ∂

∂s

(
ωstretch

∂v

∂s

)
+

∂2

∂s2

(
ωbend

∂2v

∂s2

)
= −∇p(v(s))

with the mass density µ and the damping density γ. The application of the
numerical methods requires a discretization of the contour’s geometry e.g.
with linear, quadratic and cubic functions.

A minimum is found if the gradient of the contour’s energy, i.e. forces, is
constant zero:

∇E = 0

Correspondingly, the so-called Euler-Lagrange equation is fulfilled:

− ∂

∂s

(
ωstretch

∂v

∂s

)
+

∂2

∂s2

(
ωbend

∂2v

∂s2

)
+ ∇p(v(s)) = 0

Three-dimensional active contour models. Active contour models can be ap-
plied in three-dimensional space and image data [49]. The geometry of the
contour is given by:

v(s) =




vx(s)
vy(s)
vz(s)



 (5.2)

with the parameter s ∈ [0, 1][0, 1].
The application in three-dimensional space requires the reformulation of

some energies, e.g. of stretch and bending. The three-dimensional stretch en-
ergy Estretch is defined as:

Estretch(v) =
∫ 1

0

∫ 1

0

ωstretch,1

∣∣∣∣
∂v

∂s1

∣∣∣∣
2

+ ωstretch,2

∣∣∣∣
∂v

∂s2

∣∣∣∣
2

dv1dv2
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(a) (b) (c)

(d) (e) (f)

Fig. 5.13. Three-dimensional image segmentation with active contour model (from
[37]). (a) The initial contour is a sphere. The resulting advance of the contour is
shown in (b)-(f). The energy includes stretch and image energies. The triangle mesh
is dyed with colors from the image.

with the weighting parameters ωstretch,1 and ωstretch,2. The parameters con-
trol the tension of the active contour in s1 and s2 direction, respectively.

The three-dimensional bending energy Ebend is given by:

Ebend(v) =
∫ 1

0

∫ 1

0

ωbend,1

∣∣∣∣
∂2v

∂s2
1

∣∣∣∣
2

+ ωbend,2

∣∣∣∣
∂2v

∂s2
2

∣∣∣∣
2

+ ωbend,3

∣∣∣∣
∂2v

∂s1∂s2

∣∣∣∣
2

dv1dv2

with the weighting parameters ωbend,1, ωbend,2 and ωbend,3. The parameters
control the bending rigidity in s1 and s2 direction as well as the twisting
rigidity, respectively.

Topologically Adaptable Active Contours. Topologically adaptable ac-
tive contours are an extension of the traditional contours, which have a con-
stant topology [51, 52, 53]. The extension allows splitting and merging of
contours (Fig. 5.14 and 5.15).

While advance of the contour its discretization is adapted. The re-dis-
cretization respects overlapping and separations of contour parts. The re-
discretization can be performed locally [51] or globally [52, 53].
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(a) (b) (c)

(d) (e) (f)

Fig. 5.14. Splitting of active contour model (from [50]). Two spheres are segmented
starting with an infolding single spherical contour. The images (a)-(f) show the
advance of the contour.

The techniques take advantage of discretization of the active contour with
a triangle mesh. Triangle meshes allow efficient management and implemen-
tation of operations, e.g. crop and distance measurement.

A local re-discretization is performed after assessment of contour elements
and relations between these elements [51]. The distance between node points
is used to separate and melt local regions.

A global re-discretization scans information concerning the inside and out-
side of contours. The information is collected in the node points of tetrahe-
drons [52] or hexahedrons [53]. The contour can be reconstructed using the
information by generating triangles in the polyhedrons. Triangles are created
at borders between inside and outside node points. A triangulation in hexa-
hedrons is performed efficiently with the so-called marching cube algorithm
[54, 55].

Level Set Methods. Level set methods are a type of active contour models,
which allow implicit topological adaptation [56]. The methods showed to have
advantages in medical image processing due to their ability to extract the
shapes of divers anatomical structures [57].

In level set methods the contour v given in equation 5.1 and 5.2 is repre-
sented as zero level set:

Φ = 0
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(a) (b) (c)

(d) (e) (f)

Fig. 5.15. Melting of active contour model (from [50]). A torus is segmented starting
with two enclosed spherical contours. The images (a)-(f) show the advance of the
contour.

of a higher dimensional function Φ. The function Φ maps positions x at a
given time t to a signed distance d to the closed contour v:

Φ(x, t) = d

A positive and negative distance indicates positions inside and outside of the
contour v, respectively. An initial contour v(t = 0) is defined by:

v(t = 0) = (x|Φ(x, t = 0) ≡ 0)

An evolution of the function Φ at the positions of the contour v is derived
starting with:

Φ(x, t) = 0

Applying the chain rule leads to:

∂Φ

∂t
+

N∑

i=1

∂Φ

∂xi

∂xi

∂t
= 0

The summation term can be expressed with a speed function F . At a position
x ∈ v the function F has the property that the vector xt = F (x, t) is normal
to the surface v(t). The function F can be influenced by bending, stretch,
image properties etc..
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Herewith, the summation term is transformed to:

N∑

i=1

∂Φ

∂xi

∂xi

∂t
= F (x(t))|∇Φ|

The evolution of the function Φ is expressed by:

∂Φ

∂t
+ F (x(t))|∇Φ| = 0

A multitude of level set variants exist, which can be classified by the defi-
nition of the speed function F and the numerical implementation [57]. Partic-
ularly, the inclusion of anatomical knowledge via regularization of level sets
is a topic of active research.

5.4.6 Manual Methods

Manual methods are commonly applied in cases which are not successfully
segmentable by automatic or semi-automatic methods. These cases may arise
if images are damaged, show an insufficiently contrast, or more automated
methods are not available.

A multitude of manual methods were developed, partly based on the pre-
viously described techniques. E.g. pixel-wise painting can be supported with
the thresholding and watershed techniques. Attractors allow the user interac-
tion with active contour models. Frequently, manual methods are followed by
an application of further segmentation techniques. The user creates masks or
modifies the image data in such a way that further processing is simplified.

The interactive construction of surfaces proved as an efficient method for
separating or enclosing of objects [58, 59] (Fig. 5.16 and 5.17). The method
is related with the three-dimensional active contour models. The deformation
of an initial contour is controlled by the user, who picks and moves contour
elements. The moving of an element affects the elements of a selectable ad-
jacent area. The deformation is controlled by usage of radial basis function
transformation (Sect. 5.3.2).

5.5 Principal Component Transform

The determination of principal axes is the main step of the principal compo-
nent transform, which can be applied in the area of digital image processing
to characterize objects and image areas. The transform is also known in liter-
ature as discrete Karhunen-Loeve, eigenvector and Hotelling transform [60].

The principal component transform is built on the fundamentals of statis-
tics. It works based on a population X of N random vectors of the following
notation:
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(a) (b)

Fig. 5.16. Interactive deformation of triangle mesh for segmentation of aorta.
(a) The image overlayed with an initial triangle mesh and (b) manually adapted
triangle mesh. The user adapts the mesh by picking and moving of mesh elements.
The moving leads to a local deformation with controllable area of influence. The
user interaction is performed in two-dimensional slices of selectable orientation and
position. The resulting mesh deformation is three-dimensional.

(a) (b)

Fig. 5.17. Interactive deformation of triangle mesh in three-dimensional visualiza-
tion. (a) The triangle mesh is initially spherical. (b) The manually adapted triangle
mesh representing the aorta. The triangle mesh is dyed with colors from the image.

X = (x1, x2, . . . , xN )T

The vectors xi with i ∈ {1, . . . , N} are M -dimensional and can be described
in the following notation:

xi = (xi
1, x

i
2, . . . , x

i
M )T
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In digital image processing the vectors xi are commonly 2–4 dimensional
depending on the dimension of the image data. The image elements are taken
into account for the generation of the vector population. The elements of the
vector population describe the center of gravity of image elements. In black
and white pictures, with image elements coded by 0 for black and 1 for white,
a single vector is created for each white image element. In gray value pictures
a number of vectors is created for each image element. Here, the number is
determined by the gray value.

The mean vector mX of a population X is defined as mX = E(X), where
E(X) is the expected value. The mean vector can be approximated from N
vector samples of the population:

mX ≈ 1
N

N∑

i=1

xi

The covariance matrix CX of a population X is defined as:

CX = E((X − mX)(X − mX)T ))

The covariance matrix can be approximated from N vector samples of the
population:

CX ≈ 1
N

N∑

i=1

xix
T
i − mXmT

X

One way to determine the principal axes is the diagonalization of the covari-
ance matrix. A diagonal matrix D and a rotation matrix R can be determined,
which fulfill the following condition:

CX = RT DR

This can be achieved by calculation of eigenvalues λi and eigenvectors ei

(Sect. 2.4.4), which are determined by:

CXei = λiei

The eigenvalues are real, because the covariance matrix is symmetric [8]. They
can be notated in descending order:

λ1 ≥ λ2 ≥ · · · ≥ λM

The diagonal matrix D has the following form:

D =




λ1 · · · 0
...

. . .
...

0 · · · λM





The rotation matrix R consists of the eigenvectors:

R = (e1, . . . , eM )

The first eigenvector e1 is referred to as the first principal axis, the i-th eigen-
vector ei is called the i-th principal axis.
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(a)

            

(b)

Fig. 5.18. Examples of textures with orientation (adapted from [61]). (a) Gray
level image with unidirectional sine waves. (b) Photography from Visible Human
project showing abdominal muscle structures.

5.6 Texture Orientation

5.6.1 Introduction

Techniques of digital image processing can be used to characterize image areas,
so-called textures, concerning the orientation of enclosed objects and struc-
tures (Fig. 5.18). Commonly, orientation at a position can be represented
by a vector. The vector’s magnitude describes the strength or reliability of
orientation. Some representations use unit vectors, which allow to describe
orientation by two angles, each in the range [0, π].

An application of knowledge concerning orientation is found in anatomi-
cal modeling of skeletal and cardiac muscle structures. The macroscopic ori-
entation of fibers is of importance for the assignment of anisotropic physical
properties, e.g. electrical conductivity and mechanical material tensors.

In the following sections different methods are described for the detection
and assignment of texture orientation. Rule-based methods are presented,
which allow to create orientation fields by definition of problem specific func-
tions. A manual method is introduced, which allows the interactive definition
of orientation in three-dimensional datasets. Furthermore, techniques for the
interpolation of orientation are presented starting from boundary conditions.
The interpolation techniques are similar to techniques for solution of electrical
field and mechanical problems.

5.6.2 Detection and Assignment

Texture Analysis. In the literature different techniques are proposed for de-
tection of orientation, e.g. gradient extraction, quadrature filters, eigenvalues
of inertia tensor and of covariance matrix [62, 63, 61].
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Fig. 5.19. Three-dimensional editor for manual assignment of orientations and their
normals. Displayed are transversal, sagittal and frontal cuts in the photographs of
the Visible Man dataset from different perspectives.

An obvious technique is the extraction of image gradient and using its
normal as orientation. An utilization of this technique is possible only in two-
dimensional images.

A detection with quadrature filters requires the construction of a set of
linear filters. Each filter corresponds to a direction. The orientation is deter-
mined by averaging the vectors corresponding to the response of filters applied
in the texture.

The detection techniques basing on extraction of inertia tensor and covari-
ance matrix are similar in proceeding: The tensor and matrix, respectively,
are determined in the texture. The eigenvectors and -values are determined
(Sect. 2.4.4). If the smallest eigenvalue is multiple, texture orientation is in-
definite. Otherwise orientation is defined by the eigenvector corresponding to
the smallest eigenvalue.

Rule-Based Methods of Assignment. Rule-Based methods are commonly ap-
plied, if images provide insufficient information for texture analysis. These
cases can arise e.g. if image resolution is small or if images show an insuffi-
cient contrast.

Manual Methods of Assignment. Manual methods can be applied in cases,
which show a small reliability of the orientation detection, particularly if the
complexity of the orientation field is too high for rule-based assignment.

A three-dimensional editor allows the interactive, manual assignment of
orientations and their normals (Fig. 5.19). The editor displays transversal,
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sagittal and frontal cuts in image datasets from different perspectives. De-
fault values for the orientation and normals are created automatically by the
upper detection technique basing on texture analysis. The covariance matrix
is determined in a spherical region of the image and the eigenvector corre-
sponding to the smallest eigenvalue serves a default orientation. The user has
the option to manipulate the default values.

5.6.3 Interpolation

Commonly, after point-wise detection, rule-based and manual assignment an
interpolation is performed. The interpolation serves to assign orientation in
areas, which no orientation is a-priori known.

An efficient technique for interpolation utilizes two sets of restrictions [64,
61]:

• a set RO, which consists of points and their associated orientation
• a set RT , which consists of points and their associated normal of orienta-

tion

These sets of restrictions can be determined by detection, rule-based and
manual assignment.

The interpolation starts with an initialization of the orientation dataset.
The orientation of each voxel in this dataset is initialized with the orientation
of the nearest point in the set RO.

The interpolation continues with averaging orientations in the 6-neighbor-
hood. The average of neighboring orientations is calculated determining of
their principal axis. The calculation is repeated until the changes of orienta-
tions between successive steps are negligible.

Attention is paid to the restrictions in each iteration. The orientation
of voxels with restrictions represented by set RO is unchanged during the
interpolation. The orientation of voxels with restrictions represented by set RT

is determined by calculating the average orientation in the 6-neighborhood.
The result is projected into the plane perpendicular to the given normal of
the orientation.

The results of the interpolation with different sets of test data are shown
in Fig. 5.20, 5.21, and 5.22. For each interpolation the number of iterations,
orientations and normals of orientations are given.
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(a) (b)

Fig. 5.20. Exemplary one-dimensional interpolations of orientations (adapted from
[64]). (a) The interpolation was determined based on the given orientations O1 and
O2. (b) The interpolation was calculated using the given orientation O3 and normal
of orientation N1. The number of iterations amounted to 10.

(a) (b) (c) (d)

Fig. 5.21. Exemplary two-dimensional interpolations of orientations (adapted from
[64]). The interpolation was calculated using as restrictions (a) two orientations and
(b,c) four orientations. (d) The interpolation was determined using an orientation
and a normal of orientation. The number of iterations was 20.

Fig. 5.22. Exemplary three-dimensional interpolation of orientations (adapted
from [64]). The interpolation was determined from two given orientations. The num-
ber of iterations amounted to 20.
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Cardiac Anatomy

6.1 Overview

The heart constitutes together with the blood vessels the cardiovascular sys-
tem, which has the task of transporting blood in the body. In this system the
heart acts as a cyclically working pump and as a blood reservoir.

The anatomy is closely coupled with its physiology. Depending on the stage
of development, the species, the gender, and pathologies differences can be
found in the anatomy as well as in the physiology. The differences concern the
microscopic and macroscopic structures as well as the mechanical behavior.
Anatomical differences of the mammalian heart are found depending on the
posture of a species. The human heart is trapezoidal in silhouette, whereas
in pigs a ”Valentine heart” shape can be attributed [66]. The attachment of
blood vessels is species dependent and interindividual variations are reported.

The anatomy of the heart can be described from different viewpoints,
e.g. spatial, embryologic and physiologic. From a macroscopic spatial view
a mammalian heart is located inside of the thorax and near to the lungs
embedded by the pericardial sac (Fig. 6.1). Large blood vessels are connected
to the heart. The heart itself is separated in two functionally and anatomically
similar structures, the right and left halves, which represents the division of
the blood circulation system in two different parts. The right half collects the
deoxygenated blood from the body and pumps it to the lungs. The left half
receives the oxygenated blood from the lungs to deliver it to the body. The
left half has to generate a higher power, so it is the larger one.

The halves can be further divided into an upper and lower part, the so-
called atria and ventricles, respectively. Therefore, a mammalian heart com-
prises of a left and right atrium, and a left and right ventricle. The atria
collect the incoming blood, which is then transported to the ventricles. From
these the blood is moved to supply the body and the heart itself. The ventri-
cles are the primary generator of power resulting in relatively large muscular
structures.

F.B. Sachse: LNCS 2966, pp. 119–155, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



120 6 Cardiac Anatomy

Fig. 6.1. Historical outline of human heart with vessels, lungs and spine (from [65]).
The lungs were torn side wards to allow the sight onto the heart. The heart lies in
between the lungs in the middle mediastinum and is enclosed by the pericardium.

The atria and ventricles are composed of walls surrounding a cavity, which
is normally filled with blood. The walls consist primarily of a muscle struc-
ture, the myocardium, which is covered inside and outside by layers, the endo-
cardium and epicardium, respectively. Therefore, a region in the myocardium
can be classified in the three groups: subepicardial, midwall and subendocar-
dial. The epicardium is part of the pericardial sac. The atrial myocardium is
much thinner than the ventricular, with the myocardium of the left ventricle
as the biggest structure of the heart.

The atria and ventricles are connected with blood vessels. Valves are lo-
cated at different places in the cavities, which fulfill a controlling function for
the blood flow.

The contraction of the myocardium causes the blood flow. The my-
ocardium is built up by a muscular tissue richly pervaded by nerve fibers,
blood vessels, capillaries, and lymphatic vessels.

From a microscopic view the myocardium consists primarily of discrete
myocytes surrounded by a membrane. Aside from these fibroblasts, pericytes,
nerve cells etc. are found. Fibroblasts make up the majority of cells of non-
myocyte cells and reside in the interstitium [67].
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Fig. 6.2. Isolated canine left ventricular myocyte (from [71]). The myocyte is stained
with an antibody for the gap junction protein to visualize the distribution of the
gap junctions.

The membrane of myocytes includes pores of different types, which allow
the transport of diverse substances into and out of the cell. The shape and
arrangement of myocytes are dependent on their location and type. The my-
ocardium is surrounded by connective tissue structures forming the epi- and
endocardium. Furthermore, connective tissue links mechanically the different
cells in the myocardium. The connective tissue includes collagen and elastin
fibers.

In the following sections a description of the microscopic and macroscopic
structures of the heart is given. The cardiac myocytes, their connection by in-
tercalated disks and connective tissue, their oriented and laminated arrange-
ment as well as the gross anatomy of the heart focusing blood vessels, muscle
and nervous structures are presented with respect to their role in electrophysi-
ology and mechanics.

6.2 Microscopic Structures and Molecular Organization

6.2.1 Myocytes

Myocytes are commonly distinguished by their function, which is closely cou-
pled with their anatomy. Resulting from functional reasons the volume, sur-
face area and distribution of cellular components are differing, e.g. for atrial
and ventricular myocytes. Differences can also be found depending on the
pathologies, age and species [68, 69].

Myocytes assigned to the working myocardium produce primarily mechan-
ical tension. The functions result in an increase of the volume ratio of the
involved intracellular structures, i.e. contractile elements and providers of en-
ergy. Myocytes of the mammalian working myocardium are of irregular cylin-
der shape and branching processes are frequently occurring (Fig. 6.2 and 6.3)
[70]. The length of myocytes is in the range between 50 and 120 µm and the
diameter between 5 and 25 µm.

Specialized myocytes in the myocardium have the task of initiating and
transmitting an electrical excitation. These functions result in an adaptation
of the cellular shape and the involved cellular structures, e.g. the distribution
and density of ionic channels. In the initiator of electrical excitation, the sinus
node, different types of cells are observed, spider and spindle shaped, irregular
cells [72]. In humans the spider cells have an extension of 92− 102 µm with a
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Fig. 6.3. Myocytes with connective tissue and capillaries in the myocardium of
hamster (from [70]). The picture shows an area with a width of 42 µm and a height
of 21 µm created with scanning electron micrography.

central body diameter of 7− 9 µm. The spindle shaped cells of the sinus node
have a central body diameter of 5− 7 µm and an extension of 115− 130 µm.

In many locations the arrangement of myocytes is ordered and the cellular
form leads to a macroscopic anisotropic electrical and elastomechanical behav-
ior. Hence, many approximations for numerical simulation purposes describe
myocytes by cylinders or bricks. Principal axes are assigned to determine the
cellular orientation.

This section is focused on the mammalian cardiac myocytes of the working
myocardium. Partly, comparisons with skeletal myocytes are carried out.

The myocytes are enclosed by the sarcolemma, which delimits the extra-
cellular from the intracellular space. Myocytes are surrounded by the extra-
cellular space, which contains e.g. collagen fibers, water, and electrolytes. In
the intracellular space reside the nucleus, the mitochondria, the myofibrils,
the sarcoplasmic reticulum and the cytoskeleton. The intracellular space is
filled up with the sarcoplasm (myoplasm, cytoplasm) containing water, lipids,
carbon hydrates, salts, and proteins, e.g. calcium binding calmodulin.

Sarcolemma. The sarcolemma represents a semi-permeable barrier, which is
built up primarily by a phospholipid bilayer with a thickness of 3 − 5 nm.
Each phospholipid consists of two hydrophobic tails adhered to a hydrophilic
head (Fig. 6.4). The hydrophobic tails are aligned and located inside. The
hydrophilic head is found superficially of the bilayer (Fig. 6.5 and 6.6). The
phospholipids can move laterally in the sarcolemma.

The bilayer contains peripheral proteins attached to the surface of the
sarcolemma and transmembrane proteins spanning over the sarcolemma. The
proteins are responsible are responsible e.g. for signaling and cell-adhesion.
Important transmembrane proteins are ionic channels, exchangers, and pump
proteins as well as gap junctions and receptors. Proteins relevant for cell-
adhesion are cadherins, integrins, selectins, and immunoglobulins. These
transmembrane and membrane-attached proteins are partly floating in the
bilayer, but can also be fixed to elements of the cytoskeleton.
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(a) (b) (c)

Fig. 6.4. Molecular structure of phospholipid from different view points (data from
[73]). A phospholipid consists of two hydrophobic tails attached to a hydrophilic
head. Atoms are color-coded (blue: nitrogen, red: oxygen, brown: phosphorus, dark
grey: carbon and light grey: hydrogen).

Fig. 6.5. Molecular structure of phospholipid bilayer with two-dimensional align-
ment (data from [73]). The phospholipids align itself in water such that the hy-
drophilic head is found superficially and the hydrophobic tails are located inside.
Atoms are color-coded.

Specializations of the sarcolemma are the so-called transversal tubuli,
which intrude into the myocyte primarily at the adjacencies of the Z disks
[74]. The transversal tubuli infold the myofibrils and end near to the sar-
coplasmic reticulum. Despite their name the transversal tubuli show not only
transversal, but also horizontal components. The transversal tubuli feature
differences in concentrations of transmembrane proteins, particularly respon-
sible for calcium handling. In many species transversal tubuli are prevalent in
ventricular, but absent or reduced in atrial myocytes and Purkinje cells. My-
ocytes from birds, reptiles and amphibians show no incidence of transversal
tubuli.
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(a)

(b)

Fig. 6.6. Molecular structure of phospholipid bilayer in three dimensional alignment
viewed (a) with and (b) without water molecules (data from [73]). Atoms are color-
coded.

In mammalian ventricular cells transversal tubuli take commonly a large
area of the sarcolemma. Depending on species 11 % to 51 % are occupied.
The percentage volume of myocyte taken by the transversal tubuli ranges
from 0.8 % for mouse to 3.6 % in rat. A smaller area of the sarcolema and of
the volume is occupied in mammalian atrial cells.

Intercalated Disks. A further specialization of the sarcolemma is found at the
intercalated disks, which are regions, where adjacent cells are mechanically
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coupled. Here, intercellular channels, so-called gap junctions (Sect. 6.2.2),
form a coupling of the intracellular space, which is of large significance for in-
tercellular signalling. Further components of the intercalated discs are desmo-
somes and fasciae adherentes, which provide intercellular mechanical connec-
tion. In the intracellular space, Desmosomes and fasciae adherentes anchor in-
termediate filaments of the cytoskeleton and bundles of sarcomeric myofibers,
respectively [75, 76].

Nucleus. The nucleus takes a small amount of the volume of myocytes, e.g.
approximately 2 − 4 % of atrial and ventricular myocytes. It has an ellipsoid
shape, is centrally located and surrounded by a membrane.

Mitochondria. Mitochondria belong to the cellular organelles and are sur-
rounded by a double-layered membrane. The outer membrane contains the
protein porin, which allows passage of ions and small molecules up to 10 kD.
The inner membrane, so-called cristae, is nearly impermeable and highly
folded. The inner membrane includes ionic channel, pump and exchanger
proteins, i.e. hydrogen pumps, calcium ionic channels, sodium-calcium, and
hydrogen-sodium exchangers.

Mitochondria occupy approximately 14− 20 % of the volume of atrial and
25 − 36 % of ventricular myocytes. They are cylinder shaped with a length
of 0.3 − 1.7 µm and a diameter of 0.2 − 1 µm. The mitochondria are found
near to the sarcolemma and between myofibrils, which results from their task
as provider of energy for the myofilaments as well as the sarcolemmal and
sarcoplasmic ion pumps. The cellular supply of energy is performed by com-
ponents of the inner membrane of the mitochondria, which generate adenosine
triphosphate (ATP) via oxygenation of nutrients.

Myofibrils. The myofibrils are tube shaped contractile elements taking a high
part of the cellular volume, i.e. approximately 41 − 53 % of the volume of
atrial and 45 − 54 % of ventricular myocytes (Fig. 6.7). The myofibrils have
an approximate thickness of 1 µm and are divided every 2.5 µm by the Z disk
into the sarcomeres.

Sarcomere. The sarcomeres contain the myofilaments (Fig. 6.8), which are of
importance for the mechanical contraction. Furthermore, elongated proteins,
i.e. titin and nebulin, are found in the sarcomeres [76].

Titin spans parallel to the myofilaments from the Z disks nearly to the
center of the sarcomeres with a length of approximately 1 µm. Titin shows
a large number of isoforms, e.g. heart muscle N2B isoform with a molecular
weight of 2970 kD, soleus skeletal muscle isoform with 3700 kD, and novex-3
titin isoform with ≈ 700 kD. Titin is the third most abundant protein after
myosin and actin in myocytes [78].

Nebulin with a molecular weight of 750 − 850 kD regulates the assembly
and specifies the lengths of the actin filaments [79]. Nebulin can be divided in
three parts:
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MitochondrionSubsarcolemmal cisternaeSarcolemma Transversal tubule

Z diskMyofilamente Sarcoplasmic reticulum Diadic space

Fig. 6.7. Schematic diagram of intracellular structures of mammalian cardiac mus-
cle (adapted from [77]).

Nebulin Titin

Myosin filaments Actin filaments

Z diskZ disk

Fig. 6.8. Schematic view of sarcomere. The sarcomere includes myofilaments, titin
and nebulin. Myofilaments are composed of actin and myosin filaments. The actin
filaments, titin and nebulin are attached to the Z disks.

• Central part with a molecular weight of ≈ 700 kD. It associates with actin
over the whole filament.

• N-terminal part. It extends form the central part to the ends of the actin
filament in the sarcomere’s center.

• C-terminal part with a molecular weight of ≈ 80 kD. It integrates with
the Z-disk.
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(a) (b)

(c)

Fig. 6.9. Molecular structure of tropomyosin (data from [81]). The tropomyosin of
species gallus gallus (chicken) is visualized from perpendicular to the filaments. The
protein is composed of different amino acids, which are indicated by spheres. Differ-
ent techniques are used for the visualization: (a) Hierarchic visualization, showing
components dependent on the rank, (b) secondary structure, whereby only protein
backbones are drawn, side chains and bases are off, (c) space filling, whereby the
amino acids are shown as spheres.

These proteins provide - in conjuction with several further proteins - me-
chanical support for the myofilaments and influence the passive mechanical
properties of myocytes [80].

Myofilaments. The myofilaments are composed of so-called actin (thin) and
myosin (thick) filaments [68] (Fig. 6.8). The thin filaments lead from the Z
disks approximately 1 µm towards the center of the sarcomere. The backbone
of thin filaments is built up by two actin helices twined with concatenated
long, flexible, coiled coil molecules, i.e. tropomyosin (Fig. 6.9). Tropomyosin
is a rope-like protein with a length of ≈ 42 nm. A homo- and a heterodimer
type of tropomyosin exist.

Monomer actin (G-actin) is a plate-shaped protein with a molecular weight
of 42 kD and a size of approximately 5, 5 nm x 5, 5 nm x 3, 5 nm. G-actin
polymerizes forming helices (F-actin). In human six genes code the isoforms
of actin, which is the most abundant protein in eukaryotic cells. Tropomyosin
has a length of 40 nm and possesses seven actin binding sites. One binding
site is found for troponin. Commonly, seven actin molecules and one troponin
molecule are attached to each tropomyosin.

Troponin consists of three components: troponin T, troponin I, and tro-
ponin C. Troponin T is connected to the tropomyosin and the two further com-
ponents. Troponin I inhibits interactions between actin and myosin. Troponin
C is of importance for the initiation of mechanical contraction by binding of
calcium.
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Fig. 6.10. Molecular structure of myosin II (data from [83]). The protein can be
divided in a head, neck and tail region. The chains of the head and neck region of
species gallus gallus are visualized.

head

head
neck

tail

Fig. 6.11. Schematic view of myosin II. The protein myosin can be decomposed
into two head, neck and tail regions.

The actin-tropomyosin arrangement is influenced by the binding of calcium
to troponin. The arrangement of thin filaments is thought to be maintained
by the protein nebulin [76].

The thick filaments have a length of approximately 1.6 µm and are centered
in the sarcomere. They are arranged parallel to and between the thin filaments.
The thick filament is composed primarily of the myosin molecule, which has
a length of approximately 160 nm. A few hundreds of myosin molecules per
thick filament are reported [82]. Thirteen types of myosin are distinguished
by genome analysis, e.g. myosin I, myosin II, and myosin V, which are found
in eukaryotic cells. All kinds of myosin can be subdivided into a head, neck
and tail region (Fig. 6.11 and 6.10). Component of the thick filaments and
therefore responsible for the contraction of cardiac, skeletal and smooth muscle
is myosin II. Myosin II includes two pear-shaped heads showing an ATP and
an actin binding site. The neck region with a length of circa 8 nm connects
the heads with the two tails. The tails are coiled coil molecules and form the
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(a) (b)

Fig. 6.12. Schematic view of single myosin and actin-myosin filaments (adapted
from [84]). (a) The myosin head and tail is shown in red, its light chains in orange
and yellow. (b) The myosin filament is central and surrounded by actin filaments.
The actin filaments consist of F-actin, tropomyosin and troponin.

main axis of the thick filaments. The thick filaments are bound via the protein
titin to the Z disks [76].
Sarcoplasmic reticulum. The sarcomeres are enfolded by the sarcoplasmic
reticulum, which can be divided into the longitudinal tubuli forming a mesh
between the Z disks and the terminal cisternae (junctional sarcoplasmic retic-
ulum, subsarcolemmal cisternae) located at the Z disks (Fig. 6.7). The space
between the sarcolemma and the terminal cisternae is referred to as diadic
space for cardiac myocytes and as triadic space for skeletal myocytes.

The volume occupied by the terminal cisternae and by the system of longi-
tudinal tubuli is commonly smaller in cardiac than in skeletal myocytes [68].
The volume ratios of the terminal cisternae and the system of longitudinal
tubuli are in the range of 0.03 − 0.5 % and 0.62 − 9.47 %, respectively, for
mammalian myocytes of different species [68].

The sarcoplasmic reticulum is enclosed by a membrane containing cal-
cium, potassium, chlorine and hydrogen ionic channel proteins as well as cal-
cium pump proteins. 10-200 calcium release channels (ryanodine receptors)
are thought to form a cluster of diameters up to 200 nm. This cluster is lo-
cated where the junctional sarcoplasmic reticulum comes into close contact
with the sarcolemma [85] and sarcolemmal L-type calcium channels. In rabbit
ventricular myocytes it was demonstrated that more than one sarcolemmal
L-type calcium channels is associated to each cluster of release channels [86].
Calcium release channels are regulated by various proteins, e.g. calmodulin,
FK-506 binding protein, and sorcin. The other ionic channel and pump pro-
teins are distributed throughout the membrane. The protein calsequestrin
with high affinity and high capacity for calcium is found inside, primarily in
the terminal cisternae.
Sarcolemmal Ionic Channels, Exchangers and Pumps. The sarcolemma in-
cludes pore forming proteins, i.e. ionic channels, exchangers and pumps, which
are specified by the ion type, which can pass through, by their specificity for
these ions, and by their opening and closing characteristics (Sect. 7.2.1). Ex-
emplary ionic channels are the sodium, potassium, calcium, and chlorine chan-
nels with the different variants. The ionic channels, exchangers and pumps are
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dynamically expressed by activation of their corresponding genes due to aging
and physiological parameters.

Sodium channels are found in the cell membrane of all excitable tissue of
vertebrates, e.g. myocytes and neurons, but not in monads [87]. In myocytes
they are located primarily on the surface sarcolemma and not in the transver-
sal tubuli. The mammalian genome includes minimally six voltage-dependent
sodium channel genes. Three of these genes are found in humans. The density
of sodium channels ranges from 100,000 per ventricular myocyte to 1,000,000
per Purkinje fiber. A molecular weight of 240 kD is reported [88]. The do-
main of the channels is not restricted to the membrane region, but they extend
significantly in the intra- and extracellular space.

Ionic channels in the sarcolemma with a high specificity for calcium are
divided into two types, discriminated by their electrophysiological behavior:
L- and T-type [89]. L-type calcium channels (dihydropyridines receptors) are
expressed in all cardiac myocytes. The density of L-type channels is approx-
imately 30,000 per ventricular myocyte. L-type calcium channels consist of
5 subunits with a summary molecular weight of 410 kD. The density in the
transversal tubuli is four times higher than on the surface sarcolemma. T-
type channels are found in atrial, nodal, Purkinje, and smooth muscle cells.
In ventricular myocytes T-type channels are expressed at low or undetectable
levels [90].

Potassium channels in the sarcolemma show a large variety [91]. Twenty
different variants are known only for voltage dependent channels. The molec-
ular structure of a potassium channel is illustrated in Fig. 6.13.

Furthermore, the sarcolemma includes ion exchanger proteins, e.g. the Na-
Ca exchangers, which are located at the openings of the transversal tubuli [92].
A Na-Ca exchanger consists of approximately 1000 amino acids with an ap-
proximate weight of 120 kD. An average density of up to 500 exchangers/µm2

is reported. The mammalian genome includes minimally three Na-Ca ex-
changer genes.

Pumps in the sarcolemma are e.g. the Na-K and calcium pump, which
consume ATP to transport ions. The Na-K pumps of myocytes are primarily
located on the surface sarcolemma and not in the transversal tubuli. The
calcium pump protein has a weight of 138 kD [68].

Cytoskeleton. The cytoskeleton pervades the intracellular space anchoring the
myofibrils, nucleus, mitochondria, and sarcolemma. The cytoskeleton consists
primarily of microfilaments, microtubules, and intermediate filaments [76].
The microfilaments are built up of G-actin, which polymerizes as helix-shaped
F-actin. The microtubules are composed of the protein tubulin, the inter-
mediate filaments of lamin and desmin. The desmin containing intermediate
filaments are linked to the desmosomes of the intercalated disks.
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(a) (b) (c)

(d) (e) (f)

Fig. 6.13. Molecular structure of potassium channel (data from [81]). The so-called
Kcsa potassium channel of the bacterium Streptomyces Lividans consists of four
identical domains forming a pore. The channel is visualized (upper row) from per-
pendicular to the ion channel and (lower row) from extracellular in direction of
the channel. The channel protein is composed of different amino acids, which are
color-coded. Different techniques are used for the visualization: (a,d) Hierarchic vi-
sualization, showing components dependent on the rank, (b,e) secondary structure,
whereby only protein backbones are drawn, side chains and bases are off, (c,f) space
filling, whereby the amino acids are shown as spheres. The central located, large
sphere indicates a potassium ion inside of the channel.

