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Preface 

Neuronal transmission by GABA and glycine has become one of the most 
fascinating areas in neuroscience in recent years. New roles for synaptic 
inhibition have been identified and are increasingly being incorporated into 
functional models of neuronal networks in order to understand complex brain 
functions. Similarly, basic issues of the molecular architecture of inhibitory 
synapses have been addressed by resolving the multiplicity and mode of oper
ation of receptors, transporters, signal transduction mechanisms and synapse 
formation. These developments are helping to shape the strategies for the 
investigation of disease states and for the pharmacological and therapeutic 
intervention in inhibitory processes. 

In the present volume, recognized experts in the field of neuronal trans
mission by GABA and glycine give an appraisal of these recent developments. 
Specific topics include: 

1. The physiology of the GABA and glycine systems. 
2. The structure, pathophysiology and regulation of GABAA receptors. 
3. The pharmacological modulation of GABAA receptors by benzodiazepines, 

steroids, general anaesthetics, alcohols and anticonvulsants. 
4. The structure, signal transduction and pharmacology of GABAB receptors. 
5. The role of GABAc receptors. 
6. The function of GABA transporters. 
7. The structure, diversity and pharmacology of glycine receptors and glycine 

transporters. 
8. The heightened therapeutic potential arising from the new evidence on the 

regulation of inhibitory signal transduction at the molecular, cellular and 
systems level. 

This volume is intended for neuroscientists as well as for pharmacologists, 
psychiatrists, neurologists and medicinal chemists. It aims to serve as a state 
of the art reference on the role of neuronal inhibition in brain function and 
on the therapeutic strategies available for eNS disorders. It may also provide 
an incentive for further research, in particular on the integration of the 
structural and functional aspects of inhibitory transmission. 

Hanns Mohler 
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CHAPTER 1 

Physiology of the GABA and Glycine Systems 

B.E. ALGER and F.E.N. LE BEAU 

A. Introduction 

An explosion of information about the roles of inhibition mediated by GABA 
and glycine has made this area one of the richest and most fascinating in neu
rophysiology. This chapter will survey many themes in synaptic inhibition in 
the vertebrate central nervous system, but will concentrate on developments 
since 1995. Several excellent reviews can be consulted for details of earlier 
work, e.g., see KAlLA 1994; MACDONALD and OLSEN 1994; MODY et al. 1994; 
THOMPSON 1994. We focused on neurophysiological effects and did not attempt 
to cover the literature on exogenously applied modulators or biochemical 
modifiers of synaptic inhibition except occasionally to help illuminate another 
point. We discuss GABAA and GABAB responses mainly, leaving GABAc to 
be discussed in another chapter in this volume. Glycinergic systems are con
sidered throughout, but the bias is still towards GABA. In vitro cellular studies 
have led to major advances and, because the hippocampus and cerebellum are 
most immediately adaptable to in vitro slice preparations, a disproportionate 
percentage of the work has been done on these structures. This is rapidly 
changing, and investigation of other brain areas is widening and deepening our 
knowledge of inhibition in information processing there as well. 

Early work on inhibitory synapses dealt with transmitter identification and 
ionic mechanisms. Beginning about ten years ago, the application of gigaohm
seal recording techniques to slices (BLANTON et al. 1989; EDWARDS et al. 1989) 
stimulated high-resolution studies of ionic currents and the microphysiology of 
synapses. We will discuss a wide, though not exhaustive, range of phenomena to 
demonstrate the variety of functions carried out by GABA and glycine. 
Inhibitory neurotransmitters affect neuronal activity mainly by gating ion 
channels either directly or indirectly through second-messenger systems, 
although "direct" effects on transmitter release processes may also occur (see 
Sect. G.II.2). Much work in the past decade has filled in details of these factors. 
However, some of the most significant advances in the neurophysiology of 
inhibitory systems have come about because of increased understanding of the 
cellular and circuit-level actions of the neurotransmitters on target cells, and of 
regulation of inhibitory systems. Even as the basic issues of receptor subtypes, 
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ionic mechanisms, and second messenger systems are becoming resolved, for 
every new type of excitatory process, function, or interconnection discovered, 
a new role for synaptic inhibition seems to arise. A great deal remains to be 
done before details of inhibitory processes will be fully incorporated into func
tional models of large neuronal ensembles, but much progress has been made, 
and information now being developed should help direct strategies useful for 
pharmacological and therapeutic investigations. 

B. Subtypes of Interneurons 
Although inhibitory principal neurons such as cerebellar Purkinje cells exist, 
inhibitory responses are generally produced by inhibitory interneurons, and 
an accelerating research effort has been directed towards cataloguing 
interneurons and their properties. 

The great majority of interneurons in the brain use GABA as their neuro
transmitter, whereas in the spinal cord and brainstem glycine is the major 
interneuron neurotransmitter. Simple generalities beyond this are difficult to 
make, however. Interneuronal somata tend to be scattered rather than clus
tered. Microelectrode studies conducted by patient experimenters blindly 
moving electrodes through brain slices were informative, but the random dis
tribution and low packing density of many interneuron systems impeded rapid 
progress. Development of optical techniques that permit visualization of cells 
(DoDT and ZIEGLGANSBERGER 1990) and the application of patch-clamp tech
nology to brain slices (BLANTON et al.1989; EDWARDS et al.1989) have acceler
ated the pace, and kinds, of discoveries in the central nervous system but 
investigations of interneurons in particular have benefited. A growing number 
of interneuron classes has been identified based on one or a few criteria. A thor
ough recent compendium is the review of hippocampal interneurons by FREUND 
and BUZSAKI (1996), and reviews of work in cortex (KAWAGUCHI 1995; 
KAWAGUCHI and KUBOTA 1996; Azouz et al. 1997; GONCHAR and BURKHALTER 
1997; KAWAGUCHI and KUBOTA 1997), cerebellum (VOOGD and GLICKSTEIN 1998), 
and olfactory bulb (DEVRIES and BAYLOR 1993; SHEPHERD 1994) are available. 

Interneurons in hippocampus and cortex are typically non-pyramidal in 
shape and assume a wide variety of morphological forms, with differently 
shaped somata, dendritic branching patterns, spine investment, and axonal 
arborizations. They are distinguished by their voltage- and ligand-gated chan
nels and by their complement of co-localized neuropeptides, calcium-binding 
proteins, afferent input, and target cell populations. Useful schemes for classi
fication of interneurons are often based on localization of their somata, den
drites, and axonal arborizations. The orientation and distribution of their 
dendrites and axons help define the specificity of afferent input and target pop
ulations and function. Interneurons selectively innervate certain target cells at 
well-defined cellular regions, the chandelier cell of neocortex and hippocam
pus (which innervates initial axon segments very specifically) being a good 
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example. In many cortical regions, basket cells form dense networks of termi
nals on somata of principal neurons. The specificity of the chandelier and 
basket cell output suggests that control of somatic integration and axonal 
action potential initiation are their major functions. 

At the other extreme are groups of interneurons that terminate at such a 
distance on the distal dendrites of principal cells that a direct influence on 
action potential threshold is virtually precluded. Their main role may be in 
local dendritic integration. Interneurons contact other interneurons specifi
cally in, e.g., hippocampus (FREUND and BUZSAKI 1996; GULYAS et a1. 1996), 
neocortex (FREUND and MESKENAITE 1992; TAMAS et a1. 1998) and cerebellum 
(VOOGD and GLICKSTEIN 1998). Because of their often broad axonal distribu
tions, interneurons that control other interneurons may affect large popula
tions of principal cells. Networks of interneurons play major roles in the 
generation of rhythms in circuit activity (see Sect. I). However, the details 
of the functional roles of the interneurons cannot be readily inferred even in 
cases in which generalizations such as these are possible. Even in the hip
pocampus, apart from the classification of isolated interneuronal properties 
and a developing nomenclature for different types of interneurons, precisely 
defined, non-overlapping classes of interneurons have not yet been identified. 
A vivid illustration of the difficulties in classification comes from a study of 
interneurons in the hippocampal CAl region (PARRA et a1. 1998). Sixteen mor
phological and 28 physiological and pharmacological phenotypes were distin
guished. However, clustering of morphological and physiological properties 
did not occur. If an interneuron "class" was defined narrowly as consisting of 
only those cells in which all properties were held in common, the 26 cells com
pletely characterized by all criteria implied the existence of at least 26 classes. 
Twenty-six additional, incompletely characterized cells suggested the existence 
of a total of 52 classes, with the number probably increasing as more proper
ties were examined. The authors concluded that each hippocampal interneu
ron might be unique, i.e., classification is not possible. Apparently the idea that 
there are rigidly definable classes of interneurons subserving specified func
tions must be abandoned, at least for the cortex and hippocampus. This is not 
to say that the concept is useless, however, as classes of interneurons may still 
be defined dynamically according to their participation in various states of 
brain activity, and each cell may be part of many classes. The groupings could 
change as a result of physiological and morphological plasticity. 

I. Electropbysiological Properties of Interneurons 

The physiological response properties that distinguish different subtypes of 
interneurons are determined in large part by the different complements of ion 
channels that they possess. There are differences in ligand-gated channels 
(McBAIN and DINGLEDINE 1993; TOTH and McBAIN 1998; KATONA et a1. 1999; 
SVOBODA et a1. 1999) and non-ligand-gated channels (ZHANG and McBAIN 
1995a,b; MACCAFERRI and McBAIN 1996; MARTINA et a1. 1998). 
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1. Voltage-Dependent Channels 

A distinctive electrophysiological signature of many interneurons is a "fast
spiking" firing pattern (SCHWARTZKROIN and MATHERS 1978; MCCORMICK et a1. 
1985; CONNORS and GUTNICK 1990; BUHL et a1. 1994; BUHL et a1. 1996; 
MORIN et a1. 1996; Au et a1. 1998; Au and THOMSON 1998). The action 
potential of these cells is less than one-half the duration at half-maximal ampli
tude of that of principal cells, 0.6ms vs 1.5-2ms, respectively, and is followed 
by a large, sharp, and relatively brief afterhyperpolarization (AHP). See 
Fig. 1 for examples. High input resistance and an absence of a slow, Ca2+
dependent K+ conductance permit these interneurons to fire at high sponta
neous firing rates and to discharge repetitively, without accommodating, when 
depolarized. Cells with these properties can be identified with near certainty 
as interneurons. However, because many interneurons do not show these prop
erties, a converse argument cannot be made. Another common firing pattern 
found in interneurons of stratum lacunosum mole cui are in the hippocampus 
(Au et a1. 1998) and neocortex (KAWAGUCHI and KUBOTA 1997; XIANG et a1. 
1998) is the burst-firing mode indicative of action potential initiation by a low
threshold Ca2+ spike. 

Differences in Na+ channel properties contribute to the distinctions 
between principal cell and fast-spiking interneuron action potentials (MARTINA 
and JONAS 1997). Na+ currents recorded in nucleated patches from identified 
hippocampal-slice interneurons have faster deactivation kinetics and differ
ences in voltage dependence of inactivation when compared to those in pyra
midal cells. The molecular bases of the differences in current were not clear, 
although there is a precedent for differences in kinetic properties among Na+ 
channels with different subunit composition in other systems, among other 
possibilities. Nevertheless, different Na+ channel gating could contribute sig
nificantly to the fast-spiking pattern of interneuronal firing. Interneurons 
possess an array of high-voltage-activated Ca2+ currents, which resemble those 
of pyramidal cells (LAMBERT and WILSON 1996). 

Strides towards the identification of the ion channel complement of 
interneurons are being made with the combination of single-cell RT-PCR tech
niques and electrophysiological analysis. Application of these methods has 
revealed that the fast-spiking properties of basket cells in the dentate gyrus 
are probably explained in large part by enhanced expression of mRNA for the 
Kv3.1/Kv3.2, vs Kv4.2/Kv4.3, subunits (WEISER et a1. 1995; Du et a1. 1996). The 
former are expressed in almost all interneurons, yet in only a small fraction of 
the regularly spiking CAl pyramidal cells (MARTINA et a1. 1998). Conversely, 
whereas the great majority of pyramidal cells express Kv4.2 and Kv4.3, only 
about half of the basket cells do. The K v3 channels are activated at very depo
larized membrane potentials and hence do not affect action potential initia
tion, although they do affect spike firing. By rapidly repolarizing the 
membrane, these channels contribute to very brief action potentials and large, 
fast AHPs. The A-type K channels constituted from Kv4 subunits regulate 
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Fig.IA-F. Membrane and firing properties of interneurons (INT: A, C and E) and 
pyramidal cells (PC: B, D, and F). A,B Single action potentials elicited in an interneu
ron in L-M (A) and a pyramidal cell (B). The action potential duration (measured at 
the base) was shorter in the interneuron. Both fast -duration afterhyperpolarizations 
(fAHPs) (i) and medium-duration afterhyperpolarizations (mAHPs) (it) were larger 
in amplitude in interneurons. The membrane potential was -52 and -45mV in A and 
B, respectively. C,D Responses to current injection. A depolarizing current pulse 
elicited a regular train of action potentials in interneurons (C). Burst firing followed 
by a period of accommodation was evoked in the pyramidal cell (D). In both cell types, 
during large-amplitude hyperpolarizing pulses membrane potential reached an initial 
peak value (0), which was followed by a sag to a steady level (.). Resting membrane 
potential was more depolarized than usual in these 2 cells. E,F Graph of membrane 
potential changes, at the peak (0; V max) and at the end of the pulse (.; Vend)' Vs current 
injected, with their respective linear regression, for the cells shown in C and D. In all 
cell types, with large current injection membrane responses were clearly smaller at the 
end of the pulse than at the peak. Cell input resistance was obtained from the slope of 
the regression lines, at the peak, and at the end of the pulse. In both interneurons and 
pyramidal cells there was a significant reduction in input resistance at the end of the 
pulse. (Reprinted from MORIN et al. 1996, with permission) 
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spike firing in pyramidal cells at a slower frequency by delaying spike onset. 
Thus, the higher firing frequencies common in interneurons would be favored 
by the absence of K v4. 

The Kv3 subunits do not appear to be expressed in the oriens-alveus (0-
A) interneurons, which, nevertheless, also have faster spiking properties than 
pyramidal cells. In the O-A interneurons of CAl, Ca2+-dependent K+ conduc
tances, consisting of both iberiotoxin- and apamin-sensitive components, 
underlie the fast and slow AHP components (ZHANG and McBAIN 1995a). By 
activating these channels Ca2+ influx, which increases during periods of high 
activity, may limit the output of the interneurons and, by doing so, increase the 
excitation of the pyramidal cells. In the O-A cells the prominent Ca2+
dependent conductances repolarize the interneuronal action potentials and 
regulate the inter-spike interval. These contrasting results emphasize that 
similar physiological characteristics can result from different underlying ionic 
mechanisms. 

The hyperpolarization-activated, anomalous rectifier current, Ih, confers 
pacemaker properties on the O-A interneurons of CAl MACCAFERRI and 
McBAIN (1996) found that the specific Ih antagonist, ZD7288, attenuated the 
spontaneous firing frequency by increasing the intraspike voltage trajectory, 
while having minimal effects on the interneuronal action potential properties. 
Because the action potential waveform was not altered, a decrease in Ih would 
not lead to changes in the amount of GABA release per action potential, but 
rather to changes in the neuronal firing frequency. Ih could be increased by 
norepinephrine, which then increased the interneuronal firing frequency. 

2. Ligand-Gated Channels 

Differences between interneurons produced by differences in ligand-gated 
channels are exemplified by the glutamate receptors. The excitatory postsy
naptic potentials (EPSPs) in interneurons have a markedly faster time course 
than the EPSPs in principal cells in hippocampus (MILES 1990a) or neocortex 
(THOMSON et al. 1993). Absence of NMDA receptors (at some interneuron 
synapses), precise timing of glutamate release, and rapid deactivation kinetics 
of the interneuronal AMPA receptors contribute to the brevity of the 
interneuron EPSPs (HESTRIN 1993; GEIGER et al. 1997). Because the duration 
of a synaptic potential determines the time course of temporal summation pos
sible for that potential, it appears that interneurons may act as coincidence 
detectors, requiring a number of precisely timed excitatory inputs for their 
activation. However, this interpretation may require modification for some 
interneurons having kainate-receptor-dependent EPSPs (COSSART et al. 1998; 
FRERKING et al. 1998). An unusual feature of the kainate EPSP is its very slow 
time course, lasting over lOOms. Temporal summation of kainate-mediated 
EPSPs is quite marked. It is possible that a given cell could act as a coinci
dence detector when fast, AMPA-only synapses are activated and as integra
tors when kainate receptors are also activated. In any case, the presence of 



Physiology of the GABA and Glycine Systems 9 

slow kainate responses suggests that precise coincidence of multiple EPSPs is 
not always a requirement for activation of interneurons. Furthermore, in some 
cases both NMDA and non-NMDA components of the EPSPs are present on 
interneurons (MORIN et al. 1996), providing additional scope for regulation. 

A given pyramidal cell often makes only a single synapse with an inter
neuron (GULYAS et al. 1993). The distribution of single-pyramidal-cell-to
interneuron EPSPs tends to be broad in hippocampus (MILES 1990a; Au et 
al.1998; Au and THOMSON 1998) and neocortex (THOMSON et al.1993), showing 
frequent failures of transmission, and yet very large individual EPSPs as well. 
The EPSP distribution in pyramidal cells tends to be more uniform, with both 
fewer failures and larger events. Pronounced paired-pulse facilitation occurs 
at the excitatory synapses onto some interneurons, larger than that seen at 
pyramidal-cell-pyramidal-cell contacts. The reasons for these differences were 
not clear, but a model involving a greater probability of branch-point failure 
in the axonal projections to the interneurons could explain the data (Au 
et al. 1998). In other cases (basket and bistratified cells) the pyramidal
cell-interneuron EPSPs became depressed with repetitive stimulation. A 
presynaptic locus for EPSP plasticity was identified in all cases. 

In contrast to this picture, paired recordings of synaptically coupled prin
cipal cells and GABAergic interneurons reveal that the interneuron-to
pyramidal-cell transmission proceeds with few failures (MILES and WONG 1984; 
MILES 1990b), probably because the interneurons tend to make multiple 
synapses on a principal cell (MILES and WONG 1984; BURL et al. 1994; TAMAS 
et al.1997b) and because the probability that a given interneuron terminal will 
trigger transmitter release is relatively high (MILES 1990b; TAMAS et al. 1997b). 

Interneurons receive inputs from a variety of pathways; however, recep
tors with very different properties can be selectively targeted by a single post
synaptic cell to synapses made by some pathways and not those made by 
others (TOTH and McBAIN 1998). Interneurons express a different set of 
AMP A-type glutamate receptors than do principal cells (RACCA et al. 1996). 
Synaptic innervation of certain interneurons is effected by Ca2+-permeable 
AMP A receptors (cf. references in TOTH and McBAIN 1998). In some CAl 
interneurons, kainate causes an essentially linear conductance increase and, in 
others, an inwardly rectifying conductance (McBAIN and DINGLEDINE 1993). 
Inward rectification suggests that the glutamate receptors on these cells lack 
the GluR2(R) subunit. Unlike most AMPA receptors, those lacking a GluR2 
subunit are highly Ca2+ permeable, and show a strong inward rectification. The 
inward rectification is conferred by the susceptibility of the channels to 
voltage-dependent block by intracellular polyamines. Principally found in 
stratum lucidum, these calretinin-containing interneurons receive input from 
the mossy fibers. Using the selective polyamine neurotoxin, philanthotoxin-
433, TOTH and McBAIN (1998) showed that certain s. lucidum interneurons 
expressed inwardly rectifying Ca2+-permeable glutamate receptors at about 
half of all mossy fiber synapses, but only Ca2+-impermeable, largely non
rectifying, receptors at recurrent collateral synapses. Analogously, Purkinje 
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cells express the 82 glutamate receptor subunit at parallel fiber, but not at 
climbing fiber, synapses. As discussed below (see Sect. H.IV) , the presence of 
Ca2+-permeable AMPA receptors at synapses of amygdalar interneurons 
enables them to express an NMDA independent form of LTP. High Ca2+ per
meability, however, is also associated with the great vulnerability of cells pos
sessing these receptors to cell death following ischemia or seizures (references 
in TOTH and McBAIN 1998). Selective receptor expression at certain synapses 
is a developing theme that is likely to enrich further the computational com
plexity of interneuronal networks. 

c. Physiological Responses Mediated by 
Inhibitory Neurotransmitters 

As the number and sophistication of studies of inhibitory systems have 
increased, so has appreciation of the subtlety and complexity of the roles of 
inhibitory neurotransmitters. Earlier views of the function of inhibition in neu
ronal integration emphasized: (1) its ability to sculpt the constant barrage of 
amorphous excitatory input, and thus give form to the state of excitability of 
the cell, (2) the importance of disinhibition as a regulatory principle that could 
confer great flexibility on the actual contribution of the normally inhibitory 
inputs to the firing pattern of cells, (3) the ability of inhibition to "gate" the 
throughput of excitatory influences in a spatially and temporally specific way 
(see ALGER 1991, for review). In the following sections we review some of the 
major aspects of inhibitory transmission that are undergoing advances and 
stimulating revisions of traditional views of inhibition. Table 1 gives a brief list 
of neuronal functions thought to be subserved by the GABA and glycine 
systems. 

I. Membrane Effects of GABA and Glycine 

GABA and glycine receptors are both members of the same ligand-gated 
channel superfamily (Jo and SCHLICHTER 1999) and therefore share many sim
ilarities. Study of large hyperpolarizing inhibitory postsynaptic potentials 
(IPSPs) evoked by afferent stimulation of GABAA or glycine revealed that 
prevention of action potential firing was an important role of inhibition 
(ALLEN et al. 1977). Prominent fast inhibitory postsynaptic currents (IPSCs) 
are the result of opening channels permeable mainly to Cl- ions (although, 
as discussed below, also to HC03-). The predominance of Cl- conductance, 
together with the concentration gradient for Cl-, which in adult cells is directed 
from the outside to the inside of the cell, means that usually GABAAergic and 
glycinergic transmission increases the postsynaptic membrane conductance 
and hyperpolarizes the cell. These two factors constitute two different forms 
of inhibitory influences: the former by moving the membrane potential away 
from the range of activation of voltage-dependent currents, e.g., Na+ or NMDA 
currents, the latter by decreasing the input resistance of the cell and thereby 
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Table 1. Some neuronal functions of GABA and glycine. Even cursory consideration 
of the issue leads to a list of functions for GABA and glycine such as shown. Divided 
somewhat arbitrarily into groups of various neurotransmitter actions, this table, by no 
means complete, nevertheless suggests the broad diversity of sometimes contradictory 
functions served by GABA and glycine. Considerations such as cellular location, devel
opmental state, frequency of and history of use and placement in a given neuronal 
circuit all influence their roles 

Membrane effects 
a. Ionotropic (GABAA' GABAc and glycine) Increase Cl- conductance 

(depolarizing in juveniles, hyperpolarizing, or depolarizing in adults) 
b. Ionotropic (GABAA and glycine) Increase HC03- conductance (depolarizing) 
c. Metabotropic (G-protein dependent; GABAB) Inhibit voltage dependent 

Ca2+ conductance, enhance K+ conductance, directly inhibit release mechanism 

Effects on cellular excitability 
a. Inhibit activation of voltage-dependent Na+ and Ca2+ conductance in soma and 

dendrites (prevent action potential initiation, alter spontaneous firing pattern) 
b. Inhibit NMDA responses (reduce NMDAR-dependent Ca2+ influx and 

downstream sequelae) 
c. Deinactivate K+ currents (inhibit or delay subsequent action potential firing) 
d. Regulate synaptic integration by altering passive membrane properties (reduce 

summation) 
e. Increase excitability through membrane depolarization (Ct-dependent response 

in juveniles; HC03- response in adults) 

Effects on signaling 
a. Inhibit neurotransmitter release by blocking action potential conduction in 

preterminal axon 
b. Inhibit neurotransmitter release through metabotropic receptors on terminal 

(GABAB) 

c. Preserve relative strength of release during a train of stimuli by reducing 
probability of release 

d. Retard development of long-term changes in synaptic strength (e.g., LTP, LTD) 
e. Promote development of LTD 

Circuit level effects 
a. Promote synchronous firing by removing inward current inactivation (rebound 

firing) 
b. Reduce afferent stimulation through feedforward inhibition 
c. Promote rhythmic firing through depolarizing membrane effects 
d. Regulate network switching by differential control of afferent inputs 
e. Reorganize sensory and motor systems 
f. Excite targets through disinhibition (inhibition of inhibition) 
g. Disrupt synchrony through inhibition of recurrent excitatory circuits 

decreasing the voltage response caused by other currents. This shunting inhi
bition is always effective, but is dominant when the transmitter equilibrium 
potential is close to the resting potential of the cell and hence the transmitter 
cannot affect the membrane potential much. Contrary to initial impressions 
based on observations of large hyperpolarizing IPSPs, which emphasized the 
membrane potential change, recognition of the importance of the membrane 
potential shunt has increased, particularly because of persistent uncertainty 
about whether or not the IPSP in the unimpaled cell actually alters the mem-
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brane potential at rest (see Sect. CIlI). The increase in Cl- conductance caused 
by activation of GABAAergic and glycinergic synapses located on the somata 
of principal cells is ideally suited to control the membrane potential at the 
axonal trigger zone. 

A very slow GABAA IPSC has been detected in pyramidal cells in the 
hippocampus (PEARCE 1993; PEARCE et al. 1995) and piriform cortex (KAPUR 
et al. 1997b). By virtue of its long time course and dendritic site of generation, 
this IPSC may be especially important in regulating the slow EPSP mediated 
by activation of the NMDA receptor, and phenomena, e.g., LTP, controlled by 
this receptor (KAPUR et al. 1997b). The slow IPSC is subject to regulation by 
GABAB auto inhibition (see Sect. G.Il), whereas the fast IPSC is not (PEARCE 
et al. 1995; KAPUR et al. 1997b). The slow IPSC is often difficult to detect in 
somatic IPSC recordings in hippocampal CAl pyramidal cells, although its 
time course reflects a slow conductance change and not simply cable filtering. 
The slow IPSC could be mediated by a GABAA receptor with a subunit 
composition different from that which mediates somatic IPSCs. In support of 
this, the fast component of the IPSC is blocked by furosemide, whereas the 
slow component is not. 

GABA, but not glycine, also activates a K+ conductance by acting on a G
protein-coupled GABAB receptor, as discussed below (see Sect. G.Il). 

II. Depolarizing GABA and Glycine Responses 

While GABA and glycine are the main inhibitory neurotransmitters in the 
adult mammalian central nervous system, activation of their receptors does 
not always lead to a membrane hyperpolarization and neuronal inhibition. In 
the early development of the brain, GABA acts as the main excitatory trans
mitter (GAIARSA et al. 1995; BEN-ARI et al. 1997), and in adult neurons activa
tion of GABAA receptors can depolarize as well as hyperpolarize cells (e.g., 
ANDERSEN et al. 1978; ALGER and NICOLL 1979, 1982a,b; WONG and WATKINS 
1982; PERREAULT and AVOLI 1988). Glycine receptors are also transiently 
expressed in higher brain regions, including the hippocampus, during the first 
two weeks of postnatal life, and activation of glycine receptors induces a depo
larizing chloride-dependent response (ITO and CHERUBINI 1991). 

1. Depolarizing GABA and Glycine Responses in Young Tissue 

During the first postnatal week, spontaneous, bicuculline-sensitive, giant depo
larizing potentials (GDPs) that trigger action potentials predominate in hip
pocampal CA3 cells (GAIARSA et al. 1995). This excitatory effect of GABA is 
a general feature of developing CNS neurons. In immature neurons the Cl
gradient is outward, rather than inward, as it is in mature neurons. When the 
CI- channels open, CI- ions leave the cell, thus depolarizing it. In slices, GDPs 
elicit synchronous neuronal activity that is, via activation of voltage-gated Ca2+ 
channels, associated with synchronous Ca2+ oscillations (LEINEKUGEL et al. 
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1995). In the developing CNS these Ca2+ oscillations can trigger intracellular 
signaling cascades and appear to be important for the growth of pyramidal 
cells and the formation of synaptic connections. Depolarizing GABAA 

responses can even initiate NMDA-dependent LTP (BEN-ARI et al.1997). Sim
ilarly, in developing brain stem and spinal cord, glycine acts as an excitatory 
transmitter (KIRSCH and BETZ 1998). 

The switch from a depolarizing to a hyperpolarizing GABAA response in 
the developing rat hippocampus is correlated with the induction of the expres
sion of a specific K+/Cl- co-transporter, KCC2 (RIVERA et al. 1999). These 
results support the prevailing view that fast hyperpolarizing GABA inhibition 
is dependent on an efficient mechanism for the extrusion of Cl- (ZHANG et al. 
1991; THOMPSON 1994). 

2. Depolarizing GABAA Responses in Adult Tissue 

In adult neurons exogenous GABA can elicit a depolarization when applied 
to dendrites. However, synaptically released GABA can also depolarize adult 
cells under certain conditions: for instance, when pentobarbital (which pro
longs GABA responses) (ALGER and NICOLL 1979, 1982a), the K channel 
blocker 4-aminopyridine (4-AP) (PERREAULT and AVOLI 1988), or zinc (XIE and 
SMART 1991) is present. Depolarizing GABAA responses are also caused by 
tetanic stimulation (WONG and WATKINS 1982; PERREAULT and AVOLI 1988) or 
brief high-frequency stimulation (GROVER et al. 1993) or by single stimuli 
following block of GABAB receptors (THALMANN 1988). 

The early observations showed that even dendritic depolarizing GABA 
responses (ALGER and NICOLL 1979, 1982a; WONG and WATKINS 1982; STALEY 
and MODY 1992) had an inhibitory function in adults. Single depolarizing 
responses were not large enough to reach threshold for action potential gen
eration and, on the contrary, prevented antidromic action potential invasion 
of the soma. The associated conductance increase shunts more intense depo
larizations and prevents firing (STALEY and MODY 1992). However, with intense 
repetitive stimulation GABAA de polarizations can be very large and are 
capable of activating NMDA responses and eliciting action potentials (STALEY 
et al. 1995). 

Demonstrations of GABAA -initiated hyperpolarizations superimposed on 
GABAA depolarizations in adult neurons showed that a reversed Cl- gradient 
cannot account for the depolarizing GABAA response (ALGER and NICOLL 
1979, 1982a,b). Noise analysis argued that conductance increases to two ionic 
species were necessary to account for the GABAA response (DJORUP et al. 
1981). These observations implied the participation of some other ion besides 
Cl- in the depolarizing response in adult cells. Bicarbonate ions (HC03-) per
meate the GABAA and glycine channels about one-fifth as efficiently as do 
Cl- ions (BORMANN et al. 1987). The HC03- concentration is a function of pH. 
At normal pH inside and outside the cell there is a strong outward driving 
force on HC03-, and an inward driving force on CI-. The reversal potential for 
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GABAA current is at a balance point between these opposing forces on Cl
and HC03-, and is normally tilted towards the Cl- equilibrium potential 
because the Cl- permeability of the channel is so much higher than is the 
HC03- permeability. Several hypotheses that incorporate a role for HC03-

ions in the GABAA response have been put forward (KAlLA and VorPIO 1987): 

1. STALEY et al. (1995) propose that both Cl- and HC03- permeate the same 
GABAA channel. Following intense activation of the GABAA channel the 
chloride gradient is less effectively maintained than the HC03- gradient, 
which is preserved by the action of carbonic anhydrase. Accumulation of 
Cl- within the cell thus leads to a depolarizing shift in the GABAA rever
sal potential towards the HC03- equilibrium potential. The GABAA -

mediated response becomes depolarizing. 
2. PERKINS and WONG (1996) propose that the depolarizing GABA-mediated 

IPSCs induced in hippocampal CA3 pyramidal neurons by 4-AP might be 
mediated by a subtype of GABAA receptor that is preferentially selective 
for HC03-. They detected shifts in the GABAA reversal potential under 
conditions in which Cl- gradient collapse could not occur. 

3. KAlLA et al. (1997) and SMIRNOV et al. (1999) propose a two-stage process. 
Following a high-frequency train, an activity-induced increase in external 
K+ results in an inhibition or reversal of Cl- extrusion from the cell, via the 
K-Cl- co-transporter (THOMPSON et al. 1988) and again a positive shift in 
the GABAA reversal potential (KAlLA 1994). The increased extracellular K+ 
concentration also has a direct depolarizing effect. SMIRNOV et al. (1999) 
have recently found that the depolarizing and hyperpolarizing phase of the 
high-frequency-stimulated biphasic GABAA response can be pharmaco
logically distinguished. Intracellular QX-314 abolishes the depolarization 
without affecting the hyperpolarization, while intracellular F-, and omission 
of added intracellular ATP, has the converse effect. Together with the data 
of PERKINS and WONG (1996), the results of SMIRNOV et al. (1999) argue that 
the simple form of the Cl- accumulation cannot account for the biphasic, 
high-frequency-activated GABAA response. Whether or not separate 
GABAA receptors or some other factors are involved remains to be seen. 
Regardless of the ionic mechanism, it is clear that depolarizing GABAA 

responses are not curiosities, but have physiological effects and perhaps dif
ferent pharmacological properties that will surely be important to under
stand. 

III. Membrane Potential Changes Caused by GABA in 
Unimpaled Cells 

An interesting challenge to conventional interpretations of the polarity of 
GABAA responses has recently arisen. Non-invasive techniques have been 
used to infer the membrane potential changes caused by GABAA in unim
paled cells by using cell-attached patch recordings. When the pipette K+ con-
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centration is roughly equal to the intracellular K+ concentration, the current 
through single K+ channels will reverse when the transpatch potential is 
-DmY. Recordings of single-channel currents at various transpatch potentials 
in the presence and absence of GABA agonists implied that indeed GABA 
does depolarize the membranes of pituitary nerve terminal (ZHANG and 
JACKSON 1995) and dentate hilar neurons (SOLTESZ and MODY 1994). 

Reasoning that disturbances caused by invasive electrode techniques 
might so distort cellular properties as to render measurements of the neuronal 
membrane potential, and therefore the direction and degree of membrane 
potential change caused by neurotransmitters, incorrect, VERHEUGEN et al. 
(1999) extended this method to estimate membrane potentials in unimpaled 
cells. Because the membrane potential of the cell is not affected by the cell
attached patch, the transpatch potential will be DmV when the command 
potential of the patch pipette is equal to the membrane potential of the cell. 
Brief voltage ramps delivered to the pipette elicited voltage-dependent K 
current through the K channels in the membrane patch. The reversal poten
tial of the K current through the patch was then equal (with only slight error) 
to the membrane potential of the cell. Subsequent break-in to the whole-cell 
mode permitted a comparison between results obtained with the two tech
niques. The direct result was the finding of a systematic error in membrane 
potentials measured with whole-cell, as against cell-attached, methods, with 
the whole-cell values being about 15 m V more depolarized than the cell
attached values. With this non-invasive technique VERHEUGEN et al. (1999) 
found that activation of GABAA receptors by muscimol produced an equiva
lent depolarization in younger and older cells, suggesting the Cl- gradient 
might be the same at both ages, contrary to the usual interpretation based on 
intracellular experiments. While the possibility of a systematic error in mea
surement of membrane potential is worrisome, it is not yet clear if errors of 
this magnitude are generally a problem. The non-invasive studies were per
formed at cooler temperatures that tend to enhance the magnitude of depo
larizing GABAA responses, which could have contributed to the absence of a 
clear GABAA-induced hyperpolarization. Moreover, the temporal resolution 
of the non-invasive method (-1 s) would be insufficient to detect an initial tran
sient GABAA-induced hyperpolarization. Intracellular measurements provide 
estimates of resting potentials that are not substantially different from those 
often obtained with the non-invasive technique. Hence, although the issue 
cannot be regarded as resolved, it is important, and the non-invasive technique 
will be a useful addition to the electrophysiologist's arsenal. 

D. Miniature Inhibitory Postsynaptic Currents 

I. Saturation of Receptor Patches by Quantal Release 

Evoked IPSCs, or action-potential-dependent spontaneous IPSPs, generally 
represent the synchronous occurrence of many quantal events, and accord-
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ingly are influenced by factors that affect interneuronal action potential firing. 
However, effects of drugs, or of biochemical and molecular processes, are often 
exerted at the quantal level. A neurophysiological question with important 
pharmacological implications is whether or not quantal release of neuro
transmitter is sufficient to saturate the receptors at synaptic receptor patches. 
If receptors in a patch are not saturated by a quantum of transmitter, then 
changes in the amount of neurotransmitter released by a presynaptic 
action potential could be functionally important. If the receptor patches 
are saturated, then multiquantal release (see below) or drugs, for example, 
benzodiazepines that affect receptor binding affinity, may be limited to 
influencing duration, but not peak amplitude, of synaptic responses (MODY et 
al. 1994). Recent work suggests that this issue may not have a simple resolu
tion: it may be necessary to determine for individual classes of inhibitory 
synapses whether or not the receptor patches are saturated by quantal 
amounts of transmitter. 

The amplitude distribution of quantal release at central synapses rarely 
has the Gaussian form that the distribution of MEPP amplitudes at the neu
romuscular junction has. The distribution of miniature IPSCs (mIPSCs) is typ
ically skewed positively towards large quantal amplitudes (COLLINGRIDGE et 
al. 1984; EDWARDS et al. 1990; ROPERT et al. 1990; OTIS et al. 1991, 1994; DE 
KONINCK and MODY 1994; PITLER and ALGER 1994a; THOMPSON et al. 1997). For 
example, the mean GABAA mIPSC in CAl cells is 20-40pA, but mIPSCs as 
large as 100pA occur. In cerebellar Purkinje cells the skew is more pro
nounced, and TTX-insensitive mIPSCs several hundred pA in amplitude are 
common (LLANO et al. 1991; LLANO and GERSCHENFELD 1993; AUGER and 
MARTY 1997; NUSSER et al. 1997). The potential neurophysiological importance 
of spontaneous quantal release necessitates understanding the determinants 
of quantal size. 

At the neuromuscular junction, a quantum of ACh falls on a broad field 
of ACh receptors. As the vesicular ACh content is relatively constant, the 
quantal size is determined by the number of receptors activated, usually -2500 
for a MEPP. At GABAA synapses on CAl (EDWARDS et al. 1990; ROPERT et al. 
1990) and neocortical pyramidal cells (GALARRETA and HESTRIN 1997), esti
mates based on the mean conductances of mIPSCs and single GABAA chan
nels are that opening of 10-30 channels produces the mIPSC. Variability in 
quantal size is small, suggesting that the receptors in the postsynaptic recep
tor patch are saturated by a quantum of GABA (EDWARDS et al. 1990). Ben
zodiazepines that enhance GABA binding to GABAA receptors should 
increase the numbers of channels that are opened by sub saturating levels of 
GABA, but benzodiazepines did not increase mIPSC amplitudes in CAl (DE 
KONINCK and MODY 1994), which also argued that synaptic receptor patches 
were saturated by a quantum of GABA. 

Given that small numbers of GABAA channels can account for an mIPSC 
and that the receptors in a patch are saturated by the contents of a single 
vesicle, then the observed variability in quantal size would probably not be 
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due to variable amounts of GABA packaged in the vesicles, but to variability 
in the numbers of receptors in a patch. This issue was addressed in cerebellar 
stellate cells in a technical tour-de-force that combined patch-clamp mea
surements of mIPSCs with quantitative immunogold localization of GABAA 
receptors to receptor patches identified with electron microscopy (NUSSER et 
a1.1997). It was found that variation in quantal size was mirrored by variation 
in numbers of synaptic receptors per patch. Receptor density across patches 
was uniform and receptor subtype homogeneous. Larger patches were associ
ated with more GABA receptors and larger mIPSCs. The receptors in smaller 
patches, i.e., those with <80 channels, were evidently saturated by the GABA 
contained in a single vesicle, because a benzodiazepine did not affect the 
amplitudes of small responses. It did, however, enhance the amplitudes of large 
mIPSCs, suggesting that in the larger patches the receptors are not saturated. 
One limitation of this study was its inability to associate individual mIPSCs 
with the synapses from which they originated; comparisons of mIPSC ampli
tudes and receptor patch size had to be made statistically. 

A similar conclusion follows from studies on a glycinergic synapse in rat 
brainstem (LIM et a1. 1999). Measurements of a glycine synaptic patch area 
with immunolabeling of gephyrin, a protein required for clustering of glycine 
receptors (FROEHNER 1998), revealed a large variability in patch area. Both 
patch and mIPSC sizes varied across cells and there was a good correlation 
between them, suggesting that much of the variability in glycinergic mIPSC 
sizes can be accounted for postsynaptically. Glycinergic mIPSC amplitudes 
increased from neonatal to juvenile ages, yet changes in single-channel 
properties appeared to play no role in the increase (SINGER and BERGER 
1999). Again increases in number of receptors in a patch appeared to be 
responsible. 

A different approach to the question used a-latrotoxin, a spider toxin, 
which induces bursts of mIPSCs (AUGER and MARTY 1997). Essentially all of 
the mIPSCs in a single a-latrotoxin-induced burst of mIPSCs at cerebellar 
synapses originate from a single release site, permitting calculations to be 
made of mean receptor occupancy, numbers of receptors in a patch, and 
single-channel conductances. At single sites the mIPSC distributions were 
more symmetrical, and narrower, than typical distributions of mEPSCs 
recorded from cell somata, which represent activity from diverse synapses 
distributed across the cell (but see TANG et a1. 1994). In partial agreement 
with the conclusions of the Nusser study, a-latrotoxin-induced bursts revealed 
a range in numbers of receptors, and a correspondingly wide range in mIPSC 
sizes, across patches. There was also a three- to fourfold range in single
GABAA-channel conductance; hence, significant between-site variability in 
single-channel properties may contribute to broad mIPSC distributions. In 
general, quantal variation in cerebellum seemed to be satisfactorily accounted 
for by the variation in the properties of receptor patches. Thus, in both hip
pocampus and cerebellum postsynaptic factors at inhibitory synapses deter
mined quantal size. 
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In cultures of hippocampal neurons (VAUTRIN et al. 1994) and of retinal 
amacrine cells (FRERKING et al. 1995), a single presynaptic terminal can make 
two synapses, one on a postsynaptic cell and an "autapse" on the cell from 
which the terminal originated, the entire arrangement being called a 
"dinapse". Simultaneous recordings from two cells involved in a din apse 
revealed simultaneous mIPSCs in both cells, implying that a single quantum 
of neurotransmitter released from the terminal affected both patches. In a 
study on amacrine cells the amplitudes of the simultaneous mIPSCs were 
highly correlated, and a benzodiazepine enhanced their amplitudes, implying 
the receptors in the two patches were not saturated. Thus, a presynaptic factor, 
variation in the amount of GABA released from different vesicles (reflecting 
variation in vesicle size, as the vesicular GABA concentration is thought to 
be constant) accounted for the variance in mIPSC amplitudes in amacrine 
cells. 

In recording from dissociated tissue-cultured cells, a single nerve terminal 
can be trapped beneath the tip of a patch pipette sealed onto the cell mem
brane (LEWIS and FABER 1996a; FORTI et al. 1997). The spontaneous synaptic 
currents detected in the cell-attached position must originate from the trapped 
terminal. In rat spinal cord and medullary neurons such recordings reveal that 
the same variability and skewness that characterize mIPSCs in the whole-cell 
recording mode are also properties of the single-terminal mIPSCs (LEWIS and 
FABER 1996b). Clearly this within-site variability cannot be explained by the 
postsynaptic, between-site factors revealed by NUSSER et al. (1997), and vari
ations in amount of transmitter released, or in the state of postsynaptic recep
tors, must be responsible. The same conclusions have been reached in the study 
of glutamatergic transmission for synapses in tissue-cultured hippocampal 
neurons (BEKKERS et al. 1990; FORTI et al. 1997; Lm et al. 1999). Moreover, an 
important caveat to the use of the benzodiazepine, zolpidem, in these studies 
has arisen recently. PERRAIS and ROPERT (1999) found that the mean amplitude 
of mIPSCs recorded in layer V cells of rat visual cortex in vitro is increased 
when the experiments are done at room temperature. This effect, which was 
attributed to the activation of more synaptic receptors because of the increase 
in the GABA binding affinity caused by zolpidem, implied that GABAA recep
tors were not saturated by single GABA quanta. However, when the experi
ment was performed at a warmer temperature (35°C) zolpidem did not 
increase the mIPSC amplitude, suggesting that this drug does not accurately 
reveal the degree of receptor occupancy at the warmer temperatures some
times used in these studies. 

Therefore, the question of whether or not receptor patches are saturated 
by a quantum of transmitter seems to have no simple answer; high-resolution, 
well-controlled studies arrive at opposing conclusions. The actual significance 
of these differences is not yet understood; however, when a drug acting at 
GABAA receptors is globally applied to a heterogeneous array of synapses, its 
effects on inhibitory synaptic responses could vary across different synapses 
even if the receptor SUbtype is exactly the same at each synapse. 
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II. Co-Release of GABA and Other Transmitters. 

It is now well established that in different sets of interneurons, GABA colo
calizes with a variety of neuropeptides (FREUND and BUZSAKI 1996), including 
somatostatin, neuropeptide Y, cholecystokinin, and vasoactive intestinal 
peptide. Some of these peptides do affect GABA responses and modulate 
GABA actions physiologically, but there is much work to do before the details 
of the GABA-neuropeptide interactions become clear. 

1. GABA and Glycine 

An intriguing aspect of the study of quantal responses at spinal cord and 
medullary neurons (LEWIS and FABER 1996a,b) was that, even at single 
synapses, the mIPSCs were sensitive to both strychnine and bicuculline at low 
concentrations, implying that glycine and GABA could be released by a given 
terminal and that receptors for both were present in the same patch. 
GABAAergic and glycinergic receptors are colocalized at synaptic contacts in 
the spinal cord, and GABA and glycine can be taken up into the same synap
tic vesicle (d. references in LEWIS and FABER 1996a,b). Definitive evidence that 
both GABA and glycine can be co-released from the same synaptic vesicle 
has now come from a careful pharmacological analysis of mIPSCs in the spinal 
cord (JONAS et al. 1998). Individual quantal responses had, in variable 
proportions, properties of both glycine- and GABAA-mediated responses; 
fast mIPSC rises were blocked by strychnine, slow decays by bicuculline. 
At the low concentrations used, strychnine and bicuculline were confirmed to 
be selective antagonists at glycine and GABA receptors, leading to the con
clusion that both neurotransmitters can be released from the same synaptic 
vesicle. The studies were done on cells isolated from young animals, so it is not 
yet clear if co-transmission of glycine and GABA represents a developmen
tal stage or whether it is also a property of the mature nervous system. An 
open question is also what determines the proportion and variability of the 
glycine vs the GABA components, and both pre- and postsynaptic mechanisms 
are possible. It will be most interesting to learn if these findings represent a 
rare exception to "Dale's Principle" or whether similar co-release of different 
amino acids also occurs at other synapses, and what the physiological signifi
cance of this mode of transmission is. Are the effects of the two transmitters 
simply additive, or do they interact in some way? If co-release of GABA and 
glycine does occur in adults, then drugs acting at one or the other receptor can 
potentially shift the synaptic influence towards one or the other, so answers 
to these questions will be important. 

2. Co-Release of GABA and ATP 

Recordings from synaptically coupled pairs of cultured spinal cord cells 
revealed that about 50% of the presynaptic cells released ATP, and yet all of 
these cells released GABA (Jo and SCHLICHTER 1999), leading to the conclu-
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sion that GABA and ATP are released from the same cells. Various fast neu
rotransmitters are colocalized with neuropeptides, and both peptide and neu
rotransmitter can be released, although often with different stimulation 
regimes. The demonstration of co-release of GABA and glycine from single 
vesicles discussed above showed that simultaneous secretion of two fast neu
rotransmitters could occur. Unlike GABA and glycine, which had similar 
effects on membrane potential, GABA and ATP have opposing effects: 
ATP acts as an excitatory neurotransmitter, while GABA is inhibitory. If 
GABA and ATP are released from the same terminal (not determined), then 
their physiological effects could offset each other's unless special conditions 
of receptor placement, receptor responsiveness, etc., are met. In principle, 
though, it would be possible to change the sign of such a synapse, i.e., from 
inhibition to excitation, by altering the release conditions. 

III. Multiquantal Release 

At many central synapses one active zone is typically found at each presy
naptic nerve terminal, and one quantum of neurotransmitter is generally 
thought to be released by an action potential. Multiquantal release would 
cause variability in mIPSC size, and could prolong mIPSCs by delaying trans
mitter clearance, if postsynaptic receptor patches are not saturated by one 
quantum of transmitter. Multiquantal release (perhaps from several sites at a 
single synapse) has been detected as a change in unitary EPSC size under 
varying conditions of release probability (SILVER 1998), with higher probabil
ity of release favoring multiquantal release. From estimates of open-channel 
probability, receptor occupancy has been calculated at 0.45-0.6 for the AMPA 
responses at uniquantal cerebellar mossy-fiber synapses. Thus, at these 
synapses the postsynaptic receptor patches are not saturated. 

If the receptors in the postsynaptic receptor patch are saturated by the 
contents of one vesicle, then it seems difficult to know if one or more than one 
vesicle is released, as mIPSC size cannot fluctuate; nevertheless, even in this 
case, multiquantal release can be detected. When multiple quanta are released 
into a single synaptic cleft, the concentration of neurotransmitter in the 
cleft will be higher than when a single quantum is released, and therefore 
a low-affinity competitive antagonist will have a diminished effect on the 
postsynaptic responses in instances of multiquantal release. TONG and JAHR 
(1994) demonstrated multiquantal release at glutamatergic synapses with this 
approach. Similarly, multiquantal release has been inferred by the dependence 
of the potency of low-affinity receptor antagonists in blocking EPSCs on the 
probability of transmitter release (SILVER 1998). If one quantum is released 
per terminal, the potency of the antagonist should be independent of proba
bility of release. Thus far multiquantal release at GABAergic or glycinergic 
synapses does not appear to have been detected using this method. 

When Sr2+ is substituted for extracellular Ca2+, the synchronous quantal 
release of transmitter (MILEDI 1966; GODA and STEVENS 1994), including 
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Fig.2A-D. Sr2+ induces asynchronous ~uantal release of GABA. A Traces from left to 
right show the effects of replacing Ca + with Sr2+ on an evoked monosynaptic IPSC 
recorded from a hippocampal CAl pyramidal cell. All experiments were done in APV 
and CNQX to block ionotropic glutamate responses. Notice that, following 10min of 
application of Sr2+, the IPSC is mainly composed of asynchronous events and is reduced 
in amplitude. Full recovery was observed 15min after switching back to Ca2+_ 
containing saline solution. B Left panel shows five consecutive traces of evoked IPSCs 
recorded in the presence of Sr2+. Spontaneous asynchronous events were measured 
within a 400-ms-wide analysis window. Right panel shows six consecutive traces of spon
taneous mIPSCs from the same cell in Sr2+ with 0.5.umol/l TIX. Stimulus artifacts in 
A and B are blanked out for clarity. C Comparison of the amplitude distributions of 
spontaneous IPSCs recorded from a pyramidal neuron in the presence of Sr2+ (232 
events; mean ± S.E.M., -12.7 ± 0.5pA) with the mIPSCs observed over a period of 1 
min in Sr2+ and TTX (233 events; mean ± S.E.M., -12.7 ± 0.5~A). D Summary of the 
average amplitude distributions obtained from five cells in Sr + and in Sr2+ with TIX. 
The distributions of mIPSCs in Sr2+ with and without TTX in C and D are not statisti
cally different from each other (p>0.3 and 0.05, respectively) as determined by the Kol
mogorov-Smirnov (K-S) test. (Reproduced from MORISHITA and ALGER 1997, with 
permission) 

GABA (MORISHITA and ALGER 1997; BEHRENDS and TEN BRUGGENCATE 1998), 
is disrupted, e.g., Fig. 2. Action potentials still induce release, but quantal 
release is asynchronous and the miniature events occur spread out in time over 
intervals of - 1 s after the action potential. This dispersion makes it possible 
to measure quantal parameters, amplitude, total number, and frequency 
directly. At GABAA synapses between cultured striatal neurons (BEHRENDS 
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and TEN BRUGGENCATE 1998), the amplitudes of asynchronous evoked mIPSCs 
in Sr2+ change as a function of conditions that alter the probability of release. 
This effect is easily explained by assuming that presynaptic factors determine 
quantal size, and is not obviously consistent with an exclusively postsynaptic 
mechanism. Multiquantal release (onto unsaturated receptor patches) and 
graded (rather than all-or-none) release of GABA from synaptic vesicles were 
suggested as possible mechanisms. 

Single-site synaptic connections on cerebellar interneurons (AUGER et al. 
1998) were identified in paired-cell recordings under conditions of reduced 
transmitter release (see Fig. 3). Multiquantal release was detected in the excess 
of mIPSCs occurring in doublets (i.e., within I-Sms of each other) and in the 
non-linear summation of the doublet mIPSCs. Non-linear summation indicates 
the mIPSCs are not independent (cf. TANG et al. 1994). The calculated mean 
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Fig.3A-C. A single-site synapse with two closely separated amplitude components. 
A In this single-site recording, two distinct amplitude levels were observed. In several 
traces, double events were seen to jump from one level to the other (thick line 
responses), or to display an inflection point near the lower amplitude level (arrow
head). B Overall amplitude histogram from this experiment (480 trials), showing two 
distinct peaks. In dual component traces only the peak amplitude of the second event 
was entered. The histogram was fitted to the sum of two Gaussian curves (thick line; 
dotted lines indicate each curve separately) with mean amplitudes and SD values of 
147 ± 14pA and 198 ± 20pA, respectively. The scaled noise histogram is also shown 
(failure rate was 0.50). C Histograms for first (thick line) and second (dotted line) halves 
of the data. Although the proportion of events in the higher amplitude peak decreased 
from the first to the second data range, the two peaks appear in both cases. (Repro
duced from AUGER et al. 1998, with permission) 
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receptor occupancy at the dual release patches was 0.7, indicating that these 
patches were not saturated. The mIPSC doublets seem to represent cases of 
slight disparity in the timing of release of multiple vesicles. Truly synchronous, 
single-site multivesicular release would have been revealed as larger mIPSCs 
(provided, again, receptor occupancy is less than 1.0). KIRISCHUK et a1. (1999) 
studied GABAAergic transmission at single boutons in cultured superior col
licular neurons, correlating electrophysiological measurements with simulta
neous measurements of presynaptic Ca2+ concentration. Under conditions of 
action-potential block, the bouton could be directly depolarized by current 
passed through a closely apposed glass pipette. The amplitudes of the result
ing single-bouton IPSCs varied greatly and were correlated, although imper
fectly, with the magnitudes of the presynaptic Ca2+ transients. The results 
demonstrated not only lack of receptor patch saturation by a vesicle, but that 
variation in vesicle release contributed to evoked IPSC variability. Hence, vari
ation in synaptic transmitter release appears to contribute to the substantial 
variability of mIPSCs at various CNS synapses. There appears to be no simple 
pattern followed in the CNS, and both pre- and postsynaptic factors have to 
be considered in issues relevant to quantal transmission. 

IV. Tonic Inhibition 

GABA is continually released spontaneously at synapses, to some extent 
because of TTX-insensitive quantal release (EDWARDS et al. 1990), but often 
to a greater degree because of interneuronal action potential activity (ALGER 
and NICOLL 1980; OTIS et al.1991). In some cells, e.g., hippocampal CAl, spon
taneous quantal release occurs at a low rate (-1 Hz); in other cells it occurs at 
a considerably higher rate. A steady-state "tonic" form of inhibition, mainly a 
shunting inhibition, is caused by the summation of conductances resulting 
from the temporal overlap of spontaneous events (OTIS et al. 1991; SALIN and 
PRINCE 1996). When this summated background conductance is blocked by 
GABAA antagonists, an increase in cell excitability results. 

Through the use of whole-cell recordings, lesions that truncated the den
dritic tree, and computational modeling, SOLTESZ et al. (1995) showed that the 
tonic barrage of spontaneous IPSPs originated mainly from somatic synapses 
in dentate granule cells. BANKS et al. (1998) arrived at the same conclusion 
using selective application of GABAA antagonists to different parts of the den
dritic tree of CAl pyramidal cells. The lack of evidence for spontaneous 
release from dendritic synapses could not be attributed to cable filtering and 
is not understood, although differences in the properties of dendritic versus 
somatic terminals have been observed (MILES 1996). 

The effects of tonic inhibition may be more subtle than simply prevent
ing action potential firing. In the cerebellum, action-potential-dependent tonic 
inhibition determines the irregular firing pattern observed in Purkinje cells 
and interneurons in the molecular layers (HAUSSER and CLARK 1997). With glu
tamate receptors blocked, both Purkinje cells and interneurons are sponta-
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neously active, and GABAA antagonists cause an increase in firing rates, as 
well as a dramatic reduction in the variability of the interspike intervals. Paired 
recordings showed that an action potential in the interneuron delays the occur
rence of an action potential in the target cells, with the magnitude of the effect 
being directly proportional to the magnitude of the variable IPSP. The con
stant barrage of IPSPs thus introduces irregularity into the spontaneous action 
potential discharge of the postsynaptic cells. Simultaneous dendritic and 
somatic Purkinje cell recordings also showed that, by altering the passive cell 
properties, tonic inhibition increases the electrotonic length of the cell such 
that dendritic EPSPs have a lesser effect in the soma when inhibition is intact 
than when it is blocked. Tonic inhibition limits the interval over which tem
poral summation with a given EPSP is possible. 

Tonic inhibition can also result from TTX-insensitive events. Especially in 
spatially restricted regions, such as cerebellar glomeruli, small amounts of 
GABA that spill over from synapses to surrounding extrasynaptic receptors 
can accumulate and influence cellular firing (BRICKLEY et al. 1996). Originally 
liberated as a result of synaptic activity, GABA nevertheless achieves a level 
steady-state concentration without obvious fluctuations caused by individual 
events. The result is a shunting inhibition equivalent to the persistent activa
tion of only a few GABAA receptors. Despite its small magnitude, this form 
of tonic inhibition produces clear effects that become more significant 
throughout development. 

E. Dendritic Inhibition 
I. Control of Dendritic Electroresponsiveness 

Synaptic interconnections among interneurons and principal cells determine 
the kinds of roles that inhibition can play. Feedback or recurrent circuitry was 
first emphasized in the hippocampus and other structures, although possibili
ties for afferent collateral inhibition (a form of "feedforward inhibition") had 
clearly been recognized (ECCLES 1964). The dense GABAergic innervation of 
the somatic regions of pyramidal cells, coupled with the dipole theory inter
pretation of somatic positive extracellular field potentials (ANDERSEN et al. 
1964a), led to the conclusion that the primary form of interneuron activation 
was through feedback from pyramidal cell firing and was directed principally 
at cell somata. This emphasized the role of basket cells (ANDERSEN et al. 
1964b), which were well known to make dense networks of somatic termina
tions. Evidence that GABAergic inhibition was activated by feedforward as 
well as feedback pathways and innervated dendrites as well as somata (e.g., 
WONG and PRINCE 1979; ALGER and NICOLL 1979, 1982a; BUZSAKI 1984; MILES 
et al. 1996) led to numerous additional possibilities for neuronal integration. 

Dendrites have become increasingly recognized as active participants in 
neuronal integration, and dendritic inhibition has correspondingly risen in 
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importance. Studies of olfactory (JAHR and NICOLL 1980) hippocampal (WONG 
and PRINCE 1979), cerebellar (LUNAS and SUGIMORI 1980) and neocortical 
(JOHNSTON et al. 1996, for review) dendrites using sharp microelectrodes 
revealed not only that dendrites possessed active properties, and did far more 
than receive and passively propagate excitatory signals, but that these prop
erties were under the control of synaptic GABAergic inhibition. Complex 
burst potentials, the result of voltage-dependent Na+ and Ca2+ currents, are 
prominent features of principal cell dendrites in the CNS and are often under 
the control of synaptic GABAA inhibition (WONG and PRINCE 1979; MILES et 
al. 1996; MIURA et al. 1997). 

Intradendritic recordings from alligator cerebellar cells (LUNAS 1988) 
revealed a complex burst potential with small regenerating potentials evi
dently originating at branch points in the dendritic tree. It was suggested that, 
by acting at branch points, dendritic inhibition could "functionally amputate" 
portions of the dendritic tree, and hence isolate the soma from certain affer
ent inputs. WONG et al. (1979) showed that a correctly timed IPSP could com
pletely abort a burst potential in a pyramidal cell dendrite, emphasizing the 
role of dendritic inhibition in the all-or-none regulation of the burst response, 
which was known to be a basic property of hippocampal pyramidal cell den
drites. A combined morphological and physiological study in hippocampal 
pyramidal cells showed directly that inhibitory cells making peri somatic con
tacts suppressed repetitive Na+-dependent action potential firing, whereas 
dendritic ally terminating inhibitory cells controlled dendritic electrogenesis 
directly and initiation of axonal action potentials indirectly (MILES et al.1996). 

II. Dendrodendritic Inhibition 

Anatomical evidence had suggested that mitral cells in the olfactory bulb 
could participate in an unusual form of dendritic interaction, dendrodendritic 
inhibition, with the granule cells. Upon mitral cell depolarization, excitatory 
transmitter (ultimately shown to be glutamate) would be released from synap
tic specializations on the mitral cell dendrites, where it would act on the oppos
ing granule cell gemmule (spine). The granule cells contain GABA, and 
activation of the granule-to-mitral-cell synapse on the gemmule would release 
GABA and inhibit the mitral cell. Confirmation of this hypothetical scheme 
was provided by JAHR and NICOLL (1980, 1982) and others (NOWYCKY et al. 
1981) in intracellular studies in the turtle in vitro olfactory bulb preparation. 

This finding has been extended to mammals, with the development of the 
rat olfactory bulb slice technique (ISAACSON and STROWBRIDGE 1998; SCHOPPA 
et al. 1998). Dendrodendritic inhibition has been found in other areas of the 
nervous system, as well. Unlike many glutamatergic synapses in which AMP A 
receptors play the predominant role in mediating fast synaptic transmission, 
glutamate released from the mitral cells can cause GABA release from 
the granule cells by activating NMDA, as well as non-NMDA, receptors 
(ISAACSON and STROWBRIDGE 1998; SCHOPPA et al. 1998). The prominent role of 
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NMDA receptors notwithstanding, GABA release from the granule cell is trig
gered by Ca2+ influx through P/Q- and N-type Ca channels and not through 
NMDA channels. Lateral inhibition in the olfactory bulb can also be mediated 
by the dendrodendritic circuit. In simultaneous recordings from pairs of mitral 
cells, activation of dendrodendritic inhibition of one sets up an IPSP in a neigh
boring cell, even in the presence of TTX (ISAACSON and STROWBRIDGE 1998). 

The dendrodendritic circuit thus gives rise to a highly localized reciprocal 
inhibition of the mitral cells. More recently it has been proposed that the olfac
tory circuit provides the basis of lateral inhibition and odor discrimination 
(YOKOI et al. 1995; BRENNAN and KEVERNE 1997). The lateral inhibition 
that is produced suppresses a weak excitatory response in neighboring mitral 
cells, thus sharpening the tuning specificity for odorants and enhancing the 
resolution of the olfactory system (YOKOI et al. 1995). 

Autoreception also occurs in excitatory neurons when glutamate or an 
analog released from a cell acts on extrasynaptic receptors on that same cell. 
The release of glutamate from mitral cells in the olfactory bulb can cause a 
long-lasting self-excitatory response (NICOLL and JAHR 1982) that is mediated 
by NMDA receptors. Autoexcitation is under the control of the recurrent den
drodendritic IPSP, however, and is not obvious unless GABAA receptors are 
blocked. 

III. Back-Propagating Action Potentials 

Simultaneous whole-cell recordings from the somata and dendrites of neo
cortical (STUART et al. 1997) and hippocampal pyramidal cells TSUBOKAWA and 
Ross 1996, as well as from mitral cells of the olfactory bulb (CHEN et al. 1997), 
have revealed new features of dendritic processing. Dendritic potentials that 
summed to action potential threshold at the initial segment triggered axonal 
spikes, as was expected, but the action potential propagated backwards into 
the dendrites as well as forwards down the axon. The extent of back-propa
gation is controlled by synaptic inhibition: the action potentials increase in size 
and reach farther into the dendrites when GABAA IPSCs are blocked (CHEN 
et al. 1997). 

With strong synaptic stimulation, excitatory dendritic synaptic inputs 
can sometimes elicit dendritic Na+ spikes prior to triggering axonal Na+ 
spikes (GOLDING and SPRUSTON 1998). Usually the dendritic spikes triggered 
axonal spikes, but occasionally they did not, suggesting they did not infallibly 
propagate to the soma. The occurrence of primary dendritic spiking was reg
ulated by GABA-mediated inhibition and NMDA-dependent synaptic poten
tials. When inhibition was blocked, spike initiation shifted to the dendritic 
locus; when the NMDA receptors were subsequently blocked, spike initiation 
shifted back to the axon. Somewhat surprisingly (in view of the relatively short 
time from EPSP onset to spike initiation, ~5ms), both GABAA and GABAB 

receptors exerted similar control. 
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A recent description of a new function for back-propagating action poten
tials revealed another role for dendritic inhibition (LARKUM et al. 1999); see 
Fig. 4. If an axonally initiated back-propagating action potential was followed 
within a few milliseconds by initiation of an EPSP in the apical dendrites, a 
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Fig.4a-d. Precision of timing required for induction of dendritic Ca2+ spike. Experi
mental configuration shown diagrammatically (lower left). Recordings were made from 
the dendrite (red; 600,um from the soma) and the soma (black) of an L5 pyramidal 
neuron. A third dendritic electrode (pink; 700,um from the soma) was used for inject
ing current (electrode colors correspond to recording traces). Time intervals: a 3ms; b 
7 ms; c 11 ms elicited a burst of APs only in b at threshold. !1t was taken as the time 
between the start of the somatic current injection and that of the dendritic current 
injection. Note, however, that the AP due to the somatic current injection followed the 
onset by -3ms in this case. d A burst of APs could be generated by the combination 
of dendritic current injection and a back-propagating AP at other times, but the thresh
old for this was least at !1t = 5 ms. Each point is the average of eight neurons (error 
bars, S.E.M.) and represents the threshold for current injection needed to elicit a den
dritic Ca2+ AP. Dashed line represents the Ca2+-AP threshold without a back-propa
gating AP (2.28 ± 0.14nA). For -lOOms after!1t = lOms, the threshold was even slightly 
higher than without the back-propagating AP. (Reproduced from LARKUM et al. 1999, 
with permission) 
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large Ca2+ spike was generated in the dendrites. The Ca2+ spike could, in turn, 
trigger additional axonal action potentials. Evidently the summation of the two 
sources of depolarization lowered the threshold for Ca2+ spike initiation. Gen
eration of the Ca2+ spike was facilitated by blocking either GABAA or GABAB 

receptor. Triple recordings (dendritic and somatic electrodes on one cell, the 
third electrode on a synaptically coupled interneuron) showed that, con
versely, the Ca2+ spike could be abolished by a correctly timed IPSP, even if 
the IPSP did not affect the back-propagating action potential itself. Genera
tion of the Ca2+ spike by the summation of the EPSP and back-propagating 
action potential could provide a critical mechanism for detecting and report
ing synchronous activity in two distinct cortical regions. Prevention of the Ca2+ 
spike initiation by the IPSP in these cells decouples the two distinct spike ini
tiation zones and disrupts this coincidence detection mechanism. The many 
roles played by Ca2+ in cellular processes highlight the significance of dendritic 
inhibition. 

IV. Control of Persistent Cation Currents 

Inhibition serves many functions by regulating voltage-dependent currents. 
Conversely, the occurrence of non-inactivating conductances can also amplify 
inhibitory potentials. In the thalamus (WILLIAMS et al. 1997) and neocortex 
(STUART 1999), the turning off of persistent Ca2+ and Na+ conductances by a 
hyperpolarizing IPSP, respectively, magnifies the apparent amplitude and 
duration of the IPSP if the IPSP is evoked when the persistent cation currents 
are activated. The underlying GABAA currents are not themselves altered; 
rather the IPSP hyperpolarization closes some of the open cation-permeable 
channels. Truncation of the standing inward current is equivalent to an 
outward current that sums with the outward GABAA-induced current. The 
enhancement can be prevented by blocking the voltage-dependent cation 
channels. The kinetics of the enhanced IPSP thus reflect the kinetics of inac
tivation and reactivation of the persistent cation-dependent current as well as 
those of the GABAA current. IPSP amplification caused by the persistent 
non-inactivating Na+ current can help synchronize action potential firing at 
membrane potentials near rest. 

F. Somatic-Axonal Inhibition 

I. Conduction Block Along the Preterminal Axon 

Conduction block refers to the interruption of action potential propagation 
along an axon. It was first postulated as a factor for modulation of neuronal 
signaling many years ago, but was often attributed to features of axonal geom
etry or changes in extracellular milieu. 

In the spinal cord, conduction block was identified in recordings at points 
rostral and caudal to the point of entry of dorsal root fibers into the cord 



Physiology of the GABA and Glycine Systems 29 

(WALL 1995). Single afferent fibers make a T junction and project a rostral and 
a caudal branch. WALL (1995) observed that, whereas the action potential 
propagated rostrally without failure, the action potential typically failed to 
propagate along the caudal portion of the bifurcating axons. When bicuculline 
or picrotoxin was applied, however, caudal propagation also occurred, thus 
implying a conduction block caused by GABAA receptor activation, probably 
resulting from spontaneous activation of GABA interneurons in the cord. 
Strychnine was not effective, ruling out a role for glycinergic inhibition. 

Most vertebrate axons are too small for impalement by electrodes and 
hence for direct study, so the mechanism by which IPSPs block conduction in 
the cord is not clear. ZHANG and JACKSON (1993,1995) show that presynaptic 
depolarization of pituitary nerve terminals caused by activating GABAA 
channels could reduce and block the preterminal action potential. The depo
larization (caused by a reversed Cl- gradient in the terminal) inactivated 
voltage-dependent Na channels and prevented action potential conduction 
further along the terminal arborizations. Conduction block in the axon is 
potentially very powerful, as all synapses downstream from the point of block 
would be effectively inactivated. It is not known if conduction block by 
GABAA receptors takes place at synapses, or whether extrasynaptic receptors 
playa role. Interestingly, different types of GABAA receptors may be targeted 
to synaptic vs extra synaptic regions (BRICKLEY et al. 1999). 

DEBANNE et al. (1997) provided evidence for another type of mechanism 
for conduction block caused by inhibitory transmitters in cultured hippocam
pal slices. IPSP hyperpolarizations removed the inactivation of the transient, 
voltage-dependent A-type potassium current in axons, and termination of the 
IPSP was followed by the activation of lA, a transient outward current. 
When IA was activated depolarizations normally sufficient to induce action 
potentials could not do so, and hence axonal conduction was prevented. The 
IA antagonist 4-AP blocked the effect. Clustering of A channels near axonal 
branch points may enhance the potency of this mechanism (KOPYSOVA and 
DEBANNE 1998). This work not only illustrates that the preterminal axon can 
be a target of GABAA-mediated inhibition, but also that the GABAA con
ductance can act in concert with other factors to produce its effects. 

Variable conduction block may also occur in the complex axonal arboriza
tions of the inhibitory axons themselves. Simultaneous recordings from 
two cerebellar Purkinje cells showed that many spontaneous IPSCs occurred 
synchronously in both cells, suggesting that they from a single interneuron 
originated (VINCENT and MARTY 1996). If the interneuronal action potential 
propagated faithfully to both cells, then there would have been a reasonably 
constant ratio of the synchronous IPSC amplitudes. Instead, when the 
synchronous IPSC amplitudes in cell 1 were plotted against those in cell 2, 
there appeared to be no relationship between them, a result that could be 
explained by variable success in propagation of action potentials along 
the axonal branches to cell 1 or cell 2, although other interpretations are 
possible. Variability in IPSC amplitudes in the postsynaptic cell was very 
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much reduced when, in paired recordings, the presynaptic interneuron was 
filled with the K+ channel blocker Cs+, suggesting a role for K+ channel acti
vation in modulating variable release. Mutant mice lacking the Kv1.1 type of 
K+ channel have an increased frequency of sIPSC firing, a phenomenon con
ceivably caused by a decrease in axonal conduction block, because the firing 
frequency of the interneurons was not changed (ZHANG et al. 1999). 

Examination of the extremely large, complex interneuron axonal arbors, 
and consideration of the myriad factors (ionic concentrations, pH, osmolar
ity, neurotransmitters, and modulators) that can affect CNS axons lead to 
an alternative interpretation, namely that action potentials could arise at 
numerous "ectopic" sites along the axon, and not only at the initial-segment 
region. Different axonal segments could then act independently of each other 
and the cell body, and the observed differences between IPSCs caused in dif
ferent target cells by a common interneuron would be caused not only by vari
ability in conduction but also by variability in the sites of action potential 
initiation. Other explanations are of course also possible. Nevertheless, these 
studies emphasize the axon as a site of regulation in neuronal interactions, and 
provide interesting counterpoint to the new focus on the role of action poten
tial propagation in dendrites in neuronal integration. 

II. Depolarization-Induced Suppression of Inhibition (DSI) 

Depolarization of a hippocampal pyramidal cell (PITLER and ALGER 1992b, 
1994a; ALGER et al. 1996; LENZ et al. 1998; OHNO-SHOSAKU et al. 1998) or a 
cerebellar Purkinje cell (LLANO et al. 1991; VINCENT et al. 1992; VINCENT and 
MARTY 1993; GUTSCH et al. 1996) causes a transient suppression of mono
synaptic GABAAergic IPSCs recorded in that cell. The process, called DSI, is 
initiated by voltage-dependent Ca2+ influx into the postsynaptic cells (LLANO 
et al. 1991; PITLER and ALGER 1992b; LENZ et al. 1998; OHNO-SHOSAKU et al. 
1998); however, it is not prevented by NMDA antagonists, as is the dephos
phorylation-dependent GABAA receptor down-regulation that has been 
described (STELZER and SHI 1994; CHEN and WONG 1995; WANG and STELZER 
1996). DSI of evoked IPSCs appears as an increase in number of failures of 
quantal release, suggesting a presynaptic mechanism (see Fig. 5). In fact, a sub
stantial body of evidence shows that there is no change in postsynaptic 
GABAA receptor responsiveness during DSI, whether this is assessed by ion
tophoretic GABA application or various forms of quantal analysis, including 
coefficient of variation, quantal content (ALGER et al. 1996), or direct count
ing of asynchronous mIPSCs induced in Sr2+-containing extracellular solutions 
(MORISHITA and ALGER 1997). On the contrary, all of these measurements lead 
to the conclusion that the mechanism of DSI expression is a reduction in 
release of GABA from presynaptic nerve terminals, i.e., that a retrograde 
signal must pass between the postsynaptic cell and the interneuron to cause 
the interneuron to reduce its release of GABA for a brief time. VINCENT and 
MARTY (1993) provided compelling evidence for a messenger by showing that, 
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Fig.5. A,B Evoked monosynaptic IPSCs are susceptible to DSI. IPSCs were recorded 
under whole-cell voltage clamp in the presence of 10,umol/l CNQX and 50,umolll APV 
(carbachol was not present) with CsCI-containing pipettes. IPSCs were elicited con
tinuously at 0.5 Hz with extracellular electrical stimulation in the vicinity of the 
recorded cell. At 90-s intervals a I-s 70-m V depolarizing voltage step from -60 m V was 
delivered (arrowhead at time zero) to the pyramidal cell. A A typical complete DSI 
trial on an evoked IPSC (downward strokes, note time scale). B Combined data from 
same cell as in A. Traces at the top are averages of five responses each in control con
ditions (prior to the DSI pulse), during the DSI period and following recovery from 
DSI. The graph shows the entire time course from this experiment; each point repre
sents the mean ± S.E.M. of five responses. C-E Failures of quantal IPSCs evoked with 
minimal stimulation to stratum radiatum increase during DSI. C Graph shows IPSC 
amplitudes of five DSI episodes with a 90-mV depolarizing step occurring at time 0 
from one cell. Minimal IPSCs, recorded with KCI-filled electrodes, were evoked at 
0.5 Hz. Peak amplitude measurements were made in the window from Oms to 14ms 
following the extracellular stimulus. For the ten sweeps immediately prior to the 
voltage step, the stimulus was ineffective in eliciting an IPSC in only 6 of 50 trials, but 
failed to elicit a response in 50 of 60 trials during the DSI period. D Histogram illus
trates percentage failure of transmission during the control and DSI period for three 
cells as in C, comparing the ten traces immediately prior to and following the depo
larizing voltage step, for a total of 340 trials. E Failures of transmissions during the DSI 
period were evident when quantal-sized IPSCs were evoked with a stimulus intensity 
of 225 ,uA (e), as in C (minimal stimulation data from this cell included in D). Fail
ures were still observed when larger, multicomponent IPSCs were evoked with a stim
ulus intensity of 275,uA (0). Data from multicomponent IPSCs not included in 
histograms in D. (Reproduced from ALGER et al., 1996, with permission.) 
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if simultaneous recordings were made from two Purkinje cells, then IPSCs that 
were synchronous in both, i.e., that therefore probably were produced by a 
common interneuron, were suppressed in both cells if the DSI-inducing 
voltage step protocol was delivered to only one. Clearly, effects of the DSI in 
this case were not confined to the single postsynaptic cell but spread by some 
means to neighboring cell(s). 

Recent evidence suggests the retrograde messenger in DSI may be gluta
mate, or a glutamate analog, and may produce effects by acting on a presyn
aptic metabotropic glutamate receptor (LLANO and MARTY 1995). DSI can be 
mimicked and occluded by agonists of metabotropic glutamate receptors 
(mGluRs), group II mGluRs being implicated in cerebellum (LLANO and 
MARTY 1995; GLITSCH et al.1996) and group I in the hippocampal CAl region 
(MORISHITA et al. 1998). That DSI involves the presynaptic activation of a G 
protein (PITLER and ALGER 1994a; MORISHITA et al. 1997) is consistent with a 
role for mGluRs. In CAl, DSI can be blocked by bath-applying 50 pmol/l 4-
AP, or 250 nmolll veratridine, agents that block certain types of K channels 
and Na channels, respectively (ALGER et al. 1996). Because, in these experi
ments, postsynaptic K and Na channels are blocked by Cs+, TEA and QX-
314, 4-AP and veratridine must act at a presynaptic site. One possibility is that 
DSI induces a type of axonal conduction block in the interneuronal axonal 
plexus and thereby prevents GABA release. This hypothesis is compatible 
with an intriguing observation about DSI, namely that, unlike many forms of 
presynaptic inhibition, DSI is not associated with a change in the probability 
of release at individual GABA-releasing nerve terminals. This conclusion is 
supported by repeated observations that DSI is not accompanied by a change 
in the paired-pulse depression (PPD) ratio (ALGER et al. 1996). Usually, when 
two IPSCs are evoked in quick succession, the amplitude of the second is 
reduced by -50% when compared with the first. A process that changes the 
probability of release at a nerve terminal will typically alter the PPD ratio. 
One mechanism that would depress release without altering the PPD would 
be conduction block, but there are others. Interestingly, in lamprey axons, 
a group I mGluR increases the activation of a voltage-dependent 4-AP
sensitive K+ current (COCHILLA and ALFORD 1998), and, as noted above, 4-
AP-sensitive currents regulate axonal conduction (DEBANNE et al. 1997). 
Such effects would be compatible with a conduction-block for model hip
pocampal CAl DSI. 

DSI has also been observed to occur in dissociated tissue-cultured hip
pocampal neurons (OHNO-SHOSAKU et al. 1998), and, although the process 
seems generally similar, DSI in culture shows some differences from DSI in 
acute slices. For example, in culture DSI is associated with a change in the 
paired-pulse ratio, suggesting the possibility of a different expression mecha
nism. GABAergic inhibitory interneurons in culture also express DSI, as do 
Purkinje cells and other GABAergic cells in cerebellum. Hippocampal and 
cerebellar DSI are not identical (ALGER and PITLER 1995), and it appears that 
there will be several different manifestations of this regulatory process. 
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Although a functional role for DSI has not yet been demonstrated, it is clear 
that DSI can cause an increase in EPSCs (WAGNER and ALGER 1996b) and can 
be induced by low-Mg2+-induced burst potentials (LE BEAU and ALGER 1998). 
It is likely that the coupling between a principal cell and its inhibitory inputs 
allows for selective feedback regulation of individual cells in a population. 