6.2.2 Gap Junctions

The intracellular space of adjacent myocytes is coupled by gap junctions
(nexus), which are located by bundle at the intercalated disks [94, 95]
(Fig. 6.14). Intercalated disks are disk shaped segments, which mechanically
couple cells [96]. Mainly, the disks can be found at or near to the ends of
myocytes [97] (Fig. 6.2).

A gap junction is cylinder or barrel shaped with a diameter of 1.5−2.0 nm
and a length of approximately 2− 12 nm. A molecule of atomic weight of up
to 1 kD can pass through the gap junction [98, 99], e.g. nutrients, metabolites,
and ions.
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Fig. 6.14. Microscopic section of 1 µm thickness in canine left ventricular my-
ocardium (from [93]). The arrangement of myocytes and the distribution of gap
junctions are illustrated. The arrows depict intercalated disks, where the gap junc-
tions are located by bundle. Longitudinal gap junctions are marked by horizontal
arrows, transversal gap junctions by vertical arrows.

A gap junction is built up by two hemi-channels, so-called connexons,
piercing the sarcolemma of the involved cells. The connexons are formed by
six integral membrane proteins, so-called connexins. More than one dozen of
connexins have been cloned, which are named by their atomic weight ranging
from 25 to 50 kD. The permeability of gap junctions is dependent on their
assembly.

The most abundant connexin in the mammalian myocardium is con-
nexin43, which is also expressed in ovary, uterus, kidney, and lens epithe-
lium. Connexin43 was found to be not expressed in atrioventricular node and
bundle branches of rats [100]. Further members of the connexin family ex-
pressed in the heart are: connexin37, connexin40, and connexin45. Connexin45
is found abundantly in embryonic hearts. In adult hearts connexin45 is ex-
pressed mostly in atrial, His bundle and Purkinje cells, but only in a small
amount in the ventricular cells. Connexin32 is found in liver, stomach, kidney,
and brain, but not in any part of the heart [100].

A half-life of ≈ 1.3 h was determined for cardiac connexin43 [101]. Down-
regulation of connexin43 and up-regulation of connexin45 is demonstrated in
heart failure [102]. In ischemic cardiomyopathy down-regulation of connexin43
and up-regulation of connexin40 is reported.

In the myocardium each myocyte is coupled by gap junctions non-uniformly
with other myocytes, e.g. in canine a myocyte is coupled with 9.1 ± 2.2 my-
ocytes [103]. A distinction can be made between longitudinal and transversal
gap junctions. A longitudinal gap junction is oriented in approximately the
same direction as the first principal axis of adjacent myocytes, a transversal
gap junction is oriented perpendicular thereto. The density and distribution
of orientations of gap junctions differ depending on the tissue, e.g. the den-
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Fig. 6.15. Cardiac collagen network in the rabbit left ventricle (from [70]). The
interconnection between a myocyte (M) and capillary (C) is visualized with scanning
electron micrography. The picture shows an area with a width of 1.3 µm and a height
of 0.95 µm.

(a) (b) (c)

Fig. 6.16. Molecular structure of collagen (data from [81]). The protein collagen
consists of three chains forming a triple helix. Each chain is over 1400 amino acids
long, only 20 are shown. Different techniques are used for the visualization: (a)
Hierarchic visualization, showing components dependent on the rank, (b) secondary
structure, whereby only protein backbones are drawn, side chains and bases are off,
(c) space filling, whereby the amino acids are shown as spheres.

sity in the sinus and atrioventricular node is smaller than in the ventricular
myocardium. The average density of gap junctions in longitudinal orientation
is larger than in transversal orientation [103]. The average length of longitu-
dinal gap junctions is smaller than the length of transversal gap junctions.
Both circumstances lead to a macroscopic anisotropic, electrical intracellular
conductivity.

6.2.3 Connective Tissue Structures

The myocardium is pervaded and surrounded by a mesh of extracellular col-
lagen fibers, which are composed of a multitude of collagen fibrils. Collagen
takes 2 − 5 % of the weight of the heart. Collagen is a protein consisting of
over 1400 amino acids (Fig. 6.16) and is synthesized by the cardiac fibroblasts.
Furthermore, fibers of elastin draw through the myocardium. The content and
the structure of the connective tissue are dependent on age, pathologies and
species.
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Both, collagen and elastin are fibrous proteins of the extracellular matrix,
which is a determinant for the viscoelastic behavior of the myocardium. The
network serves for the mechanical coupling of the myocytes, capillaries, and
lymphatic vessels (Fig. 6.15).

Collagen fibrils have a thickness ranging from 30 to 70 nm [70]. The fiber
thickness is in physiologic cases between 120 and 150 nm. An increase up to
250−300 nm is possible in pathophysiologic cases, e.g. in case of hypertrophy,
hypertension and myocardial infarction [104, 105].

The density of collagen fibers is depending on the tissue. E.g. a small
density can be found in papillary muscles and trabeculae, a high density in
the left ventricular myocardium, the endo- and epicardium [70, 106].

The connective tissue can be divided, according to the classification in
skeletal muscles, into three different groups:

• Endomysium. The collagenous network surrounding a single myocyte as
well as interconnecting a myocyte with neighboring myocytes or capillaries
is referred to as endomysium. Often the connections are starting near to the
Z disks perpendicular to the membrane [107]. The length of the connections
is in the range 120 − 150 nm.

• Epimysium. A layer of collagen and elastin fibers forming the epimysium
covers the subendo- and subepicardial myocardium. The layers are named
endocardium and epicardium, respectively.

• Perimysium. Bundles of perimysal collagen fibers couple the endomysium
with the epimysium and envelop groups of myocytes. The grouping of
myocytes resulting from the enveloping leads to a lamination of the my-
ocardium. The perimysal collagen fibers connecting a myocyte inside of a
group with a myocyte outside are less frequently occurring. Furthermore,
a larger distance can be ascertained. The fiber length is depending on the
location, e.g. in canine a fiber length of 31± 9 µm can be found in suben-
docardial ventricular myocardium, a length of 27± 10 µm in the midwall
and of 17± 3 µm in the subepicardial myocardium [108]. Perimysial colla-
gen fibers showed in a study of ventricular trabeculae of rat to be wavy in
a two-dimensional manner rather than coiled [109]. The fibers straighten
by increased strain. Extension of fibers is limited at sarcomere length of
2.3 ± 0.04 µm.

6.3 Macroscopic Structures

6.3.1 Ventricles

The mammalian heart includes two ventricles, where the atria and different
blood vessels are attached (Fig. 6.17 and 6.18). The right and in particular
the left ventricle are the anatomically and functionally dominant structures
of the heart. Each ventricle consists of walls with openings, so-called ostia,
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Fig. 6.17. Historical outline of the opened human heart with the atria and ventricles
(from [65]).

Septum

Right ventricle

Left ventricle
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Tricuspid ostia

Mitral ostia

Pulmonary ostia

Fig. 6.18. Superior view on ventricles and ostia of pig heart.



136 6 Cardiac Anatomy

surrounding a cavity [110]. The walls are primarily built up of myocardium
enclosed by the epicardium and endocardium.

The weight, shape and size of the ventricles and the topology of their
internal components is depending on the species. Furthermore, differences
can be found e.g. addicted to sex, age, and pathologies. The walls and the
cavity of a right ventricle are commonly smaller than a left resulting from the
difference in power requirements.

The ostia are the major points of attachment. The left ventricle has two
ostia, the mitral and the aortic ostium. Also, the right ventricle has two os-
tia, the tricuspid and the pulmonary ostium. The ostia are named by the
attributed valve.

Attached to the wall are intracaval structures, i.e. the papillary muscles
and trabeculae. The papillary muscles can be compared with pillars basing
with one end in the wall. At the other end they are connected with tendons
leading to the atrioventricular valves. In humans three papillary muscles can
be found in the right ventricle and two in the left. The trabeculae are composed
of branching small muscle bundles, which pervade the ventricular cavities
similar to a mesh.

In the working myocardium of the ventricles an oriented and laminated
structure can be found [111, 112, 113, 114, 108, 115]. The orientation and lam-
ination of the myocytes should be interpreted with a macroscopic, averaged
perspective, neglecting branching structures and irregular cellular shapes.
This perspective is often taken for cardiac modeling, e.g. continuum modeling
of electrophysiology and structure mechanics taking anisotropy into account.
The orientation and lamination can be determined by histological studies
of surfaces of tissue sections and by recently developed imaging techniques
(Sect. 6.4.4).

The orientation of myocytes in the ventricular wall is dependent on the
depth [111, 112]. The orientation can be quantitatively described by the helix
angle of a fiber path through the myocardium parallel to the local epicardium.
Alternatively, the orientation is determined by angles in a local coordinate
system in surface layers of ellipsoids approximating the ventricles. Hereby,
the orthogonal local coordinate system for the assignment of angles at a given
point is constructed by a vector parallel to the principal axis of the ellipsoid
and a second vector, orthogonal to the principal axis and the surface normal.
An angle of ± 90◦ denotes an orientation towards the base of the heart, an
angle of 0◦ stands for an equatorial orientation.

An angle of approximately −90◦ was measured for the orientation of my-
ocytes in the plane of the left ventricular epicardial myocardium of pig and
canine in systole, an angle of 90◦ for the endocardial myocardium. In human
left ventricular myocardium an angle of −75◦ was measured epicardially, 70◦

endocardially. In the right ventricular myocardium of guinea pig an angle of
−45◦ and 90◦ was measured epicardially and endocardially, respectively. An
angle of 0◦ was reported in the midwall of all these species. Commonly, a
smooth transition of the angle from epicardium to endocardium is measured.
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Fig. 6.19. Crista terminalis and musculi pectinati in opened right atrium of pig.

In the apex cordis the orientation leads to two vortices, one for each ventricle.
The dorsal and anterior interventricular sulcus show a bifurcation of myocar-
dial fibers. In the papillary muscles a longitudinal orientation of myocytes was
found, i.e. in direction of the first principal axis.

The lamination of the myocardium results from the grouping of myocytes.
The grouping is caused by the enveloping of groups of myocytes by the per-
imysal collagenous network. In canine the thickness of a layer amounts to
4±2 myocytes [108]. No significant variation is found through the wall depth.
In the papillary muscles a lamination was nowhere observed in anatomical
studies.

6.3.2 Atria

The mammalian heart includes two atria, which are attached above the ven-
tricles and are connected with blood vessels of different types (Fig. 6.17 and
6.19). Between the atria and the ventricles resides the atrioventricular sep-
tum, which consists of fibrous connective tissue. The atrioventricular septum
is punctuated only at the His bundle. The cavities of the atria and ventricles
are separated by the atrioventricular valves.

An atrium can be divided into an ear shaped, conical part, the auriculum,
and a further part, the atrium proper. The two atria are separated by the
atrial septum, which includes the fossa ovalis. The fossa ovalis consists of
fibrous tissue and is formed post natal by closing of the foramen ovalis, which
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acts before as an open connection for the blood flow between the right and
left atrial cavity.

The atrial walls consist primarily of muscle bundles, which are arranged
in a complex manner. The orientation of the myocytes follows the local orien-
tation of the muscle bundles. The averaged thickness of the bundles is larger
in the left atrium, but some bundles of the right atrium are the strongest.
The dominant muscle structure, the crista terminalis or right atrium terminal
crest, can be found subendocardial of the right atrium. In humans a thickness
of 5 − 8 mm was measured. The walls measure about 2 mm. The crista ter-
minalis forms a bow starting at the orifice of the superior vena cava near the
sinus node. Attached to the crista terminalis are the musculi pectinati, which
branch off nearly perpendicular and progress like a fan. In humans the area
of maximal thickness in the left atrium is the frontal wall [116]. A structure
similar to the crista terminalis is not found in the left atrium. Furthermore,
the musculi pectinati of the left atrium are smaller developed. The intera-
trial bundle, the so-called Bachmann bundle, connects the two atria as strong
muscle structure with a subepicardial and anterior course [117]. Its root can
be found near to the sinus node. In the left atrium the bundle surrounds the
auriculum and ends up in the musculi pectinati [118]. The Bachmann bundle
plays an important role in the interatrial electrical excitation propagation.
Circumferential muscle bundles can be found at the ventricular ostia.

The orientation of myocytes in the mammal atria was examined in a large
number of anatomical studies [117, 118, 110, 119, 120, 116, 121]. The results
show a relatively species independent arrangement, reflecting the configura-
tion of the muscle bundles:

• circumferential orientation in the mitral and tricuspidal ostia
• longitudinal orientation in the vena cava superior and inferior
• longitudinal orientation in the crista terminalis
• circumferential orientation at the atriocaval junctions of the pulmonary

veins
• longitudinal orientation of the Bachmann bundle

A lamination of the atrial myocardium similar to the ventricular lamina-
tion is not reported in anatomical studies.

The triangle of Koch is a region of high importance for the clinical atrial
anatomy. The borders of the triangle are the tendons of Todaro, the septal
leaf of the tricuspid valve and the opening of the sinus coronarius. The ten-
dons of Todaro are commonly found between the eustachian and thebesian
valve. Because of significant individual variations of the tendons of Todaro,
i.e. absent or multiple, the concept of triangle of Koch as a clinical landmark
is subject of recent controversy [122, 123].
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6.3.3 Blood Vessels

The blood vessels attached to the heart are named by the direction of the
transported blood. Vessels with a blood flow in direction to the heart are
called veins; those with a flow away from the heart are called arteries.

In the atria and ventricles blood is collected and pumped. The atria receive
blood from the veins, which is then transferred to the ventricles. The ventricles
pump the blood in the arteries.

The right atrium is attached to the vena cava superior and inferior. Fur-
thermore, the sinus coronarius and the thebesian veins of the vascular system
of the heart end in the right atrium. Attached to the left atrium are the venae
pulmonalis. In humans commonly four veins are found.

The right ventricle transports blood through the arteria pulmonalis to the
lungs. The left ventricle is attached to the aorta to transfer the blood in the
body.

The anatomy of the cardiac vessel system is subject to species dependent
and inter individual variations. In humans the arteria coronaria sinister and
dexter start at the root of the aorta. The coronary arteries supply the atrial
and ventricular walls with blood. Commonly, the arteria coronaria dexter
transports blood to the right ventricle, in septal regions and the left ventricular
dorsal wall. The other regions are supplied by the arteria coronaria sinister.

6.3.4 Valves

Valves are found in different areas of the heart. The valves control the blood
transport by opening and closing. Variations of their attachment and their
configuration are found depending on species and inter individually. The valves
are primarily built up by collagen.

The atrioventricular valves are located between the atrium and ventricle.
They are attached through the chordae tendinae with papillary muscles. The
free borders of the leaflets atrioventricular valves are directed into the ven-
tricles. The valve between the left atrium and ventricle is named mitral or
bicuspid valve, which consists in humans of two leaflets, anterior and poste-
rior. The tricuspid valve is located between the right atrium and ventricle.
In humans this valve consists of three leaflets, antero-superior, septal and
inferior.

The aortic valve is located in the aorta near to the left ventricular aortic
ostium. In humans three leaflets are distinguished: posterior, anterior left and
right. The pulmonary valve is attached in the pulmonary artery near to the
right ventricular pulmonary ostium, which shows as the aortic valve three
leaflets in humans: posterior, anterior left and right. The aortic and pulmonary
valve are semilunatic shaped. The free borders of their leaflets are directed
into the vessel.

Furthermore, valves in the right atrium are known, which however are
not present in all species and individuums. In humans the eustachian and
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thebesian valve are reported. The eustachian valve is located between the
vena cava inferior and the right atrium over spanning approximately half of
the vein. The thebesian valve, which is also labeled valvula foraminis ovalis,
is found between the sinus coronarius and the right atrium.

6.3.5 System of Excitation Conduction and Initiation

The cardiac system of excitation conduction and initiation consists of special-
ized myocytes. The specialization concerns the cellular anatomy, the intercel-
lular coupling and the cellular electrophysiology.

The sinus node as the initiator of the physiologic electrical excitation is
found in the human heart at the orifice of the superior vena cava [124]. Vari-
ations of position, shape and size are found in humans, among other things
the node size is depending on the heart size. A flat, half oval and beet shape
is reported. An averaged length of 30 mm, width of 3 mm and thickness of
2 mm is measured [125].

In the rabbit, the node is located in the posterior right atrium, medial to
the crista terminals [72]. A length of 4 − 5 mm, a width of 1 − 2 mm and a
thickness of 200 µm is reported. A similar position of the sinus node is found
in dogs. A length of 15 − 20 mm, a width of 5 − 7 mm and a thickness of
200 µm is observed.

The sinus node consists of interweaving cells, which is obvious e.g. in pho-
tomicrographs. Two principally distinct types of myocytes were identified in
the sinus node, i.e. spider and spindle shaped cells (Sect. 6.2.1). The my-
ocytes are packed in a matrix of connective tissue, which takes 40 to 50 % of
the volume. Furthermore, the sinus node is richly innervated.

The myocytes of the sinus node are connected via gap junctions with the
myocytes of the atrial working myocardium. The crista terminalis and the
Bachmann bundle serve as conduction pathways to the atrioventricular node
and left atrium, respectively [121].

The atrioventricular node is located in the right atrium and at the intera-
trial septum near to the opening of the sinus coronarius. In humans the apex
of the triangle of Koch is used as a landmark. Three different types of cells
were found in the atrioventricular node: transitional cells as well as in the dis-
tal segment located mid-nodal and lower nodal cells [127]. The histologically
motivated distinction is further confirmed by electrophysiological differences.
The atrioventricular node can be divided into an atrial and distal segment.
The atrial part of the node is attached via transitional cells with the atrial
myocardium. The distal part is surrounded by fibrous tissue and descends in
the His bundle. The distal nodal cells are continuous with the cells of the His
bundle.

The His bundle is insulated by sheaths of fibrous tissue and penetrates
the heart skeleton between the atria and ventricles. The His bundle is the
root of the Tawara bundle branches, which subdivides first into the left and
right bundle branch located in the left and right subepicardial myocardium,
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Fig. 6.20. Historical photography of an opened left ventricle from cow with the
valves, papillary muscles, and the system of excitation conduction (from [126]). The
system is colored with blue ink.

respectively [128, 121]. The branching takes place several fold (Fig. 6.20) re-
sulting in a fan like distribution. The branches are isolated from the working
myocardium by fibrous tissue. The ends of the branches are connected with
the medial and apical subendocardial located Purkinje cells, which are linked
with myocytes from the working myocardium by gap junctions. In humans
the right Tawara bundle branch penetrates in the ventricular septum dividing
commonly in three branches, which progress in the right septum as well as
in the right ventricular latero-ventral and dorsal papillary muscles. The left
branch progresses primarily endocardially in the left ventricular, frontal and
dorsal papillary muscles. Some fibers pass through the left cavity.

6.3.6 Nervous System

The heart is innervated by sympathetic and parasympathetic nerves stem-
ming from the truncus sympathicus and nervus vagus, respectively [125]. The
cardiac nervous structures include efferent and afferent fibers as well as gan-
glions.

Partly, the nerves are located extracardial, e.g. at the superficial coronary
arteries. Furthermore, nerves are found intracardial, e.g. in the myocardium,
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at the coronary arteries in the myocardium, in the endocardium and the
valves.

Efferent nerves influence large parts of the cardiac conduction system, i.e.
the sinus and atrioventricular node, His bundle and Tawara bundle branches
[129]. Regional differences of the innervation are reported, e.g. the innerva-
tion in the central part of the sinus node and in the transitional part of the
atrioventricular node is significantly larger than in the peripheral parts and
in the compact region, respectively [129].

Afferent fibers transport information concerning ischemia and pressure.
Normally, the fibers are found in contiguity with the efferent fibers of the
same root. Fibers responsible for detecting ischemia are reported primarily
in the sympathetic nerves. Fibers with the task of measuring pressure are
located near to the aorta, the Purkinje fibers, the right atrium and the left
ventricle.

6.4 Modeling of Anatomy

6.4.1 Overview

Detailed modeling of the macroscopic cardiac anatomy is commonly performed
on base of medical imaging systems, which are used in clinical routine and
research. The resulting data is transformed with methods of digital image
processing to obtain a representation of anatomy, which is suitable for the
target application.

Different levels of spatial description can be distinguished ranging from
analytical, comprehensive approaches to detailed descriptions on base of mil-
lions of volume elements. In the next sections exemplary analytical models are
described, an introduction to the modeling sources is given and some models
created by digital image processing are demonstrated.

6.4.2 Analytical models

Model of left ventricle. An example of analytical description is the approxi-
mation of left ventricle by crop of two confocal truncated ellipsoids [130]. The
ellipsoid’s focus length d is defined as d =

√
a2 − b2 with the ellipsoid’s minor

radius b and major radius a. The truncation of an ellipsoid is quantified by
a truncation factor fb specified by fb = lbe/lea with the distance from basal
plane to equator plane lab and the distances from equator plane to apex lea.
Commonly, a truncation factor fb of 0.5 is chosen. This analytical approach
can be transformed to a description on base of volume elements (Fig. 6.21).
A description of the macroscopic orientation and lamination of myocytes can
be added taken into account results from anatomical studies (sect. 6.3.1).
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(a) (b)

Fig. 6.21. Model of left ventricular anatomy by crop of two confocal truncated
ellipsoids. The (a) full and (b) sectioned model is shown in wire frame representation.
The model consists of 30 x 30 x 38 cubic elements.

Fig. 6.22. Cylinder model of papillary muscle in wire frame representation. Surface
and further points are shown, which were localized using a computer-controlled
micromanipulator. The model is created based on points at the surface of the muscle
using numerical minimization techniques.

Biventricular model. Analytical biventricular models can be created by exten-
sion of the analytical left ventricular model in such a manner that a descrip-
tion of the right ventricle is added [131]. The geometry of the right ventricular
model is approximated by crop of two confocal truncated ellipsoids, which are
then cropped with the left ventricular model. Similar strategies and parame-
ters for determining the orientation of myocytes in the two ventricles can be
applied as in the left ventricular model.
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Fig. 6.23. Exemplary cryosection of the Visible Female data set with a transversal
view of the thoracic region. The section was performed after freezing of the corpse.
The blue gel was used to fix the body and is furthermore necessary for the cryosection
to image only in plane information.

Model of papillary muscle. The anatomy of a papillary muscle can be ap-
proximated by a cylinder [131]. Parameters of the cylinder were determined
by surface points. These points were acquired with a computer-controlled
micro-manipulator. The parameterization of the cylinder was performed by
numerical minimization of an error function, which uses distances between the
cylinder’s surface and the given points. The model was extended by incorpo-
ration of macroscopic fiber orientation. In accordance to anatomical studies
of papillary muscles a fiber orientation parallel to the muscle’s first principal
axis was included. A lamination was neglected, because it was not observed in
anatomical studies. This analytical description was transformed to a descrip-
tion on base of volume elements (Fig. 6.22).

6.4.3 Imaging Systems and Data Sources

Commonly, ultrasonic (US), magnetic resonance (MRT), and computed to-
mography (CT) are used for the imaging of the heart. These imaging systems
use the tissue dependent variations of the acoustic impedance leading to re-
flection of ultrasonic waves and of their scattering, of the absorption of X-rays,
and of the resonance behavior of nuclei to get information of the tissue dis-
tribution inside a body.

An alternative data source for the macroscopic modeling of human anatomy
provides the Visible Human Project of the National Library of Medicine,
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Bethesda, Maryland (USA) [33]. The ongoing project started 1990 and aims
at the computerized representation of human bodies, which should be made
available as standard for the medical and technical research. In a first ap-
proach selected corpses were imaged by CT and MRT as well as by specific
photographic techniques. The selection of corpses was made by different cri-
teria, e.g. normal height and weight, no pathologic changes in anatomy, and
age between 20 and 60.

The Visible Human Project forms a base of the MEET Man Project (Mod-
els for Simulation of Electromagnetic, Elastomechanic and Thermic Behavior
of Man) of the Institut für Biomedizinische Technik, Universität Karlsruhe
(TH) [26, 132]. The project aims at the generation of anatomical and physical
models of the human body suitable for numerical calculation of physical fields.
A focus of the MEET Man project is the computerized reconstruction of the
anatomy, electrophysiology and mechanics of the human heart.

The following sections present some models of the cardiac anatomy on
base of MRT and from the data of the Visible Human Project. Special focus
was taken on the applicability of the models in the area of numerical field
calculation.

6.4.4 Modeling of Orientation and Lamination of Myocytes

In the following sections the modeling of the orientation and lamination of
myocytes is restricted to a macroscopic, averaged perspective onto the cel-
lular geometry. This perspective is often taken in the modeling of complex,
inhomogeneous structures, e.g. continuum modeling of electrophysiology and
structure mechanics, and allows a simplified treatment, especially, if the mi-
croscopic inhomogeneity of attributes can be neglected.

In the macroscopic perspective the orientation and lamination of myocytes
is defined by averaging and interpolation. The local attributes can be viewed
as averaged macroscopic quantities, e.g. the spatial averaged principal axis of
the myocytes and orientations of the lamination.

The strategies for the modeling of the orientation and lamination of my-
ocytes can be divided into two groups. The first group includes methods,
which base on the measurement of the attributes, i.e. histological studies of
surfaces of tissue sections and recently developed imaging techniques. The
second group consists of rule-based methods, which apply rules constructed
from anatomical studies.

A representative of the first group is the diffusion weighted magnetic reso-
nance tomography, which allows a measurement of the macroscopic, averaged
orientation of myocytes in vitro [133, 134, 135, 136] and in vivo [137, 138, 139].
Hereby, the assignment of the orientation of myocytes is based on the assump-
tion, that the diffusion of water molecules by Brownian motion is larger in the
direction of the cells than transversal to it. The cellular membrane is consid-
ered as a barrier, which restricts diffusion. The ratio of transversal to overall
membrane area is in particular for myocytes from the working myocardium
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significantly larger than the ratio of longitudinal to overall membrane area
resulting from the cellular shape (Fig. 6.2).

The assumption was verified, e.g. by comparison with histological mea-
surements of paraffin-embedded and sectioned probes of rabbit left ventri-
cles [135, 140] and right ventricular free wall of mongrel dog [134]. Hereby,
for the orientations a RMS difference of 5.3◦ and an averaged difference of
−2.3◦ ± 0.98◦ was reported in [135] and [134], respectively.

Different rule-based strategies can be used to assign the myocyte orien-
tation and lamination. A strategy consists of a manual assignment of the
attributes by a human expert at specific points [141, 142]. A further strat-
egy uses knowledge delivered by anatomical studies (sections 6.3.1 and 6.3.2)
[143, 144, 145]. The knowledge is used in computer programs and allows the
automatic assignment of attributes. In both strategies an interpolation of the
orientation and lamination can follow in order to determine the attributes in
the remaining myocardial volume.

6.4.5 Models from the Visible Human Project

Data of the Visible Human Project. The corpses of a 38-year-old man
and a 59-year-old woman form the basis of the Visible Human Project in
conjunction with specific processing and imaging techniques. The male data
set is available since 1994, the female since 1996, each of them after more
than one year of processing. The processing of the corpses was structured as
follows:

• Conservation
• Imaging with MRT
• Fixation
• Imaging with CT
• Freezing
• Imaging with CT (only Visible Man)
• Cryosection

The conservation of a corpse was performed 1.5 h post mortem by injection
of 19 l of 1 % formalin and anticoagulant into the right femoral artery and
dorsum of each forearm. The conservation delayed a deterioration of tissue,
which was reported by earlier studies especially for willed corpses from per-
sons, who were subjected to court ordered lethal injection. Then the cadaver
underwent MRT with an in clinical routine used scanner. Imaging with CT
was performed after a fixation of the corpse by a foaming agent. The imaging
took place with a conventional CT scanner and in the non-frozen state of the
corpse, because pilot studies showed minor contrast in the frozen state. The
freezing of the corpse was achieved in two days as reported by earlier studies.
In the frozen state a CT imaging and the cryosection were performed.

The cryosection images are the essential component of the Visible Human
Project. They were created by iterative mill cutting of frozen corpses and
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Fig. 6.24. Clipping of a cryosection from the Visible Female data set with a
transversal view of the cardiac region. All atrial and ventricular cavities are visi-
ble. Parts of the lungs and fat are surrounding the heart.

photographing of the uncovered area (Fig. 6.23). Special attention was cared
for air filled cavities. The cavities were filled by blue colored gel, to restrict
the view to plane surface of the uncovered area.

The cryosection was performed by a cryomacrotom, which was developed
at the Department of Anatomy at the University of Colorado Medical School.
The cryomacrotom consists of computer controlled milling cutter and an ad-
justable table, on which the corpse was mounted. The photographing was
done digitally and analog. Hereby, the digital images were used after image
processing for the production of the digital database.

Each cryosection shows a transversal view onto the uncovered area of a
corpse and consists of 2048 x 1280 pixels with 24 bit color information and
a pixel size of 0.33 mm x 0.33 mm. Between the cryosections a distance of
1 mm and 0.33 mm was selected for the Visible Man and Visible Female data
set leading to 1871 and 5189 images, respectively.

Preprocessing of Digital Images. The stack of two dimensional cryosec-
tions and CT scans from the Visible Man and Visible Female data set was
preprocessed to obtain three dimensional data sets [146, 147, 148, 149]. There-
fore, the images (Fig. 6.24) were converted and combined with homogeneous
transformations. Missing areas in the cryosection data sets were interpolated
using radial basis functions [148]. The CT scans were registered with the
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(a) (b) (c)

(d) (e) (f)

Fig. 6.25. Model of human heart from (a) left, (b) dorsal left, (c) dorsal right, (d)
frontal, (e) right, and (f) dorsal caudal (from [37]). The model was constructed on
base of the Visible Man data set with techniques of digital image processing.

cryosection images by point-based methods. The result of the preprocess-
ing were four data sets representing the red, green, and blue channel of the
cryosection images as well as the Hounsfield values of the CT.

Classification of Tissues. The three dimensional data sets were segmented
and classified using different techniques of digital image processing, e.g. in-
teractively deformable meshes, thresholding, region growing, and morpholog-
ical operators [150, 144, 37]. The boundaries of the atria, ventricles, aorta
and truncus pulmonalis were constructed using interactively deformable two-
dimensional splines [150] and triangle meshes [58]. The initial meshes were
manually placed, oriented, scaled and afterwards deformed.

The boundaries of the atria and ventricles served as a mask for threshold-
ing in the 3D-data sets to classify blood, myocardium and other tissue. Further
anatomical structures, e.g. the coronary vessels, the blood in the cavities and
large vessels, are segmented with region growing techniques. Minor fail assign-
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(a) (b)

(c) (d)

Fig. 6.26. Model of visible man heart (adapted from [37]): (a,b) anatomy and (c,d)
conduction system. The different tissue classes are color-coded visualized.

ments were eliminated with morphological operators. Therefore, sequences of
median filtering as well as opening and closing operators were executed.

The excitation conduction and initiation system was constructed manually
and with rule-based methods in the Visible Man data set [37]. The valves were
created from suitable triangle meshes in the Visible Female data set.
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(a) (b)

(c) (d)

Fig. 6.27. Model of human heart from (a) left, (b) frontal, (c) right, and (d) dorsal.
The model was constructed on base of the Visible Female data set with techniques
of digital image processing.

The resulting anatomical models are illustrated in Fig. 6.25, and 6.27. The
anatomical models were validated by human experts.

The model of the Visible Man heart was stored in a three dimensional
data set consisting of approximately 360,000 cubic voxels with a size of 1 mm
x 1 mm x 1 mm. Each voxel was assigned to one out of 16 different tissue
classes, e.g. left and right ventricle, left and right atrium, arterial and venous
blood, and fat as well as different kinds of vessels. Special focus was given to
the excitation conduction system (Fig. 6.26), which is partly represented in a
tree like data structure.
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The model of the Visible Female heart was stored in a three dimensional
data set, which consists of approximately 80 million cubic voxels. Each voxel
has a size of 0.33 mm x 0.33 mm x 0.33 mm and was assigned to one out of
20 different tissue classes.

Assignment of Myocyte Orientation and Lamination. The assignment
of the macroscopic orientation and lamination of myocytes in the heart model
was performed by a sequence of steps [64]:

• point-wise definition of restrictions with manual and rule-based methods
• interpolation of orientation and lamination by iterative averaging
• validation by human experts

In all these steps the cryosections and the tissue-classified data sets were used
in conjunction with methods of digital image processing (Chap. 5, particularly
Sect. 5.6) and of tensor algebra (Sect. 2.3).

The restrictions define point-wise a myocyte or sheet orientation. Further-
more, they can limit the degree of freedom of an orientation.

Restrictions for orientations were determined with automatic methods on
the epi- and endocardial surface of myocardial structures. For some structures
an individual rule-based method using knowledge from anatomical studies was
chosen to derive restrictions (Sect. 6.3.1 and 6.3.2). Furthermore, restrictions
were created by the detection of orientations (Sect. 5.6.2) followed by manual
editing by human experts.

The orientation of myocytes and their arrangement in layers was inter-
polated based on the created sets of restrictions. The interpolation was per-
formed by iterative averaging in the six-neighborhood of a voxel. The averag-
ing was performed by accumulation of tensors constructed from the orienta-
tion and lamination, followed by singular value decomposition. The direction
of the first and second principal component was used as orientation and sheet
direction, respectively (Sect. 2.3).

The methods were applied to the Visible Man and Visible Female data
set [64, 143, 151, 144, 145]. For the atria the methods delivered the orienta-
tions of myocytes, for the ventricles the method delivered the orientation and
lamination (Fig. 6.28). The resulting data sets have the same resolution and
geometrical dimension as the corresponding tissue classified data sets. The ori-
entation and lamination are described by three bytes, encoding three angles,
φ, θ, and γ, in the range of [0, π]. The encoding of the angle can be efficiently
used in conjunction with methods of numerical field calculation e.g. in elec-
tromagnetics and structure mechanics. The results were compared visually by
human experts with anatomical studies.
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(a) (b)

Fig. 6.28. Model of human heart with averaged orientation of myocytes projected
on (a) epicardial surface and (b) cutting planes. The orientation was constructed on
base of the Visible Man data set, manual editing and interpolation.

6.4.6 Models from Magnetic Resonance Imaging

Imaging of Heart. An extracorporated canine heart was fixed and scanned
with MRT1. Images of the proton density and diffusion weighted scans were
performed (Fig. 6.29). The images were stored in three dimensional data sets,
consisting of 256 x 128 x 128 voxels with a size of 0.4 mm x 0.8 mm x 0.6 mm.
The proton density of each voxel was coded by a float value (4 bytes), the
diffusion tensor by its three principal axes (3 x 3 x 4 bytes) and its three
eigenvalues (3 x 4 bytes).

Preprocessing of Digital Images. The MRT data sets were preprocessed
primarily regarding the simplification of the following image segmentation and
classification process. The proton density scans showed a significant decrease
of signal intensity in apical and basal regions, which was detected and com-
pensated by scaling operations. In addition, the proton density images were
preprocessed by a sequence of morphological filtering to reduce measurement
noise. The data format of the proton density scans was reduced to 1 byte.
1 The imaging was performed by Prof. C. Henriquez, Prof. E. Hsu, and their work

groups at the Department of Biomedical Engineering, Duke University, Durham
(USA). Special pulse sequences were developed for the diffusion weighting.
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(a) (b)

(c)

Fig. 6.29. Slices of proton density weighted, three dimensional MRT data set of
extracorporated canine heart with (a) frontal, (b) lateral, and (c) transversal.

The decrease of signal intensity in apical and basal regions was also found
in the diffusion weighted images. The images show gaps of different size in
the regions, which were filled by interpolation techniques taking neighboring
values into account. Additional small artifacts in the diffusion-weighted images
were detected, erased and filled up by an interpolation.

Segmentation and Classification of Tissues. The segmentation and clas-
sification of the three dimensional data sets were performed using different
techniques of digital image processing, e.g. interactively deformable meshes,
thresholding, region growing, and morphological operators (Sect. 5.3.3 and
5.4.1).

The boundaries of the epicardial and endocardial myocardium as well as
the septum were constructed using interactively deformable triangle meshes
[58]. Therefore, the initial meshes were manually placed, oriented, scaled and
afterwards deformed. The boundaries of the epicardial and endocardial my-
ocardium as well as the septum served as a mask for thresholding and region
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(a) (b)

(c)

Fig. 6.30. Anatomical model of canine heart viewed from the base of (a) the right
ventricle and (b) the left ventricle as well as from (c) frontal. The ventricles and pap-
illary muscles are segmented with interactively deformable meshes and thresholding
techniques.

growing in the three dimensional data sets to classify blood and papillary
muscles as well as left and right ventricular myocardium. Sequences of mor-
phological operators, i.e. median filtering as well as opening and closing, elim-
inated minor fail assignments. The tissue-classified data set is illustrated in
Fig. 6.30.

Myocyte Orientation. The eigenvector of the measured diffusion tensor
with the highest eigenvalue served as a basis for the assignment of the ori-
entation. An averaging filter was applied to reduce noise and artifacts in the
measurement data.

The resulting data set has the same resolution and size as the tissue classi-
fied data set. Each voxel in the orientation data set includes 2 bytes, encoding
two angles, φ, and θ, in the range of [0, π]. An exemplary slice of the anatomical
model in conjunction with the assigned fiber orientation is shown in Fig. 6.31.
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Fig. 6.31. Anatomical model of canine heart with myocyte orientation.



7

Cardiac Electrophysiology

7.1 Overview

Knowledge concerning the electrophysiology of the heart is necessary for the
understanding of many aspects of the physiological and pathophysiological
cardiac behavior. The electrophysiology is tightly coupled with the mechanic
deformation and the pump function of the heart by controlling the devel-
opment of tension. Furthermore, various mechano-electrical feedback mecha-
nisms influence the cardiac electrophysiology.

The origin of the electrical activity of the heart are the myocytes, which
show like nerve cells an electrical excitability. The electrical excitation of a
myocyte is tightly coupled with its mechanical contraction. A propagation
of electrical excitation from a myocyte to neighboring myocytes is primarily
achieved by intercellular transport of ions via the gap junctions. Additionally,
extracellular potentials resulting from the electrical activity of cells or from an
external current flow can modulate the propagation and initiate an excitation.

A large amount of experiments was performed to achieve knowledge con-
cerning the cardiac electrophysiology, delivering data of the intra-, extra-
and intercellular electrophysiological quantities from specific functional re-
gions and from the heart as an integrated whole. The quantities obtained
by the experiments are e.g. voltages across membranes and in the different
spatial domains as well as flow and concentrations of ions. The experiments
range from the measurement of opening states of single ion channels to the
extracorporal registration of electrograms. The hereby discovered phenomena
can be attributed e.g. to changes of the electrophysiological states of cellu-
lar components and the intercellular electrical coupling. Relevant components
are the cell membrane, its ionic channels, pumps and exchangers, as well as
intracellular structures, e.g. the sarcoplasmic reticulum.

The measurement data were partly used to create mathematical models
of different levels of abstraction. The models of membrane patches, of single
cells and of cell clusters describe the electrophysiological status commonly in
a spatially averaged sense by regionally varying concentrations of different

F.B. Sachse: LNCS 2966, pp. 157–219, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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kinds of ions, by the conductivity of ionic channels, and by the activity of
ionic pumps and exchangers. The transport of ions through the channels and
exchangers is determined from gradients of ionic concentrations and electrical
forces. The models allow the simulation of the electrophysiological behavior
with numerical methods. A reconstruction of the previously measured data
and furthermore the discovery of unknown phenomena can be achieved.

In the following sections different electrophysiological experiments and
modeling approaches are described. The description starts with the measuring
and modeling approaches of phenomena of cellular components, followed by
the whole cell electrophysiological behavior and mechanisms of the intercellu-
lar excitation propagation. The description of the electrophysiology of cellular
components concerns primarily the phenomena resulting from the behavior of
the cell membrane and the sarcoplasmic reticulum.

In this context the classical work of Hodgkin and Huxley is presented,
who delivered quantitative data of the electrophysiology of a squid axon and
constructed a mathematical model. Most electrophysiological models of nerve
and muscle cells base on their mathematical formulation.

Special focus is given to experiments delivering quantitative data and phys-
ically motivated models. In addition, mechano-electrical feedback mechanisms
are described for the different levels of measurement and modeling.

7.2 Cellular Electrophysiology

7.2.1 Experimental Studies

Cell Membrane. The cell membrane consists of a phospholipid bilayer,
which is perforated by pores formed by proteins (Sect. 6.2.1). The membrane
suppresses the diffusion of ions and molecules into and out of the cell. The
membrane separates the intra- and extracellular space with different ionic con-
centrations. The gradient of ionic concentrations is resulting from transport
mechanisms and the cellular metabolism.

The electrical behavior of a cellular membrane can be measured in vivo
and in situ with two intracellular electrodes. One of the electrodes is used for
applying current and one for the registration of the transmembrane voltage. A
third electrode is located in the extracellular space near to the cell. The mea-
surement procedure is relatively insensitive with regard to the placement of
the electrodes, resulting from the high resistivity of the membrane in contrast
to the high conductivity of the extra- and intracellular space. The application
of a conveniently chosen current allows the measurement of an action voltage,
whereby different phases can be distinguished (Fig. 7.1). The action voltage
differs depending on the stimulus frequency, tissue type and location in the
heart (Fig. 7.2).

An alternative procedure is the patch clamp technique, whereby the electri-
cal behavior of a membrane patch restricted by the opening of a glass pipette
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Fig. 7.1. Schematic illustration of action voltage Vm measured at membrane of
cardiac myocyte (adapted from [152]). A stimulus current is applied in a myocyte
with its membrane at resting voltage. After a fast depolarization the transmem-
brane voltage reaches positive values. Followed by a fast decrease the relatively long
plateau phase is passed through. At their end the repolarization leads to a decrease
commonly until the resting voltage is reached.

is registered. The patch is sealed to the glass pipette. Only two electrodes are
used, one inside of the pipette and the other outside, near to the patch.

The most common used protocol for these measurements is the voltage
clamp technique. Hereby, the voltage over the membrane is kept constant by
supplying a convenient current. The voltage and the course of the current are
registered. Commonly, in these measurements the voltage is varied stepwise,
e.g. from −90 mV to 20 mV in steps of 10 mV .

The measurements are often performed in conjunction with the application
of drugs and toxins, which allows the discrimination of the involved currents
and channels. E.g. tetradotoxin and tetraethylammonium block specifically
sodium and potassium channels, respectively [154]. Furthermore, the variation
of ionic concentrations and of the mechanical load offers additional insights
[155].

A fundamental step in describing the electrophysiology of a cell membrane
was performed by Hodgkin and Huxley, who measured and described quan-
titatively the active and passive electrical behavior of the axon membrane of
giant squids [156]. Hereby, voltage clamp techniques as well as the variation of
ionic concentrations and temperature were used to measure and discriminate
currents through the membrane.

The measurements by Hodgkin and Huxley of the electrical behavior of
the membrane as well as the numerous following experiments show signifi-
cant nonlinearities of the membrane resistivity [156]. The nonlinearities can
be attributed to the behavior of pores in the membrane, i.e. ionic channels
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Fig. 7.2. Action voltages measured at membrane of human cardiac myocytes. The
voltages at the membrane of myocytes from the (a) sinus node, (b) atrium, (c)
atrioventricular node, (d) His bundle, (e) Tawara bundle branch, (f) Purkinje fibers,
(g) subendocardial and (h) subepicardial ventricular myocardium are illustrated
[153].

and pumps. Furthermore, concentration gradients over the membrane and ion
specific permeabilities lead to measurable voltages, which can be dedicated to
the behavior of semi-permeable membranes.

Ionic Channels of the Cell Membrane. Ionic channels exist in a wide
variety in cell and intracellular membranes (Sect. 6.2.1). Their electrophysio-
logical behavior can be measured with voltage clamp techniques of the whole
cell, a membrane patch and a single channel. The observations show that
a single channel flips randomly between a conducting and non-conducting
state. Measurements of the stochastic opening and closing over a time period
allow the assignment of channel specific probabilities of opening and closing.
The transitions are performed in dependence of voltage, ionic concentrations,
stretch and neurotransmitters. Often, a time influenced transition between the
states can be found. A population of these channels acts in unison with the
probabilities assigned to the single channel. The behavior of the population
can be measured as the sum of the single channel behaviors.

Sodium Channels. Sodium channels are found to be responsible for the fast
depolarization in myocytes of all vertebrates [87]. Measurements of sodium
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channels with voltage clamp techniques show a fast transition to the high
conductivity state if the voltage exceeds a threshold [156, 88]. Furthermore,
the conductivity is found to be significantly time dependent. The conductivity
decreases rapidly after activation. Sodium channels can be blocked specifically
and reversibly by tetradotoxin and saxitoxin [154].

Potassium Channels. Potassium channels show a large diversity in their
molecular arrangement and in their electrophysiology. They are responsible
for the repolarization of myocytes and neurons. Several types with a differ-
ent time- and voltage-activated behavior are found in the heart [157]. Twenty
different types are known only for voltage dependent channels, e.g. channels
responsible for the ultra-rapid delayed rectifier current, the rapidly activating
delayed rectifier current, the slowly activating delayed rectifier current, and
the inward rectifier current. Furthermore, specific types of potassium chan-
nels are regulated by ATP [158] and cAMP [159]. Potassium channels can
be blocked reversibly by tetraethylammonium, cesium, barium and dendro-
toxins [154]. Heterogeneity of properties and densities of several potassium
channels in the ventricular wall is reported for many species, e.g. cat, canine,
and human [160, 161, 162, 163].

Calcium Channels. The sarcolemmal ionic channels with a high specificity
for calcium show a voltage- and time-dependent behavior. They are discrimi-
nated by their electrophysiological behavior [89]. L-type calcium channels (di-
hydropyridines receptors) show relatively large and long lasting ion flow after
activation. T-type channels show a tiny and transient ion flow. L-type channel
blocking by magnesium, nickel, cadmium, and cobalt as well as regulation of
the T-type channels by extracellular ATP was observed [154].

Ionic Pumps of the Cell Membrane. Pumps in the sarcolemma are e.g.
the Na-K and calcium pump. The Na-K pump maintains the ionic gradients,
which are largely influencing the transmembrane voltage. In a single procedure
the Na-K pump transports three sodium ions out of and two potassium ions
into the cell consuming ATP. The transport is found to be dependent on
the intra- and extracellular sodium and potassium concentration as well as
on transmembrane voltage and on temperature. The pump can be blocked
specifically by quabain (strophantin).

The sarcolemmal calcium pump transports calcium out of the cell depen-
dent on the concentration of the intracellular calcium. The pump consumes
ATP.

Na-Ca Exchanger in the Cell Membrane. Na-Ca exchangers are pre-
dominantly responsible for the transport of calcium out of the cell, which
passed into the cell via the sarcolemmal calcium channels and leak currents
[92]. In a single procedure three extracellular sodium ions are exchanged with
a single intracellular calcium ion. A Na-Ca exchanger can also work in the



162 7 Cardiac Electrophysiology

opposite direction, which is primarily found in the initial phase of excita-
tion. Measurements show a dependence of the exchange capacity on the con-
centration of intra- and extracellular calcium and sodium as well as on the
transmembrane voltage [164, 165]. The contribution of Na-Ca exchangers to
the raise of intracellular calcium concentration during voltage clamp steps
to 30 mV is reported to be ca. 10 % of the contribution of the L-type cal-
cium channels [166]. A block is reported for small pH-values, flunarizine, and
inorganic cations, e.g. cadmium, strontium and barium [68].

Sarcoplasmic Reticulum. The sarcoplasmic reticulum is an intracellular
structure, which is enclosed by a membrane (Sect. 6.2.1). Studies, e.g. with
antibodies, showed that the membrane contains calcium, potassium, chlo-
rine and hydrogen ionic channel proteins as well as calcium pump proteins.
The sarcoplasmic reticulum has a significant influence to the intracellular cal-
cium handling. Calcium is pumped into the sarcoplasmic reticulum by the
sarcoplasmic calcium pump and is released by the calcium release channels.
Furthermore, leak calcium currents through the membrane are demonstrated.
Insights in the electrophysiological behavior were primarily obtained by volt-
age clamp techniques of isolated vesicles.

Calcium Release Channel. The calcium release channel (ryanodine receptor)
shows a high specificity for divalent cations [85]. The release channel is ac-
tivated by approximately micro-molar cytoplasmic concentration of calcium
and releases calcium buffered in the sarcoplasmic reticulum into the cyto-
plasma. This positive feedback mechanism is called calcium induced calcium
release (CICR) [167]. An inhibition is reported by approximately milli-molar
concentration of calcium. The channel is regulated by ryanodine and caffeine.

The activation of release channels is commonly result of calcium flux from
the extracellular space into the cytoplasm through L-type calcium channels.
The sarcoplasmic release and sarcolemmal L-type channels are located in close
neighborhood. The summary calcium release occurs by concerted activation
of many single channel release, leading to so-called calcium sparks [168, 86].
A refractory period of release channels is reported after their coherent and
simultaneous activation. This refractoriness of circa 1 s is attributed to the
entire sarcoplasmic reticulum and not found in small groups of functional
units.

Sarcoplasmic Calcium Pump. The sarcoplasmic calcium pump, known also
as sarcoplasmic Ca2+-ATPase and SERCA (sarco-endoplasmatic reticulum
calcium ATPase), transports calcium ions into the sarcoplasmic reticulum by
usage of ATP. Two calcium ions are transported for each hydrolyzed ATP
molecule. The sarcoplasmic calcium is buffered by the protein calsequestrin.
The transport is regulated by the concentration of calcium, magnesium, ATP
and the protein phospholamban as well as by pH-value [68, 169].

Mitochondrion. Mitochondria are intracellular organelles enclosed by a
membrane (Sect. 6.2.1). The membrane contains calcium ionic channel and
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Fig. 7.3. Double cell voltage clamp technique. The conductivity of the gap junc-
tions, which couple the intracellular space of adjacent myocytes, can be measured by
clamping the potentials φi,1 and φi,2 of two adjacent cells. The voltages are clamped
by two voltage sources with common reference potential φe. The difference of the
potentials delivers the voltage over the gap junction.

hydrogen pump proteins as well as sodium-calcium and hydrogen-sodium ex-
changer. Furthermore, hydrogen pumps are included. The sodium-calcium
pump transports two sodium ion inside, while bringing one calcium ion to
the cytosol. The hydrogen-sodium pump transports a hydrogen ion inside,
while hauling one sodium ion outside.

Gap Junctions. Gap junctions are found to be the most important com-
ponents of the electrical coupling between myocytes [94]. The gap junctions
serve as a pathway, which transport electrical current from one cell to adjacent
cells depending on the intracellular potentials. Hence, the gap junctions play
a determinant role for the propagation of the electrical excitation through the
myocardium.

The electrophysiological behavior of gap junctions can be determined by
measurements with a variation of the before described voltage clamp methods,
the so-called double cell voltage clamp technique (Fig. 7.3). The intracellular
potential of each cell is clamped by a voltage source. The intercellular voltage
is controlled by the two voltage sources with common reference potential.
The voltages are registered in conjunction with the applied current, which
offers the possibility to calculate the conductivity. The measurements show
that the conductivity of gap junctions is dependent on their type and on the
intercellular voltage. In the range between −50 and 50 mV the variation is
small for connexin43, which is the most abundant connexin in the mammalian
myocardium.

Experiments were performed, which reveal that the gap junctions uncouple
in the case of acute ischaemia and that the homogeneity and ordering of
the gap junction distribution is decreased by chronic ischaemia. Also, chronic
atrial arrhythmia and infective heart diseases changes the distribution pattern.

The conductivity of gap junctions can be decreased by halothane, heptanol
and carbon dioxide [98]. A blocking is reported for low pH-values [95].
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Fig. 7.4. Cell membrane and its approximation by resistor-capacitor circuit. The
circuit consists of a nonlinear resistor Rm and a capacitor Cm. The voltage over the
membrane Vm is hereby defined as the difference between the extracellular potential
φe and the intracellular potential φi

7.2.2 Modeling of Cellular Components

Cell Membrane as Resistor-Capacitor Circuit. The electrical behavior
of a cell membrane can be approximated by a resistor-capacitor circuit with
the nonlinear resistor Rm and the capacitor Cm (Fig. 7.4) [154]. The voltage
over the membrane Vm is dependent on the charge Q:

Vm =
Q

Cm

A change of the transmembrane voltage Vm can be described by the current
flow IC :

dVm

dt
=

d

dt

Q

Cm
=

IC

Cm

assuming that the capacity Cm is constant over time. This equation is -
adapted by definition of a summary current through the membrane - founda-
tion of most electrophysiological models of membranes and cells.

The capacity of the sarcolemma is depending on its surface. A specific
capacitance of approximately 1 µF/cm2 is found in biological membranes.

The membrane resistor Rm is responsible for the discharge of the mem-
brane by the current IC . Using Ohm’s law the resistor is determined by:

Rm = −Vm

IC

Equilibrium Voltages of Cell Membrane. The description of the cell
membrane as resistor-capacitor circuit neglects the phenomenon, that a
voltage is generated across a semipermeable membrane between to regions
with different ionic concentrations. Different equations, e.g. the Nernst and
Goldman-Hodgkin-Katz equation, describe this voltage, which results from
electrical and chemical forces. The equations are applied in the area of cel-
lular electrophysiology. Hereby, the regions are the intra- and extracellular
space with the semi-permeable cell enclosing membrane as border.
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Fig. 7.5. Fluxes, potentials, and ionic concentrations of the Nernst equation. The
equation describes the equilibrium voltage φ2 − φ1 across the border of the two
adjacent regions resulting from the ionic concentrations [k]1 and [k]2. In equilibrium
the flux of the ion k due to electrical forces jE,k and due to diffusion jD,k sums up
to zero.

Nernst Equation. The Nernst equation describes the equilibrium voltage
across the border of two regions resulting from gradients of ionic concen-
trations [154] (Fig. 7.5).

The Nernst equation determines the equilibrium voltage U by:

U = − RT

zkF
ln

[k]1
[k]2

with the gas constant R, Faraday’s constant F , the concentrations in region
1 [k]1 and in region 2 [k]2 as well as the valence of the ion zk. Furthermore,
the equilibrium voltage U is linearly depending on the absolute temperature
T .

The equilibrium is achieved when the total flux jk of the ion k through the
border is zero. The Nernst equation takes into account two different fluxes:
the ionic flux caused by diffusion jD,k and the ionic flux jE,k due to electrical
forces (Fig. 7.5). Hence, the equilibrium is achieved if

jk = jD,k + jE,k = 0

is fulfilled. The ionic flux caused by diffusion jD,k is determined by the diffu-
sion constant Dk and the gradient of the concentration [k]:

jD,k = −Dk∇[k]

Hereby, the diffusion coefficient is expressed as:

Dk =
ukRT

|zk|F
The flux due to electrical forces jE,k is given by the ionic mobility uk, the
valence of the ion zk, and the electrical potential φ:

jE,k = −uk
zk

|zk| [k]∇φ
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Fig. 7.6. Fluxes, potentials, and ionic concentrations of the Goldman-Hodgkin-
Katz equation. The equation describes the equilibrium voltage φi − φo across a
cellular membrane between the intra- and extracellular space resulting from the
concentrations of potassium, sodium, and chlorine. In equilibrium the flux of the
ions due to electrical forces jE and due to diffusion jD sums up to zero.

The flux due to electrical forces jE,k can also be described by:

jE,k = −Dk
[k]zkF

RT
∇φ

which leads to the Nernst-Planck equation delivering the total ionic flux jk:

jk = jD,k + jE,k = −Dk

(
∇[k] +

[k]zkF

RT
∇φ

)

A restriction of the Nernst equation is caused by the inclusion of only one
kind of ions. The approach is justifiable if the mobility of further kinds of ions
is restricted or their concentrations are negligible.

Goldman-Hodgkin-Katz Equation. The Goldman-Hodgkin-Katz equation was
developed to describe the equilibrium voltage U of a cellular membrane sep-
arating the intra- and extracellular space. The equation extends the Nernst
equation by allowing the occurrence of multiple kinds of ions, which are deter-
minants in cellular electrophysiology, i.e. potassium, sodium, and chlorine. A
concentration for each kind of ions is assigned to the intra- and extracellular
space as well as fluxes for each kind of ions caused by diffusion and electrical
forces are allowed through the membrane (Fig. 7.6).
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With the Goldman-Hodgkin-Katz equation the equilibrium voltage U is
determined by:

U = −RT

F
ln

PK [K+]i + PNa[Na+]i + PCl[Cl−]o
PK [K+]o + PNa[Na+]o + PCl[Cl−]i

from intra- and extracellular ionic concentrations, ionic permeabilities and the
absolute temperature T . The permeability of the membrane for the potassium,
Sodium, and Chloride ions is depicted by PK , PNa, and PCl, respectively. The
permeability of an ion k is expressed by:

Pk =
Dkβk

h

with the membrane thickness h, the diffusion coefficient Dk and the water-
membrane partition coefficient βk. The diffusion coefficient as well as the
water-membrane partition coefficient are dependent on the type of membrane
and kind of ion k.

A restriction of the Goldman-Hodgkin-Katz equation is that the membrane
is presumed to be homogeneous, planar, and infinite as well as the distribution
of the extra- and intracellular concentration is homogeneous. Further assump-
tions are that the electric field in the membrane is constant and the ions pass
through the membrane independently [154].

Ionic Channels. The behavior of a single ionic channel can be modeled with
states and functions describing the transition between the states. In the sim-
plest case two states are assumed: an opened and a closed state. Assigned
to these states is an opened probability Oi and a closed probability Ci, re-
spectively, reflecting that the transition between the states is stochastic. The
probabilities sum up to one. They are in the range between 0 and 1.

The change of the open probability O is determined by:

dOi

dt
= αCi − βOi

with the rate constant α, responsible for the transition from the closed to the
opened state: Ci ⇒ Oi, and the rate constant β, concerned with the transition
from the opened to the closed state: Oi ⇒ Ci. The rate constants depend on
the type of ionic channel, transmembrane voltage, ionic concentration, stretch
etc.. In equilibrium the change is zero:

dOi

dt
= 0

The macroscopic conductivity of a population of similar channels is spec-
ified by:

gi = Ni Oi gi,max
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Fig. 7.7. Schematic diagram of the Hodgkin-Huxley model. The model calculates
the currents INa, IK , and Il as well as the transmembrane voltage Vm.

with the number of channels Ni and the maximal conductivity of the channel
gi,max.

The total current through a population of ionic channels is resulting from
the difference between the transmembrane voltage Vm and the Nernst voltage
Ei:

Ii = gi(Vm − Ei)

with the conductivity gi.

Regional Concentrations and Current. The time derivative of a regional
concentration [k] for the ion k is calculated with:

∂[k]
∂t

= − Ik

zkFV

with the current Ik carrying ion k, the valence of the ion zk, Faraday’s constant
F and the volume V of the region, where k is distributed.

Model of Hodgkin and Huxley (1951). The Hodgkin-Huxley model de-
scribes the dynamic electrophysiology of a giant squid axon membrane from
measurements of the active and passive electrical behavior [156]. A founda-
tion of the mathematical description is the Nernst Equation (7.2.2). Using the
measurement data an equivalent circuit consisting of resistors, a capacity, and
voltage sources was parameterized. Partly, the resistors were nonlinear time
and voltage dependent.

The model allows to calculate ionic currents of different type passing
through the axon membrane and the transmembrane voltage (Fig. 7.7 and
Fig. 7.8). The transmembrane voltage Vm is defined as intracellular minus
extracellular potential and the time derivative of Vm is described by:

∂Vm

∂t
= − 1

Cm
(Im + Istim)

with the membrane capacity Cm, the transmembrane current Im and the
stimulus current Istim. The transmembrane current Im reconstructed by the
Hodgkin-Huxley model consists of
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Fig. 7.8. Simulations with the Hodgkin-Huxley model. A stimulus current density
of 0.02 mA/cm2 is injected at t = 5 ms with a length of 0.5 ms. The stimulus leads
to significant changes in (a) the transmembrane voltage, (b) the state variables for
sodium and potassium channels, (c) the conductances, and (d) the transmembrane
current densities of sodium, potassium and leakage.

Im = INa + IK + Il

with the sodium current INa, the potassium current IK , and the leakage cur-
rent Il. The leakage current Il summarizes different ionic currents, primarily
chloride ions. The currents are determined by the conductances gNa, gK , and
gl, respectively, as well as by the difference between the transmembrane volt-
age and the equilibrium voltages ENa, EK , and El, respectively:

INa = gNa(Vm − ENa)
IK = gK(Vm − EK)
Il = gl(Vm − El)

The conductance gl is assumed to be constant, the other conductances vary
with time and are voltage dependent. The ionic concentrations are supposed
to be invariant leading to non-varying equilibrium voltages.
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Fig. 7.9. Rate coefficients of sodium channels of the Hodgkin-Huxley model. The
coefficients describe the voltage and time dependent changes of the state variables
responsible for (a) the activation and (b) the inactivation of sodium channels.

The sodium conductivity gNa is time and voltage dependent:

gNa = m3hgNa

with the maximal conductance for sodium ions gNa, the dimensionless ac-
tivation variable m, and inactivation variable h. The voltage dependent rate
constants αm, βm, αh, and βh control the activation and inactivation variable:

dm

dt
= αm(1 − m) − βnm

dh

dt
= αh(1 − n) − βnh

Fig. 7.9 shows the dependency on the rate constants αm, βm, αh, and βh to
the transmembrane voltage Vm.

The biophysical motivated assumption of the weighting of the conductance
gNa by the state variables m and h was, that sodium ions can only flow through
a sodium channel, if three similar, independent events lead to an opening and
no blocking event occurred.

The potassium conductivity gK is time and voltage dependent:

gK = gKn4

with the maximal conductance for potassium ions gK and the dimensionless
state variable n, which is regulated by the voltage dependent rate constants
αn and βn:

dn

dt
= αn(1 − n) − βnn

Fig. 7.10 depicts the dependence of the rate constants αn and βn to the
transmembrane voltage Vm.
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Fig. 7.10. Rate coefficients of potassium channels of the Hodgkin-Huxley model.
The coefficients describe the voltage and time dependent changes of the state vari-
ables responsible for the activation of potassium channels.

The biophysical motivation of the weighting of the conductance gK with
the state variable n was the assumption, that potassium ions can only flow
through a potassium channel, if four similar, independent events are involved
in the opening process.

7.2.3 Models of Cardiac Myocytes

Overview. In the last years a large number of models of myocytes was con-
structed (table 7.1), with increasing abilities to describe the different electro-
physiological mechanisms. Primarily, the models are produced from animal
experiments using the mathematical formulations of Hodgkin and Huxley.
The modeling approaches of the cell membrane, ionic channels and pumps,
exchanger and intracellular components are combined to describe the behavior
of a whole cell.

Modern models include detailed descriptions of the behavior of intracellu-
lar structures as well as of the influence of pharmaceuticals, neurotransmitters
and mechanics. Some recently published models describe the human cellular
electrophysiology.

In the following some electrophysiological models of cardiac cells are
described. Their assumptions, principles and advances are presented. The
overview is focused to models of ventricular myocytes. A model of Purk-
inje fibers and of cells from the sinoatrial node extend the overview. Special
attention was attended to the handling of intracellular calcium, because of
its importance for the coupling between electrical excitation and mechanical
contraction.

Model of Noble (1962). The Noble model describes the electrophysiol-
ogy of a Purkinje fiber by modifications of the Hodgkin-Huxley equations
(Fig. 7.11) [170]. The selection of this cell type was caused by the relatively
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Table 7.1. Electrophysiological models of cardiac cells.

Date Publisher Cell Type Species Reference

1962 Noble Purkinje fiber - [170]
1975 McAllister, Noble, Tsien Purkinje fiber - [171]
1977 Beeler, Reuter ventricular mammal [172]

myocardium
1980 Yanagihara, Noma, Irisawa sinus node rabbit [173]
1982 Bristow, Clark sinus node rabbit [174]
1983 Bristow, Clark sinus node rabbit [175]
1984 Noble, Noble sinus node rabbit [176]
1985 DiFrancesco, Noble Purkinje fiber mammal [177]
1987 Hilgemann, Noble atrial myocardium rabbit [178]
1990 Earm, Noble atrial myocardium rabbit [179]
1991 Luo, Rudy ventricular mammal [180]

myocardium
1994 Luo, Rudy ventricular guinea pig [181, 182]

myocardium
1994 Demir, Clark, Murphey, sinus node mammal [183]

Giles
1996 Dokos, Celler, Lovell sinus node mammal [184]
1996 Demir, O’Rourke, Tomaselli, ventricular canine [185]

Marban, Winslow myocardium
1996 Lindblad, Murphey, Clark, atrial myocardium rabbit [186]

Giles
1998 Courtemanche, Ramirez, atrial myocardium human [187]

Nattel
1998 Jafri, Rice, Winslow ventricular guinea pig [188]

myocardium
1998 Noble, Varghese, Kohl, ventricular guinea pig [189]

Noble myocardium
1998 Nygren, Fiset, Firek, Clark, atrial myocardium human [190]

Lindblad, Clark, Giles
1998 Priebe, Beuckelmann ventricular human [191]

myocardium
1999 Winslow, Rice, Jafri, ventricular canine [192, 193]

Marbán, O’Rourke myocardium
2000 Ramirez, Nattel, atrial myocardium canine [194]

Courtemanche
2000 Zhang, Holden, Kodama, sinus node rabbit [195]

Honjo, Lei, Varghese, Boyett
2002 Bernus, Wilders, Zemlin, ventricular human [196]

Verschelde, Panfilov myocardium
2003 Sachse, Seemann, ventricular human [197]

Chaisaowong, Weiß myocardium
2003 Seemann, Sachse, Weiß, ventricular human [198]

Dössel myocardium
2003 Ten Tusscher, Noble, Noble, ventricular human [199]

Panfilov myocardium
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Fig. 7.11. Schematic diagram of the Noble model. The model calculates the currents
INa, INa,b, IK1, IK2, and IAn as well as the transmembrane voltage Vm.

large cellular size simplifying measurements and by the apparent resemblance
of the electrophysiological behavior to nervous cells. A novel quality of the
model was the decomposition of the sodium and potassium currents as well
as the reconstruction of the pace-maker property in cells. As in the Hodgkin-
Huxley model all ionic concentrations are supposed to be invariant. The con-
ductances and the rate constants are adapted to fit to measurements and to
take into account the decompositions.

The transmembrane current Im reconstructed by the Noble model consists
of

Im = INa + INa,b + IK1 + IK2 + IAn

with the inward sodium current INa, the background sodium current INa,b,
the outward potassium currents IK1 and IK2, and the anion current IAn

corresponding to the leak current of the Hodgkin-Huxley model.
The sodium current equations are similar to those from the Hodgkin-

Huxley equations:

INa = gNa(Vm − ENa)
gNa = m3hgNa

with the time and voltage dependent conductance for sodium gNa, the equi-
librium sodium voltage ENa, the dimensionless activation variable m and in-
activation variable h. The sodium current is the principal determinant during
the rising phase of the action voltage.

A background sodium current INa,b controlled by the constant background
conductance gNa,b is introduced:

INa,b = gNa,b(Vm − ENa)

The outward potassium current is composed of two currents IK1 and IK2.
The current IK1 is time independent and decreases instantaneously when the
membrane voltage increases:
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IK1 = gK1(Vm − EK)

gK1 = 1.2e−
Vm
50 + 0.015e

Vm+90
60

with the potassium conductance gK1 and the equilibrium potassium voltage
EK . The current IK2 is time and voltage dependent. Its description is similar
to the Hodgkin-Huxley model:

IK2 = gK2(Vm − EK)
gK2 = gK2n

4

with the conductance for potassium gK2, the maximal conductance for potas-
sium gK2, and the dimensionless activation variable n. The voltage dependent
rate constants αn and βn specify the activation by

dn

dt
= αn(1 − n) − βnn

Their values are two order of magnitude smaller than in the Hodgkin-Huxley
model, because of the slower onset of this current in Purkinje fibers.

The anion current equations are similar to those from Hodgkin-Huxley:

IAn = gAn(Vm − EAn)

with the constant anion conductance gAn and the anion equilibrium voltage
EAn.

Model of Beeler and Reuter (1977). The Beeler-Reuter model describes
the electrophysiology of a mammalian ventricular myocyte based on mea-
surements with the voltage-clamp method on multicellular preparations of
cardiac muscle (Fig. 7.12) [172]. Variables of the model are the transmem-
brane voltage Vm and the intracellular calcium concentration [Ca2+]i as well
as six activation and inactivation parameters m, h, j, d, f , and x1 controlling
the conductance of the membrane. Each of these parameters is governed by a
Hodgkin-Huxley equation with specifically chosen transfer rate coefficients.

The transmembrane current Im reconstructed by the Beeler-Reuter model
consists of

Im = INa + INa,b + IK1 + IX1 + IS

with:

Fast inward sodium current INa

Background sodium current INa,b

Outward potassium current IK1

Non-specific outward current, primarily potassium IX1

Non-specific inward current, primarily calcium IS
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Fig. 7.12. Schematic diagram of the Beeler-Reuter model. The model calculates
the transmembrane voltage Vm, the currents INa, INa,b, IK1, IX1, and IS, and the
intracellular calcium concentration [Ca2+]i.

The time- and voltage-dependent inward sodium current INa is in partic-
ular responsible for the fast upstroke of the action voltage. The formulation
is in parts adopted from the Hodgkin-Huxley and the Noble model:

INa = gNam3hj(Vm − ENa)

with the Nernst voltage of sodium ENa = 50 mV , the maximal sodium con-
ductance gNa, the activation parameter m, and the inactivation parameters
h and j.

The sodium background current INa,b is time independent:

INa,b = gNa,b(Vm − ENa)

with the background sodium conductance gNa,b chosen to reproduce the mea-
sured steady sodium leakage current.

The time-independent and voltage-dependent outward potassium current
IK1 is obtained by:

IK1 = 0.35
(

4e0.04(Vm+85)−1

e0.08(Vm+53) + e0.04(Vm+53)
+

0.2(Vm + 23)
1 − e−0.04(Vm+23)

)

A large contribution of this current to the transmembrane current can be
found at the plateau phase of the action voltage. The current is slowly deac-
tivated and a determinant for the shape of the plateau phase of the action
voltage.

The time-dependent and voltage-dependent outward current IX1 is mainly
dedicated to the flow of potassium ions:

IX1 = 0.8 x1
e0.04(Vm+77) − 1

e0.04(Vm+35)

with the parameter x1. The current is slowly activated and responsible for
the repolarization of the cell membrane.
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The time- and voltage-dependent inward current IS reflects the summary
flow of different types of ions, but is primarily attributed to calcium ions:

IS = gsdf(Vm − Es)

with the Nernst voltage of calcium Es = −82.3 − 13.0287 ln [Ca2+]i, the
maximal conductance gs, the activation parameter d, and the inactivation
parameter f . As the outward current IK1 the current IS is slowly deactivated
and a determinant for the shape of the plateau phase of the action voltage.