III. Autoreception and Inhibition 

Several forms of inhibition may be considered together under the concept of 
autoreception, i.e., when signals released from a cell act on the cell's own 
receptors. Autoreception may occur via: 

1. "Autapses," fully developed synapses made by axonal terminals on the 
somato-dendritic regions of the cell originating the axon (VAN DER Loos and 
GLASER 1972). 

2. Transmitter released from non synaptic regions that acts on extrasynaptic 
receptors. 

3. Transmitter released from synaptic terminals that acts on extrasynaptic 
receptors on or near that terminal. 

In GABA-releasing cells, the first two cases involve activation of GABAA 

receptors. The third, the activation of presynaptic GABAB receptors, is dis
cussed later. All cases of inhibitory auto reception have in common the func
tional effect of decreasing the inhibition exerted on postsynaptic cells. 

1. Autaptic Transmission 

Autapses form readily on dissociated tissue-cultured neurons (BEKKERS and 
STEVENS 1991; VAUTRIN et al. 1994); only recently, however, have suspected 
aut apses been confirmed, with electron microscopy, to exist on GABAergic 
interneurons in fully differentiated tissue from adult animals in both hip
pocampus (COBB et al. 1997) and neocortex (TAMAS et al. 1997a). In a large 
study, TAMAS et al. (1997a) found that, whereas basket- and dendrite-targeting 
cells were very likely to form autapses, double bouquet cells were less likely, 
and autapses were rare or nonexistent on pyramidal and stellate cells. When 
they were found, aut apses were made on the same cellular regions (dendrite, 
soma) as those on which the cell made synapses on other cells. Selective 
expression of this type of synapse by certain neurons, and the precise cellular 
localization of the autapses, suggested these are not random phenomena, but 
are part of a specific regulatory system. Autaptic autoinhibition seems poised 
to inhibit firing of the interneuron and thereby perhaps to contribute to phasic 
output from the cell. 

2. Preterminal Extrasynaptic Receptors 

The second type of autoreception involves release of GABA from presumed 
synaptic sites that acts on extrasynaptic sites along the preterminal axon. In 
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cerebellar stellate and basket cells, an action potential initiated at either 
somatic or axonal sites is immediately followed by a slow Ca2+-dependent Cl
conductance mediated by GABAA autoreceptors (POUZAT and MARTY 1999). 
All-or-none linkage of this conductance with the action potential indicated it 
was triggered in the recorded cell, and modeling studies, coupled with mor
phological observations, pointed to the axon as the site of initiation; yet true 
autaptic transmission could be excluded by the absence of the morphological 
specializations of autapses. The main functional distinction between this con
ductance and the GABAB-mediated autoreceptor action at the nerve termi
nal, besides the receptor subtype, is its distributed nature, which would permit 
this effect to regulate subsequent action potential conduction along the axons. 
Thus, whereas the GABAB autoreceptor action regulates release from the 
releasing terminal (and a few other terminals in the neighborhood), the dis
tributed axonal conductance could, by preventing propagation of the action 
potential, prevent release from all downstream synapses. The suggested effect 
is similar to the preterminal axonal conduction block in the spinal cord (Sect. 
EI). Although this mechanism of presynaptic autoregulation has not been 
shown to occur naturally, it appears capable of making a significant contribu
tion to control of inhibition. 

G. GABAB Responses 
I. Postsynaptic Inhibition 

GABAB receptors are found at pre- and postsynaptic sites. There is general 
agreement that postsynaptic GABAB receptors activate a pertussis-toxin
sensitive G-protein coupled to an inwardly rectifying K channel (GIRK) 
(NEWBERRY and NICOLL 1984a,b; GAHWILER and BROWN 1985; ANDRADE 
et al. 1986; MISGELD et al. 1995). When the channel is opened, the membrane 
is hyperpolarized and the cell is inhibited. The GIRK, which can be blocked 
by extracellular Ba2+ ions, can be activated by other G-protein-coupled recep
tors, as well as GABAB, including adenosine and 5-HT1a (ANDRADE et al.1986). 
Extracellular stimulation leads to a sequential GABAA-GABAB-mediated 
response. 

An important issue is whether or not GABAA and GABAB responses can 
be produced by the same interneuron. The hippocampal CAl inhibitory cir
cuits involved in producing feedforward compound GABAA - GABAB IPSPs 
are clearly distinct from those producing solely recurrent GABAA IPSPs 
(ALGER and NICOLL 1982b; ALGER 1984; NEWBERRY and NICOLL 1984a). Basket 
cells had long been thought to mediate recurrent inhibition (ANDERSEN et al. 
1964b), although other interneurons are now known to fulfill this role as well 
(FREUND and BUZSAKI 1996). A simple hypothesis is that at least two groups 
of interneurons are involved, one of which is incapable of producing GABAB 
IPSPs. Nevertheless, paired recordings from interneurons and pyramidal cells 
have not yet unambiguously identified any interneuron that produces GABAB 
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IPSPs in pyramidal cells, even though gross applications of excitants such as 
glutamate or 4-AP to specific areas in CAl do elicit GABAB responses (NURSE 
and LACAILLE 1997). In neocortex, micro-application of glutamate also pro
duced fast (GABAA) and slow (GABAB) IPSPs, but these always appeared in 
isolation; mixed fast-slow IPSPs were not seen, and it was also suggested that 
the two responses were produced by separate classes of interneurons 
(BENARDO 1994). An alternative model is that GABA spillover from the 
synapse, or GABA release from several interneurons, would be necessary to 
induce GABAB responses via extrasynaptic receptors. It is not clear whether 
or not GABAB receptors are clustered in postsynaptic receptor patches, or are 
distributed more broadly in extrasynaptic regions. GABAB mIPSCs have not 
been reported (Ons and MODY 1992), although spontaneously released 
GABA does affect GABAB receptors, as can be inferred from effects of 
GABAB antagonists on spontaneous neuronal activity (McLEAN et al. 1996b; 
OUARDOUZ and LACAILLE 1997). Recent reports of cloning (KAUPMANN et al. 
1997) and expression (JONES et al. 1998; KAUPMANN et al. 1998; WHITE et al. 
1998) of GABAB receptors will playa major role in addressing these impor
tant issues. 

The magnitude of the GABAB response is sometimes very small (e.g., 
PITLER and ALGER 1994b), and this may be the result of using Cl- salts in the 
recording electrode. Whole-cell pipettes containing salts of methylsulfonate or 
gluconate permitted full-sized baclofen- or serotonin-mediated responses, 
whereas when Cl- was the predominant anion, these responses, and the synap
tically evoked GABAB IPSC, were very significantly reduced (LENZ et al. 
1997). The CI- effect had a hyperbolic dose-response curve with an ECso of 
about 40mmolll Cl-. The effect was exerted on the K channel or perhaps the 
G protein, as membrane responses to intracellular GTP,s, which typically 
produce a hyperpolarized membrane potential and decreased neuronal input 
resistance (ANDRADE et al. 1986), were also significantly reduced by high 
internal [CI-]. 

Although the biophysical basis of the inhibitory action of Cl- is not known, 
the finding may be of physiological relevance, as during spreading depression 
(Lux et al. 1986) [Cl-]i concentrations rise greatly. Moreover, during develop
ment [Cl-] in many neurons is elevated because of the different expression of 
the K+/Cl- transporter in young tissue (ZHANG et al. 1991; RIVERA et al. 1999). 
The lack of GABAB-mediated responses early in development has been noted 
(LUHMANN and PRINCE 1991; GAIARSA et al. 1995), although often attributed 
to the lack of GABAB receptors. The absence of PPD (i.e., presynaptic GABAB 
function) in neonatal hippocampal slices may be the result of too little of the 
released GABA accessing the GABAB receptors (CAILLARD et al. 1998). 
Perhaps the higher [CI-]i in young neurons plays a role in the apparent absence 
of postsynaptic GABAB responses as well. Most intriguingly, LOPANTSEV and 
SCHWARTZKROIN (1999) have recently found that the synaptically activated, 
evoked GABAB IPSP is modulated by the preceding GABAA IPSP. Evidently 
the increase in intracellular Cl- concentration induced by the GABAA IPSP is 
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sufficient to affect the GABAB response. The close temporal coupling 
between these conductances suggests interesting possibilities for postsynaptic 
interactions. 

II. Presynaptic Inhibition 

Presynaptic inhibition in the spinal cord, first correctly identified by FRANK 
and FUORTES in 1957 (see NICOLL and ALGER 1979 for review), was associated 
with primary afferent depolarization (PAD) produced in one dorsal root by 
prior stimulation of other nearby dorsal roots. Although the mechanism of 
PAD is complex, GABA is involved. The high internal [CI-] in these fibers 
causes activation of the GABAA receptors to depolarize the terminals and 
reduce release. Although axonal conduction block (see Sect. F.I) can be seen 
as a kind of presynaptic inhibition, and, in the cases discussed, is mediated by 
GABAA receptors, most GABA-mediated presynaptic inhibition occurs 
through activation of GABAB receptors. This topic has been reviewed (THOMP
SON et al. 1993; THOMPSON 1994; Wu and SAGGAU 1997), and many of the major 
principles are well established. Interestingly, glycine seems to act only at post
synaptic sites and not to mediate presynaptic inhibition. 

1. GABAB Autoreceptor Activation 

The role of GABAB autoreceptors on GABAergic nerve terminals in con
trolling GABAA IPSCs is well established (THOMPSON and GAHWILER 1989; 
DAVIES et al.1990; MOTT and LEWIS 1994; THOMPSON 1994; MISGELD et al. 1995). 
GABA released by an action potential activates presynaptic autoreceptors 
and reduces release caused by subsequent action potentials. The suppression 
of IPSCs mediated by this form of auto reception can be critically important 
for the induction of LTP (DAVIES et al. 1991; MOTT and LEWIS 1991); the 
NMDA component of the EPSP that is normally suppressed by the GABAA 
responses is disinhibited by the GABAB action (MOTT and LEWIS 1991; DAVIES 
and COLLINGRIDGE 1996). 

Although presynaptic GABAB receptors exist on both inhibitory and exci
tatory nerve terminals in hippocampus, defined axo-axonic synapses have not 
been described in the brain, despite being prevalent in brain stem and spinal 
cord. In the brain, autoreceptors on the inhibitory terminals are activated by 
GABA, which is released synaptically at the nerve terminal (DAVIES et al. 
1990) (see THOMPSON 1994 for review). Paired-pulse stimulation of monosyn
aptic GABAA IPSCs (i.e., IPSCs evoked in the presence of blockers of fast 
ionotropic glutamate receptors, CNQX and APV) reveals a significant depres
sion of the amplitude of the second pulse when compared to the first. Most 
PPD of GABAA IPSCs is blocked by GABAB receptor antagonists, confirm
ing the major prediction of the autoreceptor model. (Not all GABAergic ter
minals have GABAB receptors (LAMBERT and WILSON 1993b; PEARCE et al. 
1995), and paired-pulse depletion of neurotransmitters evidently accounts for 
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residual PPD when GABAB receptors are blocked.) The GABAB receptors 
on excitatory terminals ("heteroreceptors") are activated by synaptic GABA 
spillover from the synaptic cleft to nearby glutamatergic axons (ISAACSON et 
al. 1993). Similar heteroreceptors are present on nerve terminals from which 
other neurotransmitters are released, e.g., dopaminergic, nor adrenergic, sero
tonergic, etc. (VIZI and KISS 1998). 

2. Mechanism of Presynaptic GABAB Inhibition 

In contrast to the numerous unequivocal demonstrations that GABAB recep
tor activation does have presynaptic inhibitory effects, it has been difficult to 
elucidate the actual mechanism of presynaptic inhibition. An obvious pos
sibility is that the GIRK channels, if coupled to the presynaptic receptors, 
could shunt action potentials and prevent propagation to the terminals. Acti
vation of GABAB receptors can also inhibit voltage-dependent Ca2+ currents 
in a variety of neurons (DOZE et al. 1995; Wu and SAGGAU 1997), and so 
could inhibit release by preventing Ca2+ influx into the terminal. Attempts 
have been made to distinguish pre- from postsynaptic mechanisms. Initial 
reports of differences in pertussis toxin sensitivity and antagonist blockade 
between pre- and postsynaptic inhibition, which supported a distinction 
between the pre- and postsynaptic receptor types, were questioned because of 
the possibility that receptor-effector coupling, or "receptor reserves," might 
account for the differences (DUTAR and NICOLL 1988; YOON and ROTHMAN 
1991). Barium ions, which block GIRK channels and postsynaptic GABAB 

effects (NEWBERRY and NICOLL 1985), significantly reduced presynaptic 
baclofen actions on IPSPs in the CA3 region of organotypic hippocampal 
slices (THOMPSON and GAHWILER 1992). However, in the CAl region of acute 
slices Ba2+, which dramatically reduced postsynaptic GABAB responses, had 
only slight effects on presynaptic baclofen effects on inhibitory nerve termi
nals or on PPD (LAMBERT et al. 1991; PITLER and ALGER 1994b; ROHRBACHER 
et al. 1997). Some of the disparate data could be explained by the use of bath
applied baclofen to activate presynaptic GABAB receptors, because this does 
not distinguish between presynaptic GABAB receptors directly involved in 
regulating release and GABAB receptors located at other presynaptic sites. 
Paired-pulse depression mediated by GABAB autoreceptors is the ideal assay 
for the physiologically relevant receptors controlling release, and neither Ba2+ 

nor phorbol ester (PITLER and ALGER 1994b) nor tetrahydroaminoacridine 
(THA) (LAMBERT and WILSON 1993a) had any effect on PPD. All three agents 
affect mIPSC release and postsynaptic channels, and hence differences in 
access to receptors on postsynaptic, vs presynaptic, sites cannot explain the 
data. The most likely conclusion is that the presynaptic and postsynaptic 
GABAB effects are mediated by different effector mechanisms. Indeed, post
synaptic outward currents mediated by transmitters that activate G-protein
coupled receptors, including baclofen, are absent in transgenic mice lacking 
GIRK2 (LUSCHER et al. 1997), whereas presynaptic inhibition by the bath-



38 RE. ALGER and EE.N. LE BEAU 

applied transmitters is unaffected in these mutants. Thus, it is clear that the 
GIRK2 channel is coupled only to the postsynaptic GABAB receptor. The 
same receptor may mediate different cellular actions based on effector 
coupling and subcellular localization. It remains possible that pre- and post
synaptic GABAB receptors represent different sUbtypes. 

GABAB receptors inhibit voltage-dependent Ca2+ currents in a variety of 
cell types, including hippocampus, and, hence, probably induce presynaptic 
inhibition at least partly in this way (DOZE et al. 1995; Wu and SAGGAU 1995, 
1997). However, block of Ca2+ influx clearly cannot fully account for the presyn
aptic effects of baclofen as spontaneous miniature excitatory postsynaptic 
potentials (mEPSCs), which are insensitive to block of voltage-sensitive Ca2+ 
channels by Cd2+, are nevertheless inhibited by baclofen (SCANZIANI et al. 
1992). In rat midbrain culture, GABAB receptors inhibit TTX-, Ba2+-, and Cd2+
sensitive mIPSC release (ROHRBACHER et al. 1997). In view of possible differ
ences in spontaneous and evoked release, it is important that baclofen also 
blocks release evoked by the secretagogues gadolinium, ionomycin, and a
latrotoxin that is independent of Ca2+ influx through voltage-gated Ca2+ chan
nels (CAPOGNA et al. 1996). The effects on a-Iatrotoxin-induced release were 
especially important as a-Iatrotoxin may act downstream of all Ca2+-requiring 
steps. Recent evidence of a direct interference in the exocytotic process by 
baclofen may lead to understanding the mechanism of Ca2+-independent 
presynaptic inhibition (ISAACSON and HILLE 1997). 

III. GABAB Enhancement of Synaptic Activity 

Paradoxically, presynaptic GABAB receptors can also enhance the efficacy of 
synaptic transmission (BRENOWITZ et al. 1998). Cells in the nucleus magnocel
lularis (nMAG) are activated by glutamatergic synapses from the auditory 
nerve and receive a GABAergic projection from the superior olive. The 
nMAG cells receive EPSCs that occur at frequencies up to several hundred 
Hz. Typically at these frequencies the EPSCs undergo marked depression, evi
dently because of synaptic depletion or receptor desensitization. Baclofen 
reduces excitatory transmission by acting on the presynaptic receptors. 

BRENOWITZ et al. (1998) found that the reduction in transmission caused 
by baclofen depended on the frequency of occurrence of EPSCs; when they 
were evoked at frequencies <100Hz, all of the EPSCs (in a train of 10) were 
reduced. When the EPSC frequency was >200 Hz in the presence of baclofen, 
the EPSCs in the train, after the first 2-3, were actually larger than corre
sponding EPSCs in the absence of baclofen. By reducing excitatory transmit
ter release, and thus frequency-dependent synaptic depression, baclofen 
caused a relative enhancement of transmission during the train. There was 
little difference in the depression during a train in baclofen whether the train 
was elicited at 20 Hz or 500 Hz, whereas without baclofen much greater depres
sion occurred during the high-frequency train. A decrease in the probability 
of release appeared to be responsible, because the results were mimicked by 
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reducing initial transmission with a low-Caz+/high-Mgz+ solution to a degree 
similar to that caused by baclofen. Baclofen also prevented the delay in pop
ulation spike peaks that occurred during a train of stimuli and thereby also 
maintained the timing of action potentials during the train. In this case, presy
naptic activation of the GABAB receptor has the apparently paradoxical effect 
of preserving a state of excitation. These experiments reinforce the concept 
that it may be difficult to assign fixed labels such as inhibitory or excitatory to 
particular neurotransmitters. Their actions within a circuit are dependent on 
the context in which they act. 

H. Response Plasticity and IPSPs 
At least two major issues must be considered: 

1. The role of inhibition in regulating plasticity of other synapses 
2. The plasticity of the inhibitory synapses themselves 

As will be evident, an important emerging issue is whether the GABAergic 
cell under study is a principal neuron, e.g., the cerebellar Purkinje cell, or an 
interneuron. In many ways GABAergic principal cells resemble excitatory 
principal neurons more than they do GABAergic inhibitory interneurons in 
their capacity for undergoing response plasticity. 

Long-term induction of response plasticities is usually dependent on a 
rise in internal Caz+ in the postsynaptic cell. Except in the case of depolariz
ing GABA responses (McLEAN et al. 1996a), activation of a GABAergic or 
glycinergic synapse would not be expected to increase postsynaptic Caz+, so an 
important question in understanding plasticity at inhibitory synapses is what 
is the origin of the necessary Ca2+. Multiple answers to this question are pos
sible. Co-activation of NMDA receptors, high- and low-voltage-activated Ca2+ 
channels, as well as IPrdependent release from intracellular stores, all appear 
to playa role in different cases. 

IPSP plasticity may be involved in "homeostatic plasticity" (TURRIGIANO 
1999), i.e., those non-Hebbian changes in synaptic strength that occur within 
a network that tend to maintain cell firing rates within a given range, while 
preserving disparities in individual synaptic weights. The neurotrophic factor, 
BDNF (brain-derived neurotrophic factor), represents an example of a pos
sible homeostatic regulator. BDNF release itself is activity dependent, and, 
once released, BDNF reduces excitatory synaptic strengths while increasing 
inhibitory synaptic strengths, thus reducing the heightened excitability and its 
own release. 

I. Short-Term Plasticity of Interneuron Output 

Output of GABA interneurons is typically reduced for a short period after 
repetitive stimulation. Numerous mechanisms (reviewed in ALGER 1991; 
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STELZER 1992; THOMPSON 1994) of short-term IPSP plasticity have been dis
covered. They include shifts in E1PSP, presynaptic inhibition via GABAB 

autoreceptor activation, receptor desensitization, NMDA-dependent GABAA 
receptor down-regulation, and transmitter depletion. Usually these factors 
reduce the strength of inhibition and render the population of affected prin
cipal cells transiently more excitable. Often use dependent, these factors cause 
graded decreases in inhibition and thereby "gate" various forms of excitatory 
processes (ALGER 1991; THOMPSON 1994; BEAR and ABRAHAM 1996). Con
versely, short-term potentiation of applied glycine responses in rat sacral 
dorsal commissural nucleus neurons, which is mediated by a Ca2+-permeable 
type of AMPA receptor (Xu et al. 1999), transiently enhances inhibition. 

Paired-pulse stimulation of monosynaptic IPSPs typically causes a marked 
depression of the second response when the interstimulus interval is 20-2000 
ms (DAVIES et al. 1990). Under conditions of low release, e.g., when, due to sto
chastic processes, the first response of the pair happens to be small, PPD is 
reduced and may turn into PPF. Similarly, when release is reduced by substi
tution of extracellular Ca2+ by Sr2+ (MORISHITA and ALGER 1997), paired-pulse 
stimulation elicits PPF instead of PPD. Nevertheless, in most of these studies 
depression of inhibition was seen in response to extracellular stimulation 
which activates surrounding tissues as well as the interneuronal axon. Stimu-

Fig.6a-e. Frequency-dependent depression of unitary excitatory and inhibitory synap
tic connections. a Depression of PSCs in response to sustained activation at 20 Hz (1000 
action potentials) in three types of unitary synaptic connections: pyramidal neuron to 
pyramidal neuron (P~P, n = 7), pyramidal neuron to fast-spiking neuron (P~FS, n = 
11), and fast-spiking neuron to pyramidal neuron (FS~P, n = 7). Results are presented 
as percentage of the PSC amplitude during the baseline period (0.25 Hz). Each symbol 
represents the average of20 consecutive PSCs. Note similar depression during the tran
sient period in the three types of connection, but smaller depression of inhibitory PSCs 
during the steady-state period. Symbol code in this panel applies to entire figure. b Time 
course of the recovery of the PSC amplitude after switching back to baseline frequency 
(0.25Hz) following 1000 action potentials at 20Hz (see a). Lines represent fits with 
single-exponential functions to average values of individual PSCs from 6 P~P (r = 
12.1 s), 8P~FS (r = 12.7 s), and 7FS~P (r = 4.3s) synaptic connections. c The initial 
decline in the PSC when the frequency of synaptic stimulation increased to 20 Hz was 
studied with brief trains of 20 action potentials. Baseline was obtained at 0.25 Hz. Data 
from the three types of unitary synaptic connections, P~P (n = 3), P~FS (n = 3), and 
FS~P (n = 3), are superimposed. Symbols represent the average response of individ
ual PSCs after 15 to 25 repetitions of the same protocol. d Experiments similar to those 
described in a were done over a range of presynaptic action potential frequencies 
(5-40 Hz). Transient PSCs, defined as the average amplitude of the first 50 unitary PSCs 
(see corresponding line in a), were not significantly different at any frequency among 
the three types of unitary synaptic connections. e Steady-state PSCs, defined as the 
average amplitude of the 800th to the 1000th responses (see line in a), showed statis
tically significant differences between inhibitory and excitatory synaptic connections at 
10Hz and 20Hz (same symbol code as in a). Data in d and e were obtained from a 
total of 12P~FS, 8P~P, and 7FS~P synaptic connections. Each symbol represents the 
mean of 3-11 experiments. (Reproduced from GALARRETA and HESTRIN 1998, with 
permission) 
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lation of individual, visually identified interneurons in hippocampal CAl 
induces unitary IPSCs in synaptically coupled pyramidal cells (CARMANT et al. 
1997). The IPSCs show little or no PPD, suggesting that some of this plastic
ity may be a function of coactivation of other cells in the preparation, which 
could cause greater liberation of GABA and hence greater activation of 
GABAB autoreceptors. 

II. Balance Between Excitation and Inhibition 

In general, the balance of excitation and inhibition is a critical parameter for 
normal system function. As noted above, many factors decrease the strength 
of inhibition. However, as too great a decrease in inhibition leads to patho
logical hyperexcitability (see MELDRUM and WHITING, chap. 6, this volume), the 
question arises how appropriate balance between the two is maintained in 
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the face of sustained neuronal activation. One answer, in the neocortex, is 
that repetitive activation causes a greater depression of excitatory, than of 
inhibitory, synaptic currents, and prevents imbalance towards excitation 
(GALARRETA and HESTRIN 1998; VARELA et al. 1999). Recordings of synaptically 
coupled pairs of pyramidal cells and of coupled pyramidal-ceIl-interneuron 
pairs in layer I as well as layer WIll showed that the monosynaptically 
recorded unitary EPSCs and IPSCs induced by prolonged intracellular stim
ulation of the presynaptic cell differed notably in their susceptibility to depres
sion. Not only did EPSCs depress to a greater extent than IPSCs, but IPSCs 
recovered from depression much faster (see Fig. 6). Differences in depression 
between EPSCs and IPSCs have also been detected in the rapid depression 
that occurs with brief stimulus trains (VARELA et al. 1999). Thus, electrophysi
ological stability can be maintained because of the different properties of 
inhibitory and excitatory synapses. 

This relationship could differ from place to place in the brain, however, 
as the innervation of interneurons varies. Whereas the amplitude of evoked 
GABAA IPSCs in neocortex quickly increases to a maximum with increases 
in stimulus strength, amplitudes of evoked EPSCs do not (LING and BENARDO 
1995). In the neocortex, IPSCs were activated exclusively via non-NMDA 
receptor activation, whereas in the hippocampus some IPSCs can be evoked 
by both NMDA- and non-NMDA-dependent mechanisms (FREUND and 
BUZSAKI 1996). Again, there may be regional variability in seemingly basic 
properties. 

III. The Roles of IPSPs in Regulating Plasticity at 
Excitatory Synapses 

1. LTD of GABAAergic IPSPs in Hippocampus 

There is a long and controversial history of the role of inhibition in LTP, the 
lasting change in excitability thought to underlie learning and memory. In prin
ciple, a persistent reduction in IPSPs, in effect a long-term depression, LTD, 
of IPSPs, could be involved in LTP of excitatory systems. Various conditions 
cause long-lasting depression of GABAA IPSPs, including tetanic stimulation 
(in young guinea pig CA3 cells (STELZER 1992)) and activation of mGluR fol
lowing long-duration bath application of t-ACPD (LIU et al. 1993). In some 
studies the somatically recorded IPSPs did not change, or even increased, as 
a result of the LTP-inducing stimulation. When lasting plasticity of IPSPs in 
principal cells occurs, the first question is: where did the change occur? There 
are at least three classes of synapses to consider: the interneuron-principal
cell synapse, the excitatory synapses onto the interneurons, and other synapses 
in polysynaptic networks that innervate the interneurons. 

In one study (STELZER et al. 1994) IPSPs recorded in the presence of 
CNQX from CAl pyramidal cell dendrites were persistently depressed by 
repetitive stimulation, while somatically recorded IPSPs showed no consistent 



Physiology of the GABA and Glycine Systems 43 

change. The mechanism of the IPSP depression in this case was postsynaptic, 
i.e., involving a decrease in GABAA receptor responsiveness following 
NMDA receptor activation, because responses to iontophoretically applied 
GABA were also reduced. The challenge in this instance is to identify the 
factors underlying the selective sensitivity of dendritic GABAA receptors to 
down-regulation. 

In other cases the actual site of the long-lasting modification was not the 
GABAA synapse. In CA3, repetitive bouts of low-frequency stimulation pro
duced a lasting suppression of IPSP in CA3 pyramidal cells (MILES and WONG 
1987), evidently because of an mGluR-mediated action on the interneurons 
(MILES and PONCER 1993). A stimulus train delivered to s. radiatum produced 
LTD of the s.-radiatum-evoked EPSCs in the interneurons. Even when the 
EPSC in the interneuron is suppressed, however, the actual synaptic locus of 
the LTD mechanism is not clear; it could either be at the EPSC synapse onto 
the interneuron or, as argued by MACCAFERRI and McBAIN (1995), the effect 
could be "passively propagated" via the pyramidal cell to the interneuron. That 
is, the LTD could actually be expressed at the input to the pyramidal cells, 
which, in turn, activate the interneurons. 

While passive propagation can readily account for feedback or recurrent 
inhibition, it cannot explain LTD of feedforward activation of interneuronal 
IPSPs. In some CA3 interneurons induction of LTD of one specific excitatory 
input could be established (McMAHON and KAUER 1997). Interestingly, this 
LTD generalized to other non-stimulated excitatory inputs on the same cells, 
a finding that could be explained by a postsynaptic model whereby the LTD 
induction process induced at one set of synapses on the interneuron caused a 
widespread depression of excitatory synapses on the cell. This in turn led to a 
depressed output from the cell. The mechanism by which this novel form of 
LTD (iLTD) occurs is not clear, but is unlike those producing LTD of pyra
midal cell inputs. 

In the absence of evidence (see Sect. H.lV) that the same IPSPs can 
undergo persistent enhancement, it may be difficult to integrate persistent 
IPSP depression into network models, because the inhibitory synapses would 
tend to accumulate in the depressed state, leading to unbalanced excitation. In 
general, there does not seem to be widespread support for the proposition that 
persistent IPSP suppression, specific to interneuron inputs or outputs, accom
panies LTP expression in hippocampus. As most LTP studies are done in the 
presence of GABAA antagonists, it is clear that the glutamatergic synapse is the 
primary site of LTP expression in CAL Nevertheless, there are exceptions to 
this rule, and it may prove necessary to investigate each system of interest. 

2. LTD of GABAAergic IPSPs in Cerebellum 

Cerebellar Purkinje cells make monosynaptic inhibitory contacts with, among 
others, cells in the deep cerebellar nuclei (DCN). MORISHITA and SASTRY (1996) 
showed that tetanic stimulation of the Purkinje cell axons produced a long-
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Fig.7A-D. A lO-Hz stimulation delivered in current-clamp mode induces long-term 
depression (LTD) of deep nuclear inhibitory postsynaptic currents (IPSCs). A Graph 
shows that a 10-Hz, 5-min train (arrow) does not induce LTD when delivered in 
voltage-clamp mode; however, if the same stimulation is given in current-clamp mode, 
LTD occurs. B Average of 3 IPSCs recorded before (control) and 30min after the 10-
Hz stimulation (LTD) are superimposed to illustrate the magnitude of the sustained 
depression. Note when the amplitude of the depressed IPSC is scaled to match the 
amplitude of the control IPSC, there is no appreciable difference in their shape, indi
cating that there is little change in the kinetics of the IPSC during LTD. C Summary 
of 14 experiments illustrating the time course of the depression after the lO-Hz stim
ulation (arrow) in current-clamp mode. D Consecutive IPSCs evoked at various 
holding potentials before (control) and 30min after the 10-Hz stimulation (LTD). The 
corresponding current-voltage plot is shown below the traces. The calculated reversal 
potential for the IPSC in control is 72.3mV, whereas during LTD it is 72.9 mY. IPSCs 
were recorded with a nystatin-containing pipette solution. IPSCs in B were voltage 
clamped at -54mY. (Reproduced from MORISHITA and SASTRY 1996, with permission) 

lasting depression of the IPSPs recorded in the DCN cells (see Fig. 7). The 
locus of the LTD,psp expression appeared to be postsynaptic as it was het
erosynaptic and responses to iontophoretically applied GABA were also per
sistently depressed. The mechanism of LTD,psp resembled that of LTDEPSP in 
its dependence on intracellular Ca2+ and Ca2+-dependent phosphatase activity. 
Recent evidence (AIZENMAN et al.1998) has extended the findings in the DCN 
cells by showing that Ca2+ entering these cells as a result of rebound depolar-
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izations from preceding brief hyperpolarizations is responsible for its initia
tion. Rebound depolarizations are reliably triggered by a high-frequency train 
of IPSPs. Manipulations producing modest rebound firing produced LTDEPSP, 

while more vigorous stimulation produced LTPIPsp• 

IV. Long-Lasting Enhancement of GABAA IPSPs 

1. LTP of GABAAergic IPSPs 

In the adult hippocampus, with some exceptions, there is little evidence for 
plasticity of GABAA synapses under normal conditions. Experiments to deter
mine if excitatory synapses onto interneurons in hippocampus were potenti
ated produced equivocal results, perhaps because distinctions were not made 
between the input to the interneuron and other polysynaptic factors (McBAIN 
and MACCAFERRI 1997). In an excellent recent review McBAIN et al. (1999) 
discuss the morphological and neurochemical differences between the excita
tory synapses on pyramidal cells and those on interneurons that mitigate 
against the LTP-expressing capability of the latter. Major factors include lack 
of spines (the small space promotes Ca2+ sequestration), spine apparatus, and 
differences between the glutamate receptors of the interneurons and those of 
pyramidal cells. The absence of the Ca2+-dependent phosphatase calcineurin 
in interneurons may be partly responsible for a general lack of interneuron 
LTD, as calcineurin is an important mediator of pyramidal cell LTD 
(MULKEY et al. 1994). In hippocampus, excitatory synapses onto GABAergic 
cells differ from those onto pyramidal cells. Citron, a protein effector of the 
G-protein Rho, is found exclusively in GABAergic interneurons, where it 
binds the NMDA receptors in the postsynaptic density (ZHANG et al. 1999). 
Another protein, p135 SynGAP, performs this function in pyramidal cells. 
CaMKII is present in pyramidal cells, but not in GABAergic interneurons (SIK 
et al. 1998). Indeed, direct measurements show that these synapses on 
interneurons do not undergo LTP. When LTP of IPSPs does occur it appears 
largely to be passively propagated from upstream sites onto the interneurons. 
That is, enhanced activation of cells that make excitatory synapses on the 
interneurons cause the evoked IPSP to become larger. The "pairing protocol" 
for LTP induction (GUSTAFSSON et al. 1987), in which tetanic stimulation is not 
used and LTP induction is confined to the single postsynaptic cell being 
studied, is useful for distinguishing between an NMDA-dependent effect on 
the synapses on the interneuron and others elsewhere in the circuit. McBAIN 
et al. (1999) offer the interpretation that, inasmuch as interneurons often pace 
various rhythmic firing behaviors (see Sect. I, below), having reliable, relatively 
unmodifiable interconnections to the interneurons may serve this clocklike 
function best. 

Nevertheless, there are exceptions to the rule that IPSPs provide a stable 
regulatory signal. Some excitatory synapses onto inhibitory interneurons do 
exhibit LTP. An NMDA-receptor-independent, postsynaptically induced form 
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of LTP can be induced at synapses containing Ca2+-permeable AMP A recep
tors on amygdalar interneurons (MAHANTI and SAH 1998). LTP of the inputs 
to the interneurons resulted in an enhanced disynaptic IPSC recorded from 
the amygdalar pyramidal cells, but the GABAA synapse itself did not change. 
The LTP was blocked by high intracellular concentrations of the Ca2+ chela
tor BAPTA in the interneuron, implying the induction process has a postsyn
aptic Ca2+-dependent component, and yet Ca2+ influx through voltage-gated 
Ca2+ channels was insufficient to produce LTP. Interestingly, mossy fiber 
synapses onto s. lucidum interneurons in the hippocampal CA3 region do not 
express LTP (MACCAFERRI et al. 1998) despite the fact that these same affer
ents express a presynaptic form of LTP on the CA3 pyramidal cells. Thus, 
although the induction and expression of LTP appear to be presynaptic at 
mossy fiber synapses, the postsynaptic target nevertheless has some influence 
on the process. The assumption here is that induction and expression really 
are solely presynaptic. It is not known if the postsynaptic form of LTP 
observed in the amygdala (MAHANTY and SAH 1998) can be induced at the 
Ca2+-permeable synapses on s.lucidum interneurons. 

Bidirectional plasticity of GABAergic IPSPs occurs in neonatal rat hip
pocampus (McLEAN et al. 1996a), with LTDGABA-A being NMDA-receptor 
dependent and LTPGABA-A NMDA-receptor independent. These results show 
that in the developing hippocampus, GABAA-mediated responses are subject 
to long-lasting plasticity. However, inasmuch as at these early stages GABAA 
responses are actually excitatory, the results do not address the issue of plas
ticity of inhibition. 

Actual LTP of IPSPs in developing tissue is seen in other parts of the brain. 
LTP of monosynaptic GABAAergic IPSPs in slices from layer V of young rat 
visual cortex appears to have a presynaptic origin and is not affected by 
changes in postsynaptic membrane potential or activation of NMDA receptors, 
although it has many phenomenological similarities to LTP of EPSPs (KOMATSU 
1994, 1996). LTP1PSP is dependent on postsynaptic Ca2+ and G proteins and is 
blocked by GABAB antagonists. LTP1PSP is induced by coactivation of GABAB 
and either a-adrenoreceptor or 5-HT2 receptors, which causes Ca2+ release 
from intracellular stores and an as-yet-unknown biochemical process. 

2. LTP of Glycinergic IPSPs 

The goldfish Mauthner cell receives inputs from glycinergic inhibitory 
interneurons; however, in paired recordings from an interneuron and a Mau
thner cell many anatomically well-defined synaptic contacts are found to be 
physiologically silent, i.e., small or no responses result from activating these 
synapses (CHARPIER et al. 1995). Tetanic stimulation of afferents to the silent 
inhibitory cells produces a dramatic and lasting appearance of robust IPSPs 
at the previously ineffectual synapses. The mechanism of this strengthening 
was presumed to be LTP-like and presynaptic in locus, because it could be 
mimicked by manipulation of intracellular processes that affect transmitter 
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release in the interneuron. LTP of normal glycinergic synapses on the Mau
thner cell was directly demonstrated in paired interneuron-Mauthner-cell 
recordings (ODA et al. 1995). LTP at these synapses may involve a retrograde 
messenger as it is blocked by postsynaptic Ca2+ chelation, but expressed as an 
increase in quantal release. 

3. Long-Lasting Enhancement of IPSPs - Not LTP 

Other types of lasting enhancements of IPSPs, probably not caused by tradi
tional LTP mechanisms, have also been described. Both pre- and postsynap
tic mechanisms are implicated. GABAAergic IPSPs recorded from the 
dorsomedial nucleus of the solitary tract in transverse medullary slices showed 
a sustained "tetanus-induced potentiation" (TIP) (GLAUM and BROOKS 1996) 
that resembled somewhat the LTP]Psp in visual cortex: it is independent of 
NMDA receptor activation and dependent on the activation of GABAB recep
tors. TIP is a long-lasting, but not permanent, state of potentiation with a dura
tion of -45 min, i.e., resembling "early" rather than "late" LTP. Activation of 
the GABAA receptors during the tetanus was inessential - TIP was evident 
following bicuculline washout. A role for a presynaptic site of modification 
perhaps involving P/Q-type Ca2+ channels was suggested, but the issue of a 
role for postsynaptic Ca2+ was not addressed. 

A long-lasting rebound potentiation of IPSPs is produced in cerebellar 
Purkinje cells following a brief tetanic stimulation to the climbing fiber axons, 
or a train of voltage pulses given in the cell soma (LLANO et al. 1991; KANO et 
al.1992). The potentiation, which decayed with a slow time course, represented 
a Ca2+-dependent up-regulation of GABAA receptors (as iontophoretic 
GABA responses were also increased) and was associated with a measured 
rise in intracellular Ca2+ concentration. Intracellular application of BAPTA 
prevented the response. Activation of CaMKII is thought to be responsible 
for the GABAA receptor up-regUlation (KANO 1996). 

Kindling is a lasting change in excitability produced by repeated, daily 
bouts of an initially subliminal stimulation that eventually causes full-blown 
seizures. Kindling is used as a model of an epileptic state (McNAMARA et al. 
1984; McINTYRE and RACINE 1986). Because decreases in GABAA inhibition 
often cause epileptifom discharges, it is somewhat surprising that kindling in 
the dentate gyrus caused a potentiation of inhibitory responses (SHIN et al. 
1985; OTIS et al. 1994). Quantitative immunogold receptor labeling revealed 
that both receptor density and total synaptic junction area increased, so the 
number of receptors activated by a quantum of GABAA increased (NUSSER 
et al. 1998). 

V. Target-Cell Specificity of Action 

The balance between excitation and inhibition may be modified by target
specific plasticity determined in part by the identity of the postsynaptic cells. 
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Interneurons differ markedly in the degree to which excitatory synapses on 
them facilitate in response to repetitive stimulation (ALI and THOMSON 1998). 
Although synaptic facilitation and depression are largely functions of the 
presynaptic excitatory terminals in this case, whether a given synapse facilitates 
or depresses seems to be under the control of the postsynaptic (GABAergic) 
interneurons. Evidence for this was provided by simultaneous triple recordings 
from a neocortical pyramidal cell and two different classes of interneurons 
(REYES et al. 1998). The synapses onto bitufted cells facilitated, while the 
synapses onto multipolar interneurons depressed. Because the presynaptic cell 
provided both types of nerve terminals, their physiological difference appeared 
to be determined by a retrograde signal from the interneuron. 

Presynaptic, long-term plasticities can also be controlled by the postsyn
aptic interneurons. Mossy fibers in CA3 contact both pyramidal cells and 
interneurons. However, whereas repetitive stimulation induced LTP at the 
pyramidal cell synapses, no change, or long-term depression (LTD), was simul
taneously induced at the interneuron synapses (ToTH and McBAIN 1998). 
Interestingly, although the postsynaptic receptors on these two cell types differ 
(see Sect. B.I.2), the induction of LTP rather than LTD was a function of the 
different properties of the presynaptic terminals. Glutamate release from ter
minals on pyramidal cells was influenced by cAMP-dependent processes and 
was enhanced by forskolin, whereas forskolin had no effect on the EPSCs pro
duced in the interneurons. Thus, basic properties of presynaptic terminals of a 
given input pathway are coordinated with the nature of the postsynaptic cell. 
In this case, the excitatory connection from dentate gyrus to CA3 will be 
enhanced, and the inhibitory connection weakened by repetitive activation of 
granule cells. The computational properties of the system will be correspond
ingly altered by appropriate afferent input. 

VI. Facilitation of LTD Induction at Other Synapses 
by IPSP Depression 

It is clear that GABAA IPSPs can regulate the expression of NMDA
dependent plasticities in the hippocampus. GABAA antagonists facilitate LTP 
and LTD induction by disinhibiting NMDA responses (ABRAHAM and 
WICKENS 1991; TOMASULO et al. 1993; ZHANG and LEVY 1993; BEAR and 
ABRAHAM 1996). However, for IPSP depression to have this effect, lasting sup
pression of IPSPs is not required. Rather the IPSPs need to be suppressed only 
long enough to permit Ca2+ influx into the cells through the NMDA channels. 
Typically the induction period is brief. Thus the short forms of IPSP depres
sion that have been described are especially important in regUlating long-term 
response plasticity. 

Some forms of LTD, like some forms of LTP, involve NMDA receptor 
stimulation. In CAl, LTD produced by I-Hz stimulation given for 15min is 
much more prominent in young hippocampal tissue (10-21 days) than it is in 
adult, 235-day hippocampus, where it is either much reduced (DUDEK and 
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BEAR 1992; DUDEK and FRIEDLANDER 1996) or absent (WAGNER and ALGER 
1995). WAGNER and ALGER (1995) showed that pharmacological antagonism of 
IPSPs facilitates the induction of NMDA-dependent LTD of excitatory trans
mission in adult, although not juvenile, animals (but, cf. rnIELS et al.1994). The 
difference in susceptibility to LTD induction appeared to be related to a devel
opmental difference in the maturation of inhibition. Evidently a more potent 
inhibitory influence is maintained during the stimuli in adult slices than is 
maintained in younger tissue, and, by weakening GABAAergic inhibition, bicu
culline rendered the adult tissue capable of evincing LTD. These results do not 
depend on the resolution of the issue of LTD of IPSPs, but rather on the 
strength of inhibition during the LTD-inducing stimulus train. Interestingly, 
adult and juvenile slices alike were susceptible to "depotentiation," an LTD
like effect that removes a previously established LTP (STAUBLI and LYNCH 
1990). This finding would be compatible with the concept that the LTP
inducing stimulation somehow weakens inhibition in a way that is not 
always detectable with a somatic electrode (WAGNER and ALGER 1996a). 

I. Synaptic Inhibition and the Generation of Rhythmic 
Firing Patterns in Populations of Cells 

Long suspected on the basis of morphological and immunohistochemical data, 
paired electrophysiological recordings have confirmed that interneurons 
synapse onto other interneurons. While this clearly paves the way for dis in
hibitory effects on principal cells, as envisioned by ROBERTS (1991) and 
KRNJEVIC (1981), further consideration of the interconnectivity among groups 
of interneurons has deepened the complications. This topic is well discussed 
in FREUND and BUZSAKI (1996), and it suffices to mention here that, depend
ing on the complexity of these interconnections, straightforward principal-cell 
disinhibition may be only one of a set of possible outcomes. 

The role of synaptic inhibition in generating the rhythmic waves recorded 
in the thalamocortical system and hippocampus was recognized by the late 
1950s and early 1960s (ECCLES 1964). Feedback inhibition via the recurrent 
inhibitory circuits that had been discovered in the spinal cord and various 
brain regions appeared to provide an ideal substrate for rhythm generation. 
Excitation of the principal cells would be cut off by the recurrent IPSP which 
would itself cease as the principal cell firing stopped, permitting excitation to 
rise again. 

Hyperpolarizing inhibition can synchronize principal cell firing by impos
ing periodic membrane potential fluctuations, which control the timing of 
action potential generation, on cells. Different patterns of rhythmic activity, 
including theta (4-12 Hz), gamma (30-100Hz) and fast (>200Hz) oscillations, 
involving the synchronous firing of principal neurons and interneurons, 
subserve many functions in the developing and adult CNS (for reviews see 
CHERUBINI et al. 1991; SINGER and GRAY 1995). Cortical interneuron networks 
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may generate both slow and fast cortical oscillatory activity (e.g., WHITTING
TON et al. 1995, 1997; BURL et al. 1998; FISAHN et al. 1998; PENTTONEN 1998; 
RINZEL et al. 1998; ZHANG et al. 1998). Similarly, inhibitory neurons of the 
thalamic reticular and perigeniculate nuclei generate the synchronized activ
ity of thalamocortical networks (MCCORMICK and BAL 1997). Gamma oscilla
tions (30-100Hz) occur in various brain structures and several different 
species (SINGER and GRAY 1995; LAURENT 1996). Synchronous cortical gamma 
oscillations can occur over large distances and could, therefore, provide a sub
strate for "binding" together spatially separated areas of cortex, a hypotheti
cal process whereby disparate aspects of a complex object, for example, are 
combined to form a unitary perception of it (TRAUB et al. 1996). 

I. Gamma Oscillations 

Gamma activity is especially evident in the hippocampus and entorhinal 
cortex, and gamma oscillations recorded in vivo occur synchronously in each 
subdivision of the hippocampus (BRAGIN et al.1995). In vitro models of gamma 
activity in the hippocampus and somatosensory cortex exist (WHITTINGTON et 
al. 1995; BURL et al. 1998; FISAHN et al. 1998). Inhibitory interneurons appear 
to playa critical role in all cases. Gamma oscillations in CAl pyramidal cells 
depend on metabotropic glutamate receptor activation and can occur in the 
absence of fast excitatory transmission (WHITTINGTON et al. 1995). The oscilla
tions can be blocked by bicuculline, suggesting that they are produced within 
an interneuron network and then entrain pyramidal cell firing. Although some 
gamma oscillations persist in the presence of ionotropic glutamate receptor 
blockers, these oscillations are spatially restricted, with a maximum range of 
1.2mm (WHITTINGTON et al. 1995). Longer-range synchrony arises when, as 
would be expected to occur under more physiological conditions, pyramidal 
cells participate in the gamma oscillations (TRAUB et al. 1996). An important 
problem in understanding long-range synchrony is how coherence is estab
lished over distances sufficient to involve significant delays caused by 
axonal conduction time. The model of TRAUB et al. (1996) proposes that, when 
interneurons fire doublets, rather than single, spikes, coherent long-range 
synchrony is established over many millimeters. Experimental observations of 
interneuron firing patterns support the model. When higher-intensity stimula
tion is used, a switch from gamma to beta (10-25 Hz) rhythms occurs, and this 
is associated with a decrease in gamma frequencies. 

On the other hand, in the hippocampal CA3 region muscarinic choliner
gic activation causes gamma oscillatory activity which is completely blocked 
by bicuculline (FISAHN et al. 1998), as well as by the non-NMDA receptor 
antagonist NBQX, thus implicating CA3 recurrent excitatory connections 
in this case. Although the mechanisms for their generation may vary, the 
frequency of the gamma oscillations is dependent on the magnitude of the 
unitary inhibitory postsynaptic conductance and its time course. Barbiturates, 
which prolong the decay of the IPSP (NICOLL et al. 1975), decrease the 
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frequency of the oscillations (WHITIINGTON et al. 1995; FISHAHN et al. 1998; 
BUHL et al. 1998). 

II. Theta Rhythms 

Theta oscillations (4-7 Hz) are prominent in the rat hippocampus and are 
thought to be important in integrative and memory function (BLAND and 
COLOM 1993). During theta activity, rhythmically firing interneurons produce 
GABA-mediated fluctuations of the membrane potential of CAl pyramidal 
cells (LEUNG and YIM 1986; Fox 1989). Rhythmic chloride-mediated conduc
tances originate close to the cell body (Fox 1989; SOLTESZ et al. 1993). Intra
cellular recordings of hippocampal pyramidal cells and interneurons show that 
theta frequency is voltage independent, but that theta amplitude and phase 
are voltage dependent (YUNEN et al. 1995b). Complete phase reversal occurs 
at the Cl- equilibrium potential, supporting the conclusion that rhythmic IPSPs 
contribute markedly to the generation of theta. COBB et al (1995), using paired 
intracellular recordings, showed that rhythmic activation of a presynaptic 
basket or axo-axonic interneuron at theta frequency instantly phase locked 
the spontaneous firing of the pyramidal cells in CAl (see Fig. 8). Because 
GABAergic interneurons have extensive axonal arborizations, this synchro
nized inhibition could then be imposed onto a large population of principal 
neurons (DEKKER and PARKER 1994; COBB et al. 1995). In some cases theta can 
be produced by blocking GABAA and GABAB receptors (KONOPACKI et al. 
1997), so other factors are also important. 

III. Single-Unit Studies In Vivo 

Isolation of single-unit firing from the hippocampi of behaving rats, using 
simultaneous recordings from multiple electrode arrays, has been reported 
(CSICSVARI et al. 1998). Interneuron action potentials could be distinguished 
from pyramidal cell action potentials. During rhythmic firing behaviors (sharp 
waves, or theta activity), synchronous firing of both pyramidal cells and 
interneurons occurred. Cross-correlational analysis revealed single pyramidal 
firing was directly coupled to interneuron firing, and complex spikes were 
more effective in driving the interneurons than were single spikes. The effi
ciency with which interneurons were driven varied as a function of the neu
ronal population activity. 

Which interneurons are capable of synchronizing principal cell activity, 
and whether different interneuronal subpopulations are responsible for the 
generation of the different frequency patterns of activity, remain to be deter
mined. Intracellular recordings from hippocampal basket cells in vivo showed 
that these cells, which innervate the perisomatic region of pyramidal cells, are 
capable of firing action potentials at gamma frequency in vivo (PENTIONEN 
1998). In the dentate gyrus the firing of morphologically identified interneu
ronal types was phase-locked to gamma activity (SIK 1997). 
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Fig.8A,B. Synchronization of pyramidal cell (PC) firing in the presence of ionotropic 
glutamate-receptor antagonists. A Two simultaneously recorded pyramidal neurons 
were depolarized to elicit action potentials during which single IPSPs (triangles), 
evoked at 0.2-0.5 Hz by minimal stimulation, reset the regular firing of both cells (30 
consecutive sweeps; n = 5). The stimulation strength was adjusted to evoke an IPSP of 
amplitude equivalent (<3 m V) to that produced by an individual, intracellularly 
recorded interneuron. In addition, rebound depolarization as in Fig. 2A,B could be 
evoked in both pyramidal cells (data not shown). B Rhythmic IPSPs (a) evoked by 
minimal stimulation at 5 Hz (triangles) synchronize the firing of two simultaneously 
recorded pyramidal neurons. Dotted lines indicate intervals of 0.2 s. Cross-correlogram 
(b) for the two neurons in a 5-s period before rhythmic minimal stimulation. Corre
sponding cross-correlogram (c) for the 5-s period following the start of rhythmic 
minimal stimulation. Note more pronounced cross-correlation during entrainment. 
(Reproduced from COBB et al. 1995, with permission) 

IV. Thalamic Rhythms 

In the thalamus, inhibition is involved in generating rhythmic oscillations that 
occur in non-rapid-eye-movement sleep (non-REM) (MCCORMICK and BAL 
1997). Hyperpolarizing GABAergic IPSPs activate a depolarizing, mixed Na+
and K+-dependent current that turns on at negative membrane potentials (Ih) 
(see PAPE 1996 for review). The activation of Ih slowly depolarizes the neuron 
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to threshold for activation of a low-threshold Ca2+ current (h) that causes a 
Ca2+ spike and a high-frequency burst of action potentials. The falling phase 
of the low-threshold Ca2+ spike helps activate Ih. Spindle waves in the thala
mus are generated by an interaction between the GABAergic neurons of 
the thalamic reticular nucleus and the excitatory thalamic relay cells (see 
MCCORMICK and BAL 1997 for review). Reticular cells evoke a barrage of IPSPs 
that activates Ih in relay neurons. When elicited at depolarized membrane 
potentials, the offset of the hyperpolarizing IPSP in thalamocortical cells is fol
lowed by a rebound low-threshold Ca2+ spike. When elicited at the hyperpo
larized membrane potentials associated in these neurons with sleep, the IPSP 
is reversed to a relative depolarization and directly triggers the low-threshold 
spike and causes burst firing in the reticular nucleus cells (BAZHENOV et al. 
1999). Activation of Ih also leads to the initiation of low-threshold Ca2+ 
spikes and action potentials in the thalamic relay cells. These action potentials 
re-excite the reticular cells to which they are reciprocally connected, and so a 
rhythmic pattern of activity is established. Many cortical and hippocampal 
cells, both pyramidal cells and interneurons, exhibit Ih (MACCAFERRI and 
McBAIN 1996; PAPE 1996), but whether this current is responsible for the gen
eration of oscillatory activity in these structures is unclear. 

Certain neurotransmitters simultaneously suppress evoked GABA 
release (PITLER and ALGER 1992a; BEHRENDS and TEN BRUGGENCATE 1993), 
while enhancing spontaneous action-potential-dependent release. While this 
apparent paradox is not yet resolved, it does suggest that these transmitters 
might, by shifting the mode of GABA release from pulsatile to tonic, also shift 
the function of GABA with in neuronal circuits. The population rhythmicity 
fostered by pulsatile release (COBB et al. 1995) might be switched to desyn
chronized, irregular firing that is induced by tonic GABA release (HAUSSER 
and CLARK 1997). 

v. Depolarizing GABAA Responses and Rhythmic Firing 

Depolarizing GABA responses have important physiological roles in imma
ture and adult CNS; e.g., they can help relieve the voltage-dependent block 
of the NMDA channel by Mg2+ (STALEY et al. 1995). Depolarizing GABA 
responses can give rise to synchronous excitatory activity. 4-AP induces slow 
potentials in the hippocampus and entorhinal cortex that are mediated by 
GABAA receptors (PERREAULT and AVOL! 1989,1992), and that persist in the 
absence of excitatory transmission (PERREAULT and AVOL! 1989; MICHELSON 
and WONG 1991, 1994). These GABAA-mediated potentials could be impor
tant in certain forms of epilepsy, as they are able to facilitate the onset of ictal 
discharges in the entorhinal cortex (AvOL! et al. 1996). In thalamic reticular 
nucleus, depolarizing GABAA responses are capable of triggering low
threshold spikes which propagate and initiate sleep spindle oscillations (7-14 
Hz) throughout the thalamocortical network (BAZHENOV et al. 1999). Both 
cholinergic and GABAergic projections to the hippocampus originate in the 
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medial septum. By recording from pairs of theta-related septohippocampal 
cells, BLAND et al. (1999) studied cellular activity during transition into, and 
out of, hippocampal theta activity. Inhibition of key hippocampal cell types 
was critical in both transitions. Depolarizing GABAA responses activate other 
interneurons, giving rise to inhibitory effects on principal cells. In the hip
pocampus, depolarizing GABAA-mediated events synchronously activate a 
population of interneurons, which in turn causes large-amplitude IPSPs in the 
pyramidal cells (MICHELSON and WONG 1991,1994). 

VI. Hypersynchrony and Pathology 

While synchronized cortical network rhythms are thought to subserve normal 
physiological functions, including sensory processing (GRAY and MCCORMICK 
1996), consciousness (LUNAS and RIBRARY 1993) and memory storage (LISMAN 
and IDIART 1995), decreases in inhibition resulting in hypersynchronized activ
ity occur in the pathological condition of epilepsy. In the glycinergic system, 
mutations that affect the glycine receptor are associated with inherited 
"startle" syndromes (RAJENDRA and SCHOFIELD 1995). These hyperexcitability 
reactions to sensory stimuli are thought to occur because of impaired glycine
mediated inhibition. 

During epileptic activity a high degree of synchronized firing of popula
tions of cortical principal cells leads to sharp waves or spikes in the EEG. 
Blockade of inhibitory function is a common approach for inducing epilepti
form activity (see MELDRUM and WHITING, chap. 6, this volume). Such large
scale reductions in inhibition are, however, unlikely to occur physiologically, 
and more subtle variations in inhibitory and excitatory strength are to be 
expected. Studies in the hippocampal slice preparation have shown that a 
reduction of inhibition allows latent recurrent excitatory connections in CA3 
to become functional (MILES and WONG 1987). Under conditions of reduced 
excitation, activation of a few pyramidal cells can therefore entrain additional 
pyramidal cells within the hippocampus and subsequently drive neurons in 
other limbic structures from which epileptic activity can become widespread. 

As well as providing an inhibitory input to the thalamic relay cells, thala
mic reticular cells also provide inhibition within the reticular nucleus via axon 
collaterals. Recurrent inhibition may prevent hypersynchrony and generalized 
epilepsy (HUGUENARD and PRINCE 1994; KIM et al. 1997). Indeed, in mice 
devoid of the fJ3 GABAAreceptor subunit, GABAA responses within the retic
ular nucleus are dramatically reduced and, concomitantly, thalamic syn
chrony is greatly increased (HUNTSMAN et al. 1999). Thus, reciprocal inhibitory 
connections can desynchronize as well as synchronize activity in neuronal pop
ulations. Muscarinic, cholinergic induction of synchronous epileptiform activ
ity in principal cells of the entorhinal cortex involves rhythmic firing of 
principal cells and GABA interneurons (DICKSON and ALONSO 1997). Syn
chronous firing in interneuron networks was not abolished when fast excita
tory transmission was pharmacologically blocked. Evidently, IPSPs can pace 
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epileptic activity as it can other rhythmic firing. Through activation of nico
tinic receptors, acetylcholine excites neocortical interneurons that fire low
threshold spikes and target pyramidal cell dendrites (XIANG et al. 1998). 
Acetylcholine inhibits fast-spiking interneurons that target pyramidal cell 
somata. Conceivably, this transmitter can direct the flow of information 
through cortical circuits by switching on and off interneuronal networks. A 
detailed understanding of the role of interneurons in the generation and main
tenance of epileptiform activity is, however, lacking. 

VII. Control of Rhythmic Firing Through Inhibition of 
Gap Junctional Connections 

GABA regulates the pattern-generation properties in the olivocerebellar 
system (LANG et al. 1996). The cerebellar nuclei provide a major source of 
GABAergic input to the inferior olive. Disruption of the integrity of this trans
mission either by picrotoxin injection into the olive or chemicallesioning of 
the nuclei altered the rate, synchrony, and rhythmicity of complex spikes 
induced in Purkinje cells by the climbing fibers that originate in the inferior 
olive. The basis of rhythmic complex spiking was the gap-junction-mediated 
electrotonic coupling among olivary cells. Blockade of GABAA inhibition, by 
increasing the input resistance of the coupled cells, would increase the effec
tive electrotonic coupling between cells, thus synchronizing their activity to a 
greater degree. Whereas simple inhibition would decrease firing rates without 
necessarily altering the degree of synchronous activity, an effect on synchrony, 
mediated via alterations in electrotonic coupling, would not necessarily be 
accompanied by changes in firing rates. 

Electrical coupling among interneurons is also implicated in the genera
tion of oscillatory patterns of activity. Fast (>200 Hz) oscillations in CAl pyra
midal cells depend on synaptic inhibition (YLINEN et al. 1995a). In the 
hippocampal slice preparation, however, fast oscillatory activity persists in the 
presence of antagonists of both excitatory and inhibitory transmission, but is 
abolished by gap junction blockers (DRAGUHN et al. 1998). Gap junctions and 
reciprocal connections among interneurons have also been proposed to be 
responsible for the slow (<1 Hz) activity recorded in CAl pyramidal neurons 
(ZHANG et al. 1998). In the molecular layer of the cerebellar cortex, synchro
nized activity between adjacent interneurons is mediated by electrotonic junc
tions; chemical transmission plays no role (MANN-METZER and YAROM 1999). 
Electrical coupling currents initiated the synchronous action potential firing 
in coupled cells. However, prolonged voltage-dependent intrinsic currents, 
triggered by the action currents, widened the temporal window in which syn
chronized firing could occur. The coupling ratio between the cells varied with 
the input resistance of the postsynaptic cell and not with the coupling resis
tance, which was constant. The functional organization of the compact net
works of interneurons that were revealed with dye injections would be subject 
to ready modulation by a variety of influences on the cells, and this in turn 
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would alter the dynamics of the rhythmic firing patterns generated by the net
works. In neocortex simultaneous recordings from pairs of interneurons 
revealed separate electrically coupled networks of fast-spiking (GALARETIA 
and HESTRIN 1999; GIBSON et a1. 1999) or low-threshold-spiking (GIBSON et a1. 
1999) interneurons; pyramidal cells were not electrically coupled to these cells 
or to each other. The coupling coefficient, although modest (-0.1 for low sinu
soidal current injection frequencies and less for higher frequencies), was nev
ertheless sufficient to promote synchronous firing in connected cells. The two 
networks of interneurons received separate synaptic inputs, which should 
foster their participation in distinct rhythmic activities. Interestingly, the inci
dence of "dye coupling" (the passage of dye molecules through gap junctional 
channels, a commonly used test for the presence of electrical connections) was 
rare, in contrast to the frequent occurrence (70%-80%) of electrical coupling 
detected in paired recordings (GIBSON et a1. 1999). This suggested that novel, 
dye-impermeable gap junctions may be involved, and showed that the absence 
of dye coupling is not definitive evidence against electrical coupling. 

J. The Role of Inhibition in Sensory Processing 

A central role for inhibition in sensory processing has long been appreciated. 
In addition to reducing or blocking neuronal responses, inhibition shapes neu
ronal responses to specific stimuli (DYKES et a1. 1984; SILLITO 1984; CROOK and 
EYSEL 1992) and governs the temporal response properties of sensory neurons 
(BUONOMANO and MERZENICH 1995, 1998). In the spinal cord and brainstem 
both GABAergic and glycinergic inhibition affect the response properties of 
sensory neurons, whereas, in the cerebral cortex, GABA determines the stim
ulus-specific responses and the receptive field properties of sensory neurons. 
In the cortex, GABA inhibition is also involved in the plasticity of receptive 
field properties and cortical topography which occur in somatic sensory, audi
tory, visual cortex and motor cortex (for reviews see KAAS 1991; SCHEICH 1991; 
SCHREINER 1992; GILBERT 1993; JONES 1993; WEINBERGER 1995; BUONOMANO 
and MERZENICH 1998). 

I. Receptive Field Shape 

A detailed discussion of inhibition and the shaping of stimulus-specific 
responses within the sensory pathways is beyond the scope of this review. 
Suffice it to say that inhibition shapes receptive fields in all sensory modali
ties, including orientation selectivity in the visual system (SILLITO 1984) and 
frequency tuning in the auditory system (SUGA et a1. 1997). Extracellular appli
cation of bicuculline increases the size of receptive fields and reduces the 
sharpness of tuning (e.g., DYKES et a1. 1984; SILLITO 1984). However, the 
precise role of inhibition in the generation of sensory neuronal responses 



Physiology of the GABA and Glycine Systems 57 

remains controversial. NELSON et al. (1994) found that blocking inhibition in 
a single neuron in the visual cortex (with an intracellular perfusion of cesium 
fluoride, SITS, and picrotoxin) had only a very minor effect on that cell's 
orientation selectivity. Both simple and complex cells retained much of their 
orientation selectivity, suggesting that inhibitory synaptic inputs were not 
essential for this response characteristic. DOUGLAS et al. (1995) proposed a 
model of recurrent excitation within the cortex that could generate the recep
tive field properties of visual neurons. Blocking GABA currents within a single 
cell would have a limited effect as the majority of the excitatory inputs arise 
through cortical connections from other cells, whose orientation selectivity 
had not been modified. In this model inhibition served only to prevent 
"runaway excitation." Even when specific inhibitory inputs are important, they 
need not depend on a direct inhibitory action upon the principal cells, as dis
inhibition has also been proposed to play an important part in the integration 
of afferent inputs. In the somatosensory cortex, for example, GABAergic 
axons arising from the basal forebrain preferentially make synaptic contacts 
with GABAergic neurons which would, therefore, be expected to result in a 
powerful disinhibition of pyramidal cells (DYKES et al. 1984). Disinhibition is 
probably important in all sensory cortical areas as inhibitory inputs from the 
basal forebrain terminate on GABAergic cells throughout the neocortex 
(FREUND and MESKENAITE 1992). However, the final functional consequences 
of what would appear to be straightforward disinhibition depend on the 
complete details of the neural circuits involved. 

An unresolved issue concerns the mechanism by which sensory neurons 
integrate their mixed excitatory and inhibitory inputs. Several studies 
addressed the issue of whether or not linear or nonlinear synaptic mechanisms 
are involved in sensory computations. Inhibition can suppress excitation as a 
result of the linear summation of excitatory and inhibitory currents onto the 
cell. Recordings from simple cells in the cat visual cortex (JAGADEESH et al. 
1993) showed that the responses to moving stimuli in these cells could be 
predicted by the linear summation of their responses to stationary stimuli. 
Alternatively, other response properties may be generated by non-linear 
inhibitory mechanisms, such as shunting inhibition, which cause an increase 
in membrane conductance and reduce the amplitudes of the excitatory 
responses. Non-linear inhibitory mechanisms allow more complex sensory 
computations to occur. BORG-GRAHAM et al. (1998) have proposed that shunt
ing inhibition is important for the generation of on/off opponency in visual 
cortical neurons. 

II. Dynamic Modulation of Receptive Fields 

1. Deafferentation Plasticity 

Receptive field properties of neurons in adult mammals are not fixed and can 
be dynamically modulated following injury and also with learning, experience 
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and stimulus conditions. It has been suggested that GABA is also involved in 
the plastic changes that underlie the physiologically observed reorganization 
of cortical topography that occurs in adults. Major reorganizations of cortical 
maps in the adult brain were initially demonstrated following either periph
eral nerve damage, or amputation, in which areas of cortex lose their normal 
sensory inputs ("deafferentation plasticity"). More subtle reorganizations are 
related to changes in neuronal activity (e.g., SCHEICH 1991; BUONOMANO and 
MERZENICH 1998). These modifications, which result in a change in the size or 
shape of receptive fields, can occur immediately, within minutes, or arise on a 
much longer time scale, with changes developing over days, weeks, or months. 
Long-term changes in cortical representations may involve the growth of new 
connections (DARIAN-SMITH 1994), but rapid changes in cortical topography 
could arise through changes in inhibition, particularly through the unmasking 
of existing excitatory connections (JACOBS and DONOGHUE 1991) and changes 
in synaptic efficacy. 

The down-regulation of GABA inhibition is also thought to be important 
in deafferentation plasticity (JONES 1993), which could reflect decreases in glu
tamic acid decarboxylase (GAD) or in GABA receptor number (for reviews 
see KAAS 1991; GARRAGHTY and KAAs 1992; JONES 1993). That these changes 
are related to changes in activity, and not to loss of GABA neurons, is demon
strated by the fact that GABA and GAD levels can recover if normal inputs 
are restored (JONES 1993). Reductions in GABAergic inhibition also mediate 
plastic changes occurring after amputation in humans (e.g., CHEN et al. 1998), 
with the rapid removal of inhibition being essential for deafferentation plas
ticity to occur in the human cortex (ZIEMANN et al. 1998). Cortical GABAA 

and GABAB may suppress expression of reordered cortical somatic maps 
induced by deafferentation plasticity (LANE et al. 1997). A better understand
ing of the mechanisms involved in cortical reorganization could help in reha
bilitation programs. For example, loss of cortical representations following 
cochlea damage may be reversible or preventable with the appropriately 
timed implantation of cochlea implants (KLINKE et al. 1999). 

2. Activity-Dependent Receptive Field Modifications 

Modifications in cortical representations can also occur as a result of altered 
patterns of sensory afferent activity. For example, in the auditory system the 
best frequency of a cortical neuron can be shifted towards a conditioned stim
ulus frequency (WEINBERGER 1995). An increase in activity in a subset of inputs 
can also result in representational expansions of the cortical maps in adults 
(WEINBERGER 1995; BUONOMANO and MERZENICH 1998). Use-dependent 
changes in cortical representations can occur within minutes and thus facili
tate rapid adaptations to changes in the sensory input and can subsequently 
increase responses to, and representations of, behaviorally significant inputs. 
As for the large-scale changes in cortical maps that can occur following injury, 
adaptation of inhibitory inputs is one mechanism proposed to playa role in 
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use-dependent plasticity (GILBERT 1993). Within the cortex, intrinsic horizon
tal afferent pathways connect different representational areas. HIRSCH and 
GILBERT (1993) found that these connections evinced use-dependent changes 
in synaptic strength that could contribute to cortical reorganizations. Although 
most studies on maps and plasticity have been concerned with changes evoked 
by spatially or spectrally specific stimuli, there is a growing body of evidence 
showing that the temporal responses of cortical neurons can also be altered 
by experience (BUONOMANO and MERZENICH 1995; BUONOMANO et al. 1997). 
Despite the wealth of information on synaptic plasticity, and cortical map plas
ticity, it remains to be determined if LTP of excitatory and/or inhibitory con
nections is essential for cortical reorganizations (BUONOMANO and MERZENICH 
1998). It is clear that in subcortical systems increased inhibition can alter topo
graphic sensory maps. 

Long-term reorganization of topographic sensory maps also involves 
GABAAergic inhibition. Auditory space is mapped in the external nucleus of 
the inferior colliculus of the barn owl through a topographic organization of 
neurons with sharply tuned responsiveness to inter aural time differences 
(ZHENG and KNUDSEN 1999). Connections between the inferior colliculus and 
the optic tectum direct the animal's gaze towards important sounds. Alteration 
of the normal relationship between auditory space and correct gaze direction 
during development produces an abnormal representation of auditory space, 
which is, however, appropriate for the altered auditory-visual relationship. 
Normal auditory responsiveness to inter aural time differences is not perma
nently lost, but is suppressed by enhanced GABAAergic inhibition, and 
reappears when bicuculline is applied to the inferior colli cui us. 

Unlike reorganizations of maps, the initial establishment of topographic 
sensory maps may not be dependent on inhibition. Olfactory neurons express
ing a given odorant receptor project invariantly to one of only two glomeruli 
in the bulb, thus establishing a spatial mapping of olfactory qualities on the 
olfactory epithelium. Mutant mice in which the homeobox genes, DIx-J or 
DIx-2, have been knocked out lack the GABAergic interneurons of the bulb, 
yet the topographical maps form normally (BULFONE et al. 1998), so inhibitory 
responses early in development are not an absolute prerequisite for correct 
mapping. 

3. Glycine and Motor Reorganization 

Glycinergic transmission plays an analogous role in the reorganization of loco
motor activity in the prenatal rat (KUDO and NISHIMARU 1998). Coordinated 
motor activity recorded in the ventral roots of the isolated spinal
cord-hindlimb preparation was unaffected by glutamate receptor antagonists, 
but abolished by strychnine and mimicked by glycine application. Like 
GABA, glycine is thought to act as an excitatory neurotransmitter in devel
oping nervous systems, and the rhythmic activities triggered by glycine were 
lost as its inhibitory functions emerged. 
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K. Conclusions 
Neurophysiological actions of GABA and glycine clearly encompass much 
more than simple inhibition of neuronal action potential firing, and include a 
wide variety of very subtle effects. Indeed, in numerous instances it is a mis
nomer to consider them "inhibitory" neurotransmitters in view of the direct 
excitatory effects they can have. Diverse and extensive regulatory effects on 
rhythmic firing patterns abound. If the past is a guide, continued study of 
GABAergic and glycinergic systems will yield more surprises, with the func
tional diversity rivaling the morphological and neurochemical diversity of 
these systems that has long been recognized. The main details of the micro
physiology of inhibitory synapses will be understood before too long, but new 
complexities will arise as different receptor subunit combinations are local
ized to specific synaptic locations and found to have distinctive functional 
properties. It is likely that novel aspects of the various response plasticities 
will be discovered. Most significantly, as more neuronal networks are investi
gated, and those under investigation become larger and more intricate, the 
scope for neurophysiological influences mediated by GABA and glycine will 
undoubtedly grow. Broad generalizations about the functions of these systems 
continue to be hard to come by. For better or worse, detailed cellular investi
gation of specific systems of interest will be required for the foreseeable future. 
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CHAPTER 2 

The Molecular Architecture of 
GABAA Receptors 

E. A. BARNARD 

A. Repertoire of Subunit Types 

I. Structural Diversity and Uniformity 

The structure of the GABAA receptor was unknown until 1987, when its sub
units were revealed by cDNA cloning. Much general information on its mol
ecular properties had accrued from biochemical and pharmacological analyses 
prior to then (reviewed by STEPHENSON 1988). Starting from purification on a 
benzodiazepine affinity column of a protein preparation which retained the 
multiple types of binding site previously identified in the native receptors 
(SIGEL and BARNARD 1984), followed by peptide sequencing, cDNA cloning 
led to the structure of the first 2 subunit types, a1 and f31 (SCHOFIELD et al. 
1987). The topology of the subunits in the cell membrane (Fig. 1) was thus 
deduced and a superfamily of transmitter-gated ion channels became 
apparent (BARNARD et al. 1987). This, the "Cys-Ioop" superfamily (see Fig. 1) 
(COCKROFT et al. 1990; KARLIN and AKABAS 1995) is now known to contain 
five related receptor families (BARNARD 1996): acetylcholine (nicotinic), 5-
hydroxytryptamine3, GABA, glycine and glutamate (anion channel). The latter 
three, a set of anion channels, are more homologous to each other, sharing up 
to 27% amino acid sequence identity. 

Based on those first two GABAA receptor sequences, homology screen
ing led to the al-3 and /31-3 homologous subunits (LEVITAN et al. 1988) and 
subsequently to all of the others now known. These comprise a total of 19 
related mammalian subunits (Fig. 2), each encoded by a different gene. Each 
of these polypeptides contains four deduced transmembrane hydrophobic seg
ments (TMl-4). Figure 2 illustrates the eight different sequence sub-families 
into which these fall structurally and their relationships. The amino acid 
sequence identity shared between different sub-families is mostly about 35%, 
but can be as low as 23%, or as high as 47% (allyl, Ely3). Within each sub
family the members, termed isoforms (a1, al, . .. ), generally share about 
65%-80% sequence identity (but see Sect. A.I1). 

This high degree of heterogeneity is further increased by alternative exon 
splicing of the pro-mRNA, which generates from one gene two forms of the 
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Fig.I. The topology of the subunits of the GABAA receptors. This topology, deduced 
from hydropathy plots, has been confirmed in the case of the ACh receptor of this 
superfamily by the mapping of regions exposed to the extracellular or to the intracel
lular medium (KARLIN and AKABAS 1995) and by direct structural analysis (MIYAZAMA 
et al. 1999). Since all of the subunits of both families have essentially the same pattern 
of hydrophobic sequences along the chain it is assumed that this topology is the same 
in both. Five of these subunits form one channel molecule. The two cysteines which 
form the Cys-loop structure are shown by C-c. The transmembrane domains are num
bered;TM2 is selected from each ofthe five assembled subunits to form the major lining 
of the ion channel. The large intracellular loop shown starts at an approximately equiv
alent position along the chain in all of the subunits, but is very variable between sub
units, both in sequence and in length. The C-terminal tail beyond TM4 is in only some 
of the subunits as shown, being limited to only about one or two residues in most 

y2 subunit (WHITING et al. 1990; KOFUJI et al. 1991) which can have different 
tissue distributions. This occurs likewise for the (avian) fJ2 and f34 subunits 
(BATESON et al. 1991; HARVEY et al. 1994) and it is not excluded that these vari
ants also occur in mammals, especially in the known mammalian fJ2. In each 
case two products, longer and shorter, are expressed, designated "L" and "s" 
and differing by a short peptide at some point in the long intracellular 
loop between TM3 and TM4. Alternative transcripts of the f33 and as sub
units can also occur, but these would vary only the signal peptide or the 5'
untranslated region. Another product of alternative splicing deletes a short 
sequence at the N-terminus of the a6 subunit (KORPI et al.1994), but this abol
ishes the receptor activity in the combinations of it so far tested. These latter 
three variants and the avian forms are not included in the enumerations of 
isoforms here. 

The structural plan (Fig. 1) of the subunits is invariably conserved, with a 
cleaved signal peptide, an N-terminal extracellular, N-glycosylated domain of 
-220 residues, near-constant locations of TMl-3, linkage of TM3 to TM4 by 
a long intracellular loop which is very variable between isoforms in both 
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Fig. 2. A dendrogram depicting the relatedness of the subunit types of the GABAA 

receptors. The scale bar represents 10% sequence divergence on the horizontal axis. 
(The vertical distances are arbitrary). The eight functionally distinct subunit types form 
eight sub-families. Alignments are compared by a computer program which uses all 
sequence homology features. All sequences are from the rat except £, Jr, 8 (human) and 
f34 (chicken, shown for comparison with 8). The mature amino acid sequences are used, 
after signal peptide removal was predicted by a uniform method. The tree was gener
ated using as outgroup representatives rat nicotinic acetylcholine receptor /) and 5-
HT3A subunits, which illustrate the degree of homology within the superfamily. 
Modified from Fig3 of BARNARD et al. (1998), where the methods used and database 
accession numbers are given 

size and sequence, and a small or vanishing C-terminal tail. Fifty-nine amino 
acid positions show complete constancy throughout all known mammalian 
(and indeed vertebrate) subunits, of which only 16 are in the four TM seg
ments (13 in TMI plus TM2). 

The "Cys loop", a hallmark of the superfamily, is a IS-residue disulphide
bridged loop, with a constant central Tyr/Phe Pro X Asp motif, present in every 
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subunit and ending at close to 70 residues before the start of TM1 (Fig. 1). In 
the centre of TM2 there is an octet sequence, which was thought to be fully 
conserved as a signature of the GABAA receptors, Thr Thr Val Leu Thr Met 
Thr Thr, and to be directly involved in the channel conduction. However, in 
the more recently discovered subunits (often missed in earlier cloning because 
that sequence was included as a basis for consensus probes) this constancy is 
in fact absent and six of these eight positions can show variation, four of them 
in the same subunit (8). Nevertheless, certain residues in TM2 are involved in 
ion permeation, as discussed elsewhere in this volume and by BARNARD (2000). 
Two of those six natural changes are of Ser for Thr (at the first or seventh 
places in the octet), and this may function similarly. The 8 subunit requires a 
ysubunit to be present also for channel function, and suppresses the channel 
function of af3 heteromers (BONNERT et al. 1999), so it may not need all of the 
structural determinants of channel opening. 

II. Subfamilies of Subunits 

The size of the mature subunit varies noticeably, from about 420 amino 
acids (y, n) to 609 (8). The differences are largely due to very variable exten
sion of the second intracellular loop; there is also an insertion in some 
cases (especially E and 8) at the N-terminus. These differences have a 
considerable effect on estimating the true degrees of similarity of the subunits. 
Parts of those extensions may have only a low effect in differentiating func
tion, as is suggested by the species differences in a given sequence being largely 
concentrated in them. As yet, this issue has been little probed by their trun
cation or peptide exchange. The percentage identity comparisons used here 
(and generally) and the nodal positions in the dendrograms that can be con
structed are both influenced by it and by its ambiguities in aligning the 
sequences. 