The concentration of the intracellular calcium [Ca2+]i is initially set to
0.2 µM . The time derivative of [Ca2+]i is calculated with the inward current
IS by

∂[Ca2+]i
∂t

= −10−7IS + 0.07(10−7 − [Ca2+]i)

Fig. 7.13 (a) shows the transmembrane voltage calculated with the Beeler-
Reuter model in dependency on different stimulus frequencies. An increase of
the stimulus frequency in the range of [0.5Hz . . . 3Hz] leads to an decrease
of the plateau voltage as well as of the action voltage duration. Simulations
with lower frequencies lead to insignificant changes in the shape and duration
of the action voltage. Simulations with higher frequencies using stimuli in the
relative and absolute refractory period lead commonly to irregular shapes and
durations.

Fig. 7.13 (b) depicts the intracellular calcium concentration [Ca2+]i re-
sulting from simulations with different stimulus frequencies. An increase of
the stimulus frequency in the range [0.5Hz . . . 3Hz] leads to a decreasing du-
ration of the action voltage and of the calcium enhancement. Furthermore,
the potential in and after the plateau phase is reduced.

The model of Beeler-Reuter reconstructs successfully the transmembrane
voltage of ventricular myocytes. Major drawback is the neglect of impor-
tant ionic channels, pumps and exchangers leading to deficiencies for the
reconstruction of many phenomena. Furthermore, the model overestimates
the intracellular calcium concentration [Ca2+]i significantly, which can be at-
tributed e.g. to the neglect of buffering mechanisms by troponin and calmod-
ulin.

Model of Luo and Rudy Phase-1 (1991). The Luo-Rudy phase-1 model
describes the electrophysiology of a ventricular cell from guinea pig based
primarily on data from single-cell and single-channel measurements (Fig. 7.14)
[180]. The model is a succession of the Beeler-Reuter model using similar
formulations e.g. for the fast sodium current and the slow inward current.
Variables of the model are the transmembrane voltage Vm and the intracellular
calcium concentration [Ca2+]i as well as seven activation and inactivation
parameters m, h, j, d, f , x, and k1. Each of these parameters is governed by
a Hodgkin-Huxley equation with specifically chosen transfer rate coefficients.
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Fig. 7.13. Simulations with the Beeler-Reuter model. (a) Transmembrane voltage
Vm and (b) intracellular calcium concentration [Ca2+]i are dependent on the stim-
ulus frequency. For each frequency a single course is visualized. The cell is activated
by applying a current at t = 25 ms with a length of 3 ms.

The transmembrane current Im of the Luo-Rudy phase-1 model consists
of

Im = INa + Isi + IK + IK1 + IKp + Ib

with:
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Fast inward sodium current INa

Slow inward current Isi

Time-dependent potassium current IK

Time-independent potassium current IK1

Plateau potassium current IKp

Background potassium current Ib

The transfer rate coefficients for the activation of the fast inward sodium
current INa were adjusted to achieve an upstroke velocity ∂Vm

∂t of 400 mV
s . A

novelty of the model was the introduction of the plateau potassium current
IKp activated at high potentials.

The model allows the reproduction of supernormal activity, defined as
larger than normal excitability during or after the repolarization phase, and
of Wenckebach periodicity, defined as periodic, stimulus frequency dependent
activation failure.
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Fig. 7.14. Schematic diagram of the Luo-Rudy phase-1 model. The model calculates
the transmembrane voltage Vm, the currents INa, Isi, IK , IK1, IKo, and Ib, and the
intracellular calcium concentration [Ca2+]i.
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calculates the transmembrane voltage Vm, eleven currents through the sarcolemma
and four currents of the sarcoplasmic reticulum (sr). Furthermore, two extracellular
and four intracellular concentrations are updated.
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Fig. 7.16. Simulations with an enhanced Luo-Rudy phase-2 model. (a) Transmem-
brane voltage Vm and (b) intracellular calcium concentration [Ca2+]i are dependent
on the stimulus frequency. For each frequency a single course of the transmembrane
voltage and intracellular calcium concentration, respectively, is visualized.

Model of Luo and Rudy Phase-2 (1994). The Luo-Rudy phase-2 model
is an extension of the phase-1 model and describes the electrophysiology of a
ventricular cell (Fig. 7.15) [181, 182]. The model is constructed primarily from
single-cell and single-channel measurements of guinea pig ventricular cells. The
extension consists mainly of a reformulation of the calcium handling, i.e. the
intracellular currents describing quantitatively the calcium mechanics of the
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sarcoplasmic reticulum. Different enhancements and adaptations of the model
exist.

The transmembrane current Im of the original phase-2 model consists of

Im = INa + ICa,L + IK + IK1 + IKp + INaCa + INaK

+Ins(Ca) + Ip(Ca) + ICa,b + INa,b

with:

Fast inward sodium current INa

Currents through L-type calcium channel (Ca2+, Na+, K+) ICa,L

Time-dependent potassium current IK

Time-independent potassium current IK1

Plateau potassium current IKp

Na-Ca exchanger current INaCa

Na-K pump current INaK

Non-specific calcium-activated current Ins(Ca)

Sarcolemmal calcium pump Ip(Ca)

Background calcium current ICa,b

Background sodium current INa,b

The model includes a representation of the sarcoplasmic reticulum by two
subcompartements, the network and the junctional sarcoplasmic reticulum.
The subcompartements serve for the buffering of calcium ions. The intracel-
lular calcium mechanisms are governed by four currents:

inward calcium current to network sarcoplasmic reticulum Iup

outward calcium current from network sarcoplasmic reticulum Ileak

calcium current between network and junctional sarcoplasmic reticulum Itr

outward calcium current from junctional sarcoplasmic reticulum Irel

The current Iup represents a pump mechanism transporting calcium ions
from the cytoplasm to the network sarcoplasmic reticulum. The calcium ions
are transferred via a leak current Ileak back to the cytoplasm and via the
current Itr to the junctional sarcoplasmic reticulum. Thenceforth, the calcium
is released to the cytoplasm with a calcium activated current Irel.

The model allows the reconstruction of early (EAD) and delayed after-
depolarization (DAD) as well as triggered and rhythmic activity, which are
arrhythmogenic single cell phenomena [200]. The EAD is defined as a depolar-
izing after-voltage beginning before the completion, the DAD as a depolarizing
after-voltage beginning after the completion of the repolarization.

Model of Demir, Clark, Murphey and Giles (1994). The Demir-Clark-
Murphey-Giles model describes the electrophysiology of a rabbit sinoatrial
node cell (Fig. 7.17) [183]. The model is based on whole cell recordings from
enzymatically isolated single cells of the border zone of the sinus node. The
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Fig. 7.17. Schematic diagram of the Demir-Clark-Murphey-Giles model. The model
calculates the transmembrane voltage Vm, twelve currents through the sarcolemma,
three current from the cleft space to the bulk medium, and three currents of the
sarcoplasmic reticulum (sr). Furthermore, three cleft and five intracellular concen-
trations are updated.

internal concept is derived from the work of DiFrancesco and Noble [177] as
well as Hilgeman and Noble [178].

The transmembrane currents Im of the Demir-Clark-Murphey-Giles model
are described by:

Im = INa + ICa,T + ICa,L + IK + IfK

+IfNa + INa,b + IK,b + ICa,b + INaK + INaCa + Ip(Ca)

with:

Inward sodium current INa

Transient calcium current ICa,T

Long-lasting calcium current ICa,L

Time- and voltage dependent delayed rectifier potassium current IK

Hyper-polarization-activated potassium current IfK

Hyper-polarization-activated sodium current IfNa

Background sodium current INa,b

Background potassium current IK,b

Background calcium current ICa,b

Na-K pump current INaK

Na-Ca exchanger current INaCa

Calcium pump current Ip(Ca)

The activation rate coefficients of the inward sodium currents are adapted
to consider the low upstroke velocity ∂Vm

∂t of sinoatrial node cells. The model
includes two hyper-polarization-activated currents IfK and IfNa. Hyper-
polarization-activated currents are of importance for any model of pacemaker
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Fig. 7.18. (a) Transmembrane voltage Vm and (b) intracellular calcium concentra-
tion [Ca2+]i calculated with Demir-Clark-Murphey-Giles model.

activity. The currents increase the transmembrane voltage after a repolariza-
tion. An automatic depolarization process is initiated after exceeding of the
threshold voltage (Fig. 7.18).

Model of Priebe and Beuckelmann (1998). The Priebe-Beuckelmann
model describes the electrophysiology of a human ventricular myocyte [191].
The model was used as a tool to explore therapeutic interventions on the
electrical excitability of myocardium. The model is a descendant of the Luo-
Rudy phase-2 model, which was parameterized with data from measurements
of transmembrane voltage, ionic currents and concentrations in human my-
ocytes [201].

The transmembrane currents Im of the Priebe-Beuckelmann model are
described by:

Im = INa + ICa,L + Ito + IKr + IKs

+IK1 + INaCa + INaK + INa,b + ICa,b

with:

Inward sodium current INa

Long-lasting calcium current ICa,L

Transient outward potassium current Ito

Time- and voltage dependent delayed rectifier potassium current IKr

Time- and voltage dependent delayed rectifier potassium current IKs

Inward rectifier potassium current IK1

Na-Ca exchanger current INaCa

Na-K pump current INaK

Background potassium current INa,b

Background calcium current ICa,b
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Fig. 7.19. Simulations with the Priebe-Beuckelmann model of human ventricular
myocytes. The reconstructed course of (a) transmembrane voltage Vm and (b) in-
tracellular calcium concentration [Ca2+]i show differences in normal and failing
myocytes. Failing myocytes feature prolonged duration of action voltage and intra-
cellular calcium transients.

Models exist for normal and failing myocytes (Fig. 7.19). The model of fail-
ing myocytes differs in several parameters from the model of normal myocytes:
reduced conductivity for transient output potassium current gto,max, reduced
conductivity for inward rectifier current gK1,max, increased conductivity for
calcium background current GCa,b, reduced conductivity of sodium back-
ground current GNa,b, down-regulation of Na-K pump INaK , up-regulation
of Na-Ca exchanger kNaCa, down-regulation of network sarcoplasmic reticu-
lum calcium pump Iup, and decreased calcium leak of network sarcoplasmic
reticulum Kleak.

A variant of the model exists using only six state variables, which allows
an efficient calculation of excitation propagation [196]. The models shows
significant numerical advantages, but neglects intracellular calcium handling
and several further components.

The Priebe-Beuckelmann model was adapted in subsequent work to take
recent measurement data from humans into account and to integrate it with
tension development models [197, 198]. Adaptations were made for both nor-
mal and failing myocytes concerning the intracellular calcium handling, i.e.
NSR Ca2+ uptake, Ca2+ background current, and Na-Ca exchanger. Further
adaptations were made to reconstruct the heterogeneity of several components
over the ventricular wall, i.e. transient outward potassium current Ito, the de-
layed rectifier potassium currents IKr and IKs, and inward rectifier potassium
current IK1.

Model of Noble, Varghese, Kohl and Noble (1998). The Noble-
Varghese-Kohl-Noble model describes the electrophysiology of a ventricular
cell of guinea pig (Fig. 7.20). The model includes effects on ionic channels by
the concentration of ATP and acetylcholine (ACh) as well as by stretching.
Furthermore, a force generation model is included. A description of the diadic
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Fig. 7.20. Schematic overview of the Noble-Varghese-Kohl-Noble model. The model
calculates the transmembrane voltage Vm, the currents through the sarcolemma to
the intracellular space and the currents of the sarcoplasmic reticulum (sr). Further-
more, intra- and extracellular concentrations are updated.

space is incorporated. Different variants and configurations of the model ex-
ist. The following description is based on [189, 202, 203] and focused on the
electrophysiological part of the model.

Hereby, the transmembrane currents are described by:

Im = INa + INa,b + INa,p

+IK1 + IKr + IKs + IK,ATP + IK,ACh

+ICa,b + ICa,L,K + ICa,L,Na + ICa,L,Ca

+ICa,L,K,ds + ICa,L,Na,ds + ICa,L,Ca,ds

+INaK + INaCa + INaCa,ds

+Istretch

with:

Fast sodium current INa

Background sodium current INa,b

Voltage dependent sodium current INa,p

Time-independent potassium current (background) IK1

Time-dependent, delayed potassium currents IKr , IKs

Sodium dependent potassium current IK,Na

ATP-dependent potassium current IK,ATP

ACh-dependent potassium current IK,ACh

Background calcium current ICa,b

Currents through L-type calcium channels ICa,L,Ca, ICa,L,Na,
ICa,L,K

L-type calcium current into the diadic space ICa,L,Ca,ds

Na-K pump current INaK

Na-Ca exchanger current INaCa

Na-Ca exchanger current for diadic space INaCa,ds

Stretch activated currents Istretch
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Fig. 7.21. Simulations with the Noble-Varghese-Kohl-Noble model. (a) Transmem-
brane voltage Vm and (b) intracellular calcium concentration [Ca2+]i are dependent
on the stimulus frequency. For each frequency a single course of the transmembrane
voltage and the calcium concentration is visualized.

Fig. 7.21 shows the influence of stimulus frequency to the course of the
transmembrane voltage Vm and intracellular calcium concentration [Ca2+]i.
Hereby, stretch activated currents are neglected. With higher stimulus fre-
quency the resting voltage is increased and the duration of the action voltage
is decreased.
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Fig. 7.22. Stretch function for weighting of ion conductances in dependence of
sarcomere length SL. The sarcomere length SLHST of half maximal activation is
set to 2 µm, the steepness parameter SACSL to 2.

Intracellular Mechano-Electric Feedback. The Noble-Varghese-Kohl-Noble
model includes dependencies of electrophysiological parameters on the length
or tension of the sarcomere. The mechano-electric feedback is realized by in-
troducing

• selective and non selective stretch-activated ion conductances
• a modulation of calcium binding to troponin
• a modulation of sarcoplasmic leak current

The following description of the mechanisms is restricted to the length de-
pendencies of the electrophysiological parameters. The length or stretch de-
pendent formulation is of advantage for the coupling with deformation models.

Stretch-activated ion conductances. Two models are proposed to calculate
stretch-activated ion conductances and to reconstruct stretch activated cur-
rents. In both models the ion conductances are weighted by the sarcomere
length SL with the stretch function

fstretch(SL) =
1

1 + e−2SACSL(SL−SLHST )

with the steepness parameter SACSL and the sarcomere length SLHST at
which half maximal activation occurs (Fig. 7.22).

The first model describes the summary stretch current Istretch with a non-
specific INs−stretch and an anion stretch current IAn−stretch:

Istretch = INs−stretch + IAn−stretch

The currents INs−stretch and IAn−stretch are determined by the stretch func-
tion fstretch dependent on the sarcomere length SL, the maximal conduc-
tivities gNs−stretch and gAn−stretch, respectively, and the equilibrium voltages
ENs−stretch and EAn−stretch, respectively:

INs−stretch = fstretch(SL) gNs−stretch (Vm − ENs−stretch)
IAn−stretch = fstretch(SL) gAn−stretch (Vm − EAn−stretch)
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The second model subdivides the summary stretch current Istretch in a
sodium INa−stretch, a potassium IK−stretch, a calcium ICa−stretch, and an
anion stretch current IAn−stretch:

Istretch = INa−stretch + IK−stretch + ICa−stretch + IAn−stretch (7.1)

Hereby, the stretch currents are calculated as described in the simple model
with the stretch function fstretch, the maximal conductivities and the equi-
librium voltages:

INa−stretch = fstretch(SL) gNa−stretch (Vm − ENa)
IK−stretch = fstretch(SL) gK−stretch (Vm − EK)

ICa−stretch = fstretch(SL) gCa−stretch (Vm − ECa)
IAn−stretch = fstretch(SL) gAn−stretch (Vm − EAn−stretch)

The second model describes the stretch current obviously more detailed re-
garding the different types of ions and herewith offers the advantage to update
quantitatively the sodium, potassium and calcium concentrations.

Modulation of calcium binding to troponin C. The binding of intracellular
calcium to troponin C is modulated by stretch:

∂[Ca2+]troponin

∂t
= αtroponineγtrop,SLSL([troponin] − [Ca2+]troponin)[Ca2+]i

−βtroponin[Ca2+]troponin

with the concentration of calcium bound to troponin C [Ca2+]troponin, the
total troponin concentration [tropronin], the intracellular calcium concentra-
tion [Ca2+]i, the transfer rates αtroponin and βtroponin, and the parameter
γtrop,SL. The stretch is defined by the sarcomere length SL.

Modulation of sarcoplasmic reticulum leak current. The calcium leak current
Irel from the sarcoplasmic reticulum to the cytoplasm is divided in a stretch
dependent and an independent part:

Irel =
(

factivator

factivator + 0.25

)2

kmca2[Ca2+]rel + JSR−leakeγSR,SLSL

The current is controlled independently of stretch by the state variable
factivator, the parameter kmca2 and the sarcoplasmic calcium concentration
[Ca2+]rel. The stretch dependent part is calculated with the sarcomere length
SL, the experimentally determined parameters γSR,SL and JSR−leak.

Simulations. Two sets of simulations were performed to examine the influence
of static and dynamic stretch [204]. The influence of static stretch of different
strength was tested by initiation of excitation via injection of a convenient
current with a duration of 3 ms. The phenomena of dynamic stretch were



188 7 Cardiac Electrophysiology

Fig. 7.23. Simulations with varied static length of sarcomere. (a) Transmembrane
voltage and (b) calcium concentration in the cytoplasm dependent on length of
sarcomere calculated with Noble-Varghese-Kohl-Noble model. The cell is excited by
applying a stimulus current at t = 25 ms with a length of 3 ms. The sarcomere
length ranges from 2.0 to 2.2 µm. The default length of the sarcomere is 2 µm. The
stimulus frequency was set to 1 Hz.

examined with different stretch impulses and durations. The application of
stretch starts in the diastolic phase. In both sets of simulations the calculated
model variables were stored and processed.

The complex stretch model (equation 7.1) is parameterized and used in
the following simulations. The parameterization was performed by fitting data
measured in single guinea pig ventricular myocytes [155] with methods similar
to those presented in [205]. The parameters are SACSL = 7, SLHST =
2.4 µm, gNa−stretch = 15 nS, gK−stretch = 30 nS, gCa−stretch = 0.1 nS,
gAn−stretch = 15 nS, and EAn−stretch = −20 mV . The simulations deliver
information concerning the mechanisms of mechano-electric feedback.

The influence of static stretch on the course of the transmembrane voltage
and the intracellular calcium concentration is illustrated in Fig. 7.23 and Fig.
7.24. Hereby, the stretch amplitude is specified by the length of the sarcomere
with a default of 2 µm. The resting voltage as well as the progression of the
action voltage are dependent on the length of the sarcomere ranging from 1.6
to 2.2 µm. The resting voltage as well as the course of the action voltage
are dependent on the length of the sarcomere ranging from 2.0 to 2.2 µm.
The resting voltage increases and the duration of the action voltage decreases
with larger sarcomere length. Both effects can be attributed to the raise of
the sarcolemmal conductances. The maxima of the transmembrane voltage
are independent of stretch.

The influence of mechanical stretch impulses is depicted in Fig. 7.25 and
Fig. 7.26. In the presented simulations the stretch amplitude and duration
were varied. Once again, the stretch amplitude was specified by the length
of the sarcomere with a default of 2 µm. Depending on the amplitudes and
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Fig. 7.24. Simulations with varied static length of sarcomere (continued). (a) con-
centration of calcium bound to troponin C and (b) concentration of calcium in the
release part of the sarcoplasmic reticulum dependent on length of sarcomere cal-
culated with Noble-Varghese-Kohl-Noble model. The cell is excited by applying a
stimulus current at t = 25 ms with a length of 3 ms. The sarcomere length ranges
from 2.0 to 2.2 µm. The default length of the sarcomere is 2 µm. The stimulus
frequency was set to 1 Hz.

the length an effect ranging from a small change of the resting voltage to an
excitation of the cell was achieved.

The simulation presented in Fig. 7.25 (a) shows the initiation of an action
impulse by a relatively small stretch duration only for large sarcomere length.
The simulations with sarcomere length 2.5 µm show an increase in the dura-
tion of the action impulse with the exception of the results with a relatively
long stretch duration depicted in Fig. 7.26 (a) and (b).

The initiation of early afterdepolarizations (EAD) is apparent in Fig. 7.25
(d) and 7.26 (a) for sarcomere lengths 2.4 and 2.5 µm, and for length 2.4 µm,
respectively. The classification of the EADs was performed using the descrip-
tion of [206] by examination of the activation and inactivation gates of the
L-type calcium channels during the plateau phase.

All these effects are primarily attributed to the raise of the sarcolemmal
conductances by stretch. The stretch dependence of intracellular structure
influences the course of the transmembrane voltage only to a small degree.

7.3 Excitation Propagation

7.3.1 Experimental Studies

Measurement Systems. The propagation of electrical excitation in the
heart is commonly measured by temporal and spatial registration of voltages
resulting from cardiac current flow. Cellular processes generate the current
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Fig. 7.25. Simulation of initiation of action impulse by dynamic stretch simulated
with Noble-Varghese-Kohl-Noble model. At t = 25 ms a mechanical stretch of (a)
5 ms, (b) 10 ms, (c) 20 ms, and (d) 50 ms was performed delivering a sarcom-
ere length from 2.3 to 2.5 µm. The default length of the sarcomere is 2 µm. Some
combinations of stretch and length lead to action impulses, others increase the trans-
membrane voltage insufficiently for activation.

flow, i.e. the transmembrane current responsible for the de- and repolariza-
tion of myocytes (Sect. 7.2.1). Electrocardiographic, magnetocardiographic
and optical systems were developed to register the propagation of electrical
excitation.

Electrocardiographic systems measure so-called electrocardiograms, which
are registered via electrodes and amplified for further processing [207]. An
electrocardiogram consists of voltages, which are assigned to different points
in time. These voltages can be alluded to the intra- and extracellular domain
as well as over the membrane.

Magnetocardiographic systems produce magnetocardiograms, whereby the
magnetic field resulting from the electrical current flow is registered [208]. This
current flow is composed of intracellular, extracellular and transmembrane
currents.
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Fig. 7.26. Simulation of initiation of action impulse by dynamic stretch simulated
with Noble-Varghese-Kohl-Noble model (continued). At t = 25 ms a mechanical
stretch of (a) 100 ms, and (b) 200 ms was performed delivering a sarcomere length
from 2.3 to 2.5 µm. The default length of the sarcomere is 2 µm.

Optical systems work in conjunction with voltage sensitive dyes, video
recordings and image processing. Commonly, the course of transmembrane
voltage is scanned at surfaces of extracorporated hearts and multicellular
preparations.

The electrocardiography is the primary tool in clinical diagnosis. Hereby,
the electrocardiograms are registered via electrodes, amplified and commonly
visualized for visual analysis. A distinction commonly made for medical mea-
surement systems concerns the placement of the registration. Hereby, extra-
and intracorporal systems are distinguished.

Of diagnostic importance is the extracorporal registration via electrodes
at the body surface, whereby different arrangements of electrodes are used to
produce e.g. the leads of Einthoven, Goldberger and Wilson. The extracor-
poral registration delivers voltages resulting from the distribution of current
sources in the heart and the conductivity distribution in the body (Fig. 7.27).
A spatial discrimination of the excitation process is possible by analysis with
numerical methods and by usage of background knowledge concerning the
electrophysiology of the heart. Nevertheless, an automated, computer-based
analysis is still topic of research.

Alternatively, in clinical diagnosis intracorporal methods allow a simplified
spatial discrimination and deliver additional information. Hereby, voltages are
measured e.g. at the subepicardial myocardium via multi-electrode socks [209]
and in the endocardial cavity via multi-electrode catheters [210, 211].

Furthermore, the propagation can be observed directly at cellular and
multicellular level, e.g. by registration of the

• transmembrane voltages with voltage clamp techniques (Sect. 7.2.1)
• intercellular current flow through gap junctions with double cell voltage

clamp techniques (Sect. 7.2.1)
• extracellular voltages in the near-by of an excited structure (Fig. 7.28).
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Fig. 7.27. Exemplary electrocardiogram for physiological excitation propagation
in normal, adult humans. Commonly, the P wave takes less than 100 ms, the PQ
interval less than 200 ms, and the QRS wave less than 100 ms. The duration of
the QT interval is dependent on the cycle rate. E.g. for a cycle rate of 70 min−1 a
duration of 320 − 390 ms is observed [152].

The registration, analysis and automatic classification of electrocardio-
grams is a basic function of many biomedical instruments and software pack-
ages. E.g. the stimulus delivery of pacemakers as well as external and im-
planted defibrillators are controlled by features extracted from electrocardio-
grams. Also, the measurement of excitation propagation velocity necessitates
the detection of activation times in electrograms.

Mechanisms. The mechanisms of macroscopic excitation propagation
through the heart was examined by various studies since the begin of the
twentieth century [128, 124, 117, 126]. The studies showed, that the normal
electrical excitation is cyclical and precedes the mechanical contraction. The
chronological order of activation was found to be similar in hearts of mammals.

As initiator of the physiological excitation serves the sinus node. Then, the
excitation propagates over the right atrium to the atrioventricular node and
via the Bachmann bundle to the left atrium. The atrioventricular node de-
lays the propagation. Afterwards, the His bundle, the fast conducting Tawara
bundle branches and the subendocardially located Purkinje fibers are acti-
vated. Subsequently, the excitation passes to the subendocardial ventricular
myocardium, wherefrom the excitation traverses the ventricles to their epi-
cardial surface.
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Fig. 7.28. Electrograms measured at surface of papillary muscle. The papillary
muscle was excised from a rabbit’s right ventricle and placed in a flow-through
bath. The musle is fixed at both ends, i.e. the onset of the tendon and proximal to
its former attachment to the ventricle wall. A stimulus was given at t=1 ms with a
length of 1 ms proximal to the former attachment. Electrograms were measured at
several positions along the muscle, i.e. near to the stimulus electrode, indicated by
0 mm, and in a distance of 1, 2, 3, and 3.6 mm. Activation times can be detected
by analysing the electrograms, e.g. by searching for maximal negative slopes in the
region after the stimulus artefact.

The excitation propagation process can be registered with extracorporal
electrodes (Fig. 7.27). The propagation through the atria corresponds to the
P wave. The propagation through the ventricles is reflected by the QRS wave,
their repolarization by the T wave.

Further studies of different types, e.g. with double cell voltage clamp tech-
niques (Sect. 7.2.1) and genetically modified cells [97], showed that the inter-
cellular excitation propagation is resulting from a flow of current primarily
through gap junctions. The current flow is depending on the differences of the
intracellular potential. Hence, the cellular electrophysiology, i.e. the upstroke
velocity of the transmembrane voltage, determines the excitation velocity.
Primarily, sodium and potassium ions serve as charge carrier.

Coupling via gap junctions between cardiac myocytes and fibroblasts is
reported, e.g. by connexin45 in the sinoatrial node and connexin43 in rat
ventricular cell cultures [212, 213]. The electrophysiological implications of
this coupling are still topic of research.

Experimental studies of the mechanisms of microscopic propagation of
electrical excitation through the myocardium showed different phenomena
depending on the scale of observation [214, 215]. In the scale of single cells
a discontinuous, stochastic propagation is found resulting from the irregular
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cellular shape and the inhomogeneous gap junction distribution. In a larger
scale a continuous, anisotropic propagation is observed. The anisotropy is
resulting from the myocyte orientation dependent, averaged distribution of
gap junctions.

A variety of phenomena can be initiated by experiments, whereby specif-
ically timed and located electrical stimulus sequences are applied [216, 217,
218]. Similar stimulus sequences applied via endocardial catheter electrodes
are used in clinical electrophysiological examinations for an evaluation of the
heart.

An important arrhythmogenic phenomenon is the unidirectional block for
excitation propagation, which can be found in excitable media commonly re-
sulting from static or dynamic inhomogeneities. A unidirectional block can be
generated with a suitably located and timed stimulus of the excitable media,
e.g. of the atrial and ventricular myocardium. The stimulus is suitably located
and timed, if the stimulus is located with one part in a non-excitable area,
with the other in an excitable area. The non-excitability of the area results
from an electrophysiological cellular status in which the cell cannot be acti-
vated by an early secondary stimulus. In this case the excitation propagates
in the direction opposite to the blocked area.

Depending on the dimension of the excitable media, different phenomena
resulting from a unidirectional block can be observed: In a one-dimensional
domain the block leads to a propagation in the opposite direction, while nor-
mally a stimulus is followed by two propagation fronts in each direction. A
block in a non-homogeneous two-dimensional area can lead to a rotating wave
around obstacles, which is reported e.g. in the right and left atrium [217, 218].
The block can also lead to single or multiple spiral waves. The spiral waves
can rotate freely, no obstacles or channels of muscle structures are necessary.
The three-dimensional equivalent for spiral waves are scroll waves.

7.3.2 Modeling Approaches

Different modeling approaches of the excitation propagation in the my-
ocardium can be distinguished depending on the representation of the micro-
scopic and macroscopic anatomy as well as depending on the approximation
of the cellular electrophysiology.

Modeling approaches that use only macroscopic information allow the com-
bining of cells and their common treatment. In contrast, models using micro-
scopic anatomical information at a cellular level split cells in components,
which are separately treated.

In the last years different approaches for the macroscopic excitation prop-
agation were developed:

• cellular automata
• reaction diffusion systems
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Gap junction

Extracellular space

Myocyte

Fig. 7.29. Modeling of electrical intercellular coupling. Adjacent myocytes are cou-
pled via gap junctions and through the extracellular space.

Microscopic and macroscopic models allow the inclusion of anisotropic ef-
fects resulting from the orientation of myocytes, e.g. by using conductivity ten-
sors. Commonly, the methods are applied on a one-, two- or three-dimensional
lattice (Fig. 7.29), whereby each cell’s intracellular space is coupled directly
only with the intracellular space of adjacent cells.

Microscopic Models. Microscopic models use anatomical information of
the cellular architecture acquired with microscopy to reconstruct the exci-
tation propagation in a region of the myocardium [219, 214]. The region is
divided in different areas, which are assigned to the intra- and extracellular
space, the membrane of myocytes and capillaries. The membrane areas in-
clude an electrophysiological description, i.e. the sarcolemmal ionic currents
from a cell model. The current flow between the areas is modeled with Ohm’s
law using resistors.

The approach allows the inclusion of irregularities of the cellular archi-
tecture as well as inhomogeneities of the orientation and distribution of gap
junctions. Hence, anisotropic effects are implicitly included.

Microscopic models allow the reconstruction of experimental results,
whereby the inhomogeneous microstructure of the myocardium is of impor-
tance. An example therefore is the discontinuous excitation propagation found
at cellular level [214, 215]. The microscopic modeling of the myocardium is
restricted to a small volume, because of the high expense to describe each
single cell with a number of complex and coupled elements.

7.3.3 Cellular Automata

Cellular automata are applied as models of natural processes in various dis-
ciplines, e.g. in physics, chemistry, biology, and medicine. A large number of
different cellular automata were developed to model the excitation process in
the heart [220, 221, 222, 223, 224, 225, 226, 227, 228, 142, 37]. Cellular models
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(a) (b)

Fig. 7.30. Three-dimensional neighborhood of cells in cellular automaton. The grey
labeled central cell communicates with (a) 6 and (b) 26 neighbors (from [37]).

were used in the early work of Wiener and Rosenblueth (1946) to describe phe-
nomena of excitation propagation in two-dimensional sheets of cardiac muscle
[220] and of Moe et al. (1964) to model atrial fibrillation [221]. Recently pub-
lished works showed that cellular automata are capable of efficient simulation
of excitation propagation in the whole heart. Furthermore, tissue specific and
stimulus frequency dependent courses of the transmembrane voltage as well
as tissue specific anisotropy of excitation velocities are taken into account in
these simulations [225, 228, 142].

A cellular automaton can be divided in two components [229, 230]:

• regular, discrete, infinite network representing the underlying spatial struc-
ture.

• finite automaton working at each node (so-called cell) of the network.

Each cell communicates with a finite set N of other cells. The number
and the arrangement of the cells with which a cell communicates determines
the neighborhood of the cellular automaton. Classical neighborhoods are the
nearest neighbors neighborhoods of von Neumann or Moore. In case of three-
dimensional cellular automata these are the 6- and 26-neighborhood, respec-
tively (Fig. 7.30). The neighborhood determines the shape of the wave front
(Fig. 7.31). The set N is usually fixed and is an ordered subset of the set of
all cells Z.

The communication between cells is performed in a local, deterministic,
uniform and synchronous way. Hence, the global evolution of the system is
predetermined running the cellular automaton along discrete time steps [229].
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7.31. Excitation wave simulated with a cellular automaton in a three-
dimensional slice of 256 x 256 x 3 elements with a size of 0.2 mm x 0.2 mm x
0.2 mm modeling the electrophysiology of atrial cells. The simulated transmem-
brane voltage is color coded illustrated at different time steps. (a) Initially, the area
is in the resting state with all cells at resting voltage. (b) A stimulus was applied
followed by (c-g) a wave propagating over the area. The shape of the wave front is
resulting from the 26-neighborhood used in the cellular automaton for the commu-
nication between cells. (h) Finally, the area is returned to the resting state with all
cells at resting voltage.

Model of Werner, Sachse, Seemann, and Dössel. The three-dimensional au-
tomaton simulates the propagation of electrical excitation with models ranging
from areas of myocardium up to the whole heart [227, 231, 142, 37]. Anisotropy
of the myocardium and frequency dependent changes of the course of the
transmembrane voltages are taken into account.

As underlying spatial structure anatomical models of the myocardium and
of the whole heart can be used. E.g. the whole heart model used in the subse-
quently described simulations consists of a classified anatomical tissue data set
(section 6.4.5) derived from the Visible Man data set, a myocyte orientation
data set and a specialized cardiac conduction system tree. While the myocyte
orientation data set has only an impact on the local transition function, the
conduction system tree varies the neighborhood of the cells located at the
nodes of the tree. Hence, unlike classical cellular automata, the neighborhood
N varies. For cells located at the nodes of the tree the 26 fixed neighbors
are extended by the set of successors and one predecessor defined by the con-
duction system tree. However, most of the cells have a fixed set Nfixed of 26
neighbors, whereas only for a very small number of the cells, approximately
0.01 %, the neighborhood N varies.
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Fig. 7.32. Color coded transmembrane voltage distribution of subepicardial my-
ocardium resulting from the simulation of a sinus rhythm (from [37]). The sim-
ulation is performed with a cellular automaton. Tissue specific variations of the
maxima and duration of the transmembrane voltage are visible. Different time steps
of the excitation process are visualized. The excitation starts in the sinus node lo-
cated in the upper right atrium and propagates over the atrial myocardium. The
atrioventricular node delays the propagation, which continues then spreading over
the Tawara branches to the subendocardial Purkinje fibers. Finally, the excitation
propagates over the ventricular myocardium.

The finite automaton at each node is configured with results from pub-
lished measurements [23] and from simulations with electrophysiological cell
models, e.g. simulations similar to those shown in Fig. 7.21. For that pur-
pose, a large number of simulations was performed varying the cell model and
the stimulus frequency. The simulations deliver tissue and stimulus frequency
specific courses of the transmembrane voltage and of the excitation velocity.