Four of the subfamilies contain (so far) only one member each, 8, E, n, 8 
(Fig. 2). These playa different role to the other subunits in the composition 
of the receptors, as discussed in Sect. E. The separation into a one-member 
subfamily is less clear for 8, since its sequence identity with f3 subunits (about 
50%: BONNERT et al. 1999) is distinctly higher than that within another sub
family, the a subunits. a4 and a6 are only about 38% identical to a1 or d2 (all 
compared in the human). This shows that the classification into sub-families, 
while generally stated to be by sequence, is partly based on function. a4 and 
a6 form a sub-group which is more distinct in sequence from the other sub
group of four a subunits seen in Fig. 2. That separation has turned out to be 
greater than, e.g. that of 8 or E from a neighbouring subfamily (E having 
42 %-47% identity with yl-3, all human: WHITING et al.1997). This well reflects 
their roles in receptor composition: all of the a subunits can function in 
combination with a f3 and a ysubunit, but only a4 and a6 then confer insen
sitivity to benzodiazepines. Neither 8 or E function in combination with af3 
alone. 



The Molecular Architecture of GABAA Receptors 83 

Another /3 subunit was cloned from the chicken (BATESON et al. 1991), 
termed f34 because it shares a maximum of 77% identity with mammalian f31-3 
mature subunits, and often significantly less. That contrasts with the 92% or 
higher identity between the chicken and mammalian 133 orthologues (BATESON 
et al. 1990), which is typical of the very high species conservation in the 
GABAA receptors. Since the most recently cloned e subunit is closest in 
sequence to /3 subunits (BONNERT et al. 1999) (Fig. 2) that raises the question 
whether e and f34 are orthologues. This appears not to be the case, since human 
e shares only about 51 % identity with both human /31 and avian f34 (less with 
human f32 and 133). Occurrence of a mammalian f34 has not as yet been inves
tigated, but cannot be excluded. Although the sequence divergence of e from 
others is less than is the case for any other subfamily, since it does not act as 
a /3 subunit when expressed (BONNERT et al. 1999), it is assigned to a separate 
subfamily. 

B. The Subunit Number per Receptor Molecule 

To understand the construction of GABAA receptor subtypes from this reper
toire of subunits, it is necessary first to establish the total number of subunits 
in each receptor molecule, and then to know whether this number is constant 
for all the native compositions. It has become clear that - with the possible 
exception of the p subunits, considered in Sect. F below - this number will be 
made up by several subunit types in each molecule, i.e. the receptors are in 
general heteromeric (discussed in Sect. c.n). Hence, the ultimate goal must be 
to know the stoichiometries of the subunit types within that number, for the 
range of GABAA receptors in situ. 

Regarding the number of subunits per receptor, the prediction has 
often been made that this will be the same (five subunits) as for another 
transmitter-gated ion channel where the composition has been unequivocally 
established: the GABAA receptor subunits show a low but definite sequence 
homology with the subunits of the nicotinic acetylcholine receptors. Both are 
in the same superfamily within the transmitter-gated ion channels (SCHOFIELD 
et al. 1987; BARNARD 1996, 2000). The muscle type of that receptor occurs in 
the Torpedo electric organ at such a high density in post-synaptic membrane 
sheets that it is possible to prepare membranes containing a surface lattice of 
the receptors which form into tubular crystals. From these a three-dimensional 
structure of the molecule could be obtained by cryo-electron microscopy and 
image analysis by N. Unwin and colleagues, now at 4.6 A resolution (MIYAZAWA 
et al. 1999). Those studies provide absolute proof that this receptor is pen
tameric, with the ion channel located in the centre of five homologous trans
membranous subunits. A wealth of other studies had established that these are 
of four types, a, /3, rand 0, with two copies of the agonist-binding a subunit 
per molecule (reviewed by DEVILLERS-rnIERY et al. 1993; KARLIN and AKABAS 
1995). 
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For the GABAA receptors, the situation is necessarily more complex, since 
the unique situation in the Torpedo post-synaptic membranes does not recur 
and since there are several classes of subunits involved in the receptor popu
lation in highly variable ways. It is, therefore, preferable to use the natural 
GABAA receptor population from the brain, rather than a selected expressed 
recombinant composition which mayor may not be representative of that pop
ulation, and to make direct analyses thereon, since these will not be limited 
by an assumption of the subunit classes to be taken as co-assembling. These 
requirements have been met using purified GABAA receptors from pig brain 
cortex and symmetry analysis on the electron microscope images of the dis
persed molecules of the receptors. This method yields a power spectrum for 
each particle with a peak at its dominant symmetry. This symmetry is five-fold, 
over the population of particles analysed (NAYEEM et al. 1994). Further, the 
negatively-stained images obtained for all of the receptor particles indicated 
a central pore of the pentameric rosette, corresponding to the image observed 
similarly with negatively-stained Torpedo receptor particles, due in the latter 
(MIYAZAWA et al. 1999) to a central channel in the membrane enclosed within 
the receptor. The particles isolated from the brain will comprise a variety of 
GABAA receptor SUbtypes. We can only say that at least the majority are pen
tameric, since a deviating small minority with an atypical subunit composition 
would not be detected in the experimental noise. Evidence from independent 
methods has supported this conclusion: molecular weights in solution, when 
determined by rigorous hydrodynamic methods, of native brain receptors 
(MAMALAKI et al.1989) or recombinant a1 /31 y2 receptors (KNIGHT et al.1998) 
agree with a pentamer, Estimates of the ratios of a, /3 and ysubunits in their 
recombinant receptors, noted below, also fit best with a subunit total of five. 
In view of the convergence in these diverse cases, and the concurrence with 
other receptors in the same superfamily (BARNARD et al. 1996), it is presumed 
that the pentameric structure holds for all of the GABAA receptors. This has 
not been studied, however, specifically for the subtypes containing 8, £, IT or p 
subunits. 

c. Subunits Within the Pentamer 
I. Two Subunit Pools for Receptor Assembly 

Some of the ionotropic GABA receptors in the retina exhibit a highly distinc
tive pharmacology, these alone being insensitive to bicuculline and to barbi
turates and neurosteroids (for details see BORMANN and FEIGENSPAN, Chap. 10, 
this volume). They are also sensitive to the agonist cis-4-aminocrotonic 
acid and are unaffected by benzodiazepines (although those latter prop
erties are also found in minorities of other GABAA receptors). These have 
been described previously as "GABAc receptors". This type contains the pI, 
p2 or p3 subunits, all three being predominantly in the retina (CUTTING et al. 
1991, 1992; WANG et al. 1994; ENZ et al. 1995; ZHANG et al. 1995; OGURUSU et 
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al. 1997) but some are expressed in other brain regions also (ENZ et al. 1995; 
WEGELIUS et al. 1998; ENZ and CUTTING 1999; OGURUSU et al. 1999). On the 
retinal bipolar cells, the p subunits occur in synaptic receptor clusters on cells 
which are separate from the clusters of non-p subunits at other synapses 
(FLETCHER et al. 1998; KOULEN et al. 1998). In recombinant co-expressions so 
far investigated, the p subunits do not participate in combinations with the 
aforementioned a, f3 or ytypes (SHIMADA et al. 1992; KUSAMA et al. 1993a; ENZ 
et al. 1995; HACKAM et al. 1998). Hence, on present information a pool of at 
least 16 subunit types (plus at least 2 splice variants) is used in forming the 
main class of mammalian GABAA receptors, plus a second pool of at least 3 
p subunits which are used separately. Since the p subunits are homologous to 
the other subunits and form similar anion channels, the International Union 
of Pharmacology (IUPHAR) places them within the GABAA receptors and 
discontinues the term "GABA c receptors", noting that it is illogical to place 
within the GABA receptors the metabotropic B class (a long-established des
ignation) between A and C ion channel classes (BARNARD et al. 1998). The 
former C sub-class is termed now the AOr sub-class (r denoting p-containing 
and the zero the absence of the main pharmacological properties of the 
others), i.e. the GABAAOr receptors. 

II. A Constrained Combinatorial System for 
the Receptor Compositions 

We therefore start from the situation that a repertoire of at least 20 mam
malian subunits (including the y2 splice variant) is available. The total is 21 if 
the splice variant of f32, found to be expressed in the chicken (HARVEY et al. 
1994), is included, its origin in the TM3/TM4 loop being similar to the splic
ing there of y2, which is known (see above) to occur both in birds and 
mammals; indeed, two polypeptide forms of f32 have also been found (although 
not yet sequenced) in the mammal (BENKE et al. 1994). This set is drawn upon 
to a total of five for each receptor molecule. The selection for this produces a 
combinatorial system for constructing these receptors. This could in principle 
generate an impossibly large number of subtypes: constraints which reduce 
this exist at several levels. The first is the separation into two pools for co
assembly as described above. This removes from the potential total the com
binations of the p subunits with any of the others. The second is that, so far as 
is known, all normal GABAA receptor molecules other than Aor forms (i) 
require both a and f3 subunits; (ii) require in addition one or more of the y, 8, 
E, nor 8 subunit types, which do not occur otherwise; (iii) usually contain either 
three or four different subunit types (which may include dual isoforms of one 
type, e.g. a1a6). A possible exception to (ii) might be receptors containing only 
a and f3 subunits: in vitro these can robustly co-express functional receptors 
in all host cell types tried (SCHOFIELD et al. 1987; SHIVERS et al. 1989; PUlA 
et al. 1991; SHINGAI et al. 1991; ANGELOTTI and MACDONALD 1993; ATKINSON 
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et al. 1994; HARTNETI et al. 1996), which behave as pentamers (KNIGHT et al. 
1999) and which can be maintained long-term in stable cell lines (Moss et al. 
1990; HADINGHAM et al. 1992). It is unknown, however, whether such af3 recep
tors exist in vivo, though there is some evidence that they might in the case of 
an a4 13 receptor (BENCSITS et al. 1999). 

Binary combinations other than af3 pairs, or even single subunits, can, for 
most of the a, 13 or risoforms, also be expressed functionally, in oocytes and 
in some but not all (ANGELOTII et al. 1993) transfected mammalian cell types 
(BLAIR et al. 1988; PRITCHETI et al. 1988; SHIVERS et al. 1989; SIGEL et al. 1990; 
VERDOORN et al. 1990; SANNA et al. 1995; KRISHEK et al. 1996). This expression 
is in most cases weak, depending on the subtype, species or host cell, and it is 
always much increased when supplemented to give an af3r combination. It is 
not considered, therefore, to give an exception to the aforementioned rules 
operating in vivo. The selection for af3ris such that even the robustly expressed 
af3 form disappears when a r subunit is added (ANGELOTII and MACDONALD 
1993). 

Considering rule (ii), in the great majority of brain receptors it is a r 
subunit that complements a and 13, as deduced from immunocytochemical and 
co-immunoprecipitation evidence (for references see BARNARD et al. 1998). 
That evidence also shows that r2 is by far the most abundant and ubiquitous 
of the GABAA receptor subunits in the CNS; by immunogold labelling the }2 
subunit is very commonly seen localised at the same synaptic junction as a 
and 13 subunits (SOMOGYI et al. 1996; NUSSER et al. 1998). The dominance of 
af3rtypes is also shown by the high percentage of the native GABAA recep
tors sensitive to benzodiazepine (BZ) drugs, for which an af3rcombination is 
required. The far-reaching effects on the receptor population of the deletion 
of r subunits in transgenic mice are described by H. MOHLER (Chap. 3, this 
volume). 

In the limit of rule (iii), the theoretical maximum of different subunit types 
or isoforms combined in one molecule is five; analysis of extracted cerebellar 
GABAA receptors using several isoform-specific antibodies in turn (JECH
LINGER et al. 1998) gave results that were compatible with this maximum of 
five types occurring in certain very limited cases. These rules are derived from 
a large body of observations on the formation of functional receptors in het
erologous expression or on analyses of co-occurrence of subunits in receptors 
in or from native tissues. 

That set of requirements arises, of course, from the types of interaction 
which can occur between the surfaces of different subunits. The interactions 
of the subunits which are thus selected must be energetically favourable for 
the assembly, the correct targeting and the stability of the active receptor. 
Mostly the structural barriers to that correct assembly must be low, since any 
ternary combination of the af3r (i.e. lXj+!3j+n) form tested so far can interact 
in some or other host cell to produce a functional receptor, apparently self
directed to a single type (examples in SIGEL et al.1990; HADINGHAM et al.1992; 
ANGELOTII and MACDONALD 1993; SAXENA and MACDONALD 1994; DUCIC et al. 
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1995; KIRSCH et al. 1995; SIEGHART 1995; WAFFORD et al. 1996; NEELANDS et al. 
1999). This denotes high complementarity of the tertiary structures of three 
diverse subunit types, since (as reviewed above) homomers are strongly dis
favoured. The exception is the p class of subunits, and these differ from the 
others (as tested in a and 13) in a determinant in the N-terminal domain 
(HACKAM et al.1998) which directs the interactions for separate assembly from 
the aforementioned two pools. 

If the only constraint on assembly when a, 13 and y subunits are present 
is that all those three types must co-assemble, then a possible total of 96 
af3r-containing mammalian receptors could be created in this sub-class. 
The evidence on the native BZ-sensitive receptors suggests that their multi
plicity, although considerable, is well below this. Obviously a further constraint 
is the local gene expression program, since some theoretical partners will 
not co-occur in the same cells. For example, a6, a4, 8 or y3 have not been 
found with certain others. A second level of constraint here is that of the 
targeting or chaperone or anchoring mechanisms, which can direct subunit 
selection in the targeting or localisation or synaptic clustering (e.g. via 
gephyrin) of GABAA receptors (CRAIG et al. 1996; ESSRICH et al. 1998; 
KNEUSSEL et al. 1999). Intermediate complexes which are not permissive 
for a preferred path of receptor assembly become degraded. That topic cannot 
be reviewed here, but it should be noted that for the GABAA receptors such 
processing in heterologous expression may not be a guide to its path in the 
neurones and may also differ between neuronal types, determined by the avail
abilities of specific controlling factors (as just noted). In vitro it has been 
found to vary for some GABAA receptor subunits even between different 
host cells. An example of more selective pairing in situ than in recom
binant expression is given by the set of aI, a6 and 8 subunits. The recombi
nant a1 and 8 subunits assemble well with 13 subunits to form functional 
receptors in each of three host systems used (SAXENA and MACDONALD 1994; 
DUCIC et al. 1995; KRISHEK et al. 1996). However, although those three subunit 
types co-exist in the same cerebellar granule cell, 8 is replaced by y2 in 
the receptors there which contain a1 (alone) plus a f3 subunit, 8 always 
being combined instead with a6. This was shown by a variety of appro
aches: comprehensive immunogold localisations (NUSSER et al. 1998), co
immunopurifications (QUIRK et al. 1994b; JECHLINGER et al. 1998), an immunol 
freeze-fracture technique (CARUNCHO and COSTA 1994) and again by a6 trun
cation through gene targeting, which is found to deplete cerebellar a6 and 
8 subunits together (JONES et al. 1997). This illustrates the additional level 
of constraint on the receptor compositions that can be exerted by processing 
in situ. 

The a, 13 and y subunits are used together, therefore, in a combinatorial 
selection, greatly limited by the specific constraints described here. The roles 
of the "alternative" subunits 8, E, nand () will be reviewed below. 
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D. Stoichiometry Within the Pentamer 
I. Co-occurrence of Two Isoforms of One Subunit Type 

The majority of GABAA receptors contain, therefore, a, {3 and ysubunits, while 
the total of the subunits per molecule is five (Fig. 2). Hence the receptors in 
this set can obviously have one of three general compositions: (a)2 ({3)2 yor 
(ah {3 (/12 or a ({3)2 (/12. (Here, parentheses are used to indicate that the sub
script numeral shown here represents counting of the isoforms present in 
one molecule and not the isoform identity). Such additional cases as (a)3 {3 Y 
or a {3 (yh would have been theoretically possible, but measurements of an 
electrophysiological property determined quantitatively by the number of 
tagged recombinant subunits of each type forming the channel (BACKUS et al. 
1993), in the case of co-expression of the a3 f32 }2 subunits, have excluded (at 
least in that case) the presence of three of any of those types in one receptor 
molecule. 

The next logical step, therefore, in evaluating the potential combinations 
of subunits is to ask whether two isoforms of a or of {3 or of ycan occur in one 
receptor molecule, e.g. to produce compositions of the type (a1 a2) ({3h Y-

In the case of the a subunits, there is a variety of evidence for such co
occurrence of isoforms, in a minority of GABAA receptors. This has come first 
from antibody detection of (for example) an a isoform, when a brain-derived 
population of GABAA receptors is purified using an antibody specific for a 
different a isoform or from subtractive immuno-depletions of those two iso
forms. Receptors containing at least the pairs a1a2, a1a3, alaS, a2a3, a3aS, 
a4a1, a4a2 and a4a3 have been detected thus (each in a minority of the pop
ulation containing the respective individual isoforms) (ENDO and OLSEN 1993; 
POLLARD et al. 1993; EBERT et al. 1994; McKERNAN and WHITING 1996; BENKE 
et al. 1997; BENCSITS et al. 1999). The a6 subunit can also pair in this manner. 
a6 occurs (in the mature brain) only in the cerebellar granule cells (LAURIE et 
al. 1992; THOMPSON et al. 1994) and in the similar granule cells of the cochlear 
nucleus (VARECKA et al. 1994). In the cerebellum immuno-purification has 
shown a1 and a6 co-occurring in one receptor in a minority of cases (POLLARD 
et al. 1995; KHAN et al. 1996; JECHLINGER et al.1998); a second approach, using 
antibody labelling with electron microscopy, has likewise shown that a6 can 
co-localise with a1 (NUSSER et al. 1998), although not for all of the a6 subunits 
there. In those analyses most of the receptors also contained y2 subunits. 

Immunopurification analysis has also indicated such co-occurrence of two 
{3 isoforms in GABAA receptors in brain extracts (LI and DE BLAS 1997; Jech
linger et al. 1998). For the ysubunits, again the similar use of isoform-specific 
antibodies has, on brain extracts or purified receptor preparations, shown evi
dence for the co-occurrence of y2 with y3 and also of y2L with y2S (KHAN et 
al. 1994; QUIRK et al. 1994). However, results to the contrary, i.e. with only y1, 
y3 or y2 (2L and 2S not being tested) separately immunopurified from brain 
receptors, have also been reported (BENCSITS et al. 1999). 
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II. Possibilities for Subunit Stoichiometry 

Since two isoforms of the a subunit can sometimes occur in one receptor, as 
reviewed above, the GABAA receptors are considered as having two a places 
in the pentamer. Likewise, since there is evidence that two yisoforms can co
occur, it must be considered that there could also be two yplaces in the pen
tamer. Yet two f3 isoforms have also been reported to co-exist, as noted above, 
creating ambiguity. 

This ambiguity has also been probed in recombinant combinations, 
BACKUS et al. (1993) showed, in the aforementioned study of a a3 fJ2 y2 recep
tor in HEK293 cells, that the (a)z f3 (112 composition best fitted the properties 
observed there, whereas CHANG et al. (1996), using a similar principle (but in 
oocyte expression, and employing aI, not a3), found that the evidence favours 
the (a)2 (f3)2 y composition. The latter stoichiometry was also derived for al 
f33 y2 receptors expressed in HEK 293 cells, from the staining ratios of those 
subunits seen when separated in Western blots (TRETTER et al. 1997). 

We do not know if any of these statements hold for the whole native pop
ulation of GABAA receptors of the af3ytype. If all of the findings are correct, 
then there is not a single stoichiometry for that type in vivo, and either (a)z 
(f3)2 yor (a)2 f3 (y)z can exist, depending on the isoforms involved. This ques
tion is as yet unsettled. 

Nevertheless, for any particular subunit set which will form one receptor, 
we can assume that there will only be one stoichiometry and arrangement in 
the native pentamer in situ. This is found to be so with all other heteromeric 
proteins which contain tightly-bound subunits. For example, there is only one 
cyclic order of the subunits (a)2 f3 Y 8 present in the population of Torpedo 
acetylcholine receptors (TOYOSHIMA and UNWIN 1990; MIYAZAWA et al. 1999) 
and further, using those subunits, one does not find that the same receptor 
type, in a variety of skeletal muscles, can be expressed in another stoichiome
try. As a general principle of protein chemistry, for each composition the sto
ichiometry and the circular order of subunits around the channel will be fixed, 
due to optimisation of the interactions at the interfaces of the different sub
units. This considerably reduces the total number of theoretically possible sub
types, particularly so for the receptors containing two isoforms of, e.g. the a 
subunit. 

E. GABAA Receptors Containing Other Types 
of Subunits 

As noted earlier, at least four other types, 8, e, 1C and e occur, each with a and 
f3 subunits also in the molecule so far as our present limited knowledge goes. 
None of those can replace an a or f3 subunit in expression studies. Each of 
those four appears to function, therefore, by either replacing or complement
ing the ysubunit in the receptor. A further type, the p subunits, form a sepa-
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rate pool. There is no indication so far that any of those five types ever co
exist in a receptor. 

I. The 0 Subunit 

The 8 subunit has a restricted distribution in the rat brain, expression being 
highest in the cerebellar granule cells, next in the thalamus and olfactory bulb 
and very low or absent in many areas (SHIVERS et al. 1989; BENKE et al. 1991; 
LAURIE et al. 1992). In confirmation, 8 was found, by antibody reaction, in only 
11 % of all the GABAA receptors extracted from rat brain but in 27% in rat 
cerebellum (QUIRK et al. 1995). 

Recombinant af38 combinations can form GABA-gated channels, which 
are insensitive to diazepam (SAXENA and MACDONALD 1994,1996). In the cere
bellum 8 has been detected in a6 f3 8 or a6 a1 f3 8 combinations only (see Sect. 
CII) and in the thalamus in a4 f3 8 only (SUR et al. 1999). The latter is the main 
a4-containing subtype in the thalamus, although a4 is also present there in 
a4 f3 y2 receptors (SUR et al. 1999). a4 is found in the latter subtype in some 
other forebrain areas, too, and in other receptors there paired with another a 
subunit, or without a y or 8 subunit, all at very low abundance and all 
diazepam-insensitive (BENKE et al.1997; BENCSITS et al.1999). The brain recep
tors containing 8 are also all BZ-insensitive and it is generally found that 
native 8 and ysubunits are mutually exclusive (CARUNCHO and COSTA 1994; 
QUIRK et al. 1994b, 1995; JECHLINGER et al. 1998; ARAUJO et al. 1998; BENCSITS 
et al.1999). Despite this, recombinant a f3 y2 8 receptors can assemble and are 
functional in vitro, with distinctive properties (SAXENA and MACDONALD 1994). 
It is unclear at present to what extent, outside the cerebellum and thalamus, 
8 also occurs in receptors having a subunits other than a6 or a4. 

II. The E Subunit 

This has a very restricted distribution, its mRNA and protein showing clearly 
in situ (in the adult primate) only in the hypothalamus and in the dentate gyrus 
hilar and CA3 regions of the hippocampal formation (WHITING et al. 1997). It 
is also present in spinal cord and the heart. 

In transfected HEK 293 cells studies of a2 f31 E or a1 f33 E (DAVIES et al. 
1997) or a1 f31 E combinations (WHITING et al. 1997: also in oocytes) showed 
that in all of them ternary receptors activated by GABA can be formed. These 
are not modulated by BZ drugs and desensitise much more rapidly than a1 
f31 or a1 f31 y2 receptors. In L929 fibroblasts, NEELANDS et al. (1999) expressed 
the a1 f33 E combination and found that its chloride channel is both sponta
neously active and gated by GABA. Again BZ-insensitive, this receptor has 
also acquired inhibition by furosemide, otherwise seen (KORPI et al. 1995; 
WAFFORD et al. 1996) only with a6 f3 y2 or a4 f3 y2 receptors. The channel con
ductance of the E-containing receptors is as for a1 f33 y2 and a1 f33 8 and not 
af3 channels (NEELANDS et al. 1999). 



The Molecular Architecture of GABAA Receptors 91 

III. The n Subunit 

The n (for "peripheral") subunit has been found present in several human 
peripheral organs, principally the uterus, and in very low levels in hippocam
pus and cortex (HEDBLOM and KIRKNESS 1997). When co-expressed in HEK 
293 cells, it could remove BZ binding of a1 131 y2 receptors, indicating complex 
formation (HEDBLOM and KIRKNESS 1997). In the L929 cell as host, it was 
deduced by NEELANDS and MACDONALD (1999) that n could combine to form 
as 133 n functional receptors, on the basis of the changes in several functional 
properties compared to as 133. Further, formation of as 133 y3 n receptors 
when the four subunits were co-expressed was inferred in a similar way. The 
n-containing receptors were BZ-insensitive and had a channel conductance as 
large as that of the af3yreceptors and unlike that of the af3 receptors. 

The neuronal precursor cell line NT2 expresses native mRNAs for the 
same n, as, 133 and y3 subunits but does not appear to form any n-containing 
receptors (NEE LANDS and MACDONALD 1999). The function of n in vivo is still 
uncertain. 

IV. The (J Subunit 

As noted earlier (Sect. A.Il), e is relatively close to the 13 subunits in sequence 
(Fig. 2), but not in functional properties. All of the data so far on e come from 
the study of BONNERT et al. (1999). The mRNA and protein for this subunit 
were discovered by those authors to be prominent in certain regions of 
primate brain, particularly in the substantia nigra and the striatum, and absent 
in many others, including the cerebellum. In regions rich in dopaminergic or 
in nor adrenergic neurones, e co-localises with these. 

Exceptionally, e assembles (so far as was detectable from co-immunopre
cipitation of rat striatal extracts) with one a isoform only, dl, and with y1 and 
not with y2, y3, 8 nor E. BONNERT et a1. (1999) concluded that the preferred e 
combination is dl 131 y1 e. It is interesting, in view of the structural closeness 
of e to 13 subunits, that in assembly at the cell surface (in the case of co
expression in HEK293 cells) e was found to act as a 13 subunit. This would be 
compatible with a (ah f3e y composition. 

Functional heterologous expression of e required a quaternary set, a 13 y 
e; d2 or a1, and y1 or y2 were active in this. Modulation by BZ agonists or 
inverse agonists, or by pentobarbital or pregnanolone, were all unchanged by 
e incorporation. 

The observations with e and with E show that some receptors containing 
four different subunit classes in the molecule may be needed, to refine the 
properties to fit particular functional niches. 

F. The p Subunits 
The properties of the GABAAOr receptors containing this subunit type are 
covered in detail by BORMANN and FEIGENSPAN (Chap. 10, this volume). Here 
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their structure should be noted. As reviewed above (Sect. C.l), three isoforms 
are known, pI, p2 and p3. The heterologous expression of each of these alone 
can give strong functional expression, such that native p homo-oligomers have 
been assumed. However, this view must be modified, since the rat p2 subunit, 
unlike the previously studied human p2, does not form functional receptors 
alone in the oocyte, but requires the rat pI to do so (ZHANG et al. 1995). The 
pharmacology of pI is thereby changed (to picrotoxin resistance); hence p1p2 
heteromeric receptors exist. Although the human pI or p2 subunits can each 
assemble alone to functional receptors after transfection into HEK 293 cells, 
after their co-transfection detailed analysis of the properties has disclosed the 
formation of human p1p2 heteromers also (ENZ and CUITING 1999). 

The rat pI, p2 and p3 mRNAs all occur in the retina (for details see 
BORMANN and FEIGENSPAN, Chap. 10, this volume). The responses found on rat 
retinal bipolar cells (which express both pI and p2 subunits: ENZ et al. 1995) 
do not match those of pI receptors or p2 receptors but can correspond to the 
p1p2 receptor (ZHANG et al. 1995). Hence, that hetero-oligomer appears to be 
functional in situ. Rat p3 subunits can also form hetero-oligomeric receptors 
with p2, as well as homomeric receptors (OGURUSU et al. 1999). Cells which 
express both p2 and p3 may therefore contain the p2p3 receptor, but there is 
as yet little information on this. 

While the p subunits were previously regarded as purely retinal, accumu
lating evidence has shown that all three also occur in several brain regions, 
although in different distributions. Thus, rat p3 is expressed more in the hip
pocampus than in the retina or in other brain regions (WEGELIUS et al. 1998) 
and is several times more abundant in the embryonic (day 16, non-retinal) 
brain than in the adult, unlike the other two isoforms (OGURUSU et al. 1999). 
Those studies and the work of ENZ et al. (1995) also showed that p2 is present 
in the hippocampus and pI is very low or undetectable there and in other brain 
regions, except the superior colliculus, where pI and p2 co-occur. Hence there 
are no general associations of these three, and there are regions where only 
p2 out of these is detectable. Since rat p2 does not express alone, in the oocyte 
(ZHANG et al. 1995), it seems probable that some other unknown pairing of it 
occurs in vivo. This could be with a fourth, as yet unknown, p isoform. 
However, we cannot exclude the alternative, that p2 is sometimes complexed 
with non-p subunits, which are always present. The tests reported to exclude 
this with p2 or p3 have not been exhaustive; it might require testing with more 
than one other partner, or some chaperone or other trafficking factor only 
found in native neurones. If this occurs, then the segregation of the p pool 
would break down in special cases. 

G. Conclusions on the Subtypes 
Within the constraints summarised above, it appears that a considerable 
number of GABAA receptor subtypes can exist in vivo, more than for any 
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other of the transmitter-gated channels. Each different combination could in 
principle generate an individual pharmacology. In the af3rsub-class, these sub
types can be recognised mainly by the great variation in the responses to dif
ferent "BZlm" drugs, i.e. a very wide range of benzodiazepines and many 
unrelated structures that are active at a single modulatory site which is a char
acteristic of that sub-class. They range through modulatory agonists, partial 
agonists and inverse agonists to antagonists, and members can be selected 
therefrom to discriminate between the af3rcombinations. Those structures are 
reviewed elsewhere (BARNARD et al. 1998), with a list (Table 4 therein) illus
trating 17 cases of potential GABAA receptor subtypes defined thus. In par
ticular, each change at the a position(s) or the rposition in the combination 
creates a different pharmacology within the scope of that wide range of 
modulators. 

Where r is replaced by 8, f, 7r or e, that series cannot be used (see 
Sect. E). However, the GABAA receptors have a wealth of other modulatory 
sites (reviewed in several other chapters in this volume) which could be 
exploited similarly to recognise SUbtypes. The pharmacology of the receptors 
containing these alternative subunits is in its infancy, but there are already indi
cations that those subunits introduce differences at such sites on the receptor 
as those for neurosteroids or for loreclezole (DAVIES et al. 1997; NEELANDS et 
al. 1999; NEELANDS and MACDONALD 1999). 

All of the discriminations discussed here are made in the first instance in 
recombinant co-expression. In some cases we can seek to relate these to actual 
native combinations, as recognised from co-immunopurification results or co
localisations of subunits in situ or differing channel characteristics. In a very 
few favourable cases at present this may allow us to define functional native 
subtypes. For each of these particular cases strong evidence exists, based on a 
concurrence of all three of those approaches (with the co-Iocalisations made 
at the EM level). Thus, they include the combinations a1{32y2 (BENKE et al. 
1994; QUIRK et al. 1994b; BRICKLEY et al. 1996; SOMOGYI et al. 1996; NUSSER et 
al. 1998), a6{3r2 and a6{38 (CARUNCHO and COSTA 1994; QUIRK et al. 1994b; 
SAXENA and MACDONALD 1994; DUCIC et al. 1995; BRICKLEY et al. 1996; JECH
LINGER et al. 1998; NUSSER et al. 1998). Much caution is required in pursuing 
this: even in those favourable cases the native isoform of {3 or of r2 is often 
not established and nor is the stoichiometry within the molecule. Major bar
riers to absolute identifications are inherent, first in the special combinatorial 
system of the GABAAreceptors: many more SUbtypes can in this case (but not 
for most other receptors) be created in vitro than are likely to occur in vivo. 
Other barriers arise from the complexity of the brain circuitry, and from the 
co-occurrence therein of multiple subtypes of GABA receptors in small 
regions or within a single neurone. To recognise all of the native GABAA 

receptors is a challenge for the long term. 
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CHAPTER 3 

Functions of GABAA-Receptors: 
Pharmacology and Pathophysiology 

H. MOHLER 

A. Introduction 
Based on the diversity of constituent subunits the structual heterogenity of 
GABAA-receptors is well established (see BARNARD Chap. 2, this volume). 
The functional significance of GABAA-receptors subtypes in vivo, however, 
has largely remained unknown. It is only through genetic means - gene inac
tivation, reduction of gene dosage, point mutations - that the functional role 
of GABAA-receptor subtypes is beginning to be identified. The present 
chapter summarizes these attempts with regard to the pharmacology and 
patholphysiology of GABAA-receptor sUbtypes. 

B. Pharmacology of GABAA-Receptor Subtypes 
I. Benzodiazepine Actions at GABAA-Receptor Subtypes 

1. Distinction of Receptor Subtypes by Point Mutations 

GABAA receptors are molecular substrates for the regulation of vigilance, 
anxiety, muscle tension, epileptogenic activity and anterograde amnesia, which 
is evident from the spectrum of actions elicited by clinically effective drugs 
acting at their modulatory benzodiazepine (BZ) binding site (for review see 
MOHLER et al. 1997a,b, 2000). BZ-sensitive GABAA receptors are character
ized by the subunits aI, a2, a3, or as (Fig. 1). Their opening frequency is 
enhanced by agonists of the BZ site, which is the basis of their therapeutic 
effectiveness in the treatment of anxiety disorders, sleep disturbances, muscle 
spasms, and epilepsy but also of their undesired side effects. The classical ben
zodiazepines such as diazepam interact indiscriminately with all BZ-sensitive 
GABAA receptor subtypes (aI, a2, a3, and as) with comparable affinity 
(MOHLER and OKADA 1977; BRAESTRUP et al. 1977) whereby a conserved histi
dine residue is critical for ligand binding at the BZ site (WIELAND et al. 1992; 
BENSON et al. 1998). In contrast, the BZ-insensitive receptor subtypes in the 
brain display an arginine residue in the corresponding position. Recombinant 
diazepam-sensitive receptors have previously been shown to be rendered 
diazepam-insensitive by replacing this histidine residue by arginine without 
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Fig.1. Attribution of benzodiazepine actions to GABAA-receptor subtypes (aI, a2, 
a3, as) by generating mouse lines in which selected receptor subtypes are rendered 
diazepam-insensitive by a point mutation (replacement of a histidine by an arginine 
residue) 

altering the GABA sensitivity as shown for the a1 subunit (WIELAND et al. 
1992; KLEINGOOR et al. 1993) and the d2, a3, and as subunits (BENSON et al. 
1998). In the brain, the predominant GABAA receptor subtype contains the 
a1 subunit (FRITSCHY and MOHLER 1995; FRITSCHY et al. 1992, 1998). 
Its pharmacological significance was therefore evaluated by introducing 
the a1(H101R) point mutation into the germline of mice by gene targeting 
(Fig. 1) (RUDOLPH et al. 1999). The replacement vector contained not only the 
desired point mutation in exon 4 but also a loxP-fianked neomycin resistance 
marker in intron 4. This procedure permitted breeding of the mice carrying 
the mutant allele to Ella-cre mice (LAKSO et al. 1996) to eliminate the 
neomycin resistance cassette. The pharmacological analysis of the point 
mutated mice was therefore free of any potential interference which may have 
resulted from the presence of the neomycin marker. 

The receptors from a1(H101R) mice displayed a ligand binding profile 
consistent with that of physiologically diazepam-insensitive GABAA recep
tors, i.e., a virtual lack of affinity for diazepam, clonazepam, and zolpidem 
(Fig. 2). In sections of a1(H101R) mutant brain, the diazepam-insensitive sites 
were visualized autoradiographically in all regions known to express the a1-
subunit, i.e., in particular in olfactory bulb, cerebral cortex, thalamus, pallidum, 
mid-brain, and cerebellum. Most importantly, gating of the point-mutated 
receptor by GABA remained unaltered as shown in Purkinje cells, in which 
a1 receptors predominate. The response to GABA was indistinguishable 
between cells from wild type and a1(H101R) mice. It was only the potentia
tion by diazepam which was strongly reduced in cells from a1(H101R) mice 
with the remaining diazepam effect being attributed to diazepam-sensitive 
receptors other than a1 in these cells. Thus, the repertoire of BZ actions in 
a1(H101R) mice was expected to be based exclusively on receptors contain
ing d2, a3, and as subunits. The drug responses mediated by GABAA a1 recep
tors were expected to be silenced in the a1(H101R) mice (Fig. 1). 
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Fig.2. Autoradiographic visualization of diazepam-insensitive benzodiazepine binding 
sites in brain slices from: A wildtype, B al(HlOlR) point mutated mice. The sections 
were incubated with 3H-Ro 15-4513 in the presence of lOO.umol/l diazepam. In wild
type brain diazepam-insensitive GABAA-receptors are represented by the small pop
ulation of a4 and lID receptors. In the mutant brain diazepam-insensitive sites are 
additionally present in all areas expressing the aI-subunit (RUDOLPH et al. 1999) 

2. Sedation and Receptor Subtypes 

The a1(H101R) mice were resistant to the sedative effect of diazepam 
(depression of motor activity) as tested up to a dose of 30 mg/kg i. p. The selec
tivity of this effect was underlined by the unaltered responsiveness of 
a1(H101R) mice to the sedative/hypnotic effects of drugs other than ligands 
of the BZ site such as the neurosteroid 3a-hydroxy-5fi-pregnan-20-one or 
sodium pentobarbital which remained as effective as in wild-type mice in 
reducing motor activity or inducing a loss of righting reflex, respectively. These 
results support the view that diazepam-induced sedation is mediated via the 
a1-GABAA receptor (Table 1). 

3. Amnesia and Receptor Subtypes 

The memory impairing effect of diazepam, analysed in a step-through 
passive avoidance paradigm, was strongly reduced in the a1(H101R) mice as 
shown by the shortened latency for re-entering the dark compartment 24 h after 
training compared to the wild-type. The ability of the a1(H101R) mice to 
exhibit amnesia induced by a muscarinic antagonist remained unaffected. The 
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Tablel. Proposed roles of GABAA-receptor sUbtypes in 
benzodiazepine actions 

Sedation 
Amnesia 
Seizure protection 
Anxiolysis 
Myorelaxation 
Motor impairment 
Ethanol potentiation 

From RUDOLPH et al. 1999. 

a1 

+ 
+ 
+ 

a2a3a5 

+ 
+ 
+ 
+ 
+ 

H. MOHLER 

memory impairment induced by scopolamine was apparent to the same extent 
in both al(H101R) mice and wild-type mice. These results demonstrate that the 
diazepam-induced anterograde amnesia is mediated via GABAA al receptors. 

4. Anticonvnlsant Activity and Receptor Subtypes 

The anticonvulsant activity of diazepam, assessed by its protection against 
pentylenetetrazole-induced tonic convulsions, was reduced in al(HI0IR) 
mice compared to wild-type mice. The partial anticonvulsant effect of 
diazepam which remained in al(HI01R) mice was due to GABAA receptors 
other than aI, since it was antagonized by the BZ antagonist flumazenil (HUN
KELER et al. 1981). However, sodium phenobarbital was fully effective as anti
convulsant in al(HI0IR) mice with a dose-response relationship similar to 
that of wild-type mice. These results show that the anticonvulsant activity of 
BZ-site ligands is largely - but not fully - mediated by GABAA al receptors. 

5. Myorelaxation, Potentiation and Receptor Subtypes 

The myorelaxant, motor impairing and ethanol potentiating properties of 
diazepam were not impaired in the al(H101R) mice. Diazepam induced 
myorelaxation to the same extent in wild-type and al(HI0IR) mice (horizon
tal wire test). In the rotarod test, both al(HI0IR) and wild-type mice displayed 
a dose-dependent motor impairment. This muscle relaxant effect may be medi
ated by the d2- and as-receptors present on motoneurons (FRITSCHY and 
MOHLER 1995). Furthermore, diazepam potentiated in a dose-dependent 
manner the sedative effect of ethanol by increasing the duration of the loss of 
the righting reflex in both wild-type and al(H101R) mice. Thus, the myorelax
ant and ethanol potentiating activity of BZ site ligands are exclusively medi
ated by GABAA receptors of the d2, a3, and/or as type but not the al type. 

6. Anxiolytic Activity and Receptor Subtypes 

The anxiolytic activity of diazepam was unaltered in the al(HI01R) mice as 
assessed in two paradigms, the light-dark choice test, as well as in the elevated 
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X-maze. These results demonstrate that the anxiolytic actions of diazepam can 
be attributed to the small populations of neurons expressing the dl, a3, and/or 
as receptors (Table 1). They include parts of the limbic system (dl, as) and 
the reticular activating system (nor adrenergic and serotonergic neurons; a3) 
(FRITSCHY et al. 1992; FRITSCHY and MOHLER 1995), supporting their role in 
the drug-induced regulation of anxiety (GRAY 1995; IVERSEN 1984; FILE and 
PELLOW 1987). 

7. Strategies for Drug Design 

Strategies for the design of a new generation of BZ site ligands acting selec
tively on GABAA -receptor subtypes are apparent (Table 1). For instance, 
agonists acting on dl, a3, and/or as receptors are expected to include non
sedative and non-amnesic anxiolytics for the treatment of anxiety disorders 
and anxious depression. Furthermore, in schizophrenia, BZ monotherapy has 
not been fully evaluated despite reports on their antipsychotic effects 
(WOLKOWITZ and PICKAR 1991; DELINI-STULA et al. 1992) and their use as 
co-medication. Since only selected parts of the GABA system are affected in 
schizophrenia (Woo et al. 1998; HUNTSMAN et al. 1998; BENES 1995; AKBARIAN 
et al. 1995) and the dopamine system is linked to particular populations of 
GABA neurons (MRZLJAK et al. 1996), subtype-specific BZ-site ligands may 
provide a new focus for the treatment of schizophrenia. Finally, the point
mutated mice will be valuable in defining the relevance of receptor subtypes 
for the sequelae of chronic BZ treatment such as tolerance and dependence. 
For instance, ligands acting on particular receptor subtypes would not be 
expected to induce dependence liability to the same extent as ligands acting 
on all GABAA receptors. This opens the prospect for tailor-made sUbtype
specific drugs that may lack dependence liability. By applying the point muta
tion strategy to the dl, a3, and as subunits, it will be possible to refine the 
dissection of the pharmacological spectrum of drug effects elicited through the 
BZ site of GABAA receptor SUbtypes. Recently, the anxiolytic action was 
attributed to the az-receptor SUbtype (Low et al. 2000). 

II. Ethanol and GABAA Receptor Subtypes 

The mechanism of action of ethanol has been analysed using different mutant 
mice. It had been demonstrated earlier that mice lacking the r-isoform of 
protein-kinase C show a reduced response to ethanol (HARRIS et al.1995). This 
result supported the view that the phosphorylation of GABAA-receptors at 
sites of the large cytoplasmic loop of the }QL-subunit may be critical for medi
ating the effect of ethanol. In order to test this hypothesis mice were gen
erated in which a 24 bp exon was deleted which distinguishes the y2L splice 
variant from by the y2S-variant (HOMANICS et al. 1999a). However these 
animals showed the same sensitivity to ethanol as control mice. There was no 
difference in the potentiation of GABA currents by ethanol observed in 
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neurons from wildtype or y2L-1- mice. Furthermore, several behavioural 
effects of ethanol were likewise unchanged such as the ethanol-induced sleep
time, anxiolysis, acute tolerance, chronic withdrawal hyperexcitability, and 
hyperlocomotor activity (HoMANIes et al. 1999a). Thus, y2L does not appear 
to be required for the ethanol-induced modulation of GABAA-receptors and 
whole animal behaviour (HoMANIes et al. 1999b). The mechanism of action of 
ethanol was further analysed in animals with mutations affecting the a6-
subunit. A naturally occurring point mutation in the a6-subunit gene was 
earlier shown to cosegregate with a phenotype which was more sensitive than 
controls to the motor impairing effect of alcohol (KORPI et al. 1993; HELLEVNO 
et al. 1989). However, a6 null mutant mice failed to display altered responses 
to ethanol (HoMANIes et al. 1997b). In particular, ethanol-induced motor 
impairment, tolerance and withdrawal hyperexcitability were not different 
between genotypes (a6+I+, a6-I-) (HoMANIes et al. 1998; KORPI et al. 1998). Thus, 
the GABAA receptors containing a6-subunit do not appear to be critically 
involved in the behavioural response to ethanol (HoMANIes et al. 1997b). 

III. Anaesthetics and Pentobarbital 

The role of GABAA-receptors in mediating the action of anaesthetics was 
genetically assessed by targeting the GABAA-receptor fJ3- and a6-subunit 
genes. Although mice lacking the fJ3-subunit gene generally die as neonates, 
some survive with abnormal behaviour (hyperactivity, incoordination, 
epilepsy) (HoMANIes et al. 1997a). In these animals the effectiveness of pento
barbital, enflurane, and halothane to induce a loss of righting reflex remained 
unaltered while midazolam and etomidate were less effective (QUINLAN et al. 
1998). The latter agents were therefore postulated to produce hypnosis by dif
ferent molecular mechanisms. However, in contrast to the unaltered effective
ness of the volatile anaesthetics enflurane and halothane in inducing a loss of 
the righting reflex, their immobilizing effect (tail clamp test) was impaired in 
the fJ3 null mutant mice. Absence of the a6-subunit did not change the response 
to pentobarbital and general anaesthetics (HoMANIes et al. 1997b), a result 
which is somewhat surprising since at least pentobarbital can directly activate 
a6 but not al-receptors at concentrations of 100,umolll (HADINGHAM et al. 
1996; THOMPSON et al. 1996). However, a naturally occurring point mutation in 
the a6-subunit gene enhanced the ataxic effects of volatile anaesthetics and the 
loss of righting reflex by pentobarbital (KORPI et al.1993; HELLEVNO et al.1989). 

c. GABAA-Receptor Mutants as Models for Disease 
I. Anxiety-Behaviour and Bias for Threat Cues 

It is widely accepted that pathological anxiety has a neurobiological and 
genetic underpinning. A crucial role has been delineated for the amygdala and 
its array of connections to higher cortical, subcortical areas in particular 
the hippocampus and brainstem structures in the acquisition and retention of 



Functions of GABAA-Receptors: Pharmacology and Pathophysiology 107 

conditioned fear in animals. These connections facilitate acquisition of the 
sensory and interpretive information needed to select fear responses according 
to context and allow the coordinated expression of cognitive, affective, motor 
and autonomic components of anxiety. The locus coeruleus and the brainstem 
respiratory centres have reciprocal connections to the amygdala and may con
tribute to the processing of stimuli and the expression of anxiety via descend
ing pathways (RoY-BuRNE and COWLEY 1998). Key roles are attributed to 
excitatory circuits from the cortex to the amygdala and to the inhibitory 
GABAergic local-circuit neurons, the latter being consistent with the efficacy 
of benzodiazepine anxiolytics. Thus, the GABAA-receptor system provides a 
fruitful molecular target for a pathophysiological inquiry of anxiety. 

1. Genetically Defined Animal Model of Anxiety 

GABAA-receptor deficits have been identified in patients with anxiety disor
ders. In patients suffering from panic attacks, a deficit of GABAA-receptors 
has been identified in the hippocampus, parahippocampus and orbitofrontal 
cortex in llC-flumazenil PET-studies (SCHLEGEL et a1. 1994; KASCHKA et a1. 
1995; MALIZIA et a1.1998).A GABAA-receptor deficit has also been implicated 
in generalized anxiety disorders (TUKONEN et a1. 1997) although only in par
ticular areas (ABADIE et a1.1999). The hypothesis was therefore tested, whether 
an impairment of GABAA-receptor function is sufficient to induce a state of 
anxiety characterized by behavioural inhibition and hypersensitivity to nega
tive associations in an animal model. Since the y2-subunit is required for 
synaptic clustering and normal single channel conductance of most GABAA-
receptors (GUNTHER et a1. 1995; ESSRICH et a1. 1998), mice heterozygous for 
the y2-subunit of GABAA-receptors were expected to provide a limited reduc
tion of GABAA -receptor function. The y2+/o mice were analysed with regard 
to the presence of both behavioural inhibition and hypersensitivity to nega
tive associations as characteristic features of anxiety states in humans. 

By generating mice that are heterozygous mutant for the y2-subunit gene, 
a limited reduction of GABAA-receptor function was implemented. The 
GABAA-receptor dysfunction in y2+/o mice, visualized by decreased benzodi
azepine binding and receptor clustering, was most pronounced in brain areas 
that are also known to be affected in anxiety disorders in man. In patients with 
panic disorder, tested in the interepisode state, the cerebral blood flow is 
increased in the parahippocampal-hippocampal area (REIMANN et a1. 1984; 
NORDAHL et a1. 1990). The same brain region has been shown to display 
decreased benzodiazepine binding in patients with generalized anxiety disor
der (TUKONEN et a1. 1997) or panic disorder (SCHLEGEL et a1. 1994; KASCHKA 
et a1. 1995; MALIZIA et a1. 1998), in line with the pronounced hippocampal and 
cortical GABAA-receptor impairment in y2+/o. 

2. Enhanced Reactivity to Natural Aversive Stimuli 

The deficit in GABAA-receptor function resulted in an enhanced reactivity of 
y2+/O mice to natural aversive stimuli, as demonstrated by the aversion to 
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novelty, exposed space, and brightly illuminated areas. This behavioural inhi
bition represents anxiety-related responses that are generally thought to 
include the activity of the septo-hippocampal system in both animals and 
humans (GRAY and McNAUGHTON 1996; ROGAN and LEDoux 1996; BLANCHARD 
and BLANCHARD 1988; KNIGHT 1996). Thus, the pronounced impairment of 
receptor clustering, notably in cerebral cortex and hippocampus, appears to 
contribute to the anxiety-related behaviour of the y2+/O mice. The diazepam
induced reversal of the behavioural inhibition of y2+/O mice corresponded to 
that in the human condition. Subjects with high anxiety scores are more sen
sitive to the anxiolytic action of benzodiazepines than the controls (O'BOYLE 
et al. 1986; GLUE et al. 1995). 

3. Learned Aversive Stimuli 

In humans, anxiety states are characterized not only by harm avoidance behav
iour but also by a heightened responsiveness to negative associations in assess
ing the emotional quality of a situation (EYSENCK 1992). This includes a bias 
for interpreting ambiguous scenarios as threatening, an attentional bias 
favouring the selective processing of threat cues and a bias of explicit memory 
for threat (McNALLY 1996). Such features of anxiety found a correspondence 
in the behaviour of the y2+/o mice. Trace conditioning was enhanced in y2+/o 

mice (Fig. 3a) indicating that these animals displayed a heightened sensitivity 
to negative associations in this fear conditioning variation. It is important to 
note that the acquisition and retention of the classical conditioned response 
to the context or to a cue (Fig. 3c,d) were unaltered in y2+/O suggesting that 
implicit forms of learning were not affected. It appears to be rather the per
ception of the temporal contingency of negative stimuli that was enhanced in 
y2+/o. 

Similarly, in cue discrimination learning (Fig. 3b) the y2+/o mice displayed 
a heightened fear response in assessing the negative association of an ambigu
ous stimulus. In this test, the y2+/o mice perceived the partial stimulus to be as 
threatening as the fully conditioned stimulus. This behaviour has previously 
been attributed to a hyperactivity of the hippocampus (McNAUGHTON 1997) 
and would be in line with a heightened sensitivity to negative associations in 
the y2+/O mice. The enhanced reactivity in both trace conditioning and cue dis
crimination learning suggests that the y2+/o mice represent a model of anxiety 
behaviour which includes a hypersensitivity to negative associations. 

4. Pathophysiology of Anxiety Disorders 

Human anxiety disorders arise from a combination of genetic vulnerability 
and traumatic experience. Mice with the GABAA-receptor y2-subunit het
erozygosity overreact to various specific anxiety-provoking situations. The y2 
mutant mice therefore represent a valid genetic model of at least some forms 
of anxiety. Such genetic models (CRESTANI et al. 1999; HEISLER et al. 1998) are 
important in furthering the study of innate contributors to anxiety disorders. 
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Selective anxiety responses in Y2+/0 mice 
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Fig.3a-d. Behavioural responses of y2+/O and wild type mice to learned aversive stimuli_ 
In contrast to: c contextual, d delay fear conditioning, hightened sensitivity of y2+/O to 
negative associations is apparent in: a trace fear conditioning, b assessing ambiguous 
stimuli_ (CRESTANI et al. 1999) 

First, the mice offer the promise of a genetic model of the anxiety-predisposed 
human, which may be useful in improving drug discovery_ Rather than exam
ining the effects of novel anxiolytics on normal rats, one may examine genetic 
models of anxiety_ Second, these mice offer easily testable predictions about 
mutations that may be found in anxiety patients_ Finally, although the identi
fication of genetic predisposing factors would certainly be a major advance, it 
is clear that genes alone will not explain human anxiety_ These mutant mice 
should therefore be a valuable model for testing ideas about how genes and 
the environment interact to produce this condition_ 
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II. Craniofacial Development 

Mice which are devoid of the j33-subunit (HoMANIes et al. 1997a) mostly die 
as neonates, displaying only half the normal density of GABAA-receptors in 
brain. Some of the j33-deficient neonatal mortality, but not all, is accompanied 
by the development of cleft palate. A role of GABAA-receptors in craniofa
cial development is supported by the emergence of the neonatally lethal cleft 
palate in mice homozygous for the p4THO-II deletion which includes the as, 
y3 and the j33-subunit gene (CULIAT et al. 1993, 1994). Since the cleft palate 
phenotype could be rescued by introducing a j33-subunit trans gene into the 
p4THO-II homozygous mutants the j33-GABAA-receptors appear to play an 
essential role in craniofacial development (CULIAT et al. 1995) (see KIM and 
OLSEN, Chap. 9, this volume). 

III. Angelman's Syndrome 

The j33-subunit null mutants are considered to be a model of the genetic dis
order Angelman's syndrome in humans (HoMANIes et al. 1997a; DELOREY et 
al. 1998). The 133 null mutants which survive the neonatal period show the four 
hallmarks of this disease in man: cognitive deficits, motor impairment, hyper
activity (including sleep disorders) and spontaneous seizures. Most patients 
have a deletion in material chromosome 15 that encompasses several genes 
including three GABAA-receptor subunits (as, 133, y3) and the major candi
date gene UBE3A (see KIM and OLSEN, Chap. 9, this volume). 

IV. Desynchrony of Neuronal Oscillations 

Mice lacking the GABAA-receptor j33-subunit largely show neonatal lethality 
due to cleft palate (see above). The few j33-deficient mice that survive even
tually reach normal body size although with reduced life span. They display 
many neurological impairments including deficits in neuronal inhibition in 
spinal cord and higher cortical centres as shown by their hyperresponsiveness 
to sensory stimuli, their strong motor impairment and frequent myoclonus and 
occasional epileptic seizures (HoMANIes et al.1997a). In particular, in the retic
ular nucleus of the thalamus, which normally acts as "desynchronizer", recur
rent GABA-mediated inhibitions were abolished in brain slices of 133 null 
mutants. Since j33-receptors are present in the reticular nucleus but not in prin
cipal neurons of thalamic relay cells, oscillatory synchrony was dramatically 
intensified in the mutant tissue (HUNTSMAN et al. 1999). This may explain the 
occurrence of spontaneous seizures in 133 homozygous null mutants, pointing 
to a crucial role of 133 GABA-receptors in the responsiveness to sensory 
stimuli and seizure control. 

D. Limitations of the Gene Inactivation Approach 
Inactivation or alteration of a GABAA-receptor subunit gene can result in a 
functional impairment of the receptor and thereby provide information on the 
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mechanism of particular neuroanatomical circuits and human disease. 
However, the road from the genotype to the phenotype can be circuitous and 
the phenotype may result from multiple changes including developmental 
aberrations, functional deficits in adult brain as well compensatory adaptations 
(for review see RUDOLPH and MOHLER 1999). 

I. Adaptation 

GABAA-receptors in adult cerebellar granule cells are predominantly of 
the a6-type. Mutants which lack a functional a6 subunit gene displayed a 
grossly normal cerebellar cytoarchitecture, while the number of cerebellar 
GABAA-receptors appeared normal and no differences in motor function or 
motor learning were identified (HOMANICS et al. 1997b). Furthermore, the 
affinity for muscimol was reduced, which points to an upregulation of a1-
receptors as adaptive mechanism (HOMANICS et al. 1997b). It is however 
unclear whether this is a general phenomenon since no up regulation 
was apparent in another a6 null mutant (JONES et al. 1997). In mice lacking 
the y2L subunit variant an up regulation of the y2S subunit variant (about 2.4-
fold) has been observed in immunoprecipitation studies (HOMANICS et al. 
1999b). 

II. Severity of Impairment 

The y2 and f33 null mutants are neonatally lethal although some animals 
survive with neurological deficits. In these cases the molecular and cellular 
phenotype can be studied in primary cultures of embryonic brain or in tissue 
slices (ESSRICH et al. 1998; HUNTSMAN et al. 1999). However, the behavioural 
phenotype of the few animals which survive to adolescence or even adulthood 
is not representative for the mutation but rather reflects a fortuitous 
constellation of genetic and other factors. 

III. Marker Genes 

The presence of selectable marker genes in the mutant animals expressing 
neomycin phosphotransferase and herpes simplex virus thymidine kinase can 
also interfere with the phenotype. This became apparent in mice in which the 
y2L subunit variant was mutated into the y2S variant (deletion of a 24 bp 
exon) (HOMANICS et al.1999a). The y2U'- male mutants showed a reduced fer
tility or were partly sterile. In addition, the modified y2 allele was transmitted 
at a reduced frequency. Although it cannot be excluded that this effect is due 
to the y2L deletion it is most likely attributed to the presence of the selec
table markers, in particular herpes simplex virus thymidine kinase (HOMANICS 
et al. 1999b). Expression of viral thymidine kinase in spermatids can be lethal 
to these cells (BRAUN et al. 1990). 
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IV. Strain Differences 

The strain-specific effects on behaviour can be greater than the contributions 
made by a single gene, i.e. mouse strain differences can sometimes confound 
the results of a gene knock-out experiment. For instance, in the a6 null 
mutants, withdrawal hyperexcitability following chronic ethanol was markedly 
enhanced in the mutant 129/SvJ strain compared to controls but was unaltered 
in the mutant C57BLl6J (HOMANICS et al. 1998). Thus, significant differences 
in tests of withdrawal hyperexcitability maybe confounded by the influence of 
genes that cosegregate with the targeted allele. 

Frequently, mutants of mixed genetic background are generated and 
F2-F4 generations are behaviourally tested which may retain a bias of the 
genetic background (JONES et al. 1997; HOMANICS et al. 1997b). For instance, 
an a6 null mutant of mixed background (129/SvJ x C57BLl6J) showed a 
stronger response to diazepam (10mg/kg and 20mg/kg) in the rotarod test 
than all control lines (mixed background, 129/SvJ or C57BLl6J). However, the 
different types of control mice differed among themselves in their drug 
response and thereby influenced the quantitative impact of the mutation 
(KORPI et al. 1998). 

To minimize the influence of the genetic background, it is recommended 
to generate two different pure mutant lines by backcrossing for at least five, 
better ten or more, generations (GERLAI 1996; BANBURY CONFERENCE 1997), 
followed by testing both strains separately or subsequent Fl hybrids. This pro
cedure has been followed for the behavioural assessment of y2+1- mice 
(CRESTANI et al. 1999). Finally, many of the shortcomings of the gene inacti
vation approach to probe GABAA-receptor function can be avoided when the 
expression of the gene remains unaltered and the functional impairment is 
introduced by a point mutation. This strategy has been very successfully 
employed to attribute the benzodiazepine pharmacology to distinct GABAA-
receptor SUbtypes (see Sect. A) (RUDOLPH et al. 1999). 
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CHAPTER 4 

Steroid Modulation of GABAA Receptors 

11 LAMBERT, IA. PETERS, S.c. HARNEY, and D. BELELLI 

A. Introduction 

In 1984, Harrison and Simmonds demonstrated the synthetic steroidal anaes
thetic alphaxalone (5 a-pregnan-3a-ol-ll,20-dione ) to enhance potently and 
selectively the interaction of r-aminobutyric acid (GABA) with the GABAA 

receptor (HARRISON and SIMMONDS 1984). In the same year, the steroid 
hormone androsterone (5a-androstan-3a-ol-17-one) was shown to share this 
activity, albeit with reduced potency (SIMMONDS et al. 1984). Alphaxalone and 
androsterone are closely related structurally to some endogenously occurring 
metabolites of progesterone (i.e. 5a- or 5f3-pregnan-3a-ol-20-one) and deoxy
corticosterone (5a-pregnane-3a,21-diol-20-one) which led logically to the 
evaluation of such steroids as allosteric modulators of GABAA receptor func
tion. In electrophysiological, tracer-flux and radioligand binding studies, such 
steroids were found to be more potent than alphaxalone in potentiating the 
action of agonists at the GABAA receptor and allosteric interactions with 
established binding sites for other modulators (e.g. benzodiazepines) were 
revealed (MAJEWSKA et al. 1986; CALLACHAN et al. 1987; HARRISON et al.1987a; 
GEE et al. 1987, 1988). In addition, at relatively high concentrations, the 
steroids exerted a direct GABA-mimetic effect (CALLACHAN et al. 1987; 
COTTRELL et al. 1987). 

The rapidity of modulatory and agonist effects of the steroid in single cell 
studies, and their activity in radio ligand binding studies performed on mem
brane homogenates, obviously precluded a traditional genomic mechanism of 
action. Instead, the potency and stereoselectivity of the modulatory effect, 
combined with the results of drug interaction studies strongly suggested the 
presence of a novel steroid binding site on the GABAA receptor protein 
(LAMBERT et al. 1995). Recently, this concept has been greatly strengthened by 
a comparison of the GABAA receptor modulatory activity of the enantiomers 
of endogenous and synthetic steroids and steroid analogues (see Sect. B.I). It 
is now generally accepted that the GABAA receptor harbours perhaps multi
ple steroid binding sites that are one major molecular target underlying the 
non-genomic effects of steroids upon neurones. Collectively, steroids acting in 
this manner have been coined 'neuroactive-steroids' with the term 'neuros-
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teroid' being reserved for those steroids actually synthesised de novo from 
cholesterol, or formed by metabolism of blood-borne precursors, within the 
CNS (ROBEL and BAULIEU 1994). 

Consistent with their actions on the GABAA receptor, neuroactive 
steroids have anxiolytic, anticonvulsant and sedative properties including, at 
relatively high doses, inducing a state of general anaesthesia (LAMBERT et al. 
1995; GASIOR et al.1999; RUPPRECHT and HOLSBOER 1999). At present, synthetic 
derivatives of 5a-pregnan-3a-ol-20-one are undergoing clinical trials for the 
treatment of epilepsy, anxiety and insomnia (GASIOR et al. 1999). Clearly, their 
potential in the clinical arena will be influenced not only by their behavioural 
efficacy, but additionally by whether they exhibit a reduced propensity to 
induce side-effects when compared to currently available GABAA receptor 
modulators such as the benzodiazepines (GASIOR et al. 1999). Rather than 
administer steroids per se, an alternative therapeutic strategy may be to 
develop drugs which interfere with the synthesis or metabolism of the endoge
nous neurosteroids. 

Endocrine glands such as the adrenal cortex and ovaries are established 
endogenous sources of neuroactive steroids (PURDY et al.1991; PAUL and PURDY 
1992). However, it is now recognised that within the brain itself, certain glial 
cells and neurones contain the enzymatic machinery necessary for the local 
synthesis of neurosteroids (BAULIEU and SCHUMACHER 1996). Some of these 
enzymes playa Ubiquitous role in steroid synthesis and hence drugs targeted to 
these proteins may have non-selective actions. Of particular interest is the 
NADH/NADPH-dependent enzyme 3a-hydroxysteroid dehydrogenase, 
which reduces 5a-pregnane 3,20-dione to 5a-pregnan-3a-ol-20-one or, indeed, 
can operate in the reverse direction to reform the genomic ally active 5a-preg
nane-3,20-dione (RUPPRECHT et al. 1993). The enzymic regulatory mechanisms 
that determine whether oxidation or reduction of the steroid predominates 
remains to be determined. However, recent evidence has emerged that the anti
depressant fluoxetine may influence the activity of this enzyme to favour the 
production ofthe GABAA receptor-active 5a-pregnan-3a-ol-20-one (UZUNOV 
et al. 1996, GUIDOTTI and COSTA 1998). This action of fluoxetine appears to be 
independent of the established effects of this antidepressant on the uptake of 
5-hydroxytryptamine. In a clinical study, patients with unipolar major depres
sion were reported to have relatively low cerebrospinal fluid levels of 5a
pregnan-3a-ol-20-one, an imbalance that was addressed by treatment with 
fluoxetine (UZUNOVA et al. 1998; GUIDOTTI and COSTA 1998). Furthermore, the 
improvement in patient symptomatology was correlated with the increase in 
neurosteroid levels (U ZUNOVA et al. 1998). Hence, given the known behavioural 
effects of 5a-pregnan-3a-ol-20-one, it is conceivable that an effect on neuros
teroid synthesis may contribute to the alleviation by fluoxetine of the anxiety 
and dysphoria associated with conditions such as premenstrual syndrome and 
certain forms of depression (UZUNOVA et al. 1998). These findings broaden the 
potential clinical utility of the neurosteroids and suggest the 3a-hydroxysteroid 
dehydrogenase enzyme family as a new drug target. 
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It is now established that steroids such as 5a-pregnan-3a-ol-20-one are 
potent and selective GABAA receptor modulators that act in vivo to produce 
clear behavioural effects consistent with the enhancement of inhibitory synap
tic transmission. However, the fundamental question remains as to whether 
the endogenous levels of such steroids are sufficient to regulate GABAA 

receptor function under physiological, or pathophysiological, conditions. In 
female rats, 5a-pregnan-3a-ol-20-one is estimated to be present within the 
brain at low nanomolar concentrations which, in vitro, would produce 
a modest enhancement of GABAA receptor function. However, GABA
modulatory activity may be more pronounced during stress, or in the 
later stages of pregnancy, during which substantially raised neurosteroid 
levels have been reported (PURDY et al. 1991; PAUL and PURDY 1992; 
CON CAS et al. 1999). Furthermore, it is now evident that the synthesis of 
5a-pregnan-3a-ol-20-one within the brain is not uniform. Such regional 
dependency may render consideration of whole brain levels of the steroid 
misleading (CHENEY et al. 1995; GUIDOTTI et al. 1996; GUIDOTTI and COSTA 
1998). 

That endogenous concentrations of 5a-pregnan-3a-ol-20-one present 
physiologically are indeed sufficient to enhance neural inhibition, is strongly 
suggested by recent studies investigating the influence of inhibitors and 
promoters of neurosteroid synthesis on the loss of the righting reflex 
induced by pentobarbitone in mice (MATSUMOTO et al. 1999). Pretreatment 
with a 5a-reductase inhibitor considerably decreased the cortical content of 
5a-pregnan-3a-ol-20-one and concomitantly reduced the duration of the bar
biturate induced "anaesthesia". By contrast, fluoxetine raised cortical neuros
teroid levels and the central depressant effects of pentobarbitone were 
enhanced (MATSUMOTO et al. 1999). As pentobarbitone and neuroactive 
steroids act synergistically at the GABAA receptor (CALLACHAN et al. 1987; 
PETERS et al. 1988) these data are consistent with the presence of steroids at 
facilitating concentrations under physiological conditions (MATSUMOTO et al. 
1999). 

In summary, a potent, selective and stereospecific interaction of certain 
synthetic and endogenous neuroactive steroids with the GABAA receptor is 
now firmly established. When administered to animals, such steroids exhibit a 
behavioural profile consistent with the enhancement of neuronal inhibition, 
including anxiolytic, anticonvulsant, sedative/hypnotic and general anaesthetic 
activities. Synthetic steroid analogues are currently undergoing clinical assess
ment in an attempt to exploit this behavioural profile. The demonstration that 
the brain can synthesise 5a-pregnan-3a-ol-20-one raises the exciting prospect 
that the activity of the major inhibitory neurotransmitter in the central 
nervous system may be finely tuned by this locally produced modulator. Fur
thermore, the centrally located enzymes that synthesise, or metabolise, 5a
pregnan-3a-ol-20-one could present novel therapeutic targets. Indeed, some 
of the behavioural effects of established psychotherapeutic agents such as flu
oxetine may, in part, be due to an effect upon the metabolism of neurosteroids. 
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Irrespective of whether or not these findings result in novel drugs, there is a 
burgeoning literature that indicates a physiological/pathophysiological role 
for neurosteroids. Hence, their study may provide a better understanding of 
some forms of epilepsy and psychiatric disorders where a perturbation of neu
rosteroid homeostasis is suspected (e.g. premenstrual tension and postnatal 
depression). 

The present review focuses upon the effects of neuroactive steroids upon 
GABAA receptor function at the molecular and cellular levels, commencing 
with a description of the structural elements of the steroid molecule essential 
for activity. Thereafter, the influence of the subunit composition of the 
GABAA receptor upon the steroidal modulation is considered, along with 
altered sensitivity to such regulation as a potential consequence of the differ
ential expression of subunit isoforms in response to changing levels of endoge
nous steroids. The remainder of the chapter describes the mechanistic aspects 
of neurosteroid action, including their influence upon the kinetics of GABAA 

receptor single channel activity under steady-state and non-equilibrium con
ditions. The latter underlies the modulatory activity of neurosteroids on 
GABAA receptor-mediated inhibitory postsynaptic currents, the subsequent 
modification of the integrative capacity of central neurones and, ultimately, 
behaviour. 

B. Structure Activity Relationship for Steroids at 
the GABAA Receptor 

Early studies of the structural requirements for potent modulation of GABAA 

receptor activity by steroids emphasised the requirement for a 5a- or 5f3-
reduced pregnane (or androstane) skeleton, an a-hydroxyl substituent at C3 
of the steroid A ring, and a keto group at either C20 of the pregnane steroid 
side chain or C17 of the androstane ring system (HARRISON and SIMMONDS 
1984; MAJEWSKA et al.1986; CALLACHAN et al.1987; HARRISON et al.1987a;GEE 
et al. 1987, 1988; PETERS et al. 1988; see Fig. 1). Inevitably, subsequent investi
gations have led to refinement and extension of this simple scheme. It is now 
probably an oversimplification to attempt to define a single structure activity 
relationship for steroids at the GABAA receptor. Complications arise from the 
heterogeneity of GABAA receptors within the nervous system and the fact 
that the GABA-modulatory and GABA-mimetic activities of the steroids can 
be differentially influenced by the subunit composition of the receptor (see 
Sect. C). Furthermore, certain sulphated steroids act as negative allosteric 
modulators of GABAA receptor activity, though this activity may be mediated 
at a site distinct from that recognising positive steroidal modulators (see Sect. 
B.III). The following summary of the structure activity relationship for steroid 
interaction with the GABAA receptor should be read with these limitations in 
mind. 
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I. Enantioselectivity of Steroid Action 

Studies demonstrating a differential effect of enantiomeric pairs of pregnane 
and androstane steroids and the structurally related benz[e]indenes (see Sect. 
B.I1 and Fig. 2) upon GABAA receptor function provide the most convincing 
evidence that such compounds act directly upon the receptor. This is so 
because enantioselectivity is only manifest in a chiral (e.g. protein) environ
ment. The endogenous eutomer (+)-5a-pregnan-3a-ol-20-one (which differs 
from alphaxalone in that Cll is unsubstituted; see Fig. 2) acts as a potent pos
itive allosteric modulator of the GABAA receptor and is an anaesthetic in 
animal studies (MAJEWSKA et al. 1986; HARRISON et al. 1987a; PETERS et al. 
1988). In comparison, the dis to mer (-)-5a-pregnan-3a-ol-20-one has much 
reduced GABA-modulatory and anaesthetic potencies in tadpoles and mice 
(WITTMER et al. 1996; ZORUMSKI et al. 1996). A similar correlation between 
GABA-modulatory and anaesthetic potency exists for androstane enan
tiomers bearing a 17 fJ-carbonitrile substituent (see Sect. B.VII) (WITTMER et 
al. 1996) and for the enantiomers of the benz[ e ]indene BI-1 (ZORUMSKI et al. 
1996). These observations strongly support the concept of (a) distinct binding 
site(s) for steroids on the GABAA receptor and reinforce observations sug
gesting alphaxalone and 5fJ-pregnan-3a-ol-20-one to be effective modulators 
of GABA only when applied extracellularly (LAMBERT et al. 1990; POISBEAU 
et al. 1997). 

II. The Ring System 

Recent studies have demonstrated that a saturated ring system is not an 
absolute requirement for positive allosteric modulation of the GABAA recep
tor activity by steroids. In several assays, 4-pregnen-3a-ol-20-one exhibits 
a potency and efficacy comparable to that of 5a-pregnan-3a-ol-20-one 
(HAWKINSON et al. 1994). Similarly, 5a-preg-9(1l )-en-3-ol-20-one retains some 
activity (HAWKINSON et al. 1994). Furthermore, the steroid A ring per se is not 
essential for activity because certain benz[ e ]indene compounds (e.g. BI -1, 
Fig. 2) which may be viewed as tricyclic steroid analogues in which the steroid 
A-ring is partially opened and removed (ZORUMSKI et al. 1996), retain the 
ability to potentiate and activate GABAA receptors in an enantioselective 
fashion (RODGERS-NEAME et al.1992; WITTMER et al.1996; ZORUMSKI et al.1996) 
(see Sect. B.I also). The introduction of a double bond within the steroid D 
ring between C16 and C17 reduces, but does not abolish, the activity of some 
naturally occurring and synthetic pregnanes (BOLGER et al. 1996) (see Sect. 
B.VI also). 

III. C2 Substitution 

Modulation of GABAA receptor activity by pregnane steroids rendered water 
soluble by the introduction of a 2fJ-morpholinyl group has recently been 
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described in detail (HILL-VENNING et al.1996; ANDERSON et al. 1997). It is clear 
that the steroid binding site(s) of the GABAA receptor can tolerate rather 
bulky substituents at the 2f3-position, since even alkylated 2f3-morpholinyl 
derivatives of alphaxalone (e.g. Org 21465, Fig. 2) can be accommodated 
without loss of potency (ANDERSON et al. 1997). Similarly, the modulatory 
activity of the anaesthetic steroid, minaxolone (Fig. 2), at the GABAA recep
tor is not adversely affected by structural modifications to the parent com
pound alphaxalone (2f3-ethoxy and 11 a-dimethylamino substitutions) that 
confer solubility in water (SHEPHERD et al. 1996). 

IV. C3 Substitution 

Numerous studies have demonstrated that 5a- and 5f3-reduced pregnane (and 
androstane) steroids are essentially equally potent as modulators of the 
GABAA receptor. Thus, despite the substantial conformational difference 
introduced by the stereochemistry of the steroid AlB ring fusion (trans and cis 
in the 5a- and 513 series of compounds respectively, see Fig. 1), binding within 
the GABAA receptor is accommodated. By contrast, the nature and configu
ration of the substituent at the C3 position of the steroid A ring is an extremely 
important determinant of steroid action at the GABAA receptor. For example, 
epimerization of the 3-hydroxyl group of the anaesthetic steroid alphaxalone 
to the f3-configuration, yields betaxalone (5 a-pregnane-3f3-01-11 ,20-dione) , 
which is neither an anaesthetic, nor a positive allosteric modulator of the 
receptor (HARRISON and SIMMONDS 1984; COTTRELL et al. 1987). The 313-
hydroxy epimers of the naturally occurring steroids 5a-pregnan-3a-ol-20-one, 
5f3-pregnan-3a-ol-20-one and 5a-pregnan-3a,11f3,21-triol-20-one, are similarly 
ineffective in potentiating GABA (HARRISON et al. 1987a; GEE et al. 1988; 
PETERS et al.1988; KOKATE et al.1994). However, 5a-pregnan-3a-ol-20-one and 
5a-pregnan-3f3-01-20-one, when utilized at relatively high concentrations, do 
share the ability to increase the rate of desensitization of current responses 
mediated by the GABAA receptor, indicating that this aspect of their action 
is not diastereoselective (WOODWARD et al. 1992). 

Oxidation of the 3-hydroxyl group to the ketone (CALLACHAN et al. 1987; 
HARRISON et al. 1987a; PURDY et al. 1990; HAWKINSON et al. 1994), markedly 
attenuates, or abolishes, positive allosteric modulation by 5a- and 513-
pregnanes. Similarly, pregnenes (e.g. progesterone) and androstenes (e.g. 
testosterone and androstenedione) wherein a C3 ketone substituent is present 
within an unsaturated (C4-C5 double bond) steroid A-ring exert only a limited 
activity even when utilized at very high concentrations (PARK-CHUNG et al. 
1999). In addition, the substitution of oxime, acetate or methyl groups at the 
C3 position greatly diminishes activity (PURDY et al. 1990; HAWKINSON et al. 
1994; UPSANI et al. 1997). It seems likely that the free hydroxyl group at C3, 
via hydrogen bond donatation, is an important determinant of the primary 
docking of the steroid molecule to the positive allosteric regulator site( s) of 
GABAA receptor (UPSANI et al. 1997). 
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The formation of a sulphate ester at the 3a-hydroxyl group of 5a- or 5f3-
pregnan-3a-ol-20-one, or 5a-androstan 3a-ol-17-one (androsterone), results 
in compounds that, at sub-micromolar concentrations, have minimal GABAA 

receptor activity (NILSSON et al. 1998; PARK-CHUNG et al. 1999). However, at 
higher concentrations, the sulphated pregnanes and androstanes inhibit 
GABAA receptor activity (NILSSON et al. 1998; PARK-CHUNG et al. 1999) in a 
manner qualitatively similar to that documented for other endogenous sul
phated steroids including pregnenolone sulphate and dehydroepiandrosterone 
sulphate (MAJEWSKA et al. 1988, 1990a,b; MIENVILLE and VICINI 1989; LE FOLL 
et al. 1997). The inhibitory action of pregnenolone sulphate and 5f3-pregnane-
3a-ol-20-one sulphate does not demonstrate enantioselectivity, unlike the 
potentiating effect of, for example, 5a-pregnan 3a-ol-20-one (WITTMER et al. 
1996; NILSSON et al. 1998) (see Sect.B.I). This might indicate that sulphated 
and un-sulphated steroids bind to distinct sites to produce their opposing 
effects, a suggestion consistent with the results of interaction studies between 
the two classes of compounds (PARK-CHUNG et al. 1999). Adding further com
plexity, blockade of GABAA receptor mediated currents by the unnatural 
enantiomer of dehydroepiandrosterone sulphate is clearly less potent than for 
the naturally occurring steroid, which may suggest differences in the nature of 
the site(s) that recognise specific sulphated compounds (NILSSON et al. 1998). 
Hereafter, we confine the discussion to steroids that act as positive allosteric 
modulators of GABAA receptor activity. 

The potential therapeutic utility of pregnane steroids (other than as short 
acting intravenous general anaesthetic agents) is limited by their rapid metab
olism via conjugation or oxidation of the crucial3-hydroxyl group. It is possible 
to retard such reactions by substitution at the 3f3-position. Thus, the 3f3-methyl 
substituted analogue of 5a-pregnan-3a-ol-20-one (i.e. ganaxolone) (Fig. 2) 
retains potency and efficacy as a modulator of the GABAA receptor and, unlike 
the parent compound, demonstrates anticonvulsant activity against chemically 
induced seizures in rats when administered orally (CARTER et al. 1997). Within 
the 5a-pregnane series, the introduction of simple alkyl 3f3-substituents larger 
than a methyl group results in a reduction in both potency and efficacy (the 
latter being inferred from incomplete displacement of the binding of [35S]TBPS 
to the receptor complex in radio ligand binding assays). The reduction in 
potency does not correlate simply with the size of the substituted alkyl group 
(HOGENKAMP et a1.1997). By contrast, the reduction in potency produced by 3f3-
substitution with either ethers or alkyl halides tends to increase with size. An 
interesting example of the latter group of compounds is the 3f3-trifluoromethyl 
derivative of 5a-pregnan-3a-ol-20-one (i.e. Co 2-1970) (Fig. 2) which acts in a 
manner consistent with partial agonism in both radio ligand binding and elec
trophysiological assays of allosteric regulation of the GABAA receptor 
(HAWKINSON et al. 1996). Steroids with limited efficacy could, in principle, offer 
advantages over full-agonists in certain clinical settings. 