The result of a simulation with the cellular automaton is the temporal
and spatial distribution of the transmembrane voltage for each cell (Fig. 7.31,
Fig. 7.32 and Fig. 7.33). This distribution can be used in subsequent numer-
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Fig. 7.33. Volume visualization of color coded transmembrane voltage distribution
resulting from the simulation of a sinus rhythm (from [37]). The figure shows the
same time steps as Fig. 7.32. The propagation through the volume of the heart, e.g.
from the subendocardial located Purkinje fibers to the ventricular myocardium, is
observable.

ical calculations of physical fields in the human body (Sect. 7.3.4), e.g. the
calculation of the current source distribution in the heart (Fig. 7.34) and of the
extracellular potentials in the whole body (Fig. 7.35). The potentials at the
body surface can be used to determine electrocardiograms (Fig. 7.36). Hereby,
for each time step the potentials at different points on the body surface are
read out. The electrocardiograms of different type, e.g. Einthoven, Goldberger
and Wilson leads, are calculated by their differences and averages.

Simulation of unidirectional blocks, spiral and scroll waves. A unidirectional
block can be simulated with the cellular automaton for a suitably located
and timed stimulus in the repolarization phase of the excitable media, e.g.
atrial and ventricular myocardium [221, 224, 228, 232, 233]. In this case the
excitation propagates in the direction opposite to the block. A stimulus is
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Fig. 7.34. Volume visualization of color coded current source density distribution
of simulated sinus rhythm (from [37]). Different time steps of the excitation process
are visualized. The sources are calculated with the bidomain model. They occur
at places with a gradient of the transmembrane voltage, primarily at the front of
the excitation propagation. No sources are found in the fully activated atrial and
ventricular myocardium.

suitably located and timed, if it is located with one part in a non-excitable
area, with the other in an excitable area.

Depending on the dimension of the simulated area, different phenomena of
excitable media resulting from a unidirectional block can be reconstructed in
simulations with the cellular automaton. The reconstructability is depending
on the specific implementation of the automaton.

While normally a stimulus in a one-dimensional domain is followed by two
propagation fronts in each direction, a block leads to a propagation in the
opposite direction. In an inhomogeneous two-dimensional domain a block can
lead to a wave rotating around obstacles (Fig. 7.37). The block can produce
single and multiple spiral waves, too. The spiral waves can rotate freely. No
obstacles or specifically arranged geometrical structures are necessary. In sim-
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Fig. 7.35. Color coded body surface potential map of sinus rhythm (from [37]). Dif-
ferent time steps are visualized. The voltages at the body surface resulting from the
cardiac sources are calculated with the finite difference method and a conductivity
model of the whole body [26].

ulations with three-dimensional domains scroll waves can be reconstructed.
The cellular automaton allows an efficient simulations in large and complex
models, e.g. atrial and ventricular flutter can be simulated with models of the
whole heart (Fig. 7.38 and Fig. 7.39).

Simulated radiofrequency (RF) ablation in right human atrium. A clinical
option for the treatment of chronical atrial flutter is the catheter ablation
therapy with radiofrequency current [234]. The applied current destroys cells
in areas of the atrial myocardium, so that an excitation propagation through
the area is suppressed. Commonly, lines of myocardium are ablated with end-
points at the ostia of the atrium, e.g. to the vena cava superior and inferior.
The location of the lines has to be chosen so, that a propagation from the
sinus node to the atrioventricular node is still possible and the atrial flutter
is permanently terminated.
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Fig. 7.36. Simulated electrocardiograms of sinus rhythm (from [37]). (a) Einthoven
lead I, II and III, (b) Goldberger leads aVR, aVL and aVF, (c) Wilson leads V1,
V2 and V3, (d) Wilson leads V4, V5 and V6.

The cellular automaton is capable of simulating the atrial flutter and the
electrophysiological effects of an ablation therapy. In the exemplary simulation
illustrated in Fig. 7.40 the atrial flutter is represented by a rotating wave
around the vena cava inferior.

The rotation wave is terminated after execution of two ablation lines. A
first line is set in the dorsal right atrial wall from the vena cava inferior to
the vena cava superior. The first line results in a rotating wave around the
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(a) (b) (c)

(d) (e) (f)

Fig. 7.37. Rotation of wave around an obstacle simulated with cellular automaton
in a three-dimensional slice of 256 x 256 x 3 elements with a size of 0.2 mm x
0.2 mm x 0.2 mm modeling the electrophysiology of atrial cells. The simulated
transmembrane voltage is color coded illustrated at different time steps. (a) A first
stimulus was applied followed by (b) a wave propagating over the obstacle. (c) A
second stimulus in the repolarization phase leads through a unidirectional block to
an excitation propagation in the opposite direction. (d-f) The excitation propagates
around the obstacle.

vena cava inferior and the ablation line, which leads to an increase of the cycle
duration of the flutter. A second line is set orthogonal in the right area of the
right atrium leading to a termination of the flutter. The ablation still permits
the propagation from sinus node to the ventricles via the atrioventricular node,
but a reinitiation of flutter with the same stimulus sequence is not possible.

7.3.4 Reaction Diffusion Systems

Overview. Reaction diffusion systems, which are also known as excitable
dynamics equations, use a system of non-linear partial differential equations
to describe the excitation and propagation process in excitable media [235].
The system consists of n equations of the following type:

∂ui

∂t
= fi(u1, . . . , un) + ∇ · (Di∇ui) i = 1, . . . , n
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Fig. 7.38. Atrial flutter simulated with cellular automaton (from [37]). (a) A stimu-
lus in the repolarization phase of the atrial myocytes leads through a unidirectional
block to an excitation propagation in the opposite direction. The excitation prop-
agates unidirectionally along the musculi pectinati. The reentry takes place at the
dorsal right atrium near to the vena cava inferior. The excitation rotates around the
ostium of the vena cava inferior. (b) The electrocardiogram shows a high frequency
pattern for the atrial flutter in conjunction with normal QRS-complexes.

with the state variables ui, the excitation term fi and the diffusion tensor
Di. In the context of cardiac excitation propagation, the state variables ui

correspond to the cellular status, e.g. transmembrane voltage, ionic channel
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Fig. 7.39. Ventricular flutter simulated with cellular automaton (from [37]). (a)
A stimulus in the repolarization phase of the left ventricular myocytes leads to a
unidirectional block followed by ventricular flutter. (b) The electrocardiogram shows
a high frequency pattern for the ventricular flutter.

conductivity and ionic concentrations. The change of the state variables is
determined by the excitation term fi and the diffusion term ∇ · (Di∇ui).
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Fig. 7.40. Simulation of RF ablation in human right atrium with flutter (from [37]).
The ablation lines are labeled in white.
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Depending on the dimension n of the equation system as well as on the
formulation of the excitation and diffusion terms different types of models can
be distinguished:

• simplified approaches
• combinations of electrophysiological cell models with electrical current flow

models
– monodomain models with resistor networks or Poisson’s equation
– bidomain models with Poisson’s equation

Simplified Approaches

Model of FitzHugh and Nagumo. An early representation of the simplified ap-
proaches for excitation propagation is the two state FitzHugh-Nagumo model
[236]:

∂u

∂t
=

u − u3

3 − v

ε
+ D∇2u

∂v

∂t
= ε(u + β − γv)

with the state variable u for the transmembrane voltage and the state variable
v for inhibition. The diffusion term is formulated for isotropic media with the
scalar diffusion coefficient D. Typical parameters are 0 < |β| <

√
3, 0 < γ < 1

and ε � 1.
Model of Rogers and McCulloch. A modification of the FitzHugh-Nagumo
equations allows a more realistic description of the propagation in the my-
ocardium [237, 238]:

∂u

∂t
= c1u(u − a)(1 − u) − c2uv + ∇ · (D∇u)

∂v

∂t
= b(u − dv)

with the diffusion tensor D, and the membrane parameters a, b, c1, c2, and d.
The additional parameters are used to reconstruct the course of the transmem-
brane voltage of ventricular myocytes. The state variables u and v describe
as in the FitzHugh-Nagumo equations the transmembrane voltage and the
inhibition. The boundary condition

∂u

∂n
= 0

is added, which allows to define the derivative of the transmembrane voltage
at borders with normal n. The equations were used in conjunction with finite
element techniques to simulate the excitation propagation in two-dimensional
sheets of myocardium.

Further adaptations of the FitzHugh-Nagumo equation in the area of car-
diac electrophysiology are found in [239, 240, 241].
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Combinations of Electrophysiological Cell Models with Electrical
Current Flow Models. A biophysically well-founded approach consists of
combining detailed electrophysiological models of single myocardial cells with
models of the electrical current flow through the intra- and extracellular space
as well as the gap junctions. The electrophysiological cell models describe the
concentration and flow of ions as well as the conductivity of cellular structures
and the transmembrane voltage by a set of coupled differential equations.

Two main representatives of these combined models were developed dif-
fering in the number of domains for the electrical current flow: mono- and
bidomain models. The combined models are further distinguished depending
on the representation of the conductivity used for the electrical current flow
model. Hereby, approximations with isotropic and anisotropic conductivities
represented by resistors as well as conductivity tensors of first or second rank
are known.

Monodomain Models. The monodomain models incorporate the effect of cou-
pled intracellular space with gap junctions by resistors [242, 243, 244] or con-
ductivity tensors. In each time step and for each cell two calculations are
performed:

• computation of the summary intracellular current source density fi using
a model of intercellular current flow

• updating of the status of the electrophysiological cell model using the
current source densities fsi

The summary intracellular current source density fi can be calculated
outgoing from Poisson’s equation:

∇ · (σi∇Vm) = fi (7.2)

with the transmembrane voltage Vm and the intracellular conductivity tensor
σi, describing conductivities for intracellular space and gap junctions. The
summary intracellular current source density fi consists of two different com-
ponents:

fi = βItm − fsi (7.3)

with the intracellular current source density fsi, the transmembrane current
Itm, and the myocytes per volume ratio β, allowing the conversion from cur-
rents to current source densities. The current Itm describes the summary flow
through the membrane given by the electrophysiological model:

Itm = Cm
∂Vm

∂t
+ Im (7.4)

with the membrane capacitor Cm and the ionic current Im, which is a function
of the transmembrane voltage Vm. Additional stimulus currents are neglected.
The inclusion of these definitions (equations 7.2-7.4) delivers the complete
equation:
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∇ · (σi∇Vm) = β

(
Cm

∂Vm

∂t
+ Im

)
− fsi

Numerically motivated the complete equation can be transformed to:

∂Vm

∂t
=

1
Cm

(
fsi + ∇ · (σi∇Vm)

β
− Im

)

The transformed equation is commonly solved with the finite-difference or
finite-element method for the underlying generalized Poisson equation
(Sect. 3.3) and the Euler or Runge-Kutta methods for the underlying ordinary
differential equation (Sect. 2.5).
Bidomain Models. The bidomain models are an extension of monodomain
models including the effects of the extracellular space [245, 246, 247, 248, 249].
The bidomain model treats the electrical behavior of tissue in two domains,
in the intracellular and extracellular space, which are separated by the cell
membrane. In each domain Poisson’s equation for fields of stationary electrical
current is fulfilled:

∇ · (σi∇φi) = βItm − fsi

∇ · (σe∇φe) = −βItm − fse

with the intracellular potential φi, the extracellular potential φe, the intra-
cellular conductivity tensor σi, the extracellular conductivity tensor σe, the
intracellular stimulus current source density fsi, the extracellular stimulus
current source density fse, and the myocyte per volume ratio β. The intra-
cellular conductivity tensor σi consists of conductivities for the intracellular
space and for the gap junctions. The domains are coupled by the summary
current Itm through the cell membrane and by the definition of the trans-
membrane voltage:

Vm = φi − φe

The summary membrane current Itm vanishes in the summation of the two
Poisson’s equations:

∇ · (σi∇φi) + ∇ · (σe∇φe) = −fsi − fse (7.5)

The following method can be chosen to couple the bidomain equations
with the electrophysiological cell models (Fig. 7.41) [250]. The method uses a
decomposition of the intracellular Poisson’s equation:

∇ · (σi∇φi) = ∇ · (σi∇(Vm + φe)) = ∇ · (σi∇Vm) + ∇ · (σi∇φe)

and of the summation equation (equation 7.5):

∇ · (σi∇φi) + ∇ · (σe∇φe) = ∇ · (σi∇Vm) + ∇ · ((σi + σe)∇φe)

The method bases on the iterative solving of Poisson’s equations with
numerical techniques:
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Fig. 7.41. Bidomain modeling of cardiac electrophysiology. The depicted modeling
includes the possible adaption of conductivity, e.g. to incorporate deformation, which
is neglected in traditional bidomain formulations.

• calculation of extracellular current sources fe with the transmembrane
voltage Vm delivered by the electrophysiogical model

• computation of extracellular potentials φe with the extracellular current
source densities fe

• calculation of summary intracellular stimulus current source density fi

with the transmembrane voltage Vm and the extracellular potentials φe

• updating of the status of the electrophysiological cell model using the
current source densities fsi

The formulation neglects the extracellular stimulus current fse for simplicity
of description.

In a first step the extracellular current source density fe delivered by the
transmembrane voltage Vm is determined:

∇ · (σi∇Vm) = fe

In a second step the extracellular potential φe is calculated from the current
source density fe:

∇ · ((σi + σe)∇φe) = −fe

The calculation of φe is commonly numerically expensive, because the solving
of a large system of linear equations is necessary.

In a third step the summary intracellular current source density fi is de-
termined:

∇ · (σi∇Vm) + ∇ · (σi∇φe) = fi
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The incooperation of the electrophysiological model’s equation (equation 7.4)
and the separation of the intracellular current source density fi (equation 7.3)
lead to a combined equation:

∇ · (σi∇Vm) + ∇ · (σi∇φe) = β

(
Cm

∂Vm

∂t
+ Im

)
− fsi

with the membrane capacitor Cm and the ionic current Im delivered by the
electrophysiogical model. The combined equation is numerically motivated
transformed to:

∂Vm

∂t
=

1
Cm

(
fsi + ∇ · (σi∇Vm) + ∇ · (σi∇φe)

β
− Im

)

Commonly, the finite-difference or finite-element method is applied to solve
the underlying generalized Poisson equations (Sect. 3.3). The Euler or Runge-
Kutta methods is used to solve the underlying ordinary differential equation
(Sect. 2.5).

Simulations. A set of simulations was performed to illustrate the excitation
propagation model consisting of a combination of electrophysiological cell
models with electrical current flow models. The simulations aim at the gain of
knowledge, which is of importance for the construction of whole heart electro-
mechanical models. Furthermore, they allow a comparison with cellular au-
tomata models.

As electrophysiological cell models served the Courtemanche-Ramirez-
Nattel and Noble-Varghese-Kohl-Noble model [187, 189], which were solved
with the Euler method. As current flow model the bidomain model was ap-
plied in conjunction with isotropic and anisotropic conductivities as well as
with the finite-difference method to solve Poisson’s equation. A time step of
0.025 ms was used for the repeated calculation of the electrophysiological and
electrical current flow model.

Two-Dimensional Simulations. Spiral waves of different types were initiated
in simulations with thin, plane slices approximating atrial myocardium. The
slices consisted of 128 x 128 x 3 voxels with a size of 0.2 mm x 0.2 mm x
0.2 mm. Hereby, the bidomain model with isotropic extra- and intracellular
conductivities was utilized in conjunction with the Courtemanche-Ramirez-
Nattel model for atrial myocytes.

Stimulus sequences as described in Sect. 7.3.3 were used to create a unidi-
rectional block with an excitation wave propagating in the opposite direction.
The generation and evolution of freely rotating spiral waves are shown in
Fig. 7.42. A wave rotating around an obstacle is illustrated in Fig. 7.43.

Three-Dimensional Simulations. In further simulations the physiologic and
pathophysiologic excitation propagation in an area of the ventricular free
wall was explored (Fig. 7.44). Hereby, an adapted Noble-Varghese-Kohl-Noble
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(a) (b) (c)

(d) (e) (f)

Fig. 7.42. Freely rotating spiral waves simulated with the bidomain model in a
three-dimensional slice of 128 x 128 x 3 elements with a size of 0.2 mm x 0.2 mm x
0.2 mm modeling the electrophysiology of atrial cells. The simulated transmembrane
voltage is color coded illustrated at different time steps. (a) A first stimulus was
applied followed by a wave propagating over the whole area. (b) A second stimulus
in the repolarization phase leads through a unidirectional block to an excitation
propagation in the opposite direction. The timing and geometry of the stimulus
create two mirrored rotors. (c-f) The two rotors generate spiral shaped wave fronts.
The further behavior is primarily determined by the velocity of the excitation wave
in the core of the rotors. Various effects were observed, e.g. meandering of the rotors
as well as extinction, generation and detachment of wavelets.

model for ventricular myocytes was applied. The adaptation concerns the in-
tegration of a potassium current Ito, which was found to be dependent on
the depth in the wall [160, 251, 252]. The bidomain model with anisotropic
conductivities published in [248] was used. The area was described with 150
x 150 x 125 voxels, each with a size of 0.2 mm x 0.2 mm x 0.2 mm.

The myocyte orientation was incorporated varying from the subepicardial
to the subendocardial myocardium. An angle of -70◦ is assigned for the ori-
entation at the ventricular subepicardial myocardium, an angle of 70◦ at the
subendocardial myocardium [111][112]. The orientation in the space lying in
between is interpolated outgoing from these boundary conditions by iterative
averaging [64].
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(a) (b) (c)

(d) (e) (f)

Fig. 7.43. Rotation of wave around an obstacle simulated with the bidomain model
in a three-dimensional slice of 128 x 128 x 3 elements with a size of 0.2 mm x 0.2 mm
x 0.2 mm modeling the electrophysiology of atrial cells. The obstacle consists of in-
active cells with no intercellular coupling. The simulated transmembrane voltage
is color coded illustrated at different time steps. (a) A first stimulus was applied
followed by (b) a wave propagating over the obstacle. (c) A second stimulus in the
repolarization phase leads through a unidirectional block to an excitation propaga-
tion in the opposite direction. (d-f) The excitation propagates around the obstacle.
The further behavior is determined by the velocity of the excitation wave in relation
to the geometry of the obstacle. An extinction as well as a detachment of the wave
from the obstacle is possible.

The excitation of the heart wall is initiated at the subendocardial my-
ocardium by applying pointwise a sufficiently large intracellular current. The
points model location of myocytes with connections to Purkinje fibers. The
applying of current starts at apical points and wanders in basal direction.

The physiologic excitation propagation in the ventricular free wall is vi-
sualized by evolution of the transmembrane voltage Vm (Fig. 7.45 (a) and
Fig. 7.46). The propagation from the subendocardial to the subepicardial my-
ocardium is reconstructed as well as the evolution of the repolarization. The
evolution of the repolarization is found to be not similar to the depolarization.
This behavior is observed in measurements. The differences are attributed to
the variation of the potassium current Ito. Similar differences are found for the
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Fig. 7.44. Model of heart wall in anatomical context of whole heart. The model
consists of 150 x 150 x 125 elements with a size of 0.2 mm x 0.2 mm x 0.2 mm mod-
eling the electrophysiology of ventricular cells. The orientation of myocytes and the
contribution of the ionic current Ito are varying in the cells from endocardium to epi-
cardium. The cells are electrically coupled via the bidomain model using anisotropic
conductivities.

evolution of the concentration of intracellular calcium [Ca2+]i (Fig. 7.45 (b)
and Fig. 7.47). These differences lead to a non-homogeneity of the force devel-
opment, which is not only depending on the process of excitation propagation,
but also on the position in the heart wall.

A scroll wave is a representative of pathophysiologic excitation propaga-
tion (Fig. 7.48 (a)). The scroll wave is linked with significant changes of the
concentration of intracellular calcium [Ca2+]i (Fig. 7.48 (b)).

7.3.5 Comparison of Macroscopic Models
of Excitation Propagation

A comparison of traditional cellular automata and the reaction diffusion sys-
tems shows differences in the characteristics of the wave front and the recon-
structability of cellular phenomena. These differences are observable in physi-
ologic and pathophysiologic cases of the excitation propagation. Furthermore,
significant distinctions are found concerning the demand of computing and
main memory resources.

As characteristics of the wave front are considered its curvature and ve-
locity. The wave front curvature of the reaction diffusion models is less obvi-
ously influenced by the neighborhood relationship of cells as of the traditional
cellular automata [216]. An extreme case of influence can be found using
the 6-neighborhood in cellular automata, which delivers rectangular propa-
gation patterns. The velocity of the wave front is found to be dependent on
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(a)

(b)

Fig. 7.45. Simulation of electrophysiology in static model of heart wall. (a) The
transmembrane voltage Vm and (b) intracellular calcium concentration [Ca2+]i are
visualized with volume based techniques at the exemplary point in time 120 ms. The
corresponding color palette is located at the right side. At the left side the course of
the transmembrane voltage Vm and the intracellular calcium concentration [Ca2+]i
in different regions of the wall are illustrated.

its curvature in simulations with the reaction diffusion systems as well as in
experiments with excitable media. Furthermore, the velocity varies with the
stimulus frequency if the reaction term is suitably chosen. In contrast, the
velocity is constant with traditional cellular automata. Whereas spirals and
scroll waves generated with traditional cellular automata are stable and fixed,
the phenomena are commonly instable in reaction diffusion systems caused



216 7 Cardiac Electrophysiology

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7.46. Excitation propagation in static model of heart wall at different points in
time. The simulated transmembrane voltage is visualized with volume based tech-
niques at (a) 5 ms, (b) 10 ms, (c) 15 ms, (d) 30 ms, (e) 65 ms, (f) 130 ms, (g)
290 ms, (h) 340 ms, and (i) 410 ms.

by meandering, extinction and detachment of wavelets. These facts regarding
the characteristics of the wave front apply for the simplified reaction diffusion
systems as well as for the combined systems. Different approaches were chosen
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7.47. Intracellular calcium concentration [Ca2+]i in static model of heart wall
at different points in time. The simulated concentration is visualized with volume
based techniques at (a) 5 ms, (b) 10 ms, (c) 15 ms, (d) 30 ms, (e) 65 ms, (f) 130 ms,
(g) 290 ms, (h) 340 ms, and (i) 410 ms.

to approximate and reconstruct these characteristics with extended cellular
automata.
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(a)

(b)

Fig. 7.48. Simulation of scroll wave in static model of heart wall. (a) The transmem-
brane voltage Vm and (b) intracellular calcium concentration [Ca2+]i are visualized
with volume based techniques at the exemplary point in time 650 ms. The corre-
sponding color palette is located at the right side. At the left side the course of the
transmembrane voltage Vm and the intracellular calcium concentration [Ca2+]i in
different regions of the wall are illustrated.

Cellular phenomena, e.g. EADs, DADs, and triggered activity, are com-
monly not reconstructed by cellular automata, although an inclusion is princi-
pally possible. The inclusion of complex cellular phenomena can be achieved
by a modification of the finite automata working at each node of the cellular
automaton.
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The traditional cellular automata and the simplified reaction diffusion sys-
tems make the least demands on compute and storage resource. The demands
of the combined models are primarily determined by the electrophysiological
cell models and the numerical method to solve Poisson’s equation. Neverthe-
less, these demands are strongly depending on the specific implementation
and compute platform.



8

Cardiac Mechanics

8.1 Overview

The heart acts as a cyclically working pump with the task of transporting
blood in the body. Primarily responsible for this transport is the contrac-
tion of the heart’s dominant structures, the left and right ventricle, which are
composed of myocardial walls surrounding a cavity. The cavities are normally
filled with blood and change their volume by the contraction. Resulting from
this change of volume is the pumping of blood through vessels into the body.
The returning blood is collected in the left and right atrium, which are built
up similar to the ventricles, but with less pronounced myocardial walls. After-
wards, the blood is transported to the ventricles. The blood transport in the
atria is supported by active suction of the ventricles. Different valves control
the blood flow and prevent re-flow.

Like all types of muscle structures the myocardium consumes chemical
energy to develop forces. The myocardial force development is a sub-cellular
process controlled by electrophysiological parameters and depending on the
availability of energy sources. Concerned with the force development are the
myofilaments, which are found inside of the sarcomeres and composed of actin
and myosin.

The forces in the ventricular wall can create a sufficiently high pressure to
distribute the blood in the body. Multiple electro-mechanical and mechano-
electrical feedback mechanisms are integrated in the heart. These mechanisms
allow an automaticity and an implicit adaptation to power demands without
control by super-ordinate structures.

The topics of this section are the passive mechanical properties and the
active force development of the myocardium. Whereas the passive mechanical
properties are ascribed primarily from a macroscopic view with the contin-
uum mechanics as foundation, the active force development is considered on
cellular base in strong relationship to the sub-cellular components. In both
sections experimental studies are described followed by modeling approaches.
The descriptions are restricted to experiments delivering quantitative data
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and to biophysically motivated modeling approaches. Special focus is given
to numerically efficient models, which can be combined with computer-based
anatomical and electrophysiological models.

8.2 Mechanical Properties of Myocardium

8.2.1 Experimental Studies

A majority of initial experiments to acquire mechanical properties of my-
ocardium was carried out with trabecular and papillary muscles of animals
[30]. Alternatively, mechanical properties were determined with specimens
from different regions in the atrial and ventricular wall [253] as well as with
whole ventricles [254, 255]. Furthermore, cellular mechanical properties were
quantified by measurements with single or small groups of myocytes [256].

Commonly, the specimens are taken from exposed hearts. The studies were
performed with the species canine, cat, rabbit, ferret and rat (table 8.1).

Macroscopic and microscopic measurement devices can be distinguished
dependent on the specimens size ranging from large papillary muscles to single
myocytes. Uni-, bi- and triaxial measurement devices were used to measure
the relationship between strain and stress, the so-called constitutive law, in
myocardium. Hereby, strain is varied and the corresponding stress is measured.
As well, a vice versa procedure is possible. The measurement of strain can be
performed with displacement transducers, e.g. Hall effect and liquid metal
strain gauges, and optical systems consisting of camera and image analysis
tools [274].

Partly, the devices allow the measurement of specimens inlaid in a tem-
pered fluid, which keeps the metabolism of the specimens at work despite in-
terrupted blood perfusion. The metabolism is performed via diffusion, which
implies a small specimens size. Hereby, the specimens are surrounded with
the fluid, e.g. Ringer-Tyrode and Krebs-Ringer solution, which is conveniently
composed similar to blood. The temperature of the solution is often set to low
values, which reduces degradation of specimens. The measurement at body
temperature proves to be of advantage, because a temperature dependence of
material properties is observed. The usage of noncytotoxic materials, which
are also resistant to chemical degradation by the fluid, is recommended for all
device components, which come in contact with specimens and fluids.

A major difficulty in many studies is the attachment of specimens particu-
larly to mechanical transducers [275]. Desirable is a uniform stress distribution
with the attachment and a small compliance of the attachment.

Historically, the first measurements were made with uniaxial devices
[257, 258], which are of restricted usability e.g. concerning the registration
of shear and volume changes [276]. The usage of biaxial devices allowed the
measurement of further components of the relationship useful to reduce in-
determinateness of the stress-strain relationship [265]. A recently developed
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Table 8.1. Measurements of mechanical properties of myocardium.

Date Publisher Tissue Species Reference

1964 Sonnenblick papillary muscle cat [257]
1973 Pinto, Fung papillary muscle rabbit [258, 30]
1973/74 Janz, Kubert, Moriarty, papillary muscle rat [259, 260]

Grimm
1974 Alpert, Hamrell, Halpern ventricular muscle rabbit [261]
1975 Kane, McMahon, Wagner, ventricular muscle hamster [262]

Abelmann
1976 Rankin, Arentzen, McHale, ventricular muscle canine [263]

Ling, Anderson
1988 Hunter, Smaill ventricular muscle canine [264, 265]
1991 Guccione, McCulloch, ventricular muscle canine, [266]

Waldman rat
1994 Novak, Yin, Humphrey ventricular muscle canine [267]
1995 Hunter, Nash, Sands ventricular muscle canine [268, 253]
1995 Moulton, Creswell, Actis, ventricular muscle canine [269]

Myers, Vannier, Szabó,
Pasque

1997 Miller, Vanni, Keller ventricular muscle chicken [270]
1998 Omens, Vaplon, Fazeli, ventricular muscle rat [271]

McCulloch
1998 Zile, Cowles, Buckley, ventricular cat [256]

Richardson, Cowles, Baicu, myocytes
Cooper, Gharpuray

2000 Dokos, LeGrice, Smaill, septal muscle rat [272]
Kar, Young

2000 Okamoto, Moulton, ventricular muscle canine [255]
Pasque, Peterson, Li,
Guccione

2003 Dokos, Smaill, Young, ventricular muscle pig [273]
LeGrice

triaxial device permits the application of two-dimensional shear and the mea-
surement of three-dimensional force (Fig. 8.1) [272, 273].

Alternatively, mechanical tissue properties were measured with experi-
ments, where suction or pressure is applied to the heart (Fig. 8.2) [269, 255].
The resulting deformation is quantified using medical imaging systems, e.g.
magnetic resonance tagging, in conjunction with image processing techniques.
The mechanical properties were determined with finite element models, which
were adapted by nonlinear optimization techniques.

Experimental studies revealed that the mechanical properties of my-
ocardium depend strongly on the composition and arrangement of the ex-
tracellular matrix. Its dominant components are fibrous proteins, i.e. collagen
and elastin. A cellular component of resistance to extension was found, which
was primarily attributed to cytoskeleton elements, i.e. titin and desmin [275].
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Fig. 8.1. Triaxial-measurement shear-test devices for soft tissue (adapted from
[272]). The device can impose shear deformation in X- and Y-direction with two
linear motors. The forces in X-, Y- and Z-direction can be measured. The tissue
sample is located in a bath between two circular platforms. The shear-test device
is controlled and its data recorded using a computer. A shear test is performed
by moving the bottom surface of the tissue sample in X- and Y-direction, while
three-dimensional forces are measured.

The mechanical properties are found to be nonlinear, anisotropic and vis-
coelastic [263]. These characteristics are common in many biological tissues
[28]. Furthermore, the volume change resultant by deformation was found to
be small and significant residual stresses are present [277, 278, 271]. Material
properties of myocardium are reported to be dependent on the intracellular
calcium concentration and state of active contraction [279, 256] as well as on
the pressure produced by the coronary perfusion [280].

The studies by Kane et al. looked into the age dependency of the elas-
tic modulus of ventricular myocardium [262]. An analysis of left and right
ventricular pressure-volume curves of Syrian golden hamsters was performed
showing no significant age dependent variation of elastic modulus. The ana-
lysis suggested that structural changes with regard to the passive properties
of myocardium are not associated with age.

8.2.2 Modeling Approaches

Overview. The results of many experimental studies were used to model the
relationship between strain and stress by assumption of a convenient template
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Fig. 8.2. Measurement system with epicardial suction (adapted from [255]). The
isolated arrested heart is located in cold saline and cardioplegic solution. The bor-
ders of an epicardially placed suction cup are attached to the left ventricular free
wall epicardium by continuously applied vacuum pressure. The cup orifice with an
opening of 2.5 cm x 2.5 cm is connected to a servo-pump providing cyclic suction.
The suction is controlled with a waveform generator and recorded with a computer
system. The check valve prevents large positive pressures in the suction orifice, which
would detached the heart and cup. A deformation of the heart is performed through
pressure in the orifice created in the servo-pump. The deformed heart is imaged
with a MRT system triggered with the signals of the waveform generator. The im-
ages are analyzed and used in conjunction with finite element models to determine
mechanical parameters.

strain energy function and parameter fitting procedures (table 8.2). The pa-
rameters were determined by numerical experiments reconstructing the mea-
surements.

In the following sections some modeling approaches are described. The
development of models and the inclusion of different properties are illustrated.
The properties are e.g. inhomogeneity, anisotropy, and multiple domains. In
multiple domain approaches different strain energy functions, each defined on
a domain, contribute to the summary strain energy. Commonly, the energy
density function does not comprise plasto- and viscoelastic effects.

Demiray 1972. The strain energy density function proposed by Demi-
ray aims at the resembling of the energy function of biological tissue [281]
(Fig. 8.3), which was found to be entirely different from former described
materials, e.g. rubber. The biological tissue was assumed to be isotropic, ho-
mogeneous, and incompressible as wells as non-visco- and hyperelastic. The
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Table 8.2. Models of mechanical properties of myocardium.

Date Publisher Tissue Species Reference

1972 Demiray papillary muscle cat [281]
1973/74 Janz, Kubert, Moriarty, papillary muscle rat [259, 260]

Grimm
1974 Glantz papillary muscle cat [282]
1976 Rankin, Arentzen, ventricular muscle canine [263]

McHale, Ling, Anderson
1983 Needleman, Rabinowitz, ventricular muscle canine [283]

Bogen, McMahon
1987 Humphrey, Yin ventricular and canine [284]

papillary muscle
1988 Horowitz, Lanir, Yin, ventricular muscle canine [285, 286]

Perl, Sheinman, Strumpf
1989 Nevo, Lanir ventricular muscle - [287]
1990 Humphrey, Strumpf, Yin ventricular muscle canine [288, 289]
1991 Huyghe, van Campen, divers divers [290]

Arts, Heethaar
1991 Yang, Tabber papillary muscle rabbit, [291]

frog, turtle
1991 Guccione, McCulloch, ventricular muscle canine, [266, 254]

Waldman rat
1993 Sacks, Chuong ventricular muscle canine [292]
1994 Nevo, Lanir ventricular muscle - [278]
1994 Novak, Yin, Humphrey ventricular muscle canine [267]
1995 Guccione, Costa, ventricular muscle canine [293]

McCulloch
1995 Hunter, Nash, Sands ventricular muscle canine [268, 253]
1998 May-Newman, McCulloch ventricular muscle canine [280]
2000 Okamoto, Moulton, ventricular muscle canine [255]

Pasque, Peterson, Li,
Guccione

2000 Usyk, Mazhari, McCulloch left ventricle canine [294]

strain energy density function W was defined as a function of the first invari-
ant I1 of the Cauchy-Green left dilation or Finger strain tensor:

W =
β

2α

(
eα(I1−3) − 1

)

with the parameters α and β. The function was constructed to resemble stud-
ies of cat papillary muscle [257]. No explicit values were given for the param-
eters α and β.

Janz-Kubert-Moriarty-Grimm 1974. The strain energy density function
proposed by Janz et al. was constructed using uniaxial measurement data
from left ventricular papillary muscles of adult Sprague-Dawley albino male
rats [260]. The function is depending on the principal components of strain εi:
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Fig. 8.3. Strain energy density W proposed by Demiray for biological tissue depen-
dent on first invariant I1 of the Cauchy-Green left dilation tensor. The parameters
α and β are set to 10 and 1, respectively.

W =
E

β2(1 + ν)

(
3∑

i=1

eβεi +
1 − 2ν

ν
e−

βν
1−2ν

∑ 3
i=1 εi − 1 + ν

ν

)

with Young’s modulus E, Poisson’s ratio ν, and the additional parameter β.
The function assumes isotropy of myocardium.

Young’s modulus E was obtained with measurement data, whereby the
slope of the stress-extension at small strain is evaluated. The evaluation de-
livers a spatial inhomogeneous Young’s modulus E, which was found to be
5886 N

m2 in the outer two-thirds and 2943 N
m2 in the inner third of the myocar-

dial wall. Poisson’s ratio ν was set to 0.49 to approximate incompressibility
of the papillary muscles. The parameter β was set according to measurement
data to 15 by curve fitting procedures.