In contrast to the deleterious effect of 3f3-alkyl substitutions, the incorpo
ration of alkene and alkyne groups at this position is generally well tolerated 
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in both the 5a- and 5f3-pregnane series if the unsaturated bond is immediately 
adjacent to the steroid A ring (HOGENKAMP et al.1997; HAWKINSON et al. 1998). 
Indeed, certain 3f3-phenylethynyl analogues of 5a- and 5f3-pregnan 3a-ol-20-
one (e.g. Co 152791) (Fig. 2) retain not only the full agonist character of the 
parent steroid, but in addition demonstrate a marked increased in potency 
(UPSANI et al. 1997; HAWKINSON et al. 1998). Optimal activity is associated with 
the ethynyl spacer unit, which is postulated to place the phenyl ring at an 
appropriate distance from the steroid nucleus, and the presence of hydrogen 
bond acceptors (e.g. acetyl or carbethoxy groups) at the para-position of the 
phenyl ring. The enhanced potency of, for example, the 3f3-(p-acetyl
methylphenylethynyl) derivatives of 5a- and 5f3-pregnan-3a-ol-20-one, has 
been interpreted as evidence for the existence of an auxiliary docking site at 
the GABA receptor. The latter is proposed to be accessed via the rigid spacer 
extending from the 3f3-position and binding is subsequently stabilized by 
hydrogen bond formation (UPSANI et al. 1997; HAWKINSON et al. 1998). 

V. C5, CIO or Cll Substitution 

The substitution of the C5 hydrogen atom by a methyl group in the a-orien
tation (i.e. projecting below the plane of the steroid ring system) greatly 
reduces, or abolishes, potentiation of GABAA receptor activity by pregnane 
and androstane steroids. By contrast, 5f3-methyl substitution is better toler
ated, indicating that steric restrictions exist in the region of space below the 
steroid A ring (HAN et al. 1996). The 19-Nor steroids generated by the replace
ment of the C19 methyl group at ClO by H exhibit activities more closely 
related to their parent compounds, suggesting steric hindrance to be less pro
nounced above the plane ofthe steroid ring (HAN et al.1996).At the Cll posi
tion, the introduction a ketone group into 5a-pregnanes (e.g. alphaxalone; 
5a-pregnan-3a-ol-ll,20-dione) (Fig. 2) causes some loss of activity at the 
GABAA receptor, whereas introducing an hydroxyl function at this, or the 
adjacent C12, position abolishes activity (HAWKINSON et al. 1994; ANDERSON 
et al. 1997). 

VI. The C17 Side Chain 

For all pregnane steroids examined to date, the side chain at C17 must be in 
the f3-configuration for activity (PURDY et al. 1990; HAWKINSON et al. 1994) Sim
ilarly, whilst substitution of the acetyl side chain with a carbonitrile moiety 
produces a compound with an activity similar to that of 5 a-pregnan-3a-ol-20-
one, the f3 orientation of the substituent is once again crucial. The insertion of 
a double bond between C16 and C17 of the pregnane steroid D ring (see also 
Sect. B.I) produces 16-ene analogues whose reduced potency is thought to 
result from changes in the conformation of the side chain that place the C20 
ketone group (see Sect. B.VII) in an unfavourable orientation (BOLGER et al. 
1996). 



Steroid Modulation of GABAA Receptors 127 

VII. C20 Substitution 

The presence of a ketone group at C20 of the acetyl side chain was initially 
deemed essential to the activity of pregnane steroids at the GABAA receptor 
(HARRISON et al. 1987a). It is postulated that the C20 ketone acts as a hydro
gen bond acceptor, which, together with the 3a-hydroxyl-group (see Sect. IV), 
serves to anchor the steroid in the primary binding pocket of the GABAA 

receptor (UPSANI et al. 1997; HAWKINSON et al. 1998). However, subsequent 
studies have revealed 20-keto reduced analogues of 5a- and 5,B-pregnan-3a-
01-20-one (e.g. 5a-pregnane-3a,20a-diol) (Fig. 2) to modulate GABAA recep
tor activity in a manner consistent with partial agonism. The potency and 
efficacy of such pregnanediols are dependent upon structural determinants 
that include cis or trans fusion of the A and B rings and the orientation (a or 
,B) or the 20-hydroxyl moiety, which, in contrast to a C20 ketone substituent, 
might function as a hydrogen bond donor (MCCAULEY et al. 1995; BELELLI et 
al. 1996). 

VIII. C21 Substitution 

The presence of a hydroxyl group at C21 (as the in naturally-occurring 5a
pregnan-3a,21-diol-20-one) or its esterification to the acetate or mesylate pro
duces only modest reductions in activity (HAWKINSON et al 1994). Similarly, 
from studies conducted with a series of 2,B-morpholinyl substituted steroids 
(see Sect. B.Ill), it appears that the steroid binding site of the GABAA recep
tor can accept functional groups that include hydroxyl, chloride, acetate, 
thioacetate, thiocyanate and azide moieties (ANDERSON et al. 1997). A hemi
succinate group can also be tolerated (GASIOR et al.1999). However, unlike 5,B
pregnan-3a-ol-20-one, 5,B-pregnan-3a,21-diol-20-one is reported to act as a 
partial agonist, suggesting some interaction between C21 substituents and the 
orientation (cis or trans - see Sect. B.I) of the steroid (XUE et al. 1997). 

IX. Summary 

An a-hydroxyl group at C3 and ketone moiety at C20 most probably serve, 
by donating and accepting hydrogen bonds respectively, as points of attach
ment of neurosteroids within the primary binding pocket of the GABAA 

receptor. However, the energy provided by such interactions would clearly 
be insufficient to account for the high apparent affinity of many pregnane 
steroids. Additional important stabilizing influences most probably include 
hydrophobic interactions between the steroid ring system and receptor 
protein. In this respect, the area immediately beneath the AlB ring fusion 
appears to present a forbidden volume, but the configuration of rings appears 
to be of little importance. Substitutions in the ,B-orientation at C2, and at C21 
are well tolerated, whereas the effect of chemical modification at C11 is depen
dent upon the precise substituent. The metabolism of neurosteroids can be 
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retarded by substitutions at the 3/3 position which, in the case of phenylethynyl 
dervatives, may also contribute to potency by contacting an auxiliary binding 
pocket. 

C. Neurosteroid Binding Site Heterogeneity and 
the Influence of GABAA Receptor Subunit 
Composition upon Neurosteroid Action 

There is considerable indirect evidence from radioligand binding and chloride 
flux studies with native GABAA receptors to suggest that neuroactive steroids 
can differentiate between GABAA receptor isoforms. As a consequence, the 
effects of the steroids may be brain region dependent (GEE et al. 1988; PRINCE 
and SIMMONDS 1993; OLSEN and SAPP 1995). However, studies investigating the 
dependence of neurosteroid action on the subunit composition of the GABAA 

receptor have not provided a consistent picture (LAMBERT et al. 1995). For 
clarity, the findings presented here will be restricted to those obtained in 
electrophysiological assays. 

I. a-Subunits 

The benzodiazepine pharmacology of the GABAA receptor is highly depen
dent upon the isoform of the a subunit (al-6) present with the hetero-oligomer 
(LUDDENS et al. 1995; SMITH and OLSEN 1995). By contrast, differences in neu
roactive steroid potency across the a isoforms are relatively modest (SHINGAI 
et al. 1991; PUlA et al. 1993; LAMBERT et al. 1995). Indeed, the presence of the 
a subunit is not a prerequisite for modulation by neuroactive steroids, because 
recombinant receptors assembled solely from /31 and Y2 subunits are sensitive 
to 5a-pregnan-3a-ol-20-one and alphaxalone. At such receptors, steroids 
exhibit a similar ECso to that found for a, /3 and rsubunit combinations, albeit 
with a reduced maximum effect (MAITRA and REYNOLDS 1999). Utilizing the 
Xenopus laevis oocyte expression system, we have recently investigated the 
influence of the a isoform (ax/31 Y2 where x = 1-6) on the potency (ECso) and 
maximal (Emax) GABA-modulatory effects of 5a-pregnan-3a-ol-20-one (see 
Table 1). Essentially, and in agreement with previous studies, inspection of 
Table 1 confirms that the neurosteroid does not discriminate clearly between 
the a isoforms. Hence, apart the receptor assembled from ~, /31 and Y2 sub
units, the Emax. varies little (i.e. a seven- to ninefold increase of the current 
induced by an EC10 concentration of GABA) for receptors containing the dif
ferent a isoforms (Table 1). Evaluation of the neurosteroid ECso reveals, at 
most, only a three- to fourfold difference (Table 1). 

The effects of the neurosteroids on the u4-subunit containing receptor are 
of particular interest given the recent reports on the increased expression of 
this subunit in the hippocampus upon progesterone withdrawal (SMITH et al. 
1998a,b). Hippocampal neurones, isolated from progesterone-withdrawn rats, 
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Table 1. The influence of GABAA receptor subunit com
position upon the modulatory effects of 5a-pregnan-3a-ol-
20-one 

Subunit combination 

ad3! 
ad3!YzL 
a!~YzL 
a!/3JYzL 
a2f31 Y2L 
a3f3!YzL 
a4f31 Y2L 
asf3! YzL 
~f3!YzL 
~~Y2L 
~f33Y2L 

ECsoa 

380 ± lOnmol/l 
89 ± 6nmolll 

177 ± 2 nmolll 
195 ± 36nmolll 
146 ± 11 nmolll 
74 ± 1 nmolll 

317 ± 25 nmol/l 
302 ± 38 nmolll 
220 ± 12 nmolll 
350 ± 29 nmol/l 
264 ± 33 nmolll 

143 ± 2% 
69±4% 
75 ±4% 
72±4% 
66±6% 
67±7% 
72±6% 
81 ±2% 

131 ± 6% 
lO8±5% 
90± 9% 

All parameters are calculated from steroid concentration
effect relationships obtained from a minimum of 4 oocytes 
expressing combinations of human GABAA receptor sub
units. Data are collated from LAMBERT et al. (1999) and the 
unpublished observations of D. Belelli. 
a The ECso is defined as the concentration of steroid which 
causes the GABA (ECIO) evoked current to be enhanced 
to 50% of the maximum potentiation that can be produced 
by the steroid. 
b The EMAX is defined as the maximum potentiation pro
duced by the steroid (expressed as a percentage of the peak 
current evoked by a saturating concentration of GABA 
alone ). 

129 

express GABAA receptors with physiological and pharmacological properties 
consistent with those reported for a4 subunit-containing recombinant recep
tors. In particular, GABA-evoked currents recorded from such neurones are 
brief in duration, insensitive to lorazepam, and characteristically are enhanced 
by benzodiazepine antagonists and inverse agonists (WAFFORD et al. 1996; 
SMITH et al. 1998a,b, 1999). This alteration of the hippocampal GABAA recep
tors appears to be in response to the withdrawal of the progesterone metabo
lite 5a-pregnan-3a-ol-20-one, rather than progesterone itself (SMITH et al. 
1998a,b). In addition to expressing an altered benzodiazepine pharmacology, 
the hippocampal GABAA receptors of these treated animals are insensitive to 
"physiological" (lOnmolll) levels of 5a-pregnan-3a-ol-20-one (SMITH et al. 
1998b). This feature would appear inconsistent with the properties of a4-
containing receptors, which are reported to be neurosteroid-sensitive 
(WAFFORD et al. 1996) (Table 1) although given the fourfold difference in the 
EC50 value for 5a-prenan-3a-ol-20-one acting at aj- vs a4-subunit-containing 
receptors, the latter would be expected to be less sensitive to physiological 
levels of the steroid. 
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II. P Subunits 

Alphaxalone, 5a-pregnan-3a-ol-20-one and 5a-pregnane-3a,21-diol-20-one 
do not discriminate between the fJ-subunit isoforms when expressed in hete
ro-oligomeric receptors of the composition ad3x:.rz (where x = 1, 2 or 3) 
(HADINGHAM et a1. 1993; SANNA et a1. 1997) (see also Table 1). In this respect, 
the neuroactive steroids differ from the anaesthetic etomidate and the anti
convulsant loreclezole, which preferentially modulate f3z- and /33- over fJl
subunit containing receptors (WINGROVE et a1. 1994; BELELLI et a1. 1997). 

III. rSubunits 

The presence of a y subunit in a heteromeric GABAA receptor complex is a 
prerequisite for a consistent allosteric modulation by benzodiazepines 
(LUDDENS et a1. 1995). Furthermore, the nature of the benzodiazepine inter
action with the receptor is additionally influenced by the y subunit isoform 
present within the receptor complex (LUDDENS et a1. 1995). However, in con
trast to the benzodiazepines, the presence of a y subunit is not required for 
steroid modulation of GABA-evoked currents (PUlA et a1. 1990; SHINGAI et 
a1.1991). In a recent electrophysiological study utilizing oocytes, the identity 
of y subunit had little effect on the potency with which alphaxalone, or 5a
pregnan-3a-ol-20-one, modulated GABA-evoked currents, although the 
maximal effect of the steroids was greater at Y:l- vs Yt- or rz-subunit-containing 
receptors (MAITRA and REYNOLDS 1999). 

IV. The ~ Subunit 

The expression of a 8 subunit, in combination with a and fJ subunits, dramat
ically reduces the GABA-modulatory effects of 5a-pregnane-3a,21-diol-20-
one, but has little effect on the GABA-mimetic effects of this steroid (ZHU et 
a1. 1996). The potential physiological importance of this observation is illus
trated by experiments performed on cerebellar granule cells, in which GABAA 
receptor mediated responses exhibit a reduced responsiveness to neurosteroid 
modulation with development. Analysis of the potential subunit composition 
of granule cell GABAA receptors by single cell peR techniques suggests that 
the loss of neurosteroid sensitivity may be due to increased incorporation of 
the 8 subunit into the receptor complex (ZHU et a1. 1996). 

V. The e Subunit 

As found for the 8 subunit, the incorporation of the E subunit into a- and fJ
subunit-containing GABAA receptors dramatically reduces the GABA
modulatory effects of 5a-pregnan-3a-ol-20-one and the general anaesthetics 
propofol and pentobarbitone (DAVIES et a1. 1997). Although the direct effects 
of such agents are little affected by the E subunit (DAVIES et a1. 1997), interpre-
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tation of this finding is complicated because receptors embodying an £ subunit 
exhibit spontaneous channel openings in the absence of GABA (NEELANDS et 
al. 1999). In addition, an independent study found the £ subunit to exert little 
effect upon the GABA-modulatory properties of the neurosteroids (WHITING 
et al. 1997). These contradictory findings are currently inexplicable. 

VI. Summary 

The identity of the a and f3 subunits has little, or no, effect upon neurosteroid 
action and the r subunit is not required for their activity. Substitution of a r 
subunit by a 8 subunit clearly suppresses the GABA-modulatory activity of 
the neurosteroids, but the influence of the £ subunit remains to be clarified. 
Recent studies have revealed that synaptic GABAA receptors are differen
tially sensitive to neurosteroids (see Sect. E), but the molecular basis of such 
diversity remains to be elucidated. 

D. Molecular Mechanism of Neurosteroid Action 
Experiments investigating the influence of alphaxalone on GABA-induced 
current fluctuations recorded from mouse spinal neurones suggested that the 
steroid acts primarily to prolong the mean open time of the GABAA receptor 
ion channel (BARKER et al. 1987). In agreement, single channel recordings 
made from membrane patches excised from bovine chromaffin cells clearly 
demonstrated 5a- or 5f3-pregnan-3a-ol-20-one to prolong the open time of 
channels activated by GABA with no effect on the single channel conductance 
(CALLACHAN et a1.1987; LAMBERT et a1.1987). Additionally, these studies estab
lished that at concentrations greater than those required for GABA modula
tion, these steroids in the absence of GABA directly activated the receptor 
complex. Similar actions have recently been noted for 5f3-pregnan-3a-ol-20-
one acting on the GABAA receptor(s) expressed by frog pituitary melan
otrophs (LE FOLL et al. 1997). 

The GABAA receptor of the chromaffin cell exhibits multiple intercon
verting conductance states which prevents a quantitative analysis on the effect 
of these neurosteroids on GABA-gated ion channel kinetics. However, the 
GABAA receptors of mouse spinal neurones often exhibit one predominant 
conductance state (MACDoNALD et al. 1989; MACDoNALD and OLSEN 1994). 
By restricting analysis to such data segments, three kinetically distinct open 
states of the GABA-gated ion channel were revealed and the depressant neu
roactive steroids were shown primarily to promote the occurrence of the open 
states of intermediate and long duration at the expense of openings of brief 
duration (TWYMAN and MACDoNALD 1992; MACDoNALD and OLSEN 1994). The 
anaesthetic barbiturates act in a similar way to perturb channel kinetics (MAC
DONALD et al. 1989), but the neuroactive steroids additionally increase the fre
quency of single channel openings (TwYMAN and MACDoNALD 1992). Whether 
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this latter effect is caused by the direct activation of the receptor channel 
complex by the neuroactive steroid is not known. 

The aforementioned kinetic studies were performed with relatively low 
concentrations of GABA. However, for at least some central GABA-ergic 
synapses, it appears that the concentration of synaptically-released GABA is 
sufficient to saturate briefly a small number of postsynaptic GABAA recep
tors (MoDY et al. 1994; EDWARDS 1995). Hence, an examination of the effects 
of the neuroactive steroids on GABA-evoked currents induced by rapidly 
applied saturating concentrations of the agonist may be more instructive in 
understanding how the steroid-induced perturbation of channel kinetics mod
ifies synaptic transmission. Rapid (200,us) and brief (1 ms) applications of a 
saturating concentration of GABA to nucleated membrane patches excised 
from cerebellar granule cells induces currents that decay with a biphasic time 
course consisting of fast and slow components (ZHU and VICINI 1997). The 
decay of some miniature inhibitory postsynaptic currents (mIPSCs - the result 
of the activation of synaptically located GABAA receptors by a single vesicle 
of GABA) also exhibit a bi-exponential decay (EDWARDS 1995; ZHU and VICINI 
1997). In both instances, the fast time component is thought to originate from 
channels oscillating between GABA bound open and closed confirmations, 
whereas the slower phase is proposed to be caused by receptors visiting, and 
exiting, various desensitized states (JONES and WESTBROOK 1996). Hence, 
GABAA receptors exiting desensitization could re-enter conducting states and 
by this mechanism, effectively prolong the GABA-evoked current. The neu
rosteroid 5a-pregnane-3a,21-diol-20-one has been shown to prolong the slow 
time constant of decay of GABA-evoked currents recorded from nucleated 
patches (ZHU and VICINI 1997). This effect is postulated to result from the 
steroid acting to slow the recovery of receptors from desensitization (ZHU and 
VICINI 1997). Consistent with this proposal, 5a-pregnane-3a,21-diol-20-one, in 
the presence of a saturating concentration of GABA, increases the probabil
ity of the channel being in the open state, by increasing the number of late 
channel openings (ZHU and VICINI 1997). This mechanism is thought to under
lie the neurosteroid-induced prolongation of GABA-mediated synaptic events 
(see below). 

E. Neurosteroid Effects on Synaptic Transmission 

The effects 5a-pregnan-3a-ol-20-one and 5a-pregnane-3a,21-diol-20-one on 
evoked inhibitory postsynaptic currents (IPSCs) were first examined in 
voltage-clamp studies performed on rat hippocampal neurones in cell culture 
(HARRISON et al. 1987a,b). The neurosteroids were found to prolong the decay 
of the GABA-mediated synaptic current with little, or no, effect upon IPSC 
amplitude or rise time. Surprisingly, given the interest in neurosteroids, it is 
only recently that their effects on inhibitory synaptic transmission have been 
investigated further. 
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Evoked, or spontaneous, IPSCs are thought to result from the asynchro
nous release of GABA from multiple release sites (MODY et al. 1994; WILLIAMS 
et al. 1998), making the interpretation of the effects of neuroactive steroids 
complex. However, synaptic events recorded in the presence of the voltage-acti
vated sodium channel blocker tetrodotoxin, which prevents release due to local 
presynaptic action potential discharge and isolates miniature inhibitory postsy
naptic currents (mIPSCs), are thought to arise from the release of a single 
vesicle of GABA. The latter most probably briefly saturates a relatively small 
number of postsynaptic GABAA receptors with neurotransmitter (MODY et al. 
1994). A number of studies utilizing the in vitro brain slice preparation, or 
acutely dissociated neurones with adherent synaptic terminals, have reported 
nanomolar concentrations of 5a- or 5,6-pregnan-3a-ol-20-one and 5a
pregnane-3a,21diol-20-one to prolong the mIPSC decay time recorded from 
neurones of the medial preoptic nucleus, cerebellar Purkinje neurones, hip
pocampal dentate granule and CAl pyramidal neurones (COOPER et al. 1996; 
HARNEY et al. 1999; LAMBERT et al. 1999; HAAGE and JOHANSSON 1999). Interest
ingly, mIPSCs recorded from dentate granule cells within slices prepared from 
20-day-old animals appear relatively insensitive to neurosteroid modulation, 
compared to those of Purkinje and CAl hippocampal neurones. By contrast, the 
mIPSCs of dentate granule cells of 10-day-old animals are neurosteroid-sensi
tive (COOPER et al. 1996). The physiological and pharmacological properties of 
dentate granule GABAA receptors are reported to undergo considerable devel
opmental changes (HOLLRIGEL and SOLTESZ 1997; KAPUR et al. 1999), presum
ably reflecting changes in GABAA receptor subunit composition that are 
known to occur at this time (FRITSCHY et al.1994). Hence, the neurosteroid sen
sitivity of the dentate granule neurones may be developmentally regulated by 
changes in the subunit complement of the GABAA receptor. 

That the neurosteroid sensitivity of GABAA receptors can be both a 
dynamic and plastic property is demonstrated by recent studies on spontaneous 
IPSCs (sIPSCs) recorded, in the absence of tetrodotoxin, from hypothalamic 
magnocellular oxytocin neurones during the reproductive cycle of the rat 
(BRUSSAARD et al. 1997, 1999). Such neurones secrete oxytocin during parturi
tion and lactation. Acting upon the neurones of virgin animals, and animals one 
day prior to parturition, 5a-pregnan-3a-ol-20-one produces a concentration
dependent prolongation of the sIPSC decay time with no effect on sIPSC 
amplitude. However, upon parturition, which is coincident with a dramatic 
decrease of endogeneous 5a-pregnan-3a-ol-20-one levels, the sIPSCs become 
insensitive to the neurosteroid and exhibit a prolonged decay (BRUSSAARD et 
al. 1997, 1999). The altered synaptic decay and neurosteroid insensitivity of 
sIPSCs is long-lived, with their properties only reverting to those of pre-preg
nancy several weeks after the end of lactation (BRUSSAARD et al. 1999). The 
inhibitory input to these neurones plays an important regulatory role and these 
changes in the properties of the GABAA receptors may underlie the timed 
release of oxytocin required for parturition and lactation. Coincident with the 
altered synaptic decay and neurosteroid insensitivity, the ratio of a2 to al 
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mRNA is increased in these neurones (BRUSSAARD et al. 1997, 1999). If such 
changes are mirrored at the level of the expressed protein, an altered subunit 
composition of the synaptic GABAA receptors might underlie the changes in 
sIPSC kinetics. However, for recombinant GABAA receptors, the effect of 5a
pregnan-3a-ol-20-one is little influenced by the nature of the a isoform (see 
Sect. C), although a reduced metabolite (5a-pregnane-3a,20a-diol ) is less 
potent at ar vs aj- or a3-subunit-containing receptors (BELELLI et al. 1996). 
Whether the properties of synaptic a2 subunit-containing receptors are func
tionally distinct from recombinant receptors that incorporate an a2 subunit, or 
whether these neurones express additional subunits that might explain the neu
rosteroid-insensitivity (e.g. 8 or to), remains to be determined. 

Finally, some studies have reported that neurosteroids, in addition to influ
encing the mIPSC time course, may additionally increase the frequency of 
mIPSCs, implying a presynaptic effect of the steroid (POISBEAU et al. 1997; 
REITH and SILLAR 1997; HAAGE and JOHANSSON 1999). 

F. Concluding Remarks 
The stereoselectivity and potency of the neurosteroid interaction with the 
GABAA receptor is indicative of the presence of a high affinity binding site 
on the receptor protein. However, although genetically modified recombinant 
GABAA receptors have been successfully utilised to identify key amino acids, 
or domains, of the protein that contribute to the benzodiazepine and GABA 
binding sites (SIGEL and BAUR 1997), to date this approach has had limited 
success for the neurosteroids (RICK et al. 1998). Irrespective of the nature of 
the interaction with the GABAA receptor, the more accurate estimation of the 
likely synaptic concentrations of 5a-pregnan-3a-ol-20-one, coupled with the 
demonstration of its central synthesis, strongly suggests that this potent 
steroid-receptor interaction could subserve an important physiological/patho
physiological role. Clearly, the identification of a selective neurosteroid antag
onist, analogous to the benzodiazepine receptor antagonist flumazenil, would 
be invaluable in evaluating an endogenous function. 

Therapeutically, synthetic steroids are currently undergoing clinical trials 
as anticonvulsants, anxiolytics and in the treatment of sleep disorders (GASIOR 
et al. 1999). It will be of interest not only to determine their clinical efficacy, 
but to establish whether compounds which are based on the structure of an 
endogeneous modulator offer any advantages, particularly regarding side
effects, over currently available GABAA receptor ligands such as the benzo
diazepines. Finally, the discovery of novel compounds which selectively 
interact with the brain enzymes that synthesise or metabolise the neuros
teroids may offer a new therapeutic avenue. 
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CHAPTERS 

Allosteric Modulation of GABAA Receptor 
Function by General Anesthetics and Alcohols 

M.D. KRASOWSKI, R.A. HARRIS, and N.L. HARRISON 

A. Introduction 
Since their introduction into clinical practice nearly 150 years ago, general 
anesthetics have become some of the most widely used and important thera
peutic agents. Alcohol, specifically ethanol, is arguably the most important 
non-prescription drug in most Western countries. Despite over a century of 
research, the molecular mechanisms of action of general anesthetics and alco
hols in the central nervous system (CNS) have remained elusive. Ligand-gated 
ion channels have emerged as promising molecular targets to mediate the CNS 
effects of both classes of drug. In this review, we aim to describe the actions 
of general anesthetics and alcohols on y-aminobutyric acidA (GABAA ) recep
tors. We will begin by summarizing the chemical classes of anesthetics. We 
will briefly examine contemporary experimental methodology and review the 
pharmacological criteria that can help define proteins that represent plausible 
molecular targets for general anesthetics and alcohols. We will then describe 
the actions of these agents on the GABAA receptors. The last decade has wit
nessed an explosion of such studies, and we will focus in particular on recent 
work which utilizes recombinant chimeric and mutated receptors to identify 
regions of the GABAA receptors that are important for the modulatory actions 
of general anesthetics and alcohols. 

B. What is a General Anesthetic? 
General anesthetics include a startling range of structurally diverse molecules 
that can be, somewhat arbitrarily, divided into volatile anesthetics, anesthetic 
gases, alcohols, and intravenous anesthetics (Fig. 1). The observation that a 
spectrum of chemically dissimilar agents produces general anesthesia greatly 
influenced the thinking of early investigators seeking to explain mechanisms 
of anesthetic action. A landmark series of experiments reported independently 
by Hans Meyer and Charles Ernest Overton around the turn of the century 
determined that the potencies of general anesthetic molecules correlated well 
with their oil/water partition coefficients (MEYER 1899, 1901; OVERTON 1901). 
The so-called "Meyer-Overton correlation" was later extended to embrace the 
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Fig. 1. Chemical structures of selected general anesthetics 

concept that certain molecules produce general anesthesia by a non-specific 
mechanism. Non-specific theories of anesthesia usually include some notion 
that general anesthetics perturb membrane lipids within the eNS to reduce 
neuronal excitability and thereby produce anesthesia (MEYER 1937; MULLINS 
1954; SEEMAN 1972). Research within the last several decades has demon
strated numerous inconsistencies between experimental observations and 
non-specific theories of general anesthesia. The main problems including the 
following (FRANKS and LIEB 1994; HARRISON and FLOOD 1998): 

1. Some chemical compounds are predicted by non-specific theories to be 
anesthetics but do not, in fact, produce anesthesia. 

2. Non-specific theories of anesthesia cannot account for the stereoselectivity 
demonstrated by some anesthetic isomers. 

3. Anesthetic effects on lipids (such as alterations in membrane bilayer 
fluidity), when measured experimentally, are often negligible at clinically 
relevant concentrations, and are easily reproduced by very small increases 
in ambient temperature. In contrast, decreases in body temperature mimic 
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the behavioral effects of general anesthetics (FRANKS and LIEB 1986, 1994; 
TOMLIN et al. 1998). 

Some prescient investigators recognized a number of decades ago that 
anesthetics may act instead on specific targets. For example, Sir John Eccles 
and colleagues studied spinal synaptic reflexes in animals under pentobar
bitone anesthesia (ECCLES and MALCOLM 1946; ECCLES et al. 1963) and 
raised the possibility of anesthetic actions at neurotransmitter receptors, 
important in synaptic transmission. 

C. Special Considerations for Alcohol 

Although the n-alcohols are general anesthetics at high doses, they are not 
used clinically as such. The real interest is in the pharmacology of sub-anes
thetic alcohol doses, as well as the chronic effects of alcohol. Effects of ethanol 
commonly associated with mild intoxication, such as relaxation, reduced 
anxiety and behavioral disinhibition occur (in mice, rats, and humans) at blood 
alcohol concentrations of 5-20mmolll, whereas general anesthesia requires 
lOO-200mmolil ethanol (DEITRICH and HARRIS 1996). Demonstrating reliable 
effects of 5mmolll ethanol on defined receptors (proteins) has proven diffi
cult, and it is unlikely that actions on lipid properties can account for actions 
of ethanol at non-toxic concentrations. In this review, we focus on acute actions 
of anesthetics and alcohols, but it should be noted that continuous exposure 
to ethanol may result in tolerance and dependence. There is some evidence 
that the chronic neuronal adaptations in response to ethanol are related to 
changes in the initial targets of the drug (e.g., GABAA receptors, NMDA 
receptors), but molecular mechanisms of alcohol tolerance and dependence 
remain to be defined. 

D. Overview of Ligand-Gated Ion Channels 
This review summarizes recent progress in the understanding of general anes
thetic and alcohol actions on the GABAA receptors. A number of excellent 
reviews over the last decade have summarized work on the molecular and cel
lular actions of general anesthetics (WEIGHT et al. 1992; FRANKS and LIEB 1993, 
1994, 1996a; TANELIAN et al. 1993; HARRIS et al. 1995b; LAMBERT et al. 1995, 
1996; MIHIC et al. 1995; SMITH and OLSEN 1995; WHITING et al. 1995; LOVINGER 
1997; HARRISON and FLOOD 1998; PEARCE 1999). Ligand-gated ion channels are 
certainly not the only possible molecular targets for general anesthetics; other 
neuronal proteins such as voltage-gated ion channels and G-protein coupled 
receptors may also playa role in the overall spectrum of behavioral actions 
of some of the general anesthetics. However, extensive research has arrived at 
an almost universal consensus; voltage-gated ion channels are, in general, rel
atively insensitive to clinically relevant concentrations of general anesthetics 
(FRANKS and LIEB 1994). Detailed studies of general anesthetic actions on 
G-protein-coupled receptors are scarce, and it can be difficult to distinguish 



144 M.D. KRASOWSKI et al. 

effects on the receptor per se from general anesthetic perturbations of second 
messengers or effector molecules such as protein kinases and phospholipases. 
Receptors for the neurotransmitters glutamate, GABA, glycine, serotonin (5-
HT), and acetylcholine (ACh) are currently strong candidates as molecular 
mediators of the CNS effects of general anesthetics (FRANKS and LIEB 1994, 
1996a; HARRIS et al. 1995b). The ligand-gated ion channels include the 
GABAA, glycine, serotonin-3 (5-HT3), and nicotinic ACh receptors, along 
with the AMPA-, kainate-, and NMDA-sensitive subtypes of ion-otropic glu
tamate receptors. (Note: GABA, glutamate, 5-HT, and ACh also act on 'slow' 
neurotransmitter receptors, e.g., GABAB, muscarinic acetylcholine, and 
metabotropic glutamate receptors, which are coupled to second messenger 
systems.) GABAA , glycine, 5-HT3' and nicotinic ACh receptors form part of 
an evolutionarily related ligand-gated ion channel gene superfamily (ORTELLS 
and LUNT 1995). Ionotropic glutamate receptors were originally thought to be 
part of this superfamily but are now thought to belong to a distinct ion channel 
class. 

E. GABAA and Glycine Receptors 

GABAA and glycine receptors are chloride-selective ion channels. These are 
generally considered to be inhibitory neurotransmitter receptors, since in most 
cells, opening of chloride channels results in membrane hyperpolarization 
and/or stabilization of the membrane potential away from the threshold for 
firing action potentials (MCCORMICK 1989). GABA and glycine are the primary 
fast inhibitory neurotransmitters in the CNS, with glycine abundant in the 
spinal cord and brainstem (KUHSE et al. 1995; ZAFRA et al. 1997) and GABA 
predominant in higher brain regions (MCCORMICK 1989). It has been estimated 
that one-third of all synapses in the CNS are GABA-ergic (BLOOM and 
IVERSEN 1971). 

GABAA and glycine receptors, like the other members of the ligand-gated 
ion channel superfamily to which they belong, appear to share a common 
subunit topology, with a large N-terminal extracellular domain, four putative 
membrane-spanning regions (TM1-TM4), a heterogeneous intracellular 
loop between TM3 and TM4, and a short extracellular C-terminal domain. 
Residues within the extracellular N-terminal domain form the agonist binding 
domains (KuHsE et a1.1995; SMITH and OLSEN 1995) while amino acid residues 
within TM2 line the ion channel pore (Xu and AKABAS 1993; AKABAS et al. 
1994; see Fig. 2). Native receptors are composed of pentameric arrange
ments of individual receptor subunits (LANGOSCH et al. 1988; COOPER et al. 
1991). 

Subunit heterogeneity creates extensive diversity among the inhibitory 
ligand-gated ion channels. Multiple subunits have been cloned for GABAA 

(al-<i' /31-4, 11-4, 0, E, and n) (reviewed in: MACDONALD and OLSEN 1994; RABow 
et al. 1995; McKERNAN and WHITING 1996; DAVIES et al. 1997; HEDBLOM and 
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KIRKNESS 1997; WHITING et al. 1997; BARNARD et al. 1998) and glycine (al-4' f3) 
(BETZ 1991, 1992; KUHSE et al. 1995; ZAFRA et al. 1997) receptors. GABAA 

receptors in vivo predominantly consist of a, f3, and rsubunits with a proposed 
stoichiometry of 2a:2f3:1 r (CHANG et al. 1996; TRETTER et al. 1997). The 
existence of six a subunit isoforms enables considerable anatomical 
and functional diversity of GABAA receptors (FRITSCHY and MOHLER 1995; 
SIEGHART 1995; NUSSER et al. 1996). In particular, the a subunit isoform may 

8. b. 
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Fig.2. Location of amino acid residues within TM2 and TM3 of: a human GABAA a, 
(HADINGHAM et al. 1993a), b human GABAA Ih (HADINGHAM et al. 1993b) receptor 
subunits that are critical for general anesthetic modulation or block by the non
competitive antagonists picrotoxinin and Zn2+, in addition to amino acid residues which 
are thought to line the ion channel pore. GABAA a, and /32 subunit isoforms are chosen 
since they represent the most common neuronal a and /3 subunit isoforms (McKERNAN 
and WHITING 1996; BARNARD et al. , 1998). The residue positions are from published 
studies: channel-lining residues (Xu and AKABAS 1993,1996), volatile ethers [enfturane 
(MIHIC et al. 1997) and isofturane (MIHIC et al. 1997; KRASOWSKI et al. 1998b)], n
alcohols (MIHIC et al.1997), picrotoxinin (GURLEY et al.1995), propofol (KRASOWSKI et 
al. 1998b), trichloroethanol (KRASOWSKI et al. 1998a), etomidate (BELELLI et al. 1997; 
MCGURK et al.1998), 10rec1ezole (WINGROVE et al.1994), barbiturate (pentobarbitone) 
(BIRNIR et al. , 1997), and zinc ions (HORENSTEIN and AKABAS 1998). Note that some 
of the residue positions highlighted were actually uncovered in a or /3 subunit 
isoforms different from a, or /32' To date, detailed three-dimensional structural infor
mation about TM2, the TM2-TM3 linker, and TM3 is lacking. The spatial relationship 
between TM2 and TM3 in the functional GABAA receptor complex is currently 
unknown 
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influence agonist potency (LEVITAN et al. 1988; SIGEL et al. 1990), agonist 
efficacy (EBERT et al. 1994), regulation by benzodiazepines (WAFFORD et al. 
1991), and channel kinetics (TIA et al. 1996; LAVOIE et al. 1997). The most 
common neuronal subunit combination is al/3zrz (McKERNAN and WHITING 
1996; BARNARD et al. 1998). GABAA receptors are blocked competitively by 
bicuculline and non-competitively by picrotoxinin and Zn2+ (see Fig. 2). 

Strychnine-sensitive glycine receptors in vivo consist of both a homomers 
and af3 heteromeric receptors, with a switch from homomeric a2 to het
eromeric alf3 receptors occurring during development (BETZ 1991, 1992; 
KUHSE et al. 1995). The best described physiological role for glycine receptors 
is in Renshaw cell inhibition of motor neurones in the spinal cord; however, 
glycine receptors are also widely expressed in the brainstem and throughout 
higher regions of the neuraxis (BETZ 1991, 1992). 

GABAc receptors are formed from p subunits (P1-3) (CUTTING et al. 1991, 
1992; JOHNSTON 1996). GABAc receptors show greatest expression in the 
retina but are also found in other areas of the brain (WEGELIUS et al. 1998). 
The designation of 'GABAc' for p subunits, while potentially confusing 
(BARNARD et al. 1998), follows from their extensive pharmacological differ
ences from GABAA and GABAB receptors, including insensitivity to the 
classical GABAA competitive antagonist bicuculline (CUTTING et al. 1991, 
1992; JOHNSTON 1996). 

F. Pharmacological Criteria for a Reasonable General 
Anestheticl Alcohol Target Site 

Before discussing the actions of specific agents on ligand-gated ion channels, 
it is worthwhile to define specific criteria that a target molecule (receptor 
protein or otherwise) must fulfill in order to qualify as a candidate in mediat
ing the behavioral actions of the general anesthetics (FRANKS and LIEB 1994; 
HARRISON and FLOOD 1998): 

1. The general anesthetic (or alcohol) must alter the function of the receptor 
at behaviorally relevant concentrations. 

2. The receptor must be expressed in the appropriate anatomical locations to 
mediate the specific behavioral effects of the anesthetic or alcohol. 

3. If an anesthetic molecule shows stereoselective effects in vivo, these should 
be mirrored by the in vitro actions at the receptor. 

4. The hydrophobicity of a compound within a homologous series of anes
thetics or alcohols should correlate with potency at the receptor and with 
in vivo anesthetic potency. 

5. If a target molecule exhibits a 'cutoff' phenomenon, e.g., in the homologous 
series of n-alcohols, this should reflect the cutoff for the biological effect 
under consideration. 
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for a General Anesthetic? 
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For an inhaled anesthetic such as isoflurane, one 'minimum alveolar concen
tration' (MAC) conventionally refers to the concentration of inhaled anes
thetic that produces immobility in 50% of patients or animals studied (EGER 
et al. 1965; QUASHA et al. 1980). Immobility, a lack of purposeful response to 
a noxious stimulus, represents an easily determined endpoint across a large 
variety of different animal species. The use of immobility as an experimental 
endpoint is helpful in that, for most general anesthetics, anesthetic concentra
tions two- to four-fold above the ECso for producing immobility are invariably 
lethal (FRANKS and LIEB 1994). The anesthetic concentrations that produce sig
nificant inhibition of cognitive functions and cortical activity, assessed using 
EEG-derived indicators, are lower than those required for producing immo
bility (CHORTKOFF et al. 1995a,b; ISELIN-CHAVES et al. 1998). Thus, anesthetic 
concentrations several-fold greater than those that produce immobility define 
the upper boundary of the concentration range that is clinically relevant. For a 
target to have any relevance for anesthesia, it must at least be sensitive to sub
lethal but immobilizing concentrations of anesthetics. This issue of relevant 
concentrations alone poses a severe challenge to the plausibility of 'lipid' the
ories of anesthetic action, since 'non-specific' effects of general anesthetics 
(e.g., disruption of lipid bilayer fluidity) appear to be negligible at clinically 
relevant concentrations (FRANKS and LIEB 1986, 1994; TOMLIN et al. 1998). 

While the issue of relevant concentrations is obviously of paramount 
importance to molecular studies of general anesthetics, the physicochemical 
and pharmacokinetic properties of the various anesthetic drugs pose some 
obstacles to the determination of relevant concentrations. Volatile anesthetic 
potency is usually quantified in terms of MAC (EGER et al. 1965; QUASHA et 
al. 1980). MAC values (often expressed in the operating room in terms of % 
anesthetic gas by volume) can be converted to 'aqueous MAC equivalent con
centrations' by use of the appropriate water/gas (or blood/gas) partition coef
ficients (FRANKS and LIEB 1993, 1996b). This provides an estimate for the 
concentration of anesthetic in the blood that is in equilibrium with the inspired 
partial pressure of anesthetic in the gas phase. Aqueous MAC equivalents are 
useful for in vitro experiments which involve the study of volatile anesthetics 
in aqueous solution (FRANKS and LIEB 1993,1994, 1996b). 

The issue of clinically relevant concentrations for the intravenous anes
thetics and the alcohols in mammals is complicated by pharmacokinetic 
aspects of these drugs and the difficulty of ascertaining steady-state drug con
centrations in the brain (FRANKS and LIEB 1994). In some cases (e.g., for propo
fol and the barbiturates), detailed pharmacokinetic studies have addressed 
these issues, and reasonable free anesthetic concentrations in brain can be esti
mated (FRANKS and LIEB 1994). In other cases (e.g., ketamine and the steroid 
anesthetic alphaxalone), only total anesthetic concentrations in blood are 
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known, thus invariably overestimating brain concentrations and therefore 
underestimating the potency of this class of anesthetics, often by as much as 
one to two orders of magnitude (COHEN et al. 1973; SEAR and PRys-RoBERTS 
1979). The reader is referred to FRANKS and LIEB (1994) and to an extensive 
tabulation of anesthetic concentrations recently published elsewhere 
(KRASOWSKI et al. 1999). 

Although the n-alcohols are useful research tools for scientists interested 
in anesthetic mechanisms, where it is perfectly appropriate to study effects of 
concentrations corresponding to 1 or 2 MAC, the effects of sub-anesthetic 
'recreational' alcohol concentrations are more relevant to its social consump
tion! The MAC for ethanol in mice, rats and tadpoles is 100-200mmolll 
(DEITRICH and HARRIS 1996) and there are reports of chronic alcoholics actu
ally achieving these levels without loss of consciousness (for example, the 
driver of the car in which Princess Diana was killed had a blood ethanol level 
of about 40mmolll). However, subtle behavioral effects of ethanol (e.g., anti
anxiety effects) are demonstrable at concentrations as low as 5 mmolll. It has 
proven remarkably difficult to demonstrate reliable effects of low concentra
tions of ethanol on isolated brain receptors, channels, transporters or enzymes. 

II. Anatomical Location 

This is a more difficult issue to discuss since there is considerable debate about 
precisely which synaptic circuits are responsible for the various reflexes and 
complex behaviors that are perturbed by general anesthetics. The immobility 
produced by general anesthetics, perhaps not surprisingly, appears to involve 
depression of spinal reflex pathways, since it is independent of drug actions in 
the brain (ANTOGNINI and SCHWARTZ 1993; RAMPIL et al. 1993; COLLINS et al. 
1995). Receptors such as GABAA and AMP A receptors are promising general 
anesthetic targets due to their ubiquitous distribution and essential physio
logical roles as the major fast transmitters of the CNS. However, given the 
uncertainty concerning the exact anatomy of the synapses that are disrupted 
to produce the constellation of behavioral effects seen during general anes
thesia, receptors with more limited distribution (e.g., 5-HT3 receptors) may 
conceivably play major roles as molecular mediators of specific components 
of the general anesthetic state. 

III. Stereoselectivity 

Stereoselectivity represents one of the most powerful tests for the relevance 
of a putative anesthetic target (FRANKS and LIEB 1994; HARRISON 1998). A 
number of general anesthetic molecules possess a chiral carbon atom, and 
some pairs of stereoisomers exert different anesthetic potencies in vivo. Stere
oselectivity for producing immobility has been documented for the isomers of 
etomidate (HEYKANTS et al. 1975; TOMLIN et al. 1998) (see Fig. 3), the barbitu
rates (ANDREWS and MARK 1982), isoflurane (HARRIS et al. 1992; LYSKO et al. 
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Fig.3. The selectivity of etomidate optical isomers for producing general anesthesia in 
tadpoles mirrors the selectivity for potentiation of GABAA receptor function. The main 
graph illustrates the concentration-response curves for immobility produced by eto
mid ate stereoisomers in Rana temporaria tadpoles. Note that the in vivo potency of 
R( +) etomidate is approximately one order of magnitude greater than that of S( -) eto
midate (HEYKANTS et al. 1975). The inset depicts electrophysiological traces from 
GABA responses at bovine GABAA aI/31Y2L receptors stably transfected in mouse 
L-cell fibroblast cells. Co-application of R( +) etomidate produces a vastly greater 
enhancement of the control submaximal GABA response (C) than co-application of 
S( -) etomidate. [From Tomlin SL, Jenkins A, Lieb WR, Franks NP (1998) Stereoselec
tive effects of etomidate optical isomers on gamma-aminobutyric acid type A recep
tors and animals. Anesthesiology 88:708-717. Reproduced in adapted form with 
permission of the authors and Lippincott-Raven Publishers, 227 East Washington 
Square, Philadelphia, PA 19106-3708 USA] 

1994; although see EGER et al. 1997), ketamine (RYDER et al. 1978; WHITE et al. 
1985), and steroid anesthetics (ATKINSON et al. 1965). The formulation of these 
anesthetics is usually based on the racemic mixture due to the difficulty of 
separating enantiomers in large quantities (an exception is etomidate, which 
is prepared by a chiral synthesis (HEYKANTS et al. 1975). Production of pure 
enantiomers perhaps would improve the clinical profile for other general anes
thetics (MOODY et al. 1994), although cost considerations probably preclude 
such a development. 

General anesthetic stereo selectivity poses the most severe challenge to 
traditional lipid theories of anesthetic action. The optical isomers of isoflurane 
(DICKINSON et al. 1994) and etomidate (TOMLIN et al. 1998), despite significant 
differences in their in vivo potency (see Fig. 3), behave identically with respect 
to their ability to disorder lipid bilayers. In contrast, stereoselectivity supports 
the plausibility of the GABAA receptor as a target in mediating the actions of 
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etomidate (TOMLIN et al. 1998), pentobarbitone (HUANG and BARKER 1980), 
isofiurane (JONES and HARRISON 1993; HALL et al. 1994), and the steroid anes
thetics (ATKINSON et al. 1965; WITTMER et al. 1996), since in vivo potency and 
activity at the GABAA receptor display identical trends. The in vivo stereos
electivity of ketamine stereoisomers is paralleled by the inhibitory action of 
the isomers at the NMDA receptor (LODGE et al. 1982). 

Despite the rewards of studying general anesthetic stereo isomers, exem
plified by the etomidate work outlined above (TOMLIN et al. 1998) (see Fig. 3), 
the stereoselectivity approach has been under-utilized, mainly due to the 
limited supply and expense of purified stereoisomers (MOODY et al.1994). Fur
thermore, only limited anesthetic endpoints (mainly immobility) have been 
assessed for the anesthetic stereoisomers. It would be quite interesting to know 
whether the additional neurobiological actions of anesthetics (e.g., amnesia, 
analgesia) display similar patterns of stereoselectivity. 

IV. Hydrophobicity 

The so-called 'Meyer-Overton hypothesis,' which led to the adoption of the 
traditional dogma concerning lipid mechanisms of anesthesia, arose from the 
fundamental observation that the in vivo potency of general anesthetics rises 
in parallel with increasing hydrophobicity of the anesthetic molecules. This 
trend is most noticeable with the homologous series of n-alcohols but also 
holds true for diverse anesthetic molecules with oil/water partition coefficients 
varying over numerous orders of magnitude (MEYER 1899, 1901; OVERTON 
1901). General anesthetic actions at a plausible receptor target should, there
fore, exhibit similar trends. The Meyer-Overton correlation was traditionally 
interpreted to suggest non-specific mechanisms of action for general anes
thetics in membrane lipids; however, an alternative explanation is that anes
thetics bind to hydrophobic domains of receptor proteins (FRANKS and LIEB 
1984, 1994). A major problem for traditional theories arose with the discov
ery of hydrophobic compounds which disobey the Meyer-Overton hypothesis 
(KOBLIN et al.1994). These 'non-anesthetics' or 'non-immobilizers' can provide 
additional clues to which receptor targets might underlie the behavioral 
actions of general anesthetics. 

V. Alcohol Cutoff 

Another useful property of series of anesthetics, particularly the n-alkane 
and n-alkanol series, is the cutoff effect. The potencies of n-alcohols increase 
with increasing carbon chain length, to some length ("the cutoff") where 
there is no increase in potency with further lengthening of the carbon chain. 
In fact, longer chain length alcohols may be inactive, but this is often difficult 
to determine, because very long alcohols (e.g., C13, C14) have a very low water 
solubility and are therefore difficult to deliver in vitro or in vivo. One common 
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assumption is that the cutoff occurs because the anesthetics occupy a site 
or cavity of finite dimensions and that long chain length compounds cannot 
enter the site. If this is true, then cutoff is a powerful tool for studying 
anesthetic sites and can be applied in many experimental systems. Glycine al 
receptors have an alcohol cutoff at decanol, while the cutoff for the related 
GABA pi receptors is at heptanol (WICK et al. 1998). If the alcohol cutoff 
reflects a limiting size of an alcohol binding site, the shorter cutoff in this 
GABA receptor is consistent with a smaller alcohol binding site than that in 
the glycine receptor. 

G. Experimental Approaches to Studying 
General Anesthetic and Alcohol Actions at 
the GABAA Receptors 

General anesthetic actions at ligand-gated ion channels have been studied 
using a variety of methodologies, including protein chemistry, radioligand 
binding, ion flux studies, and electrophysiology (TANELIAN et al. 1993; FRANKS 
and LIEB 1994; HARRIS et al. 1995b). We will focus mainly on electrophysio
logical studies since these, in general, provide superior time resolution and also 
offer the possibility of analyzing isolated cells or even single ion channels. The 
general anesthetics have properties that limit the utility of other experimen
tal techniques. For example, specific binding of radio labeled general anes
thetics to ligand-gated ion channels has proven exceedingly difficult to 
demonstrate due to the low affinity of the interactions and the high degree of 
non-specific binding to neuronal membranes (TANELIAN et al. 1993; FRANKS 
and LIEB 1994; HARRIS et al. 1995b). Allosteric effects of general anesthetics 
have been monitored using radio ligand binding of drugs to other sites on 
the ligand-gated ion channels (e.g., OLSEN and SNOWMAN 1982; HARRIS et al. 
1995a). In addition, limited progress has been made in developing anesthetic 
congeners useful for photo affinity labeling or other covalent modification of 
receptors (although see ECKENHOFF 1996). These limitations contrast starkly 
with the studies of other classes of agents at ligand-gated ion channels. For 
instance, the high-affinity benzodiazepine binding site on the GABAA recep
tor has been mapped out in some detail due to the ability to perform both 
specific radioligand binding and photoaffinity labeling (SIGEL and BUHR 1997; 
McKERNAN et al. 1998), which powerfully complements the extensive body of 
literature on electro physiological actions of benzodiazepines at GABAA 

receptors (SIGEL and BUHR 1997). 
Another exciting tool in the quest to establish the in vivo significance of 

a putative anesthetic target is the use of targeted gene manipulations in mice 
(HOMANICS et al. 1998). A variety of manipulations are possible, including 
introducing a gene not normally present (transgenic mice), removing an 
endogenous gene ('knock-out mice'), or replacing an endogenous gene with 
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an altered copy ('knock-in mice') (HOMANICS et al. 1998). Gene targeting in 
mice has already been very valuable for elucidating the mechanism of action 
for some drugs. Knock-out of the GABAA ~ receptor subunit gene resulted 
in mice that were insensitive to the sedative/hypnotic actions of benzodi
azepines such as diazepam (GUNTHER et al. 1995). The ~ subunit gene 
knock -out, in conjunction with the in vitro dependence of benzodiazepine 
modulation of the GABAA receptor on the presence of a r subunit 
(PRITCHETI et al. 1989), effectively demonstrates the GABAA receptor as the 
major target mediating the sedative/hypnotic actions of benzodiazepines. 
Mice homozygous for a deletion of the GABAA receptor A subunit gene 
exhibit cleft palate, absence seizures, hyperexcitability (HOMANICS et al. 1997; 
DELOREY et al.1998), and some resistance to the immobilizing actions of intra
venous and volatile anesthetics (QUINLAN et al. 1998). Another gene targeting 
experiment in mice involved the replacement of the aZa-adrenoreceptor 
with a dysfunctional receptor mutant. These 'knock-in' mice failed to show 
analgesic and sedative responses to £X.za-adrenoreceptor agonists such as 
dexmedetomidine and clonidine (LAKHLANI et al. 1997). Additional elegant 
examples of 'knock-in' mouse experiments may be found elsewhere in this 
volume, (RUDOLPH et al. 1999; McKERNAN et al. 2000). 

H. Actions of General Anesthetics at GABAA Receptors 
General anesthetics act as positive or negative allosteric modulators of agonist 
actions at ligand-gated ion channels. Among the ligand-gated ion channels, 
there is no known case in which the anesthetic competes for the same binding 
site as the endogenous neurotransmitter. The most extensively examined 
ligand-gated ion channel target for general anesthetics has been the GABAA 

receptor (TANELIAN et al. 1993; FRANKS and LIEB 1994; HARRIS et al. 1995b). 
Virtually every general anesthetic tested enhances the function of the GABAA 

receptor at clinically relevant concentrations (FRANKS and LIEB 1994; 
ZIMMERMAN et al. 1994; HARRIS et al. 1995b) The exceptions are ketamine 
(SIMMONDS and TURNER 1987), xenon (FRANKS et al. 1998), and possibly nitrous 
oxide (DZOLJIC and VAN DUJIN 1998; JEVTOVIC-ToDOROVIC et al. 1998; 
MENNERICK et al. 1998). General anesthetic enhancement of GABAA 

receptor function is evident in single cell electrophysiological experiments as 
potentiation of a submaximal GABA response (see Fig. 4) or, at the synaptic 
level, as prolongation of inhibitory post-synaptic potentials (NICOLL et al.1975; 
SCHOLFIELD 1980) or currents (HARRISON et al. 1987b; MAcIVER et al. 1991; 
JONES and HARRISON 1993; BANKS and PEARCE 1999) (Fig. 5). Potentiation of 
submaximal GABA-induced currents remains the most popular paradigm for 
electrophysiological experiments, since it is easily reproducible and can be 
used to study native GABAA receptors in dissociated neurones or recombi
nant receptors expressed in mammalian cell lines or Xenopus oocytes 
(TANELIAN et al. 1993; FRANKS and LIEB 1994; HARRIS et al. 1995b). 
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Fig.4A-C. Specific mutations in TM2 or TM3 of the human GABAA receptor a2 
subunit abolish positive allosteric modulation by the volatile anesthetic isoflurane at 
GABAA ~/31 receptors. A Submaximal GABA currents in wild-type GABAA a2/31 
receptors are strongly enhanced (i.e., potentiated) by co-application of clinically rele
vant concentrations of isoflurane (0.25 and 0.5 mmol/l = 0.5-1.0 MAC). H,C In contrast, 
submaximal GABA currents in a2(S270H)/31 or a2(A291 W)/31 mutant receptors are not 
enhanced by co-application of isoflurane concentrations up to 1 mmol/l (2 MAC). Thus, 
these mutant receptors are insensitive to GABA potentiation by isoflurane even at 
supra-anesthetic concentrations. Individual whole-cell voltage-clamp recordings from 
human embryonic kidney 293 cells transfected with cDNAs encoding the indicated 
subunit combination. [From Krasowski MD, Koltchine VV, Rick CE, Ye Q, Finn SE, 
Harrison NL (1998) Propofol and other intravenous anesthetics have sites of action on 
the y-aminobutyric acid type A receptor distinct from that for isoflurane, Mol Phar
macol 53:530-538. Reproduced with permission of the authors and the American 
Society for Pharmacology and Experimental Therapeutics, 9650 Rockville Pike, 
Bethesda, MD 20814-3995 USA] 
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Fig.5. Both the volatile anesthetic halothane and the intravenous anesthetic pento
barbitone prolong inhibitory post-synaptic currents (IPSCs) mediated by GABAA 
receptors. Data obtained from whole-cell patch-clamp recordings of rat hippocampal 
neurones from brain slices. Average records from whole-cell voltage-clamp recordings 
in hippocampal neurones of 100 individual spontaneous IPSCs for each trace, showing 
the prolongation of the decay phase of the IPSC produced by halothane and pento
barbitone. Data from halothane and pentobarbitone are from different neurones and 
preparations. [From MacIver MB, Tanelian DT, Mody I (1991) Two mechanisms for 
anesthetic-induced enhancement of GABAA-mediated neuronal inhibition. Ann NY 
Acad Sci 625:91-96. Reproduced with permission of the authors and the Annals of the 
New York Academy of Sciences, 655 Madison Avenue, New York, NY 10021 USA] 

Some anesthetics, particularly the intravenous agents, open the GABAA 

receptor chloride channel in the absence of agonist (BARKER and RANSOM 

1978; CALLACHAN et al.1987; ROBERTSON 1989; HALES and LAMBERT 1991; YANG 

et al. 1992; HARA et al. 1993; ADODRA and HALES 1995; JONES et al. 1995; 
BELELLI et al. 1996; RHO et al. 1996; HILL-VENNING et al. 1997; KRASOWSKI et 
al. 1997, 1998b; SANNA et al. 1997; ). This 'direct activation' by general anes-
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thetics involves a binding site completely distinct from that for classical 
GABAA receptor agonists such as GABA and muscimol (AMIN and WEISS 
1993). Although direct activation usually occurs at supra-clinical concentra
tions, direct activation effects do sometimes occur at lower concentrations 
for some anesthetics (e.g., propofol) suggesting possible clinical relevance. 
Direct activation by anesthetics has been observed in other ligand-gated 
ion channels (e.g., for the anesthetic isofturane at the strychnine-sensitive 
glycine receptor) (DOWNIE et al.1996) but is most pronounced at the GABAA 

receptor. 
The advent of cloning and recombinant expression techniques has greatly 

accelerated and facilitated attempts to classify ligand-gated ion channel sen
sitivity to general anesthetics. Molecular biology techniques may now be used 
to determine which regions of ligand-gated ion channels are critical for anes
thetic modulation. Sensitivity to general anesthetics varies considerably, some
times even among closely related receptors, and this forms the basis for the 
use of 'chimeric' receptors to isolate regions of a receptor essential for anes
thetic modulation. Chimeric receptors are created by joining together, at the 
cDNA level, complementary fragments of receptor subunits, in which 
the parental subunits exhibit markedly different responses to anesthetic. The 
analysis of chimeric receptors can be used to delimit a region of a receptor 
essential for general anesthetic modulation, after which site-directed mutage
nesis can be used to identify key residues. Chimeric receptors constructed to 
date include panels of GABAA/glycine (KOLTCHINE et al. 1996), GABAA/ 
GABAc (Lu and HUANG 1998), and glycine/GABAc (MIHIC et al. 1997; WICK 
et al. 1998) receptors. 

Several problems may accompany the study of such chimeric receptors, 
including: (1) lack of functional expression (greatly reduced or absent 
responses to agonist), (2) chimeric receptor function differing radically from 
the constituent parent receptors, and/or (3) ambiguous pharmacological data. 
The first problem has substantially reduced the utility of GABAA/GABAc 
(HACKAM et al. 1998) chimeras. Lack of functional chimeric receptor responses 
could potentially be due to protein assembly problems, very low single channel 
conductance, and/or a minuscule probability of opening following agonist 
binding (i.e., a defect in ion channel gating). Assembly problems are especially 
likely when blending heteromeric and homomeric receptors (e.g., GABAA 
with GABAc receptors). Despite these potential pitfalls, the use of chimeric 
receptors has already helped define putative sites of general anesthetic action 
on some of the ligand-gated ion channels (see below). 

I. Volatile Anesthetics and Anesthetic Gases 
Volatile anesthetics (e.g., halogenated ethers and alkanes) alter the function 
of many ligand-gated ion channels at reasonable concentrations. In general, 
agonist responses at GABAA and glycine receptors are positively modulated 
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by volatile anesthetics. The low potency and physicochemical properties of the 
volatile anesthetics pose some technical challenges for in vitro experiments 
(FRANKS and LIEB 1993,1994, 1996b; HARRIS et al. 1995b). Nevertheless, recent 
years have witnessed a steady increase in the number of careful studies of 
volatile anesthetic actions on GABAA receptors. 

Considerable progress has been made in determining the amino acid 
residues within GABAA and glycine receptors that are critical for volatile 
anesthetic potentiation of agonist-induced currents. The use of a panel of 
glycine al/GABAc PI chimeric receptors allowed the identification of a 45 
amino acid region encompassing TM2 and TM3 of the glycine al receptor as 
both necessary and sufficient for potentiation of agonist-induced currents by 
the volatile ether enflurane (MIHIC et al. 1997). Extensive site-directed muta
genesis of glycine al and GABAA a2 and /31 subunits determined that specific 
amino acid positions within TM2 and TM3 are also critical for agonist poten
tiation by isoflurane (MIHIC et al. 1997; KRASOWSKI et al.1998b) (see Fig. 2 and 
4), n-aIcohols (including ethanol) (MIHIC et al. 1997; WICK et al. 1998; YE et al. 
1998) and trichloroethanol (KRASOWSKI et al. 1998a) (see Fig. 2). 

Most halogenated alkanes and ethers containing six or fewer carbons have 
anesthetic properties, but some notable exceptions to this rule exist. The work 
of Eger, Koblin, and colleagues has demonstrated that certain highly lipid
soluble halogenated cyclobutanes and alkanes are unable to produce immo
bility at concentrations predicted by the Meyer-Overton correlation to be in 
the anesthetic range (KOBLIN et al. 1994). These compounds, originally called 
non-anesthetics, are now more properly referred to as non-immobilizers, since 
although they do not produce immobility (KOBLIN et al. 1994) or analgesia 
(SONNER et al. 1998), they may interfere with learning and memory (KANDEL 
et al. 1996). The non-immobilizers, which are often heavily halogenated com
pounds (e.g., 1,2-dichlorohexafluorocyclobutane), elicit convulsions at higher 
concentrations (KOBLIN et al. 1994). The non-immobilizers have no modula
tory actions at GABAA (MIHIC et al. 1994), glycine (MASCIA et al. 1996) or 
GABAc (MIHIC and HARRIS 1996) receptors. These results would seem to 
support the feasibility of GABAA and glycine receptors as viable molecular 
targets for producing immobility. 

The anesthetic gases nitrous oxide and xenon have a pattern of action on 
the ligand-gated ion channels different from the volatile ethers and alkanes. 
This is perhaps not surprising since the clinical effects of xenon and nitrous 
oxide vary from that of the ethers and alkanes; for instance, unlike the ethers 
and alkanes, nitrous oxide is a potent analgesic with only weak immobilizing 
activity (MARSHALL and LONGNECKER 1996). Nitrous oxide inhibits agonist 
responses at NMDA receptors (JEvTovIC-ToDOROVIC et al. 1998; MENNERICK 
et al. 1998) but has only weak potentiating actions at GABAA receptors 
(DZOLJIC and VAN DUJIN 1998; JEVTOVIC-ToDOROVIC et al. 1998; MENNERICK et 
al. 1998). Very recently, xenon has been demonstrated to inhibit NMDA recep
tors at clinically relevant concentrations but does not modulate the function 
of GABAA or AMP A receptors (FRANKS et al. 1998). This pharmacological 
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profile, with NMDA receptor inhibition and a lack of potent actions on 
GABAA receptors, is shared by the 'dissociative anesthetic' ketamine. 

J. Intravenous Anesthetic Agents 

Etomidate and propofol both appear to be relatively selective modulators of 
the GABAA receptor. The GABAA receptor fulfills all of the above criteria 
for a plausible target underlying the anesthetic actions of these compounds. 
Propofol and etomidate do not modulate other ligand-gated ion channels at 
clinically relevant concentrations with the exception of propofol actions at the 
strychnine-sensitive glycine receptor (HALES and LAMBERT 1991; MASCIA et al. 
1996; PISTIS et al. 1997). Amino acid residues within the /3 subunit of the 
GABAA receptor have been identified that are essential for potentiation of 
GABAA receptor function by etomidate (BELELLI et al. 1997; MOODY et al. 
1997; MCGURK et al. 1998) and propofol (KRASOWSKI et al. 1998b) (see Fig. 2), 
consistent with previous studies suggesting that the /3 subunit of the GABAA 
receptor was likely to contain binding sites for these compounds (SANNA et al. 
1995a,b). 

Many steroid anesthetics such as alphaxalone are relatively selective for 
the GABAA receptor, although certain steroids have potent actions on other 
ligand-gated ion channels. For the steroid anesthetics, structure-activity studies 
comparing in vivo and in vitro potencies support a role for GABAA receptors 
in the actions of these compounds (HARRISON et al. 1987a; Hu et al. 1993; 
LAMBERT et al. 1995, 1996; RUPPRECHT et al. 1996). For example, the non
anesthetic structural isomer betaxalone does not modulate the GABAA recep
tor (HARRISON and SIMMONDS 1984; COTTRELL et al. 1987). Critical residues 
for modulation by alphaxalone or other steroid anesthetics have not yet 
been identified within any ligand-gated ion channel, although studies of 
GABAA/glycine chimeric receptors suggest a contribution of the N-terminal 
half of the GABAA receptor to GABA potentiation by alphaxalone (RICK 
et al. 1998). 

Unlike propofol, etomidate, and the steroid anesthetics, the barbiturates 
are much less selective for the GABAA receptor. In addition to their actions 
at GABAA receptors, barbiturates also potently inhibit AMPA, kainate, and 
neuronal nicotinic ACh receptors. The optical isomers of pentobarbitone 
display the same order of potency for modulatory actions at the GABAA 
receptor as for their in vivo anesthetic actions (HUANG and BARKER 1980; 
FRANKS and LIEB 1994). A residue within TM2 of the /31 subunit of the GABAA 
receptor has been identified that is apparently necessary for GABA potenti
ation by pentobarbitone (BIRNIR et al. 1997) (see Fig. 2), although this is a 
conserved residue in this sub-family, so this finding does not explain the phar
macologic differences between GABAA and glycine receptors (which are 
strikingly insensitive to barbiturates) (KOLTCHINE et al. 1996). GABA poten
tiation by barbiturates is not abolished by mutations in GABAA receptors 
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that abolish potentIatlOn by volatile anesthetics, n-alcohols, propofol, or 
trichloroethanol (MIHIC et a1. 1997; KRASOWSKI et a1. 1998a,b). 

Compared with the other intravenous anesthetic agents discussed above, 
the 'dissociative anesthetic' ketamine has a very different in vivo and in vitro 
profile of action. Ketamine and related arylcycloalkylamines such as phency
clidine produce an atypical anesthesia characterized by a state of sedation, 
immobility, amnesia, marked analgesia, and a feeling of dissociation from the 
environment without true unconsciousness (WINTERS et a1. 1972). These com
pounds can also produce intense hallucinations, especially in adults, and this 
limits their clinical usefulness (MARSHALL and LONGNECKER 1996). In contrast 
to most other general anesthetics, ketamine does not potentiate GABAA 

receptor function at clinically relevant concentrations (SIMMONDS and TURNER 
1987). Ketamine appears instead likely to produce anesthesia by inhibition of 
NMDA receptors (LODGE et a1.1982; ANIS et a1.1983; HARRISON and SIMMONDS 
1984; ZEILHOFER et a1. 1992; ORSER et a1. 1997). 

K. Alcohols 
In parallel with the anesthetic field, there has been a transition from studies 
of non-specific actions of ethanol on membrane lipids to a search for specific 
sites of action on neuronal proteins. Key questions are: 

1. Which neuronal proteins (or functions) are sufficiently sensitive to account 
for the intoxicating action of ethanol? 

2. What is the molecular mechanism by which ethanol affects these proteins? 
3. Which neuronal functions determine specific behavioral actions of ethanol 

(e.g., activating, sedative, anxiolytic, ataxic). 

Because of the data implicating low ethanol sensitivity (or "responsiveness") 
as a positive factor in susceptibility for development of alcoholism (SCHUCKIT 
1992, 1994; SCHUCKIT and SMITH 1996), it is critical to identify molecular sites 
of alcohol action in the brain. These targets provide candidate systems for 
possible therapeutic interventions, as well as suggesting candidate genes for 
evaluation in human alcoholism. At the molecular level, a key question 
is whether there is a common mechanism for the action of ethanol on multi
ple ligand-gated ion channels as well as specific voltage-gated channels. 
Molecular techniques make it feasible to pinpoint regions of proteins critical 
for alcohol action and, more importantly, to construct mutant animals that can 
tell us if these candidate proteins are indeed responsible for distinct behav
ioral actions of ethanol in vivo. 

L. GABAA and Glycine Receptors and Ethanol Action 
In the early 1980s, a number of laboratories found that drugs (e.g., GABAA 

agonists, uptake inhibitors) that augment GABAergic function enhance the 



Allosteric Modulation of GABAA Receptor Function 159 

behavioral actions of ethanol, while drugs (e.g., GABAA receptor antagonists, 
synthesis inhibitors) that inhibit GABAergic function reduce ethanol be
haviors (MARTZ et al. 1983; DEITRICH et al. 1989). In addition, the Long
sleep/Short-sleep (LS/SS) mice, which differ in genetic sensitivity to ethanol, 
were found to differ in their behavioral sensitivity to GABAergic drugs 
(MARTZ et al. 1983). These studies suggested that ethanol may exert some of 
its effects by enhancing GABA-mediated inhibition. One early electrophysi
ological study also presented evidence supporting this idea (DAVIDOFF 1973), 
but it was not developed further until 1986 when three laboratories indepen
dently demonstrated that intoxicating concentrations (5-50mmolll) of ethanol 
enhance the function of GABAA receptors (ALLAN and HARRIS 1986; SUZDAK 
et al. 1986; TICKU et al. 1986). These studies used different tissue preparations 
(mouse cerebellar and cortical microsacs, rat cortical synaptoneurosomes, and 
cultured mouse spinal neurons, respectively), but all measured the uptake of 
36Cl- stimulated by GABA agonists and all obtained similar potentiation of 
GABAA receptor function by ethanol. These observations stimulated numer
ous electrophysiological studies of ethanol action on GABAA receptor func
tion, and the results were inconsistent. A detailed discussion of this literature 
is beyond the scope of this chapter but is covered in reviews (DEITRICH et al. 
1989; MIHIC and HARRIS 1995). At the risk of oversimplification, the literature 
suggests that there are ethanol-sensitive and ethanol-resistant GABAA recep
tors in brain, and that this ethanol sensitivity is likely determined both by 
subunit composition and by post-translational processing. However, the mol
ecular details that define an ethanol-sensitive GABAA receptor remain to be 
determined. It is of interest to note that one of the first publications in this 
area (ALLAN and HARRIS 1986) showed that GABAA receptors of brain mem
branes from SS mice were resistant to ethanol, whereas those from LS mice 
were sensitive. Thus, the existence of ethanol-sensitive and -insensitive recep
tors, as well as their genetic association with ethanol sensitivity in vitro, is not 
a new idea, but has yet to be proven rigorously. 

The function of recombinant, as well as neuronal, GABAA receptors can 
be enhanced by short- and long-chain alcohols, but effects of pharmacologi
cally relevant concentrations of ethanol itself have not been found in all 
studies (see SIEGHART 1995; MIHIC et al. 1995). Glycine receptors are also mod
ulated by ethanol and longer chain alcohols (CELENTANO et al. 1988; AGUAYO 
and PANCETTI 1994; ENGBLOM et al. 1991; MASCIA et al. 1996). The extensive 
behavioral evidence implicating GABAA receptors in ethanol action will not 
be reviewed here but has been presented in detail elsewhere (KOOB 1995; 
DRASKI and DEITRICH 1995). A role for the strychnine-sensitive glycine recep
tor in alcohol action is supported by behavioral studies in which glycine and 
the glycine precursor serine were shown to enhance the depressant effects of 
ethanol; this action was blocked by strychnine (WILLIAMS et al. 1995). 

As noted above, the structurally related homomeric glycine al and 
GABA pI receptors exhibit opposing effects of ethanol: enhancement of func
tion is seen in the former (MASCIA et al. 1996), and inhibition in the latter 
(MIHIC and HARRIS 1996). Using a chimeragenesis and mutagenesis approach, 
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researchers identified two amino acids, in transmembrane domains two (TM2) 
and three (TM3), of glycine and GABAA receptors that were required for 
ethanol enhancement of receptor function (MIHIC et al. 1997) (Fig. 2). Other 
amino acid residues of glycine and GABAA receptors also affect ethanol 
enhancement of receptor function. Quantitative differences in ethanol 
enhancement of homomeric glycine a1 and d2 receptor function have been 
attributed to a difference in amino acid 52 (MASCIA et al. 1996). Gly-R a1 
receptors, with alanine at residue 52, are more sensitive to ethanol than a2 
receptors which have a serine residue at the homologous position. Further
more, a1 subunits mutated from Ala to Ser at residue 52 have the same ethanol 
sensitivity as wild-type d2 receptors (MASCIA et al. 1996). 

A major problem in this area is that not all GABAA receptors are sensi
tive to sub-anesthetic «100mmol/l) concentrations of ethanol, and the exact 
determinants of ethanol sensitivity remain to be defined. There is increasing 
support for the idea that activation of PKC is important for ethanol actions 
on GABAA and glycine receptors (WEINER et al. 1997b; MASCIA et al. 1998). 
In hippocampus, there are recent reports that ethanol sensitivity depends on 
the population of GABAA receptors studied (WEINER et al. 1997a), the activ
ity of protein kinase C (PKC) (WEINER et al. 1994, 1997b), and even the degree 
of activation of GABAB receptors (WAN et al. 1996). Another study used null 
mutant mice lacking PKCy to link the behavioral and neurochemical obser
vations by showing that this mutation reduces sensitivity to ethanol in vivo 
and abolishes the action of ethanol on the function of cerebellar GABAA 

receptors (HARRIS et al. 1995c). One speculative synthesis of recent results is 
that ethanol binds directly to GABA or glycine receptors (perhaps between 
TM2 and TM3, perhaps elsewhere) and that phosphorylation of these recep
tors or associated proteins alters the affinity of alcohol binding. 

M. Cutoff 
We have followed previous suggestions (FRANKS and LIEB 1994; WICK et al. 
1998) in defining cutoff as the point at which the potency of the n-alcohol no 
longer increases with increasing carbon chain length. As with stereoselectiv
ity, alcohol cut-off severely challenges non-specific theories of anesthetic 
action, since there appears to be no cut-off for the disordering actions of n
alcohols on lipid bilayers (FRANKS and LIEB 1986). In general, the immobiliz
ing actions of n-alcohols show a cut-off around do de canol (C12) (MCCREERY 
and HUNT 1978; LYON et al. 1981; ALIFIMOFF et al. 1989), although the limited 
aqueous solubility of long-chain alcohols complicates matters (DILDY
MAYFIELD et al. 1996). The alcohol cut-off for the ligand-gated ion channels 
varies between receptors, and this is useful in implicating or eliminating the 
involvement of various receptors in the biological effects of the alcohols. 
Alcohol cut-off has recently been applied to the study of glycine and GABAc 
Pl receptors harboring mutations in TM2 and TM3. It was first noted that 
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mutation of a smaller to a larger amino acid residue in TM2 of the glycine al 
subunit reduced the alcohol cut-off for the glycine receptor from do de canol 
to propanol (WICK et a1. 1998). In contrast, a double mutation of larger to 
smaller residues in TM2 and TM3 of the GABAc PI receptor extended the 
alcohol cut-off from heptanol to beyond dodecanol (WICK et a1. 1998). This 
provides evidence that mutation of selected residues within TM2 and TM3 of 
glycine and GABAc receptors may actually alter the dimensions of the binding 
pocket for n-alcohols. 

N. Discussion and Future Directions 

Recent advances in the molecular biology of GABA receptors have provided 
tremendous opportunities for understanding actions of anesthetics and 
alcohol on these receptors. The availability of cDNAs encoding the receptor 
subunits, combined with expression systems and methods for the rapid intro
duction of mutations, has allowed rapid advances toward the 'Holy Grail' 
of anesthesia research: defining molecular sites of anesthetic action in 
the brain. There are tantalizing suggestions for an anesthetic binding site 
within GABA receptor subunits, but the low affinity of anesthetic bind
ing makes it difficult to prove rigorously that the anesthetic is indeed binding 
at that site. Despite the obstacles it is likely that the site( s) of anesthetic 
and alcohol action on GABAA receptors will be defined to the satisfaction 
of many within a few years. These advances in molecular analysis will 
allow researchers to address the bigger question of which aspects of anesthetic 
and alcohol action are due to enhancement of GABAergic function. This will 
be accomplished by constructing mice with mutations in GABAA receptor 
subunits. 

Targeted gene manipulations in mice will provide hypothesis-driven tests 
of the in vivo roles of certain ligand-gated ion channels in mediating the 
diverse behavioral actions of general anesthetics. Researchers over the last 5 
years have created 'global knock-out mice' for various subunits of the ligand
gated ion channels. With the emergence of ligand-gated ion channel knock
out mice (and the commercial availability of some of these knock-outs), it 
should prove useful to test anesthetic sensitivity in these mice. Although these 
knock-out mice may provide initial clues as to the nature of anesthetic targets, 
some mice will be difficult to analyze for anesthetic sensitivity if they exhibit 
abnormal behavior, lethality, or gross alterations in neural development. These 
problems with knock-out mice may be circumvented by 'conditional' gene 
knock-outs where the gene of interest is disrupted only in limited brain regions 
and/or specified developmental time periods (HOMANICS et a1. 1998). Another 
elegant example of gene targeting is the 'knock-in mouse.' One possibility is 
the introduction of the gene encoding a mutated receptor subunit that is insen
sitive to anesthetic modulation, in place of the normal endogenous gene 
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(LAKHLANI et al. 1997). Knock-in mouse experiments potentially provide an 
elegant bridge between in vitro experiments and whole animal behavior. 
Ideally, the mutated receptor subunit would differ from the normal subunit 
only in terms of general anesthetic modulation (i.e., agonist response, voltage
dependence, kinetics, etc. of the receptor would be relatively normal) 
(RUDOLPH et al. 1999; McKERNAN et al. 2000). Recently described mutations 
within TM2 and TM3 of GABAA (see Figs. 2,4) and glycine receptors, which 
confer insensitivity to volatile ether anesthetics (MIHIC et al. 1997; KRASOWSKI 
et al. 1998b), n-alkanols (MIHIC et al. 1997; WICK et al. 1998; YE et al. 1998), 
propofol (KRASOWSKI et al.1998b), trichloroethanol (KRASOWSKI et al. 1998a), 
pentobarbitone (BIRNIR et al. 1997), and etomidate (BELELLI et al. 1997; 
MCGURK et al. 1998) essentially fit this qualification. A complication to gene 
targeting experiments is the presence of multiple subunit isoforms for the 
GABAA receptor subunits; if some or all of these isoforms play a role in 
general anesthesia, targeting of multiple genes may be required to obtain a 
clear alteration in anesthetic sensitivity. 

There is now ample evidence that clinical concentrations of most volatile 
or intravenous general anesthetics, including the n-alcohols, enhance the func
tion of GABAA receptors and we are on the verge of a molecular under
standing of the sites of action of these drugs on GABAA receptors. However, 
there is still little information, or at least agreement, about the consequence 
of actions of these agents on GABAA receptors. This is particularly true for 
ethanol, where pharmacological interest is focused on the actions of sub-anes
thetic doses, yet concentrations corresponding to these doses have small and 
variable effects on GABAA receptor function. This problem reflects our basic 
ignorance of how the brain works, in that we have no idea how small changes 
in channel function will influence behavior. We can be optimistic that con
struction of mice with mutant GABA receptors that differ in these subtle 
effects of anesthetics and alcohols will indeed address the fundamental ques
tion of how specific receptors influence specific behaviors. Indeed, recent work 
with the benzodiazepines suggests this era has already dawned. 
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CHAPTER 6 

Anticonvulsants Acting on the GABA System 

B.S. MELDRUM and P. WHITING 

A. Introduction 
I. Role of GABA and GABA Receptors in Epilepsy 

Modification of activity at GABAergic synapses powerfully influences epilep
tic phenomena. These effects show significant differences according to the type 
of epilepsy involved. The predominant effect for focal motor and tonic-clonic 
seizures is that impairment or reduction of function at GABAA receptors facil
itates epileptic discharges and motor seizure activity and enhancement of 
function diminishes epileptic activity. This is clearly a consequence of the role 
of GABAergic synapses in recurrent inhibitory systems in cortical and other 
structures, and their effect in limiting the excessive discharge of principal 
neurons in time and space. Compounds blocking the inhibitory action of 
GABA at GABAA receptors such as bicuculline and picrotoxin are powerful 
convulsants when given focally in the brain or systemically. Compounds 
inhibiting glutamic acid decarboxylase activity, thereby blocking GABA syn
thesis, such as pyridoxal phosphate antagonists, are convulsant (for a more 
extensive list of epilepsy syndromes and seizures caused by GABA-related 
mechanisms see Table 1). Compounds potentiating the action of GABA at 
GABAA receptors are anticonvulsant (see below). 

Absence epilepsy in man, with a 2-3 Hz spike-and-wave discharge in the 
cortex, is dependent on a thalamo-corticalloop which involves several sets of 
GABAergic synapses in cortex and thalamus. The "waves" correspond to 
hyperpolarising activity resulting from synchronous firing of GABAergic 
neurons. The effects of GABA-related drugs are complex. Agonists at GABAB 

receptors, such as baclofen, exacerbate the spike-and-wave discharges in man 
and animals, GABAB antagonists suppress them. Compounds potentiating 
GABAA synaptic function commonly exacerbate the discharges although 
some benzodiazepines with subtype selective actions can decrease the spike
and-wave discharges (see below). 

The question therefore arises as to which genetic or acquired syndromes 
of epilepsy are a consequence of altered GABAergic function (see Table 1), 
and whether such syndromes respond selectively to drugs acting on GABAer-
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Table 1. Seizures and epilepsy syndromes related to altered GABAergic function 

A. Animal models 
Mouse KO of fJ3 subunit of GABAA receptor (DELoREY et al. 1998) 
Mouse KO of GAD 65 (KASH et al. 1997) 
Mouse KO of TNAP (phosphatase involved in pyridoxal phosphate metabolism) 
GABA deficit, (seizures respond to pyridoxine) (WAYMIRE et al. 1995) 
Administration of pyridoxal phosphate antagonists and other GAD inhibitors 

(deoxypyridoxine, isoniazid, allylglycine) 
Antagonists acting on GABAA receptor (Bicuculline, picrotoxin) 
Inverse agonists at BZ receptor on GABAA receptors (DMCM) 
Convulsant barbiturates 
Kindled seizures in rats 
Limbic seizures following pilocarpine-induced status epilepticus 
Status epilepticus (secondary phase, drug unresponsive) (diazepam sensitivity 

reduced) 

B. Human syndromes 
Pyridoxine deficiency 
Pyridoxine dependency 
Angelman Syndrome (deletion on maternal Chr 15ql1-13, loss includes GABRB3 

gene) 
Complex partial seizures 

gic function. The simplest example is that of generalised seizures in infancy 
related to pyridoxine deficiency or dependency where the seizures are related 
to deficient synthesis of GABA and can be treated by moderate or high doses 
of pyridoxine. Multiple forms of epilepsy occur in a neurodevelopmental dis
order, known as Angelman syndrome, which also shows mental retardation 
and facial dysmorphism. Genetic studies commonly reveal a major deletion 
on maternal chromosome 15ql1-13 (MINASSIAN et al.1998). Two genes appear 
to contribute to the syndrome - one is UBE3 A, encoding a ubiquitin ligase, 
the other is GABRB3 encoding the fJ3 subunit of the GABAA receptor 
subunit. Mice deficient in the murine homolog of GABRB3 also show multi
ple seizure types (DELOREY et al. 1998). 

1. Developmental Changes in GABAA Receptor Effects 

During early development (in neonatal rats, but in mid-term primates) 
GABAA responses are often depolarising. This is due to an abnormal Cl- gra
dient prior to the expression of the neuronal Cl- extruding K+/Cl- cotrans
porter, KCC2 (RIVERA et al. 1999). This does not appear to be a critical factor 
for neonatal seizures in man, which respond to barbiturates and benzodi
azepines indicating that potentiating GABA at GABAA receptors is anticon
vulsant at this developmental stage. 

A cell type that is prominent in early development is the Cajal-Retzius 
cell. These cells normally disappear from cortex and hippocampus early in 
development. They persistently show de polarising responses to GABA 
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(MIENVILLE 1998). They appear to persist in the hippocampus of those patients 
with complex partial seizures secondary to a critical event early in life (such 
as a prolonged febrile convulsion or traumatic brain injury) (BLUMCKE et al. 
1996) 

II. Mechanism of Action of Antiepileptic Drugs 

The mechanisms of action of antiepileptic drugs currently in clinical use are 
only partially understood. An action on voltage-dependent Na+ channels, 
involving a prolongation of the inactivated state, contributes importantly 
to the anti epileptic action of phenytoin, carbamazepine and lamotrigine and 
may be significant for topiramate, zonisamide, valproate and diazepam 
(MACDONALD and MELDRUM 1995). It is probable that the anti-absence action 
of ethosuximide and trimethadione can be explained by their action to 
decrease T-type voltage-dependent Ca++ currents. 

Approximately half the antiepileptic drugs in clinical use are thought to 
owe their efficacy either totally or partially to potentiating GABAergic 
inhibitory effects (see Table 2). Three principal mechanisms of action on 
synaptic function can be distinguished (see Fig. 1): 

1. Compounds, such as tiagabine, may decrease GABA uptake into neurons 
and glia and thereby prolong the synaptic action of GABA. 

2. Compounds inhibiting the further metabolism of GABA, such as vigaba
trin may increase the brain content of GABA and enhance its synaptic 
release. 

3. Compounds may act at various sites on GABAA receptors to potentiate or 
mimic the action of GABA. 

These mechanisms will be discussed in turn. 

B. GABA Transporters and Tiagabine 
GABA is cleared from the synaptic cleft by diffusion and by uptake into 
neurons and glia via specific carriers in the plasma membrane. Four such car
riers have been identified, sequenced and cloned in the mammalian brain (see 
Chap. 14 by B. KANNER). In rats they are referred to as GAT-1, GAT-2, GAT-
3 and BGT-1 (the latter may be primarily a betaine transporter). These trans
porters belong to a family of Na+/Cl- neurotransmitter transporters (NELSON 
1998). They show marked differences in their regional and cellular expression 
(MINELLI et al. 1995, 1996). In the rat GAT-1 is the principal transporter in the 
cerebral and cerebellar cortices and in the hippocampus, where it is predom
inantly neuronal but is also present in astrocytic processes (MINELLI et al. 
1995). GAT-2 is expressed principally in the leptomeninges. GAT-3 is found 
predominantly in astrocytic processes in midbrain and brain stem structures, 
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Table2. Antiepileptic drugs acting on GABAergic function 

Compound Action on GABA Other actions Anti-epileptic action 
function 

Diazepam GABAA Na+ channel Myoclonic epilepsy 
potentiation inactivated Status epilepticus 

Clonazepam GABAA Absence seizures 
potentiation Atypical absences 

Complex partial seizures 
Tonic-clonic seizures 
Myoclonic seizures 

Clobazam GABAA Myoclonic epilepsy 
Lorazepam GABAA Status epilepticus 
Loreclezole GABAA Complex partial seizure 
Chlormethiazole GABAA Status epilepticus 
Phenobarbital GABAA AMP A receptor Generalised (t.c) 

block seizures 
Partial seizures 
Neonatal seizures 

Ganaxolone GABAA 

Tiagabine GATl inhibition Complex partial seizure 
Vigabatrin GABA-T Complex partial seizure 

inhibition Infantile spasm 
Felbamate GABAA NMDA receptor Complex partial seizure 

potentiation block 
Gabapentin Altered GABA Cart channels Complex partial seizures 

metabolism 
Valproate Altered GABA Na+ channels Absence seizures 

metabolism Generalised (t-c) seizure 
Complex partial seizure 

Topiramate GABAA Na+ channels Complex partial seizure 
potentiation 

GAT1, GABA transporter 1; GABA-T, GABA transaminase; t.c., tonic clonic;AMPA, 
a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid; NMDA, N-methyl-o
aspartate. 

including the thalamus and superior and inferior colliculi (MINELLI et al. 1996; 
DEBIASI et al. 1998). 

The three GABA transporters show differences in their substrate selec
tivity and in their sensitivity to different inhibitors. f3-Alanine is a substrate for 
GAT-2 and GAT-3 and thus competes with GABA for uptake. Nipecotic acid, 
guvacine and their various derivatives preferentially inhibit GAT-1 (BORDEN 
et al. 1994). Nipecotic acid and guvacine penetrate the blood brain barrier 
poorly. The addition of a lipophilic side chain, however, provides compounds 
that penetrate the blood brain barrier, such as SKF 89976 A, SKF 100330 A, 
CI-966, NNC-711 and N0328( = tiagabine) (see Fig. 2). These compounds have 
been shown to be anticonvulsant in a variety of animal models of epilepsy. 
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Fig.I. GABAergic synapse showing sites of action of GABA-transport inhibitors (A), 
GABA-transaminase inhibitors (B) and drugs acting on GABAA (C) and GABAB (D) 
receptors in relation to the presynaptic terminal, postsynaptic neuron and an astrocytic 
process. GAD, glutamic acid decarboxylase; SSA, succinic semialdehyde; GAT-1 and 
GAT-3, GABA transporters; GABA-T, 4-aminobutyrate:2-oxoglutarate transaminase 

Some of these compounds are neurotoxic in animals and man. Tiagabine has 
been shown to be antiepileptic in several animal models of epilepsy, being par
ticularly potent in reflex epilepsy in rodents and photosensitive baboons and 
against kindled seizures in the rat (MORIMOTO et al. 1997; SMITH et al. 1995). It 
enhances spike-and-wave discharges, however, in rodent models of absence 
seizures, e.g. lethargic mice and WAG/Rij rats (HOSFORD and WANG 1997; 
COENEN et al. 1995). In accordance with its preclinical spectrum of activity it 
is clinically effective against complex partial seizures (KALVIAINEN et al. 1998; 
RICH ENS et al. 1995) but it may exacerbate absence seizures. 

Recordings of inhibitory post-synaptic currents or potentials show that 
the effect of tiagabine is to prolong their duration (THOMPSON and GAHWILER 
1992; ROEPSTORFF and LAMBERT 1992) consistent with the concept that GABA
uptake serves to shorten the duration of inhibitory synaptic potentials. 

GABA uptake inhibitors with a different selectivity for the transporter 
molecules have also been studied preclinically. These include compounds such 
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Fig.2. Molecular structures of GABA-transport inhibitors, nipecotic acid, guvacine, 
tiagabine, NNC-711, NNC 05-2045 and NNC 05-2090 

as NNC 05-2045 and NNC 05-2090 that are more potent inhibitors of GAT3 
(= GAT4 in mice) than of GAT-I. These show little anticonvulsant activity 
against kindled seizures but significant activity against maximal electroshock 
seizures (DALBY et al. 1997), a result consistent with the dominant role of 
GATl in the limbic system and of GAT3 in the brain stem and midbrain. 

I. Effects of Other Anti-Epileptic Drugs on GABA-Transporters 

Although tiagabine is the only antiepileptic drug in current clinical use whose 
primary mechanism of action is via inhibition of GABA transport, it is pos
sible that some other antiepileptic drugs can modify GABA transport. The 
evidence for this comes either from expression studies employing GABA 
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transporters or from studies in cell cultures. Thus studies of [3H ]GABA uptake 
in oocytes expressing GAT-1 show inhibition of uptake with vigabatrin, 
1 nmolll and 0.5 mmolll, gabapentin 50,umolll, and valproate 100,umolll 
(ECKSTEIN-LuDWIG et al.1999). In cultures of human cortical astrocytes uptake 
of GABA is inhibited by valproate 1 mmolll and by vigabatrin 0.1 mmol/l 
(compared with tiagabine O.2mmol/l). The possible role of in vivo actions on 
GABA transport in the anti epileptic actions of valproate, vigabatrin and 
gabapentin remains to be elucidated. 

II. Changes in GABA Transporters in Epilepsy 

Studies on the binding of [3H]-nipecotic acid suggest that GABA transporter 
levels are reduced in the hippocampus of amygdala-kindled rats (DURING et 
al. 1995). Microdialysis data in patients with drug-resistant complex partial 
seizures have also been interpreted as showing impaired GABA-transporter 
function in the hippocampus on the epileptogenic hemisphere (DURING et al. 
1995). This interpretation has been supported by electrophysiological studies 
in hippocampal slices from anterior temporal lobectomies in patients with 
hippocampal sclerosis (WILLIAMSON et al. 1995). 

c. Vigabatrin and Inhibition of GABA-Transaminase 
The synthesis of GABA from glutamate by the decarboxylase GAD is part of 
the so-called "GABA-shunt" that links the two TCA cycle intermediates 2-
oxoglutarate and succinate. The further metabolism of GABA is provided by 
two mitochondrial enzymes, GABA-transaminase (4-aminobutyrate:2-
oxoglutarate aminotransferase) and succinic semialdehyde dehydrogenase 
(succinate-semialdehyde:NAD(P)oxidoreductase). Inhibiting these enzymes 
can lead to a marked accumulation of GABA in the brain. In the 1970s it was 
shown that irreversible (catalytic) inhibitors of GABA-transaminase, such 
as ethanolamine-O-sulphate, y-vinyl-GABA (vigabatrin) and y-acetylenic 
GABA (Fig. 3) were anticonvulsant in some preclinical models of epilepsy 
(MELDRUM and HORTON 1978; METCALF 1979). In vivo and ex vivo experiments 
provide evidence that the synaptic release of GABA is enhanced in the cortex 
or hippocampus of rats given vigabatrin (ABDUL-GHANI et al. 1981; QUME and 
FOWLER 1997). Vigabatrin accumulates in neurons. In the CSF of patients 
treated for 3 months with vigabatrin the levels of GABA, homocarnosine and 
glycine are increased and those of glutamate decreased (KALVIAINEN et al. 
1993). There is also evidence that the turnover of 5-HT is reduced. All these 
changes can be interpreted as secondary to a primary effect on GABA. 

Vigabatrin is effective in complex partial seizures and in some forms of 
primary generalised seizures, particularly infantile spasms (West's syndrome) 
(VIGEVANO and CILlO 1997).As add-on therapy in patients with partial seizures, 
in which the original therapy is predominantly drugs acting on voltage-
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Fig.3. Diagram of GABAA receptor showing sites of action of the various classes of 
anti-epileptic drug 

sensitive sodium channels, vigabatrin appears to be more effective than several 
alternative novel agents (MARSON et al. 1997). As monotherapy in newly 
diagnosed patients with partial seizures, vigabatrin has less efficacy than 
carbamazepine (CHADWICK 1999). It is generally better tolerated than carba
mazepine but is associated with a higher incidence of psychiatric symptoms 
(25% vs 15%). Visual field defects occur in a significant proportion of patients 
taking vigabatrin (KALVIAINEN et al. 1999; Wild et al. 1999); this retinal toxic
ity is probably directly linked to inhibition of GABA-transaminase. 

D. Anticonvulsants Acting Through 
the GABAA Receptor 

The GABAA receptor is obviously central to GABAergic neurotransmission 
and as such is an important therapeutic target for anticonvulsants. The struc
ture of GABAA receptor subtypes is discussed in detail elsewhere in this 
volume (see Chap. 2 by E.A. BARNARD). One of the most interesting, and ther
apeutically useful, aspects of GABAA receptors is their rich pharmacology (see 
Chap. 3 by H. MOHLER and Fig. 3). There are a number of modulatory sites on 
the receptor (i.e. drug binding sites distinct from the GABA agonist site) 
through which various pharmacological agents act to potentiate or inhibit 
allosterically the action of GABA. A number of these sites have been, and are 
continuing to be, exploited to generate therapeutically useful drugs. Here we 
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will discuss those pertinent to the treatment of convulsions: the benzodi
azepine site, the barbiturate site, the loreclezole site and the steroid site (the 
latter is discussed in detail in Chap.4 by 1. LAMBERT et al.), and we will also 
discuss the activity of topiramate and chlormethiazole at the receptor. 

I. Benzodiazepines 

The most therapeutically useful of these modulatory sites on the GABAA 

receptor is the so-called benzodiazepine (BZ) binding site (WHITING et al. 
1995). This is named after one class of compounds that act via this site. It is 
important to note that other compounds, which do not have a benzodiazepine 
chemical structure, also act at this site, e.g. zolpidem and various j3-carbolines. 
(To date no endogenous agonist or inverse agonist has been identified.) Ben
zodiazepine agonists (which potentiate the action of GABA and thereby lead 
to increased hyperpolarisation of the postsynaptic membrane, see below) are 
widely prescribed for absence epilepsy (clonazepam) and status epilepticus 
(diazepam and lorazepam) and for myoclonic epilepsies. BZs act by increas
ing the frequency of channel opening (ROGERS et al. 1994). Receptors require 
both an a and ysubunit to have a BZ site (PRITCHETT et al. 1989); those con
taining a 8 or E subunit (i.e. aj38 or aj3E) do not have a BZ site (QUIRK et al. 
1994; SAXENA and MACDONALD 1996; WHITING et al. 1997). a1, d2, a3, as 
co assembled with a j3 and y2 subunit, have high affinity for so-called non
selective BZ ligands such as diazepam and clonazepam. In fact this is a mis
nomer, as a4 and a6 (coassembled with a j3 and y2) containing receptors have 
very low affinity for these compounds (LUDDENS et al.1990; WISDEN et al.1991; 
WAFFORD et al. 1996; HADINGHAM et al. 1996). Similarly, while clonazepam and 
diazepam have high affinity at receptors containing y2, their affinity at recep
tors containing y1 and y3 is considerably reduced (BENKE et al. 1996; WINGROVE 
et al. 1997). An additional complication is the concept of efficacy, i.e. the degree 
of modulation mediated by the BZ site ligand. Compounds can act as agonists 
(potentiating the GABA response, with an anticonvulsant effect) or inverse 
agonists (negatively modulating the GABA response, with a pro convulsant 
effect) according to the ligand and the type of a and ysubunit present in the 
receptor (see WHITING et al. 1995 for review). BZ site ligands (unlike barbitu
rates, see below) do not activate the receptor in the absence of GABA. A key 
point is that these observations hold out the possibility for the development 
of BZ site drugs targeted to a defined receptor subtype (i.e. a subtype known 
to be integral to the pathogenesis of seizures) through either selective affinity 
or selective efficacy. 

II. Barbiturates 

Barbiturates were first used as anticonvulsants in the USA in 1912. Pheno
barbital is prescribed for both generalised and partial motor seizures. The 
primary site of action of barbiturates such as phenobarbital is via the GABAA 
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receptor (EVANS 1979). Barbiturates act by increasing the channel open time 
(MATHERS and BARKER 1980). At low concentrations barbiturates positively 
modulate response to GABA via an allosteric mechanism, leading to hyper
polarisation of the postsynaptic membrane (THOMPSON et al. 1996). At higher 
concentrations barbiturates are GABAmimetic, i.e. they are able to activate 
the receptor in the absence of GABA, and this in part reflects the poorer safety 
profile of these drugs compared to benzodiazepines. The site of action of bar
biturates on the GABAA receptor at the molecular level has yet to be defined. 
While there is certainly some selectivity of these compounds, e.g. pentobarbi
tone is more efficacious at a6 containing receptors (THOMPSON et al. 1996), the 
selectivity is not absolute, and thus this class of compounds can be considered 
active at all subtypes so far examined. 

Phenobarbital is widely used in primary generalised, tonic-clonic seizures. 
It is also effective in simple and complex partial seizures, but requires higher 
plasma concentrations for efficacy in this indication. It has been widely used 
in neonatal seizures, febrile convulsions and status epilepticus. 

III. Steroids 

The pharmacology of steroids acting at the GABAA receptor is discussed in 
detail elsewhere in this volume (see Chap.4 by 1. LAMBERT et al.). Like the bar
biturates, their site of action on the GABAA receptor has yet to be defined 
at a molecular level. Similarly the receptor subtype selectivity of this class 
of compounds is not that profound, such that in general they can be consid
ered active at all subtypes. None of this class of compound is currently 
prescribed, although some have been in clinical trial. Ganaxolone (3a
hydroxy-3fi-methyl-5a-pregnan-20-one) is a non-subtype-selective positive 
allosteric modulator of the GABAA receptor (CARTER et al. 1997) which is in 
clinical trials for partial and generalised seizures. While ganaxolone is active 
in pentylenetetrazole-induced general seizures in animals (BEEKMAN et al. 
1998) it appears to exacerbate the seizures seen in models of absence epilepsy 
(SNEAD 1998), thus resembling barbiturates. This phenomenon is discussed in 
more detail below. 

IV. Loreclezole 

Loreclezole is a potent anticonvulsant active in a number of animal seizure 
models (ASHTON et al.1992). In clinical trials loreclezole was found to be active 
in the treatment of partial seizures (RENTMEESTER et al. 1991). Using recombi
nant GABAA receptor subtypes it has been possible to define the molecular 
target for this drug. It acts through a novel modulatory site on the fi subunit of 
the receptor (WAFFORD et al. 1994). Loreclezole has a 300-fold higher affinity 
for 132- and f33-containing receptors compared to fil-containing receptors, and 
this selectivity is determined by amino acids in the transmembrane 2 domain 
of the fi subunit (WINGROVE et al. 1994). Interestingly etomidate (Hypnomi-



Anticonvulsants Acting on the GABA System 183 

date), the widely prescribed general anaesthetic, appears to act through the 
same site on the GABAA receptor as loreclezole (BELELLI et al. 1997). 

V. Topiramate 

Topiramate is a relatively new antiepileptic drug (WALKER and SANDER 1996) 
approved for adjunctive therapy in partial and secondarily generalised 
seizures. This drug is active in animal models of seizures, including pentylenete
trazole induced seizures (SHANK et al. 1994), in seizures in spontaneously 
epileptic rats and sound-induced seizures of DBA/2 mice (NAKAMURA et al. 
1994), and amygdaloid kindling induced seizures in rats (AMANO et al. 1998). 
The mode of action through which this drug exerts its antiepileptic effect has 
yet to be definitively defined, but probably involves activity at sodium channels 
(TAVERNA et al. 1999), AMPA/kainate type glutamate receptors (SHANK 1995) 
and GABAA receptors (WHITE et al. 1997). The activity at the latter has yet to 
be clearly defined at the molecular level. It is clear however that topiramate 
enhances GABA mediated currents through a site on the receptor that is dis
tinct from the BZ site (SHANK 1995; WHITE et al. 1997). 

VI. Chlormethiazole 

Chlormethiazole is a hypnotic and a sedative that in the past has been used 
in elderly patients, and also as treatment for acute alcohol withdrawal. Evi
dence has recently been presented for efficacy in stroke (GREEN 1998). More 
relevant to this discussion, it is also used in status epilepticus, though gener
ally when patients have failed to respond to first line drugs (HARVEY et al.1975; 
MILLER and KOVAR 1983; MARTIN and MILLAC 1994). Chlormethiazole does not 
appear to interact with glutamate receptors, calcium or sodium channels 
(GREEN et al. 1998). Its primary site of action is most likely through the 
GABAA receptor (CROSS et al. 1989; ZHONG and SIMMONDS 1997), at micro
molar concentrations potentiating the GABA response and at millimolar 
concentrations directly activating the receptor through sites on the receptor 
distinct from the BZ site (HALES and LAMBERT 1992). Chlormethiazole has 
similar effects at the strychnine sensitive glycine receptor (HALES and LAMBERT 
1992). It has been shown to interact with recombinant GABAA receptors, 
though any subunit or subtype selectivity remains to be determined (SLANY 
et al. 1995; ZEZULA et al. 1996). 

E. Alterations in GABA Receptors in Epilepsy 
I. Alterations in the Expression of GABAA Receptors in 

Animal Models of Seizure 

A number of studies have attempted to identify changes in the expression of 
GABAA receptors (particularly changes in the expression of subunit mRNAs) 
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in animal models of seizures. Interpretation and comparison of results from 
these studies is difficult due to the use of different animal models, different 
protocols, and the determination of the expression of different receptor 
subunit mRNAs. 

An experimental model of status epilepticus can be generated by pilo
carpine treatment (WALTON and TREIMAN 1988). This results in loss of GABAA-

mediated inhibition in the CAl region of the hippocampus (KAPUR and 
COULTER 1995) and indeed a loss of receptors as measured by radioligand 
binding (KAPUR et al. 1994). At the molecular level this loss of GABAA recep
tor is correlated with a loss of as (HOUSER et al. 1995; RICE et al. 1996) and 
also d2 GABAA receptor subunit mRNAs (RICE et al. 1996) in the CAl-3 
region, with no change in aI, fJ2 or y2 (RICE et al. 1996). There is a small 
increase in as mRNA in the dentate gyrus. Receptors containing d2 and as 
subunits are abundantly expressed in the pyramidal cells of CA1-CA3, while 
receptors containing the a1 subunit are expressed in these cells and also abun
dantly in the interneurons throughout the hippocampal formation (WISDEN et 
al. 1992; SPERK et al. 1997). The changes in mRNA level are relatively small 
(20%-30%) compared to the large decreases in receptor function which have 
been reported (KAPUR et al. 1994). These mRNA changes need to be linked 
to changes in levels of receptor subtype to show cause and effect. Using the 
higher resolution approach of single cell polymerase reaction (PCR) com
bined with electrophysiology, BROOKS-KAYAL et al. (1998) have looked at 
changes in GABAA receptor subunit mRNAs in individual dentate gyrus 
granule cells from animals in which prolonged seizures had been induced with 
pilocarpine. They found significant changes in these chronically epileptic 
animals, particularly decreases in al and 131, and increases in a4, /33, 8 and £ 

subunits. These changes correlate with changes in the pharmacological prop
erties of the receptors. As before, the question arises as to whether these 
changes are compensatory or causative. They do, however, suggest receptor 
subtypes as possible therapeutic targets. 

Hippocampal or amygdala kindling (where repeated high-frequency elec
trical stimulation leads to the gradual appearance of increasingly overt 
seizures) is used as an animal model of temporal lobe epilepsy and complex 
partial seizures. Hippocampal kindling has been shown to lead to a small 
decrease in GABAA receptors in the CAl region of the hippocampus (up to 
25%) and a more significant increase in GABAA receptors (up to 50% in the 
dentate), as measured by the binding of the GABA site ligand [3H]-muscimol 
(TITULAER et al. 1994). This is correlated with changes in receptor function in 
these areas at the fully-kindled stage (24 h after the last seizure), but these 
changes return to normal within a month (TITULAER et al. 1995). NUSSER et al. 
(1998) have used a combination of electrophysiology and immuno
electronmicroscopy to show that the increase in size of the inhibitory postsy
naptic potential of dentate gyrus granule cells in kindled animals is correlated 
with an increase in the number of GABAA receptors inserted at the synapse. 
This functional enhancement of GABAergic inhibition can be more than fully 
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reversed by an increase of the effect of zinc to oppose GABA-mediated inhi
bition (BUHL et al. 1996; COULTER 1999). 

Levels of receptor subunit mRNA have also been measured in the hip
pocampus of kindled animals (KOKAIA et al. 1994). Changes observed depend 
upon the number of stimulations. The most robust changes are observed in the 
dentate gyrus after 40 stimulations; 4 h after the last seizure there are signifi
cant decreases in both a1 and y2, while between 12h and 48h there are sig
nificant increases, with levels of mRNA returning to normal within 5 days. This 
is clearly a biphasic change in mRNA levels, and the increase in mRNA after 
12h correlates with changes in receptor measured by radio ligand binding and 
electrophysiology, discussed above. One interpretation of these observations 
is that the changes in mRNA and receptor in the dentate gyrus are a response 
to stabilise granule cell excitability, and thus reduce the susceptibility to 
seizures. The changes appear, however, to be transient, arguing against a direct 
role in the more permanently increased excitability characteristic of kindling. 

Selective breeding gives rise to fast- and slow-kindling strains of rats. 
Using subunit-specific antibodies it has been shown that in the fast-kindling 
strain there is reduced expression of the a1 subunit and an increase in the as 
subunit (POULTER et al. 1999). This suggests that epileptogenesis is enhanced 
when there is a failure of the normal developmental shift in subunit expres
sion from as (in development) to a1 ( in adulthood). 

Kainic acid-induced seizures are an animal model of temporal lobe 
epilepsy, with spontaneous recurrent seizures and neuronal loss in the hip
pocampus. SPERT and colleagues have examined the changes in both GABAA 

receptor subunit polypeptide and mRNA in the hippocampus of lesioned 
animals (SCHWARZER et al. 1997; TSUNASHIMA et al. 1997; SPERT et al. 1998). 
They report both acute and chronic cell specific changes in receptor ex
pression. Acute changes include decreases in some GABAA receptor mRNAs 
and increases in others (SPERT et a1. 1998). Chronic changes include loss of 
receptors in the pyramidal cell layer presumably reflecting neuronal degen
eration. There is also an overall increase in a number of receptor subunits (a1, 
d2, a4, as, /31, /32, {33, y2, 8) in the molecular layer of the dentate gyrus. Again, 
this may represent a protective response to enhanced excitability. There are 
clearly differences in the subunit regulation observed in this study in com
parison to that observed, e.g. in the single cell study of BROOKS-KAYAL et al. 
discussed above (BROOKS-KAYAL et al. 1998), the reasons for which are not 
clear. 

Systemic y-hydroxybutyric acid administration leads to the development 
of absence-like seizures in rats. Since these seizures are thought to critically 
involve the thalamus, Banerjee and colleagues measured changes in GABAA 

receptor subunit mRNAs in this animal model (BANERJEE et al. 1998). They 
observed a transient increase in al and decrease in a4 mRNA in the thalamic 
relay nuclei after the seizure, which returned to normal levels after 24 h. 
Whether this is translated into changes in protein was not determined, and 
how this relates to the pathogenesis of absence epilepsy in man is unclear. 
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II. GABAA Receptors and Absence Epilepsy 

As discussed above, absence epilepsy is thought to arise from the thalamocor
tical circuitry comprising neocortical neurons, thalamic relay neurons and 
neurons within the reticular nucleus of the thalamus. The thalamocortical cells 
excite GABAergic neurons of the reticular nucleus, which in turn leads to 
recurrent inhibitory post-synaptic potentials on the thalamic relay neurons. 
Subsequent excitation by the relay neurons feeds back onto the reticular 
neurons, and the cycle begins again (HUGUENARD et aI.1994). Pharmacological 
agents have been used to demonstrate the central role of GABAA receptors in 
this process, and parenthetically, the key role of this circuitry in absence 
epilepsy. However, there is a curious anomaly in the action of GABAA recep
tor drugs in the treatment of absence epilepsy. While benzodiazepines such as 
clonazepam are effective (MATISON 1995), barbiturates (PENRY and So 1981) 
and steroids such as ganaxolone (at least in animal models) (SNEAD 1998) are 
ineffective and may actually exacerbate seizures. A key difference between 
these agents, as discussed above, is their receptor subtype selectivity. Clon
azepam has a degree of receptor subtype selectivity, potentiating only receptor 
subtypes comprising aI, d2, a3 or as (coassembled with f3 and y2 subunits), but 
not receptors containing a4 or a6 (coassembled with a f3 and y2), or receptors 
containing a 8 or E subunit. In contrast, both barbiturates and steroids show 
no significant subtype selectivity. Neurons of the reticular nucleus express 
GABAA receptors, and in-situ hybridisation experiments tend to suggest that 
a possible subunit combination would be a3f311f33y2 (WISDEN et a1. 1992; 
HUNTSMAN et a1. 1996; KULTAS-IuNSKY et a1. 1998), which is clonazepam sensi
tive. It has been suggested that clonazepam mediates its effect by facilitating 
the recurrent inhibition in the reticular nucleus, thereby decreasing the 
inhibitory output onto relay neurons (HUGUENARD and PRINCE 1994). One 
could thus speculate that barbiturates and steroids are also able to mediate this 
effect, but in addition potentiate the activities of other GABAA receptor sub
types which are insensitive to clonazepam (e.g. a4f3y2 and a4f38, both of which 
are thought to exist in the thalamus) (SUR et a1.1999) leading to enhanced inhi
bition within the thalamic circuit. There is evidence for functionally diverse 
GABAA receptors in the thalamus, with receptors in the reticular nucleus 
having slower decay times than those in the ventrobasal nuclei (ZHANG et a1. 
1997). Correlating these functional properties with the functional properties of 
individual receptor subtypes is a key step towards identification of the appro
priate receptor subtype to target, in this case, for absence epilepsy. Since a3 f32 y2 
receptors have a slower inactivation rate than, e.g. a1f32y2 receptors (GINGRICH 
et a1.1995), and a3 is expressed in the reticular nucleus (HUNTSMAN et a1.1996; 
KULTAS-IUNSKY et al. 1998), and a3f3y2 containing receptors are sensitive to 
clonazepam, one could speculate that this subtype is such a target. However 
further studies, including approaches utilising the combination of both electro
physiology and single cell PCR (see BROOKS-KAYAL et a1.1998) would be useful 
in further refining such a hypothesis. 
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An interesting recent insight has come from the use of knockout mice. 
While these are discussed in detail elsewhere (see Chap.) it is of interest to 
note the phenotype of the GABAA receptor fJ3 knockout mouse in the context 
of absence epilepsy. In the rodent fJ3 is present in the reticular nucleus and 
essentially absent in the relay nuclei (WISDEN et al.1992). In fJ3 knockout mice 
the GABAA mediated inhibition in the reticular formation is ablated, while 
it remains essentially normal in the relay neurons (HUNTSMAN et al. 1999). 
Furthermore, the oscillatory synchrony of activity in this nucleus is greatly 
intensified. Hypersynchrony is symptomatic of absence epilepsy. This leads one 
to consider GABAA fJ3 containing receptors as a possible therapeutic target 
for absence epilepsy. 

III. Alterations in GABA Levels and GABAA Receptors in 
Human Epilepsy 

Recent studies in man have either been in vivo using (a) positron emission 
tomography (PET) scanning with isotopically labelled ligands or (b) proton 
magnetic resonance spectroscopy, or have used postmortem or surgical tissue 
for auto radiographic or immunocytochemical studies. 

PET scanning studies have usually employed [llC)-flumazenil to assess 
alterations in the expression of GABA-benzodiazepine receptors in patients 
with epilepsy. A series of studies (SAVIC et al. 1988, 1990, 1996) has provided 
evidence that in focal (partial) epilepsies there is a reduction in the binding 
of flumazenil that commonly extends beyond the focal pathology or EEG ictal 
focus. This loss of flumazenil binding is less extensive than the reduction in 
glucose metabolism detected by [18F]-fluorodeoxyglucose, but it provides a 
similarly reliable indication of the lateralisation of the focus in temporal lobe 
epilepsy. (HENRY et al. 1993). In contrast some patients with focal cortical dys
genesis show focal enhancement of ftumazenil binding (RICHARDSON et al. 
1996). In generalised seizures there is evidence for a slight increase in corti
cal, thalamic and cerebellar flumazenil binding (PREVETT et al. 1995; KOEPP 
et al. 1997). 

Protein spectroscopy of the occipital lobe shows that GABA levels are 
reduced in patients with poor seizure control (PETROFF et al. 1996a). GABA 
content is markedly enhanced by vigabatrin and modestly increased by 
gabapentin (PETROFF et al. 1996b,c; NOVOTNY et al. 1999). 

F. GABAergic Agents in Status Epilepticus 

There have been many suggestions that status epilepticus is related to a failure 
of GABAergic inhibition occurring as a consequence of seizure activity. 
Recent experimental studies include the demonstration by KAPUR and 
MACDONALD (1997) that there is a functional change in GABAA receptors in 
the rat hippocampus during the course of status epilepticus such that the EDso 
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for suppression of seizure activity by diazepam changes 10-fold between 10 
min and 45 min after seizure onset. 

Any of the anticonvulsants that act by enhancing GABA-mediated inhi
bition is potentially a treatment for status epilepticus. Barbiturates have been 
widely used, and chlormethiazole can also be effective. Tiagabine and vigaba
trin have been shown to be effective in experimental models (HALONEN et al. 
1995, 1996). Benzodiazepines, principally diazepam and lorazepam, are 
however the most widely used GABA-related agents and in many centres are 
regarded as the first line of treatment. Their efficacy has recently been con
firmed in a major controlled trial (TREIMAN et al. 1998). 

G. Conclusions: Future Prospects for Anti-Epileptic 
Drugs Acting on GABAergic Transmission 

Recent developments concerning the selective regional expression of GABAA 

subunits and their altered expression and function in some epilepsy syndromes 
have given rise to the view that improved therapy can be achieved by identi
fying drugs that are highly selective for the particular subunit combinations 
that participate in seizure generation. Using cell systems expressing specific 
subunit combinations it is possible to screen novel benzodiazepines, or com
pounds acting at the BZ or other sites to identify drugs that will be selective 
for specific epilepsy syndromes and also may show reduced sedative or myore
lax ant side effects. 
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CHAPTER 7 

Heterologous Regulation of GABAA 

Receptors: Protein Phosphorylation 

T.G. SMART, P.THOMAS, N.J. BRANDON and SJ. Moss 

A. Introduction 

Heterologous regulation of ligand-gated ion channels has the potential for 
acute and chronic modulation of ion channel activity. This has important con
sequences for the control of neuronal excitability particularly when this 
involves the type A y-aminobutyric acid (GABAA ) receptor. GABA, a neu
rotransmitter widely known to initiate the majority of inhibitory synaptic neu
rotransmission in the central nervous system (CNS), activates these receptors. 
There are numerous ways of regulating GABAA receptors and under normal 
physiological conditions these receptors will inevitably be subjected to a 
variety of inter- and intracellular homeostatic mechanisms with the purpose 
of regulating not just receptor function, but also assembly and cell surface 
number and location. One such ubiquitous and diverse mechanism for 
regulating GABAA receptors involves protein phosphorylation (Moss and 
SMART 1996; SMART 1997). This type of regulation involves the short- or long
term covalent modification of receptor/ ion channel structure by the transfer 
of a charged phosphate group(s) from adenosine triphosphate to specific 
serine, threonine or tyrosine residues. This structural modification can lead 
to alterations in receptor function at the level of ligand-activated ion 
channel gating and also regulate mechanisms affecting receptor turnover and 
assembly. 

Phosphorylation is a process catalysed by numerous enzymes classified as 
protein kinases. These are further sub-classified into serine/threonine second 
messenger-dependent protein kinases, including, cAMP-dependent protein 
kinase (PKA), cGMP-dependent protein kinase (PKG) and the family of 
kinases denoted as protein kinase C (PKC) exhibiting various dependencies 
on Ca2+ and phospholipid for activation (SCOTT and SODERLING 1992; FRANCIS 
and CORBIN 1994; TANAKA and NrSHIZUKA 1994). Another major class of 
protein kinases in addition to serine/threonine kinases, is formed by tyrosine 
kinases which can be sub-classified into receptor and non-receptor tyrosine 
kinase families (Xu et al. 1997; VAN DER GEER et al. 1994); the latter includes 
the prototypic member, Src, which specifically phosphorylates tyrosine 
residues. 
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The duration for which a particular protein remains phosphorylated is 
under dynamic control and is a function of the activity of protein kinases and 
phosphoprotein phosphatases whose function is to cleave phosphate groups 
from proteins (NAIRN and SHENOLIKAR 1992; MUMBY and WALTER 1993). Inter
estingly, the expression levels of many of these kinases and phosphatases is 
highest in the central nervous system which would suggest an important role(s) 
in neuronal function (WALAAS and GREENGARD 1991; LEVITAN 1994). This 
chapter discusses recent developments concerning the phosphorylation and 
dephosphorylation of GABAA receptors by protein kinases and phosphatases 
respectively, and the consequences for receptor regulation. 

B. Physiological Role of GABAA Receptors 
Activation of GABAA receptors in neurones results in the rapid flux of pre
dominantly Cl- ions through an integral ion channel. At a typical inhibitory 
synapse, the rapid presynaptic release of GABA and consequent postsynap
tic GABAA receptor activation leads to the graded production of inhibitory 
postsynaptic potentials (IPSPs) in native neurones. The level of released 
GABA (typically 500.umolll-lmmol/l) is predicted to saturate postsynaptic 
GABAA receptors. For the majority of neurones in the CNS, the spontaneous 
release of GABA produces an incessant low-grade bombardment of postsy
naptic neurones resulting in almost continuous spontaneous or miniature IPSP 
activity. In embryonic or immature neurones, quite often GABA activates a 
depolarisation of the membrane frequently resulting in the generation of 
action potential firing. In contrast, in postnatal, adult neurones, GABA has a 
predominantly hyperpolarising action leading to a cessation of action poten
tial firing. The hyperpolarisation per se is not necessary to inhibit action poten
tial firing since the underlying membrane Cl- conductance increase is sufficient 
to shunt all excitatory synaptic currents and currents underlying action poten
tial activity even without any change in the membrane potential. It is the 
abrupt cessation of action potential firing following the stimulus-evoked 
release of GABA that led to the classification of this molecule as a fast 
inhibitory neurotransmitter in the CNS (KAlLA 1994; MACDONALD and OLSEN 
1994; SMART 1998, for review). 

c. Molecular Structure of GABAA Receptors 
I. GABAA Receptor Subunit Families 

GABAA receptors are widely distributed throughout the CNS and are the 
main sites of action for a variety of clinically relevant therapeutic agents, 
including the benzodiazepines, barbiturates and selected general anaesthetics 
in addition to non-therapeutic ethanol, neurosteroids and a range of cations 
(SIEGHART 1995). Cloning studies have revealed that GABAA receptors are 
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members of a ligand-gated ion channel superfamily that comprises the fol
lowing members: nicotinic acetylcholine (nAChR), glycine and 5HT-3 sero
tonergic receptors. This ion channel family exhibits many conserved structural 
features including a large glycosylated N-terminal extracellular domain with 
presumed disulphide bridge(s), 4 transmembrane domains (TMI-4) and a 
major intracellular domain between TM3 and TM4 (BARNARD et al. 1987; 
UNWIN 1993). Native GABAA receptors, like all members of this family, are 
believed to be pentameric in structure and formed from individual subunits 
selected from the following discrete families of vertebrate and chick species 
and classified according to their amino acid homologies: a(I-6),j3(1-4), y(I-4), 
8(1), £(1) and n(1) (RABOW et al. 1995; DAVIES et al. 1997; HEDBLOM and KIRK
NESS 1997). Whilst a, j3 and ysubunit families appear quite frequently in the 
CNS and possess multiple members, GABAA receptors containing the single 
8 or £ subunits are thought to represent less frequent receptor isoforms. The 
n subunit has, so far, only been located in peripheral tissues where its function 
and presumed subunit partners are unknown (HEDBLOM and KIRKNESS 1997). 

There are also an additional three homologous subunits, classified as pl-3, 
which are expressed principally but not exclusively in the retina. These subunits 
differ from the preceding families since they form bicuculline-insensitive recep
tors and exhibit minimal desensitisation after GABA exposure. Despite their 
molecular similarity to the GABAA receptor subunits, the distinct pharmaco
logical profile and their inability to be co-expressed with GABAA receptor sub
units has led to the designation of a separate class, the GABAc receptors. 
(CUTTING et al.1991; BORMANN and FEIGENSPAN 1995; SHINGAI et al.1996). 

II. Domain Structures and Alternative Splicing 

Analysis of the different domains of individual GABAA receptor subunits 
indicates that the greatest areas of structural diversity are to be found within 
the large intracellular domains between TM3 and TM4 (SIEGHART 1995; MAC
DONALD and OLSEN 1994). This diversity is increased by the ability of mRNAs 
for the 00, [J2, 134, y2 and pI subunits to be alternatively spliced yielding two 
discrete proteins usually denoted as 'short' and 'long' forms (WHITING et al. 
1990; BATESON et al. 1991; KOFUJI et al. 1991; HARVEY et al. 1994; KORPI et al. 
1994; McKINLEY et al. 1995). For the majority of these subunits, the structural 
diversity generated by the splicing events occurs principally within the large 
intracellular domain between TM3 and TM4, the exceptions being 00 and pI 
subunits where splicing affects the extracellular N-terminal domains. 

For the y2 subunit alternative splicing results in the insertion of 8 amino 
acids within the large intracellular loop between TM3 and TM4 (WHITING et 
al. 1990; KOFUJI et al. 1991). The inserted sequence contains a serine residue 
forming part of a consensus site for phosphorylation by a number of protein 
kinases, including PKC. Similarly, alternative splicing of the chicken or human 
[J2 subunit, also within the TM3/TM4 loop, results in the insertion of 17 and 
38 amino acids into the long forms of the [J2 subunit, respectively (HARVEY et 
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al. 1994; McKINLEY et al. 1995). Both these insertions contain consensus sites 
for phosphorylation which in the case of the human insertion encodes a strong 
consensus for PKA phosphorylation (McKINLEY et al. 1995). 

III. Subunit Heterogeneity and Co-Assembly 

Using in situ hybridisation and immunohistochemistry to structures within the 
central nervous system, considerable temporal and spatial GABAA receptor 
subunit heterogeneity has been revealed (LAURIE et al. 1992; WISDEN et al. 
1992; FRITSCHY et al. 1992; POULTER et al. 1992). There are distinctive expres
sion profiles for a number of receptor subunits with a, /3 and rsubunits fea
turing throughout most areas of the brain. Of interest is the discrete 
localisation of the a6 subunit to cerebellar granule cells and the close associ
ation with the development of 8 subunit expression in these cells contrasts 
with the widespread expression of 132/3 subunits. These various expression pro
files all support the notion of GABAA receptor heterogeneity throughout the 
central nervous system. 

Heterologous expression of GABAA receptor cDNAs has been used to 
explore the properties of recombinant GABAA receptor subunits, deduce 
which subunits can co-assemble and determine the minimum subunit require
ment for functional GABA-gated Cl- channels. Generally, with the exception 
of the /31 and f33 subunits, single subunit expression of aI, 132 and y2L does 
not result in the formation of functional ion channels. Instead these proteins 
are retained intracellularly within the endoplasmic reticulum (CONNOLLY et al. 
1996a). Co-expression of a and /3 subunits produces robust GABA-gated cur
rents which are modulated by barbiturates, inhibited by bicuculline, picrotoxin 
and Zn2+, but are not enhanced by benzodiazepines (LEVITAN et al. 1988; 
PRITCHETT et al. 1989; SIGEL et al. 1990; MACDONALD and OLSEN 1994). 
However, the combinations al r2L or f32r2L fail to result in cell surface func
tional ion channels following their retention in the endoplasmic reticulum 
(CONNOLLY et al. 1996a,b). The inclusion of the r subunit into receptors con
taining a and /3 subunits to form alf32y2L, confers a sensitivity to the benzo
diazepines and relative insensitivity to inhibition by Zn2+ (PRITCHETT et al. 
1989; DRAGUHN et al. 1990; SMART et al. 1991). GABAA receptors can also be 
expressed as a, /3 and 8 or £ subunits, resulting in the loss of benzodiazepine 
sensitivity. Overall, recombinant studies suggest that the majority of native 
neuronal GABAA receptors will contain a selection of a, /3, and r2 subunits. 

D. Consensus Sites for Protein Phosphorylation 
Elucidating where protein phosphorylation occurs on numerous proteins has 
allowed a number of consensus sites to be identified representing the minimal 
sequence requirement for phosphorylation by particular protein kinases 
(KENNELLY and KREBS 1991; PEARSON and KEMP 1991). The consensus sites are 
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Table 1. Consensus sequences for selected serine/threonine and tyrosine protein 
kinases 

Kinase 

PKA 
PKC 
PKG 
CaM KII 
Casein kinase 1 
Casein kinase 2 
vSRC 
Insulin receptor 

Consensus sequence 

RRX S/J» RXX S/J>RX srr 
R/K X(1-3) S/J X(1-3) R/K»S/J X(1-3) R/K> R/K X(I-3) S/J 
R/KRlKX S/J> > R/KXX S/J> R/KX S/J 
RXX SIT 
pS X(1-3) S/J>D/EX(l-3) S/J 
S/J X(l-3) D/E/pS 
E/DEEIXG/EEF 
XEEEXMMMM 

Consensus sites are indicated for selected serine/threonine kinases based on evidence 
accrued from numerous studies on protein kinase substrates (obtained from KENNELLY 
and KREBS 1991; PEARSON and KEMP 1991). For the tyrosine kinases, preferred peptide 
substrates are shown based on observations derived from peptide studies only (taken 
from SONGYANG et al. 1995). The identity of the phosphoacceptor group (S, J or X) is 
underlined and in bold. X is a recognition neutral site and can be any amino acid. 
pS represents phospho serine. 

characterised by short amino acid sequences, surrounding the site(s) of phos
phorylation, containing the minimum combination of amino acids required for 
substrate recognition (Table 1). These might include charged residues or 
residues with large hydrophobic side chains. Consensus site classification is, 
however, relatively imprecise since most protein kinases display a broad sub
strate specificity allowing only broad consensus site boundaries to be classi
fied. It is usually a truism that the presence of a consensus site within a protein 
does not guarantee that phosphorylation will occur; neither does it categori
cally identify the kinase responsible if phosphorylation does indeed occur. 
Thus, consensus sites at best serve only as a guide for likely phosphorylation 
and probable involvement of kinases. Definitive evidence requires experi
mentation. An additional layer of complexity is that the GABAA receptor ter
tiary structure has not yet been resolved. Therefore predictions of membrane 
topology are largely based on hydropathy profiles derived from primary amino 
acid sequences. Since protein kinases and protein phosphatases are almost 
exclusively intracellular molecules, the accurate prediction of which residues 
are likely kinase substrates depends on accurately defining the intracellular 
domains of receptor subunits and their tertiary structure. 

E. Identifying Phosphorylation Sites Within GABAA 

Receptor Subunits 

I. Phosphorylation of Neuronal GABAA Receptors 

Neuronal GABAA receptors, purified using benzodiazepine affinity columns, 
can be phosphorylated by a number of different protein kinases. PKA and 
PKC both appear to phosphorylate subunits deduced to be ".8-type" from their 
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relative molecular masses (53-57kDa) observed following SDS-PAGE (KIRK
NESS et al. 1989; BROWNING et al. 1990; TEHRANI and BARNES 1994). Moreover, 
polyclonal antisera directed against the large intracellular domain of the f31 
subunit blocked phosphorylation by both PKA and PKC (BROWNING et al. 
1993). A receptor-associated kinase, which is not stimulated by either phorbol 
esters or cyclic nucleotides, can phosphorylate an "a-type" subunit (again 
deduced from a molecular mass of 51 kDa) (SWEETNAM et al. 1988; BUREAU 
and LASCHET 1995). Purified GABAA receptors are also substrates for the non
receptor tyrosine kinase, vSrc, which phosphorylates both "f3-" and "{'-type" 
subunits (VALENZUELA et al.1995). However, these experiments are hampered 
by the heterogeneous nature of affinity-purified receptor preparations and the 
low abundance of GABAA receptors in the brain causing the precise identity 
of the subunits phosphorylated in these studies to remain unclear. 

II. Consensus Phosphorylation Sites in 
the Large Intracellular Domains 

Examination of the major intracellular domains of GABAA receptor subunits 
reveals a number of consensus sites for both serine/threonine and tyrosine 
protein kinases (Fig. 1). Not all the receptor subunits contain these sites, 
though the receptor f3 subunit family seems best endowed with consensus sites 
for PKA, PKG, PKC and tyrosine kinases. Furthermore, y2 subunits contain 
consensus sites for PKC and tyrosine kinases, and the y2L subunit contains an 

GABAA receptor phosphorylation ites 

PI [iRRRAsQLKl 
P2 ILRRRAs L I 
p3 [LRRRssQLK] 

y2SIL ~SKDKD ] 

y2 IL II RPRSAII I 
y2S/L IDEE G C : 

y2L [LLRM FSFK ] 

I PKA, PKG, PKC CaM Kil l 

Fig.1. Schematic diagram of the phosphorylation consensus sequences of thc large 
intracellular domain of GABAA receptors. Sequences for only f31-3 and }2 subunits are 
illustrated and enlarged between transmembrane domains (TM) 3 and 4. The phos
phorylated residue(s) is shown bold and underlined. The right panel indicates the 
protein kinases capable of phosphorylating these residues 
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additional site for phosphorylation by PKC. For the a subunit family, only the 
a6 subunit encodes a strong consensus site for phosphorylation by a number 
of kinases, including PKA. To date, the p1 subunit possesses a number of con
sensus phosphorylation sites particularly for PKC (CUITING et al. 1991). 

III. Phosphorylation of Recombinant GABAA Receptors 

1. Use of Fusiou Proteins 

To obviate the problems associated with identifying phosphorylation sites 
within purified neuronal GABAA receptor subunits, the large intracellular 
domains of f3 and y subunits have been expressed as soluble glutathione-S
transferase (GST) fusion proteins in E. Coli, allowing purification under native 
conditions (SMITH and JOHNSON 1988). By using site-directed mutagenesis, the 
murine f31 subunit intracellular domain was clearly demonstrated to be phos
phorylated by PKA, PKC, PKG and CaMKII on Serine (S) 409 (Moss et al. 
1992a; McDoNALD and Moss 1994). This conserved residue (S410 for the f32 
subunit) is also phosphorylated by the same spectrum of these kinases in both 
the f32 and fJ3 subunits (McDoNALD et al. 1998). Additional serines, S383 in f31 
and S384 in fJ3 subunits, can also be phosphorylated by CaMKII (McDoNALD 
and Moss 1994; McDoNALD et al. 1998). This analytical approach also demon
strated that the f31 subunit fusion protein is a substrate for vSrc; however, the 
site(s) of phosphorylation were not identified (VALENZUELA et al. 1995). 

Phosphorylation of both forms of the y2 subunit has been analysed using 
similar methodologies (WHITING et al. 1990; KOFUJI et al. 1991). Within the 
8 amino acid insert differentiating y2S from y2L, is a high affinity substrate 
site (S343) for both PKC and CaM KII (WHITING et al.1990; Moss et al. 1992a; 
MACHU et al. 1993; McDoNALD and Moss 1994). In comparison, both fiS and 
y2L are phosphorylated by PKC on S327 and by CaM KII on S348 and Thre
onine (T) 350 (Moss et al. 1992a; McDoNALD and Moss 1994). The )QL intra
cellular domain can also be phosphorylated by vSrc, but the phosphorylated 
residue(s) are unidentified (VALENZUELA et aL1995). In contrast to f3 and y 
subunit fusion proteins, there appears to be no significant phosphorylation of 
any a subunits by PKA, PKC, PKG, CaMKII or vSrc. 

2. Use of Receptor Subunits 

The studies with fusion proteins clearly indicated that f3 and y subunits are 
major targets for protein kinases; however, these fusion proteins represent 
only a small fragment of the receptor protein subunit and thus phosphoryla
tion of complete whole receptor subunits is necessary to validate the identifi
cation of substrate sites. 

Typically, cDNAs encoding for various GABAA receptor subunits are used 
to transfect a secondary cell line, e.g. human embryonic kidney cells (HEK), 
which are then exposed to 32P-orthophosphoric acid in the presence of kinase 
activators. Receptor subunits are then purified by selective antisera and sub-
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jected to phosphopeptide mapping and ultimately phospho amino acid analy
sis. This procedure is performed on wild-type subunits and then essentially iter
ated on selected mutant subunits removing the postulated serine/threonine or 
tyrosine residues believed to be substrates for respective protein kinases. The 
phosphopeptide maps and phosphoamino acid analyses determine the precise 
location and number of the kinase substrate sites on individual GABAA recep
tor subunits. 

In accordance with the previous work on fusion proteins, murine GABAA 

receptors composed of either a1f31 or a1f31)2S subunits expressed in HEK 
cells are phosphorylated by PKA on S409 of the 131 subunit (Moss et al. 
1992b). Using similar receptor constructs, the fJ.3 subunit is phosphorylated on 
two adjacent residues S408 and S409, but surprisingly, the 132 subunit was not 
phosphorylated at the conserved position S410 by PKA. Protein kinase C, 
which has a similar substrate selectivity to PKA, also phosphorylated 131 on 
S409 and fJ.3 subunits at S408 and S409 and, curiously, 132 subunits on S410 in 
a1f3x and a1f3xy2 subunits (where x = 1-3) (McDoNALD et al. 1998). 

Apart from serine/threonine kinases, the f31 subunit can also be phos
phorylated by vSrc on tyrosines (Y) 385 and Y387. The same kinase can also 
phosphorylate the y2L subunit, when co-expressed with a1f31, on residues 
Y365 and Y367. GABAA receptors can also be tyrosine phosphorylated in situ 
in rat dorsal horn neurones as demonstrated by immunoprecipitating 132/ fJ.3 
subunits and western blotting with phosphotyrosine antibodies (WAN et al. 
1997a). Overall there is a close correlation between the phosphorylation of 
fusion proteins and their receptor subunit counterparts. 

F. GABAA Receptor Phosphorylation: 
Consequences for Ion Channel Function 

The demonstration that GABAA receptor subunits can be phosphorylated at 
defined residues does not indicate the likely physiological function of this 
process. Since these receptors incorporate integral ion channels, much atten
tion has been devoted to assessing the effect of phosphorylation on native and 
recombinant ion channel function using electrophysiological methods of 
analysis. 

I. cAMP-Dependent Protein Kinase 

1. Native Neurones 

PKA-induced phosphorylation of GABAA receptors has been reported to 
have a full spectrum of effects ranging from broad potentiation of receptor 
function to overall inhibition. For native neuronal preparations, PKA activa
tion increased GABAA receptor desensitisation in cortical neurones (TEHRANI 
et al. 1989; but ct. TICKU and MEHTA 1990) and reduced GABA-activated cur
rents in cultured neurones (HARRISON and LAMBERT 1989; PORTER et al. 1990; 
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Moss et al. 1992b; ROBELLO et al. 1993). Furthermore, 36CI flux was reduced 
in synaptoneurosomes or microsacs after activating PKA with cAMP or by 
directly using the catalytic subunit of PKA (HEUSCHNEIDER and SCHWARTZ 
1989; SCHWARTZ et al. 1991; LEIDENHEIMER et al. 1991). 

In contrast to the general inhibitory effects of PKA, enhancements 
of GABAA receptor mediated currents have also been reported using a variety 
of G-protein coupled receptors to activate PKA with concomitant effects 
on GABAA receptor function. Using rat retinal neurones and cerebellar 
Purkinje cells, vasoactive intestinal peptide, VIP (VERUKI and YEH 1992, 1994; 
WANG et al. 1997) and noradrenaline (WATERHOUSE et al. 1982; CHEUN and 
YEH 1992; PARFI1i et al. 1990; LLANO and GERSCHENFELD 1993) both enhanced 
GABA-activated responses and these effects may be mediated by PKA. 
Interestingly, in rabbit retina, VIP caused an inhibition of GABA-activated 
currents probably by a mechanism that is independent of PKA (GILLETTE 
and DACHEUX 1995,1996). A similar potentiation of GABA-activated currents 
to that produced by noradrenaline in Purkinje neurones can be achieved 
by using membrane-permeable 8-Br-cAMP. This potentiation was blocked 
by a specific PKA inhibitor peptide, PKIP (KANO and KONNERTH 1992). 
More direct effects of PKA were reported using intracellular dialysis 
with the catalytic subunit of PKA. In rat retina, neurones exposed to internal 
PKA displayed enhanced GABA-activated responses, (FEIGENSPAN and 
BORMANN 1994a). Moreover, application of dopamine, histamine, adenosine, 
VIP, somatostatin and Leu or Met-enkephalins, all enhanced GABAA recep
tor function and were assumed to be activating adenyl ate cyclase (FEIGENSPAN 
and BORMANN 1994a). A direct potentiation of GABA-activated currents has 
also been observed in hippocampal dentate granule neurones (KAPUR and 
MACDONALD 1996). 

Further evidence that PKA can differentially modulate native GABAA 

receptor function has now been obtained at rat hippocampal synapses. In pyra
midal neurones, PKA activation reduced the amplitude of GABA-mediated 
inhibitory postsynaptic currents (IPSCs) whereas in granule cells in the 
dentate gyrus, PKA was ineffective (POISBEAU et al. 1999) (Fig. 2). These results 
may be explained by expression of native GABAA receptors with differing f3 
subunit complement (see below). 

2. Recombinant Receptors 

The variable effects of PKA on native neuronal GABAA receptor function 
may result from heterogeneity amongst GABAA receptors differentially 
expressed in different cell types, from differences in the methods used to acti
vate the kinases, or from using different animal species of receptor subunits. 
The precise elucidation of the effects of PKA on GABAA receptor regulation 
required the use of a simpler cell system allowing electrophysiological and bio
chemical measurements to be made in the same cell background expressing 
either defined or a limited number of receptor subunits. 
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Fig.2A,B. Modulation of GABA-mediated IPSCs in hippocampal neurones by PKA 
and PKC. A Whole-cell recording of mIPSCs with normal pipette electrolyte, or one 
containing 6j1g/ml PKC or 6j1g/ml PKA. Note the reduced mIPSC amplitudes in the 
PKA exposed neurone and little apparent effect after PKC treatment. B Left panel, 
cumulative probability distributions of mIPSCs peak conductances in control cells, and 
those internally dialysed with PKA and PKC. The reduced mIPSC amplitudes by PKA 
are manifest by a lateral, leftward shift in the distribution; right panel, inter-event inter
vals were log binned and plotted against the square root of their occurrence (count). 
The frequency of events is unaffected by PKC (diamonds) or PKA (triangles). The lines 
are exponential probability density functions indicating the random occurrence of the 
IPSCs. The mean frequencies for the 3 conditions are indicated. Taken from POISBEAU 
et al. (1999) with permission 

Early studies in HEK cells revealed that GABAA receptors composed of 
either aIf31 or aIf31 y2S subunits were functionally inhibited by activation of 
PKA and this inhibition was prevented by mutating S409 to alanine (A) (Moss 
et al. I992b). The desensitisation rate for GABA-activated currents on aIf31 
heteromers was slowed by cAMP or by co-expressing the catalytic subunit of 
PKA, Ca. This effect was also prevented by the S409A mutation in the f31 
subunit. An additional effect of PKA has been reported following transfection 
of aIf31 y2S cDNAs into cell lines with high, intermediate or low levels of cat
alytically active PKA. The largest GABA-activated membrane currents were 
recorded from cells with high PKA activity suggesting that chronic exposure 
to PKA was enhancing GABAA receptor function. This effect was not 
observed with aIf3I receptors and, although it is difficult to compare GABA-
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activated currents between cells due to varying transfection efficiencies, the 
correlation between PKA activity and current amplitude was also not 
observed when expressing the [31(S409A) mutant with a1 and y2S subunits 
(ANGELOTTI et al. 1993). 

These early studies, however, offered no clear explanation as to why PKA 
regulation of GABAA receptor function in neurones should be so variable. To 
examine this aspect further the role of the other two [3 subunits in PKA reg
ulation of receptor function was studied using patch clamp recording. A dif
ferential effect of PKA on GABAA receptor function was not expected 
following an exchange of the [3 subunits in the receptor complex given the sim
ilarity in the PKA consensus sequences for the [3 subunits. However, GABA
activated currents recorded from a1f32 or a1f32y2S GABAA receptors in HEK 
cells were insensitive to PKA activity. This result contradicted earlier work on 
f32 fusion proteins demonstrating that the intracellular loop could be phos
phorylated (McDoNALD and Moss 1997) but was in accordance with later 
work clearly indicating that the f32 subunit was not a substrate for PKA 
(McDoNALD et al. 1998). Whole-cell recording from HEK cells expressing 
a1f33, a1f33y2S or f33 homomers, revealed that activation of PKA following 
intracellular dialysis of cAMP resulted in a potentiation of ligand-gated cur
rents (McDoNALD et al. 1998). This potentiation was abolished by mutating 
the only sites for PKA phosphorylation in the f33 subunit, S408 and S409 to 
alanines (Fig. 3). 

Interestingly, these two serines are not functionally equivalent following 
PKA phosphorylation. Expressing f33(S408A) leaving only S409 available for 
PKA phosphorylation resulted in declining GABA-activated currents follow
ing dialysis with cAMP. This result concurs with previous data obtained with 
the [31 subunit which can only be phosphorylated on S409 resulting in inhibi
tion of GABA-gated currents (Moss et al. 1992b). The corresponding mutant, 
P3(S409A), leaving only S408 to be phosphorylated, was insensitive to modu
lation following PKA activation. Thus, although phosphorylation at S408 
appears to be functionally silent, it is necessary to act in concert with S409 
phosphorylation in the f33 subunit to observe a potentiation of GABA 
-activated currents (McDoNALD et al. 1998). 

Thus the phosphorylation profile of the f33 subunit could be converted to 
that of the [31 subunit by simply mutating S408 to alanine. The interconver
sion of the post-phosphorylation functional behaviour of f33 subunit
containing receptors was further investigated by mutating alanine 408 in the 
f31 subunit to serine, reproducing the substrate sites normally found in the f33 
subunit. Expressing a1[31(A408S)y2S receptors in HEK cells resulted in basal 
phosphorylation of both S408 and S409. Intracellular dialysis of cAMP now 
caused a potentiation of GABA-activated currents rather than the inhibition 
associated with phosphorylation at S409 alone in the [31 subunit. Similar to the 
f33 subunit, if S409 was mutated to alanine leaving only A408S in the mutant 
[31 subunit, phosphorylation had no effect on GABA-activated currents. Thus, 
studies on both [31 and P3 subunits indicate that phosphorylation of S408 and 
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Fig.3. Regulation of recombinant GABAA receptors by PKA. Membrane currents 
were activated by 10.umolll GABA applied rapidly to HEK cells expressing a1J33y2S, 
a1f32y2S, a1J33 or a1f32 GABAA receptor subunits at a holding potential of -40mV 
Currents were recorded at various times after formation of whole-cell recording mode 
defined as t = O. Cells were either exposed to a control pipette solution (open symbols) 
or one containing 300.umo1lJ cAMP (closed symbols) to activate PKA. GABA
activated currents were normalised to the response recorded at t = 3 in each cell ( = 
100%). Each point represents the mean +/- s.e.m. Ip and 110 represent the peak current 
and current after lOs following GABA application. Note the enhanced responses in 
the J33 subunit containing cells and the lack of effect of cAMP in the f32 subunit express
ing cells 

S409 is required to potentiate receptor function, while receptor inhibition 
requires phosphorylation of S409 alone (McDoNALD et al. 1998). 

These results with the recombinant receptors now offer a plausible expla
nation for the wide variety of regulatory effects observed when PKA phos
phorylates native GABAA receptors. The phosphorylation of distinct f3 subunit 
isoforms potentiates, inhibits or has no effect on GABAA receptor function, 
allowing greater fidelity in the control of synaptic inhibition. In the CNS, f3 
subunits do display different spatial and temporal expression patterns (LAURIE 
et al. 1992). Furthermore, individual neurones could express different f3 
subunit isoforms, either exclusively, or, if mixed populations are present, these 
isoforms could be targeted to specific synapses, particularly since in Madin 
Darby canine kidney (MDCK) cells f3 subunits are important for the subcel-
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lular localisation of GABAA receptors (CONNOLLY et al. 1996b). With this in 
mind, PKA-induced phosphorylation could differentially regulate the function 
of GABAA receptors at particular synapses, even within the same neurones, 
providing a sculpted inhibitory response rather than a blanket up- or down-
regulation of neuronal excitability. . 

II. cGMP-Dependent Protein Kinase 

cGMP-dependent protein kinase can phosphorylate GABAA receptors on f3 
subunits using similar residues to those phosphorylated by PKA (McDoNALD 
and Moss 1997). There are relatively few studies that have directly determined 
the effect of PKG on GABAA receptor function. Nitric oxide (NO) can inhibit 
GABAA receptor function in the retina (WEXLER et al. 1998), cerebral cortex 
and cerebellar granule cells (ZARRI et al. 1994; ROBELLO et al. 1996), possibly 
by reducing single GABA channel open probability (ROBELLO et al. 1998). A 
major role for NO is the activation of guanylate cyclase causing accumulation 
of cGMP and consequent activation of PKG. Inhibitors of PKG prevented all 
or some of the actions of NO on these preparations suggesting a role for PKG
induced phosphorylation causing inhibition of GABAA receptor function. 

Nitric oxide also inhibited GABA-activated currents on recombinant 
a1f32y2S receptors but had no effect on a1f32 constructs, unless activated by 
high GABA concentrations when potentiation was observed (FUKAMI et al. 
1998). These authors concluded that NO acted directly on the GABAA recep
tor and was dependent upon the presence of the y2S subunit since the mem
brane permeant cGMP analogue, 8-Br-cGMP, was inactive. In contrast, cGMP 
increased GABA-activated currents on a1f32y2L constructs expressed in 
oocytes (LEIDENHEIMER 1996). This effect was prevented by PKG inhibitor 
peptide but mutation of S410, a site that was phosphorylated by PKG in large 
intracellular loop fusion proteins, failed to prevent the action of PKG (LEI
DEN HEIMER 1996). Thus, although phosphorylation appeared to affect the 
GABA-activated current, it may not involve phosphorylation of the receptor 
f32 subunit per se. Moreover, as for PKA, it is unclear whether the f32 subunit 
is actually phosphorylated by PKG at S410. 

III. Ca2+lPhospholipid Dependent Protein Kinase 

Early experiments using Xenopus oocytes injected with either rat or chick 
brain mRNA were used to assess whether expressed GABAA receptors were 
modulated by PKC (SIGEL and BAUR 1988; MORAN and DASCAL 1989). Activa
tion of PKC using phorbol esters resulted in reduced GABA-activated whole
cell currents suggesting that phosphorylation was acting in an inhibitory 
manner. Subsequent studies using the heterologous expression of receptor 
cDNAs demonstrated that phorbol ester-induced PKC activity can inhibit the 
function of a range of receptors constructed from: a1,3,5, f31-2 and y2 subunits 
(SIGEL et al. 1991; LEIDENHEIMER et al. 1992, 1993). The specificity of phorbol 
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ester action was also examined in a1f31 y2L subunit-containing receptors, 
where PKC inhibitory peptide (PKCI) blocked the effect of PKC (LEIDEN
HEIMER et al. 1992). The role of specific phosphorylation sites for PKC within 
the predicted large intracellular domains of individual subunits has been 
examined using site specific mutagenesis. 

Presently, the inhibitory action of PKC has been studied using GABAA 

receptors composed of a1f3x and a1f3xy2S/L (where x = 1 or 2). Functional 
studies of selected receptor subunit mutations revealed that multiple phos
phorylation sites are involved, including S409 in the 131 subunit, S410 in the f32 
subunit, S327 in both the y2S and y2L subunits, and S343 exclusively within 
the y2L subunit (KELLENBERGER et al. 1992; KRISHEK et al. 1994). Analyses of 
GABA concentration response curves demonstrated that PKC phosphoryla
tion caused a non-competitive depression in these curves with usually greater 
inhibitions observed at high GABA concentrations particularly noticeable for 
receptors incorporating the y2L subunit. Systematic mutation of these serine 
residues revealed that phosphorylation at any of the sites on the 131 or y2 sub
units is sufficient to underwrite the negative modulation of receptor function, 
with phosphorylation at S343 within the 8 extra amino acids within the y2L 
subunit producing the largest inhibitory effect. These phosphorylation sites 
were therefore suggested to be functionally non-equivalent (KRISHEK et al. 
1994). In contrast to the reports of down-regulation of receptor function, 
studies employing intracellular dialysis of trypsin-cleaved rat brain PKC, 
leading to constitutive activation, have observed potentiation of responses to 
GABA recorded from a1f31y2L subunit GABAA receptors (LIN et al. 1994). 
This enhancement was blocked by the PKCI peptide, and also by mutating 
either S409 (131 subunit), S327 (y2S or y2L subunits) or S343 (y2L subunit) to 
alanines (LIN et al. 1994, 1996). Whether the different results obtained with 
PKC regulation of GABAA receptors reflects the different expression systems 
used is unclear. What is more important is the method chosen to activate PKC. 
Most studies employ phorbol esters to activate endogenous PKC and rely on 
inactive congeners or mutant receptor subunits as controls. Intracellular dial
ysis with activated PKC will enable this kinase to access and phosphorylate 
many proteins that normally would be inaccessible through compartmentali
sation and this may consequently affect receptor function. Nevertheless, the 
mutant subunits should also control for this unless PKC is having another, as 
yet unidentified, effect on receptor function (SMART 1997). 

Apart from regulating receptor function, PKC-induced phosphorylation 
may also affect the ability of other modulators that bind to discrete sites on the 
receptor protein, to affect GABAA receptor function. Serine 343 in the y2L 
subunit has been suggested to affect potentiation of receptor function by 
ethanol (WAFFORD et al.1991; WAFFORD and WHITING 1992; cf. SIGEL et al.1993). 
However, potentiation by ethanol and other alcohols can also be achieved when 
PKC is inhibited (MARSZALEC et al.1994). Moreover, in sensory ganglionic neu
rones, GABA-activated responses were unaffected by ethanol under conditions 
where S343 should be phosphorylated (ZHAI et al.1998). Finally, the creation of 
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a transgenic mouse containing only the y2S subunit isoform thus lacking S343, 
did not affect the ethanol sensitivity of GABA-activated responses compared 
to wild-type mice (HOMANICS et al.I999). This result suggested that phosphory
lation at S343 is not pre-requisite for ethanol modulation of the GABAA 

receptor. In comparison, potentiation of GABA-gated responses on al,B2y2L 
subunit-containing receptors by 3a, 21-dihydroxy-5a pregnan-20-one 
(THDOC) is enhanced by prior exposure of cells to phorbol esters, suggesting 
PKC phosphorylation can affect neurosteroid regulation of receptor function 
(LEIDENHEIMER and CHAPELL 1997). Furthermore, benzodiazepine and barbitu
rate-induced potentiation of GABA-activated responses was also enhanced fol
lowing activation of PKC (LEIDENHEIMER et al. 1993). 

An examination of the effects of PKC activation on native neuronal 
GABAA receptors has suggested a largely inhibitory role. Using cerebellar 
microsacs GABA-induced chloride flux was selectively inhibited by PKC acti
vators (LEIDENHEIMER et al. 1992), but PKC does not appear to modulate 
receptor desensitisation in spinal cord microsacs (TICKU and MEHTA 1990). 
Utilising complete cells, GABA-activated responses in sympathetic neurones 
are inhibited by phorbol ester treatment but not by the inactive a-phorbols 
(KRISHEK et al.I994). Similar results were obtained from rabbit retinal bipolar 
neurones with the PKC inhibitors staurosporine and calphostin C blocking the 
inhibition (GILLETTE and DACHEUX 1996). 

Regulation of GABAA receptor function can also be achieved by activation 
of G-protein coupled receptor families that are known to activate PKC. For 
example activating neurokinin receptors in bullfrog primary sensory neurones 
inhibited GABA-activated currents in a manner dependent upon Pertussis 
toxin-insensitive G-proteins (YAMADA and AKASU 1996). PKC inhibitor peptide 
blocked this effect and the PKC activator, sn-l,2-dioctanoylglycerol (DOG; a 
diacylglycerol analogue) reproduced the inhibition of the GABA response. 
Regulation of GABAA receptor function by PKC may also be relevant at 
inhibitory synapses. WEINER et al. (1994) demonstrated that a PKC inhibitor 
peptide enhanced IPSPs in hippocampal brain slices and concurs with many 
recombinant receptor studies demonstrating a reduction in GABA-activated 
responses following phosphorylation by PKC. However, recently, in adult hip
pocampal slices, constitutively-active PKC had no effect on IPSCs in pyramidal 
neurones but potentiated IPSCs in granule neurones (POISBEAU et al. 1999). 

The p subunits forming the GABAc receptors can also be regulated fol
lowing PKC activation. GABA-activated responses recorded from neuronal 
GABAc receptors in rat retinal bipolar cells were inhibited by intracellular 
phorbol esters, an effect prevented by the PKC inhibitor tamoxifen or by alka
line phosphatase (FEIGENSPAN and BORMANN 1994b). Recombinant pI subunits 
expressed in Xenopus oocytes were also modulated by PKC causing inhibi
tion of GABA-gated currents (KUSAMA et al. 1995). Inspection of the intra
cellular loops of pI and p2 subunits revealed six and one potential 
phosphorylation consensus sequences for PKC respectively (KUSAMA et al. 
1998); however, replacing those residues thought to be phosphorylated by 
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PKC did not affect the inhibition of GABA-gated currents by PKC, suggest
ing that these sites, and possibly direct phosphorylation of the GABAc recep
tor, is not involved in the modulation by PKC. Interestingly, a fusion protein 
formed from the intracellular loop of the pI subunit is not a substrate for PKC, 
PKA, PKG and CaMKII. (SJ. Moss and J. Hanley, unpublished observations). 
Thus PKC regulation of GABAc receptors may proceed via phosphorylation 
of an intermediary protein possibly affecting cell surface expression and/or ion 
channel function. 

IV. Ca2+/Calmodulin-Dependent Protein Kinase II and 
Ca2+ -Dependent Phosphatases 

Intracellular Ca2+ homeostasis appears to have a prominent impact in the reg
ulation of GABA-activated currents (AKAIKE 1990). It is not clear whether the 
various actions of Ca2+, including both potentiation and inhibition of GABA
gated currents, is dependent upon phosphorylation involving Ca2+ dependent 
kinases such as PKC or CaMKII. The activity of PKC is relatively well docu
mented but studies on CaMKII and GABAA receptors are quite scarce. In rat 
dorsal horn neurones the catalytic subunit of CaMKII potentiated GABA
activated currents and IPSP amplitudes with a reduction in GABAA receptor 
desensitisation (WANG et al. 1995). Interestingly, calyculin-A, an inhibitor of 
protein phosphatases 1 and 2A, also potentiated the response to GABA 
(WANG et al. 1995) suggesting that the GABAA receptor was probably subject 
to basal phosphorylation and that this could regulate receptor function. 

The involvement of Ca2+ in GABAA receptor function has also been 
observed in isolated hippocampal neurones. Exposure of these cells to gluta
mate or N-methyl-D-aspartate (NMDA) reduced the GABA-activated 
response and this effect was abolished by removing extracellular Ca2+ 
(STELZER and SHI 1995; CHEN and WONG 1995). This suggested that Ca2+ influx 
via the NMDA receptor was regulating GABAA receptor function. Subse
quent studies suggested that Ca2+ was activating a Ca2+/calmodulin-dependent 
phosphatase, calcineurin (phosphatase 2B), and that the down-regulation 
occurred via dephosphorylation of the GABAA receptor (STELZER and SHI 
1995; CHEN and WONG 1995; ROBELLO et al. 1997) (Fig. 4). The protein kinase 
thought to be basally phosphorylating these GABAA receptors is currently 
unknown. Moreover, it is unclear whether these receptors are actually basally 
phosphorylated in the absence of any biochemical studies. A recent study has 
indicated that inhibition of calcineurin reduced desensitisation of GABA
gated responses in hippocampal neurones (MARTINA et al. 1996). 