Rankin-Arentzen-McHale-Ling-Anderson 1976. The work of Rankin
et al. aimed at the assessment of the viscoelastic properties of myocardium
[263]. The properties of normal left ventricular myocardium of dogs were
measured with micromano- and sonomicrometry. The ultrasonic transmitters
were sewed at different locations at the epi- and endocardial wall. The micro-
manometers were located in the left ventricle and pleura. The measurement
of pressure and geometry was performed in diastole. Increases of the systolic
and diastolic loading were performed using inflating occluders implanted in
the aorta as well as in the vena cava superior and inferior. The determina-
tion of the mechanical properties was performed by an ellipsoid shell theory
neglecting anisotropy and inertia.

The so-called natural strain was calculated at the midwall circumference
by:

ε = ln
l

l0

with the minimal midwall circumference l0 and the instantaneous midwall
circumference l.
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Fig. 8.4. Strain energy density W proposed by Needleman et al. for normal left
ventricular myocardium of canine in diastole. The strain energy density W is de-
pendent on the principal stretches λ1 and λ2. The third principal stretch λ3 is set
to (λ1λ2)

−1 assuming incompressibility.

The uniaxial connection between stress τ and strain ε was evaluated for
different functions. The most precise approximation was achieved by a func-
tion including viscoelasticity:

τ = α(eβε − 1) + η
.
ε

with the nonlinear elastic constants α and β, the viscous constant η, and
the strain time derivative

.
ε. Mean values of the parameters, derived from

measurements of 10 animals, were given by α = 7.3 · 10−6 1
m2 , β = 12.3, and

η = 34.7 · 10−6 s
m2 .

Needleman-Rabinowitz-Bogen-McMahon 1983. The material proper-
ties given by Needleman et al. were used to represent normal and infarcted
left ventricular myocardium of canine [283]. Differences of the material prop-
erties were reflected by appropriate parameterization of strain energy density
functions.

Two different configurations for material descriptions were examined, i.e.
diastole and end-systole. For each configuration a specific strain energy density
function was defined. At diastole the material was described as incompressible,
isotropic and hyperelastic with the strain energy density function Wd:

Wd =
µp

kp

(
λ

kp

1 + λ
kp

2 + λ
kp

3 − 3
)

with the principal stretches λ1, λ2, and λ3 as well as the parameters µp and
kp. Incompressibility was ensured by:
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λ3 =
1

λ1λ2

The parameters µp and kp were chosen partly dependent on measurement
data. Normal myocardium was characterized by kp = 16 and µp = 2 (Fig. 8.4).
Infarcted myocardium was described by kp = 16 and µp = {1, 16}.

At end-systole the upper strain energy density function Wd was extended
by an additional strain energy function Ws:

Ws =
µs

ks

(
λ

ks

1 + λ
ks

2 + λ
ks

3 − 3
)

with the stretches λ1, λ2, and λ3 as well as the parameters µs and ks. The
stretches of the diastolic and end-systolic configuration are related by:

λ1 = λcλ1

λ2 = λcλ2

λ3 = λ−2
c λ3

with the parameter λc = 1.18. The parameters µs and ks were not explicitly
given in [283].

Humphrey-Yin 1987. The approach of Humphrey at el. attempted to de-
scribe tissue behavior by the interaction and properties of the tissue con-
stituents [284]. The formulation of the strain density energy function reflects
histological observations [70, 107], which showed that the tissue consists of a
homogeneous matrix and non-interacting families of fibers, which are densely
distributed, thin and hyperelastic. Therefore, the proposed strain density en-
ergy function W consists of two parts, a function Wm, describing the ho-
mogeneous matrix, and a function Wf , representing the fiber behavior and
anisotropic properties of the tissue:

W = Wm + Wf

The definition of the homogeneous matrix function Wm follows the ap-
proach by Demiray et al. (Sect. 8.2.2) for isotropic material:

Wm = c
(
eb(I1−3) − 1

)

with the first invariant I1 of the Cauchy-Green deformation tensor C, and the
parameters c and b.

The definition of the fiber behavior function Wf is exponential:

Wf = A
(
ea(α−1)2 − 1

)

with the fiber stretch α, and the parameters A and a. The fiber stretch was
calculated by:
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α =
√

nT Cn

with the unit fiber direction n.
The parameters A, a, b and c were determined by fitting procedures using

uniaxial measurements from canine papillary muscle and biaxial measure-
ments of thin slabs of canine subepicardial left ventricular free wall. Parame-
ter fitting with data from uniaxial measurements of papillary muscles led to a
significant underestimation of the stresses. Parameter fitting with data from
biaxial measurements, whereby the ratio of fiber- and crossfiber-strain was
varied as well as different specimens scanned, showed large variations of the
parameters.

Horowitz-Lanir-Yin-Perl-Sheinman-Strumpf 1988. The model of me-
chanical properties introduced by Horowitz et al. is motivated by histological
studies of myocardium. Different models for thin myocardial strips [285] and
full three-dimensional areas of canine myocardium [286] were proposed. The
myocardium is treated as a hyperelastic, non-viscoelastic, incompressible ma-
terial.

The strain energy in a unit volume is assumed to be the sum of the strain
energies of different fibers, i.e. enclosed myocytes and collagen struts. The
myocytes are tethered by the collagen struts.

The three-dimensional strain energy density function W of the domain Ω
of spatial directions n is given by [295]:

W =
∑

k

sk

∫

Ω

Rk(n)w∗
k(E′

11) dΩ

with the volumetric fraction of fibers sk, the fiber specific density distribution
function Rk, the integral fiber specific strain energy density function w∗

k, and
the Green-Lagrange strain in fiber direction E′

11. Two fiber types k were
defined: collagen struts and myofibers.

The function Rk describes stochastically the spatial arrangement of the
fibers, such that the relative portion prk of type k fibers in the volume ∆Ω is
determined by:

prk = Rk(n)∆Ω

The integral fiber specific strain energy density function w∗
k is depending on

the strain in fiber direction E′
11:

w∗
k =

∫ E′
11

0

Dk,n(x)wk(E′
11t)dx

with the fiber specific waviness distribution function Dk,n, the fiber specific
strain energy density function wk and the true strain E′

11t given by:

E′
11t =

E′
11 − x

1 + 2x
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The fiber specific waviness distribution function Dk,n describes the wavi-
ness of type k fibers, such that these fiber’s portion pdk aligned with n and
having a strain in [x, x + ∆x] is given by:

pdk = Dk,n∆x

Humphrey-Strumpf-Yin 1990. The strain energy density function pro-
posed by Humphrey et al. describes the mechanical properties of passive my-
ocardium [288] [289] [276]. In a general form the function is given by:

W =
n∑

i=0

n∑

j=0

cij(I1 − 3)i(α − 1)j

with the parameters cij , the first invariant I1 of the right Cauchy-Green de-

formation tensor C and the strain α =
√

NT CN . The function describes
anisotropic behavior in the case of transversal isotropy. Restrictions on the
parameters lead to the strain energy density function:

W = c1(α − 1)2 + c2(α − 1)3 + c3(I1 − 3) + c4(I1 − 3)(α − 1) + c5(I1 − 3)2

with the parameters c1, c2, c3 ,c4, and c5.
The strain energy density function was parameterized with data from biax-

ial measurements on excised midwall myocardium of canine. The parameters
were calculated applying nonlinear optimization techniques.

Yang-Tabber 1991. The constitutive equations proposed by Yang and
Taber are applied to investigate the role of extracellular fluid for the vis-
coelastic properties of passive myocardium [291]. The total stress τ total is
composed of the stress τ solid for the solid and the stress τfluidI for the fluid:

τ total = τ solid + τfluidI

The stress for the fluid τfluid is dependent on the hydrostatic pressure p and
the ratio of fluid to bulk volume φ:

τfluid = −φp

The stress for the solid is given by:

τ solid = 2µεs + λεsI − (1 − φ)pI

with the Lamé constants λ and µ and the strain of solid εs. Hence, the total
stress τ total is determined by:

τ total = 2µεs + λεsI − pI

The Lamé constants λ and µ were determined starting from a strain energy
density function W :
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W =
C

α
e

α
(√

I3+
nI2
2I3

+
(n−1)I1

2 −3n+0.5
)

with the invariants of the strain tensor I1, I2, and I3, as well as the parameters
C, n and α. The function W was used only for mathematical convenience, be-
cause experimental work concerning the poroelastic properties of myocardium
is missing. For small strain the following approximations were identified:

λ = C

µ = C(2n − 1)

ν =
1
4n

with the Poisson’s ratio ν.
Uniaxial simulations were performed and compared with measurements of

rabbit, frog and turtle cardiac muscle. The results indicate that some observed
biomechanical phenomena can be explained with extracellular flow, but that
further experimental work is requisite.

Guccione-McCulloch-Waldman 1991. The strain energy density func-
tion W proposed by Guccione et al. was constructed on the base of consti-
tutive laws for arteries assuming orthotrophic material properties [254]. The
function is exponential:

W =
C

2
(
eQ − 1

)
(8.1)

with the parameter C and the function Q, depending on the Green-Lagrange
strain tensor E. Two variants of the function Q were investigated: an isotropic
function Qiso and an anisotropic, transversal isotropic function Qaniso with
respect to the fiber orientation:

Qiso = 2b1(ERR + EFF + ECC)
Qaniso = 2b1(ERR + EFF + ECC)

+ b2E
2
FF + b3(E2

CC + E2
RR + E2

CR + E2
RC)

+ b4(E2
RF + E2

FR + E2
FC + E2

CF )

with the parameters b1, b2, b3, b4, and the components of the Green-Lagrange
strain tensor E. The indices F , C, and R depict the fiber axis, cross-fiber
in-plane axis, and the radial direction, respectively.

The strain energy density function was parameterized by comparison of
measurements performed with canine ventricles and results of numerical simu-
lation. The measurements delivered epicardial strains and left ventricular vol-
umes in dependence of ventricular pressure. A thick-walled cylindrical model
was used to describe the equatorial ventricular geometry. In the isotropic case
the parameter C was set to 0.765 kPa and the parameter b1 to 4.24. For the
anisotropic case the parameter b3 was set to 0. Different parameterizations
were determined depending on the assumption of transmural distribution of
fiber orientation and residual stress in the ventricular wall.
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Fig. 8.5. Unidirectional strain energy densities W proposed by Hunter-Nash-Sands
for epicardial canine myocardium. The energy density is shown versus the stretch
ration λ and dependent on three orthogonal axes, i.e. (a) fiber orientation, (b) sheet
orientation and (c) sheet normal.

Hunter-Nash-Sands 1995. The strain energy density function W proposed
by Hunter et al. takes the anisotropic and inhomogeneous behavior of my-
ocardium into account [268, 253, 296, 297] (Fig. 8.5, 8.6 and 8.7). Three micro-
structural justified, orthogonal axes were distinguished: the fiber, sheet and
sheet normal axis. The energy density function is named pole-zero law. The
summary strain energy density is composed of energy densities for different
strains with axes i = 1, 2, 3 and j = 1, 2, 3:

W =
k11E

2
11

(a11 − |E11|)β11
+

k22E
2
22

(a22 − |E22|)β22
+

k33E
2
33

(a33 − |E33|)β33
(8.2)

+
k12E

2
12

(a12 − |E12|)β12
+

k13E
2
13

(a13 − |E13|)β13
+

k23E
2
23

(a23 − |E23|)β23

with the components of the Green-Lagrange strain tensor Eij as well as the
parameters, kij , aij , and βij . The parameter kij is set to zero, if Eij is negative.
The energy density attributed to a strain is zero in case of compression in the
direction. The strain energy density function W is defined for |Eij | < aij . The
function shows large values for strain Eij approaching its ’pole’ aij , reflecting
the steep rise in tension coming upon a strain limit.

The energy densities and their parameters are divided into an axial and
a shear group. The parameters of the two groups are assumed to be inter-
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Fig. 8.6. Strain energy density W proposed by Hunter-Nash-Sands for epicardial
canine myocardium. The strain energy density W is visualized dependent on the
principal stretches λ1 and λ2 corresponding to fiber and sheet directions, respec-
tively. The third principal stretch λ3 corresponding to the sheet normal is set to
(λ1λ2)

−1 assuming incompressibility.

Table 8.3. Exemplary parameter set of strain energy density function proposed
by Hunter et. al. [297]. The parameters of each line serve to parameterize a single
component of the summary function. The shear parameters are result of microstruc-
turally based assumptions.

Strain energy term Group k a b

11 axial 1.937 0.523 1.351
22 axial 0.028 0.681 5.991
33 axial 0.310 1.037 0.398
12 shear 1.000 0.731 2.000
13 shear 1.000 0.731 2.000
23 shear 1.000 0.886 2.000

dependent, because the same anatomical microstructures are involved in the
deformation. Therefore, only 9 free parameters are attributed (table 8.3).

The parameterization of the function W was performed by uniaxial mea-
surements of canine ventricle in the different directions of the axes. Hereby, the
parameters of different regions in myocardium were collected, i.e. epicardium
and midwall.

The strain energy density function was extended by terms representing the
incompressibility of myocardium. High demands must be made concerning the
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Fig. 8.7. Unidirectional second Piola-Kirchhoff stress T derived from hyperelastic
material law of Hunter-Nash-Sands for epicardial canine myocardium. The stress is
shown versus the stretch ration λ and is dependent on three orthogonal axes.

compliance of incompressibility in numerical calculation if strains are near to
the poles. Extensions for in-cooperation of more complex stress-strain rela-
tionships can use a polynomial expansion of the single strain energy densities
in equation 8.2 [268].

Okamoto-Moulton-Peterson-Li-Pasque-Guccione 2000. The energy
density function W proposed by Okamoto et al. follows the approach of an
exponential, anisotropic, transversely isotropic constitutive relation given by
equation 8.1. Hereby, the function W is defined as [255]:

W =
C

2
(
eQ − 1

)

with parameter C and the strain dependent function Q. The function Q is
dependent on the components of the Green-Lagrange strain tensor E and is
defined as:

Q = bF E2
FF + bT (E2

CC + E2
RR + E2

CR + E2
RC)

+ bFS(E2
FC + E2

CF + E2
FR + E2

RF )

with the parameters bF , bT , and bFS as well as the fiber strain EFF , the
cross-fiber in-plane strain ECC , the radial strain ERR, the shear strains ECR,
ERC , EFC , ECF , ERF , and EFR.

The parameterization was performed by experiments, whereby suction was
applied to the left ventricular epicardium of dogs. Therefore, the heart was
exposed by median sternotomy. The suction produced a deformation, which
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was measured using magnetic resonance tagging and image processing tech-
niques. A finite element model was adapted to the measured deformation by
variation of the parameterization.

Usyk-Mazhari-McCulloch 2000. The energy density function W pro-
posed by Usyk et al. extends the transversely isotropic constitutive, incom-
pressible approach given by equation 8.1 by taking orthotropy and compress-
ibility of myocardium into account. Hereby, the function W is defined as [294]:

W =
C

2
(
eQ − 1

)
+ Ccompr (J lnJ − J + 1)

with parameters C and Ccompr, the strain dependent function Q, and the
Jacobian J . The function Q is dependent on the components of the Green-
Lagrange strain tensor E:

Q = bFF E2
FF + bSSE2

SS + bNNE2
NN + bFS(E2

FS + E2
SF )

+ bFN (E2
FN + E2

NF ) + bNS(E2
NS + E2

SN )

with the parameters bFF , bSS, bNN , bFS , bFN , and bNS. The indices F , S, and
N of the components of the strain tensor E indicate fiber, sheet and sheet-
normal axes, respectively. The parameterization was performed by comparison
of distributions of three-dimensional diastolic and systolic strains obtained by
numerical experiments in a prolate spheroidal model and by measurements in
the dog heart.

8.3 Tension Development

8.3.1 Mechanisms

Cardiac, smooth and skeletal muscles are not only passively reacting to ex-
ternal forces but can create internal tension resulting in deformation and
movement. Some first, out-dated theories explained these internal tensions by
folding or coiling of long protein filaments [298, 299], e.g. the lactid acid theory.
Experimental evidence for a different mechanism achieved by different micro-
scopic techniques lead to the theories of sliding filaments, which were proposed
in the year 1953 by A. F. Huxley and N. Niedergerke as well as H. E. Huxley
and J. Janson. The sliding filament theory was subsequently confirmed by a
multitude of experiments. E.g. it was found by microscopy that whilst sarcom-
ere contraction, i.e. the distance between the Z disks is decreased, the length
of thick and thin filaments is kept constant. Enhancements of the theory are
resulting from improvements of measurement techniques. Despite many parts
of the tension development are clarified as far as to the molecular level, some
details are still under exploration.

Responsible structures for the sliding of myofilaments are different pro-
teins arranged in the sarcomeres of myocytes (Sect. 6.2.1). The interplay of
these proteins is enabled by different reversible chemical reactions primarily
controlled by electrophysiological processes.
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Motor Proteins. So-called motor proteins, e.g. myosin, transform chemically
bound energy to mechanical energy. Energy source is adenosine triphosphate
(ATP) produced in the mitochondria by oxygenation of nutrients and trans-
ferring its energy by hydrolysis. Already the binding of ATP to myosin results
in a change of its configuration.

The hydrolysis consists of splitting the ATP into adenosine diphosphate
(ADP), phosphate Pi, and the hydrogen ion H+, whereby water H2O is in-
corporated into the ATP:

ATP + H2O −→ ADP + Pi + H+

The chemical reaction is conjuncted with a release of energy ∆G = −7.3 kcal
mol ,

which is used to modify chemical bindings of myosin.
Members of the myosin family drive not only muscle contraction, but also

intracellular transport process, cytokinesis and cell locomotion [76]. In muscle
contraction the myosin II is involved. However, the mechanisms of energy
transfer and mechanical behavior are similar in other types of myosin.
Myofilaments in Sarcomeres. The sarcomeres include an arrangement of thick
and thin myofilaments (Fig. 6.8). Ordered myosin forms the thick filaments,
which are surrounded by the thin filaments. The thin filaments, formed by the
proteins tropomyosin, troponin and actin, act as passive mechanical counter-
part of myosin. The spatial arrangement of thick and thin filaments is main-
tained by the proteins titin and nebulin.
Excitation-Contraction Coupling and Intracellular Calcium Handling. The
development of tension in the sarcomeres is provoked by an increase of the
concentration of cytoplasmic calcium. Commonly, the increase of the concen-
tration is result of electrical excitation. The concentration is affected primarily
by sarcolemmal and sarcoplasmic proteins, which control the flow of calcium
from and to spatial microdomains within the cell [300]. The sarcolemmal
Na-Ca exchangers and calcium pumps can remove calcium ions from the cy-
toplasm into the extracellular space. Voltage gated calcium ion channels allow
the controlled influx of calcium. In mammalian myocytes a high density of Na-
Ca exchangers and of L-type calcium ion channels is reported at the end of
transversal tubuli, which intrude into the myocyte as a specialization of the
sarcolemma and end at adjacencies of Z disks.

The intracellular calcium handling is carried out in large parts by the
sarcoplasmic reticulum, which is decomposed in the terminal cisternae and
longitudinal tubuli (Sect. 6.2.1). The longitudinal tubuli surround mesh-like
the sarcomeres. The terminal cisternae located at the Z disks act primarily as
buffer for calcium resulting from a high density of the protein calsequestrin.
The sarcoplasmic reticulum includes different proteins controlling the calcium
flux through the membrane (Sect. 7.2.1). Sarcoplasmic calcium pumps remove
calcium ions from the cytoplasm into the sarcoplasmic reticulum consuming
ATP. Sarcoplasmic calcium release channels are gated by cytoplasmic calcium
concentration and allow the efflux of calcium from the junctional sarcoplasmic
reticulum into the cytoplasm.
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Fig. 8.8. States and transitions of actin-activated myosin II ATPase cycle (adapted
from [68, 301]). M and A symbolize Myosin and actin, respectively. ATP, ADP
and Pi represent adenosine triphosphate, adenosine diphosphate and phosphate,
respectively. Arrows indicate possible transitions. The bold arrows signify the normal
transitions.

Physiological Operating Sequence. The physiological initiation of tension de-
velopment is performed by electrical excitation of the myocyte. The excitation
propagates over the sarcolemma, particularly the transversal tubuli, where in
consequence the sarcolemmal voltage-gated L-type calcium ion channels open
initiating a positive feed back mechanism. The influx of calcium ions through
the L-type calcium ion channels and to a smaller amount through Na-Ca ex-
changers triggers the opening of sarcoplasmic calcium release channels leading
to calcium sparks. Numerous calcium sparks sum up to a significant increase
of the concentration of cytoplasmic calcium. The release channels show a re-
fractory period, which stops the positive feed back mechanism. The calcium is
reuptaken by calcium specific pumps into the sarcoplasmic reticulum. Smaller
amounts are transported extracellularly via the sarcolemmal Na-Ca exchang-
ers and calcium pumps.

The calcium binds to troponin C resulting in shifting of the troponin-
tropomyosin complex followed by structural changes of the tropomyosin-actin
configuration [68]. The changes allow the binding of a myosin head to actin,
the so-called cycling of cross bridges or actin-activated myosin II ATPase cycle
(Fig. 8.8).

In absence of ATP the actin-myosin binding is arrested. By binding and
hydrolysis of ATP the motor protein performs four steps (Fig. 8.9):

• Binding of ATP to myosin head resulting in its unbinding from actin
• Rebinding of myosin head at adjacent actin while ATP hydrolysis
• Changing of the angle of myosin heads to neck and tails (Fig. 8.10),

whereby phosphate Pi is released into the cytoplasm
• Unbinding of ADP from myosin and its release into the cytoplasm

If ATP is available, a binding to the myosin is occurring. If the calcium
concentration is sufficiently large, the procedure can be repeated.
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Fig. 8.9. Sliding of myosin and actin filament (adapted from [302]). The sliding
starts with the binding of ATP to the myosin head, followed by its unbinding and
rebinding to actin. The distance between the binding positions is a multiple of a
minimal length. The ATP is hydrolyzed and the metabolites, Pi and ADP, are
released sequentially into the cytoplasm. Between the second and third step a so-
called power stroke is performed, developing tension and/or changing the relative
position of the myofilaments. The illustrated processing presumes, that a formation
of cross bridges is possible. Commonly, structural changes of the tropomyosin-actin
configuration resulting from calcium binding to troponin C are necessary to allow
the formation.

Fig. 8.10. Attachment of actin to myosin and its folding (from [84]). The myosin
head and tail is shown in red, its light chains in orange and yellow. The actin
filament is visualized in green and blue. The left hand illustration shows a myosin
head attached to actin, the right hand the folding of the myosin head.

Different step lengths and tensions are reported for the variant types of
myosin and myocytes. Step lengths, which are multiple of a minimal length,
and back steps are reported in recent experimental works. These works change
the deterministic view point to a stochastical.

For myosin II several sub-steps per hydrolyzed ATP are performed by
folding of the head-neck junction [302]. Each folding leads to sub-steps with a
length of circa n x 2.7 nm in direction of the actin filament with n as positive
or negative integer [303]. Commonly, n is reported to be in the range -5 to
+5. Frequently, a sub-step length of 5.4 nm is measured, which is equal to
the monomer repeat along an actin filament [304]. Each folding of myosin II
leads to a summary force of 1 − 5 pN [76].
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8.3.2 Experimental Studies

A large number of experiments of active muscular behavior was performed
starting with experiments of A. V. Hill in 1938 [305], who measured, analyzed
and described in a mathematical manner the interdependencies between speed
of shortening, tension and heat production in skeletal muscles of frog. In these
experiments the muscle load was varied. The muscle was clamped at both ends,
its length was fixed and noted. The muscle was tetanized isometrically by
electrical stimulation. After quick release of the fixation the muscle shortened
and the shorting velocity was measured. The measurement data was used to
parameterize an equation, which is now known as Hill’s equation.

As for acquisition of passive mechanical properties the specimens for the
measurement of active muscular behavior are primarily from the species rat,
rabbit and cat (tables 8.4 and 8.5). The specimens size varies between large
papillary muscles, differently shaped blocks of myocardial tissue, small cellular
clusters of myocytes to single myocytes [275].

The development of force in myocardial tissue and myocytes is measured
with devices similar to those for acquisition of passive mechanical properties.
In contrast thereto specific extensions are included in the devices to acti-
vate a force development, either indirectly by electrical stimuli or directly
by an increase of the concentration of intracellular calcium [Ca2+]i. Miscel-
laneous macroscopic and microscopic measurement devices were applied to
record the active mechanics. Commonly, the devices were specifically devel-
oped dependent on the specimens size and geometrical properties. A system
for measurement of force in single myocytes is shown in Fig. 8.11 and 8.12.

The early works involved in measurement of active mechanics of cardiac
muscle followed the experimental and conceptual approaches of Hill. The re-
lationships between force, stretch and stimulus frequency as well as the un-
derlying mechanisms, e.g. electro-mechanic coupling, were focus of interest.
The primary specimens used in the early works were ventricular trabeculae
obtained after rapid removal of the heart. The specimens were suspended in
an appropriate fluid. Electrical stimulation of the muscles was performed by
applying current via electrodes.

Already in these early works, e.g. of Sonnenblick [257] and Parmley et al.
[306], and similar to measurements of skeletal muscle a stretch dependence of
the tensions developed in myocardium was reported. This phenomenon can be
regarded as the underlying principle of the Frank-Starling mechanism, which
leads to an increase of contractile force and ejection of blood by increase of
the end-diastolic volume of the ventricular cavity. The phenomenon provides
evidence for the sliding filament theory, whereby the overlapping of the myofil-
aments determines the recruitment and formation of cross bridges. The early
works were validated by various subsequent experiments. E.g. it was found in
experiments with constant or sinusoidally pertubated [307] sarcomere length,
that the overlap of the thick and thin filaments is a significant determinant of
the force amplitude.
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Table 8.4. Force measurements of cardiac muscle.

Date Publisher Tissue/Cell type Species Reference

1964 Sonnenblick papillary muscle cat [257]
1973 Parmley, Chuck papillary muscle cat [306]
1976 Ingebretsen, Becker, papillary muscle cat [308]

Friedman, Mayer rat
1980 ter Keurs, Rijnsburger, trabeculae rat [309]

Heuningen, Nagelsmit
1984 Eisner, Lederer, Purkinje fibers sheep [310]

Vaughan-Jones
1986 Wier, Yue papillary muscle ferret [311]
1986 Kentish, ter Keurs, intact and skinned rat [312]

Ricciardi, Bucx, Noble trabeculae
1987 Hofmann, Fuchs skinned ventricular cow [313]

muscle bundles
1991 Peterson, Hunter, papillary muscle New Zealand [314]

Berman White rabbit
1991 Nassar, Malouf, Kelly, ventricular New Zealand [315]

Oakely, Anderson myocardium White rabbit
1994 Gao, Backx, Azan-Backx, ventricular rat [316]

Marban myocardium
1995 Bluhm, Lew right ventricular rabbit [317]

papillary muscle
1995 Wang, Fuchs divers divers [318]
1995 Janssen, Hunter trabeculae rat [319]
1997 Janssen, de Tombe trabeculae rat [320]
1998 Baker, Figueredo, ventricular rat [321]

Keung, Camacho muscle
1998 Maier, Brandes, ventricular rat [322]

Pieske, Bers muscle
1998 Saeki, Kurihara, papillary muscle ferret [323]

Komukai, Ishikawa,
Takigiku

1999 Layland, Kentish ventricular rat [324]
trabeculae

2000 Allan, Xu, Kerrick skinned ventricular rat [325]
fiber strips

2000 Bluhm, Kranias, left ventricular wild-type and [169]
Dillmann, Meyer papillary muscle phospholamban

knockout mice
2000 Maier, Barckhausen, right atrial human [326]

Weisser, Aleksic, trabeculae
Baryalei, Pieske fiber strips

2000 ter Keurs, Hollander, right ventricular rat [327]
ter Keurs trabeculae

2000 Wannenburg, Heijne, right ventricular rat [307]
Geerdink, van den Dool, trabeculae
Janssen, de Tombe

2002 Konhilas, Irving right ventricular rat [328]
te Tombe skinned trabeculae
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Table 8.5. Force measurements of cardiac myocytes.

Date Publisher Tissue/Cell type Species Reference

1975 Fabiato, Fabiato ventricular rat [167]
myocytes skinned

1977 De Clerck, Claes, myocytes rat [329]
Brutsaert

1989/90 Harrison, Bers ventricular rabbit, frog, [68]
myocytes skinned guinea pig, rat

1993 White, Guennec, ventricular guinea-pig [155]
Nigretto, Gannier, myocytes
Argibay, Garnier

1993 Gannier, Bernengo, ventricular guinea-pig [330]
Jacquemond, myocytes
Garnier

1995 White, Boyett, ventricular guinea-pig [331]
Orchard myocytes

1995 Bluhm, McCulloch, left ventricular rabbit [332]
Lew myocytes

1998 Brandt, Colomo, skinned atrial frog [333]
Piroddi, Poggesi, and ventricular
Tesi

1999 O’Rourke, Kass, left ventricular canine [193]
Tomaselli, Kaab, myocytes
Tunin, Marbán

2001 Yasuda, Sugiura, ventricular rat [334]
Kobayakawa, Fjita, myocytes
Yamashita, et al.

Careful observation revealed that the performing of length switches leads
to transitions of tensions, which were time dependent [306]. E.g. a quick short-
ening to 90 % of the resting length leads an immediate decrease of force to
circa 50 %. The subsequent transient rise of force by 10 % was followed by a
slow asymptotic fall. The asymptotic force was 55 % of the force at resting
length.

In further studies it was reported that the progression of tension is mod-
ulated by the progression of intracellular calcium concentration [Ca2+]i. E.g.
a graded effect of the intracellular calcium concentration [Ca2+]i on the cross
bridge kinetics was found in studies of chemically permeabilized ventricular
trabeculae, whereby the calcium concentration was varied as well as the muscle
length was sinusoidal pertubated [307]. The regulation of the tension develop-
ment kinetics by the extracellular calcium concentration [Ca2+]i was reported
in tetanized ventricular trabeculae [321]. Therefore, it can be concluded that
also the progression of an electrical excitation influences the progression of
the force development.
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Table 8.6. Mathematical models of force development in muscle and myocytes. The
focus is on cardiac models, but early skeletal muscle models are also included.

Date Publisher Tissue/Cell type Species Reference

1938 Hill skeletal muscle frog [305]
1957 Huxley skeletal muscle - [298]
1971 Huxley, Simmons striated muscle - [338]
1971/72 Wong cardiac muscle - [339, 340]
1980 Panerai papillary muscle mammalian [341]
1991 Peterson, Hunter, papillary muscle New Zealand [314]

Berman White rabbit
1994 Landesberg, Sideman skinned cardiac - [342]

myocytes
1994 Landesberg, Sideman cardiac muscle - [343, 344]
1997 Hunter, Nash, Sands cardiac muscle mammalian [253]
1998 Noble, Varghese, Kohl, ventricular guinea pig [189]

Noble myocardium
1998 Guccione, Motabar- cardiac myocytes - [345]

Zadeh, Zahalak
1998 Hunter, McCulloch, cardiac myocytes - [296]

ter Keurs
1998 Winslow, Rice, Jafri ventricular guinea pig [346]

myocytes
1999 Rice, Winslow, Hunter papillary muscle New Zealand [347]

White rabbit
2000 Rice, Jafri, Winslow cardiac muscle ferret [348]
2001 Mlcek, Neumann, cardiac myocytes - [349]

Kittnar, Novak
2001 Nickerson, Smith, cardiac myocytes - [350]

Hunter
2002 Glänzel, Sachse, cardiac myocytes - [351, 352]

Seemann

The relationship between force and intracellular calcium is frequency de-
pendent. Most studies with isolated myocardial preparations under physiologic
conditions report a positive relationship, i.e. increasing the calcium frequency
leads to higher force [324]. The positive relationship is attributed to a higher
uptake of extracellular calcium into the myocyte by increasing stimulus fre-
quency leading to a higher uptake and release of calcium in the sarcoplasmic
reticulum. Under non-physiologic conditions the relationship can have a neg-
ative slope or show an U-shape as well as species and specimens dependent
variations of the relationship were found [323, 169].

Variant measurements were performed with skinned myocytes, which per-
mit directly the control of the environment inside of the cells. E.g. calcium
can be applied into the intracellular space and to the contractile elements. A
removal of sarcolemma can be achieved chemically as well as by mechanical
homogenization and manual micro-dissection. A disadvantage of this kind of
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Fig. 8.11. System for measurement of force in single myocytes (from [334]). The
myocyte (M) is clamped between two carbon graphite fibers. The first fiber (C1) is
fixed, the second (C2) connected via a glass rode (G) to a piezoelectric transducer
(PT). The image of myocyte and the second fiber is projected through a half mirror
onto a CCD camera and a pair of photo-diodes (PD1 and PD2). The photo-diode
arrangement allows in conjunction with a feedback system the correction of the sec-
ond fiber’s compliance. The force and length signals are fed into the data acquisition
system (AD). The camera is connected with a video recorder (VCR) and a display.

(a) (b)

Fig. 8.12. Myocyte held clamped between two carbon graphite fibers (from [334]).
The lower, thicker fiber is fixed. The second fiber connected to a piezoelectric trans-
ducer. Forces are measured by variation of the myocyte stretch leading to different
lengths of the sarcomere, e.g. (a) 1.9 µm and (b) 2.1 µm. The bar indicates a length
of 20 µm.
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preparation is that cellular constituents may be lost which affect the calcium
sensitivity of myofilaments [68].

A classical work was carried out by Fabiato and Fabiato [167], who mea-
sured the tension of skinned myocytes and its interdependencies with calcium
release and re-sequestrations by the sarcoplasmic reticulum. A single skinned
myocyte was located in a perfusion chamber with the two ends of the cell at-
tached to glass micro-needles. One micro-needle was fixed, the other connected
to the lever of a force transducer. Force as well as length and width of the cell
were measured. Furthermore, a mean sarcomere length was determined.

Several conclusions were drawn from the measurements of Fabiato and
Fabiato: Cellular tension is a direct effect of the concentration of free calcium,
where the tension is developed regardless the deletion of the sarcoplasmic
reticulum. A significant calcium sink exists in the cell, which was identified
as the sarcoplasmic reticulum. Physiologically, calcium is re-sequestrated af-
ter contraction. The release of calcium from the sarcoplasmic reticulum is
triggered by concentration of free calcium. The amplitude of contraction is
increased when the triggering concentration of free calcium is increased.

Further studies were performed to elucidate cooperativity mechanisms for
force development. Three different cooperativity mechanisms were demon-
strated:

• cross-bridges increase affinity for binding of calcium to troponin C (XB-
TN) [335]

• cross-bridges support the building of cross-bridges in the neighborhood
(XB-XB) [336]

• shifting of tropomyosin leads to shifting of attached tropomyosins (TM-
TM) [337]

Topics of recent studies are the effects of specific proteins and pathologies
onto force and calcium handling. The role of the protein phospholamban, a
inhibiting regulator of the sarcoplasmic calcium pump (SERCA), was stud-
ied with wild-type and phospholamban knockout mice [169]. The effects of
hypertrophy and tachycardia were acquired in single myocytes as well as in
myocardium [322, 193].

8.3.3 Mathematical Modeling Approaches

Overview. A first attempt to describe mathematically active tensions devel-
oped in muscle was published 1938 by A. V. Hill [305]. He developed the model
on base of his work concerning heat production in striated muscle, wherefore
he received a Nobel prize in 1922. The description refers to the force-velocity
relationship of tetanized skeletal muscle of frog upon quick release from iso-
metric condition. In the context of a mathematical modeling of the heart Hill’s
equation is primarily of pedagogical value, because the general framework is
differing between the two muscle types. A tetanized contraction is physiolog-
ically not common for cardiac muscle. The coupling to electrophysiological
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quantities is not included in Hill’s equation but is of fundamental importance
for cardiac force development. Hill’s equation can be regarded as an empirical
equation [30], which gives macroscopic information and neglects biophysical
phenomena on microscopic and molecular level.

A biophysically, microscopic anatomically based mathematical description,
i.e. the theory of sliding filaments, was proposed in 1953 by A. F. Huxley and
N. Niedergerke as well as H. E. Huxley and J. Janson. This description of
force development in striated muscle and derived models are introduced in
the following sections.

Of special interest for biophysically motivated modeling are descriptions
of cellular force development, which base on electrophysiological quantities
delivered e.g. by electrophysiological cell models (Sect. 7.2.3). The concentra-
tion of intracellular calcium [Ca2+]i is used to define rate coefficients, which
depict the interaction between states of actin and myosin. The states describe
e.g. the binding of intracellular Ca2+ to the troponin complex and the cross
bridge cycling. Further parameters influencing the rate coefficients are the
sarcomere length and the state variables.

Hill. Hill’s equation describes the shortening velocity of frog skeletal muscle
in dependence on load [305]. The muscle is initially fixed by clamping of
its ends and tetanized by electrical stimulation. Velocity of contraction is
measured after quick release. The interdependencies are described by:

(v + b)(P + a) = b(P0 + a)

with the velocity of contraction v, the tension P , and the constants a, b and
P0.

Sliding Filament Theory. During contraction the length of the thick and
thin filaments is kept constant while the distance between the Z disks is de-
creased. This observation forms the motivation for the so-called sliding fila-
ment theory, which was proposed independently by two groups in the year
1953, i.e. A. F. Huxley and N. Niedergerke as well as H. E. Huxley and J.
Janson.

The sliding filament theory assumes that the forming of cross bridges by
actin A and myosin M can be described by:

A + M
f
�
g

A − M (8.3)

with the attached cross bridges A−M , the binding rate f and the dissociation
rate g. The binding rate f quantifies the probability, that a myosin side-piece
binds to an actin monomer. The dissociation rate g specifies the probability,
that an attached cross bridge breaks down.

Applying the sliding filament theory the tension developed in muscle can
be derived starting with the definition of a function n(x, t) [298], which de-
scribes the proportion of bound actin to summary actin sites with displace-
ment x at time t. Therewith, the proportion of bound actin sites at time t
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with displacements in the range [x0, x0 + ∆x] is given by:

∫ x0+∆x

x0

n(x, t) dx

The material derivative of the function n is decomposed into a local rate of
change and a convective rate of change:

Dn

Dt
=

∂n

∂t
− v(t)

∂n

∂x

with the shortening velocity v [30]. The convective rate of change is result-
ing from the sliding of filaments. Actin sites are presented to a myosin site
with frequency v/l, whereby l refers to the distance between successive actin
binding sites.

The upper rates (equation 8.3), the binding rate f and the dissociation rate
g, must be redefined as functions of displacement, f(x) and g(x), respectively.
Using these definitions the material derivative is described by:

Dn

Dt
= (1 − n)f − ng

Assuming that Hooke’s law can be applied for description of the mechanical
properties of myofilaments, the average work done W at one myosin site by
filament sliding is calculated by:

W =
∫ ∞

−∞
nkx dx

with the stiffness k.
The total tension S results from summing up all single tensions generated

by contraction sites within one half-sarcomere:

S =
ms

2l

∫ ∞

−∞
nkx dx

with the sarcomere length s and the density of myosin sites m.

Landesberg-Sideman Model. The force model of Landesberg and Side-
man is based on a description of binding of Ca2+ to troponin C and configu-
ration of cross bridges [342, 343, 344, 353]. Different physiologically motivated
assumptions are made for the modeling, e.g. cross bridges can cycle between
weak, non-force generating to strong, force-generating conformations, calcium
binding to troponin leads to actin-myosin ATPase, and calcium can dissociate
from troponin before cross bridges return to their weak conformation.

The mathematical specification of force generation is made by time, cal-
cium and length dependent transitions of states. Four different state variables,
describing the amount of troponin in different configurations, are distinguished
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Table 8.7. State variables of Landesberg-Sideman force model. The state variables
represent the amount of troponin in different configurations. The state variable R
describes the amount of troponin in resting state with weak cross bridges, i.e. calcium
is not bound to troponin C. The variable A represents the amount of troponin with
weak cross bridges available for turning to strong conformation because calcium
was bound to troponin C. The state variable T describes the amount of troponin
with strong cross bridges while calcium is bound to troponin C. The variable U
represents the amount of troponin with strong cross bridges after calcium is released
from troponin C.

State variable Ca2+ bound to troponin C Cross bridge conformation

R released weak
A bound weak
T bound strong
U released strong

(table 8.7). The change of the amount of differently configured troponin is
specified by a set of first order ordinary differential equations [353]:

∂

∂t





R̄
Ā
T̄
Ū



 = M





R̄
Ā
T̄
Ū





with the 4 x 4 matrix M consisting of rate coefficients. The variables R̄, Ā, T̄ ,
and Ū correspond to the spatial density of the amount of troponin in different
configurations.

The matrix M is a function of myofilament overlap:

M =





−kl[Ca2+]i k−l 0 g0 + g1V
kl[Ca2+]i −f − k−l g0 + g1V 0

0 f −g0 − g1V − k−l kl[Ca2+]i
0 0 k−l −kl[Ca2+]i − g0 − g1V





with the calcium to troponin binding rate kl, the calcium to troponin disso-
ciation rate k−l, and the cross bridge kinetics parameters f , g0 and g1. The
parameter V quantifies the ratio of change of myofilament overlap to thick
filament length:

V =
1

Lm

∂Ls

∂t

with the overlap length Ls and the thick filament length Lm.
The force of a contractile element is generated by cross bridges in strong

conformation and therefore proportional to the state variables T and U . The
force per unit filament cross section FCE is given by:

FCE = (F̄ − ηV )(T + U)

with the force of a single cross bridge F̄ and the viscous element property η.
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Fig. 8.13. Steady state simulations with Hunter-McCulloch-ter Keurs model by
variation of stretch ratio and calcium concentration. The steady state tension T0 is
dependent on the stretch ratio λ ranging from 0.8 to 1.2 and the intracellular cal-
cium concentration [Ca2+]i. The tension T0 is normalized with the maximal tension
Tref = 100 kPa developed at stretch ration λ = 1.

Hunter-McCulloch-ter Keurs Model. The Hunter-McCulloch-ter Keurs
model describes the kinetics of calcium binding to troponin C, of the tro-
pomyosin and of the cross bridges binding [296]. The model was in parts
parameterized using measurement data from skinned rat right ventricular
muscle [312]. The model is capable of reproducing phenomena observed in
length step, constant velocity and frequency response experiments.

The concentration of calcium bound to the calcium specific site of troponin
C [Ca2+]b is reconstructed by:

d[Ca2+]b
dt

= ρ0[Ca2+]i
(
[Ca2+]b,max − [Ca2+]b

)− ρ1

(
1 − T

γT0

)
[Ca2+]b

with the rate constants for binding ρ0 and for unbinding ρ1, the intracellular
calcium concentration [Ca2+]i, the tension T , the maximal tension value γT0,
and the maximal calcium concentration [Ca2+]b,max at maximal tension.

The calcium concentration [Ca2+]b determines the portion of actin sites z
available for cross bridge binding:

dz

dt
= α0

((
[Ca2+]b

C50

)n

(1 − z) − z

)

with the rate constant of tropomyosin movement α0, the Hill parameters C50

and n. The parameter C50 defines the intracellular calcium concentration nec-
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essary for half maximal availability of actin sites portion in steady state. The
Hill parameters are found to be stretch dependent:

n = nref (1 + β1(λ − 1))

C50 = 106−pC50ref (1+β2(λ−1))

with the stretch ratio λ, the parameters β1, β2, nref , and pC50ref .
In steady state, i.e. dz/dt = 0 and [Ca2+]b = const, the portion of actin

sites zss available for cross bridge binding is calculated by

zss =
[Ca2+]nb

[Ca2+]nb + Cn
50

Under the assumption that all available actin sites are used for cross bridge
binding the steady state tension T0 is defined by

T0 = Tref (1 + β0(λ − 1))z

with reference tension Tref = 125 kPa as the reference tension at stretch ratio
λ = 1. The portion of actin sites z available for cross bridge binding is deter-
mined by either equation 8.4 or - for steady state - equation 8.4. The constant
β0 = 1/Tref d T0/d λ = 1.45 describes the slope of the steady state tension
T0 as function of stretch ration λ. The reference tension Tref and constant
β0 are determined from experiments with skinned rat right ventricular muscle
[312].

The description of steady state tension is extended by a so-called fading
memory model to take changes of stretch into account. The steady state ten-
sion T0 is modulated by a nonlinear function Q to determine the developed
tension T :

T = T0
1 + aQ

1 − Q

with the curvature parameter a. The function Q is given by:

Q

(
T

T0

)
=

3∑

i=1

Ai

∫ t

−∞
e−αi(t−τ)λ′(τ)dτ

with λ = λ(t), λ′ = dλ/dt, and the parameters Ai and αi. These parameters
are determined by length step and constant velocity experiments.

Rice-Winslow-Hunter Model. The Rice-Winslow-Hunter models consist
of 5 models reproducing the force development in cardiac muscle [347]. The
models differ in the number of state variables and the definition of rates.
Simulations allow the evaluation of reproducibility of length dependencies
and dynamic behavior by the different models. As examples of the modeling
a description of the 1st and 3rd model is given.



8.3 Tension Development 251

Table 8.8. Tropomyosin and cross bridge state variables of Rice-Winslow-Hunter
model of cardiac cells. The variable N0 indicates the resting state with no strongly
bound cross bridges and non permissive tropomyosin. The variable P0 is associated
with no strongly bound cross bridges and permissive tropomyosin. The variable P1
and N1 describes the force generating states, i.e. the cross bridges are strongly
bound.

State variable Tropomyosin Number of cross bridges

N0 non permissive 0
N1 non permissive 1
P0 permissive 0
P1 permissive 1

P P

N1

k k

N0

0

2+2+Ca Ca

1

offoff

g’

g

onkonk

f

Fig. 8.14. State diagram of 1st Rice-Winslow-Hunter model. The states are de-
scribed in table 8.8.

Model 1. The model is similar to the Landesberg-Sideman model and applies
4 state variables, i.e. N0, N1, P0, and P1 with N0 + N1 + P0 + P1 =
1 to characterize the configuration of tropomyosin and cross bridges (table
8.8, Fig. 8.14). The interaction between the state variables of the model is
described by a system of first order differential equations:

∂

∂t





N0
P0
P1
N0



 = M





N0
P0
P1
N0





with the 4 x 4 matrix M consisting of rate coefficients. The matrix M is a
function of the cytosolic calcium concentration [Ca2+]i:

M =





−kon[Ca2+]i koff 0 g′

kon[Ca2+]i −koff − f g 0
0 f −g − k′

off k′
on[Ca2+]i

0 0 k′
off −k′

on[Ca2+]i − g′





with the constants kon, koff , f , g, k′
on, k′

off , and g′.
The normalized force F is determined by the force generating state vari-

ables N1 and P1:

F =
α(P1 + N1)

Fmax
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Fig. 8.15. Sarcomere overlap function. The function quantifies the fraction of
myosin heads that are capable to interact with actin in such a way that force is
produced. The overlap function is dependent on stretch. The scaling of the lower
axis assumes a default sarcomere length of 2 µm.

Table 8.9. State variables of Rice-Winslow-Hunter model of cardiac cells describing
the Ca2+ binding to troponin C.

State variable Ca2+ binding to troponin C

T no
TCa yes

with the sarcomere overlap function α = α(SL) and the maximal force Fmax.
The force F is in the range [0, 1] representing no force and maximal possible
force, respectively. The sarcomere overlap function α describes the fraction
of myosin heads capable to interact with actin in such a way that force is
produced (Fig. 8.15).

The static behavior of the model in dependence of the calcium concen-
tration is depicted in Fig. 8.16. The dynamic behavior resulting from a given
course of the intracellular calcium concentration is shown in Fig. 8.17.

Model 3. The model consists of 6 state variables, N0, N1, P0, P1, T , and
TCa with N0 + N1 + P0 + P1 = 1 and T + TCa = 1 (tables 8.8 and 8.9,
Fig. 8.18). In addition to the 1st model the configuration of tropomyosin is
described. The interaction between the state variables is characterized by a
system of 1st order differential equations:

∂

∂t





T
TCa
N0
P0
P1
N1




= M





T
TCa
N0
P0
P1
N1




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Fig. 8.16. Steady state simulations with 1st Rice-Winslow-Hunter model for dif-
ferent sarcomere lengths and calcium concentrations. The steady state force F is
dependent on the stretch ranging from 0.8 to 1 and the intracellular calcium con-
centration [Ca2+]i. A stretch of 0.8 corresponds to a sarcomere length of 1.6 µm,
a stretch of 1 to a sarcomere length of 2.0 µm. The steady state force F for larger
stretches can be determined with the sarcomere overlap function. The force F is
normalized with the maximal force Fmax.

with the 6 x 6 matrix M consisting of rate coefficients. The matrix M is a
function of the cytosolic calcium concentration [Ca2+]i and of the sarcomere
length SL:

M =





−kon[Ca2+]i koff 0 0 0 0
kon[Ca2+]i −koff 0 0 0 0

0 0 −k1 k−1 0 g
0 0 k1 −k−1 − f g 0
0 0 0 f −g − k−1 k1

0 0 0 0 k−1 −k1 − g





with the constants k−1, f , g, kon. The rate coefficient k1 describing the inter-
action between the troponin and tropomyosin configuration, i.e. the transfer
from N0 to P0 and from N1 to P1, is a function of the variable TCa and the
sarcomere length. The rate coefficient koff is a function of force.

The static behavior of the model in dependence of the calcium concen-
tration is shown in Fig. 8.19. The dynamic behavior resulting from a given
course of the intracellular calcium concentration is illustrated with Fig. 8.20.

Glänzel-Sachse-Seemann Model. The so-called hybrid model combines a
description of the binding of intracellular calcium [Ca2+]i to troponin C, the
configuration change of tropomyosin, and the interaction of actin and myosin
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Fig. 8.17. Simulations with 1st Rice-Winslow-Hunter model by variation of the
stretch ratio. (a) An exemplary course of the intracellular calcium concentration
[Ca2+]i is used in the simulations. (b) The development of force F is dependent
on the stretch ratio λ ranging from 0.8 to 1.2. The force F is normalized with the
maximal force Fmax developable in these simulations.
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Fig. 8.18. State diagram of 3rd Rice-Winslow-Hunter model. The states are de-
scribed in tables 8.8 and 8.9.

Fig. 8.19. Steady state simulations with 3rd Rice-Winslow-Hunter model for dif-
ferent sarcomere lengths and calcium concentrations. The steady state force F is
dependent on stretch ranging from 0.8 to 1.2 and the intracellular calcium concen-
tration [Ca2+]i. A stretch of 1 corresponds to a sarcomere length of 2 µm. The force
F is normalized with the maximal force Fmax.

[354]. The calcium binding to troponin C is similarly described as in the
3rd Rice-Winslow-Hunter model [347]. The interaction of actin and myosin
is adopted from Gordon et al. [355], Bers et al. [68], and Spudich [301]. The
cooperativity mechanisms XB-TN, XB-XB, and TM-TM are incorporated in
the hybrid model. The model uses as input the concentration of intracellular
calcium [Ca2+]i, the sarcomere stretch λ, and the sarcomere stretch velocity
v. As alternative to the intracellular calcium [Ca2+]i the calcium bound to
troponin C can be provided as input. The model delivers as output a nor-
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Fig. 8.20. Simulations with 3rd Rice-Winslow-Hunter model by variation of the
stretch ratio. (a) An exemplary course of the intracellular calcium concentration
[Ca2+]i is used in the simulations. (b) The development of force F is dependent
on the stretch ratio λ ranging from 0.8 to 1.2. The force F is normalized with the
maximal force Fmax developable in these simulations.
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Table 8.10. Rate coefficients of Glänzel-Sachse-Seemann model (adapted from
[351]). Rate coefficients, which are modulated by further parameters, are indicated
with a star.

Rate coefficient Model Measurement Reference

k∗
1 1000 ≈ 1 µM−1[ATP] s−1 [356]

fast, nearly irreversible [357]
k−1 10

k2 1000 ≥ 1000 [355]

k3 150 k3 − k−3 = 125 s−1 [358]
k3 − k−3 = 168 s−1 [359]

k−3 15 K3 = k3
k−3

≈ 10 [355, 357]

k4 1000 ≥ 1000 [355]

k∗
5 25 30 s−1 ≤ k5 + k−5 ≤ 50 s−1 [355]

k−5 8 3 ≤ K5 = k5
k−5

≤ 5

k6 50 45 s−1 [360]
77 s−1 [361]

k−6 20 20 − 30 s−1 [355]

k∗
7 30 3 − 10 s−1 due to high force [355]

≥ 500 s−1 for fast contraction

k8 200 ≥ 100 s−1 [355]
200 s−1 [362]
325 s−1 [360]

k−8 5 K8 = k8
k−8

≈ 100 [355]

malized tension and optionally the intracellular calcium [Ca2+]i modified by
calcium bound to troponin C (Fig. 8.22).

The model uses 14 state variables, which are coupled by rate coefficients.
Two state variables, T and TCa, detail the binding of intracellular calcium
Ca2+ to troponin C (Fig. 8.21a). The state variable T describes the normalized
concentration of troponin C with no bound calcium, TCa the normalized
concentration of troponin C with bound calcium. The normalization leads to:

T + TCa = 1

Two further state variables, TMon and TMoff , quantify the configuration
of tropomyosin (Fig. 8.21b). The state variable TMon describes the concen-
tration of tropomyosin in permissive configuration, TMoff the normalized
concentration in non permissive. The normalization leads to:

TMon + TMoff = 1

Ten state variables are used to quantify the interaction between actin and
myosin, particularly the cross-bridge cycling (Fig. 8.21c). The ten variables
describe normalized concentrations of myosin. The condition, that the vari-
ables sum up to 1, is used as normalization:
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Fig. 8.21. State diagram of hybrid model of force development. (a) Two state
variables, T and TCa, quantify the calcium binding to troponin C. (b) Two further
state variables, TMon and TMoff , describe the configuration of tropomyosin. (c) Ten
state variables detail the interaction of actin and myosin as well as the hydrolysis of
ATP. M and A symbolize myosin and actin, respectively. ATP, ADP, and Pi represent
adenosine triphosphate, adenosine diphosphate, and phosphate, respectively. The
transition between states is depicted by an arrow, strong binding by a closed circle,
and weak binding by a tilde. The arrows are labeled with constants kx, which are
parameters of the rate coefficients functions. Further parameters, e.g. ATP, cross-
bridge density XB and stretch velocity v, are in brackets.

M • ATP + M • ADP • Pi + M • ADP + M

+A ∼ M • ATP + A ∼ M • ADP • Pi

+A • M • ADP • Pi + A • M∗ • ADP + A • M • ADP + A • M = 1

The power stroke is performed during transition from A • M • ADP • Pi to
A • M∗ • ADP . The normalized concentration of myosin strongly bound to
actin SA•M is quantified by:

SA•M = A • M • ADP • Pi + A • M∗ • ADP + A • M • ADP + A • M

The interaction between the states of the model is described by a system of
first order differential equations:
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Fig. 8.22. Steady state simulations with Glänzel-Sachse-Seemann model for dif-
ferent sarcomere lengths and calcium concentrations. The steady state force F is
dependent on stretch ranging from 0.8 to 1.2 and the intracellular calcium concen-
tration [Ca2+]i. A stretch of 1 corresponds to a sarcomere length of 2 µm. The force
F is normalized with the maximal force Fmax.
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

with the 14 x 14 matrix R consisting of rate coefficients. Partly, the rate
coefficients are dependent on the sarcomere stretch velocity v, the sarcomere
stretch λ, and the concentration of intracellular calcium [Ca2+]i. The matrix
R is sparse indicating that transitions between states are only partly possible.
The initial values and coefficients are given in [352].



260 8 Cardiac Mechanics

The sum of tension generating states TAM is given by:

TAM = A • M + A • M • ADP + A • M∗ • ADP

The normalized force F is determined by

F =
α TAM

Fmax

with the sarcomere overlap function α = α(λ) (Fig. 8.15), which is tissue and
species specific [68, 347], and maximal tension Fmax, which is dependent on
the rate coefficients. The normalized force F can be multiplied by a tissue and
species specific factor fT0 to quantify force development of myocardium.

The hybrid model was applied e.g. to elucidate cooperativity mechanisms
by simulations [363], whereby the calcium concentration was varied and a
stretch of λ = 1 was applied. Results with and without incorperation of the
mechanisms are shown in Fig. 8.23. The influence of the different cooperativity
mechanisms is quantified by the Hill parameters Ca50 and N . All mechanisms
lead to a left shift and steepening of the calcium-force relationship, which is
indicated by a decrease of the parameter Ca50 and an increase of the param-
eter N .

8.4 Mechanics in Anatomical Models

Descriptions of mechanical properties of myocardium can be applied in con-
junction with anatomical models (Sect. 6.4) and numerical methods of me-
chanics to simulate the mechanical behavior of the heart [264, 266, 254, 364,
365, 366]. Different modeling and simulation environments were developed
allowing this kind of reconstruction of the cardiac behavior:

• CMISS developed at Bioengineering Institute, Auckland, NZ [367].
• Continuity developed of the cardiac mechanics research group, Depart-

ment of Bioengineering and the Whitaker Institute for Biomedical Engi-
neering, UCSD, USA [368].

• MEET Man tools developed at the Institut für Biomedizinische Technik,
Universität Karlsruhe (TH) [132].

All these environments apply primarily the finite element method for contin-
uum mechanics modeling (Sect. 4.3) .

Coupling of Passive Mechanics and Force Development. In continuum me-
chanics based modeling the coupling between force development and passive
mechanics models is performed via definition of summary stress. In incom-
pressible, hyperelastic solids the summary second Piola-Kirchhoff stress tensor
S is composed of:

Sij =
∂W

∂Eij
− pδij + Sactive,ij



8.4 Mechanics in Anatomical Models 261

0

0.2

0.4

0.6

0.8

1

1.2

0.01 0.1 1 10

N
or

m
al

iz
ed

 fo
rc

e 
[N

/N
]

Calcium concentration [µM]

1. Ca50 = 0.283, N = 4.307
2. Ca50 = 0.392, N = 2.828

(a)

0

0.2

0.4

0.6

0.8

1

1.2

0.01 0.1 1 10

N
or

m
al

iz
ed

 fo
rc

e 
[N

/N
]

Calcium concentration [µM]

1. Ca50 = 0.283, N = 4.307
2. Ca50 = 0.389, N = 2.240

(b)

0

0.2

0.4

0.6

0.8

1

1.2

0.01 0.1 1 10

N
or

m
al

iz
ed

 fo
rc

e 
[N

/N
]

Calcium concentration [µM]

1. Ca50 = 0.283, N = 4.307
2. Ca50 = 0.793, N = 1.341

(c)

Fig. 8.23. Evaluation of cooperativity mechanisms (adapted from [354]). Simu-
lations are performed (1) with and (2) without the mechanisms (a) XB-TN, (b)
XB-XB, and (c) TM-TM. The Hill parameters Ca50 and N quantify the differences
resulting from incorporating the different mechanisms.

with the strain energy density function W , the Green-Lagrange strain tensor
E, the Kronecker delta δ, the hydrostatic pressure p, and the active tension
tensor Sactive.

In a local, cartesian coordinate system the active tension tensor Slocal,active

is given by:

Slocal,active =




sfiber,active 0 0

0 0 0
0 0 0





with the scalar tension in fiber direction sfiber,active, which is commonly set
using data from measurements or simulations. In the local coordinate system
the x-axis is aligned with the fiber orientation.

Alternatively, the active tension tensor Slocal,active may be defined as:

Slocal,active =




sfiber,active 0 0

0 ssheet,active 0
0 0 snormal,active





with the scalar tension in fiber direction sfiber,active, in sheet direction
ssheet,active, and in sheet normal direction snormal,active. This definition al-
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Fig. 8.24. Left ventricle approximated with 3752 cubic elements.

(a) (b)

Fig. 8.25. Myocyte orientation in (a) central short and (b) central long axis slice.
The endocardial, midwall and epicardial myocyte orientation is set to −45◦, −45◦,
and −45◦, respectively.

lows the inclusion of active tension transversal to the fiber direction resulting
e.g. from inhomogeneities of sarcomere orientation and microstructural con-
siderations of the cross-bridge cycling.

The active tension tensor in local coordinate system Slocal,active is trans-
ferred in the global coordinate system by:

Sactive,ij = Rik Rjl Slocal,active,kl

with the rotation matrix R describing the transform from local to global
coordinate system.
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(a) (b)

(c) (d)

Fig. 8.26. Myocyte orientation in (a,c) central short and (b,d) central long axis
slice. (a,b) The endocardial, midwall and epicardial orientation is set to −45◦, 0◦,
and 45◦, respectively. (c,d) The orientation is to 0◦, 0◦, and 0◦, respectively.

Exemplary Simulations. Simulations were performed to illustrate the mechan-
ical effects of myocyte orientation in the left ventricular wall. The orientation
of myocytes is reported to be dependent on the depth [111, 112].

The left ventricle is approximated by a truncated, thick ellipsoid. The half
ellipsoid is discretized with 3752 cubic elements (Fig. sfi8.24). Assigned to the
elements vertices are node variables, which describe a displacement vector.
The displacement, tension and strain is trilinearly interpolated inside of an
element.

In the simulations three different orientations are assigned to the endocar-
dial, midwall, and epicardial layer (Fig. 8.25 and 8.26). The orientation in the
regions in between is interpolated with the techniques described in Sect. 5.6.3.
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(a)

(b) (c)

Fig. 8.27. Deformation of ventricle model. The endocardial, midwall and epicardial
myocyte orientation is set to −45◦, −45◦, and −45◦, respectively. The deformation
is visualized in (a) full, (b) short axis cutted, and (c) long axis cutted ventricle.
Green arrows indicate the displacement of a vertex. The white lattice represents the
initial configuration.

Attributed to each element of the ellipsoid is a hyperelastic anisotropic
material description assuming incompressibility. The material law of Guccione
et al. is used, which reconstructs orthotrophic properties (Sect. 8.1) [254]:

W =
C

2
(
eQ − 1

)

Q = 2b1(ERR + EFF + ECC) + b2E
2
FF + b3(E2

CC + E2
RR + E2

CR + E2
RC)

+ b4(E2
RF + E2

FR + E2
FC + E2

CF )

with the parameter C, b1, b2, b3, b4, and the components of the Green-
Lagrange strain tensor E. As parameters are chosen: C = 0.6 kPa, b1 = 0,
b2 = 26.7, b3 = 2.0, and b4 = 14.7.
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(a)

(b) (c)

Fig. 8.28. Deformation of ventricle model. The endocardial, midwall and epicardial
myocyte orientation is set to −45◦, 0◦, and 45◦, respectively. The deformation is
visualized in (a) full, (b) short axis cutted, and (c) long axis cutted ventricle. Green
arrows indicate the displacement of a vertex. The white lattice represents the initial
configuration.

The finite element method is applied to determine the mechanical defor-
mation in the ventricle resulting from given forces (Sect. 4.3). A numerical
evaluation of integral equations resulting from the principal of virtual dis-
placements is performed delivering element- and time-step-wise linear systems
of equations. These equations are assembled into the system equations, which
are modified by boundary conditions. The system of equations is solved by
the conjugate gradient method (Sect. 2.4.3).

Anatomically motivated boundary conditions are chosen. The half ellipsoid
is fixed at its top layer with the opening. A tension sfiber,active of 1 kPa is
applied in fiber direction homogeneously in each element.

Results of simulations are illustrated in the Fig. 8.27, 8.28, and 8.29. The
simulation with orientations equal to 0◦ shows a significant long axis stretch-
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(a)

(b) (c)

Fig. 8.29. Deformation of ventricle model. The endocardial, midwall and epicar-
dial myocyte orientation is set to 0◦, 0◦, and 0◦, respectively. The deformation is
visualized in (a) full, (b) short axis cutted, and (c) long axis cutted ventricle. Green
arrows indicate the displacement of a vertex. The white lattice represents the initial
configuration.

out and shrinking in short axes direction. Orientations of −45◦ lead to a long
axis shortening and short axes stretch. The model with endocardial, midwall
and epicardial orientation set to −45◦, 0◦, and 45◦, respectively, maintains its
shape.
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Modeling of Cardiac Electro-Mechanics

9.1 Introduction

Efficient working of the heart necessitates an adaptation to suddenly emerg-
ing demands and loads. The adaptation is performed by a well ordered inter-
play between cellular electrophysiology, intercellular excitation propagation
and cellular force development. Different feedback mechanisms, i.e. mechano-
electrophysiological and mechano-force development feedbacks, support the
interplay. A reconstruction of this interplay can be achieved by coupled mod-
els of different type, particularly anatomical, electrophysiological, force devel-
opment and deformation models.

In this chapter strategies for reconstruction of heart’s electro-mechanic
function are introduced. The modeling includes intra-cardiac, short-term
adaptation phenomena. Middle-term transients are neglected, e.g. stimulus
frequency dependence of intracellular concentration of calcium and of calcium
loading of sarcoplasmic reticulum. Long-term adaptations, e.g. by macroscopic
anatomical adaptation and varying densities of transmembrane proteins, are
not on target. Also, metabolic and hormonal effects are not considered.

In the following sections electro-mechanic models at cellular, macroscopic
and whole heart level are presented, which result from a coupling of diverse
models. The electro-mechanic models are illustrated by simulations. Electro-
mechanic models of different levels and applied techniques are shown:

• Models of electrophysiology and force development at level of single cell.
The models are described by systems of coupled ordinary differential equa-
tions. The models include geometric descriptions. The resultant stretch is
derived.

• Excitation propagation and cardiac force development at whole heart level.
A rule-based method, a cellular automaton, is working in the spatial do-
main of a realistic anatomical heart model.

F.B. Sachse: LNCS 2966, pp. 267–289, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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force development
states

Geometry

IntracellularIntracellular

states
electrophysiological

Fig. 9.1. Modeling of coupled cellular electro-mechanics. Changes in geometry can
lead to stretch of sarcomere, which influences the cellular electrophysiology and
force development. Electrophysiological models determine the course of intracellular
calcium concentration, which is used as input for the force development model.

• Electro-mechanics in areas of myocardium. Cellular models of electrophysi-
ology and force development are coupled with excitation propagation and
deformation models. The excitation propagation is reconstructed with the
bidomain model. For simulation of deformation the mechanical material
properties are described as hyperelastic.

9.2 Electrophysiology and Force Development
of Single Cells

Muscle cells control the development of force in the myofilaments via the
intracellular calcium concentration and stretch of sarcomere. The coupling of
electrophysiology and force development can be simulated with combined cell
models, which reconstruct the binding of cytosolic calcium to troponin C and
the calcium release from troponin C into the cytosol.

Only some recently developed electrophysiological cell models include ex-
plicitly the calcium interaction with troponin, e.g. the Demir-Clark-Murphey-
Giles and Noble-Varghese-Kohl-Noble model (Fig. 7.24). The therewith
achieved knowledge concerning the concentration of calcium bound to tro-
ponin C allows the determination of actin sites available for cross-bridge bind-
ing.

Alternatively, calcium-troponin interaction can be formulated explicitly by
a force model, e.g. Landesberg-Sideman, Hunter-McCulloch-ter Keurs and 3rd
Rice-Winslow-Hunter model. A further alternative are models, which neglect
an explicit description of calcium-troponin interaction, e.g. 1st Rice-Winslow-
Hunter model. Input parameter for both types of model is the cytosolic con-
centration of calcium.

Simulations with combined electrophysiology and force development mod-
els are shown in Fig. 9.3, 9.2, 9.4, and 9.5. The cytosolic concentration of
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Fig. 9.2. Simulations with Noble-Varghese-Kohl-Noble and 1st Rice-Winslow-
Hunter model. The cell is excited by applying a stimulus current at t = 25 ms
with a length of 3 ms. The course of (a) transmembrane voltage Vm and (b) calcium
concentration [Ca2+]i is typical for a ventricular myocyte of guinea pig. (c) The
development of force F is dependent on static stretch ranging from 0.8 to 1. The
force F for larger stretches can be determined with the sarcomere overlap function.
The force F is normalized with the maximal force Fmax.

calcium serves in conjunction with the sarcomere stretch as input parameter
for the force models. The data following the 100th excitation at a frequency of
1 Hz were used for visualization to avoid artifact resulting from imprecise ini-
tial values. The underlying system of ordinary differential equation was solved
with the Euler method.
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Fig. 9.3. Simulations with Luo-Rudy and 3rd Rice-Winslow-Hunter model. The cell
is excited by applying a stimulus current at t = 25 ms with a length of 3 ms. The
course of the (a) transmembrane voltage Vm and (b) calcium concentration [Ca2+]i
is reconstructed for ventricular myocytes of guinea pig.. (c) The development of force
F is dependent on static stretch ranging from 0.8 to 1.2. The force F is normalized
with the maximal force Fmax.

The simulations with the combined Noble-Varghese-Kohl-Noble and 1st
Rice-Winslow-Hunter model show non-realistic lengths and offsets of devel-
oped force (compare Fig. 8.16 and 8.17), which can be reduced by careful
parameterization.

The simulations with the 3rd Rice-Winslow-Hunter model (Fig. 9.3 and
9.4) reveal consistent shapes of the developed cellular force. Differences of
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Fig. 9.4. Simulations with Noble-Varghese-Kohl-Noble and 3rd Rice-Winslow-
Hunter model. The cell is excited by applying a stimulus current at t = 25 ms
with a length of 3 ms. The course of (a) transmembrane voltage Vm and (b) cal-
cium concentration [Ca2+]i is typical for ventricular myocytes of guinea pig. (c) The
development of force F is dependent on static stretch ranging from 0.8 to 1.2. The
force F is normalized with the maximal force Fmax.

length and amplitude can be attributed to differences in the reconstruction
of the intracellular calcium concentration by the electrophysiological Luo-
Rudy phase-2 and Noble-Varghese-Kohl-Noble models. The calcium-troponin
interaction is described explicitly by the 3rd Rice-Winslow-Hunter model and
the Noble-Varghese-Kohl-Noble model. The calcium binding to troponin C is
neglected in the Luo-Rudy phase-2 model.
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Fig. 9.5. Simulations with Priebe-Beuckelmann and Glänzel-Sachse-Seemann
model. The cell is excited by applying a stimulus current at t = 25 ms with a length
of 3 ms. The course of (a) transmembrane voltage Vm and (b) calcium concentra-
tion [Ca2+]i is typical for normal human ventricular myocytes. (c) The development
of force F is dependent on static stretch ranging from 0.8 to 1.2. The force F is
normalized with the maximal force Fmax.