Modulation of GABAA receptors by CaMKII may also be physiologically 
relevant. In cerebellar Purkinje neurones, activation of the excitatory climb
ing fibre pathway produced a potentiation of postsynaptic GABA responses 
and IPSC amplitudes, a phenomenon known as rebound potentiation (KANO 
et al. 1992). The potentiation was dependent upon a postsynaptic increase in 
Ca2+ influx (KANO et al. 1996; HASHIMOTO et al. 1996) and could be blocked by 
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Fig.4A-C. Suppression of GABA-activated responses by ca1cineurin: A 100,umolll 
GABA-activated currents in dissociated hippocampal neurones in control Krebs; B fol
lowing intracellular application of 0.15 ,umolll ca1cineurin; C time course plot revealing 
the down-regulation of GABA-activated responses in 5-7 cells exposed to control 
Krebs (_) or following perfusion with ca1cineurin (.). The numbers refer to time 
points when the current records in A and B were obtained. Data taken with permis
sion from CHEN and WONG (1995) 

inhibitors of CaMKII (e.g. KN62) (KANO et al.1996). It is yet to be established 
that the cerebellar Purkinje cell GABAA receptors are subject to direct phos
phorylation by CaMKII. Indeed, although CaMKII has been shown to phos
phorylate fusion proteins of the large intracellular loops of GABAA receptor 
subunits (McDoNALD and Moss 1994) there are no studies detailing phos
phorylation of GABAA receptors in neurones or in heterologous expression 
systems by this kinase. 
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v. Tyrosine Kinases 

Receptor and non-receptor tyrosine kinases represent a large group of 
enzymes capable of phosphorylating a variety of proteins. The GABAA recep
tor was noted as a potential substrate for tyrosine kinases with consensus 
sequences identified on /31 and y2 subunits (Moss et al. 1995). Biochemical 
studies revealed that GABAA receptors composed of aI, f31 and y2L subunits, 
coexpressed in HEK cells with the constitutively-active tyrosine kinase, vSrc, 
were phosphorylated on residues Y365 and Y367 in the y2L subunit. Further
more, tyrosine phosphorylation was also observed on residues Y370 and Y372 
of the /31 subunit and this could be increased by mutating Y365 and Y367 to 
phenylalanines in the y2L subunit, suggesting that the preferential substrates 
for tyrosine kinases were located on the y2L subunit (Moss et al. 1995). Func
tional studies, also in HEK cells, demonstrated that GABA-activated currents 
were potentiated by tyrosine phosphorylation on Y365 and Y367 of the y2L 
subunit, and by expressing the mutant y2L subunit incorporating Y365F and 
Y367F, this potentiating effect was prevented. Interestingly, the phosphory
lated tyrosines in f31 subunits appeared not to have any functional effect on 
GABA-gated currents (Moss et al.1995). The results from recombinant recep
tors were also reproduced in native neuronal GABAA receptors of sympa
thetic ganglia. The tyrosine kinase, Src, potentiated GABA-gated currents 
indicating the involvement of tyrosine phosphorylation. GABA-activated 
currents recorded from these cells could also be inhibited by intracellular 
application of genistein, suggesting these receptors might be basally
phosphorylated. In accordance with the concept of basal phosphorylation the 
tyrosine phosphatase inhibitor, sodium vanadate, potentiated GABA
activated responses (Moss et al. 1995). 

In broad agreement with the previous results on recombinant GABAA 

receptors, VALENZUELA et al. (1995) used tyrosine kinase inhibitors such as 
genistein, and observed a reduction in the amplitude of GABA-activated 
responses recorded from Xenopus oocytes expressing al/31 y2L and alf31 
GABAA receptor constructs. These authors concluded that the prevention of 
phosphorylation of tyrosine residues in the /31 and y2L subunits was the cause 
of the inhibitory effects of the tyrosine kinase inhibitors. 

Whether phosphorylation of the /3 subunit has any functional effect has 
received further attention from WAN et al. (1997a). Intracellular dialysis with 
pp60c-src into cultured spinal dorsal horn neurones caused a progressive 
increase in GABA-gated currents, an effect prevented by pretreatment with 
the inhibitor genistein. Immunoprecipitation of 132/3 receptor subunits after c
Src dialysis, followed by Western blotting of the neuronal homogenates with 
a phosphotyrosine antibody revealed that /31 subunits were tyrosine phos
phorylated. Pretreatment of the cells with genistein reduced the level of tyro
sine phosphorylation. Recombinant alj32 receptors expressed in HEK cells 
were also sensitive to externally-applied genistein which inhibited the 
responses to GABA. Although no phosphorylation was detected for the y2 
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subunit this might have reflected the low levels of isolated y2 subunit from 
Western blotting. In contrast, both VALENZUELA et al. (1995) and Moss et al. 
(1995) observed phosphorylation on the y2 subunit after pre-incubation with 
pp60c-Src on purified bovine brain GABAA receptors (VALENZUELA et al. 1995) 
or recombinant GABAA receptors (Moss et al. 1995; VALENZUELA et al. 
1995). 

Additional functional assays utilising GABA mediated Cl-flux from brain 
microsacs also observed an inhibition by the tyrosine kinase inhibitors, genis
tein and the typhostins, B-42 and B-44 (VALENZUELA et al. 1995). Single 
channel recording from rat sympathetic neurones indicated that tyrosine phos
phorylation increased the mean open time and the probability of GABA ion 
channel opening (Moss et al. 1995). 

1. GABAA Receptor: Response Rundown and Washout 

Whole-cell recording of ligand-gated membrane currents opened a new vista 
on the properties of receptors and their associated ion channels; however, this 
mode of recording also revealed the propensity for many ligand-activated cur
rents to undergo a reduction in amplitude with the duration of the recording. 
This phenomenon, often referred to as 'rundown' or 'washout', can be incon
venient but also indicated that soluble second messengers may be important 
for the maintenance of the response and possibly of the underlying membrane 
bound receptors. Phosphorylation of receptors by unidentified kinases or con
ditions conducive to phosphorylation have been implicated in preventing 
GABA response rundown in mammalian neurones (STELZER et al. 1988; 
GYENES et al. 1988, 1994; CHEN et al. 1990). The study by Moss et al. (1995) 
also concluded that tyrosine phosphorylation may be a means of potentiating 
or maintaining GABAA receptor function. Recently, the down-regulation of 
200,umolll GABA-gated currents recorded from HEK cells transfected with 
a3fJ2y2 subunits was measured in cells exposed to low levels of ATP and rel
atively high levels of buffered Ca2+. These conditions caused a reduction in the 
maximum currents induced by GABA and a smaller GABA ECso (HUANG and 
DHILLON 1998). This down-regulation could also be induced by inhibiting tyro
sine kinases with genistein or lavendustin-A. This phenomenon was com
pletely prevented or attenuated by lowering resting Ca2+ levels and increasing 
intracellular ATP or by inhibiting tyrosine phosphatase with vanadate (HUANG 
and DHILLON 1998). Interestingly, inhibiting the activity of calcineurin also pre
vented rundown. Calcineurin would be activated by increased intracellular 
Ca2+ (Ca2+/calmodulin-dependent) implying that serine/threonine phosphory
lation is important in maintaining the GABA response. Although stimulation 
of PKA or PKC failed to affect the degree of response rundown, presumably 
the importance of ATP is due to this molecule being a substrate for protein 
tyrosine kinases. 

This study suggested that phosphorylation by a tyrosine kinase clearly 
maintains the function of GABAA receptors and although the site of phos-
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phorylation has not been resolved, the ability of calcineurin to induce response 
rundown indicates that another site is also involved in the maintenance of 
receptor activity. The importance of tyrosine phosphorylation and ATP for 
maintaining responses to GABA has also been noted in neurones forming the 
diagonal band of Broca in the forebrain (JASSAR et a1. 1997). 

A complicating factor in the regulation of GABAA receptors by ATP 
involves the possibility that this molecule may directly affect receptor func
tion. Using rat nucleus tractus solitarii neurones, SHIRASAKI et a1. (1992) 
observed that GABA-activated currents were reduced in the absence of intra
cellular ATP. However, the involvement of phosphorylation was questioned 
since intracellular application of alkaline phosphatase did not affect GABA 
responses, and inhibition of phosphatases using okadaic acid similarly was 
ineffective. The GABA ECso concentration was increased by removing intra
cellular ATP with a competitive style lateral displacement of the GABA con
centration response curve. The authors concluded that ATP may directly 
regulate the activity of the GABAA receptor (SHIRASAKI et a1. 1992). This does 
not completely discount a role for phosphorylation in receptor regulation par
ticularly since the effect, if any, of protein kinases was not studied. 

Many of the agents used to modulate the activity of protein kinases often 
have secondary non-specific actions on ion channel function that can lead to 
confusion when interpreting data and can occasionally result in the false iden
tification of the involvement of phosphorylation (LEIDENHEIMER et a1. 1990; 
WHITE et a1. 1992; LAMBERT and HARRISON 1990). Recent evidence suggests that 
tyrosine kinase inhibitors must now also be treated with caution (DUNNE et 
a1. 1998). Extracellular application of genistein or the inactive control com
pound, daidzein, to a1t31 y2S GABAA receptors expressed in Xenopus oocytes 
resulted in a non-competitive depression of the GABA concentration 
response curve. Non-specificity was suspected when these compounds simi
larly inhibited mutant receptors devoid of tyrosine phosphorylation sites in 
the y2S subunit following their conversion to phenylalanines (Y365F, Y367F). 
Interestingly, using alternative tyrosine kinase inhibitors, such as typhostin 
A25, which avoid the genistein-susceptible ATP binding site by targeting the 
substrate binding site, also resulted in the inhibition of responses to GABA 
on wild-type a1t31 y2S and tyrosine mutant receptors (DUNNE et a1. 1998). 
This study concluded that intracellular application (cf. Moss et a1. 1995) is the 
most specific method for using these inhibitors, and that mutated receptors 
should be used as controls to ensure that the effects observed are solely due 
to phosphorylation. 

G. Regulation of GABAA Receptor Cell 
Surface Expression 

Phosphorylation may also be involved in regulating the cell surface expres
sion of receptors in addition to affecting ion channel function directly. For 
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example, insulin enables the translocation of GABAA receptors (a1/32y2) from 
intracellular compartments to the surface membrane of HEK cells (WAN et al. 
1997b). This effect appeared to be dependent upon the /32 subunit and was 
blocked by genistein implicating the insulin receptor tyrosine kinase in this 
process. Interestingly, in hippocampal neurones, insulin also increased the 
levels of cell membrane /32/ fJ.3 subunits, assessed using antibodies to these sub
units. This increase involved the up-regulation of functional GABAA recep
tors since postsynaptic sensitivity to GABA increased and the amplitude of 
mIPSCs were potentiated by 30% after insulin application (WAN et al. 1997b). 
It remains unclear whether direct tyrosine phosphorylation of the receptor is 
necessary for translocation or if intermediary proteins are required. 

In addition to tyrosine kinases, expressing GABAA receptors in cells 
exhibiting chronic activation of PKA has been reported to enhance the assem
bly of GABAA receptors (ANGELOTTI et al.1993). Three cell lines were selected 
with different levels of constitutive PKA activity denoted as: RAB 10, L929 
and Ca12, which possess PKA activities of 5, 100 and 500 kinase units/mg 
protein respectively. GABAA receptors composed of a1f31 y2S subunits were 
transiently expressed in these cell lines and for Ca12 cells, the whole-cell cur
rents activated by GABA were much larger compared to currents in L929 and 
RAB 10 cells. Similar experiments with receptors composed of a1f31 subunits 
revealed no enhancement of GABA-activated currents suggesting this effect 
was specific for y2 subunit-containing receptors. The potentiation was blocked 
by expressing the mutated f31 subunit, f31(S409A) which is devoid of the only 
PKA phosphorylation site in receptors composed of a1f31 y2S subunits (Moss 
et al. 1992b). This result implicated the involvement of S409 in f31 subunits in 
the potentiation of GABA responses, but why it is not apparent in a1f31 recep
tors is unknown. The GABA ECso was unaffected by the cell line chosen for 
expression; however, accurate comparison of GABA-induced current ampli
tudes measured in different cell lines is complicated by variations in transfec
tion efficiencies. 

The prospect of regulating GABAA receptor subunit expression by intra
cellular cAMP levels was suggested following the observation that the adeny
late cyclase activator, forskolin, increased the expression of the GABAA 

receptor al subunit while reducing the level of a6 subunit expression (THOMP
SON et al. 1996). It is presently unclear whether PKA phosphorylation is 
involved, perhaps by directly phosphorylating receptor subunits (although a1 
and a6 subunits are not obvious substrates for PKA), or whether this process 
affects surface expression by regulating factors controlling receptor subunit 
DNA transcription. 

The ability of protein kinases to affect cell-surface receptor expression 
has received support from three studies investigating the effects of PKC on 
GABAA and GABAc receptors. Direct effects of PKC phosphorylation on 
GABAA receptor ion channel function have been studied in detail (Moss and 
SMART 1996; SMART 1997); however, the mechanisms by which PKC activation 
reduces GABA-induced currents may be more complex. Recording from 
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HEK cells expressing alP2r2L subunits at 31°C, activation of PKC using 
phorbol esters reduced the GABA response and this effect was not prevented 
by mutating all the available sites for phosphorylation in the GABAA recep
tor P2 and r2L subunits (P2(S41OA); r2L(S327A, S343A) (CONNOLLY et a1. 
1999). Confocal microscopic analysis coupled with epitope tagging of the 
receptor subunits revealed that PKC at 31°C was enabling the effective inter
nalisation of the receptor and thereby causing a reduction in GABA-activated 
current. Further confocal analysis indicated that both alP2 and alP2r2 recep
tors could endocytose constitutively and this appeared to be unaffected by 
PKC. Thus the intracellular accumulation of alP2r2 receptors after activating 
PKC suggests that this kinase is hindering the recycling of the receptor back 
to the cell membrane. The ability of PKC to promote internal accumulation 
suggests that either PKC is phosphorylating the receptor subunits at one or 
more sites distinct from those previously reported (KRISHEK et a1. 1994), 
although this seems unlikely, or PKC is possibly phosphorylating intermedi
ary or accessory proteins that regulate the cell surface stability of these recep
tors. These proteins have not yet been identified. The earlier studies of PKC 
modulation of GABAA receptor function at temperatures less than 20°C, par
ticularly in Xenopus oocytes (SIGEL and BAUR 1988; KELLENBERGER et a1. 1992; 
KRISHEK et a1. 1994) would not have resolved receptor internalisation since 
this process would be expected to be largely inoperative at such low temper
atures. However, recent evidence by CHAPELL et a1. (1998) indicates that 
GABAA receptor (a1P2r2L or alP2) internalisation can indeed occur in 
oocytes at ambient temperatures. Phorbol ester induced reduction in the 
GABA-activated responses was not prevented by mutation of the known PKC 
phosphorylation site in the f32 subunit (S410A). Moreover, by using green flu
orescent protein fusions to the C-terminal domain of the a1 subunit, a clear 
reduction in fluorescence was observed in accordance with PKC-induced 
receptor internalisation. Thus it appears that PKC-induced reductions in 
GABA responses may be mediated by direct phosphorylation of the GABAA 

receptor protein and also by down-regulation possibly involving intermediary 
proteins. 

PKC activation may also cause the internalisation of GABAc receptors 
expressed in HEK or COS-7 cells. Even including ATP in the patch pipette 
electrolyte did not prevent the down-regulation of GABA-activated currents 
which was alleviated by KN-62, an inhibitor of CaMKII, or by staurosporine 
which will also inhibit PKC (FILIPPOVA et a1. 1999). Curiously, recordings were 
quite stable in the absence of internal ATP. Intracellular dialysis with the cat
alytic subunit of PKC reduced GABA responses and these responses could 
be transiently enhanced by alkaline phosphatase. Interestingly, mutation of 
three consensus sites for phosphorylation in the pI subunit did not affect the 
time-dependent decrease in GABA-activated current which may involve the 
actin cytoskeleton. The reduction in current amplitude was markedly accen
tuated by raising the temperature to 32°C, indicative of an internalisation 
process, whereas, as expected at the lower temperature of 16°C, no down-
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regulation was observed. Membrane capacitance was also reduced concomi
tant with the reduction in GABA-activated responses; however, the expres
sion of Kv1.4 potassium channels showed no down-regulation suggesting that 
this process was not simply due to a non-specific loss of cell membrane (FIL
IPPOVA et al. 1999). 

In conclusion, receptor internalisation, possibly not involving a direct 
phosphorylation of the receptor protein, may be an additional mechanism to 
regulate the function of GABA receptors simply by controlling the number 
expressed on the cell surface. This would be expected to have clear implica
tions at active inhibitory synapses. 

H. Conclusion 
It has become apparent from many studies that phosphorylation of GABAA 

and GABAc receptors can have an important role to play in their regulation. 
Considerable attention has been targeted on the direct control of channel 
function by phosphorylation but it is now becoming clear that phosphoryla
tion can effect numerous other important aspects of receptor regulation 
including: assembly, synaptic targeting, anchoring, and also receptor turnover. 
Some inroads into the elucidation of potential anchoring molecules have been 
made recently using the yeast two-hybrid system for resolving interacting mol
ecules. For GABAA receptors, a novel protein termed GABARAP has been 
identified and putatively designated as a molecule that may allow the GABAA 

receptor to associate with, or anchor to, the cell cytoskeleton. GABARAP 
appears to interact with the large intracellular domain of the y2 subunit (WANG 
et al. 1999). In addition, the glycine receptor anchoring molecule, gephryin, is 
important for the clustering of GABAA receptors. Examining cortical neu
rones obtained from animals lacking the y2 subunit also revealed a parallel 
loss of gephyrin. In addition, inhibiting gephryin expression using antisense 
oligonucleotides also resulted in a loss of GABAA receptor clusters involving 
d2 and y2 subunits (ESSRICH et al. 1998). However, it is unclear whether the 
y2 subunit can directly interact with gephryin or whether an intermediary 
protein is required. Moreover, the involvement of phosphorylation, if any, in 
this process has not been addressed. The production of transgenic mice devoid 
of selected well-characterised phosphorylation sites will provide insight into 
the potential importance of these sites for receptor anchoring molecules. 
Another anchoring molecule, the microtubule-associated protein MAP-1B, 
interacts with the p1 subunit of the GABAc receptor in preference to homo
me ric fJ3 subunit GABAA receptors (HANLEY et al. 1999). In addition, MAP-
1B and p1 appeared to colocalise on postsynaptic sites of bipolar cell axons in 
the retina suggesting a physiological role for this interaction (HANLEY et al. 
1999). 

A second area of interest involving phosphorylation concerns those mol
ecules necessary for kinases and phosphatases to anchor onto, or near, recep-
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tor subunits to enable their engagement and subsequent phosphorylation/ 
dephosphorylation of the receptor protein. These anchoring molecules could 
compartmentalise the subcellular distribution of kinases and phosphatases. 
The regulatory and functional role that kinase and phosphatase anchoring 
molecules could have on the phosphorylation of GABAA receptor remains 
undetermined until they have been unequivocally identified. However, it is 
presumed that GABAA receptors will contain receptors for activated C kinase 
(RACK) (MOCHLy-RoSEN et a1.1995; MOCHLy-ROSEN and GORDON 1998) and 
also be receptive to A-kinase binding proteins (AKAPs) (DELL'ACQUA and 
SCOTT 1997), simply due to previous demonstrations that PKA and PKC can 
directly phosphorylate and regulate the function of GABAA receptors. These 
molecules may also be relevant to the regulation of GABAA receptors by par
allel activation of G-protein coupled receptor families linked to numerous 
second messenger transduction pathways. The identification of these anchor
ing molecules will clearly enable several critical pieces of the intracellular 
jigsaw to be put in place regarding the regulation of this important receptor 
class that underlies inhibitory synaptic transmission in the CNS. 
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CHAPTER 8 

Tolerance and Dependence to Ligands of 
the Benzodiazepine Recognition Sites 
Expressed by GABAA Receptors 

E. COSTA, 1. AUTA and A. GUIDOTTI 

A. A Mechanistic Hypothesis on the Tolerance and 
Dependence to the Ligands of Benzodiazepine 
Recognition Sites (BZ-RS) Expressed by 
GABAA Receptors 

Synaptic junctions, including r-aminobutyric acid (GABA)-gated Cl-channels 
(GABAA receptors), are expressed in almost every brain neuron. In the neo
cortex, they are expressed in apical dendrites, somata, and initial axon seg
ments of pyramidal neurons in which GABAA receptors play an important 
role in synchronizing rhythmic columnary activity and other firing patterns 
that sub serve integrative processes of cortical functions. The intrinsic activity 
of GABA-gating at GABAA receptors depends on the structure of the sub
units assembled in these pentameric channels (for a review see MACDoNALD 
and OLSEN 1994; COSTA and GUIDOTTI 1996; COSTA 1998), and on the expres
sion of recognition sites for endogenous molecules (endozepines and neuros
teroids), which modulate GABA-gated Cl--current intensity (COSTA and 
GUIDOTTI 1991; GUIDOTTI and COSTA 1998; MATSUMOTO et al. 1999). 

Anxiolytic ligands of BZ-RS bind with various affinities to specific sites 
expressed by certain GABAA receptor sUbtypes that include an a (al or a2 or 
a3 or a4 or as) and a )'2 or }3 subunit and thereby allosterically amplify GABA
gated Cl--current intensities (for review see COSTA and GUIDOTTI 1996; 
BARNARD et al. 1998). According to Henry La Chatelier's principle, when a 
system at equilibrium is perturbed it will shift in a direction that minimizes 
the perturbation (COLQUHOUN 1999). When anxiolytic ligands of BZ-RS are 
abused or prescribed for protracted time schedules they trigger tolerance, 
which is associated with compensatory structural changes in GABAA recep
tors directed to minimize functional consequences of the persistent amplifica
tion of GABA-gated Cl--current intensities induced by BZ-RS occupancy 
(GALLAGER and PRIMUS 1993; KLEIN and HARRIS 1996; MILLER and GREENBLATT 
1996; IMPAGNATIELLO et al.1996; LONGONE et al.1996; PESOLD et al.1997). When 
a long-lasting treatment with anxiolytic drugs is abruptly terminated a syn
drome emerges, which in part reflects the inadequacy of the GABAA recep-
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tor structural modifications induced by the BZ-RS ligands to maintain an 
acceptable function of neuronal circuits after the ligand is cleared from tissues. 
This withdrawal syndrome is usually taken as an evidence for drug depen
dence (WOOD et al. 1992). 

The onset of tolerance to each behavioral response elicited by BZ-RS 
ligands occurs after a well-defined latency. For instance, during a protracted 
treatment with anxiolytic full agonists of BZ-RS, sedation is the first response 
to develop tolerance; this is followed by tolerance to amnesia, then anticon
vulsant activity tolerance ensues, and ultimately, anxiolytic action develops 
tolerance (NUTT 1990). Since tolerance and the associated compensatory struc
tural change of GABAA receptors minimize the consequences of long-term 
occupancy of BZ-RS by exogenous ligands, one might postulate that the dif
ferent time course for the onset of tolerance to the various action of anxiolytic 
BZ-RS ligands might reflect an intrinsic difference in the transcription acti
vation of the 17 genes that encode the various GABAA receptor subunits. 
Hence, the assessment of the changes in GABAA receptor subunit expression 
during the GABAA receptor adaptation is an important clue that helps 
increase the understanding of the molecular mechanisms that are operative in 
BZ-RS ligand tolerance. 

B. Tools to study changes in GABAA receptor 
subunit assembly 

Unfortunately, there are no appropriate methods to analyze the stoichiome
try and degree of isomerism in the subunit assembly of various GABAA recep
tor subtypes (COSTA 1998). Moreover, we are not yet able to decipher the 
molecular language of a presumed code regulating the order in which subunits 
must assemble to form various GABAA receptor subtypes (COSTA 1998). 
Although with the use of immunochemistry and immunohistochemistry, we 
are able to assess neuronal colocalization of various GABAA receptor sub
units, the accuracy of such assessment is limited by the specific antibody affin
ity for each subunit - the degree of this affinity often prevents detection of 
subunits expressed in relatively low amounts (CARUNCHO and COSTA 1994; 
FRITSCHY and MOHLER 1995). Even though we are able to detect the 
expression of two or three subunits in a neuron, we never know which of these 
subunits is repeated so as to construct the pentameric subunit assembly that 
is characteristic of various GABAA receptor sUbtypes. In this regard, it is 
appropriate to note that the GABAA receptor classification presented by the 
International Union of Pharmacology (Pharmacological Review, vol. 50, no. 2; 
BARNARD et al. 1998) has used a three-subunit coding system to define the 
structure of GABAA receptor sUbtypes. 

The clustering of an a, {3, or y subunit gene in chromosomes 4, 5, and 15 
suggests that similar neuronal colocalization of a, {3, or ysubunit may subserve 
an important aspect of brain function. Estimation of the physical distance, 
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using in-situ hybridization to cells in interphase and gene localization using 
hybridization in cells in metaphase, demonstrates the existence of f3-a-a-ygene 
clusters in cytogenetic bands of chromosomes 4 (p12) and 5 (q34). Remark
ably, phylogenetic-tree analysis predicts the existence of a f3-a-yancestral gene 
cluster in which internal duplication of ancestral a was followed by cluster 
duplication (RUSSEK 1999). Although the three-subunit coding proposed by 
the International Union of Pharmacology (BARNARD et al. 1998) might have a 
genetic justification, it contains an inherent ambiguity that may require revi
sion when we can improve our methodology to determine how the stoi
chiometry and isomerization relates to the coding of subunit sequences in 
GABAA receptor subunit assembly. A methodology to distinguish the intra
cellular immunostaining of populations of GABAA receptors, which belong to 
receptors that are either being disbanded or synthesized, also remains unclear 
- a distinction between these two populations of neuronal GABAA receptor 
assemblies would be important to examine adaptive structural changes of 
GABAA receptors associated with tolerance to anxiolytic full agonists of BZ
RS (for details, consult FRITSCHY and MOHLER 1995). 

Another concern is our present inability to determine contiguity among 
various subunits assembled to form native GABAA receptors; in fact, such 
understanding is essential to distinguish whether the pocket for the high affin
ity binding of BZ-RS ligands is suitable to express the allosteric modulation 
of GABA-gated current intensity when appropriate ligands are bound. For 
such ligand binding, not only is the presence of an a (aj, a2, a3, a4, or as) and 
a Yz or a 13 subunit required, but it is also necessary that the a Yz or a 13 sub
units are contiguous. TREITER et al. (1997) developed a method to determine 
ratios of dimeric complexes operative in the subunit assembly of multimeric 
proteins. They concluded that during transfections of cDNAs encoding, for the 
different subunits to be expressed in recombinant GABAA receptors subtypes 
each such cDNA sequence will express only 50% of receptors with a subunit 
configuration with ax-Yz contiguity but the rest of the receptor configurations 
that are expressed will lack such a subunit contiguity. 

C. Limitations in Interpreting Studies of 
GABAA Receptor Chimerae With and 
Without Single Amino Acid Mutations 

PRITCHEIT and SEEBURG (1991) showed that transiently expressed recombinant 
GABAA receptor subtypes transfected with cDNAs encoding for a], ~, and 
Yz, or a3, ~, and Yz subunits, include BZ-RS that differ by more than tenfold in 
their affinity for a specific ligand (for instance, when the ligand CL218872 is 
used as a [3H]flumazenil displacer). To study mechanistically the characteris
tics of these above mentioned differences in BZ-RS ligand affinity, PRITCHEIT 
and SEEBURG (1991) have pioneered the transfection of specifically constructed 
chimeric cDNAs of mutated a subunits together with cDNAs of native ~ and 
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Yz subunits in GABAA receptors and, using these chimeric receptors, have also 
studied the relationship between the function and structure of these chimeric 
recombinant GABAAreceptors. These authors cautiously stated that any inter
pretation derived from this experimental approach must be based on two 
assumptions: (1) the ligands used must bind competitively because of steric 
overlaps and thereby preclude simultaneous occupation of their respective 
high affinity binding site by other ligands; and (2) there must be a direct inter
action between amino acids identified in chimeric subunits by mutation analy
sis and compounds showing altered affinity. Both assumptions apply to specific 
high affinity ligands and, even in this case, one must be mindful that the sub
stitution of even a single amino acid in a given chimera subunit sequence might 
alter protein structures at a distant site, for instance, destroying a salt bridge 
and thereby causing the appearance of false-positive results. Although 
chimeric studies of receptors are attractive and fashionable, they may be par
ticularly problematic in their interpretation when these studies are directed at 
the definition of the structure of binding sites for low affinity ligands, such as 
those operative in mediating barbiturate- and ethanol-induced modifications 
of GABAA receptor responses associated with tolerance to these two drugs of 
abuse. 

D. Characterization of BZ-RS Ligands Endowed with 
Anxiolytic and Anticonvulsant Actions 

There is considerable interest in the availability of an effective GABAA 
receptor-based anxiolytic drug that would not share the major problems that 
are affecting the therapeutic use of anxiolytic drugs now on the market. At 
this point, this practical problem has been provisionally resolved by the use of 
antagonists of catecholamine, dopamine, and serotonin receptors (PRICE et 
a1. 1995), which presumably have anxiolytic action because they modulate 
GABAergic interneurons; however, with these antagonists there are also prob
lems concerning therapeutic specificity and side effects. Treatment of anxiety 
and panic disorders has become a healing art where medications are selected 
by "ex-adjuvantibus" criteria; clearly there is a great need for a rationale in a 
treatment selection. In the case of BZ-RS ligands, it is likely that many prob
lems derive from the close proximity among BZ doses used to treat anxiety 
and panic, or some convulsive disorders, and BZ doses that elicit unwanted 
side effects (see Fig. 1 for an example using alprazolam in the rat model). A 
similar relationship is operative for most of the anxiolytic ligands of BZ-RS 
currently on the market. This situation has created the belief that every anxi
olytic BZ must have similar safety problems. However, these problems might 
be shared only by BZs endowed with full positive-allosteric modulatory activ
ity of GABAA receptors but not by BZs endowed with partial positive
allosteric modulatory activity (HAEFELY 1994; COSTA and GUIDOTTI 1996). To 
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Fig.I. Pharmacological profiles if imidazenil (a partial positive-allosteric modulator) 
and alprazolam (a full positive-allosteric modulator). Abscissa: ED 50 for imidazenil and 
alprazolam. Ordinate: behavioral tests predicting side effects (1,2,3) or clinically useful 
(4) sedative, (5) anxiolytic, (6,7) anticonvulsant, and (8) antipanic activity. For details, 
see ThOMPSON et a1. (1994) 

assess this point, in Fig. 1 we have contrasted the dose-dependent action of 
alprazolam - a full positive allosteric modulator (Tables 1 and 2) - with that 
of imidazenil - a partial positive allosteric modulator (Tables 1 and 2). Imi
dazenil displays a high affinity for BZ-RS and a low clearance rate (in rats Tl/2 
is 90 min; in the monkey T 1I2, longer than 6h). Figure 1 shows that imidazenil 
tends to elicit side effects when given in doses that are at least two orders of 
magnitude greater than those that elicit anxiolytic, antipanic, and anticonvul
sant action. Since imidazenil is a partial agonist in at least the eight subtypes 
of GABAA receptors in which it was tested (COSTA and GUIDOTTI 1996), it 
never maximizes the intensity of GABA-gated Cl--currents (Table 1) and is 
virtually devoid of tolerance and dependence liability (Table 2). 

These considerations motivated the following classification of BZ-RS 
ligands based on their overall intrinsic activity in terms of their amplification 
modes of GABA-gated Cl--current intensities: 
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Table 1. Examples of maximal intrinsic efficacy of positive - full, partial, and selective 
- allosteric modulators (lO-smol/l) on the GABA EDso at various recombinant 
GABAA receptor sUbtypes. (From COSTA and GUIDOTTI 1996 - consult this reference 
for a complete list of the recombinant receptors tested) 

Recombinant 
receptor 
Subunit Composition 

(X, /3, Yz 
(X2/3, Yz 
(X3 /31 Yz 
(Xs /3, Y2 
(X3 f3z Yz 

GABA EDso 
Cumol/!) 

4.5 
7.5 

15.0 
2.4 
4.5 

Full modulator 
Diazepama 

150 
280 
400 
100 
125 

Partial 
modulator 
Imidazenila 

80 
60 

140 
45 
60 

Selective 
modulator 
Zolpidema 

230 
210 
280 

15 
5 

a Amplification as a percent of current intensity elicited by the GABA ED so for each 
recombinant GABAA receptor. 

1. Full positive-allosteric modulators that maximize GABA-gated Cl--current 
intensities at several GABAA receptor subtypes (see Table 1); these com
pounds have also been termed full-agonists (see Table 2). 

2. Partial positive-allosteric modulators that partially amplify GABA-gated 
Cl- channel-current intensities at several GABAA receptor subtypes (Table 
1) - these compounds have also been termed partial agonists (see Table 2). 

3. Selective-positive-allosteric modulators of GABA-gated Cl--current intensi
ties at some selected GABAA receptor subtypes (see Table 1) - these com
pounds have been also termed selective agonists (Table 2). 

4. High affinity ligands of BZ-RS that are devoid of intrinsic activity on 
GABA-gated Cl--current intensities, but antagonize the pharmacologically
induced positive- or negative-modulation of GABA-gated Cl--current 
intensities. These compounds have been termed antagonists (Table 2). 

The probability of finding other partial allosteric modulators in various 
chemical classes of BZ-RS ligands is theoretically high considering the various 
chemical classes of drugs endowed with high affinity binding to BZ-RS (see 
Table 2). This high probability is supported by stereochemical considerations 
inherent in the mechanisms of allosteric modulation at GABAA receptors. In 
fact, there are two topographically and stereo chemically distinct sites mediat
ing the action of allosteric modulators acting on GABAA receptors. The BZ
RS is located on a GABAA receptor regulatory pocket. The binding of high 
affinity positive allosteric modulator ligands to this pocket brings about a 
rapidly reversible allosteric transition of the pentameric conformation of the 
GABAA receptor protein. This transition modifies the intrinsic activity of 
GABA in gating Cl--channels. Hence, the allosteric modification of GABAA 

receptors caused by the binding of BZ-RS ligands includes a number of pos
sible intermediary constraints operative in this transition that allows for a high 
degree of variability in the overall response. Thus, cooperative interactions at 
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both sites of the allosteric complex (CHANGEUX and EDELSTEIN 1998) may par
ticipate in the amplification of GABA-gated Cl- current intensity. 

The GABAA receptor Cl- channel opens into three different opening 
states with mean durations of O.Sms, 2.6ms, and 7.6ms. (MACDoNALD and 
OLSEN 1994). The average opening time duration increases with the increase 
of GABA concentrations. The amplification of GABA-gating by BZ-RS 
ligands differs mechanistically from the increase in current intensity elicited 
by increase of GABA concentrations. In fact clinically effective concentrations 
of BZs increase the frequency of both channel openings and bursts, but the 
average channel opening time and burst duration remain unchanged. MAC
DONALD and OLSEN (1994) suggested that positive-allosteric ligands of BZ
RS can induce the channel openings (OJ) of GABAA receptors by selectively 
increasing the affinity of only one (C1) of the two GABA biding sites located 
on GABAA receptors (see Scheme 1). This could explain why opening time or 
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burst duration fail to change. An alternative explanation could be that BZs 
also reduce the rate of channel desensitization (in Scheme 1, CrD l transition). 

It has been suggested (see MACDONALD and OLSEN 1994) that full 
positive-allosteric modulators that bind to BZ-RS maximize GABA-gating 
amplification because they increase the opening probabilities of mono ligated 
GABAA receptors and facilitate C)-C2 transition, thereby enhancing Cl-
current intensity by accelerating Cr 0 2 transition rates and decreasing the 
rates of channel desensitization (CrDJ transition). In contrast, using partial 
positive-allosteric modulators at concentrations that cause anxiolytic and anti
convulsant actions in the absence of side effects (see Fig. 1), it is likely that 
the opening probability of monoligated GABAA receptors is increased and 
Cr 0 2 transition rates are modestly increased (see Scheme 1) while CrD l 

transition frequency remains unchanged. Thus, partial agonists increase the 
frequency of channel openings and bursts by a smaller extent than that of full 
agonists even if applied in a range of doses that are about 2-3 order of mag
nitude greater than the doses that elicit anticonvulsant and anxiolytic activity; 
however, the above mechanistic hypothesis to explain the difference between 
partial and full agonist requires further testing. 

It may be suggested that a selective agonist may preferentially bind to the 
BZ-RS pocket expressed by a specific GABAA receptor subtype, increasing 
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the affinity of the C1 GABA binding site of this GABAA receptor sUbtype. 
Perhaps this subtle difference between the selective and partial agonists was 
not focused consistently in early reports and thereby created some confusion 
regarding the specific mode of action of these two different classes of com
pounds. In fact, a few years ago, abecarnil was considered a partial allosteric 
modulator but indeed its pharmacological profile strongly suggest that it is a 
selective-allosteric modulator (see Table 2). 

E. Can the Subunit Expression Modification Associated 
with BZ Tolerance Explain the Decreased Intrinsic 
Activity of Full Positive-Allosteric Modulators at 
GABAA Receptors? 

Most GABA-based anxiolytic drugs currently in clinical use are full-allosteric 
modulators of BZ-RS and therefore possess high tolerance liability, which 
limits their protracted clinical use (Table 2). Although modifications of phar
macokinetic processes due to enzyme induction can theoretically account for 
drug tolerance liability, direct lines of investigation indicate that tolerance to 
BZ-RS ligands used therapeutically is never associated with an increase in 
the degradation rate (HIGH and FEELY 1988; AUTA et al. 1994; MILLER and 
GREENBLATI 1996). 

The hypothesis that GABAA receptor subunit assembly changes during or 
following tolerance development was initially suggested by the experiments 
of Gallager and coworkers (HENINGER et al. 1990; PRIMUS and GALLAGER 1992; 
GALLAGER and PRIMUS 1993). These authors also reported that in rats receiv
ing long-term diazepam treatment, the decrease of its anticonvulsant efficacy 
could be temporally related to a reduced sensitivity of GABAA receptors 
expressed in cortical and dorsal raphe nucleus neurons, leading to a reduction 
in GABA-mediated neurotransmission in these brain structures (GALLAGER et 
al. 1984). Today, several lines of evidence suggest that during the development 
of tolerance to the sedative, amnestic, anticonvulsant, and anxiolytic actions 
of full-allosteric modulators of GABAA receptors, the following adaptive 
changes may be operative: i) changes in GABAA receptor subunit assembly, 
or ii) phosphorylation-dependent uncoupling of GABAA receptor allosteric 
modulation. 

I. Changes in GABA Receptor Subunit Assembly 

1. Studies on Ligand Binding to BZ-RS 

A plausible mechanism for the onset of sedative and anticonvulsant tolerance 
after a long-term treatment with full-agonist BZ-RS ligands could be a 
decrease in affinity and/or expression of GABAA receptors endowed with BZ
RS. However, in most of the studies conducted in vitro or in vivo in BZ-
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tolerant rats, either there were no changes in BZ-RS expression and affinity 
(BRAESTRUP et a1. 1979; GALLAGER et a1. 1984; FARB et a1. 1984; STEPHENS and 
SCHNEIDER 1985; IMPAGNATIELLO et a1. 1996; LONGONE et a1. 1996; PRIMUS et a1. 
1996; KLEIN and HARRIS 1996), or the changes in affinity and expression of BZ
RS were modest (ROSENBERG and CHIU 1981; CRAWLEY et a1. 1982; TIETZ et a1. 
1986; MILLER et a1. 1988). Collectively, these results would appear to rule out 
that either change in GABAA receptor affinity for and/or the expression 
density of [3H]BZ binding sites playa major role for the tolerance to the seda
tive, anti epileptic, and anxiolytic tolerance to full-agonist BZ-RS ligands. 

2. Changes in GABAA Receptor Subunit mRNA Expression 

Several laboratories have examined whether there are changes in expression 
level of mRNA encoding for specific GABAA receptor subunits in cortex, 
hippocampus, and other brain structures of rats receiving a protracted treat
ment with full-agonist ligands of BZ-RS. Northern blots of a, /3, and r 
subunits from mRNA extracted from brains of rats receiving saline or 
diazepam via minipump infusion for three weeks (HENINGER et a1. 1990; 
PRIMUS and GALLAGER 1992) or an equipotent dose of lorazepam infused in 
mice for 4weeks (KANG and MILLER 1991) showed a decrease in a1 and Yz but 
not in /31 subunit mRNA expression in cortex but similar changes were not 
detected in hippocampus or cerebellum. Analogous changes in a, /3, and r 
subunit expression were observed in cortex and hippocampus of rats treated 
for 4 weeks with 100-150mg/kg per day of flurazepam orally (ZHAO et a1. 1994; 
TIETZ et al. 1993). This administration schedule of flurazepam decreases 
GABA-mediated feed-forward and recurrent inhibition in the hippocampus 
CAl pyramidal cell region (XIE and TIETZ 1991; ZHENG et a1. 1993), GABA
mediated inhibitory postsynaptic potentials (ZHENG et a1. 1993), and produces 
tolerance to sedative and anticonvulsant actions of this BZ (ROSENBERG et al. 
1991). In these rats after 4 weeks of treatment, using Northern blot and in situ 
hybridization to monitor expression of mRNAs encoding for a1, as, and Yz sub
units, there was a localized decrease of a1 mRNA expression in the CAl hip
pocampal region and in layers II, III, and IV of the cortex. The same authors 
(ZHAO et a1. 1994; TIETZ et a1. 1994) reported a transient reduction in cortical 
and hippocampal expression of as mRNA from 4 h to 2 weeks, which returned 
to basal value after 4 weeks. A similar transient decrease of as subunit mRNA 
in rat brain during the first 2 weeks of daily treatment with flurazepam 
(40mg/kg i/p.) was reported by O'DONOVAN et a1. (1992). 

Long-term treatment with ligands acting as full-agonist BZ-RS elicits a 
rapidly occurring tolerance to sedation that appears to be associated to a 
decrease in the mRNA encoding for as subunits, while the onset of anticon
vulsant tolerance occurs later and is associated with a decrease in the cortical 
and hippocampal expression of mRNA encoding for a1 and Yz subunits of 
GABAA receptor. However, due to diversity in the intrinsic activity of various 
BZ-RS ligands or in the treatment duration and doses, and some uncertainty 
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in the degree and type of tolerance observed and, most important, because of 
the use of non quantitative methodology to determine the expression of 
mRNAs encoding for different GABAA receptor subunits, it has been difficult 
to correlate the degree of tolerance with the extent and quality of possible 
GABAA receptor subtype modifications. In fact, in these studies one can only 
correlate tolerance with changes in the steady state of mRNA expression but 
it is difficult to determine whether the expression of the translation products 
or the GABAA receptor subtypes have changed. 

When the expression of ten GABAA receptor subunit mRNAs was mea
sured with quantitative RT-PCR technology in discrete brain areas of rats 
exhibiting a well-defined degree of anticonvulsant and amnestic tolerance fol
lowing 14days treatment with increasing doses of diazepam (up to 60mg/kg 
per day), IMPAGNATIELLO et al. (1995) and LONG ONE et al. (1996) found a large 
decrease (40%-50%) in expression of at and 12 (short and long variant) and 
an increase by approximately 30% in as subunit in frontoparietal motor 
cortex, but no changes in subunit mRNAs expression were detected in the 
adjacent frontoparietal somatosensory cortex. Also, there was a decrease in at 
subunit mRNA (20%) in the hippocampus without changes in as and 12, a2, 
a3, a4, and /h, or Yt, 12, and 8 subunit transcripts. Importantly, in these studies 
it was also demonstrated that in the same group of rats, tolerance to the anti
convulsant or amnestic actions of diazepam, and the increase in the expres
sion of mRNA subunits virtually return to basal values 72 h after the BZ 
treatment is terminated. 

Taken together, these studies demonstrate two important facets of 
GABAA receptor regulation, which are presumably associated with tolerance 
to BZs: 

1. Changes in GABAA receptor subunit mRNA expression are brain area
specific and these differences are highly significant. 

2. Changes in GABAA receptor subunit mRNAs do not occur as a conse
quence of generalized nonspecific BZ action on DNA transcription rate or 
stability. 

It is currently considered that these changes may be part of an adaptive 
response to a persistent and extensive up regulation of GABA-gated Cl-
current intensities caused by the BZ treatment. It is important to note that, 
after a long-term treatment with full-allosteric modulators of BZ-RS, the lack 
of changes in GABAA receptor subunit mRNA expression in the sensory 
cortex suggests that the modifications of mRNA expression by BZ might be 
selectively targeted to the function of specific cortical areas; however, the 
mechanism of such specificity is not well understood. In fact, the expression 
density of the various subunits of native GABAA receptors in the sensory 
cortex is very similar to that of the adjacent motor cortex. Indirect support 
that such selectivity in mRNA regulation may relate to specific changes in 
GABAergic function present in one cortical area but not in another, comes 
from the observation that: 
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1. Lesions of thalamic afferents to the cortex, which decrease pyramidal 
neuron columnary activity in visual cortex, change the expression pattern 
of GABAA receptor subunits showing a selective and fairly localized 
decrease in al and J2 subunits and an increase in as subunit mRNA expres
sion in layer IV of the visual cortex without any change in other layers 
(MOHLER et al. 1995). 

2. In monkeys, visual deprivation induced by unilateral intraocular injection 
of tetrodotoxin resulted in downregulation of a), /32, and J2 subunits in layer 
IV of the primary visual cortex that is reversible when tetrodotoxin is 
cleared (HENDRY et al. 1994). 

Thus, a selective regional inhibition of columnary firing by BZs might explain 
the differences found between the somatosensory and motor cortex following 
treatment with the full agonist, diazepam; however, further studies are needed 
to elucidate the nature of such a selective action of BZs. 

3. Changes in GABAA Receptor Snbunit Expression 

Since changes in neuronal expression of mRNA encoding for GABAA recep
tor subunits may not reflect changes in the levels of various GABAA receptor 
subtypes and since it is impossible from measurements of mRNA to infer 
which receptor subtypes are modified, using immunohistochemistry with spe
cific GABAA receptor subunit antibodies and gold immunolabeling, PESOLD 
et al. (1997) quantified whether the expression density of these subunits is also 
altered in areas where the expression of mRNAs encoding these subunits is 
changed. In the same experimental conditions used by IMPAGNATIELLO et al. 
(1995) and LONGONE et al. (1996) to induce and evaluate tolerance to 
diazepam, PESOLD et al. (1997) reported a selective decrease of al (37%) 
subunit in layers II and V of the frontoparietal motor cortex and a concomi
tant increase in expression of as subunit (150%) with only minor and virtu
ally insignificant changes in the expression of GABAA receptor subunits in the 
frontoparietal somatosensory cortex. 

Thus, it is possible to propose that a long-term exposure to full-allosteric 
modulator ligands of BZ-RS changes the expression of proteins that are 
assembled in GABAA receptors and, very likely, the GABAA receptor sub
types. For instance, it can be inferred that GABAA receptors including al and 
J2 subunits may be decreased and receptor subtypes including the as subunit 
may be increased. Full-allosteric modulators have been shown to require J2 
subunit to express a maximal intrinsic modulatory activity; in turn, amplifica
tion of GABA action at GABAA receptors including al subunits is greater 
than that of receptors which include the as subunit (COSTA and GUIDOTTI 
1996). Since GABAA receptors assembled with as, ~,and 8 subunits have low 
sensitivity to full-allosteric modulators of GABAA receptors (BARNARD et al. 
1998), in the future it would be important to establish whether 8 subunits also 
change in selective brain areas of rats tolerant to diazepam or other full
agonist BZ-RS ligands. 
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We believe that the frontoparietal motor cortex may not be the only cor
tical area in which changes in GABAA receptor structure occur following long
term administration of full-allosteric modulators of BZ-RS. It should be noted 
that, just as protection against convulsions is only one of many pharmacolog
ical properties of diazepam, changes in expression of GABAA receptor subunit 
in pyramidal apical dendrites, and/or neuronal somata, and initial axon seg
ments of pyramidal neurons in the frontoparietal motor cortex may be only 
one of many cortical areas in which expression of GABAA receptors subtypes 
is changing to compensate for persistent amplification of GABA-gated Cl-
current intensities elicited by long-term treatment with BZs. However, it is 
necessary to explore why the amplification of GABA-gated Cl--current inten
sities elicited by BZ has such selectivity for certain cortical areas. For instance, 
BZs may also produce their anxiolytic effects by amplifying GABA-gated 
Cl--current intensities in GABAA receptors expressed in selective limbic 
structures of the Papez circuit (amygdaloid nuclei) that have been implicated 
in modulation of emotions (PRATI et al. 1998). They may impair cognitive 
function by acting on GABAergic circuits in hippocampus and limbic 
cortex, whereas their ataxic action may be due to a functional modification of 
GABAA receptor expression in striatum, cerebellum, or spinal cord. These 
areas of the eNS may became the target of GABAA receptors assembly 
modifications during temporally specific phases of sedative, ataxic, amnestic, 
anticonvulsant, and anxiolytic tolerance development that occurs in long
term exposure to full-agonist ligands of BZ-RS. Therefore, it would be impor
tant to conduct pertinent studies of subunit expression in discrete brain 
regions that are believed to be operative in the expression of specific actions 
of BZs to detect whether tolerance to these actions temporally coincides with 
changes of specific GABAA receptor subunit expression, and presumably 
GABAA receptor SUbtype. Indeed, electron microscopic studies coupled with 
neurophysiological recording in slices of the above-mentioned structures at 
various times during the development of tolerance are needed to make a more 
precise correlation and resolve some of the many questions that are still 
pending. 

II. GABAA Receptor Subuuit Allosteric Uncoupling 

One consistent feature of a protracted treatment with full-agonist ligands 
of BZ-RS is the uncoupling of GABA and BZ-RS interactions in the absence 
of changes in expression density of a specific BZ-RS. For example, GALLAGER 
et al. (1984) observed a 50% decrease in GABA-dependent increase 
of [3H]flunitrazepam binding in brain synaptic membrane preparations 
from rats that became tolerant to diazepam's sedative, amnestic, and anticon
vulsant actions. Similar uncoupling has been reproduced in primary neuronal 
cultures of chick (FRIEDMAN et al. 1996), mouse (Hu and TICKU 1994), and cul
tures of cells transfected with various GABAA receptor subunits (PRIMUS et 
al. 1996; KLEIN and HARRIS 1996), and then exposed for extended time periods 
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to full-agonist ligands of BZ-RS. In neuronal cultures, the uncoupling 
of GABA and BZ recognition sites appears to require several hours of BZ 
exposure (18-60h) and the magnitude of the uncoupling is proportional 
to the ligand intrinsic efficacy at the specific GABAA receptor expressed 
(PRIMUS et a1. 1996; FRIEDMAN et a1. 1996). In contrast, in recombinant 
GABAAreceptors expressed in cells stably transfected with various com
binations of cDNAs encoding for GABAA receptor subunits, exposure to 
BZs for a few hours uncouples (GABA)-(BZ-RS) binding interactions in the 
absence of appreciable changes in GABAA receptor subunit expressed 
(PRIMUS et a1. 1996; KLEIN and HARRIS 1996). In these recombinant receptors, 
the rate of uncoupling depends both on GABAA receptor subtypes and on the 
intrinsic activity (GABA-shift) of the specific BZ-RS ligand tested. The extent 
of allosteric uncoupling is greater for a full-allosteric modulator than for a 
partial-allosteric modulator, or that for a selective allosteric modulator, and 
depends on the GABAA receptor subtype (PRIMUS et a1. 1996). Since in the 
experiments with recombinant receptors the uncoupling elicited by BZ-RS 
ligands occurs in the absence of GABA, one might infer that induction of 
uncoupling is dependent on the intrinsic efficacy but is independent from the 
affinity of these BZ-RS ligands. 

To explain the uncoupling that occurs in the absence of changes in 
GABAA receptor subunit expression, two mechanisms have been considered: 
(a) phosphorylation of receptor proteins; and (b) receptor internalization or 
recycling. 

Some lines of evidence indicate that phosphorylation of PKA or PKC con
sensi expressed by J? or f3z subunits affects GABAA receptor function (for a 
review see KLEIN and HARRIS 1996). Possibly, the GABAA receptor subunit 
conformational changes resulting from BZ-RS ligand intrinsic activity 
may play some role in the modulation of J? or f3z subunit phosphorylation. 
The changes of GABAA receptor phosphorylation following a protracted 
administration of full agonists of BZ-RS ligands might also favor receptor 
internalization. In recombinant receptors, including a], f3z, and J? GABAA 

receptor subunits, a protracted exposure to diazepam facilitates internaliza
tion. In fact, such exposure increases the cytosolic content of GABAA 

receptor subunits, whereas the subunit expression in cell membranes is 
decreased (TEHRANI and BARNES 1993). However, the documentation to 
support a phosphorylation dependent (GABA)-(BZ-RS) uncoupling follow
ing a protracted GABAA receptor occupancy by full agonist BZ-RS ligands 
remains incomplete. 

F. Are Changes in GABAA Receptor Subunit 
Assembly Relevant to BZ Dependence? 

The appearance of tolerance and consequent need for dose escalation to main
tain specific therapeutic effects of anxiolytic BZ is a consistent liability factor 
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for long-term therapy with anxiolytic 1-4 BZ derivatives with full-agonist 
activity. 

In experimental animals and in human subjects exposed to long-term 
treatment with high doses of diazepam, alprazolam, lorazepam, and flu
razepam, a withdrawal syndrome may occur after an abrupt termination of the 
treatment (WOOD et a1. 1992). In rats, this syndrome is characterized by 
tremors, wet dog shakes, piloerection, anxiety, and myoclonic jerks; it begins 
at 2-5 days of latency and peaks at about 8-11 days, a time when tolerance has 
already disappeared (RYAN and BmSSE 1983). It is essential to keep in mind 
that tolerance to various pharmacological actions of full-agonist ligands of BZ
RS is relatively short-lived and, in fact, disappears 48-72h after treatment dis
continuation (GENT et a1. 1985; ZHAO et a1. 1994; IMPAGNATIELLO et a1. 1996; 
LONGONE et a1. 1996). 

Most attempts at understanding the molecular mechanisms underlying the 
dependence to full-agonist BZ-RS ligands have been directed to study changes 
in the subunit assembly of GABAA receptors and their functional conse
quences in the regulation of GABAergic tone. However, the modification of 
GABAA receptors subunit assembly and the changes in GABAergic function 
associated with tolerance disappear before the onset of a withdrawal syn
drome (GENT et a1. 1985; LONGONE et a1. 1996). Frequently, the changes in 
GABAA receptor subunit expression have disappeared when the susceptibil
ity to withdrawal syndromes is maximal (RYAN and BmSSE 1983; ZHAO et a1. 
1994; CASH et a1. 1997). 

STEPPUHN and TURSKI (1993) were the first to report that glutamate recep
tor antagonists reduced the severity of the withdrawal syndrome elicited by 
an abrupt discontinuation of a long-term treatment with full-agonist BZ-RS 
ligands. 

More recent studies in mice have confirmed the results obtained in rats 
(TSUDA et a1. 1998; DUNWORTH and STEPHENS 1998; KOFF et a1. 1997). Some 
reports suggest that the expression of the withdrawal syndrome caused by an 
abrupt discontinuation of a long-term treatment with diazepam is temporally 
associated with an increase in AMP A receptor subunit expression in neocor
tex and hippocampus but not in cerebellum (GUIDOTTI et a1. 1997), and may 
even be associated with an increase in NMDA receptor subunit expression 
(TSUDA et a1. 1998). 

A possible explanatory hypothesis is that the protracted and maximal 
amplification of GABA-gated Cl--current intensities elicited by diazepam 
leads to a compensatory enhancement of glutamate receptor expression, 
which tends to minimize the functional consequences of the aforementioned 
GABAergic tone imbalance by improving the equilibrium between gluta
matergic and GABAergic tone. The normalization of the compensatory 
increase of glutamatergic tone is slower than that of BZ-elicited changes in 
GABAA receptor subunit assembly. The reason for this difference may reside 
in the intrinsic time-constant properties of GABAA , AMPA, and NMDA 
receptor subunits turnover rates. 
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G. Development of Tolerance and Dependence Liability 
After Long-Term Treatment with Selective-Positive
Allosteric Modulators of GABAA Receptors 

Zolpidem and abecarnil are the best-studied selective-positive-allosteric mod
ulators of GABAA receptors. Other selective allosteric modulators, which are 
listed in Table 2, are poorly characterized and will not be discussed here. 

I. Zolpidem 

This imidazopyridine is a ligand for BZ-RS with potent hypnotic/sedative 
properties but a weak anticonvulsant action. The difference between the phar
macological profile of zolpidem and typical full-allosteric modulators, such as 
diazepam, very likely resides in their specific binding affinity to various 
GABAA receptor subtypes and in the various clearance rates for the two BZ
RS ligands (ARBILLA et al.1985). Diazepam (a full-allosteric modulator) binds 
to the BZ-RS expressed by any GABAA receptor, including a ~ subunit 
contiguous with an all az, a3, and as subunit. In contrast, zolpidem binds with 
high affinity and expresses high intrinsic efficacy by preferentially binding to 
any GABAA receptor that includes an al subunit contiguous to a ~ subunit. 
High concentrations of zolpidem (up to lO-Smolll) may also amplify GABA
gated Cl- currents in GABAA receptor subunit expressing an arsubunit con
tiguous to a ~ subunit (see Table 1 and COSTA and GUIDOTTI 1996, BARNARD 
et al. 1998). 

When zolpidem is given to rats for long time periods in doses equivalent 
to those used in humans to elicit sedation and to facilitate sleep induction, it 
failed to produce tolerance; however, when given in higher doses (i.e., those 
required for anticonvulsant activity), it produced tolerance (ARBILLA et al. 
1985; EVANS et al. 1990). No zolpidem dependence is reported in human sub
jects when the drug is prescribed as a short-acting hypnotic, even on a pro
tracted time schedule. 

II. Abecarnil 

The pharmacological profile of abecarnil was initially defined as anxioselec
tive, because its anxiolytic and anticonvulsant properties appeared after doses 
that were smaller than those required to produce sedation (STEPHENS et al. 
1990). Abecarnil binds preferentially and with high affinity and intrinsic activ
ity to al- and arcontaining GABAA receptors and acts as a partial agonist in 
receptors expressing as subunits (STEPHENS et al. 1991; KNOFLACH et al. 1993; 
PRIBILLA et al. 1993). In rodents, a long-term administration of anxiolytic and 
anticonvulsant doses of abecarnil produced anticonvulsant tolerance and an 
abrupt discontinuation of this treatment elicited signs of withdrawal (LOSCHER 
et al.1996). Moreover, when abecarnil was given to human subjects for 3 weeks 
in sedative doses, anxiolytic tolerance and, after its abrupt discontinuation, 
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mild to moderate withdrawal syndromes were observed (BALLENGER et al. 
1991). Despite the limitations associated with the presence of a withdrawal 
syndrome in humans, it is fair to add that abecarnil has lower anticonvulsant 
tolerance and dependence liability in rodents than full-positive-allosteric 
ligands of BZ-RS (SERRA et al. 1994; NATOLINO et al. 1996; HOLT et al. 1996). 

Little is known about whether long-term administration of selective 
positive-allosteric ligands of BZ-RS in doses that cause tolerance changes the 
expression of GABAA receptor subunit mRNAs; however, in a recent study 
HOLT et al. (1996) demonstrated that in rats injected subcutaneously once a 
day for 7 or 14days with 6mg/kg of abecarnil in sesame oil, there was a sig
nificant decrease of neocortical ~ and Yz subunit mRNAs without changes in 
expression of mRNA encoding for a subunits. An equivalent dose of diazepam 
for 14 days (15mg/kg) decreased the cortical expression of all~' and Yz subunit 
mRNAs and increased that of a4, /'J, and as subunit mRNAs. 

In conclusion, although abecarnil or zolpidem (two selective BZ-RS 
ligands, which are slightly different in their GABAA receptor subtype selec
tivity) are not devoid of tolerance and dependence liability when used in a 
dose range one to two orders of magnitude greater than their respective anx
iolytic or sedative doses, both are less potent than full agonists of BZ-RS in 
eliciting tolerance to their respective sedative or anticonvulsant activities. 

H. Lack of Tolerance or Dependence Following Long 
Term Treatment with Partial-Positive-Allosteric 
BZ-RS Ligands 

An ideal partial positive-allosteric modulator of GABAA receptors should 
possess a high affinity and low intrinsic activity for most GABAA receptor sub
types, it should not produce metabolites endowed with full allosteric modula
tory activities, and it should have a good bioavailability and a relatively long 
half-life (COSTA and GUIDOTTI 1996). Table 2 lists ligands for BZ-RS with a 
documented putative partial-allosteric modulatory profile. In this list, imi
dazenil is the compound that complies most closely to the above-mentioned 
criteria defining an ideal partial agonist (COSTA and GUIDOTTI 1996). 

Bretazenil is a partial-allosteric modulator in vitro, but in vivo it has 
encountered a limited use because of its fast metabolic rates leading to the 
formation of a metabolite with sedative activity and tolerance liability in 
humans and rats (AUTA et al. 1994; 1995; BUSTO el al. 1994). 

Imidazenil, unlike bretazenil, is slowly metabolized (a half-life of 90min 
in rats, and 6h or more in monkeys) (AUTA et al. 1994,1995), and in doses 60-
fold greater than those that antagonize the sedative and ataxic action of 
diazepam fails to cause accumulation of metabolites that act as full-agonist 
ligands of BZ-RS (GIUSTI et al. 1993; COSTA and GUIDOTTI 1996). 

An important aspect of the imidazenil pharmacological profile is its ability 
to elicit a mild amnesia and a possible weak tolerance to the anxiolytic and 
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anticonvulsant action only at doses about two order of magnitude greater than 
those that elicit an anxiolytic (PARONIS et al. 1997; GIUSTI et al. 1993) and anti
convulsant action (GIUSTI et al. 1993) in rats and monkeys. This sequence of 
events establishes a remarkably distinctive difference between the pharmaco
logical profiles of partial, full or selective-positive-allosteric modulators of 
GABA-gated Cl--current intensities as prospective drugs to treat convulsive 
state or anxiety disorders. In fact, with selective modulators, the tolerance lia
bility appears with doses that are very close to those that cause anxiolytic and 
anticonvulsant actions, whereas in the case of partial positive-modulators, 
sedation, amnesia, tolerance, and dependence liability are virtually unde
tectable for a wide range of doses significantly (two to three orders of magni
tude) above the doses to be used therapeutically. While it is not known 
whether selective agonists cause anxiolytic and anticonvulsant action in 
animals tolerant to diazepam, the partial agonist, imidazenil, can cause anti
convulsant action in rats tolerant to the anticonvulsant action of diazepam 
(IMPAGNATIELLO et al. 1996). However, imidazenil cannot be used as a sedative 
or to induce sleep, and zolpidem must be preferred as a sleep inducer. 

I. Imidazenil is Devoid of Tolerance and Dependence Liability 
in Rodents 

Imidazenil has an affinity for BZ recognition sites that is ten times higher than 
that of diazepam, and in addition, when it is administered in a single dose (one
tenth that of diazepam), it can antagonize the sedative and ataxic actions of 
diazepam, and these same doses antagonize bicuculline-induced seizures for a 
period that lasts longer than that of diazepam (GIUSTI et al. 1993; AUTA et al. 
1994). This property suggests that imidazenil can be an attractive drug to be 
tested in the treatment of convulsive states. When imidazenil is administered 
to rats for 21 days, 3 times daily, in doses progressively increasing from 
2.S .umollkg to 7.S .umollkg, it does not induce anticonvulsant or anxiolytic tol
erance (AUTA et al. 1994). These doses of imidazenil are equipotent as anti
convulsant to 17.6-S8.2.umollkg of diazepam (AUTA et al. 1994) but, unlike 
imidazenil, these doses of diazepam cause anticonvulsant tolerance and, after 
abrupt discontinuation, elicit withdrawal symptoms. In other experiments, with 
an equipotent treatment schedule of diazepam and imidazenil, diazepam tol
erance occurred after a few (S-7) days, whereas tolerance to imidazenil failed 
to occur even after 130 days of administration (ZANOTTI et al. 1996). Similarly, 
the repeated administration of imidazenil (0.1 mg/kg i.p.) to mice (3 times daily 
for 30 days) failed to induce tolerance (GHIANI et al. 1994). 

This difference in tolerance liability of imidazenil and diazepam cannot 
be attributed to an imidazenil failure to occupy the GABAA receptor popu
lation that is occupied by diazepam, but may be due to a different amplifica
tion degree of GABA-gated current intensity which is greater for diazepam 
than imidazenil. In a series of structurally different recombinant GABAA 

receptors, imidazenil elicited a consistently modest degree of GABA-gated Cl-



Tolerance and Dependence to Ligands 245 

current amplification intensity, which was always much lower than that caused 
by diazepam (Table 1, and also see GIUSTI et al. 1993; COSTA and GUIDOTTI 
1996). 

Because the anticonvulsant action of imidazenil persists unabated in rats 
that are tolerant to diazepam, one might surmise that the modification of 
GABAA receptor assembly triggered by long term treatment with diazepam 
is still susceptible to the slight amplification of GABA-gated Cl--currents 
intensity of imidazenil, and probably such modest amplification is sufficient to 
antagonize bicuculline convulsion. To support such hypotheses, it became 
important to determine whether the persistent occupancy of BZ-RS by imi
dazenil can also modify, in a manner different from diazepam, the GABAA 

receptor subunit composition in selected brain areas. Remarkably, imidazenil 
fails to change the expression of 10 mRNAs encoding for the corresponding 
GABAA receptor subunits when given 3 times daily for 14days in daily 
total doses ranging between 7.5 and 30.umollkg, doses that are at least 25 to 
100 times greater than the imidazenil EDso to inhibit bicuculline-induced 
convulsions and five times greater than equipotent doses of diazepam 
(IMPAGNATIELLO et al. 1996). 

Moreover, imidazenil does not elicit signs of dependence either after the 
abrupt discontinuation of a protracted treatment or after fiumazenil doses that 
precipitated a withdrawal syndrome in rats receiving diazepam (AUTA et al. 
1994). 

II. Imidazenil is Devoid of Tolerance and Dependence Liability 
in Monkeys 

In Patas monkeys working on a complex behavioral task of repeated acquisi
tion (learning) and performance components, alprazolam (l.umollkg orally) 
decreases the response rate and increases the percent errors in acquisition 
while having little or no effect on performance (Fig. 2). Imidazenil, in 
oral doses as small as 0.025.umol Ikg, failed per se to alter acquisition or per
formance, but when given 1 h before alprazolam, attenuated the disruptive 
effects elicited by this drug on the acquisition component (THOMPSON et al. 
1995; AUTA et al. 1995). However, as shown in Fig. 2, imidazenil in a dose of 
12.5.umollkg, which is a dose 500 times greater than the minimal active dose 
that inhibits the cognitive deficit elicited by alprazolam (THOMPSON et al.1994), 
causes only a modest disruption of acquisition, but remarkably antagonizes 
the large cognitive deficit elicited by alprazolam. Modest disruptive effects of 
were elicited by the first oral dose (12.5 .umol/kg), of imidazenil but these dis
ruptive effects virtually vanished when the same dose was repeated the fol
lowing day (see Fig. 2). Remarkably, this dose of imidazenil repeated for 7 days 
continues to antagonize the cognitive deficits elicited by a single injection of 
alprazolam suggesting a virtual lack of tolerance (see Fig. 2). Importantly, after 
10 days of treatment with 12.5.umollkg of imidazenil, no overt signs of with
drawal were observed after abrupt discontinuation. These data suggest that 
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Fig. 2. Cumulative records from a Patas monkey showing the pattern of responding 
under a multiple schedule with acquisition (A) and performance (P) components. Each 
record represents a complete session (60 reinforcements), except for alprazolam alone 
which shows the first two acquisition and performance components respectively during 
a 2-h session. The response pen stepped upward with each correct response (scale a -
ordinate - represents 100 correct responses) and was deflected downward upon com
pletion of the four-response chain. Errors are indicated by the event pen (below each 
record). The scale b - abscissa - represents a 5 min responding. The respective cumu
lative recordings represent sessions preceded by administration of: (1) vehicle 60min 
presession; (2) imidazenil 0.25,umollkg 60min presession; (3) imidazenil 0.5,umol/kg; 
(4) alprazolam 1,umollkg 60min presession; (5) imidazenil 1.25,umollkg per day 1; 
(6) imidazenil 1.25,umollkg per day 2; (7) imidazenil 1.25,umol/kg per day 3, 60 min 
before alprazolam 1.umollkg; (8) imidazenil1.25 .umol/kg per day 7 60min before alpra
zolam 1,umol/kg; (9) alprazolam 1,umollkg 60 min presession administered on day 2 fol
lowing discontinuation of imidazenil. In this experiment 1.25 ,umol/kg of imidazenil was 
administered orally once a day from day 1 to day 14 (For details, see Auta et al. 2000) 

imidazenil is a prototype of a new generation of anxiolytic and anticonvulsant 
imidazo-1-4-benzodiazepines that has minimal disruptive effects on learning 
and memory in doses 500 times greater than a minimal pharmacologically 
active dose. Imidazenil is virtually devoid of tolerance and dependence liabil
ity and other unwanted side effects exhibited by full-agonist BZ-RS ligands 
when tested in rodents and primates. This suggests that it is not the BZ-RS 
occupancy per se but the intrinsic efficacy of the ligand that determines 
consequent changes in subunit assemblies of GABAA receptors that might be 
responsible for the tolerance and dependence liabilities of full-agonist 1-4-
benzodiazepines that have GABAA receptor-based anxiolytic actions. 

In conclusion, imidazenil could become the first anxiolytic drug partially 
devoid of a consistent sedative action even in doses that are 500 times greater 
than the minimal active dose. With regard to its anticonvulsant activity, it is 
pertinent to mention that its potency is not altered even when the intrinsic 
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activity of GABA at GABAA receptor is altered as it might be in the case of 
human pathology associated with convulsive states. 
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CHAPTER 9 

GABAA Receptors and Disease 

H. Y. KIM and R.w. OLSEN 

1. Introduction 

Studies of human diseases of the nervous system have demonstrated that many 
of the disorders result from disruption of normal developmental processes 
which promote organization and maturation of neuronal circuitry. Such dis
orders include many different forms of inherited childhood epilepsies in which 
genetic factors contribute to the abnormal development. Adult disorders can 
be influenced by genetic factors as well. Linkage analysis and family- or 
population-based association studies are useful in finding genes that are 
responsible for simple disorders, but not for complex human disorders which 
involve multiple genes. In addition to genetic mutations and variations, many 
disorders in adult are influenced by environmental insults. Based on the dual 
function of GABA as the main inhibitory neurotransmitter in adult and as a 
developmental factor during embryogenesis and early postnatal life, one can 
envision the perturbing consequences of aberrant GABA actions on neuro
physiology. Recent advances in gene knock-out technology have yielded a 
wealth of evidence suggesting that, indeed, mutations within the GABA sig
naling pathway can result in a wide array of neurodevelopmental abnormali
ties, as well as abnormalities in non-neuronal structures such as the palate 
(CULIAT et al. 1995; WAYMIRE et al. 1995; ASADA et al. 1997; KASH et al. 1997). 

GABA exerts its actions via a chloride channel, the GABAA receptors, 
and the G-protein coupled GABAB receptors. Binding of GABA to the 
GABAA receptors can cause either inhibition or excitation of neurons depend
ing on the type of neurons and their microenvironment, local circuits, or 
perhaps, types of GABAA receptors present in the particular neuron (CHERU
BINI et al. 1991). GABAA responses are chloride currents, which are generally 
inhibitory. These can be depolarizing if cellular chloride transport is weak, as 
happens especially early in life (RIVERA et al. 1999). Although less is known 
about the GABAB receptors, binding of GABA to the GABAB receptors 
appears to cause only inhibition, and subsequent inhibition of action poten
tial generation, or inhibition of transmitter release from nerve endings. 

There are at least 19 separate GABAA receptor subunits (a [1-6], f3 [1-4], 
y[1-3], 8, P [1-3], £, and n) identified to date (BARNARD et al. 1998) and these 
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subunits have overlapping but distinct expression patterns both in time and 
space (UiDDENS and WISDEN 1991). At least three different subunit polypep
tides form a pentameric GABAA receptor complex (MACDONALD and OLSEN 
1994). Expression studies of recombinant GABAA receptors in Xenopus 
oocytes and mammalian cell lines have shown that receptors comprised of 
different subunit combinations display distinct electrophysiological and 
pharmacological profiles (LUDDENS et al. 1995; SIEGHART 1995; McKERNAN and 
WHITING 1996). In development, the expression pattern of GABAA receptor 
subunits differs from that in the adult (reviewed in KIM et al. 1996). Gener
ally, the most prominent subunits in the developing brain are expressed less 
in adults and the less abundant subunits in the developing brain become more 
prominent in adults. Therefore, the molecular biology of GABAA receptors 
indicates that the brain can possess myriad GABAA receptors with varied 
function. Further, mutations which affect types (therefore function) and dis
tribution of the GABAA receptors can alter cell-cell and cell-environment 
interactions. In this review we consider the role of GABA and GABAA recep
tors in diseases that arise from both developmental aberrations and environ
mental insults later in life. 

B. Diseases of Development and GABAA Receptors 
GABA and GABAA receptors are present as early as embryonic day14 in 
rodent embryos, and this has led researchers to suggest that GABA may play 
a role in modulating brain development via acting through the GABAA recep
tors (COYLE and ENNA 1976; LAUDER et al. 1986; LAURIE et al. 1992; MA et al. 
1993). A series of studies using cultured primary neurons, brain slices, as well 
as intact animals further suggested that GABA promotes neuronal migration, 
cytodifferentiation and synaptogenesis (HANSEN et al. 1984; MEIER et al. 1984, 
1985; SPOERRI 1987; WOLFF et al.1987; BARBIN et a1.1993; KIM et al.1993; BEHAR 
et al. 1994; MITCHELL and REDBURN 1996), partly by increasing intracellular 
calcium concentration in immature neurons (CONNOR et al. 1987; YUSTE and 
KATZ 1991; LEINEKUGEL et al. 1995; OBRIETAN and VAN DEN POL 1996; OWENS 
et al. 1996; CHERUBINI et al. 1998). Stronger evidence, however, comes from 
studies using genetically engineered mouse models which allow a more direct 
assessment of relationship between genotype and phenotype in an intact 
animal. Knockout gene targeting strategies have the potential for revealing 
physiologic and pathophysiologic roles of a given gene product with certain 
caveats. Many null mutations are embryonically or perina tally lethal. In null 
mutants, loss of a gene product in all cells, throughout life, is a drastic situa
tion, more severe than many human genetic diseases, which may result from 
altered rather than loss-of-function mutations. Other knockouts may show 
little or no phenotypes. In addition, whether or not a compensatory gene activ
ity occurs in response to absence of a gene certainly introduces questions, 
making it difficult to establish a direct relationship between a gene function 
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and the mutant phenotype. Nevertheless, one advantage of gene targeting is 
that it can produce a large number of animals carrying an identical mutation 
that can be analyzed. Extensive analysis of these mice will reveal clues not 
only to the role of the targeted gene in the phenotype, but also to the com
pensatory events which will provide information about interacting genetic 
pathways as well as provide additional targets for therapies for specific disor
ders. Finally, variable expression of phenotypic characteristics in mouse strains 
of differing genetic background can lead to the discovery of genes whose prod
ucts modify the expression of the targeted gene; these in turn, can lead to iden
tification of phenotype pathways. 

To date, at least four (iX6, /33, ~, and 5) different GABAA receptor subunit 
genes have been disrupted in mice (GUNTHER et al. 1995; HOMANICS et al. 
1997a,b; JONES et al. 1997; OLSEN et al. 1997b). Each one of these mutant mice 
displays a wide variety of overlapping yet distinct set of physiological and 
behavioral deficits allowing the dissection of the role of individual GABAA 

receptor subunit genes. 
Among the aforementioned GABAA receptor knock-out experiments, 

the /33 subunit gene disruption produced mice with a particularly interesting 
array of phenotypic characteristics, presumably due to lack of the /33 subunit 
function during embryonic development (HOMANICS et al. 1997a). Mice with 
the GABAA receptor /33 subunit disruption exhibit electroencephalographic 
abnormalities, seizures, learning and memory deficits, poor motor skills on a 
repetitive task, hyperactivity, and a disturbed rest-activity cycle (DELOREY et 
al. 1998). These same abnormal behaviors are associated with Angelman syn
drome (AS), a neurodevelopmental genetic disorder characterized by severe 
mental retardation and epilepsy. This is first direct evidence associating a 
GABAA receptor subunit gene with an inherited human disorder. Further, the 
/33 knockout mice exhibited increased oscillatory synchrony in the thalamic 
reticular nucleus, which suggests that the GABAA receptor-mediated inhibi
tion is critical for normal (non-seizure) modulation of neuronal rhythms 
(HUNTSMAN et al. 1999). 

In addition to mice with targeted mutations, there are several genetic 
rodent models of epilepsy in which alterations in the GABAA receptor genes 
are thought to influence the animal's seizure threshold. These include the tot
tering mice, E1 mice, genetically epilepsy-prone rats (GEPR), genetic absence 
epilepsy rats of Strasbourg (GAERS), and seizure-susceptible gerbils. The 
tottering mouse, a model of absence and myoclonic seizures, has impaired 
GABAA receptor function (TEHRANI and BARNES 1995) and increased levels of 
GABAA receptor a2 and ~ mRNAs (TEHRANI et al. 1997), although the muta
tion is in the alA subunit of voltage-sensitive calcium channel (FLETCHER et al. 
1996). Decreased hippocampal GABA uptake is believed to be involved in 
seizure activities of the E1 mouse, a model of temporal lobe epilepsy (JANJUA et 
al. 1991). Impaired GABAA receptor function may be responsible for convul
sive seizures in GEPRs, a model of generalized motor seizures (EVANS et al. 
1994). GAERS show decreased GABAA receptor binding in hippocampus and 
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altered GABAB receptor function (SNEAD et al.1992). Genetically seizure-sus
ceptible gerbils exhibit decreased expression of GABAA receptors in their sub
stantia nigra and midbrain regions (OLSEN et al. 1986). Our current 
understanding of whether, and, if so, how these GABAA receptor alterations 
contribute to seizure susceptibility is limited. Since we do know that the 
GABAA receptors are involved in early eNS development, careful analysis of 
mutant embryos of GABAA receptor expression and function may allow iden
tification of perturbed steps that might lead to the abnormal phenotypes. 

In human studies, GABAA receptor subunit genes serve as major candi
dates for inherited epilepsy disorders. For example, SANDER et al. (1997) per
formed a linkage analysis between subtypes of idiopathic generalized epilepsy 
and the GABAA receptor as, th, J3 gene cluster on chromosome 15, and found 
a possible linkage between families of juvenile myoclonic epilepsy (JME) 
patients and the GABAA receptor gene cluster. On the contrary, a different 
study ruled out an association between a separate group of JME patients and 
dinucleotide repeat allelic variants of the as or f33 gene (GUIPPONI et al. 1997). 
Although the results are somewhat inconclusive with the families tested, one 
cannot exclude a better linkage or association in different affected families 
since epilepsy disorders are both heterogeneous and also may arise from 
multiple mutations. 

c. Diseases of Adult and GABAA Receptors 
The power of genetic engineering now allows the identification of individual 
GABAA receptor genes that can cause neurological or psychiatric disease, and 
further, provides a mechanism to distinguish the developmental defects from 
the defects which may arise from the absence of a particular gene product in 
the adult brain (DYMECKI 1996; MARTH 1996). These techniques are crucial in 
understanding the role of GABAA receptor genes, since most subunit genes 
display highly complex expression patterns, suggesting functional diversity not 
only among different subunit genes but also of the same gene depending on 
time and space. Studies using such conditional gene targeting approaches are 
still in their infancy. 

We summarize here the results obtained from conventional biochemical, 
pharmacological, behavioral, and anatomical methods that suggest a role of 
GABAA receptor function in human and animal disorders. In many cases it is 
unclear whether the altered GABAA receptors cause a particular disorder, or 
they merely represent a plastic change in response to some physiological 
trauma. Regardless of whether the changes are causal or consequential, under
standing the mechanism of such changes in the disease cascade will provide 
the basis for developing valuable therapies for the particular disorder. 