The simulations with the Glänzel-Sachse-Seemann and a modified Priebe-
Beuckelmann model aimed at reconstruction of electro-mechanics of human
ventricular cells [197]. These models allow the quantitative reconstruction
of various electro-mechanical phenomena at cellular level. The modification
of the Priebe-Beuckelmann model concerned the calcium handling of my-
ocytes, which was adapted to data obtained by recent studies [369]. The
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Fig. 9.6. Modeling of cardiac force development with cellular automaton at whole
heart level. The cellular automaton is illustrated in the upper part. The automation
is parameterized by prior simulations. The simulations are performed at cellular level
with electrophysiological and force development models as well as with an excitation
propagation model.

Glänzel-Sachse-Seemann model was parameterized in such a way that the
static calcium-force relationship is similar to measurements in human my-
ocardium.

Human myocytes show significantly prolonged durations of action poten-
tial and calcium transient in comparison to myocytes of guinea pigs. The
resulting force transient is as well prolonged.

9.3 Cellular Automaton of Cardiac Force Development

A cellular automaton can be used to simulate force development in areas of
myocardium and in the whole heart [370, 371, 372, 373]. The automaton, in-
troduced in Sect. 7.3.3 for simulation of cardiac electrophysiology, allows to
calculate force distributions on base of anisotropic electrical excitation prop-
agation in anatomical models (Fig. 9.6).
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(a) (b)

(c) (d)

Fig. 9.7. Simulation of force development with cellular automaton. (a) The images
sequence shows the transmembrane voltage at heart surface for time 16 ms, 76 ms,
and 136 ms after activation of sinus node. (c) The sequence represents force at
corresponding times. (b) Transmembrane voltage and (d) force are color coded using
a palette.

The finite automaton at each node is parameterized with results from nu-
merical simulations with cellular electrophysiologic, force development and
excitation propagation models, e.g. simulations similar to those shown in
Fig. 9.4. For that purpose, a large number of simulations was performed vary-
ing the cell model and the stimulus frequency. The simulations deliver tissue
and stimulus frequency specific courses of the cellular force. The stretch de-
pendence of force development can be included as a further parameter of the
simulations for parameterization. Alternatively, some force models allow an
a-posteriori scaling of the calculated force by stretch. E.g. the a-posteriori
scaling of the 1st Rice-Winslow-Hunter model is achieved by applying the
sarcomere overlap function (equation 8.15).
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(a) (b)

(c) (d)

Fig. 9.8. Simulation of force development with cellular automaton. (a) The images
sequence shows the transmembrane voltage at heart surface for time 376, 436 ms,
and 556 ms after activation of sinus node. (c) The sequence represents force at
corresponding times. (b) Transmembrane voltage and (d) force are color coded using
a palette.

Result of a simulation with the cellular automaton is the temporal and
spatial distribution of the force development for each cell (Fig. 9.7, 9.8, 9.9
and 9.10). The distributions can be applied in subsequent calculations of car-
diac mechanical deformation, e.g. in conjunction with methods of continuum
mechanics.

9.4 Electro-Mechanics of the Myocardium

9.4.1 Overview

A simulation environment was developed [374, 375, 376, 377, 252, 378], which
has the purpose to achieve knowledge concerning the cardiac deformation
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(a) (b)

(c) (d)

Fig. 9.9. Simulation of force development with cellular automaton. (a) The images
sequence shows the transmembrane voltage in heart surface for time 16 ms, 76 ms,
and 136 ms after activation of sinus node. (c) The sequence represents force at
corresponding times. (b) Transmembrane voltage and (d) force are color coded using
a palette.

and its influence to the initiation and propagation of electrical excitation and
to the force development. The environment combines and extends the cellu-
lar electrophysiological and force development models as well as macroscopic
propagation models, which were presented in previous chapters. The environ-
ment consists of

• a cellular electrophysiological model with possibly stretch dependent be-
havior

• a bidomain model for excitation propagation taking stretch into account
• a cellular model of the force development with inclusion of stretch
• an elastomechanical model

The interdependencies of the different data are depicted in Fig. 9.11.
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(a) (b)

(c) (d)

Fig. 9.10. Simulation of force development with cellular automaton. (a) The images
sequence shows the transmembrane voltage in heart surface for time 376, 436 ms,
and 556 ms after activation of sinus node. (c) The sequence represents force at
corresponding times. (b) Transmembrane voltage and (d) force are color coded using
a palette.

Influence of Stretch to Intra- and Extracellular Conductivity Tensors. An ex-
tension of the mono- and bidomain model was proposed (Sect. C), which allows
to take the deformation of tissue into account for the calculation of electri-
cal conductivities (Fig. 9.12). This extension delivers conductivity tensors σi

and σe for the intra- and extracellular space, respectively. The conductivity
tensors follow the rules of model assumptions.

In the following simulations a different behavior due to stretch of the extra-
and intracellular conductivity tensor is assumed [374]:
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Fig. 9.11. Modeling of electro-mechanics in myocardium. Models of electrophysiol-
ogy and force development at cellular level are coupled with excitation propagation
and deformation models.

• The intracellular conductivity tensor σi is primarily influenced by the resis-
tors Rgj of the gap junctions. These resistors Rgj are stretch independent.

• The extracellular space behaves like an incompressible fluid. The extracel-
lular conductivity tensor σe is not influenced by stretch.

These physically motivated assumptions simplify the behavior of the conduc-
tivity tensors and allow their efficient calculation.

9.4.2 Simulations

Static Model of Heart Wall. The simulation serves to explore the propa-
gation of excitation and force development in a static area of ventricular free
wall (Fig. 7.44) [252]. The wall area was modeled as described in Sect. 7.3.4
and consists of 150 x 150 x 125 elements with a size of 0.2 mm x 0.2 mm x
0.2 mm reconstructing the electrophysiology and force development of ven-
tricular cells.

In each cell the Noble-Varghese-Kohl-Noble and 3rd Rice-Winslow-Hunter
model were coupled. Both cellular models were calculated by the Euler method
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Stretch

Gap junction resistor

Myocyte

Extracellular space

Fig. 9.12. Coupling of myocytes with gap junctions and through the extracellular
space. The deformation of a region changes the intra- and extracellular conductivity.
The resistor yielded by the gap junction is not changed.

(a) (b) (c)

(d) (e) (f)

Fig. 9.13. Force development in static model of heart wall at different points in
time. The simulated normalized force is visualized with volume based techniques at
(a) 30 ms, (b) 65 ms, (c) 130 ms, (d) 290 ms, (e) 340 ms, and (f) 410 ms.
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(a) (b)

(c) (d)

Fig. 9.14. Transmembrane voltage at time (a) 0 ms, (b) 3 ms, (c) 5 ms, and (d) 8
ms in an anisotropic model of myocardial area. The model consists of 20 x 20 x 20
cubic voxels with a size of 0.1 mm x 0.1 mm x 0.1 mm.

with a time step of 20 µs to solve the underlying ordinary differential equa-
tions.

The traditional bidomain model was applied to interconnect the electro-
physiological cell models. Poisson’s equations as parts of the bidomain model
were solved with the finite-differences method. A Gauss-Seidel iteration at
every 20 µs was carried out to solve these differential equations.

The excitation propagation at different points is shown in Fig. 7.46. Corre-
spondingly, the propagation of force development is illustrated with Fig. 9.13.
The propagation of force development follows the propagation of electrical
excitation with a delay, which is found similarly in single cell simulations.
The developed force is inhomogeneously distributed in the wall resulting from
differences of the underlying electrophysiology.

Electro-Mechanical Model of Myocardium Block. Simulations were
performed with fully coupled electro-mechanical models of a myocardial area.
The applied anatomical model consisted of 20 x 20 x 20 cubic voxels, each
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(a) (b) (c)

(d) (e) (f)

Fig. 9.15. Color-coded normalized force and deformation at time (a) 0 ms, (b) 50
ms, (c) 100 ms, (d) 150 ms, (e) 200 ms, and (f) 250 ms in an anisotropic model
of myocardial area. The model consists of 20 x 20 x 20 cubic voxels with a size of
0.1 mm x 0.1 mm x 0.1 mm. Central positions in the plane z = 0 were fixed, i.e. the
displacements were set to zero. The wire frame shows the reference configuration.

with a size of 0.1 mm x 0.1 mm x 0.1 mm. The activation was initiated at
time 0 ms by application of a sufficient electrical current at plane z = 0. The
principal axis of myocytes was chosen parallel to the z-axis.

Transversal isotropy of the electrical conductivities was set. Anisotropy of
the elastomechanical parameters and incompressibility was assumed. Central
positions of the plane z = 0 were fixed, i.e. the displacements were set to zero.

The simulations were performed applying the Euler method with a time
step of 20 µs to solve the ordinary differential equations of the electrophysio-
logical and force development model, i.e. the Noble-Varghese-Kohl-Noble and
3rd Rice-Winslow-Hunter model, respectively. Differential equations of the
bidomain model were solved using the finite element method with a Gauss-
Seidel iteration every 20 µs.

The material law of Hunter-Nashs-Sands was employed to describe the
passive mechanics of the myocardium. The deformation was calculated with
a time step of 1 ms. The system of linear equations resulting from the elas-
tomechanical model was solved by the conjugate gradient method.

The results were visualized with surface and volume based techniques (Fig.
9.14 and 9.15). The simulations with the combined model show processes of
different time scale. The process of excitation propagation is rapidly spreading
over the myocardium (Fig. 9.14). The force development and the resulting
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deformation follow with a significant delay (Fig. 9.15). In contrast to static
simulations, e.g. those presented in the previous paragraph, a decrease of
force can be found, which is primarily attributed to stretch dependence of
force development models.

Electro-Mechanical Model of Left Ventricle. An integrated electro-
mechanical ventricular model was investigated by exemplary simulations. The
environment of the model was similar to those of the classical Langendorff
studies [379]. The simulations represented a cardiac cycle including electrical
de- and repolarization as well as mechanical contraction and relaxation.

The ventricle was approximated by crop of two confocal truncated ellip-
soids (Sect. 6.4.2). The size of these ellipsoids was chosen in such a manner,
that the resulting model has similar size as a small animal’s left ventricle. The
ventricle’s geometry and fiber orientation was rendered in lattices of 40 x 40 x
50 and 20 x 20 x 25 cubic elements with a length of 200 and 400 µm, respec-
tively. The macroscopic orientation of myocytes was included by interpolation
starting from boundary conditions in three depths of the myocardium. The
orientation was set subepicardial to −70◦, midwall 0◦, and subendocardial 70◦

reflecting knowledge from anatomical studies [111].
The lattice with high resolution was applied for simulation of cellular

electrophysiology, excitation propagation, and force development. The low
resolution lattice served for simulation of passive mechanics. An intracellular
conductivity tensor was assigned to all cells of the high resolution lattice tak-
ing tissue, material and fiber orientation into account. The Noble-Varghese-
Kohl-Noble, the hybrid model of force development and a monodomain model
of intercellular current flow [380] were attributed to all cells of the high res-
olution lattice, which were assigned to myocardium. In all cells of the low
resolution lattice a model of passive mechanics was assigned. The orthotropic
material law of Guccione et al. was attributed to cells containing myocardium
(Sect. 8.1) [254], a linear law to the other cells.

Basal positions of the ventricular model were fixed in such a manner that
displacements in direction of the ellipsoid’s long axis were impossible and
radial displacements were preferred. The maximal tension Tmax was set to
10 kPa in the first simulations. In further simulations it was set to 5, 10, and
20 kPa.

An exemplary simulation had a duration of 800 ms started by applying
an electrical stimulus at all voxels in the apical third of the subendocardial
myocardium. Only voxels bordering directly to the endocardial cavity were
taken into account. The stimulus applied a current of 10 µA at time t = 0 ms
for a duration of 1 ms.

Every 20 µs a calculation of the electrophysiological, excitation propaga-
tion, and tension development model assigned to each voxel was performed.
The displacements were determined every 5 ms and delivered to the electro-
physiological, excitation propagation, and tension development model.
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Table 9.1. Parameters extracted from simulation results (from [381]). The maximal
slope of transmembrane voltage Vm and tension T was used to characterize onset
of electrical excitation and tension development, respectively. The value APD90

identifies the duration between onset of electrical excitation and repolarization to
90 % of amplitude. The value TD90 is determined by duration between onset of
tension development and return to 90 % of amplitude. Simulation results were stored
with a temporal discretization of 5 ms. The parameter extraction was performed
applying linear interpolation.

Position time Max ∂Vm
∂t

APD90 time Max ∂T
∂t

TD90

[ms] [ms] [ms] [ms]

epicardial apex 2.5 328.7 87.5 440.1
equatorial midwall 27.5 325.0 97.5 430.6
basal midwall 37.5 318.5 117.5 444.1

The simulations with the integrated model showed a rapid spread of electri-
cal excitation characterized by depolarisation of cell membrane from apical-
endocardial to basal-epicardial (table 9.1). A homogeneous distribution of
transmembrane voltage was found during the plateau phase, whereby the ho-
mogeneity decreased over time. The spread of repolarisation followed the same
patterns as found for depolarisation.

The spread of tension development occurred with delay similar to the
spread of electrical excitation (table 9.1). The tension development was found
to be homogeneous in the early stages, but inhomogeneity was significant
for later stages. The inhomogeneity was resulting from an inhomogeneous
distribution of strain and intracellular calcium after initial static stages of
simulation.

The deformation of the ventricle, described by displacements of node
points, is illustrated in Fig. 9.16 and 9.17. The deformation led to a significant
decrease of endocardial volume and increase of wall thickness. The apical and
equatorial regions showed a torsion as well as a significant radial and a minor
displacement in basal direction. Regions at the basal border moved radial.

In a further set of simulations, the maximal tension Tmax was varied. The
endocardial volume was decreased during the contraction to maximal 84, 74,
and 61 % of its reference volume for a maximal tension of 5, 10, and 20
kPa, respectively. The course of volume decrease was similar for the different
tension factors (Fig. 9.18).

The transmembrane voltages and intracellular calcium concentrations vary
only slightly for different tension factors and measurement positions (Fig. 9.19
a,b). Significant differences are found for tension development (Fig. 9.20).
Normalized developed tensions T were larger for small tension factors. The
differences can be attributed to the decrease in stretch by increase of tension
factors. This decrease leads to reduced calcium-troponin C binding and small
values in the sarcomere overlap function.
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(a) (b)

(c) (d)

Fig. 9.16. Apical view on deformation at time (a) 0 ms, (b) 100 ms, (c) 200 ms,
and (d) 300 ms in electro-mechanical model of left ventricle (from [381]). A half of
the ventricle’s model is shown with a bright wire-frame as reference configuration.
Arrows indicate displacements at node points.

Electro-Mechanical Biventricular Model. The ventricles’ geometry and
fiber orientation were rendered as described in Sect. 6.4.2 and 9.4.2 in two
lattices of 48 x 36 x 44 and 24 x18 x22 cubic elements with a length of 200 and
400 µm, respectively. An exemplary simulation was performed as described
in section 9.4.2 applying models of electrophysiology, tension development,
and passive mechanics. Electrical boundary conditions were added for the
right ventricle. Mechanical boundary conditions were assigned only for the
left ventricle. Results of the simulation are presented in Fig. 9.21.

Electro-Mechanical Biventricular Model Based on Diffusion
Weighted MRT. The geometry and fiber orientation of the canine’s ventri-
cles were modeled as described in Sect. 6.4.6) and stored as depicted in Sect.
9.4.2 in two lattices of 128 x 128 x 96 and 32 x 32 x 24 cubic elements with
a length of 800 and 3200 µm, respectively. The lattice for modeling electro-
physiology and tension development is illustrated in Fig. 6.30 and 6.31.
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(a) (b)

(c) (d)

Fig. 9.17. Apical view on deformation at time (a) 400 ms, (b) 500 ms, (c) 600 ms,
and (d) 700 ms (from [381]).

Fig. 9.18. Ratio of endocardial volume. The ratio between the volume of left ven-
tricular cavity in deformed and undeformed configuration is dependent on the ten-
sion produced by contractile units. The course of the volume ratio is shown calculated
by simulations with a maximal tension Tmax of 5, 10 and 20 kPa.

An exemplary simulation was performed as detailed in section 9.4.2. Me-
chanical boundary conditions fixed the myocardium in the basal endocardial
rim of the left ventricle. Results of the simulation are shown in Fig. 9.22.
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Fig. 9.19. (a) Transmembrane voltage Vm and (b) concentration of intracellular cal-
cium [Ca2+]i at different positions and for different maximal tensions Tmax. Maximal
tensions of 5, 10 and 20 kPa were assigned to the contractile units. Positions at the
epicardial apex, equatorial midwall, and basal midwall were selected.

Fig. 9.20. Normalized tension at different positions and for different maximal ten-
sions Tmax. Maximal tensions of 5, 10 and 20 kPa were assigned to the contractile
units. Positions at the epicardial apex, equatorial midwall, and basal midwall were
selected.
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(a) (b)

Fig. 9.21. Results of simulation with analytical biventricular model (from [131]).
(a) Full and (b) halved model are shown at time of maximal developed tension. The
displacement of vertices is indicated by arrows. The white wire frame describes the
initial configuration. The course of developed tension at apical, equatorial, and basal
midwall positions is depicted on the left side.

9.4.3 Limitations and Perspectives

Different limitations of the simulations with the electro-mechanical models
can be assigned, which aim at reconstruction of short-term phenomena.

The applied anatomical model approximated the cardiac tissue and fiber
distribution in parts. Further anatomical structures were not included, e.g.
papillary muscles, pericardium, and atria. Transmural inhomogeneities of my-
ocardium [382] and lamination of ventricular myocardium [108] were not rep-
resented by the anatomical model, but the electrophysiological and mechanical
models are capable of reconstructing of inhomogeneity and full anisotropic ef-
fects. More detailed anatomical models can be generated e.g. using medical
imaging systems [136].

The application of mechano-electrical feedback mechanisms in the inte-
grated models was restricted to incorporation of modulation of calcium bind-
ing to troponin C and modulation of sarcoplasmic leak current. Stretch acti-
vated sarcolemmal ion channels were deactivated.

Mechanical and electrical boundary conditions were simplified in the pre-
sented simulations. Endocardial pressure and valve mechanics were not taken
into account in the presented simulations. Nevertheless, interfaces for incor-
poration various boundary conditions are provided in the integrated model,
e.g. pressure at endocardial surfaces and residual stress. Mechanical boundary
conditions can be determined by coupling of the integrated model to model
of fluid and valve mechanics.

The models showed to be challenging concerning computing resources. Par-
ticularly the modeling of deformation demands significant parts of calculation
time. Exploiting of new numeric methods, e.g. meshless techniques for solving
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(a) (b)

(c) (d)

Fig. 9.22. Results of simulation with diffusion weighted MRT biventricular model
(from [131]). Several aspects of electrophysiology and mechanics in halved model
are illustrated: distribution of transmembrane voltage Vm at time (a) 15 and (b)
300 ms, (c) the distribution of intracellular calcium [Ca2+]i at time 20 ms, and (d)
tension developed at 35 ms, i.e. an initial phase of contraction. The displacement of
vertices is indicated by arrows. All times are referenced to the time of application
of stimulus.

of differential equations [383], and software development, e.g. Grid technolo-
gies for computing, seems to be a chance to satisfy these demands.

The presented ventricular simulation was performed on a shared memory
computing server of type SGI Origin 2000 with 8 processors of type R10000
195 MHz claiming 7 processors each for a time 120 h. The simulations with the
analytical and MRT based biventricular model were performed on a shared
memory computing server of type SGI Origin 3000 using 16 of 64 processors of
type R14000 600 MHz each for a time 32 and 72 h, respectively. Parallelization
of computationally expensive tasks was achieved on basis of the OpenMP API
[384].

Demands of extendability can be defined concerning the further develop-
ment of the presented framework for modeling of cardiac electro-mechanics,
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i.e. providing interfaces to external modeling, simulation and numerical en-
vironments, e.g. to CellML for storage and exchange of computer-based bio-
logical models [385] and SCIRun/BioPSE [386]. Upcoming specifications and
formalizations of information in biology, medicine and mathematics have to
be taken into account for further development, e.g. AnatML for exchanging
information at organ level and FieldML for describing field information using
finite elements.

Despite the limitations of the models characteristic micro- and macro-
scopic phenomena of cardiac electro-mechanics were reconstructed. The pre-
sented methods show a strategy, which can be adapted e.g. for improvement
of biomedical instrumentation and pharmaceuticals as well as of clinical car-
diologic diagnosis and planning of therapies. The inclusion of patient specific
data ranging from genetic scans to medical images is possible and offers the
adaptation of models to patient specific characteristics.



Appendix

A Physical Units and Constants

Table A.1. Physical units.

Quantity Symbol Unit

Capacity C F
Charge Q C
Current I A
Current density J A m−2

Energy W W s
Electric conductivity σ (Ω m)−1

Electric field E V m−1

Electric flux density D A s m−2

Electric potential φ V
Electric resistor R Ω
Electric voltage φ V
Force F N
Frequency f s−1

Length l m
Magnetic field H A m−1

Magnetic flux density B V s m−2

Mass m kg
Power P W
Time t s

Table A.2. Physical constants.

Symbol Description Value Dimension

ε0 Permittivity in vacuum 8.8542 · 10−12 A s V −1 m−1

µ0 Permeability in vacuum 1.2566 · 10−6 V s A−1 m−1

c Velocity of light 2.99792456 · 108 m s−1

e Elementary charge 1.6021773 · 10−19 C
F Faraday’s constant 9.64853 · 104 C mol−1

N Avogadro’s number 6.022 · 1023 mol−1

R Gas constant 8.31451 J K−1 mol−1

D Dalton, atomic unit of mass 1.66 · 10−27 kg

F.B. Sachse: LNCS 2966, pp. 291–298, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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B Differential Operators

The definition of the following operators simplifies the notation of differential
equations with vectorial components. These equations are frequently occurring
describing phenomena in electromagnetics. The operators are illustrated with
three-dimensional operands, but a generalization for arbitrary dimensions is
straightforward possible.

The gradient or so-called nabla operator ∇ consists of spatial derivatives
and is defined in a Cartesian coordinate system as:

∇ ≡





∂
∂x
∂
∂y
∂
∂z





whereby the variables x, y and z describe commonly coordinates in a three-
dimensional domain.

The operator · indicates a scalar or inner product:

a · b ≡ a1b1 + a2b2 + a3b3

with the three-dimensional vectors a and b.
The composite operator ∇· is named divergence:

∇ · a ≡ ∂a1

∂x
+

∂a2

∂y
+

∂a3

∂z

The cross product operator × is given by:

a × b ≡



a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1





The composite operator ∇× is termed curl operator:

∇× a ≡





∂a3
∂y

− ∂a2
∂z

∂a1
∂z

− ∂a3
∂x

∂a2
∂x

− ∂a1
∂y




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(a) (b)

Fig. C.1. Deformation of two-dimensional grid of resistors with (a) reference con-
figuration and (b) deformed configuration.

C Model of Stretch-Dependent Conductivity

C.1 Model Assumptions

A model of stretch-dependence of electrical conductivities was proposed de-
scribing transformations of conductivity attributed to a medium, which is
deformed starting from the reference configuration [374]. Motivated is the
model by two types of possible conductivity changes:

• Conductivity is unchanged and independent of deformation.
• The associated resistor between two arbitrary points remains the same in

reference and deformed configuration.

The first type can be understood as a fluid-like behavior. The second type
represents a behavior as shown by a grid of electrical resistors (Fig. C.1). The
resistor between arbitrary node points is independent of the deformation. Also,
the potential at node points resulting from applied current is independent of
the deformation.

In principal the model of stretch-dependence of electrical conductivities is
based on extracting stretch of regions resulting from an arbitrary deformation.
The extracted stretch is used to transform a conductivity tensor attributed
to the reference configuration. Different weights allow choosing a specific be-
havior of the conductivity.

Two formulations of stretch-dependence of electrical conductivities were
proposed: a general and a restricted formulation. The general formulation is
capable of handling full anisotropic material properties and arbitrary con-
tinuous deformations. The restricted formulation serves primarily for demon-
stration of the method and is only applicable if the deformation gradient is
restricted in such a way, that the decomposition of the deformation gradient
in a rotation and diagonal stretch tensor is possible.
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C.2 General Formulation

Assumption. A conductivity tensor σ is modified by stretch to the conductiv-
ity tensor σs:

σs =
1

detW
WσW T

with the second order weighting tensor W . The tensor allows the transforma-
tion of the conductivity in such a way, that the upper two cases of conductivity
changes and in between lying cases are selectable by a weighting parameter.

The weighting tensor W is a function of the weighting parameter θ:

W = R(I + θ(U − I))

with the unit tensor I, the right stretch tensor U and rotation tensor R. The
weighting parameter θ is in the range [0, 1]. The tensors U and R are resulting
from a polar decomposition of the deformation gradient F (Sect. 4.2.1):

F = R U

Examples for Weighting Parameter. Two exemplary cases are examined to
illustrate the influence of the weighting parameter θ.

Case 1: a = 0. The influence of stretch is neglected:

W = R

resulting in stretch independence of the conductivity:

σs = RσRT

Case 2: a = 1. The conductivity is weighted by the deformation gradient:

W = RU = F

The conductivity σ is transformed to the conductivity σs by:

σs =
1

detF
FσF T

Proof. Aim of the following derivation is the definition of a transformation rule
for electrical conductivity tensors [387]. In conjunction with Poisson’s equa-
tions for fields of stationary electrical current the transformation rule leads
to potentials functions, which are independent of material deformation. Dif-
ferent domains are distinguished: The domain Ω0 is interpreted as reference.
The domain Ωt is resulting from deformation, i.e. coordinate transformation,
of the reference.

Poisson’s equation can be solved indirectly by minimizing an equivalent
integral Π defined in a domain Ω concerning the unknown potential function
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φ [4]. Commonly, boundary conditions are added to assure uniqueness of the
solution.

The equivalent integral Π0 describes the electrical power in the reference
domain Ω0:

Π0 =
∫

Ω0

1
2
(∇φ0)T σ0(∇φ0) + f0φ0 dΩ0 (C.1)

with the conductivity tensor σ0, the electrical source density current f0 and
the electrical potential function φ0. A Dirichlet condition specifies the values
at some part of the boundary Γ0,D ⊂ Γ0 with the function u0:

φ0(x) = u0(x) for x ∈ Γ0,D

Equivalently, an integral Πt can be constructed in the deformed domain Ωt:

Πt =
∫

Ωt

1
2
(∇φt)T σt(∇φt) + ftφt dΩt

with the conductivity tensor σt, the electrical source density current ft and
the electrical potential function φt. A Dirichlet condition specifies the values
at some part of the boundary Γt,D ⊂ Γt with the function ut:

φt(x) = ut(x) for x ∈ Γt,D

The searched transformation rule for conductivity tensors necessitates
equality of the potential functions at corresponding points:

φ0(0x) = φt(tx)

with the coordinate vectors 0x and tx as defined in Sect. 4.2.1. This equality
is valid also at the boundaries Γ0,D and Γt,D.

The integral Πt can be transformed into domain Ω0:

Πt=
∫

Ω0

(
1
2
(G∇φ)T σt(G∇φ) + ftφ

)
J dΩ0

=
∫

Ω0

(
1
2
∇φT (GT σtG)∇φ + ftφ

)
J dΩ0 (C.2)

with the Jacobian J and the reverse deformation gradient G determined by
the coordinate transformation.

Comparison of equation C.1 and C.2 is applied to derive the transformation
rule for conductivity tensors concerning deformation. The minimization of the
integrals Π0 and Πt concerning φ delivers:

∇ · (σ0∇φ0) = f0

∇ ·
(
(GT σtG)∇φt

)
= ft
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Equal potential functions are resulting from:

σ0 = GT σtG

f0 = ft

delivering a transformation rule:

σt = Fσ0F
T

with the deformation gradient F = G−1.
If the current per reference volume is assumed to be equal in the original

and deformed configuration, the current source densities are determined by:

f0(0x) =
1
J

ft(tx)

Thus, the transformation rule is given by:

σt =
Fσ0F

T

J
(C.3)

Usage of the with equation C.3 transformed conductivity and of the un-
modified conductivity leads to the cases 1 and 2, respectively. Intermediate
behavior can be defined by an using an appropriate weighting function W
instead of the deformation gradient F .

Extension. Anisotropic behavior of the transformation rule can be defined
by substitution of the weighing parameter θ with an appropriate weighting
parameter tensor of higher order, e.g. the second order diagonal tensor Θ:

Θ =




θx 0 0
0 θy 0
0 0 θz





C.3 Restricted Formulation in Material Coordinate System

Extraction of Stretch. The stretch of myofibers in a voxel is determined by
applying the deformation gradient F to the base of the material coordinate
system M :

M ′ = FM

Base vectors of the material coordinate system M are the fiber orientation
Mx, the sheet orientation My, and the sheet normal Mz:

M = (Mx|My|Mz)

The stretch sx, sy, and sz in direction of the fiber, the sheet and the sheet
normal, respectively, are the lengths of the transformed corresponding base
vectors M ′

x, M ′
y, and M ′

z:
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d’
h’

w’

h

w

d
’σσ

Fig. C.2. Cube and deformed cube. The undeformed cube is parameterized by a
conductivity σ, width w, height h, and depth d. The deformed cube’s parameters
are a conductivity σ′, width w′, height h′, and depth d′.

sx =
√

M
′2
x

sy =
√

M
′2
y

sz =
√

M
′2
z

Construction and Scaling of Conductivity Tensor. The conductivity tensor
influenced by stretch in a local coordinate system is determined by:

σs,local =




(( sx

sysz
− 1)θ + 1)σx 0 0

0 (( sy

sxsz
− 1)θ + 1)σy 0

0 0 (( sz

sxsy
− 1)θ + 1)σz





with the conductivity σx in direction of the fiber, σy in direction of the sheet,
and σz in direction of the sheet normal. The weighting parameter θ allows to
select a specific material behavior.

For isovolumetric deformations, sxsysz = 1, the conductivity tensor re-
duces to:

σs,local =




((s2

x − 1)θ + 1)σx 0 0
0 ((s2

y − 1)θ + 1)σy 0
0 0 ((s2

z − 1)θ + 1)σz





Examples for Weighting Parameters. To illustrate the influence of the weight-
ing parameter θ, two cases are exemplary examined. The examples base on a
cube with a conductivity σ (in x-direction), a height h, a width w = h, and a
depth d = h (Fig. C.2). Hereby, the resistor R (in x-direction) of the cube is
determined by

R =
1

hσ

The cube is isovolumetric, transversal isotropic deformed with a stretch s,
which delivers a deformed cube of width w′ = hs, height h′ = h√

s
, and depth

d′ = h√
s
. The conductivity of the deformed cube σ′ is scaled with the weighting

factor θ to
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σ′ = ((s2 − 1)θ + 1)σ

The resistor of the deformed cube R′ is calculated by:

R′ =
s2

hσ′ =
s2

h((s2 − 1)θ + 1)σ

Case 1: θ = 0. The influence of stretch is inhibited:

R′
θ=0 =

s2

hσ

resulting in a quadratic dependency of a corresponding resistor with respect
to the stretch.
Case 2: θ = 1. The corresponding resistor is independent on stretch:

R′
θ=1 =

1
hσ

C.4 Coordinate System Transformation

A polar decomposition of the deformation gradient F delivers the rotation
matrix RF , which is needed in conjunction with the rotation of the material
coordinate system RM to construct a summary rotation matrix R:

R = RMRF

The summary rotation matrix R is applied to transform the conductivity
tensor σs,local from the local coordinate into the global coordinate system
σs,global:

σs,global = Rσs,localR
T
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veränderbare dreidimensionale Aktive Konturen in der medizinischen Bildver-
arbeitung,” in Biomedizinische Technik, Sep. 2000, vol. 45-1, pp. 509–510.

51. J.-O. Lachaud and A. Montanvert, “Deformable meshes with automated topol-
ogy changes for coarse-to-fine 3D surface extraction,” Medical Image Analysis,
vol. 3, no. 2, pp. 187–207, 1999.

52. T. McInerney and D. Terzopoulos, “Medical image segmentation using topolog-
ically adaptable surfaces,” in CVRMed-MRCAS’97. 1996, pp. 23–32, Springer.

53. L. Thomas, “Topologisch veränderbare dreidimensionale Aktive Konturen in
der medizinischen Bildverarbeitung,” Diploma Thesis, Institut für Biomedi-
zinische Technik, Universität Karlsruhe (TH), Mar. 2000.

54. W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3D surface
construction algorithm,” Computer Graphics, vol. 21, no. 4, pp. 163–169, 1987.

55. W. Heiden, T. Goetze, and J. Brickmann, “’Marching-Cube’-Algorithmen zur
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1906.

129. S. J. Crick, J. Wharton, M. N. Sheppard, D. Royston, M. H. Yacoub, R. H. An-
derson, and J. M. Pok, “Innervation of the human cardiac conduction system,”
Circ., vol. 89, no. 4, pp. 1697–1708, 1994.

130. A. D. McCulloch, “Cardiac biomechanics,” in The Biomedical Engineering
Handbook, J. D. Bronzino, Ed., pp. 28–1–28–26. CRC Press, 2 edition, 2000.

131. F. B. Sachse, G. Seemann, and M. B. Mohr, “Multilevel integrative description
of cardiac electro-mechanics,” Medical Image Analysis, 2004, submitted.

132. Institut für Biomedizinische Technik, Universität Karlsruhe, Germany, “MEET
Man project,” . http://www-ibt.etec.uni-karlsruhe.de/MEETMan

133. A. van Doorn, P. H. M. Bovendeerd, K. Nicolay, M. R. Drost, and J. D. Janssen,
“Determination of muscle fibre orientation using diffusion-weighted MRI,” Eu-
ropean J. Morphology, vol. 34, no. 1, pp. 5–10, 1996.

134. E. W. Hsu, A. L. Muzikant, S. A. Matulevicius, R. C. Penland, and C. S. Hen-
riquez, “Magnetic resonance myocardial fiber-orientation mapping with direct
histological correlation,” Am J Physiol., vol. 274, no. 43, pp. H1627–H1634,
1998.

135. D. F. Scollan, A. A. Holmes, R. L. Winslow, and J. Forder, “Histological val-
idation of myocardial microstructure obtained from diffusion tensor magnetic
resonance imaging,” Am J Physiol., vol. 275, no. 44, pp. H2308–H2318, 1998.

136. F. B. Sachse, C. Henriquez, G. Seemann, C. Riedel, C. D. Werner, R. C. Pen-
land, B. Davis, and E. Hsu, “Modeling of fiber orientation in the ventricular
myocardium with MR diffusion imaging,” in Proc. Computers in Cardiology,
Sep. 2001, vol. 28, pp. 617–620.

137. T. G. Reese, V. J. Wedeen, and R. M. Weisskoff, “Measuring diffusion in the
presence of material strain,” J. Magnetic Resonance, vol. 112, pp. 253–258,
1996.



References 307

138. W.-Y. I. Tseng, T. G. Reese, R. M. Weisskoff, and V. J. Wedeen, “Cardiac
diffusion tensor MRI in vivo without strain correction,” J. MRM, vol. 42, pp.
393–403, 1999.

139. W.-Y. I. Tseng, T. G. Reese, R. M. Weisskoff, T. J. Brady, and V. J. Wedeen,
“Myocardial fiber shortening in humans: Initial results of MR imaging,” Radi-
ology, vol. 216, no. 1, pp. 128–139, 2000.

140. D. F. Scollan, A. A. Holmes, J. Zhang, and R. L. Winslow, “Reconstruction
of myocardial architecture at high resolution using diffusion tensor MRI,” in
Proc. 21th Conf. IEEE Eng. in Med. and Biol., 1999, p. 1071.

141. O. Abdallah, C. D. Werner, F. B. Sachse, and O. Dössel, “Zellulärer Au-
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