I. GABAA Receptor Function in Adult Epilepsy 

Perhaps the main human disorder associated with defects in the GABAA 

receptor system is epilepsy (OLSEN and AVOLI 1997). In many models of 
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epilepsy, both genetic and experimental, GABAA receptor function is altered 
in some fashion - either enhanced or attenuated. The alterations in the 
GABAA receptor function may represent the brain's way of adjusting to a 
trauma brought on by the seizures themselves. Ironically, in some cases, these 
changes can contribute to further problems. One classical example of such case 
is temporal lobe epilepsy (TLE) in human, one of the most prevalent seizure 
disorders in adults. TLE is characterized by development of spontaneous 
seizures after a brain injury. The process of seizure development includes 
extensive loss of hilar principal cells and GABAergic interneurons as well as 
synaptic reorganization of the dentate gyrus (reviewed in HOUSER 1992; 
OBENAUS et a1. 1993). 

In an experimental model of TLE, rats are induced to have status epilep
ticus with a pilocarpine injection. These rats develop increased seizure 
susceptibility long after - 2 or more weeks - their initial status epilepticus 
episode. Using this model, BROOKS-KAYAL et a1. (1998) demonstrated that 
the dentate granule cells from epileptic rats had alterations in GABAA 

receptor function including increased zinc sensitivity and decreased zolpidem 
enhancement, as well as changes in the mRNA levels of several GABAA 

receptor subunit genes. The authors further demonstrated that these alter
ations precede the onset of epilepsy, suggesting a causal relationship between 
the altered GABAA receptors, apparently of a new subunit composition, 
and the subsequent development of epilepsy. Also in the pilocarpine-induced 
status epilepticus model, HOUSER et a1. (1995) used in situ hybridization 
to demonstrate a reduced level of GABAA receptor as subunit mRNA in 
CAl at the time that spontaneous seizures developed. Similarly, in the kainic 
acid-induced TLE model, the initial status epilepticus leads to massive changes 
in the GABAA receptor composition in cells throughout hippocampus 
(FRIEDMAN et a1. 1994; SCHWARZER et a1. 1997; TSUNASHIMA et a1. 1997). Some 
of these changes in GABAA receptor subunit expression may be transient, and 
suggest that alterations in other genetic pathways are responsible for kindling
induced increase of seizure susceptibility (KOKAIA et a1. 1994). In human TLE 
tissue, a decrease in the number of GABA transporters and the subsequent 
decrease in glutamate-induced GABA release were observed (DURING et a1. 
1995). 

Likewise, human studies using PET scanning or surgical samples of 
patients have reported altered GABAA receptor binding and function (SAVIC 
et a1. 1988; McDONALD et a1. 1991; JOHNSON et a1. 1992; OLSEN et a1. 1992; 
HENRY et a1. 1993; GIBBS et a1. 1996; SHUMATE et a1. 1998). The results from 
human studies can, however, be variable, perhaps due to heterogeneity of 
epilepsies among patients, normal population variability, difficulties in working 
with surgical or post-mortem tissue samples, and difficulties in making precise 
anatomical comparisons between patients. Generally speaking, patients with 
focal epilepsy have reduced GABAA receptor binding, although the reduction 
may be a result of cell loss in the damaged brain (OLSEN et a1. 1992). However, 
functional changes of GABAA receptors seen in isolated neurons from TLE 
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patients resemble changes seen in corresponding cells of epileptic rats (GIBBS 
et a1. 1996; SHUMATE et a1. 1998). 

GABAA receptor alterations were observed in neocortex from TLE 
surgical samples from patients with brain pathologies of differing severity. In 
the first set, neurosteroid enhancement of [3H]flunitrazepam binding was 
increased in samples from patients with hippocampal sclerosis but not in 
samples from TLE patients with tumors, or normal autopsy cases (VAN NESS 
et a1. 1995). In the second set, neurosteroid enhancement of [35S]TBPS binding 
and diazepam-insensitive binding of [3H]R015-4513 were increased in 
samples from patients with severe sclerosis and sprouting in the dentate gyrus, 
but not in samples from patients with less or no sprouting (OLSEN et a1. 1995). 
Increased neurosteroid modulation and [3H]R015-4513 binding suggests 
that GABAA receptor subunit composition may have been altered in the 
brain of these patients, perhaps nature's way to compensate for the increased 
activity during seizures. It remains possible that the receptor changes con
tribute to the epileptogenesis. Interestingly, increased level of the diazepam
insensitive receptors - containing the a4 subunit - and increased steroid 
modulation of GABAA receptors were observed in the chronic intermittent 
ethanol (CIE) treated rat withdrawal kindling model (MAHMOUDI et a1. 1997; 
KANG et a1. 1998). The altered GABAA receptor function was accompanied by 
increased seizure susceptibility (KANG et a1. 1996). A similar increase in the a4 
subunit was observed in animals withdrawn from chronic ethanol (DEVAUD et 
a1. 1995a, 1997), or withdrawn from chronic neurosteroid administration 
(SMITH et a1. 1998a, 1998b), and in the rat kindling model of epilepsy (CLARK 
et a1. 1994). 

Kindling involves intermittent exposure to a subconvulsant dose of a 
convulsant chemical or electrical stimulus, which after sufficient number of 
repeats increases seizure susceptibility (GODDARD et a1. 1969; LEWIN et a1. 
1989). Other GABAA receptor subunit changes were reported in both CAl 
(KAMPHUIS et a1. 1995) and dentate gyrus (NUSSER et a1. 1998) of kindled rats. 
On the other hand, the a4 subunit decreased and al increased in the thalamus 
of rats undergoing experimental absence seizures (BANERJEE et a1. 1998a) 
along with decreased steroid modulation of binding (BANERJEE et a1. 1998b). 
The possible relevance of these subunits to epilepsy is reviewed in OLSEN 
et a1. (1999). Removal of chronic, intracortical GABA infusion into rats or 
monkeys leads to localized seizures at the infusion site, the "GABA with
drawal syndrome" (BRAlLOWSKY et a1. 1988). SALAZAR et a1. (1994) suggested 
that the seizures may stem from reduced rate of GABA synthesis in the 
infused cortex, although GABA levels did not correlate with the seizure time 
duration, suggesting other more persistent alterations. Finally, intrahippocam
pal infusion of antisense oligodeoxynucleotides for the }2 subunit in adult rat 
results in limbic status epilepticus and neurodegeneration (KARLE et a1. 1998), 
suggesting that impairment of the GABAA receptor function can directly 
cause epilepsy. 
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II. GABAA Receptor Function in Anxiety 

There are several different anxiety disorders in human - panic disorder, gen
eralized anxiety disorder, post-traumatic stress disorder, social phobia, simple 
phobias, and obsessive compulsive disorder - and benzodiazepines are effec
tive in treating most of these anxiety disorders with the exception of phobic 
anxieties. Given that the benzodiazepines work via a subset of GABAArecep
tors (COSTA 1998), much work in psychopharmacology has concentrated on 
studies to understand the mechanism of how GABA/benzodiazepines recep
tor activation might alleviate anxiety. Here, we describe some of the recent 
studies that illustrate relationship between specific GABAA/benzodiazepines 
receptor function and specific human anxiety disorders. Many of these find
ings come from studies using animal models, developed to mimic human 
anxiety disorders. The hope is to use the animal models to study the various 
neurobiological mechanisms of anxiety as well as test for better anxiolytic 
drugs. 

Among some of the well-validated and often used tests of anxiety is the 
social interaction test, which probably best reflects the generalized anxiety dis
order in human (reviewed in FILE 1995). It measures the time spent in social 
interaction when rats are placed in an unfamiliar or brightly lit environment. 
Administration of anxiolytic drugs allows rats to feel at ease, and therefore 
spend more time in such an environment. Using the social interaction test, 
SANDERS and SHEKHAR (1995b) demonstrated that muscimol-induced GABAA 
receptor activation in the rat central nucleus of the amygdala results in 
anxiolytic effects but not in basolateral amygdala. Injection of a benzodi
azepine (chlordiazepoxide) into basolateral amygdala, however, resulted in 
anxiolytic effects (SANDERS and SHEKHAR 1995a), suggesting that different 
types of GABAA receptors regulate different neural pathways leading to the 
development of anxiety (COSTA 1998). Furthermore, it predicts that regional 
variations in the GABAA/benzodiazepine receptor complex will contribute to 
different states of anxiety. Further, clinical anxiety may be accompanied by, 
and possibly result from, experiences that change GABAA receptors. In 
support of this argument, conflict behavior training and shock treatments, 
applied to rats in animal conflict paradigms, also used to screen drugs for anx
iolytic effects, result in selective changes in the GABAA aj or a2 subunits, 
respectively (ZHANG et al. 1998). 

Conditions that induce acute stress in rats or panic attacks in humans 
result in elevated levels of neuroactive steroids (PURDY et al. 1991; BARBACCIA 
et al. 1997). In the pseudopregnant rat model, GABAA receptor modulating 
neurosteroid 3a-hydroxy-5a-pregnan-20-one (allopregnanolone) withdrawal 
results in increased anxiety, as measured by the elevated plus maze protocol, 
and the increased anxiety is accompanied by an increase in GABAA receptor 
a4 subunit mRNA and protein levels (SMITH et al. 1998a,b). Allopregnanolone, 
a metabolite of progesterone, and other neuroactive steroids enhance GABA
induced chloride currents by allosteric modulation of ligand binding to the 
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GABAA receptor (MAJEWSKA et al. 1986; GEE et al. 1988; TURNER et al. 1989; 
NGUYEN et al. 1995; OLSEN and SAPP 1995). Interestingly, increased a4 subunit 
is often accompanied by increased steroid modulation of GABAA receptor 
binding and increased hyperexcitability (OLSEN et al. 1999). These observa
tions perhaps imply a reciprocal relationship between the a4 subunit and 
steroid enhancement of the GABAA receptors, consistent with the observa
tion that the a4 subunit is often associated with the 8 subunit which appears 
to reduce steroid sensitivity (ZHU et al. 1996). Therefore, assuming that the 
endogenous neurosteroids help maintain brain activity, one might imagine a 
compensatory increase in the neurosteroid enhancement when the increased 
level of a4 subunit produces less functional GABAA receptors. Conversely, 
when a stressful situation leads to elevated levels of neuroactive steroids, thus 
leading to excessive GABAergic activity, the body may respond by producing 
modified GABAA receptors that are less sensitive to neurosteroid-enhanced 
inhibition (CONCAS et al. 1998). 

In human panic disorder patients, the saccadic eye movement paradigm is 
often used to test effects of benzodiazepines (RoY-BYRNE et al. 1990). Using 
this test, Roy-BYRNE et al. (1990) demonstrated that patients with panic dis
order are less sensitive than controls to diazepam, implicating genetic dif
ferences in the GABA/benzodiazepine receptor function in panic disorder 
patients. 

In addition to data from experimental model systems, recent development 
in sophisticated imaging techniques has led to the documentation of altered 
benzodiazepine receptor function in the brains of panic disorder patients. 
123I-iomazenil single photon emission tomography (SPECT) study showed 
increased benzodiazepine binding in the prefrontal cortex of patients with 
panic disorder (KUIKKA et al. 1995). On the contrary, decreased benzodi
azepine binding was observed in the frontal, occipital and temporal cortices 
of a different set of panic disorder patients when compared to epileptic 
patients (SCHLEGEL et al. 1994). Likewise, using PET, MALIZIA et al. (1998) 
observed reduction of benzodiazepine binding in the brain of panic disorder 
patients, with the most dramatic reduction in the right orbitofrontal cortex and 
the right insula, regions which are thought to be essential in the mediation of 
anxiety. 

III. GABAA Receptor Function in Alcoholism 

A growing body of evidence suggests that ethanol mediates some of its effects 
via the GABAA receptor complex (reviewed in FAINGOLD et al. 1998; HARRIS 
et al. 1998). Electrophysiological studies using isolated neuronal cultures, 
recombinant GABAA receptor expression in mammalian cell lines, and brain 
slices demonstrate that ethanol enhances GABA-induced hyperpolarizing 
effect of the GABAA receptors (NARAHASHI et al. 1991; SNEAD et al. 1992; FRYE 
et al. 1996; SOLDO et al 1998). Pharmacological and behavioral analyses show 
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that GABAA receptors can modulate ethanol intake behavior in rats (HODGE 
et a1. 1995). Studies comparing alcohol-preferring rats vs alcohol-non
preferring rats show that GABAA receptors can influence ethanol dependence 
and withdrawal when associated with certain genetic conditions (ALLAN and 
HARRIS 1991; NOWAK et a1. 1998). The mechanism which underlies the ethanol 
potentiation is less clear, although subunit composition (WAFFORD et a1. 1991; 
CRISWELL et a1. 1995; CREWS et a1. 1996), protein phosphorylation of receptor 
subunit polypeptides (SAMSON and HARRIS 1992; WAFFORD and WHITING 1992; 
LIN et a1. 1993; WAFFORD et a1. 1993; HARRIS et a1. 1995, 1998; KLEIN and HARRIS 
1996), and modulation by neuroactive steroids are suggested as possible means 
to regulate ethanol sensitivity of the GABAA receptors (DEVAUD et a1. 1995a; 
MEHTA and TICKU 1998). For example, some investigators believe that phos
phorylation of the 12L subunit is important (SAMSON and HARRIS 1992; WAFFORD 
and WHITING 1992; WAFFORD et a1. 1993) in GABA-induced potentiation by 
ethanol, but some studies clearly do not agree. First, recombinant receptors in 
Xenopus oocytes do not show differential response to ethanol when 12s subunit 
is replaced by 12L subunit (SIGEL et a1.1993). Second, ethanol enhances GABA
induced currents in immature cerebellar Purkinje cells which express 12S and 
not 12L (SAPP and YEH 1998). Similarly, GABAA receptor-activated currents in 
primary cultures of rat dorsal root ganglion (DRG) cells are insensitive to 
ethanol, despite the expression of phosphorylated 12L subunit in the cells (ZHAI 
et a1. 1998). Finally, 12L knock-out mice are not affected in any assay of ethanol 
sensitivity (HOMANICS et a1. 1998). 

Chronic ethanol treatment in cultured cells and animals can result in 
changes (either increase or decrease) in levels of specific GABAA receptor 
subunit mRNAs and proteins (MHATRE and TICKU 1992, 1994; MHATRE et a1. 
1993; DEVAUD and MORROW 1994; DEVAUD et a1. 1995b; HIROUCHI et a1. 1993; 
KLEIN et a1. 1995; KLEIN and HARRIS 1996; TABAKOFF and HOFFMAN 1996). 
Likewise, in humans, long-term alcohol consumption results in variations in 
GABAA receptor function, possibly resulting from altered subunit composi
tion (DODD 1994; LEWOHL et a1. 1996). For example, increased levels of the 
GABAA receptor A and the al subunit mRNAs were observed in alcoholic 
postmortem frontal cortical sections (MITSUYAMA et a1. 1998). Similarly, 
THOMAS et a1. (1998) found an increased level of the GABAA receptor al 

subunit mRNA in the motor cortex, as well as increased levels of the a3, and 
the A subunit mRNAs in the frontal cortex of the postmortem tissues of alco
holics who also had cirrhosis of the liver. The postmortem tissues of alcoholics 
who did not have cirrhosis of the liver showed no change in the correspond
ing GABAAreceptor mRNA levels. In a separate study, LEWOHL et a1. (1997) 
reported an increased level of al mRNA expression in postmortem cortical 
tissues of both groups of alcoholics, with and without cirrhosis of liver, when 
compared to non-alcoholic control groups. Such alteration, or adaptation, can 
produce GABAA receptors with decreased GABA-mediated Cl- flux, that are 
less responsive to many of its agonists such as ethanol itself, pentobarbital 
and flunitrazepam, yet more responsive to benzodiazepine inverse agonists 
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(ALLAN and HARRIS 1987; MORROW et al.1988; BUCK and HARRIS 1990; MHATRE 
and TICKU 1989, 1992; MHATRE et al. 1993). Consequently, these changes fol
lowing chronic exposure to ethanol are proposed, at least in part, to underlie 
physical dependence and withdrawal, and aspects of alcoholism. Similarly, rats 
treated with chronic intermittent ethanol (CIE) show reduction of GABAA 

receptor function, accompanied by increased seizure susceptibility (KANG et 
al. 1996), increased levels of a4 subunit (MAHMOUDI et al. 1997), and altered 
GABAA receptor pharmacology in hippocampal slices, consistent with altered 
subunit composition (KANG et al. 1998). 

The types and degrees of GABAA receptor adaptation in response to 
chronic ethanol exposure appear to depend on the animal's genetic variation 
as well as gender (ALLAN and HARRIS 1991; DEVAUD et al. 1995b, 1998). More 
direct evidence demonstrating the importance of GABAA receptors in the 
development of alcoholism comes from two recent studies, both using human 
subjects, which found an intriguing causal association between risk for alco
holism and CA dinucleotide repeats of two GABAA receptor subunit genes, 
a3 and /3:J (PARSIAN and CLONINGER 1997; NOBLE et al. 1998). The mechanism 
of how these GABAA receptor subunit allelic variants contribute to the devel
opment of alcoholism is unknown. It is also worth noting that when the 
individual possesses the 'alcoholic' allele of the GABAA receptor /3:J gene, in 
addition to the D2 dopamine receptor (DRD2) Al allele, the risk for devel
oping alcoholism increases (NOBLE et al. 1998). Since alcoholism encompasses 
a wide range of physiological and emotional changes, one should perhaps 
expect multiple genes to modulate genetic pathways that can lead to the devel
opment of alcoholism. 

D. Conclusion 
Alterations in GABAA receptor function have been implicated in several 
pathological conditions other than the ones mentioned in this chapter. Muta
tions in the GABAA receptor /3:J subunit produce cleft palate and sleep disor
der in mice (CULIAT et al. 1995; HOMANICS et al. 1997a). Recently, HUNTSMAN 
et al. (1998) demonstrated that the ratio of GABAA receptor ~L and ~s 
mRNAs was altered - reduction of ~L and increase of ~s - in prefrontal cortex 
of schizophrenics. A similar change was seen in primary cultured neurons 
exposed to chronic barbiturates (TYNDALE et al.1997) and in the CIE rat model 
of alcohol dependence (R.E Tyndale, D.w. Sapp and R.w. Olsen, unpublished 
results), and may represent aberrant plasticity in GABAA receptors. Further, 
modulation of hormone secretion in pancreas may involve specific GABAA 

receptor subtypes (RORSMAN et al. 1989; BORBONI et al. 1994; YANG et al. 1994; 
VON BLANKENFELD et al. 1995). In an experimental model of Huntington's 
disease (HD), administration of quinolinic acid in rats results in a lesion in the 
striatum (NICHOLSON et al. 1995), which is accompanied by increases and alter
ations in the GABAA receptor subtypes in the substantia nigra (NICHOLSON et 
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al. 1996), analogous to increased GABA binding seen in striatal output regions 
in HD patients (ENNA et al. 1976). Finally, a 123I-iomazenil SPECT study found 
a correlation between severity of motor impairment in Parkinson's disease and 
decrease in 123I-iomazenil uptake (KAWABATA and TACHIBANA 1997). Again, one 
needs to determine that the reduction is specific for GABAA receptors and 
not due to cell loss which can be substantial in neurodegenerative diseases. 

Given the ubiquitous nature of GABAA receptors and their interactions 
with a wide variety of clinically relevant drugs, it is very tempting to associate 
changes in GABAA receptors with various aspects of human illnesses. The 
challenge would be not only to determine which changes are causal for a par
ticular illness, but to understand clearly what certain changes mean and to use 
this knowledge to develop new and improved therapeutics for that particular 
illness. This implies that we still have to elucidate the role of an ever
increasing number of subunits and the mechanisms responsible for modulat
ing these subunits. The continued development of new technologies, especially 
in gene targeting, provides much hope. We now have abilities to remodel the 
mouse genome by using site-specific recombination systems such as Cre-IoxP 
(reviewed in MARTH 1996) and FLPIFRT (reviewed in DYMECKI 1996). One 
can manipulate multiple genes - perhaps in a particular genetic pathway - by 
using both systems either sequentially or simultaneously in the same cell. This 
type of approach is crucial in understanding disorders that involve defects in 
more than one gene. Furthermore, the site-specific recombination systems can 
be exploited in combination with an inducible system (MANSUY et al. 1998) to 
achieve even higher specificity and complexity. The result can be a creation of 
a multipotential mouse in which genes can be turned on or off at will. As many 
illnesses are complex and involve multiple pathways, the key to our under
standing of gene function and human phenotype may lie in successful use of 
conditional genetics. 
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CHAPTER 10 

GABAc Receptors*: 
Structure, Function and Pharmacology 

J. BORMANN and A. FEIGENSPAN 

A. Introduction 
In the vertebrate central nervous system (CNS), r-aminobutyric acid (GABA) 
is the most widely distributed neurotransmitter (SIVILOTTI and NISTRI 1991). 
Initially, GABA was found to activate bicuculline-sensitive Cl- channels, but 
GABA-mediated activation of cation channels was discovered subsequently 
(see BORMANN 1988, for review). This lead to the notion of GABAA and 
GABAB receptors, which was introduced by HILL and BOWERY (1981). The 
GABAA receptor directly gates a Cl- ionophore and has modulatory binding 
sites for benzodiazepines, barbiturates, neuosteroids and ethanol (MACDONALD 
and OLSON 1994; BORMANN 1988). By contrast, GABAB receptors couple to 
Ca2+ and K+ channels via G-proteins and second-messenger systems (BORMANN 
1988; BOWERY 1989; BETTLER et al. 1998). They are activated by baclofen and 
resistant to drugs that modulate GABAA receptors. 

It now appears that GABA gates at least three classes of GABA recep
tors that are distinct both pharmacologically and structurally (see BORMANN 
and FEIGENSPAN 1995; JOHNSTON 1996; CHERUBINI and STRATA 1997 for review). 
Early studies by Johnston and colleagues indicated that the partially folded 
GABA analogue cis-4-aminocrotonic acid (CACA) selectively activates a 
third class of GABA receptor in the mammalian CNS (JOHNSTON et al. 1975). 
These receptors, which were tentatively designated GABAc (DREW et al. 
1984), are insensitive to both bicuculline and baclofen. 

Several lines of evidence now indicate that GABAc receptors are com
posed of p-subunits. When heterologously expressed, p-subunits form homo
oligomeric receptors with similar electrophysiological and pharmacological 
properties compared with GABAc receptors. Bicuculline-resistant GABAc 
responses and p-subunits have been colocalized in the same retinal neurons 
and studied at the molecular level. This review summarizes current knowledge 
on the structure, function and pharmacology of GABAc receptors. 

* Since GABAc-receptors are GABA-gated chloride channels they can be classified 
as GABAA-receptors. The term GABAc-receptor is therefore not recommended by the 
IUPHAR nomenclature committee (Pharmacol. Rev. 50,291-313, 1998). In the present 
volume the term is used solely for the take of brevity (H.M.). 
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B. Structure of GABAc Receptors 
I. Cloning of Vertebrate p-Subunits 

1. BORMANN and A. FEIGENSPAN 

The first member of the class of GABA-receptor p-subunits was cloned by 
Cutting and colleagues in an attempt to identify new proteins encoding chlo
ride channels (CUTTING et al. 1991). The highly conserved transmembrane 
regions M2-M3 of GABAA and glycine receptor subunits were utilized for 
PCR amplification of human DNA sequences and finally isolating and cloning 
the p1-cDNA from a retinal cDNA library. The mature protein predicted from 
this sequence shares only 30%-38% similarity with other GABA receptor 
subunits. The human p2-subunit is 74% identical to p1, the highest degree of 
amino acid divergence residing in the large intracellular loop between M3 and 
M4 (CUTTING et al. 1992). By analogy to the nicotinic acetylcholine (UNWIN 
1995) and GABAA receptors (NAYEEM et a11994) the p-subunits assemble into 
a pentameric receptor channel with a central pore for Cl- ions. 

p-Subunits have been cloned from a variety of vertebrate species. Three 
p-subunits are known in the rat: p1 (ENZ et al. 1995; ZHANG et al. 1995; 
WEGELIUS et al. 1996), p2 (ENZ et al. 1995; ZHANG et al. 1995; OGURUSU et al. 
1995) and p3 (OGURUSU and SHINGAI 1996). They display 88%-99% similar
ity, at the protein level, to the human counterparts. Other species include chick 
(pl-2) (ALBRECHT and DARLISON 1995), mouse (pl-3) (GREKA et al.1998) and 
perch (pl-3) (QIAN et al. 1997, 1998). 

II. Subunit Composition of GABAc Receptors 

A prominent feature of p-subunits is their ability to form functional 
homooligomeric GABA receptor Cl- channels (CUTTING et al. 1991; WANG 
et al. 1994; OGURUSU and SHINGAI 1996). This contrasts with the situation of 
GABAA receptors, where a combination of different subunits, typically a[3y, is 
needed for the receptors to express the full range of physiological and phar
macological functions (SIGEL et al. 1990). Also, there is evidence from coex
pression studies that p-subunits neither coassemble with GABAA receptor a-, 
[3- or }"subunits, nor with the glycine receptor [3-subunit (SHIMADA et al. 1992; 
KUSAMA et al. 1993a). However, the p-subunits are capable to interact amongst 
themselves to form functional GABA receptors (ENZ and CUTTING 1998), e.g. 
p1p2 heterooligomers (ZHANG et al. 1995; ENZ and CUTTING 1999). The expres
sion pattern in the brain of homo- and heteroo\igomeric GABAc receptors 
should depend on the distribution of p-transcripts. 

c. Neuronal Localization 
Whereas the existence of GABAc receptors has first been shown outside the 
retina (JOHNSTON et al. 1975; see BORMANN and FEIGENSPAN 1995; JOHNSTON 
1996 for review), recent work has identified the vertebrate retina as the richest 
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source for GABAc receptors. Bicuculline- and baclofen-insensitive GABAc 
have been identified on rod bipolar cells in the rat retina (FEIGENSPAN et al. 
1993; FEIGENSPAN and BORMANN 1994a). GABAc receptors in non-mammalian 
retinae have been detected on rod-driven horizontal cells of white perch (OIAN 
and DOWLING 1993, 1994), on hybrid bass bipolar cells (OIAN and DOWLING 
1995), and on cone-driven horizontal cells in catfish retinae (DoNG and 
WERBLIN 1994). In the tiger salamander retina, GABAc receptors have 
been localized to bipolar cell terminals (LUKASIEWICZ and WERBLIN 1994; 
LUKASIEWICZ et al. 1994). 

Combining reverse transcriptase-polymerase chain reaction (RT-PCR) 
with in situ hybridization has demonstrated a differential distribution of p1-, 
p2- and p3-subunits in the retina and brain of the rat (ENZ et al. 1995; 
WEGELIUS et al. 1998) and chick (ALBRECHT and DARLISON 1995; ALBRECHT 
et al. 1997). Whereas pI was restricted to this tissue, p2 was detected in all 
brain regions, although with highest level of expression in the retina. In situ 
hybridization of retinal sections revealed that pI and p2 transcripts are present 
in the inner nuclear layer, and by studying isolated retinal cells, both p
subunits could be localized to rod bipolar cells (ENZ et al. 1995). The P2 isoform 
could also be detected in ganglion cells (YEH et al. 1996); however, the gan
glion cells tested did not display bicuculline-resistant responses to GABA. 
p2-Transcripts were found in most other CNS structures, notably in the hip
pocampus, spinal cord, cerebellum and the thalamus/basal ganglia (ENZ et al. 
1995; WEGELIUS et al. 1998). Expression of p3 is strong in the adult hip
pocampus (WEGELIUS et al. 1998), but may also be present in other areas 
(BOUE-GRABOT et al. 1998). It is very likely that the GABAc receptor-like 
responses observed in various parts of the brain were due to the presence of 
p2-homooligomeric or p2p3-heterooligomeric GABAc receptors. 

The immunocytochemical localization of p-subunits was studied after 
raising polyclonal antibodies against the N-terminus of the rat pI isoform 
(ENZ et al. 1996). This region is different from that of the known GABAA 

receptor (e.g. al-3, f31-3, }2, 8) or glycine receptor (aI, f3) subunits, and anti
bodies against pI do not recognize GABAA or glycine receptor subunits. Since 
the N-terminal region of pI is very similar to the p2 (82%) and p3 (78%) iso
forms, the polyclonal antibody labels all three p-subunits. In vertical retinal 
sections, strong punctate immunoreactivity was found throughout the inner 
plexiform layer, at the axon terminals of different types of bipolar cells. The 
dendrites of rod bipolar cells were also labeled by the antibody (ENZ et al. 
1996). A comparable staining pattern was demonstrated for mammalian (rat, 
cat, mouse, rabbit, monkey), goldfish and chick retinas (ENZ et al. 1996; 
KOULEN et al. 1997; WASSLE et al.1998). Interestingly, the rat antibody did not 
label horizontal cells in the fish retina, although GABAc responses have orig
inally been described for this cell type in the white perch retina (OIAN and 
DOWLING 1993). It is possible, however, that the perch p-subunits (OIAN et al. 
1997,1998) are not recognized by the rat antiserum. The use of an antibody 
specific for the pI-subunit on rat cerebellum revealed the presence of this 
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subunit in the soma and dendrites of Purkinje neurons (BOUE-GRABOT et al. 
1998). 

D. Functional Properties of GABAc Receptors 

I. Identification of GABAc Receptors 

Retinal bicuculline-insensitive GABAc receptors were first observed by 
Miledi and colleagues after expressing mRNA from bovine retina in Xenopus 
oocytes (POLENZANI et al. 1991). The p-subunits, that were originally cloned 
from a human retinal cDNA library (CUTTING et al. 1991, 1992), form 
homooligomeric channels with characteristic GABAc receptor pharmacology, 
when expressed in Xenopus oocytes (CUTTING et al. 1991; SHIMADA et al. 1992; 
KUSAMA et al. 1993a,b; WANG et al. 1994; SHINGAI et al. 1996; QIAN et al. 1997, 
1998). In the retina, native GABAc receptors have been described in hori
zontal cells of the white perch and catfish retina (QIAN and DOWLING 1993, 
1994; DONG and WERBLIN 1994) as well as in bipolar cells (Fig.1A,B) of various 
vertebrate species (FEIGENSPAN et al. 1993; LUKASIEWICZ et al. 1994; QIAN and 
DOWLING 1995; LUKASIEWICZ and WONG 1997; QIAN et al. 1997). Recently, a 
GABAc receptor-mediated Cl- current has been identified in porcine cones 
where it may participate in feedback from horizontal cells to cones (PICAUD 
et al. 1998). 

II. GABA Affinity and Ion Selectivity 

The GABAc receptor is more sensitive to GABA than the GABAA receptor: 
the concentration of GABA producing half-maximal response (ECso) at 
GABAc receptors is 1-4,umolll (POLENZANI et al. 1991; WOODWARD et al. 
1992b; QIAN and DOWLING 1993,1994; FEIGENSPAN and BORMANN 1994a; WANG 
et al. 1994). Since the GABA response of rat retinal bipolar cells is mediated 
by both GABAA and GABAc receptors, the affinity of both receptor subtypes 
for GABA could be directly compared (FEIGENSPAN and BORMANN 1994a). The 
concentration-response curve recorded in the presence of bicuculline dis
played an average ECso value of 4.2,umolll and a Hill coefficient (n) of n = 1.3 
(Fig. Ie). In contrast, the GABAA receptor-mediated portion of the bipolar 
cell GABA response revealed an average ECso value of 27.1,umolll and a Hill 
coefficient of n = 2.0. Thus, the GABAA and GABAc receptors of bipolar cells 
exhibit a sevenfold difference in binding affinity for GABA, but a similar 
degree of cooperativity for agonist binding. 

A series of site-directed mutations have been constructed in the human 
GABA pI receptor subunit to determine domains conferring affinity and 
activation properties of GABAc receptor channels (AMIN and WEISS 1994; 
KUSAMA et al. 1994). Five amino acids located in the N-terminal region of the 
pI-subunit are important for GABA-mediated activation (AMIN and WEISS 
1994). These five mutations could be grouped into two domains which corre-
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Fig. lA-D. GABAc receptors in retinal bipolar cells. A Camera lucida drawing of a 
bipolar cell that was injected with Lucifer Yellow in a retinal slice culture. B Identifi
cation of GABAc receptors in bipolar cells. The total GABA response (top trace) was 
only partially blocked by the GABAA receptor antagonist bicuculline (BIC), isolating 
a residual current which was mediated by GABAc receptors (lower trace). C Activa
tion properties of GABAc receptor channels. Peak amplitudes of bicuculline-insensi
tive GABA-induced currents (I) were normalized relative to the current obtained at 
a saturating GABA concentration of 1 mmol/l (lmax). The ratio IIlmax was plotted vs 
GABA concentration. The dose-response curve indicates an ECso value of 4.0 pmol/l 
and a Hill coefficient (n) of 1.5. D Chloride selectivity of GABAc receptor channels. 
Whole-cell current-voltage relations were obtained by ramping the command poten
tial from -70mV to +70 mY. With equal extra- and intracellular Cl- concentrations, the 
reversal potential of the bicuculline-insensitive GABA response was close to OmY. 
Upon partial replacement of internal Ct by equal amounts of the impermeable anion 
gluconate, the reversal potential shifted to the left (-59 ± 4mV) 

spond to the GABA-binding regions found on 132-subunits. However, only 
three residues correspond directly to the analogous position in {32, which is 
likely to account for the different activation and gating properties of GABAc 
receptors. The affinity of homomeric pI GABAc receptors is significantly 
diminished when a position in the conserved N-terminal cysteine loop is 
changed (KUSAMA et al. 1994). Likewise, the Hill coefficient is increased by a 
mutation in the extracellular loop between transmembrane regions 2 and 3. 
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The conducting element of GABAc receptors is an integral membrane 
ionophore, similar to other ligand-gated ion channels. When the transmem
brane Cl- gradient changes, the reversal potential for GABAc receptor
mediated responses is altered as predicted by the Nernst equation (Fig. 1D), 
indicating that GABAc receptors are CI--selective pores (FEIGENSPAN et al. 
1993; QIAN and DOWLING 1993; DONG et al. 1994; WANG et al. 1994). 

III. Single Channel Characteristics 

The single-channel conductance of retinal GABAc receptors has been studied 
in outside-out patches taken from the cell bodies of cultured (neonatal) or iso
lated (adult) bipolar cells (FEIGENSPAN et al. 1993; FEIGENSPAN and BORMANN 
1994a). When GABAA receptors were blocked by bicuculline, GABA induced 
single-channel inward currents at negative holding potentials (Fig. 2A). The 
conductances which were obtained from the slope of the linear current-voltage 
relations (Fig. 2B), were 7.4pS for cultured bipolar cells and 7.9pS for isolated 
bipolar cells. 

In the absence of bicuculline, GABA induced single-channel currents with 
two amplitudes of 0.5pA and 2pA (FEIGENSPAN and BORMANN 1994a). The 
0.5 pA current could not be blocked by bicuculline, and thus corresponds to 
channel openings mediated by GABAc receptors. The 2 pA events, corre
sponding to a conductance of -30pS, were no longer visible in the presence 
of bicuculline, indicating that they were mediated by GABAA receptors. 
Furthermore, the value of 30pS is in good agreement with conductance 
measurements from retinal amacrine cells known to exclusively express the 
GABAA receptor subtype (FEIGENSPAN et al. 1993; FEIGENSPAN and BORMANN 
1994a), and other CNS neurons (for review see BORMANN 1988; SIVILOTII and 
NISTRI 1991; MACDONALD and OLSEN 1994). When the gating properties of 
GABAA and GABAc receptors were examined, GABAA receptor channels of 
cultured amacrine cells revealed a mean open time of 25 ms, whereas GABAc 
receptors showed a sixfold longer mean open time of 150ms. 

IV. Pore Size 

Work on the IPSPs in spinal synapses has shown that postsynaptic CI- chan
nels are permeable to a variety of small inorganic and organic anions (COOMBS 
et al. 1955). These results were interpreted that ion channels act as molecular 
sieves and discriminate between different ions according to their hydrated 
size. An important question was whether or not the small conductance of 
GABAc receptors was due to a smaller open channel diameter when com
pared to GABAA receptors (FEIGENSPAN and BORMANN 1994a). GABAc recep
tor channels conduct other small anions up to the size of acetate (Fig. 2C), 
suggesting a pore diameter of 5.1 A (Fig. 2D), comparable to the values of 
4.9 A and 5.6A obtained for native GABAA receptors in cultured amacrine 
cells (FEIGENSPAN and BORMANN 1998) and cultured spinal neurons, respec-
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Fig.2A-D. Conductance and pore size of GABAc receptors_ A Outside-out patch 
recordings obtained from a bipolar celL GABA-induced single-channel currents were 
recorded at the holding potentials indicated_ B The slope of the linear current-voltage 
relation reveals a single-channel conductance of 7 pS. C Reversal potential measure
ments of GABAc receptor-mediated currents in bipolar cells upon partial replacement 
of internal Cl- by various monovalent anions_ The reversal potentials determined by 
ramping the command voltage are -2mV (Cl-), -15mV (formate), -46mV (bicarbon
ate), and -65 m V (acetate). D Permeability of the various test anions (P A) relative to 
ct permeability (PC!) derived from the biionic reversal potential measurements shown 
in C. Data points were fitted with a model which assumes that the anions are spheri
cal ions, and that the permeability depends upon the ionic diameter an? frictional 
forces within the channeL The pore diameter estimated from the fit is 5.1 A 

tively (BORMANN et aL 1987). Thus, GABAA and GABAc receptors do not 
differ significantly in their open channel diameter. 

V. Desensitization 

Desensitization of ionotropic receptors is most likely a mechanism which 
allows these receptors to operate in the physiological concentration range of 
the endogenous ligand (DEVRIES and SCHWARTZ 1999). Interestingly, GABAA 

and GABAc receptor-mediated Cl--currents differ markedly in their time 
courses. During prolonged application of agonist, GABAA responses are tran-
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sient, reaching a peak and then desensitizing to a lower steady current. In con
trast, binding of GABA to GABAc receptors generates a sustained current, 
showing very little if any desensitization in the maintained presence of the 
agonist (for comparison of the decay times see BORMANN and FEIGENSPAN 
1995). This is in line with the fast desensitizing responses of GABAA recep
tors expressed in Xenopus oocytes, and the sustained currents recorded from 
homo oligomeric p1 receptors in the same expression system (AMIN and WEISS 
1994). Recently, structural motifs that confer agonist-induced desensitization 
were identified by expressing chimeras constructed from p1- and f32-subunits 
in Xenopus oocytes (Lu and HUANG 1998). Regions in both the amino- and 
carboxy terminal domains of the f32-subunit are important determinants for 
the desensitization properties of the receptor. 

E. Pharmacology 
I. GABAc Agonists 

It has been suggested that folded analogues of GABA may interact selectively 
with bicuculline- and bac1ofen-insensitive GABA receptors (JOHNSTON et al. 
1975; DREW et al. 1984). Converting the single covalent bond between carbon 
atoms C2 and C3 of the GABA molecule into a double bond fixes these atoms 
in a plane thereby generating two isomers: cis- and trans-4-aminocrotonic 
acid (CACA and TACA). The chemical structures of these conformationally 
restricted GABA analogues are shown in Fig. 3A in both fully extended and 
folded conformations. 

The most potent GABAc receptor agonists besides GABA are muscimol 
(WOODWARD et al. 1993; QIAN and DOWLING 1993, 1994; KUSAMA et al. 1993a,b; 
DONG et al.1994; WANG et al.1994) and TACA (FEIGENSPAN et al.1993; KUSAMA 
et al. 1993a,b; WOODWARD et al. 1993; DONG et al. 1994; LUKASIEWICZ et al. 
1994). Comparison of their chemical structures indicates that these agonists 
are effective in the fully extended GABA conformation. However, CACA and 
TACA have been used to reveal differences in the agonist binding profiles 
of GABAA and GABAc receptors (JOHNSTON et al. 1975). When applied to 
retinal bipolar cells, both the cis- and the trans-enantiomer induced inward 
currents (FEIGENSPAN et al. 1993). The folded compound CACA elicited small 
but consistent responses (Fig. 3B). The blocking effect of bicuculline on 
CACA-evoked responses was significantly less than its effect on GABA
induced currents, indicating a preference of CACA for GABAc receptors. The 
extended compound TACA was almost equipotent at both GABA receptor 
subtypes (Fig. 3C). TACA-induced whole-cell currents were comparable in 
amplitude to currents evoked by equal concentrations of GABA and could be 
blocked by bicuculline to a similar extent. Another pair of cis-and trans
enantiomers with differential activity at GABAA and GABAc receptors has 
been described for p1- and p2-subunits expressed in Xenopus oocytes 
(KUSAMA et al. 1993a,b). GABAc receptors are selectively activated by cis-2-
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Fig.3A-C. Agonist selectivity of GABAc receptors. A Chemical structures of three 
GABAc receptor agonists: GABA, TACA (trans-4-aminocrotonic acid), and CACA 
(cis-4-aminocrotonic acid). The conformationally restricted GABA analogues are 
shown in fully extended and folded conformations. B GABA-induced whole-cell cur
rents recorded from a bipolar cell at -70 m V membrane potential. The bicuculline 
(BIC)-insensitive GABAc receptor-mediated response is shown in the second trace. 
CACA evoked only -10% of the peak-current amplitude obtained with GABA (third 
trace). Bicuculline reduced the CACA response by 9%, compared with the 40% reduc
tion seen in this cell with GABA (fourth trace), indicating a preference of CACA for 
GABAc receptors. C TACA produced currents that were -30% larger than the cur
rents evoked by GABA. The percentage inhibition by bicuculline was similar for the 
GABA and TACA response 

aminomethyl-cydopropane carboxylic acid (CAMP), while this compound is 
inert at GABAA receptors. 

In a recent study, various C2, C3, C4 and N-substituted GABA and TACA 
analogues were examined for activity at GABAc receptors (CHEBIB et al. 
1997). trans-4-Amino-2-fluorobut-2-enoic acid was found to be a potent 
agonist at homomeric pI receptors expressed in Xenopus oocytes. In addition, 
the sulphinic acid analogue of GABA, homo hypo taurine, is a potent partial 
agonist at GABAc receptors. In general, GABAc receptor agonists lose their 
potency when methyl or halo groups are substituted at the C3, C4 and N posi
tions of the GABA and TACA molecules, whereas substitution at the C2 posi
tion is tolerated. Thus, the binding site of GABAc receptors for agonists or 
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Table 1. Pharmacological comparison of GABAA and GABAe receptors (FEIGENSPAN 
and BORMANN 1998) 

Drug Concentration IIle 
(.umoIlJ) 

GABAA GABAe 

Flunitrazepam 1 2.20 ± 0.73 (9) 0.98 ± 0.10 (6) 
Zolpidem 1 3.31 ± 0.95 (23) 1.07 ± 0.07 (6) 
CL-218,872 1 1.55 ± 0.41 (33) 0.99 ± 0.28 (9) 
Pentobarbital 50 3.47 ± 1.35 (4) 1.05 ± 0.13 (5) 
Alphaxalone 1 1.62 ± 0.66 (10) 0.92 ± 0.13 (5) 
Picrotoxinin 10 0.48 ± 0.10 (9) 0.98 ± 0.15 (11) 

100 0.04 ± 0.04 (3) 0.81 ± 0.24 (8) 
Strychnine 5 0.48 ± 0.07 (4) 1.01 ± 0.18 (4) 
Zn2+ 50 0.99 ± 0.03 (3) 0.91 ± 0.08 (11) 
SR-95531 10 0(5) 0.86 ± 0.03 (6) 

100 0(4) 0.48 ± 0.03 (7) 
y-HCH 10 0.60 ± 0.13 (11) 0.61 ± 0.14 (5) 

100 n.d. 0.39 ± 0.03 (6) 
a-HCH 10 1.03 ± 0.09 (11) 1.11 ± 0.05 (6) 
8-HCH 10 1.65 ± 0.69 (5) 0.92 ± 0.12 (6) 
Dieldrin 10 1.02 ± 0.09 (15) 1.06 ± 0.12 (6) 

IIle indicates ratio of GABA-induced current in the presence of drug (I) relative to 
control current (Ie) ± SEM for n experiments. 
n.d., not determined. 

competitive antagonists might be smaller than that of GABAA and GABAB 

receptors (CHEBIB et al. 1997). 
GABAc receptors do not respond to potent GABAA receptor modulators 

such as benzodiazepines, barbiturates and neurosteroids (POLENZANI et al. 
1991; SHIMADA et al. 1992; FEIGENSPAN et al. 1993, 1994a; QIAN and DOWLING 
1993, 1994; LUKASIEWICZ et a1. 1994; DONG et a1. 1994; WANG et a1. 1994) 
(Table 1). The GABAB receptor agonist baclofen (POLENZANI et a1. 1991; 
FEIGENSPAN et a1. 1993; QIAN and DOWLING 1993, 1994) and antagonists 
such as phaclofen, saclofen and CGP-35348 (FEIGENSPAN et a1. 1993; QIAN and 
DOWLING 1993; WOODWARD et a1. 1993) are also inactive at GABAc receptors 
(Fig. 4). 

II. GABAc Antagonists 

The Cl- channel blocker picrotoxinin has been shown to block GABAc recep
tor-mediated currents in fish, amphibians and ferrets and in oocytes express
ing retinal poly(A+) RNA (QIAN and DOWLING 1993; WOODWARD et a1. 1993; 
LUKASIEWICZ et al. 1994; LUKASIEWICZ and WONG 1997). ICso values for picro
toxinin measured in recombinant GABAc receptors are 48.umolll and 
4.7.umolll for p1 and p2, respectively (WANG et a1. 1995a). The highest affinity 
of picrotoxinin for homomeric subunits (ICso = O.68.umol/l) has been demon-
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Fig.4A,B. Pharmacology of GABAc receptors. A Effect of GABAA modulatory drugs. 
GABA-induced whole-cell currents were recorded from a bipolar cell at -70mV 
holding potential. The bicuculline-insensitive GABAc response (second trace) was not 
affected by fiunitrazepam (FLU) or pentobarbital (PB). B Effect of GABAB drugs. 
The GABAc component is not changed by the GABAB receptor antagonist 2-
hydroxysac1ofen (SAC), and the GABAB agonist bac10fen (BAC) did not induce any 
measurable response 

strated for rat p3-subunits expressed in Xenopus oocytes (SHINGAI et al. 1996). 
This value is very similar to the affinity for picrotoxinin of native GABAc 
receptors expressed in catfish cone horizontal cells (ICso = 0.64,umol/l; DONG 
and WERBLIN 1996). 

In contrast, the rat bipolar cell GABAc receptor is rather insensitive to 
picrotoxinin (FEIGENSPAN et al. 1993; PAN and LIPTON 1995). The picrotoxinin 
insensitivity of rat retinal GABAc receptors is likely due to the p2-subunit 
(ZHANG et al. 1995), which is expressed in rat bipolar cells (ENZ et al. 1995, 
1996). Site-directed mutagenesis has demonstrated that two different amino 
acid residues in transmembrane segment 2 of human and rat p-subunits confer 
picrotoxinin resistance (ENZ and BORMANN 1995; WANG et al. 1995a; ZHANG 
et al. 1995). In addition, by substituting proline at position 309 with residues 
found at analogous position in the highly picrotoxinin-sensitive glycine a and 
GABAA receptor subunits, the competitive component of picrotoxinin inhibi
tion was abolished (WANG et al. 1995a). The effect of picrotoxinin on GABAc 
receptors has been studied in cultured as well as in acutely isolated rat bipolar 
cells (FEIGENSPAN and BORMANN 1993, 1994a). At 100,umolll concentration, 
picrotoxinin reduced the peak GABAc response by only -20% (Fig. 5), 
whereas GABAA receptors of retinal amacrine cells were completely blocked 
by the same concentration (Table 1). 

The pyridazinyl-GABA derivative SR-95531 (gabazine) has been 
described as a selective and competitive GABAA receptor antagonist 
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Fig.SA,B. GABAc receptor antagonists. A Bicuculline-insensitive GABAc 
receptor-mediated control responses (marked c) were reduced by picrotoxinin 
(PIC, 100.umolll), SR-95531 (SR, 100.umol/l), and y-hexachlorocyc1ohexane (HeH, 
100.umolll). B Summary of antagonistic drug effects at GABAC receptors. Each bar 
represents the average ratio VIc of the currents measured in the presence and absence 
of the drug tested. Numbers indicate drug concentrations in .umolll. The error bars indi
cate SEM for groups of five cells. The no-effect level (VIc = 1) is indicated by the dashed 
line. Asterisks represent statistical differences from control (*p :s; 0.05, **p :s; 0.01; 
Student's t-test) 

(MIENVILLE and VICINI 1987). When applied to bicuculline-insensitive GABA 
receptors expressed by bovine retinal poly(A+) RNA, SR-95531 acted as a 
competitive inhibitor, although 240 times less potent than at GABAA recep
tors (WOODWARD et a1. 1993). In rat retinal bipolar cells, SR-95531 exhibited 
moderate antagonistic activity at GABAc receptors (FEIGENSPAN and 
BORMANN 1994a) (Table 1), but it had no effect on the bicuculline-insensitive 
response of horizontal cells of the white perch retina (QIAN and DOWLING 
1994). In addition, the glycine receptor antagonist strychnine which also 
inhibits GABAA receptors of hippocampal and retinal neurons (SHIRASAKI et 
al. 1991; FEIGENSPAN et al. 1993) has no effect on the GABAc receptor-

mediated response (Table 1). 
The partially folded GABA analogues isoguvacine, TRIP, piperidine-

4-sulfonic acid, isonipecotic acid, 3-aminopropyl sulfonic acid and Z-3-
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amidinothiopropenoic acid (ZAPA) show slight antagonistic effects at 
GABAc receptors or no effect at all (CUTTING et al. 1992; WOODWARD et al. 
1993; QIAN and DOWLING 1994). The extended GABA analogue, imidazole-4-
acetic acid, is a strong antagonist at GABAc receptors (KUSAMA et al. 1993a; 
QIAN and DOWLING 1994). The GABAB-selective agonist 3-aminopropyl
(methyl)phosphinic acid (3-APMPA) has been shown to bind to retinal 
GABAc receptors with low micromolar potency (WOODWARD et al. 1993). 
Recently, a hybrid of isoguvacine and 3-APMPA has been designed, which 
retains its affinity for GABAc receptors but interacts only weakly with 
GABAA or GABAB receptors (MURATA et al. 1996; RAGOZZINO et al. 1996). 
This compound, (1,2,5,6-tetrahydropyridine-4-yl)methylphosphinic acid 
(TPMPA), acts as a selective antagonist of human GABAc receptors 
expressed in Xenopus oocytes. 

The effects of hexachlorocyclohexanes (HCH) on bicuculline-sensitive 
and -insensitive GABA receptors expressed in Xenopus oocytes have been 
described by Woodward and coworkers (WOODWARD et al. 1992a). In this 
expression system, the y.enantiomer (lindane) was a potent inhibitor of both 
the GABAA- and GABAclike currents. When y.HCH was applied to isolated 
bipolar cells in the presence of bicuculline, the GABAc receptor-mediated 
current was reduced (Fig. 5). Likewise, y.HCH inhibited the GABAA response 
in the same sample of bipolar cells. The isomers a- and & HCH as well as dield
rin had no effect on retinal GABAc receptors (FEIGENSPAN and BORMANN 
1994a, 1998) (Table 1). 

F. Modulation of GABAc Receptors 

I. Extracellular Modulation 

Zinc is widely distributed throughout the vertebrate central nervous system 
(HAUG 1967; FREDERICKSON 1989) and most likely acts as an endogenous neu
romodulator at pre- and postsynaptic ion channels (ASSAF and CHUNG 1984; 
XIE and SMART 1991). It has been shown to modulate the function of both 
GABAA and GABAB receptors (WESTBROOK and MAYER 1987; LEGENDRE and 
WESTBROOK 1990; XIE and SMART 1991; HARRISON and GIBBONS 1994). In pho
toreceptors of the vertebrate retina, zinc is colocalized with glutamatergic 
synaptic vesicles, where it may act as a diffusible molecular switch (Wu et al. 
1993). 

GABAc receptors are present in regions of the retina with high concen
trations of the divalent metal ion Zn2+. Native GABAc receptors present on 
bipolar and horizontal cells from the retina of cold-blooded vertebrates can 
be down-modulated by extracellular application of Zn2+ (DONG and WERBLIN 
1995,1996; QIAN and DOWLING 1995; QIAN et al. 1997), which acts as a mixed 
antagonist. Zn2+ binds to GABAc receptors with a half-inhibition concentra
tion of 8.2.umolll (DONG and WERBLIN 1995). GABAc receptors expressed 



284 1. BORMANN and A. FEIGENSPAN 

in Xenopus oocytes after injection of mRNA for pl- or p2-subunits are also 
inhibited by Zn2+, and Zn2+ inhibition of GABA pI receptors displays both 
competitive and noncompetitive components (CALVO et al. 1994; WANG et al. 
1994; CHANG et al. 1995). In either system the effect of Zn2+ is independent of 
voltage (WANG et al. 1995b; DONG and WERBLIN 1996). The binding site for 
Zn2+ is located on the surface of the receptor molecule, as indicated by the 
effect of extracellular pH on Zn2+ inhibition (WANG et al. 1995b). Site-directed 
mutagenesis has revealed a single histidine residue (His 156) in the extracel
lular domain of pI critical for Zn2+-sensitivity (WANG et al. 1995b). The diva
lent metal ions Nj2+ and Cd2+ also down-modulate GABAc receptor function 
with the order of potency Zn2+>Ni2+>Cd2+>C02+ (CALVO et al. 1994; KANEDA 
et al. 1997). The same His 156 residue is also involved in inhibition of GABAc 
receptors by Ni2+ and Cd2+ (WANG et al. 1995b). In contrast to the potent 
inhibitory effects described above, GABAc receptors of the rat retina were 
only slightly blocked by extracellular Zn2+ (FEIGENSPAN and BORMANN 1998) 
(Table 1). 

Recently, a positive modulation by extracellular Ca2+ of the GABAc 
response of retinal horizontal cells has been shown (KANEDA et al. 1997). Thus, 
the extracellular domain of the GABAc receptor is likely to have two func
tionally distinct binding sites mediating facilitation (Ca2+) and inhibition (Zn2+, 
Ni2+, Cd2+ C02+). 

Functional GABAc receptors which are formed in HEK 293 cells by tran
siently expressing the rat pI-subunit, can be modulated by extracellular 
protons (WEGELIUS et al. 1996). A decrease in pH from 7.4 to 6.4 leads to an 
inhibition of GABAc receptor currents, whereas an increase in pH results in 
up-regulation of the GABA response. A regulatory binding site for protons 
on the pI subunit has been described for the inhibitory effect of Zn2+ (WANG 
et al. 1995b). 

II. Intracellular Modulation by Protein Kinases 

The p-subunits are composed of four membrane-spanning regions and a cyto
plasmic loop between the third and fourth transmembrane domain (CUTTING 
et al. 1991). The intracellular loop contains consensus sequence sites for 
phosphorylation by protein kinase C (PKC), suggesting a role for PKC in the 
modulation of GABAc receptor function. The presence of PKC has previously 
been demonstrated in rod bipolar cells, which stain selectively with an 
antibody directed against the a-isoenzyme of PKC (GREFERATH et al. 1990; 
KARSCHIN and WASSLE 1990). 

An intracellular regulatory pathway has been identified in cultured retinal 
bipolar cells, which involves activation of PKC and results in the down-mod
ulation of GABAc receptors (FEIGENSPAN and BORMANN 1994c). The effect of 
the phorbol ester PMA clearly indicates that the down-regulation of GABAc 
receptor function requires activation of PKC. The signaling pathway upstream 
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of PKC involves the phospholipase C-mediated hydrolysis of phosphoinositol 
(PI) thereby producing diacylglycerol (DAG), the physiological activator of 
PKC (Fig. 6). As a consequence, PKC phosphorylation reduces the current 
through GABAc receptors, and thereby the inhibitory action of GABA. PKC
mediated inhibition of pI receptor function has been observed with the 
pI-subunit expressed in Xenopus oocytes (KUSAMA et a1. 1995). However, 
recent evidence indicates that consensus sequence sites in both pI and p2 are 
not critical for inhibition by PKC of GABAc receptor function (KUSAMA et a1. 
1998). 

Retinal bipolar cells receive glutamatergic input from photo receptors, 
with kainate receptors present in the membrane of hyperpolarizing bipolar 
cells (DEVRIES and SCHWARTZ 1999) and metabotropic glutamate receptor 
subtype 6 (mGluR6) on the dendrites of depolarizing bipolar cells (NOMURA 
et a1. 1994). The effect of trans-ACPD and L-AP4 on the GABAc response of 
rat retinal bipolar cells was studied (FEIGENSPAN and BORMANN 1994c). Both 
compounds act as ligands at metabotropic glutamate receptors (SCHOEPP and 
CONN 1993). Run-down of the GABA-induced current was enhanced in 
the presence of trans-ACPD and L-AP4 (Fig. 6A), suggesting that both 
metabotropic glutamate receptor agonists couple to PKC activation, and 
subsequently down-regulate GABAc receptor function. Neither glutamate 
agonist elicited an inward current, thus ruling out the possibility of modulat
ing cyclic nucleotide-gated channels (NAWY and JAHR 1990, 1991; DE LA VILLA 
et a1. 1995). The specific agonist at metabotropic glutamate receptors mGluRl 
and mGluR5, trans-azetidine-2,4-dicarboxylic acid, and the mGluR agonist 
quisqualic acid decreased the GABAc receptor-mediated current in a rat 
retinal slice preparation (EULER and WXSSLE 1998). In addition, extracellular 
application of serotonin also accelerated the run-down of the bicuculline
insensitive GABA response (Fig.6A) (FEIGENSPAN and BORMANN 1994b). This 
effect appeared to be mediated by the 5-HT2 receptor subtype, as it was mim
icked by the more specific agonist a-methyl serotonin (Fig. 6A). Figure6B 
shows the current model proposed for the modulation of retinal GABAc 
receptors by PKC. 

Protein kinase A (PKA), which modulates GABAA receptor function in 
the retina and elsewhere in the CNS (KANO and KONNERTH 1992; VERUKI and 
YEH 1992; FEIGENSPAN and BORMANN 1994b), had no effect on GABAc recep
tors of rat retinal bipolar cells (Fig. 6A). However, in acutely isolated cone 
horizontal cells of the catfish retina, dopamine selectively reduced the GABAc 
receptor current (DONG and WERBLIN 1994). This effect is most likely medi
ated by D) dopamine receptors coupled to adenylyl cyclase, since it can be 
mimicked by the D j selective agonist SKF-38393 and forskolin. In bipolar cells 
of the tiger salamander retina, extracellular application of dopamine relieved 
the GABAc receptor-mediated inhibition of calcium entry and thus transmit
ter release (WELLIS and WERBLIN 1995). This effect is also likely due to binding 
of dopamine to D) receptors and subsequent activation of the cAMP second 
messenger pathway. 
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Fig.6A,B. Modulation of GABAe receptors by protein kinase C (PKC). A Time
dependence of GABAe receptor-mediated whole-cell currents. The bars indicate IIIe, 
the ratio of current measured after 20 min to the current measured at 1 min. Error bars 
denote SEM for ten control cells and five cells otherwise. In control experiments, the 
bicuculline-insensitive GABA response showed run-down of typically 18% (IIIe = 0.82) 
after 20min of recording. Various drugs were tested for their ability to modify the 
control response after intra- or extracellular application, as indicated. Extracellular 
drugs were applied for 30 s between consecutive GABA pulse, intracellular drugs were 
included in the pipette solution. Asterisks indicate statistical differences (p ::; 0.01) from 
control, as calculated with Student's t-test. Abbreviations: PMA, phorbol 12-myristate, 
13-acetate; a-PMA, 4a-phorbol 12-myristate, 13-acetate; PKA, catalytic subunit of 
cAMP-dependent protein kinase; t-ACPD, trans-( + )-1-amino-1,3-cyclopentane dicar
boxylate; L-AP4, 2-amino-4-phosphonobutyric acid. B Model illustrating the sequence 
of events which may lead to a reduction of GABAe receptor-mediated currents (dashed 
arrow). The box shows agonists that stimulate phospholipase C (PLC) activity follow
ing binding of glutamate and serotonin to metabotropic glutamate and 5-HT2 recep
tors, respectively. Abbreviations: R, receptor; G, G-protein; PIP2, phosphatidylinositol 
4,5-bisphosphate; DAG, diacylglycerol; IP3, inositol 1,4,5-trisphosphate; P, phosphate 
group; +, activation 
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G. Physiological Function of GABAc Receptors 

Bicuculline-baclofen-insensitive GABAc responses have been described in 
various parts of the vertebrate brain, including spinal cord (JOHNSTON et al. 
1975), optic tectum (NISTRI and SIVILOTTI 1985; SIVILOTTI and NISTRI 1989), 
cerebellum (DREW et al. 1984; DREW and JOHNSTON 1992) and hippocam
pus (STRATA and CHERUBINI 1994; MARTINA et al. 1995). However, specific 
physiological functions of GABAc receptors in those brain areas are still 
elusive. It is conceivable though that in the developing hippocampus, GABAc 
receptors could be important for shaping the range of inhibitory synaptic 
functions required for the establishment of various forms of learning and 
memory. 

More specific ideas have emerged as to the physiological role( s) of 
GABAc receptors in the vertebrate retina. Although GABAc receptors are 
common on horizontal and bipolar cells in lower vertebrates (QIAN and 
DOWLING 1993,1994,1995; DONG et al.1994; LUKASIEWICZ et al.1994), GABAc 
receptors in the mammalian retina are localized on bipolar cells, where they 
coexist with GABAA receptors (FEIGENSPAN et al. 1993; FEIGENSPAN and 
BORMANN 1994a; PAN and LIPTON 1995). GABA receptors on bipolar cell 
terminals have been shown to down-regulate voltage-dependent calcium 
channels, thereby decreasing presynaptic transmitter release (TACHIBANA et al. 
1993; LUKASIEWICZ et al. 1994; MATTHEWS et al. 1994; PAN and LIPTON 1995; 
WELLIS and WERBLIN 1995). Since GABAergic amacrine cells make synapses 
onto bipolar cell terminals (MARC et al. 1978; YAZULLA et al. 1987; CHUN and 
WASSLE 1989; POURCHO and OWCZARZAK 1989), synaptically released GABA 
is likely to modulate transmitter release from bipolar cells. GABAc receptor
mediated inhibition of the excitatory synaptic transmission between bipolar 
and ganglion cells has been described in salamander retina (LUKASIEWIECZ and 
WERBLIN 1994; WELLIS and WERBLIN 1995). Interestingly, GABAc receptors 
appear to contribute to the control of acetylcholine (ACh) release in the rabbit 
retina (MASSEY et al. 1997). When GABAA receptors were completely blocked 
by saturating concentrations of SR-95531, picrotoxin caused a further increase 
in ACh release indicating a contribution of GABAc receptors. The inhibition 
responsible for directional selectivity, however, is exclusively mediated by 
GABAA receptors (MASSEY et al. 1997). 

The high affinity of GABAc receptors for GABA and their sustained 
response properties make them ideally suited to fine tune bipolar cell output. 
GABA feedback inhibition from amacrine to bipolar cells is likely to control 
bipolar cell output. Thus, low GABA concentrations insufficient to activate 
type A receptors could nevertheless affect bipolar cell output via GABAc 
receptors. Since GABAA receptors may activate more rapidly than GABAc 
receptors (PAN and LIPTON 1995), the ratio of GABAA and GABAc receptors 
at bipolar cell terminals is likely to determine the kinetics of GABAergic inhi
bition. Comparing GABAergic synaptic responses of bipolar cell terminals 
and ganglion cells in the salamander retina, LUKASIEWICZ and SHIELDS (1998) 
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could demonstrate that the temporal properties of the synaptic responses are 
determined by the combination of GABAA and GABAc receptors. Rod and 
cone bipolar cells in the rat retina display a differential pattern of GABAA vs 
GABAc receptors (EULER and WASSLE 1998). While 70% of the total GABA
induced current in rod bipolar cells was mediated by GABAc receptors, 
this fraction was only 20% in cone bipolar cells. In addition, the GABAc 
receptor-mediated fraction of the GABA response appears to differ between 
morphological types of cone bipolar cells (EULER and WASSLE 1998). 

Further evidence for a GABAc receptor-mediated modulation of 
bipolar cell output has been obtained in the amphibian retina (ZHANG and 
SLAUGHTER 1995). When GABAA receptors were blocked by bicuculline or SR-
95531, and GABAB receptors were saturated with baclofen, GABA preferen
tially reduced ON light responses in amacrine and ganglion cells, presumably 
through a presynaptic mechanism that inhibited bipolar cell output. Addi
tionally, ZHANG and SLAUGHTER (1995) found that although the peak GABAA 
receptor-mediated current is about five times greater than the GABAc recep
tor-mediated current, the desensitized A-type current was less than that pro
duced by the C-type receptor. Thus, the GABAc receptor may generate a small 
but sustained current, well suited to provide tonic inhibition to second- and 
third-order neurons. In contrast, rapidly desensitizing GABAA receptor cur
rents may mediate more powerful but transient inhibition. 

As pointed out by LUKASIEWICZ (1996), GABAA and GABAc recep
tors show an interesting pattern of distribution within the retina. Amacrine 
and ganglion cells which are spike-generating neurons only express GABAA 
receptors. GABAc receptor-mediated currents have been identified in 
horizontal and bipolar cells and in cone photoreceptors, all slow poten
tial neurons that do not fire action potentials. Transmitter release from 
these neurons is continuous and graded with membrane potential. This may 
enable non-desensitizing, high-affinity GABAc receptors to respond to low 
synaptic levels of GABA and thereby precisely regulate membrane potential 
and transmitter release. The presence of GABAc receptors may expand the 
capacity of these cell types to respond to a broad range of synaptic GABA 
concentrations. 

Fig. 7. Comparison of GABAA " GABAs and GABAc receptors. The GABAA recep
tor (top) is a Cl- pore with 4.9 A diameter and modulatory sites for benzodiazepines, 
barbiturates and general anesthetics. The action of GABA is blocked by bicuculline 
and picrotoxinin. The GABAA responses of retinal amacrine cells are up-regulated 
upon intracellular phosphorylation of the receptor by protein kinase A. Each GABAA 

receptor-subunit consists of four membrane-spanning domains (insert, top). Five such 
subunits assemble into a pentameric structure (insert, bottom). The internal Cl- pore is 
lined by amphiphilic transmembrane segments M2. The GABAs receptor (middle) is 
a member of the seven - transmembrane protein family and coupled to effect or 
systems (K+ or Ca2+ channels) via G-proteins. The GABAc (bottom) receptor is a Ct 
pore (5.1 A diameter) and is activated selectively by CACA. The action of GABA is 
blocked by TPMPA and picrotoxinin. The GABAA antagonist bicuculline and GABAA 

modulatory drugs have no effect. The GABAc responses are down-regulated upon 
intracellular activation of protein kinase C 
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H. Terminology for GABAc Receptors 
It now appears that GABA gates at least three types of GABA receptor that 
are distinct both pharmacologically and structurally (Fig. 7). Although the 
term 'GABAc' is widely accepted and represents a logical and convenient 
extension of the current GABA receptor nomenclature (JOHNSTON 1996), 
there is debate whether this receptor deserves separate classification or should 
be considered a subspecies of GABAA receptor Cl- channels, as recommended 
by BARNARD et al. (1998). We are not in concert with this view, and favour the 
GABAc terminology, because: 

1. GABA c receptors are pharmacologically distinct. Whilst GABAA and 
GABAB subtypes are defined by their respective sensitivities to bicuculline 
and baclofen (HILL and BOWERY 1981), GABAc receptors do not respond 
to those drugs. Also, they are selectively activated by cis-4-aminocrotonic 
acid (CACA) (JOHNSTON et al. 1975; FEIGENSPAN et al. 1993; QIAN and 
DOWLING 1993). TPMPA [(1,2,5,6-tetrahydropyridine-4-yl) methylphos
phinic acid] has been identified as a potent and highly selective antagonist 
for GABAc receptors (MURATA et al. 1996; RAGOZZINO et al. 1996). 

2. GABAc receptors are structurally distinct. Whilst fully functional GABAA 

receptors are composed of a-, 13- and y-subunits, GABAc receptors 
are assembled from p-subunits, known to mediate robust bicuculline
insensitive GABA responses in heterologous expression systems (CUTTING 
et al. 1991; WANG et al. 1994; OGURUSU and SHINGAI 1996). There is no evi
dence that the p-subunits coassemble with the GABAA receptor a-,f3- and 
y-subunits, or the glycine receptor f3-subunit (SHIMADA et al. 1992; KUSAMA 
et al. 1993a). 

3. GABAc receptors are genetically distinct. On human chromosomes, the 
genes for the GABAA subunits occur in clusters, each cluster containing 
genes for a, 13 and }if (McLEAN et al. 1995). The p-subunit genes are sepa
rated from these clusters (CUTTING et al. 1992). 

4. GABAc receptors are functionally distinct. Electrophysiological responses 
from native or recombinant GABAc receptors differ markedly from 
GABAA receptors, most notably with respect to sensitivity, conductance, 
gating and desensitization (see BORMANN and FEIGENSPAN 1995 for review). 

5. GABAc receptors show distinct cellular localization. Synaptic GABAc 
receptors consist of p-subunits and do not colocalize with GABAA or 
glycine receptor subunits (KOULEN et al. 1998). GABAc receptors are 
specifically linked to the cytoskeleton via microtubule-associated protein 
(MAP-lB) (HANLEY et al. 1999). 

I. Conclusions 
Recent developments in the understanding of GABA receptors support and 
extend the original observations of Johnston and colleagues of the existence 
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of bicuculline- and baclofen-insensitive GABAc receptors. Pharmacological, 
molecular biological and physiological evidence are in favour of a new class 
of GABA receptor (BORMANN 2000). The GABAc receptors are composed of 
p-subunits and are highly enriched in the vertebrate retina, but present also 
in many other eNS structures. GABAc receptors are integral membrane chan
nels that stabilize the resting potential of the cell by increasing the membrane 
conductance to Cl-. Inhibition mediated by GABAc receptors is expected to 
be very pronounced, occurring at very low GABA concentrations and to be 
longer lasting than GABAA-receptor mediated inhibition. More efforts are 
needed to exploit the full range of physiological and pharmacological impli
cations of GABAc receptors. 
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CHAPTER 11 

Structure of GABAB Receptors 

B. BETTLER and K. KAUPMANN 

A. Physiological Evidence for GABAB Receptor Subtypes 

It is close to 20years since the term GABAB was first introduced to define a 
metabotropic GABA receptor with a pharmacological profile distinct from 
that of the ionotropic GABAA and GABAc receptors (HILL and BOWERY 
1981). It was subsequently shown that binding of agonists to GABAB recep
tors is sensitive to guanyl nucleotides, indicating that GABAB receptors are 
coupled to G-proteins. Many of the physiological roles of GABAB receptors 
can be attributed to the regulation of G-protein gated Ca2+ and K+ channels 
(LUSCHER et al.1997; PONCER et al.1997; SLESINGER et al. 1997; Wu and SAGGAU 
1997). Accordingly presynaptic GABAB receptor influence neurotransmission 
by suppression of neurotransmitter and neuropeptide release, presumably by 
diminution of a Ca2+ conductance. A Ca2+ independent interaction of GABAB 

receptors with the presynaptic secretion machinery was also proposed 
(CAPOGNA et al. 1996). Postsynaptic GABAB receptors hyperpolarize neurons 
by activating an outward K+ current that underlies the late inhibitory post
synaptic potentials (IPSPs). Characteristically the late IPSP is slower in onset 
and has a prolonged duration as compared to the fast IPSP, which derives from 
the CI~-permeable GABAA receptors. Recent studies indicate that inwardly 
rectifying K+ channels of the Kir3 type (formerly GIRK) are prominent effec
tors of postsynaptic GABAB receptors. For example, the late IPSP evoked by 
L-baclofen, a selective GABAB receptor agonist, is largely absent in Kir3.2 
knockout mice (LUSCHER et al. 1997). Similarly in weaver mutant mice, who 
carry a point mutation in the pore-forming region of the Kir3.2 subunit, the 
amplitude of the GABAB receptor-activated K+ current is significantly atten
uated (SLESINGER et al. 1997). The rapid time course of GABAB receptor
mediated K+ channel (KAUPMANN et al. 1998b) and Ca2+ channel (MINTZ and 
BEAN 1993) regulation indicates a membrane-delimited pathway through 
the ,By-subunits of the G-protein, similar to other G-protein coupled receptors. 
In addition to ion channel modulation, GABAB receptors were shown to neg
atively couple to adenylyl cyclase and to inhibit forskolin-stimulated cAMP 
levels (WOJCIK and NEFF 1984). No direct coupling to phospholipase C and the 
release of Ca2+ from internal stores has yet been demonstrated. 
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Considering differences in drug efficacies it was proposed that the pre
synaptic GABAB receptors are heterogeneous and distinct from the postsy
naptic receptors (CUNNINGHAM and ENNA 1996; BONANNO et a1.1997; DEISZ et 
a1. 1997; ZHANG et a1. 1997). Furthermore there is data to support the idea that 
pre- and postsynaptic GABAB receptors differ in their coupling preferences. 
For example, the action of postsynaptic GABAB receptors can be blocked by 
treatment with pertussis toxin (PTX), indicating a coupling to GJGo-type G
proteins, while PTX is unable to uncouple presynaptic GABAB receptors from 
their effectors (DUTAR and NICOLL 1988). 

The diverse modulatory actions of GABAB receptors, their localization at 
pre- and postsynaptic sites, at both inhibitory and excitatory synapses classify 
them as potential therapeutic targets in diseases such as, e.g. pain, epilepsy, 
spasticity and psychiatric illness. To date baclofen (Lioresal) is the only 
GABAB drug marketed and is used as a muscle relaxant for treatment of spas
ticity in spinal injury and mUltiple sclerosis. However the cloning efforts have 
revived commercial interest into GABAB receptors because this facilitates the 
search for novel therapeutic indications and more selective drugs. 

B. Pharmacology, Structure and Distribution of 
Cloned GABAB Receptors 

I. Cloned GABAB Receptors 

The isolation of a GABAB receptor protein proved difficult due to the lack of 
radio ligands that bind the receptor irreversibly or with high affinity. Moreover, 
a scarce coupling of GABAB receptors to effectors in Xenopus oocytes ren
dered expression cloning strategies such as those commonly used for the iso
lation of neurotransmitter receptors impracticable. It was not until 1997 that 
the development of the high-affinity antagonist [125r]CGP64213 allowed the 
isolation of GABABRla (BRla) using an expression cloning approach (KAUP
MANN et a1. 1997). Subsequently the GABABRlb (BRlb) cDNA was isolated 
using homology screening. BRla and BRlb derive from the same gene by 
alternative splicing (PETERS et a1. 1998), and are larger than most G-protein 
coupled receptors and comparable in size to the metabotropic glutamate 
receptors (mGluRs). The mature BRlb protein differs from BRla in that 18 
different residues replace the N-terminal147 ones. The BRla specific region 
contains two copies of short consensus repeats (SCRs) about 60 amino acid 
residues each, also known as complement control protein (CCP) or sushi 
repeats (Fig. 1) (BETTLER et a1. 1998; HAWROT et a1. 1998). These repeats exist 
in a wide variety of complement and adhesion proteins, principally the 
selectins. The sushi domains may direct protein-protein interactions and, e.g. 
serve as an extracellular targeting signal for BRla. Additional splice variants, 
designated GABABRlc (BRlc) and GABABRld (BRld), generate isoforms 
with sequence differences in presumed extracelluar and intracellular domains 
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Fig.I. Structural model and major effector systems of heteromeric BRI +BR2 recep
tors. BRI and BR2 appear to form a tightly associated complex via an interaction of 
coiled-coil domains in the C-terminal tails. The BRla specific region contains two 
copies of consensus repeats known as sushi repeats (SUI, SU2). Common to the N
terminal extracellular domains of BRla/-b and BR2 is a region with homology to bac
terial periplasmic proteins (LBP) that constitutes the ligand binding domain. Based on 
the crystal structure of an LBP and LIVBP, one predicts that this domain forms two 
globular lobes (see Fig. 2 for homology modelling). The model predicts that upon ligand 
binding the two lobes bend towards one another, thereby producing a conformational 
change that promotes G-protein activation. The conformational change may be directly 
transmitted through the transmembrane domains or, alternatively, the activated 
binding domain may interact with other extracellular domains like a tethered ligand. 
BRI and BR2 both contain a functional GABA binding sites but only BRI receptors 
are inhibited by known GABAB antagonists, such as, e.g. CGP54626. Seven membrane
spanning regions follow the domain implicated in GABA binding. Four splice variants 
(arrowheads) are described for rat BRI (named BRla-d) and two C-terminal isoforms 
are known for human BR2. Activation of native GABAB receptors can cause a 
decrease in Ca2+ conductance through N, P/Q type Ca2+ channels, an increase in K+ con
ductance through Kir3 channels and changes of cAMP levels by negative coupling to 
adenylyl cyclase (AC) 

(IsoMoTo et al. 1998; PFAFF et al. 1999). Database searches with the BR1 
sequence information led to the discovery of GABABR2 (BR2) (JONES 
et al. 1998; KAUPMANN et al. 1998a; WHITE et al. 1998; KUNER et al. 1999; 
MARSHALL et al. 1999) which exhibits 35% amino acid sequence similarity to 
BRl. Two C-terminal splice variants were reported for the human BR2 re
ceptors. Hydrophobicity analysis of the cloned GABAB receptors revealed a 
topological organization typical of G-protein coupled receptors, with seven 
transmembrane domains, an extracellular N-terminal domain and a C-termi-
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nal cytoplasmic domain. GABAB receptors share extended sequence similar
ity with the mGluRs, the Ca2+-sensing receptor, a family of vomeronasal recep
tors and periplasmic bacterial amino acid binding proteins, such as the leucine 
isoleucine valine binding protein (LIVBP) and the leucine binding protein 
(LBP) (BETTLER et aL 1998; GALVEZ et aL 1999). 

The genomic localization, tissue expression and function of the human 
GABABRl gene identifies it as a positional candidate for neurobehavioral 
disorders with a genetic locus on 6p21.3 (mouse chromosome 17B3), such as 
schizophrenia, juvenile myoclonic epilepsy, multiple sclerosis and dyslexia 
(GOEI et aL1998; GRIFA et aL 1998; KAUPMANN et aL 1998a). So far association 
analysis of exonic variants of the GABABRl gene and families with idiopathic 
generalized epilepsy did not unravel any amino acid substitutions that are 
causal in disease (SANDER et aL 1999). The GABABR2 gene maps to human 
and mouse chromosome 9q22.2-22.3 and 4B, respectively. This chromosomal 
localization does not point at neurologic disorders with a likely involvement 
of GABAB receptors. 

II. Binding Pharmacology 

The pharmacology of the cloned GABAB receptors was first studied using 
radioligand binding. The two prominent BR1 variants, BR1a and BR1b, 
demonstrate high affinities to all known GABAB antagonists and sensitivity 
to the agonists GABA, APPA and baclofen. BR1a and BR1b are unlikely to 
represent pharmacological subtypes, as their agonist and antagonist binding 
affinities match closely. Remarkably, while the antagonist pharmacology of the 
BR1a/-b and native GABAB receptors are similar, the agonist affinity at the 
recombinant receptors is reduced by a factor of ~100. The rank order of agonist 
binding affinities at BR1a/-b and native receptors is identical. This possibly 
indicates a shortage of the specific G-protein to promote the high-affinity con
formation of the recombinant receptor. This could be explained by the demon
strated lack of BR1a/-b cell surface expression in heterologous cells (COUVE 
et al. 1998; WHITE et al. 1998). Agonists display a reduced efficacy at the BR1c 
receptor (PFAFF et aI., 1999), but as with BR1d, no thorough pharmacological 
analysis is available yet. BR2 does not bind any [3H]-agonists and, by itself, 
does not provide an explanation for the native high-affinity agonist sites. 
Moreover BR2 protein does not bind any of the available GABAB antagonist 
radio ligands with measurable affinity either. It was therefore impossible to 
demonstrate that BR2 represents a GABAB receptor using radio ligand 
binding. However this became feasible with the development of functional 
assay systems for heterologous GABAB receptors (see below). 

III. Molecular Determinants of Ligand Binding 

Sequence comparison reveals that, like the mGluRs, the extracellular domain 
of GABAB receptors shares structural similarity with bacterial amino acid 
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binding proteins (KAUPMANN et al. 1997; GALVEZ et al. 1999). These bacterial 
proteins bind ions and nutrients in the periplasm and deliver them via trans
porter proteins across the plasma membrane. The crystal structure of the bac
terial proteins indicates that two globular lobes that are connected through 
a hinge region form the amino acid binding pocket. Several lines of evi
dence support that the ligand binding site of GABAB receptors has evolved 
from these ancestral bacterial amino acid binding proteins. For example a 
soluble protein encompassing the extracellular N-terminal domain of BR1b 
closely reproduces the binding pharmacology of wild-type GABAB receptors 
(MALITSCHEK et al. 1999). This demonstrates that the N-terminal extracellular 
domain can correctly fold when dissociated from the transmembrane domains 
and contains all the structural information that is necessary and sufficient for 
agonist and antagonist binding. A three-dimensional model of the ligand
binding site of GABAB receptors was constructed based on the known struc
ture of LBP and LIVBP (Fig. 2) (GALVEZ et a1.1999). The validity of this model 
was subjected to experimental verification. Mutagenesis of amino acid 
residues in the vicinity of the presumed ligand-binding pocket has highlighted 
several residues that appear crucial for binding. Serine 246, a residue homol
ogous to Serine 79 in LBP that forms a hydrogen bond with the ligand, is 
critical for antagonist binding. Similarly the mutation of Serine 269 was 
found to differentially affect the affinity of various GABA analogs. Finally, 
the mutation of Serine 247 and Glutamine 312 were found to increase the 
affinity of agonists and to decrease the affinity of antagonists, respectively. 
The effects of these point mutations clearly support an evolutionary re
lationship between the ligand binding sites of the LBP/LIVBP and GABAB 

receptors. 

C. Functional Studies with Recombinant 
GABAB Receptors 

I. Individually Expressed BRI and BR2 Receptors 

Although the cloned GABAB receptors showed many of the expected prop
erties in terms of structure and pharmacology, they only reluctantly repro
duced the signalling properties of native receptors in transfected mammalian 
cells. Biochemical studies indicated that activation of BR1a receptors in 
HEK293 cells inhibits adenylyl cyclase activity (KAUPMANN et al. 1997). 
Although the inhibition of forskolin stimulated cAMP production was weak 
(30%) it was clearly inhibited by GABAB antagonists. BR2 couples to adeny
lyl cyclase slightly more efficiently (approximately 60% inhibition), demon
strating that BR2 is a bona fide GABAB receptor (KUNER et al. 1999). The 
coupling of the cloned receptors to presumed effector ion channels proved 
even more difficult. Like BR1 (KAUPMANN et al. 1998b), BR2 fails to activate 
Kir3 channels in oocytes (JONES et al. 1998; KAUPMANN et al. 1998a; WHITE et 



a) Front view 

Ser270 

- - LOBEI ---

b) Bottom view Binding 
pocket 

--LOBEII --

Fig.2a,b. Ribbon view of a three-dimensional model of the BR1 binding domain. 
Alpha helices are dark, beta strands are light. The model was constructed by homol
ogy modelling using the co-ordinates of the bacterial periplasmic proteins that bind 
leucine (LBP, pdb accession number 2LBP) or leucine, isoleucine or valine (LIVBP, 
pdb accession number 2LIV), both of which have been crystallized in an open state. 
According to the proposed model, the GABAB binding domain constitutes two glob
ular lobes (lobe-I and lobe-II) that are connected by three linkers. This structure is sta
bilised by two disulphide bridges [Cys219-Cys245, and Cys375-Cys409, numbers are 
according to the BRla sequence (KAUPMANN et al. 1997); the initiation methionine is 
residue 1]. GABA is proposed to bind to lobe-I, where Ser246 is forming a hydrogen 
bond with the ligand. Mutation of Ser269 and Ser270 interferes with ligand binding. 
Most likely, these two residues do not directly contact the ligand but are important for 
a correct folding of the binding site: a front view; b bottom view. Nand C indicate the 
N- and C-terminal residues (Courtesy of Dr IP. Pin) 
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al. 1998), and it does so only inefficiently in HEK293 cells (JONES et al. 1998; 
KAUPMANN et al. 1998a). The failure of BRla/-b receptors to couple to sig
nalling pathways may again be explained by poor cell surface expression 
(COUVE et al. 1998; WHITE et al. 1998). However BR2 efficiently translocates 
to the cell membrane (WHITE et al. 1998) and therefore the low rate of Kir3 
coupling was unexpected, given that this assay represents a sensitive read-out 
for many cloned G-protein coupled receptors. The lack of robust coupling 
therefore suggested the involvement of auxiliary factors that are limiting or 
missing in non-neuronal expression systems. 

II. Heteromeric BRl + BR2 Receptors 

The strong overlap of the in situ hybridization patterns (see below) indicated 
that BR1 and BR2 are co-expressed in many neuronal populations and that a 
co-expression was possibly needed for robust functional activity. Analysis of 
hybridization signals on adjacent brain sections provided direct evidence for 
a co-expression of BR1 and BR2 transcripts within individual neurons, e.g. 
in Purkinje cells (JONES et al. 1998; KAUPMANN et al. 1998a). It was therefore 
explored whether an interaction between BR1 and BR2 could explain 
why efforts to express functionally the cloned receptors in isolation met 
largely with failure (JONES et al. 1998; KAUPMANN et al. 1998a; WHITE et al. 
1998; KUNER et al. 1999; MARSHALL et al. 1999). Indeed while neither BRla/b 
nor BR2 alone efficiently activated Kir3 channels, their co-expression 
in HEK293 cells and Xenopus oocytes yielded robust GABA evoked 
currents. Co-expression of BR1 and BR2 in heterologous cells also allowed 
for robust stimulation of GTP}{35S] binding (WHITE et al.1998). All these func
tional responses exhibited pharmacological properties reminiscent of those 
reported for abundant native GABAB receptors. Independent evidence 
that BRI and BR2 interact with each other derived from the search for puta
tive BR1 trafficking factors (WHITE et al. 1998; KUNER et al. 1999). Using the 
C-terminal domain of BR1 as bait in a yeast two-hybrid screen, the BR2 
protein was isolated. The BR1 and BR2 receptors tightly interact via coiled
coil structures in their C-terminal tails, a dimerization signal that is also used 
by leucine zipper transcription factors. Additional experiments in yeast indi
cated that the BR1 and BR2 interaction is specific and that neither receptor 
forms homodimers. 

When BRla or BRlb are expressed together with BR2 an up to tenfold 
increase in agonist and partial agonist binding potency is observed in the inhi
bition of P25I]CGP64213 antagonist binding. When expressed together BR2 
allows BRla/-b to trans locate to the cell surface (WHITE et al. 1998). There
fore the observed increase in agonist binding potency could arise from a more 
efficient coupling of the heteromeric receptor to G-proteins. The remaining 
tenfold discrepancy in apparent agonist binding potency between heteromeric 
recombinant and native receptors (see above) may be explained by receptor 
modification (e.g. phosphorylation) or differences in the relative expression 
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levels of G-proteins and receptors (KENAKIN 1997). Immunoprecipitation 
experiments with native receptors revealed that BRla and BRlb can 
assemble with BR2 individually (KAUPMANN et al. 1998a). Immunoelectron 
microscopy using specific antibodies provided further evidence for het
eromeric GABAB receptors in vivo by showing an extensive co-localization of 
BRI and BR2 proteins at Purkinje cell dendritic spines. This supports that the 
heteromeric receptor represents the predominant native GABAB receptor but 
does not rule out the occurrence of homomeric receptors. 

D. Temporal and Spatial Distribution of 
Cloned GABAB Receptors 

Since heteromerization is a prerequisite for robust functional coupling, at least 
in heterologous cells, it is important to find that the distribution of BRI and 
BR2 transcripts in the brain, as studied by in situ hybridization, is largely 
overlapping. The in situ hybridization pattern qualitatively parallel those of 
GABAB agonist (e.g. WILKIN et al. 1981; GEHLERT et al. 1985; CHU et al. 1990; 
TURGEON and ALBIN 1993) and antagonist binding sites (TOWERS et al. 1997; 
KAUPMANN et al. 1998a; BISCHOFF et al. 1999), suggesting that BRI and 
BR2 constitute the majority of native GABAB binding sites. The distribution 
of individual splice variants can differ quite drastically. In the cerebellum 
transcripts of BRla are confined to the granule cell layer that comprises the 
cell bodies of the parallel fibers, which are excitatory to the Purkinje cell 
dendrites in the molecular layer. By comparison BRlb transcripts are mostly 
expressed in Purkinje cells, the dendrites of which possess GABAB receptors 
that would be postsynaptic to GABAergic Basket and Stellate cells or gluta
matergic parallel fibers. Similarly in dorsal root ganglia the density of BRla, 
but not BR1b, transcripts is high and confined to the neuronal cell bodies. This 
supports the association of BRla with presynaptic receptors in the primary 
afferent terminals. 

Some studies started to address the temporal and subcellular distribution 
of the BRI and BR2 proteins using immunohistochemistry. The BRla/b and 
BR2 protein levels appear to be differentially regulated during postnatal 
development and the relative ratios vary between tissues over time (MAL
ITSCHEK et al. 1998; FRITSCHY et al. 1999). At GABAergic synapses in the rat 
retina, BR1 is localized at pre-, post and extrasynaptic sites, demonstrating that 
these receptors do not represent exclusive pre- or postsynaptic subtypes 
(KOULEN et al. 1998). In the cerebellum BRlb and BR2 protein expression is 
mostly restricted to the Purkinje cell dendrites and spines (KAUPMANN et al. 
1998a; FRITSCHY et al. 1999). Surprisingly in Purkinje cells the BRlb and BR2 
proteins are localized in the vicinity of excitatory synapses and the BR1 pro
teins is largely absent at GABAergic inputs. Altogether, current data suggest 
that the cloned receptors are present at a variety of synaptic sites, at both 
inhibitory and excitatory synapses. 
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E. Concluding Remarks and Future Directions 
It is apparent that the extent of genetic diversity in the GABAB receptor gene 
family is less than that of the mGluR family. Heterologous coupling of GABAB 

receptors to Kir3 and adenylyl cyclase, together with the demonstration that 
BRla/-b containing receptors inhibit high voltage-activated Ca2+ channels 
(MORRIS et al. 1998), indicate that all major actions of native GABAB recep
tors could relate to the cloned receptors. Possibly the targeting of receptor 
splice variants to distinct subcellular sites dictates effector preferences and 
compensates for the lack of extensive genetic diversity. Future knockout 
experiments will discriminate the effects of individual receptor variants and 
shed light on the degree of functional redundancy. As several diseases have 
been linked to the GABABRI gene it is conceivable that loss-or gain-of
function mutations could produce disease phenotypes. 

The cloning of BR1 and BR2 has not led to an immediate understanding 
of the pharmacological heterogeneity of native GABAB receptors. Several 
BR1 and BR2 splice variants have been identified that could potentially 
assemble into a number of heteromers with different pharmacological prop
erties. Furthermore the implications for dimerization in GABAB receptor 
function are unclear. The possibility to bind two G-protein provides the oppor
tunity to integrate various signals in diverse cellular contexts. For example the 
synergistic activation of two G-proteins may allow the integration of signals 
normally insufficient to affect metabolic events. It is also conceivable that dis
tinct G-proteins bind to the heteromeric receptor, further increasing the ways 
in which regulatory inputs could initiate different sets of signaling events. A 
greater understanding of these inter- and intramolecular signal transduction 
events will certainly derive from efforts to crystallize functional domains of 
GABAB receptors. 
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CHAPTER 12 

Pharmacology of GABAB Receptors 

N.G. BOWERY 

A. Introduction 

It is now about 20 years since we first examined the Cl--dependent action 
of GABA on peripheral neurones and, in particular, on nerve terminals of sym
pathetic fibres. At the time we were trying to mimic the established depolariz
ing action on presynaptic terminals in the spinal cord (CURTIS 1978) which 
results in suppression of transmitter release. The outcome of our studies was to 
show that GABA could indeed inhibit the evoked release of 3H-noradrenaline 
from sympathetic nerve terminals in isolated atria of the rat. This was particu
larly evident in the presence of a presynaptic a2-adrenoceptor antagonist like 
yohimbine (BOWERY and HUDSON 1979; BOWERY et al. 1981). However, the 
GABA receptor responsible for this effect appeared to be distinct from that 
already described with a pharmacological profile which was strikingly different 
from that of the receptor mediating the fast action of GABA on spinal neu
rones or elsewhere in the brain. The effect could not be blocked by bicuculline, 
was not mimicked by isoguvacine and was only activated by high concentra
tions of the normally potent agonist, muscimol. Most striking of all was that the 
clinically used GABA analogue, baclofen (j3-chlorophenyl GABA), was stere
ospecifically active in suppressing the release of the sympathetic amine. No evi
dence for any GABA-like activity had previously been shown with this 
compound and certainly there was no reason to believe that it could mimic the 
Ct-dependent action of GABA even at very high concentrations. 

Baclofen was introduced into therapeutics in the 1970s as an antispastic 
agent. This originated from a search to find a compound which would cross 
the blood brain barrier and mimic the inhibitory action of GABA (KEBERLE 
and FAIGLE 1972; BEIN 1972). Fortunately the primary screen used to detect 
the activity of baclofen was a functional in vivo assay to obtain central muscle 
relaxant activity which, it was assumed, would result from mimicking the 
action of GABA. This predated the original GABA receptor binding assay 
which would have failed to show baclofen as a positive "hit". 

The action of GABA that we had observed in the atrial preparation did 
not involve any neuronal depolarization as was originally predicted but 
instead was dependent on the presence of external [Ca++]. 
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Subsequent experiments in other isolated tissues, including mam
malian brain slices (BOWERY et al. 1980), soon made us realise that we had 
a novel receptor for GABA. This was confirmed when we were able to use 
membrane binding studies to show its presence on neuronal membranes and 
brain slices (HILL and BOWERY 1981; WILKIN et al. 1981) and it was then that 
we designated the term "GABAB" for this receptor to contrast with the 
bicuculline-sensitive receptor which we designated "GABAA" (HILL and 
BOWERY 1981). 

The GABAB receptor (GABABl ) was ultimately cloned some 16 years 
later by Bettler and colleagues (KAUPMANN et al. 1997) but subsequent studies, 
reported by four independent groups in December 1998 and January 1999, 
showed that the GABAB receptor exists as a heterodimer with a second 
"receptor" apparently linked to GABABl through coiled coil domains at the 
C-terminal (JONES et al.1998; WHITE et a1.1998; KAUPMANN et a1.1998a; KUNER 
et al. 1999) in a stoichiometric 1:1 ratio. This new receptor subunit has been 
designated GABAB2 and has many of the structural features of GABAB1 
including a large molecular weight (llOKDa), seven transmembrane domains, 
a long extracellular chain at the N-terminus and 35% homology with 54% sim
ilarity (see BETTLER and KAUPMANN, Chap.ll, this volume). At present it is not 
clear what part(s) of the heterodimer determine the pharmacological profile 
of the GABAB receptor but since there appear to be at least three splice vari
ants of each of the units the various combinations may have different charac
teristics. Whether this aligns to any of the proposed receptor subtyping that 
has been suggested (see later) remains to be seen. 

B. Physiological Role 
The contribution of GABAB receptors to inhibitory synaptic events in the 
mammalian brain is manifest throughout the cerebral axis. Both presynaptic 
and postsynaptic sites have been implicated and whilst the latter derives from 
GABAergic innervation of neuronal GABAB sites the former probably stems 
from the action of GABA released from an adjacent synapse at least at het
eroreceptors (ISAACSON et al. 1993). 

The result of GABAB receptor stimulation is normally a long-lasting neu
ronal hyperpolarization, mediated by an increase in membrane conductance 
to K+, and a reduction in the excitatory postsynaptic potential (EPSP) pro
duced by a decrease in the release of excitatory transmitter. This decrease is 
presumed to result from a reduction in presynaptic Ca++ conductance as a 
consequence of GABAB site activation although other mechanisms may con
tribute in part. No evidence for terminal innervation exists in higher centres 
and thus "wash-over" from adjacent synapses has been implicated. This seems 
not unreasonable as the estimated synaptic concentration of GABA is in the 
millimolar range whilst the affinity of GABA for GABAB sites is the sub
micromolar range. However, innervation of presynaptic GABAB sites does 
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appear to occur in the spinal cord where primary afferent output is modulated 
by GABAergic interneurones which synapse on to the afferent fibre terminals 
(BARBER et al. 1978). Thus, GABAB agonists suppress the evoked release of 
substances such as substance P (SP) and glutamate which are believed to be 
sensory transmitters and are colocalised in primary afferent terminals of the 
dorsal horn (see later). Whilst the primary role of GABAB systems appears to 
reside in the CNS some of the actions of GABA outside the brain also have 
a physiological basis. The enteric nervous system of the intestine may be a par
ticularly important focus. GABA neurones as well as an abundance of GABAB 

receptors are present and the action of GABAB agonists has been well docu
mented in this system (see ONG and KERR 1990). Other effects on peripheral 
organs are probably of more pharmacological significance although central 
GABAB mechanisms do appear to influence peripheral cardiovascular and 
respiratory function as well as hormone release (see BOWERY 1993; FERREIRA 
et al. 1996; REy-ROLDAN et al. 1996). 

C. GABAB Receptor Distribution and 
Localization in CNS 

Receptor autoradiography of native GABAB receptors and immunohisto
chemistry of GABABI and GABAB2 protein indicate comparable distributions 
in the mammalian brain (BOWERY et al. 1987; CHU et al. 1990; FRITSCHY et al. 
1999; MARGETA-MITROVIC et al. 1999; PRINCIVALLE et al. 1999; SLOVITER et al. 
1999). Results so far indicate that the mRNA for GABABI and GABAB2 are 
also similarly distributed although in some brain regions, such as the caudate 
putamen, GABABI mRNA is present whereas GABAB2 mRNA appears to be 
absent (CLARK et al. 1998). In addition it has been noted that there is a low 
level of GABAB2 mRNA relative to GABAB1 mRNA in the hypothalamus 
(JONES et al. 1998). This may mean that another subunit, so far unidentified, 
dimerizes with GABAB1 or possibly the level of mRNA for GABAB2 is very 
low and this determines the level of expression of GABAB1 in its role as a traf
ficking protein. In contrast to GABABI an additional protein may not be 
required to dimerize with GABAB2 where GABAB1 levels are low, which would 
assume that GABAB2 can act as a receptor and not just as a trafficking protein. 

The highest densities of GABAB binding sites in mammalian brain occur 
in the thalamic nuclei, the molecular layer of the cerebellum, the cerebral 
cortex and interpeduncular nucleus (BOWERY et al.1987; CHU et al. 1990). This 
reflects binding to either pre- or post-synaptic sites. Similar high densities of 
GABAB binding have been described in laminae II and III of the spinal cord 
(PRICE et al. 1987) where the binding sites appear to be largely associated with 
small diameter primary afferent terminals. These sites probably receive synap
tic inputs from GABAergic interneurones (see MALCANGIO and BOWERY 1996) 
supporting the idea that GABAB receptors modulate afferent transmitter 
release. 
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Determination of the distribution of mRNAs for GABAB1a and GABAB1b 

using in situ hybridisation techniques has revealed that GABABla is probably 
more related to the generation of presynaptic GABAB receptors than 
GABABlb which may be more relevant to the production of postsynaptic 
GABAB receptor in certain brain regions. Thus, in neurones of the rat dorsal 
root ganglion (DRG), which are the cell bodies of the primary afferent fibres 
which project to the dorsal horn of the spinal cord, >90% of the total GABAB 

mRNA is of the GABAB1a type. GABABlb levels in the DRG are very low pro
viding less than 10% of the total GABAB1 mRNA (TOWERS et al. 1999). A 
similar pattern has emerged in the rat and human cerebellum. GABAB1a 

mRNA was detected over the granule cell bodies the axons of which form the 
parallel fibres. These innervate the dendrites of the Purkinje cells in the mol
ecular layer. Receptors on the nerve terminals of the excitatory granule cells 
would be formed from this mRNA in the granule cell body (KAUPMANN et al. 
1998b; BILLINTON et al. 1999). Conversely in these same studies GABAB1b 

mRNA was found to be located over the soma of the Purkinje cells which 
express GABAB receptors on their dendrites in the molecular layer. These 
sites are probably postsynaptic to GABAergic stellate cells. 

D. GABAB Receptor Coupling to Adenylate Cyclase 
By definition, metabotropic receptors are coupled indirectly to their effector 
mechanism(s) and GABAB receptors are no exception as they are coupled via 
G-proteins to adenyl ate cyclase (KARBON et al. 1984; HILL et al. 1984; HILL 
1985; Xu and WOJCIK 1986) as well as to neuronal membrane K+ and Cart chan
nels (see INOUE et al.1985; ANDRADE et al.1986; DOLPHIN et al.1990; BINDOKAS 
and ISHIDA 1991; GAGE 1992) (see later). GABAB receptor activation has a 
dual action on adenyl ate cyclase. Inhibition of forskolin-activated and basal 
neuronal adenyl ate cyclase activity is well established (e.g. Xu and WOJCIK 
1986) and enhancement of cAMP formation, produced by Gs coupled recep
tor agonists such as isoprenaline, is also a well documented response to 
GABAB receptor activation in brain slice preparations (KARBON et al. 1984). 
This dual action of GABAB receptor agonists is also manifest in vivo. Using 
a microdialysis technique in freely moving rats, HASHIMOTO and KURIYAMA 
(1997) were able to show that baclofen could reduce the increase in cAMP 
generated by infusion of forskolin in the cerebral cortex. This effect was 
mimicked by GABA and blocked by the GABAB antagonist CGP 54626. 
As in slice preparations baclofen also potentiated the generation of cAMP by 
isoprenaline. 

The physiological significance of these two effects, particularly enhance
ment of cAMP generation, has yet to be fully established but they occur inde
pendently of any channel events and are presumed to be mediated via separate 
G-protein subunits. Enzyme inhibition derives from the a subunit whilst the 
enhancement stems from generation of the j3ysubunits (LEFKOWITZ 1992). 
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Whatever the significance of the GABAB receptor on adenylate cyclase 
the effects in isolated systems has provided a useful pharmacological assay to 
characterise the receptor. Moreover, the dual effect on cAMP generation 
might even involve distinct GABAB receptor subtypes which has provided a 
basis for suggesting receptor heterogeneity (CUNNINGHAM and ENNA 1996). 

At present the nature of adenyl ate cyclase/G-protein coupling to the 
GABAB receptor heterodimer is not known. Presumably both GABABl and 
GABAB2 are G-protein coupled. GABABl , expressed in a CHO cell line, was 
originally demonstrated to behave like the native receptor in controlling 
cAMP levels even though the receptor could not be expressed on the cell 
membrane (KAUPMANN et al. 1997). By comparison it appears that GABAB2 

can be expressed on the cell membrane without the need for GABABl (KAUP
MANN et al. 1998a). Electrophysiological recordings have indicated that func
tional receptors are present in GABAB2 expressed in the absence of GABAB1 

(KAUPMANN et al. 1998a; KUNER et al. 1999). This would suggest that G-protein 
coupling is occurring in both GABABl and GABAB2 but whether the G-pro
teins are the same has yet to be determined. 

E. Ca++ and K+ Channel Coupling to GABAB Sites 
Receptor activation increases K+ conductance but decreases Ca++ conductance 
with the former primarily associated with postsynaptic sites (e.g. LUSCHER 
et al. 1997) and the latter with presynaptic sites (e.g. CHEN and VAN DEN POL 
1998; TAKAHASHI et al. 1998) associated with P/Q and N type channels (e.g. 
SANTOS et al. 1995; LAMBERT and WILSON 1996). In the feline lumbar spinal 
cord (-)-baclofen reduces excitatory neurotransmitter release from 1a affer
ent fibres and decreases the duration of orthodromic action potentials of the 
same fibres (CURTIS et al. 1997). Both of these presynaptic effects, which are 
mediated via GABAB receptors, are consistent with a reduction in the influx 
of Ca++ in the terminals of the 1a afferents (CURTIS et al. 1997). This mecha
nism is probably the most frequently associated with presynaptic GABAB sites 
(DOZE et al.1995; Wu and SAGGAU 1995; ISAACSON 1998; TAKAHASHI et al.1998), 
but a mechanism independent of Ca++inhibition has been described in rodent 
CAl hippocampal pyramidal cells. At this site GABAB receptor activation can 
inhibit tetrodotoxin-resistant GABA release independent of any effect on 
Ca++ or K+ channels (JAROLIMEK and MISGELD 1997). The authors suggest that 
activation of protein kinase C (PKC) may be responsible. In fact GABA, 
acting via GABAB receptors, has been shown to induce a rapid increase in 
PKC activity in rat hippocampal slices but this was only apparent in the early 
postnatal period (P1-P14). After P21 GABAB receptor activation had the 
opposite effect and reduced the PKC activity (TREMBLAY et al. 1995). 

Presynaptic GABAB receptors have been suggested to act as regulators 
of transmitter release enabling sustained transmission to occur at high stimu
lus frequencies (BRENOWITZ et al. 1998). Normally, synapses with a high prob-
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ability of transmitter release are subject to depression (OTIS et al. 1996) but 
the presence or absence of GABAB receptors may determine how they 
operate enabling discrimination between types of transmission. 

GABAB receptor activation at postsynaptic sites is associated with more 
than one type of K+ channel (WAGNER and DEKIN 1993) and even Ca++ channel 
events appear to be involved in some postsynaptic responses (HARAYAMA et 
al. 1998). Conversely a K+(A) current has been suggested to be coupled to 
GABAB receptors on presynaptic terminals in hippocampal cultures (SAINT et 
al. 1990). However, the majority view supports changes in membrane K+ flux 
as the primary mechanism mediating the postsynaptic action of GABAB 
receptor agonists. Even direct measurement of extracellular K+ concentrations 
support this point. OBROCEA and MORRIS (1998) have demonstrated that 
GABAs receptor activation in guinea-pig hippocampal slices produces a sig
nificant increase in extracellular [K+] consistent with the rise in K+ conductance 
attributed to postsynaptic GABAs site stimulation. 

High intracellular concentrations of Cl- have been shown to depress 
GABAB-mediated increases in neuronal K+ conductance (LENZ et al. 1997) 
which could provide a basis for a cellular interaction between GABAB and 
GABAA receptors. This influence of Cl- may be at the level of the G-protein 
or directly on the K+ channel (LENZ et al. 1997). 

Low threshold Ca++ T-currents, which are inactivated at normal resting 
membrane potentials, may also be involved in the response to GABAB recep
tor activation at least within the thalamus (SCOTT et al. 1990). GABAs recep
tor activation produces a postsynaptic hyperpolarisation of long duration 
which initiates Ca++ spiking activity in thalamocortical cells. This action has 
been implicated in the production of the spike and wave activity detected on 
the surface of the cortex and associated with the generation of absence 
epilepsy (CRUNELLI and LERESCHE 1991). 

F. Pharmacological Effects - GABAB Receptor Agonists 
A variety of effects have been attributed to the action of GABAB receptor 
agonists and GABAB-mediated synaptic events. These are listed in Table 1. 
Not least of these is the centrally mediated muscle relaxant or antispastic 
action for which baclofen has been used clinically for over 25 years. The basis 
of this action of the GABAB agonist appears to derive from its ability to reduce 
the release of excitatory neurotransmitter on to motoneurones in the ventral 
horn of the spinal cord. Its effectiveness has made it the drug of choice in treat
ing spasticity irrespective of the cause. However, it is not without significant 
side effects in certain patients, making it poorly tolerated. This has been over
come to a large extent by intrathecal infusion of very low amounts of the drug 
and there are now numerous clinical centres employing this technique for the 
treatment of spasticity associated with tardive dystonia, brain and spinal cord 
injury, cerebral palsy, tetanus, multiple sclerosis and stiff-man syndrome (e.g. 
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Table 1. Consequences of GABAB receptor activation 

Decreased release of hormones: 

Corticotrophin-releasing hormone 
Melanocyte-stimulating hormone 
Gastric acid 
Prolactin-releasing factor 
Luteinizing hormone 

Decreased release of neurotransmitters: 
Catecholamines 
5HT 
GABA 
Glutamate 
Acetylcholine 
Somatostatin 
Substance P 
CGRP 

Cellular effects: 
Synaptic slow IPSPS 
Increase in neuronal K+ conductance 
Decrease in neuronal Ca++ conductance 
Inhibition of adenylate cyclase 
Enhancement of hormone-induced 

cAMP levels 
Modulation of the generation of long 

term potentiation 

Integrative actions: 

Antinociception 
Memory retention and consolidation 

decreased 
Epileptogenesis 
Panic attacks decreased 
Antitussive 
Hiccup suppression 
Muscle relaxation 
Brown fat thermogenesis 
Cocaine craving reduced 
Ethanol and diazepam withdrawal 

symptoms reduced 
Heroine intake reduced 
Intestinal peristalsis reduced 
Induced gastric cancers reduced 
Oviduct and uterine contraction 
Food intake increased 
Bronchiolar relaxation 
Hypotension 
Yawning 
5HT-induced head twitch reduced 

exacerbation of absence seizures 

PENN and MANGIERI 1993; OCHS et al. 1989; DRESSLER et al. 1997; MEYTHALER 
et al. 1997; ARMSTRONG et al. 1997; FRANCOIS et al. 1997; BECKER et al. 1995; 
ALBRIGHT et al. 1996; PARET et al. 1996; DRESSNANDT and CONRAD 1996; AZOUVI 
et al. 1996; SEITZ et al. 1995). 

{3-[4-Chorophenyl]GABA (baclofen) was the selective agonist which was 
first shown not only to have efficacy at the GABAB receptor but also that it 
was stereospecifically active (BOWERY et al. 1980, 1981). Unfortunately, rela
tively few compounds have subsequently emerged with selective activity for 
GABAB sites and even fewer with greater efficacy or affinity for the receptor 
than baclofen. 

3-Aminopropyl phosphinic acid (2APPA) and its methyl homologue 
(AMPPA, SKF 97541) were reported to be 3-7 times more potent at GABAB 

receptors than (-) baclofen, the active isomer. A variety of phosphinic based 
agonist ligands have been produced (FROESTL et al. 1995a) which have varying 
potencies but which have not really provided unequivocal support for the pos
sible separation of distinct receptor subtypes. 

The paucity of potent and selective agonists has limited their application 
as potentially effective therapeutic agents although other clinical effects have 
been reported with baclofen. For example, it has been shown to be very effec
tive in the treatment of otherwise intractable hiccups (e.g. GUELAUD et al.1995; 
MARINO 1998; NICKERSON et al. 1997; KUMAR and DROMERICK 1998) and this 



318 N.G. BOWERY 

effect is believed to stem from an inhibition of the hiccup reflex arc. This pos
sibly involves GABAergic inputs from the nucleus raphe magnus as indicated 
by studies performed in the feline medulla (OSHIMA et al. 1998). 

Another interesting effect elicited by baclofen in man is an antitussive 
action in low bra I doses (DICPINIGAITIS and DOBKIN 1997) which confirms 
earlier reports of an antitussive action in the guinea-pig (BOLSER et al. 1994). 

A recent clinical observation has been the demonstration that baclofen 
can reduce pain due to stroke or spinal cord injury and musculoskeletal pain. 
In both painful conditions baclofen was administered by intrathecal infusion 
(TAIRA et al. 1995; LOUBSER and AKMAN 1996). Although pain relief has also 
been noted in trigeminal neuralgia in man (FROMM 1994) as well as in a rodent 
model (IDANPAAN HEIKKILA and GUILBAUD 1999), its usefulness as an analgesic 
has always been questioned (see HANSSON and KINNMAN 1996). 

Nevertheless, in animal acute pain models it has long been known to have 
an antinociceptive action. These include the tail flick, acetic acid writhing, for
malin and hot plate tests in rodents (e.g. CUITING and JORDAN 1975; LEVY and 
PROUDFIT 1979; SERRANO et al. 1992; PRZESMYCKI et al. 1998). Even in chronic 
neuropathic pain models in rats, baclofen clearly exhibits an antinociceptive 
or anti-allodynic response (SMITH et al. 1994; WIESENFELD HALLIN et al. 1997; 
CUI et al. 1998). The locus of this action is probably, in part, within higher 
centres of the brain (LIEBMAN and PASTOR 1980; THOMAS et al. 1995) but there 
is no doubt that a contribution from an action within the spinal cord is also 
important (SAWYNOK and DICKSON 1985; HAMMOND and WASHINGTON 1993; 
DIRIG and YAKSH 1995; THOMAS et al. 1996). The majority of GABAB recep
tors in the rat dorsal horn of the spinal cord appear to be located on small 
diameter afferent fibre terminals (PRICE et al. 1987) where their activation 
decreases the evoked release of sensory transmitters such as substance P and 
glutamate (KANGRA et al. 1991; MALCANGIO and BOWERY 1993, 1994; TEOH 
et al. 1996). This suppression of transmitter release would contribute to the 
antinociceptive action of baclofen after systemic or intrathecal administration. 
Whilst this could well explain the antinociceptive effect of GABAB receptor 
agonists in acute pain models it is not obvious why baclofen should be much 
less effective in chronic pain in man (e.g. HANSSON and KINNMAN 1996). It 
might be that the GABAB receptor is rapidly down-regulated following sys
temic administration of the necessarily high doses. Alternatively the receptor 
may be uncoupled from its associated G-proteins preventing functional acti
vation. This might explain why baclofen is more effective when administered 
intrathecally in man as only very low amounts are required. 

Recently it has been reported that baclofen may be very effective in 
the treatment of cocaine addiction, reducing the craving for the drug. In 
rats, baclofen, administered at doses of 1-5 mg/kg, suppressed the self
administration of cocaine without affecting responding for food reinforcement 
(ROBERTS and ANDREWS 1997; SHOAIB et al. 1998). This is an important obser
vation which could have major consequences in the future therapy for drug 
addiction (LING et al. 1998). 
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The potential benefits associated with GABAB agonist administration are 
not confined to the eNS but may derive from actions on peripheral organs as 
well. For example, in asthma it has been suggested that there is a dysfunction 
of presynaptic GABAB systems which might normally attenuate cholinergic 
contraction of airway smooth muscle (TOHDA et al. 1998). 

G. Pharmacological Effects -
GAHAB Receptor Antagonists 

The actions of GABAB receptor antagonists in man have yet to be assessed 
as none have, thus far, been tested as therapeutic agents. However a number 
of predictions based on animal models can be made (BOWERY 1993). 

GABAB antagonists improve cognitive performance in a variety of animal 
paradigms (MONDADORI et al. 1993; CARLETTI et al. 1993; GETOVA et al. 1997; 
Yu et al. 1997; NAKAGAWA and TAKASHIMA 1997); but see BRUCATO et al. (1996). 
By contrast, GABAB agonists clearly impair learning behaviour in animal 
models (TONG and HASSELMO 1996; AROLFO et al. 1998; McNAMARA and 
SKELTON 1996; NAKAGAWA et al. 1995) and this induced amnesia appears to be 
mediated via G-protein linked receptors as the impairment produced by 
baclofen in mice can be blocked by pertussis toxin administered intracere
broventricularly (GALEOTTI et al. 1998). 

Another potentially important effect of the antagonists is in the suppres
sion of absence seizures. Marescaux and colleagues (MARESCAUX et al. 1992) 
have shown that GABAB antagonists administered systemically or directly 
into the thalamus prevent the spike and wave discharges manifest in the EEG 
of genetic absence rats (GAERS). Similar observations have been made in the 
lethargic mouse (HOSFORD et al. 1992) and also in rats injected with gamma
hydroxybutyric acid which produces seizure activity reminiscent of absence 
epilepsy (SNEAD 1992). In all cases GABAB antagonists dose-dependently 
reduced the seizure activity. These and other data have prompted the sugges
tion that GABAB mechanisms may be involved in the generation of the 
Absence syndrome. Deinactivation of Ca++ T currents in thalamocortical neu
rones by prolonged membrane hyperpolarization has been suggested to be the 
underlying mechanism (CRUNELLI and LERESCHE 1991). 

At much higher doses GABAB antagonists can, conversely, produce con
vulsant seizures in rats (VERGNES et al. 1997) but how and if this relates to 
blockade of possible subtypes of GABAB receptors is unknown. Moreover, 
not every antagonist appears to produce the same effect. For example, we have 
failed to observe any convulsant activity with SCH 50911 at doses 10- to 100-
fold higher than the dose which completely blocks absence seizures in the 
genetic absence rat (RICHARDS and BOWERY 1996). 

The production of absence-like seizures by }'-hydroxybutyric acid in rats 
appears to be due to a weak GABAB receptor agonist action (BERNASCONI et 
al. 1992, 1999). This property also appears to explain its ability to reduce the 
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firing rate of dopamine neurones in the substantia nigra (ERHARDT et al. 1998) 
and may also be responsible for mediating its abuse potential (BERNASCONI 
et al. 1999). 

Three other potential areas for GABAB antagonist intervention are 
anxiety, depression and neurodegeneration but the evidence for these indica
tions is currently very limited. The possible significance in depression has pre
viously been reviewed in 1993 and 1995 (BOWERY 1993; KERR and ONG 1995). 
Although the evidence from animal models was equivocal the potential still 
remains as indicated in both of these reviews. Unfortunately little has changed 
since then to support or refute the idea. 

GABAB antagonists and agonists could both have the potential to produce 
neuroprotection. LAL et al. (1995) suggest that the baclofen, and not an antag
onist could be cytoprotective in a cerebral ischaemia model in gerbils. However 
very large doses, well in excess of that producing muscle relaxation, were 
required and these were administered 5 min before as well as 24 hand 48 h after 
the insult. Extensive studies with antagonists remain to be performed. 

Whilst the therapeutic indications for GABAB receptor antagonists 
appear to be limited, this may well change once the compounds are approved 
for medical use. However this still depends on the design of suitable agents. 
The design of selective GABAB receptor antagonists with increasing receptor 
affinity and improved pharmacokinetic profile has been an important process, 
so far, in establishing the significance and structure of GABAB sites rather 
than as potential therapeutic agents. Kerr and colleagues in Australia and 
Froestl and colleagues in Switzerland have primarily been responsible for this 
major contribution to the GABAB story. The former group produced the orig
inal selective antagonists, phac10fen and 2-hydroxy sac10fen (KERR et al. 1987, 
1988) whilst Froestl and Mickle's group subsequently made all the major high 
affinity compounds in the search for effective antagonists. They provided the 
first antagonist to cross the blood brain barrier after intraperitoneal injection, 
CGP 35348 (OLPE et al. 1990) and this was quickly followed by CGP 36742 
which was shown to be centrally-active after oral administration in rats (OLPE 
et al. 1993). However, both of these compounds and others in the same series 
have low potency even though they are selective for the GABAB receptor. The 
most crucial breakthrough in the discovery of antagonists came with the pro
duction of compounds with affinities about 10,000 times higher than any pre
vious antagonist. This major advance stemmed from the substitution of a 
dichlorobenzene moiety into the existing molecules. This produced a profu
sion of compounds with affinities in the nanomolar or even subnanomolar 
range (FROESTL et al. 1995b). Perhaps the most notable compounds among 
these are CGP 55845, CGP 54626 and CGP 62349 although many more were 
produced. This series eventually led to the development of the iodinated high 
affinity antagonist 12SI_CGP 64213 which was used in the elucidation of the 
structure of GABABl , the first half of the GABAB receptor dimer to be discov
ered (KAUPMANN et al. 1997). The only other compound exhibiting significant 
CNS activity after peripheral administration is SCH 50911 (BOLSER et al.1995). 
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H. Subtypes of Receptor 
GABAB receptors are unlikely to be homogeneous but at present it is unclear 
what are functionally distinct receptor subtypes. The recent data obtained from 
elucidation of the structure of the receptor has not provided any clear basis 
for receptor heterogeneity. However, many electrophysiological studies in 
mammalian brain suggest that there are subtle distinctions between pre- and 
post-synaptic receptors (DUTAR and NICOLL 1988; HARRISON et al. 1990; 
COLMERS and WILLIAMS 1988; THOMPSON and GAHWILER 1992; DEISZ et al. 1997; 
CHAN et al. 1998). Also, evidence from transmitter release studies suggests 
differences between receptors on different nerve terminals and between 
heteroreceptors and autoreceptors (GEMIGNANI et al. 1994; ONG et al. 1998; 
BONANNO et al. 1998) as does neurochemical evidence from the dual action of 
GABAB agonists on adenylate cyclase in brain slices (CUNNINGHAM and ENNA 
1996). Nevertheless, it remains to be seen how these apparent functional 
distinctions can be equated with the lack of diversity in receptor structure. A 
major problem in defining and establishing any differences in pharmacologi
cal characteristics is the lack of ligands with specificity for the proposed 
receptor sUbtypes. Although certain antagonists select for the four subtypes 
described by GEMIGNANI et al. (1994) on synaptosomes, these same compounds 
have not been reported to produce the same separation in other neuronal 
systems. Equally the suggested distinctions in other systems such as cAMP 
generation in brain slices (CUNNINGHAM and ENNA 1996) are not necessarily 
supported by, e.g. electrophysiological recording studies in brain slices. Thus, 
whilst subtypes have been described the effects of pharmacological agents do 
not seem robust enough to make unequivocal decisions about the status of 
multiple GABAB receptors in the brain. 
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CHAPTER 13 

GABAB Receptor Signaling Pathways 

SJ. ENNA 

A. Introduction 

The GABAB receptor was first identified and characterized on the basis of its 
sensitivity to baclofen and insensitivity to bicuculline, benzodiazepines, and 
other agents known to interact with the GABAA site (BOWERY et al. 1980). 
Earlier and subsequent electrophysiological studies with baclofen revealed 
that it causes a neuronal hyperpolarization and an increase in membrane con
ductance (CURTIS et al.1974;NEWBERRY and NICOLL 1985). Unlike the GABAA 

receptor, which is a Cl- ionophore, the electrophysiological responses to 
baclofen are due to changes in K+ and Cart conductances (NEWBERRY and 
NICOLL 1985). Moreover, GABAB receptor activation inhibits the evoked 
release of a number of transmitters from brain tissue, including glutamate, 
serotonin, dopamine and GABA itself (BOWERY et al. 1980; GRAY and GREEN 
1987; HUSTON et al. 1990; PENDE et al. 1993). Taken together, these data pro
vided compelling evidence that the GABAA and GABAB receptors represent 
pharmacologically, physiologically and molecularly distinct entities. The sub
sequent cloning of these sites provided unequivocal confirmation of this 
hypothesis (BARNARD 1995; MOHLER 1995; KAUPMANN et al. 1997). 

Following the initial discovery that GABA, acting through a baclofen
sensitive receptor, influences neuronal activity in a manner distinct from 
GABAA receptor agonists, experiments were undertaken to define the 
GABAB effector system. Up to that time amino acid neurotransmitters, such 
as glutamate, glycine, aspartate and GABA, all appeared to activate inotropic 
receptors. However, it soon became apparent that GABAB sites are coupled 
to G proteins, suggesting they are metabotropic (HILL et al. 1984; KARBON et 
al. 1984; ANDRADE et al. 1986; WOJCIK and NEFF 1984). Indeed, characteriza
tion of GABAB receptor-mediated second messenger responses yielded new 
insights into intracellular signaling pathways which have subsequently been 
found of relevance to a number of systems, including those for other amino 
acid transmitters. Moreover, the recent discovery that GABAB receptors func
tion as heteromers loosely linked at the carboxyl-terminal cytoplasmic tail pro
vides the first in vivo evidence of such coupling for metabotropic receptors 
(KAUPMANN and BETTLER 1998; JONES et al. 1998; KAUPMANN et al.1998; WHITE 
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et al.1998; KUNER et al.1999). The aim of this chapter is to provide an overview 
of the intracellular effects of GABAB receptor stimulation as they relate to 
the physiological responses to this substance. The underlying theme is that the 
intracellular responses to GABAB agonists may all be mediated by subunits 
of Go and G i which are liberated upon receptor activation. Those desiring more 
detailed information on individual aspects of this topic are urged to consult 
other sources (ENNA and BOWERY 1997; BEITLER et al. 1998; MALCANGIO and 
BOWERY 1995). 

B. Second Messenger Production 

I. Overview 

Once it was appreciated that GABAB receptors are metabotropic, attempts 
were made to determine which second messenger system(s) are regulated by 
this receptor. Early work suggested that baclofen reduces cGMP levels in cere
bellum, although it remains unclear whether this is a direct or indirect effect 
of the drug (MAILMAN et al.1978). While baclofen has been found to enhance 
phosphoinositide (PI) metabolism in dorsal root ganglia, by itself it does not 
appear to influence PI levels in neuronal tissue (DOLPHIN et al. 1989; GODFREY 
et al. 1988). Rather, GABAB receptor activation in rat brain cerebral cortex 
or hippocampus inhibits histamine-induced increases in PI turnover and 
enhances PI production stimulated by norepinephrine (GODFREY et al. 1988; 
CRAWFORD and YOUNG 1988; CORRADOTTI et al. 1987). Indeed, studies have 
shown that long-term potentiation in the cerebral cortex requires co
activation of GABAB receptors with those positively coupled to 1P3 formation 
(i.e., norepinephrine and serotonin) (KOMATSU 1996). The mechanism linking 
GABAB receptor activation with regulation of neurotransmitter-stimulated PI 
turnover in brain has yet to be defined. Further, it is unclear to what extent 
these effects contribute to the physiological effects of GABAB receptor ago
nists under normal circumstances. The data seem to support a coincident sig
naling between GABAB and other receptor systems with regard to PI turnover 
in some cells. Further work is necessary, however, to define more precisely the 
possible relationship between GABAB receptors, cGMP, and PI turnover. 

As opposed to these second messengers, there is little question that 
GABAB receptor activation influences cAMP production in brain tissue 
(CUNNINGHAM and ENNA 1997). Indeed, virtually all intracellular responses ini
tiated by GABAB receptor stimulation appear to be related to activation of 
G proteins known to influence production of this second messenger. 

II. cAMP 

Some of the earliest findings suggesting that GABAB receptors are coupled to 
G proteins were the discovery that agonist binding to this site is inhibited by 
guanyl nucleotides and that baclofen inhibits basal adenylyl cyclase activity in 
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Fig.I. Effect of baclofen on neurotransmitter and drug-induced cAMP formation in 
rat brain cerebral cortical slices. Open bars represent cAMP formation in the presence 
of a saturating concentration of the identified neurotransmitter or drug alone, whereas 
solid bars represent cAMP accumulation when the tissue was exposed to the saturat
ing concentration of the neurotransmitter or drug in the presence of a saturating con
centration of baclofen. Hist, histamine; iso, isoproterenol; NE, norepinephrine; VIP, 
vasoactive intestinal peptide; aden, adenosine; forsk, forskolin. Adapted from KARBON 
and ENNA (1985) 

rat brain membranes (HILL et al.1984; WOJCIK and NEFF 1984). While the latter 
discovery suggests the GABAB receptor is negatively coupled to adenylyl 
cyclase, it was found by others that stimulation of these sites enhances the 
increase in cAMP accumulation that occurs when brain slices are simultane
ously exposed to agents known to stimulate receptors positively coupled to 
this enzyme (Fig. 1) (KARBON et al. 1984; KARBON and ENNA 1985; HILL 1985; 
DUMAN et aI.1986). Thus, while a saturating concentration of baclofen has little 
effect on basal cAMP levels in rat brain cerebral cortical slices, it increases, 
twofold or more, the amount of cAMP produced in the presence of a satu
rating concentration of histamine, isoproterenol, norepinephrine, VIP, adeno
sine, or 2-CI-adenosine, all of which are known to stimulate receptors which 
activate adenylyl cyclase (Fig. 1). In contrast, forskolin-stimulated cAMP accu
mulation is inhibited by baclofen (Fig. 1). 

These effects of baclofen are stereos elective, with only the physiologically 
active isomer influencing cAMP production. Furthermore, only GABAB, but 
not GABAA, agonists and antagonists are effective in these cAMP assays 
(KARBON and ENNA 1985). Although it has been reported that the GABAB 
receptors mediating the augmentation of cAMP production may be pharma
cologically distinct from those responsible for inhibiting the response to 
forskolin, others have been unable to demonstrate pharmacological differ
ences in this regard, leaving open the question as to whether these actions are 
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mediated by different GABAB sites (SCHERER et al. 1988; CUNNINGHAM and 
ENNA 1996; KNIGHT and BOWERY 1996). Nonetheless, these data suggest that 
GABA, through an interaction with GABAB receptors, may either enhance or 
inhibit cAMP production, depending upon circumstances. 

To understand the relationship between GABAB receptors and cAMP 
production, studies were undertaken to determine the G protein(s) affiliated 
with this site. The results indicate that GABAB receptors are associated with 
Go and Gil, but not Gi2 or Gs (MORISHITA et al. 1990; Xu and WOJCIK 1986; 
WOJCIK et al. 1989). While this is consistent with the finding that baclofen 
inhibits adenylyl cyclase in brain membrane, and forskolin-stimulated cAMP 
accumulation in brain slices, coupling with these G proteins fails, in itself, to 
explain the ability of GABAB agonists to augment cAMP production in 
response to other neurotransmitters. 

A model to explain the differential effects of GABAB receptor stimula
tion on cAMP production evolved from discoveries made following the 
cloning and characterization of various isoforms of adenylyl cyclase (TANG and 
GILMAN 1991, 1992; TANG et al. 1992; TAUSSIG et al. 1993; YOSHIMURA and 
COOPER 1993). Of particular relevance was the finding that different types of 
adenylyl cyclase are differentially regulated by G protein subunits. For 
example, types II and IV adenylyl cyclase, both of which are found in brain, 
are only partially activated by Gsm requiring G fJr to be fully stimulated. Since 
Go represents 1 %-2% of membrane protein, it is a rich source of GfJr (TANG 
and GILMAN 1991). Inasmuch as GABAB receptors are coupled to both Gi and 
Go, activation of these sites results in the liberation of Gai , Gao, and significant 
quantities of GfJy, which have variable influences on cAMP production, 
depending upon the state of the adenylyl cyclases when GABAB receptors are 
stimulated (Fig. 2). 

Thus, if GABAB receptors are activated simultaneously with a receptor 
system (e.g., ,B-adrenergic) that liberates Gsa in the same cell, the G ifJr and GofJr 
resulting from GABAB receptor stimulation, together with the Gsa released by 
,B-adrenoceptor stimulation, fully activates these adenylyl cyclases, yielding a 
greater production of cAMP than would be possible with the Gsa-releasing 
agent alone (coincident signaling). The interaction between Gsa and G fJrin acti
vating adenylyl cyclases overwhelms any inhibitory effect on these enzymes 
resulting from the GABAB receptor-mediated release of Gim yielding a net 
increase in second messenger accumulation. 

On the other hand, when GABAB receptors are stimulated in the absence 
of Gsm the inhibitory effect of Gia on adenylyl cyclase predominates. This 
explains the results with forskolin, a diterpine that directly activates various 
forms of adenylyl cyclase. Since forskolin stimulates these enzymes in the 
absence of Gsa, there is no synergy between the G fJr liberated by GABAB 

receptor activation and forskolin-stimulated adenylyl cyclase. Rather, what is 
observed experimentally is inhibition of forskolin-stimulated cAMP accumu
lation by GABAB agonists, reflecting the receptor-mediated release of Gia 

(Figs. 1 and 2). 
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Fig. 2. Schematic representation of same intracellular responses to GABAB receptor 
activation. 1 GABA attachment to the GABAB receptor recognition site. 2 Activation 
of Go and/or G i protein, with consequent liberation of Gao, Gai and Gil)' 3 1Xi directly 
inhibits adenylyl cyclase, whereas Gill' in the present of Gas, stimulates some isoforms 
of adenylyl cyclase. 4 Increase or decrease in cAMP formation leads to an increase or 
decrease, respectively, in cAMP-responsive element (CRE)-driven gene transcription. 
5 Changes in CRE-driven gene transcription increases or decreases the production of 
a number of neurotransmitter-related peptides and proteins. 6 G ai and Gao inhibit Ca++ 
channels, whereas Gf:il' activates K+ channels 
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It is noteworthy that at saturating concentrations of baclofen the cAMP 
response to forskolin is inhibited only 50%-60% (Fig. 1) (CUNNINGHAM and 
ENNA 1996). This contrasts with the effects of LY354740, a groupII 
metabotropic glutamate receptor agonist which inhibits forskolin-stimulated 
cAMP production by 90% or more (SCHOEPP et al. 1998). Thus, it is possible 
that baclofen is only a partial agonist at the GABAB receptor which liberates 
Gia. Alternatively, forskolin may be activating isoforms of adenylyl cyclase that 
are not inhibited by the Gia liberated by GABAB agonists, but which are influ
enced by those G protein subunits associated with group II metabotropic glu
tamate receptors. If, however, baclofen is only a partial agonist at this site but 
a full agonist at receptors responsible for liberating Golh, this would lend 
further support to the notion that these two GABAB receptors may be phar
macologically distinct (CUNNINGHAM and ENNA 1996). 

This model explaining the dual effect of GABAB receptors on cAMP accu
mulation has been substantiated in Xenopus oocytes expressing poly (At 
RNA taken from rat brain cerebral cortex (UEZONO et al. 1997). While 
baclofen is inactive in this system when applied alone, it significantly enhances 
the cAMP response to isoproterenol or VIP. Moreover, the augmenting 
response to baclofen is enhanced further when type II adenylyl cyclase is coex
pressed in these oocytes, whereas the response to the GABAB agonist is abol
ished in the presence of pertussis toxin, demonstrating the involvement of Gi 
or Go. 

The physiological relevance of the effects of GABAB agonists on cAMP 
production is suggested by in vivo studies (HASHIMOTO and KURIYAMA 1997). 
Thus, as measured by micro dialysis, baclofen inhibits forskolin-induced 
increases in cAMP efflux from rat brain corpus striatum and enhances the 
amount of second messenger released when the brain region is perfused with 
isoproterenol. Inasmuch as these findings are identical to those obtained using 
rat brain slices in vitro, they demonstrate that GABA, through an interaction 
with GABAB receptors, inhibits or enhances in vivo cAMP accumulation in 
brain tissue, while having little effect by itself on the production of this second 
messenger. Thus, with regard to cAMP production, GABA serves more as a 
neuromodulator than as a neurotransmitter when activating GABAB sites. 

Taken together, these data indicate a complex series of intracellular sig
naling events resulting from GABAB receptor stimulation. These yield differ
ent biochemical and physiological responses depending upon the type of 
adenylyl cyclase present in the cell and the presence or absence of Gsa gener
ated from other sources. 

III. Gene Transcription 

While GABAB receptors are normally studied in the context of short-term 
effects on intracellular signaling or changes in ion conductance, it is conceiv
able that GABAB receptor-mediated modifications in cAMP production could 
ultimately influence gene expression. Indeed, it has been shown that forskolin-
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stimulated gene transcription in primary cultures of cerebellar granule 
neurons is inhibited by baclofen (BARTHEL et al. 1995). It was further demon
strated that this effect is secondary to baclofen-induced inhibition of forskolin
stimulated cAMP production, leading to the conclusion that GABAB receptor 
activity regulates cAMP-responsive element (CRE) binding protein-mediated 
gene transcription in brain. Given this, and the data indicating that activation 
of GABAB receptors may lead to either inhibition or enhancement of cAMP 
formation, it is conceivable that GABAB receptor agonists could either 
increase or decrease gene transcription (Fig. 2). Since CRE-driven transcrip
tion results in the production of a number of proteins important for neuro
transmission, such as tyrosine hydroxylase, GABAB receptor activation could 
contribute to maintaining function in a number of neurotransmitter systems. 

Studies aimed at examining the antinociceptive effects of GABAB ago
nists have revealed that chronic pain, or administration of GABAB agonists 
and antagonists, modifies neurokinin-1 and GABAB R1 and R2 receptor 
mRNA expression in the rat spinal cord (MCCARSON and ENNA 1996, 1999; 
ENNA et al. 1998) (Fig. 3). For example, R2 GABAB receptor mRNA is sig
nificantly elevated in both the ipsilateral and contralateral lumbar spinal cord 
dorsal horns 24 h after a formalin injection into the right hindpaw of the rat 
(Fig. 3). 

While an increase in neurokinin-1 mRNA may be due to GABAB recep
tor-mediated inhibition of substanceP release rather than to GABAB agonist
induced enhancement in cAMP formation and the resultant CRE-driven gene 
transcription, it is likely the latter mechanism is responsible for the increase 
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Fig.3. Expression of GABAB R2 mRNA in rat lumbar spinal cord 24h following for
malin injection into the right hindpaw. Open bars represent RNA levels in the con
tralateral dorsal horn, whereas solid bars represent the ipsilateral dorsal horn. Levels 
in the formalin-treated animals are significantly higher than in the untreated (naive) 
subjects. Adapted from MCCARSON and ENNA 1999 
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in GABAB R1 and R2 receptor mRNA in spinal sensory systems during 
chronic pain. Assuming that these changes in mRNA are indicative of an 
increase in the production of receptor proteins, such alterations probably play 
an important role in regulating the mediation, and perception, of chronic pain. 
Thus, intracellular signaling pathways activated or inhibited by GABAB recep
tor stimulation are capable of inducing long-term changes in synaptic activity, 
as well as short-term alterations in neuronal excitability. 

C. Calcium Channels 

Immediate responses to GABAB receptor activation include neuronal hyper
polarization and a reduction in excitatory postsynaptic potentials. Whereas the 
former appears due to a receptor-mediated increase in K+ conductance, the 
latter may be secondary to an inhibition of the release of excitatory neuro
transmitters by modification of presynaptic Ca++ currents (NEWBERRY and 
NICOLL 1985; DUNLAP 1981). While the effects on these two ions may be inde
pendent of one another, there are data suggesting that, in some cases, the mod
ification in calcium action potentials may be secondary to baclofen-induced 
changes in K+ conductance (DESARMENIEN et al. 1984). In any event, there is 
no question that activation of GABAB receptors modifies calcium currents in 
a variety of systems. 

The GABAB receptor-mediated effect on Ca++ appears due to a direct 
effect of Goa or Gia on the Ca++ channels, and is independent of the produc
tion of cAMP (Fig. 2) (HESCHELER et al. 1987; SURPRENANT et al. 1990). In con
trast, GfJr subunits have little effect on these channels. In particular, it appears 
that Goa is primarily responsible for mediating the inhibitory effect of GABAB 

receptor activation on neuronal calcium channels (CAMPBELL et al. 1993; 
MENON-JOHANSSON et al. 1993). 

A variety of Cart channels are affected by GABAB receptor activation, 
depending upon the cell type and the system examined (DEISZ and Lux 1985; 
HEIDELBERGER and MATTHEWS 1991; MENON-JOHNS SON et al. 1993; MINTZ and 
BEAN 1993). This includes T-, L-, N-, and P/Q-type Ca++ channels. For example, 
it has been demonstrated that baclofen-induced inhibition of GABA release 
from the suprachiasmatic nucleus in vitro is due to modulation of P/Q-type 
Cart channels in the axon terminal, whereas postsynaptic GABAB receptors 
inhibit N- and P/Q-type voltage-dependent Ca++ channels in rat supraoptic 
nucleus (CHEN and VAN DEN POL 1998; HARAYAMA et al. 1998). In both cases, 
the presynaptic response to baclofen is blocked entirely, but the postsynaptic 
response only partially, by pretreatment of the tissue with pertussis toxin. 
These data suggest that regulation of pre- and postsynaptic Cart currents by 
GABAB receptors requires activation of a G protein, most likely Go. although 
the postsynaptic effect may involve other mediators as well. It has also been 
proposed that prolonged GABAB receptor-mediated hyperpolarization de
inactivates T-type Cart channels in the thalamus, which may explain GABAB 
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agonist-induced absence seizures and the anti epileptic effects of GABAB 

receptor antagonists (CRUNELLI and LERESCHE 1991; MARESCAUX et al. 1992). 
While there is substantial evidence suggesting that GABAB receptor

mediated inhibition of neurotransmitter release is due primarily to blockade 
of presynaptic Ca++ channels by Gom some data indicate this effect on presy
naptic Ca++ channels may not, in all cases, fully explain regulation of neuro
transmitter release (TAKAHASHI et al.1998; DITTMAN and REGEHR 1996; HUSTON 
et al. 1995; SCANZIANI et al. 1992). 

The role of Gom and possibly Gim in mediating the effects of GABAB 

receptor agonists on Ca++ channels underscores the importance of Gi and Go 
in GABAB receptor signaling pathways. While the type of Ca++ channel 
affected may vary depending on the cell system, and the physiological 
responses to inhibition or deinactivation of channel activity may differ 
depending on the brain region and synaptic location, the common property 
shared by all of these ion channels is their regulation by G protein subunits 
liberated as a result of GABAB receptor stimulation. 

D. Potassium Channels 

One of the earliest observations regarding the action of baclofen is its ability 
to induce a late inhibitory postsynaptic potential (IPSP) in rat hippocampal 
cells in vitro (ALGER and NICOLL 1982; NEWBERRY and NICOLL 1985). This 
characteristic distinguishes GABAB from GABAA receptors since the latter 
induces a fast inhibitory postsynaptic potential/current. Subsequent work 
revealed the GABAB receptor-mediated late IPSP is due to a conductance 
increase in K+ ions (HOWE et al. 1987). This, in turn, was ultimately attributed 
to a GABAB receptor-mediated activation of inwardly rectifying K+ channels 
(GIRKs). Studies with oocytes transfected with poly (At rat cerebellar RNA 
and cRNAs for GIRKs revealed that baclofen elicits inwardly rectifying K+ 
currents only if both GIRKI and GIRK2 are coexpressed in the same cell, but 
not with either alone (UEZONO et al. 1998). Likewise, a point mutation, or com
plete knockout, of GIRK2 (Kir3.2) results in a decrease in GABAB receptor 
function in mouse hippocampal slices (JAROLIMEK et al. 1998; LUSCHER et al. 
1997). The change in the GABAB receptor response in this study was limited 
to postsynaptic sites, with the presynaptic action of baclofen being unaffected 
in the GIRK2 knockout mouse hippocampus. This suggests the interaction 
with these inwardly rectifying K+ channels by GABAB receptors accounts only 
for the postsynaptic effects of GABA. Besides GABAB sites, a number of 
other receptors have similar effects on postsynaptic K+ channels, including 
serotoninlA and adenosine Al receptors (LUSCHER et al. 1997). 

There is ample evidence suggesting that GABAB receptors regulate 
inwardly rectifying K+ channels through activation of G proteins, but is inde
pendent of cAMP formation (ANDRADE et al. 1986; THOMPSON and GAHWILER 
1992; O'CALLAGHAN et al. 1996). Work with GIRKs expressed in oocytes sug-
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gests these channels are activated by Gf3l' most likely GfllrJ. but not Ga or Gfllfi 
(Fig. 2) (REUVENY et al. 1994; TAKAO et al. 1994). Deletion experiments 
revealed the C-terminus of the GIRK is the regulatory region for the Gf3r 
subunit (TAKAO et al. 1994). The importance of K+ channel activation in the 
pharmacological response to GABAB agonists is demonstrated by the finding 
that the antinociceptive response to baclofen is completely abolished in mice 
following administration of a GIRK antisense oligo deoxyribonucleotide (anti
mKv 1.1) (GALEOTTI et al. 1997). 

Thus it appears that the GABAB receptor-induced late IPSP is due to a 
Gf3r-mediated activation of inwardly rectifying K+ channels. In contrast, the 
presynaptic effects of GABAB receptors is due to Ga-mediated inhibition of 
Cart channels. 

E. Conclusion 
Studies on the GABAB receptor/effector system have yielded new insights into 
transmitter-mediated signaling processes. Chief among these is the discovery 
that activation of GABAB receptors results in either inhibition or enhance
ment of cAMP formation. Subsequently it was found that other receptors 
coupled to G i and Go, such as metabotropic glutamate receptors, share this 
property. 

GABAB receptor studies have also provided evidence that G protein 
coupled receptors function as heteromers. This opens new possibilities for reg
ulation of receptor expression and pharmacological selectivity. 

Another major finding emanating from work on GABAB receptor signal
ing is that G proteins appear to be primarily responsible for mediating the 
intracellular response to GABA. Thus, liberated Ga and Gf3r subunits both 
participate in regulating cAMP formation which, ultimately, influences 
gene transcription. Likewise, both G a and Gf3r are directly responsible for 
the immediate effects of GABAB agonists on cellular activity, with the 
former inhibiting presynaptic and postsynaptic Cart channels which, in turn, 
influence neurotransmitter release, and the latter activating postsynaptic 
K+ channels to induce neuronal hyperpolarization. The widespread dis
tribution of GABAB receptors in brain and spinal cord, and the multiplicity 
of both short- and long-term effects resulting from GABAB receptor 
activation, reinforce the importance of this inhibitory neurotransmitter in 
maintaining central nervous system function. As more is learned about the 
differences among GABAB receptor subtypes in terms of structure, function, 
and, perhaps, intracellular signaling pathways, it will be possible to design 
new agents to pharmacologically manipulate this receptor system for thera
peutic gain. 
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CHAPTER 14 

Structure and Function of GABA Transporters 

B.I. KANNER 

A. Introduction 

Neurotransmitters are transported across two types of membranes: 

1. Plasma membranes of nerve endings (presynaptic), dendrites (post
synaptic) and glial cells (see KANNER and SCHULDINER 1987; PALACIN et al. 
1998 for reviews) 

2. Membranes of intracellular storage organelles (see SCHULDINER et al. 1995 
for a review) 

Transport into storage organelles is powered by the electrochemical 
proton gradient and does not require sodium. Its major function is to con
centrate the neurotransmitter from the cytoplasm into the storage organelles 
in preparation for exocytotic release. In addition to the family of vesicular 
transporters for biogenic amines and acetylcholine (SCHULDINER et al. 
1995), recently the first member of a new family of vesicular transporters -
carrying GABA and glycine - has been cloned (McINTIRE et al. 1997; SAGNE 
et al. 1997). 

Sodium-coupled transporters of neurotransmitters, located in neuronal 
and glial membranes surrounding the synapse, are thought to playa major role 
in maintaining low synaptic levels of the transmitter (for a review see KANNER 
and SCHULDINER 1987). Recently, this has been shown directly for the 
dopamine transporter using homozygous mice in which the transporter was 
disrupted (GIROS et al. 1996). Transporters of many neurotransmitters, includ
ing GABA, norepinephrine, serotonin, dopamine and glycine, belong to a large 
superfamily of sodium- and chloride-dependent neurotransmitter transporters 
(see UHL 1992 for a review). The noted exceptions are the transporters for 
glutamate which, together with small neutral amino acid transporters as well 
as prokaryotic glutamate and dicarboxylic acid transporters, form a separate 
family (KANNER 1993). The sodium-coupled neurotransmitter transporters are 
of considerable medical interest. Since they function to regulate activity of 
neurotransmitters by removing them from the synaptic cleft, specific trans
porter inhibitors can potentially be used as novel drugs for treatment of 
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neurological diseases. For instance, attenuation of GABA removal will 
prolong the effect of this inhibitory transporter, thereby potentiating its action. 
Consequently, inhibitors of GABA transport could represent a novel class 
of anti-epileptic drugs. Well-known inhibitors that interfere with the fun
ctioning of biogenic amine transporters include antidepressants such as fluox
etine (Prozac ) and citralopram, and stimulants such as amphetamines and 
cocaine. 

In this chapter we shall review our knowledge on the structure and func
tion of a prototype of the sodium- and chloride-coupled neurotransmitter 
transporters, the GABA transporter GAT-l. 

B. Stoichiometry 

GABA is accumulated by electrogenic co-transport with sodium and chloride. 
The electrogenicity of the process has been shown directly (KAVANAUGH et al. 
1992; MAGER et al. 1993). We have been able to demonstrate directly that both 
sodium as well as chloride ions are cotransported with GABA by the trans
porter. This has been accomplished using a partly purified transporter prepa
ration which was reconstituted into liposomes and the use of Dowex columns 
to terminate the reactions. These proteoliposomes catalyzed GABA- and chlo
ride-dependent 22[Na+] transport, as well as GABA- and sodium-dependent 
36[CI-] translocation (KEYNAN and KANNER 1988). Using this system the stoi
chiometry has also been determined kinetically, i.e. by comparing the initial 
rate of the fluxes of [3H]-GABA, 22[Na+] and 36[CI-]. The results are similar 
to those found using the thermodynamic method, yielding an apparent stoi
chiometry of 2.5 Na+: 1 Cl-: 1 GABA (RADIAN and KANNER 1983; KEYNAN and 
KANNER 1988). This is in harmony with the predicted restrictions; if GABA is 
translocated in the zwitterionic form - the predominant one at physiological 
pH - an electrogenic cotransport of the three species requires a stoichiome
try of nNa+:mCI-: GABA with n>m. Many other neurotransmitter transporters, 
including those for norepinephrine, dopamine, serotonin, choline and glycine, 
require chloride in addition to sodium for optimal activity (KUHAR and ZARBIN 
1978). 

c. Reconstitution and Purification 
Using the reconstitution methodology which enables one to reconstitute many 
samples simultaneously and rapidly, and employing sodium and chloride 
dependent GABA transport as an assay, one of the subtypes of the GABA 
transporter has been purified to an apparent homogeneity (RADIAN and 
KANNER 1985; RADIAN et al. 1986). It is a glycoprotein and has an apparent 
molecular weight of 70-80kDa. This GABAA transporter retains all the 
properties observed in membrane vesicles, and represents the first cloned 
neurotransmitter transporter GAT-1 (see also Sect. E). 
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D. Biochemical Characterisation of the 
GABA Transporter 
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The effect of proteolysis on the function of the transporter was examined. 
It was purified using all steps except for the lectin chromatography 
(RADIAN et al. 1986). After papain treatment and lectin chromatography, 
GABA transport activity was eluted with N-acetyl glucosamine. The charac
teristics of transport were the same as that of the pure transporter (KANNER 

et al. 1989). 
In order to define which regions of the transporter were cleaved, anti

bodies were raised against synthetic peptides corresponding to several regions 
of the rat brain GABA transporter. Both amino and carboxyl termini are pre
dicted to be located in the cytoplasm. The antibodies recognized the intact 
transporter on Western blots. The papainized transporter runs on sodium 
dodecyl sulfate-polyacrylamide gels as a broad band with an apparent molec
ular mass between about 58kDa and 68kDa as compared to 80kDa for the 
untreated transporter. The transporter fragment was recognized by all the anti
bodies, except for that raised against the amino terminus. Pronase cleaves 
the transporter to a relatively sharp 60kDa band, which reacts with the anti
bodies against the internal loops but not with either the amino- or the car
boxyl-termini. This pronase-treated transporter, upon isolation by lectin 
chromatography, was reconstituted. It exhibits full GABA transport activity. 
This activity exhibits the same features as the intact system including an 
absolute dependence on sodium and chloride as well as electrogenicity. Thus 
the amino- and carboxyl-terminal parts of the transporter are not required for 
functionality (MABJEESH and KANNER 1992). 

Fragments of the (Na++Cl-)-coupled GABAA transporter, now known as 
GAT-I, were produced by proteolysis of membrane vesicles and reconstituted 
preparations from rat brain (MABJEESH and KANNER 1993). The former were 
digested with pronase, the latter with trypsin. Fragments with different appar
ent molecular masses were recognized by sequence directed antibodies raised 
against this transporter. When GABA was present in the digestion medium 
the generation of these fragments was almost entirely blocked (MABJEESH and 
KANNER 1993). At the same time, the neurotransmitter largely prevented the 
loss of activity caused by the protease. The effect was specific for GABA; pro
tection was not afforded by other neurotransmitters. It was only observed 
when the two cosubstrates, sodium and chloride, were present on the same 
side of the membrane as GABA (MABJEESH and KANNER 1993). The results 
indicate that the transporter may exist in two conformations. In the absence 
of one or more of the substrates, multiple sites located throughout the trans
porter are accessible to the proteases. In the presence of all three substrates 
- conditions favouring the formation of the translocation complex - the con
formation is changed such that these sites become inaccessible to protease 
action. Further evidence on the ability of GAT-l to undergo conformational 
changes upon substrate binding will be discussed in Sect. G. 
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E. A New Superfamily of Na-Dependent 
Neurotransmitter Transporters 

Partial sequencing of the purified GABAA transporter allowed the cloning of 
the first member of the new family of Na-dependent neurotransmitter trans
porters (GUASTELLA et al. 1990). After expression cloning of the noradrena
line transporter, it became clear that it had significant homology with the 
GABAA transporter (PACHOLCZYK et al. 1991). The use of functional c-DNA 
expression assays and amplification of related sequences by polymerase chain 
reaction (PCR) resulted in the cloning of additional transporters which belong 
to this family, such as the dopamine and serotonin transporters, additional 
GABA transporters, transporters of glycine, proline, taurine, betaine, creatine 
and orphan transporters, whose substrates are still unknown (BLAKELY et al. 
1991; HOFFMAN et al. 1991; KILTY et al. 1991; SHIMADA et al. 1991; USDIN et al. 
1991; BORDEN et al. 1992; CLARK et al. 1992; FREMEAU et al. 1992; GUASTELLA 
et al. 1992; Lm et al. 1992a,b, 1993a,b; LOPEZ-CORCUERA et al. 1992; SMITH et 
al. 1992; UCHIDA et al. 1992; UHL et al. 1992; YAMAUCHI et al. 1992; GUIMBAL 
and KILIMANN 1993). Another glycine transporter cDNA encoding for a 799 
amino acid protein has been isolated. This is significantly longer than most 
members of the superfamily. It appears to encode for the 100kDa glycine 
transporter which was purified and reconstituted (LOPEZ-CORCUERA et al. 
1991). 

F. Topology 
When GAT-1 was cloned (GUASTELLA et al. 1990), its protein sequence was 
analysed using hydropathy plotting to identify transmembrane a-helices. 
According to this analysis the transporter is composed of twelve putative 
transmembrane a-helices. The lack of a signal peptide suggests that both 
amino- and carboxyl-termini face the cytoplasm. These regions contain con
sensus phosphorylation sites that may be involved in the regulation of the 
transport process. The second extracellular loop between helices 3 and 4 is the 
largest, and it contains three consensus N-linked glycosylation sites. All three 
sites are in fact used (BENNETT and KANNER 1997). The same topology was pre
dicted for the other transporters of the family because of the high similarity 
of their hydropathy plots. 

The proposed topology was examined experimentally by N-glycosylation 
insertion scanning mutagenesis (BENNETT and KANNER 1997). The three 
endogenous glycosylation sites were removed by site-directed mutagenesis. 
The deglycosylated transporter, which ran faster on SDS-polyacrylamide gels 
due to its reduced mass, had almost the same transport activity as the wild 
type. This construct was used to insert N-linked glycosylation sites at various 
positions and, using the mobility assay, the glycosylation status for the various 
expressed constructs was determined. If the expressed construct is glycosy-
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lated and active in GABA transport, the site inserted is extracellular. This 
approach enabled us to confirm the predicted topology from transmembrane 
domain 4 till the carboxyl terminus. An unexpected result was found in the 
amino terminal part, where the predicted first intracellular loop was found to 
be glycosylated. The interpretation of this result is ambiguous because the con
struct was devoid of transport activity. If this loop is external this would lead 
to a different topology in the amino terminal part. The predicted transmem
brane domain 1 becomes a reentrant loop (for the inside), transmembrane 
domain2 becomes domain1 and in addition to transmembrane domain3 
another has to be postulated in order for the large loop, containing the endoge
nous glycosylation sites, to be on the outside (BENNETT and KANNER 1997). A 
similar model was proposed (OLIVARES et a1. 1997) based on experiments with 
the glycine transporter GlyTl. Subsequently a modified model for GAT-1 was 
proposed (Yu et a1. 1998) with the predicted transmembrane domain 2 serving 
as a reentrant loop. A detailed study on the related serotonin transporter 
(CHEN et a1. 1998) provides quite convincing evidence that the originally pre
dicted topology (GUASTELLA et a1. 1990) is correct. Therefore, it appears that 
this will also be the case for all the members of the sodium- and chloride
dependent neurotransmitter transporter family. 

G. Structure-Function Relationships 
It has been shown previously that parts of amino- and carboxyl-termini of the 
GABAA transporter are not required for function (MABJEESH and KANNER 
1992). In order to define these domains, a series of deletion mutants was 
studied in the GABA transporter (BENDAHAN and KANNER 1993). Transporters 
truncated at either end until just a few amino acids distance from the begin
ning of helix 1 and the end of helix 12, retained their ability to catalyse sodium 
and chloride-dependent GABA transport. These deleted segments did not 
contain any residues conserved among the different members of the super
family. Once the truncated segment included part of these conserved residues, 
the transporter's activity was severely reduced. However, the functional dam
age was not due to impaired turnover or impaired targeting of the truncated 
proteins (BENDAHAN and KANNER 1993). 

The substrate translocation performed by the various members of the 
superfamily is sodium- and usually chloride-dependent. In addition, some of 
the substrates contain charged groups as well. Therefore, charged amino acids 
in the membrane domain of the transporters may be essential for their normal 
function. This was tested using the GABA transporter (PANTANOWITZ et a1. 
1993). Out of five charged amino acids within its membrane domain, only one, 
arginine69 in helix 1, is absolutely essential for activity. It is not merely the pos
itive charge that is important, since even its substitution to other positively 
charged amino acids does not restore activity. The functional damage is not 
caused by impaired turnover or impaired targeting of the mutated protein. The 
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three other positively charged amino acids and the only negatively charged 
one are not critical (PANTANOWITZ et al. 1993). 

The transporters of biogenic amines contain an additional negatively 
charged residue in helix 1. Replacement of aspartate-79 in the dopamine trans
porter with alanine, glycine or glutamate significantly reduced the uptake of 
dopamine and MPP+ (parkinsonism-inducing neurotoxin), and binding of eFT 
(cocaine analog) without affecting Bmax (KITAYAMA et al.1992). Further support 
for the idea that aspartate-79 in helix 1 interacts with dopamine's amino group 
during the transport process has been obtained recently (BARKER et al. 1999). 
In all the amino acid transporters of the family, including GAT-1, the equiva
lent position of aspartate-79 of the dopamine transporter is occupied by 
glycine. In GAT-1 mutation of this glycine to aspartate or alanine leads to inac
tive transporters (E.R. Bennett and B.I. Kanner, unpublished observations). 

Studies of other proteins indicate that, in addition to charged amino acids, 
aromatic amino acids containing n-electrons are also involved in maintaining 
the structure and function of these proteins (SUSSMAN and SILMAN 1992). 
Therefore, tryptophan residues in the membrane domain of the GABA trans
porter were mutated into serine as well as leucine (KLEINBERGER-DoRON and 
KANNER 1994). Mutations at the 68 and 222 positions (in helix 1 and helix4, 
respectively) led to a decrease of over 90% of the GABA uptake. Mutation 
at position 68 led to increased sodium affinity (MAGER et al. 1996). 

We have identified a single tyrosine residue that is critical for GABA 
recognition and transport. It is completely conserved throughout the super
family, and even substitution to the other aromatic amino acids, phenylalanine 
(Y140F) and tryptophan (Y140W), results in completely inactive transporters. 
Electrophysiological characterisation reveals that both mutant transporters 
exhibit the sodium-dependent transient currents associated with sodium 
binding, as well as the chloride-dependent lithium leak currents characteristic 
of GAT-1. On the other hand, in both mutants GABA is neither able to induce 
a steady-state transport current nor to block their transient currents. The non
transportable analogue SKF100330A potently inhibits the sodium-dependent 
transient in the wild type GAT-1 but not in the Y140W transporter. It partly 
blocks the transient ofY140F. Thus, although sodium and chloride binding are 
unimpaired in the tyrosine mutants, they have a specific defect in the binding 
of GABA. The total conservation of the residue throughout the family sug
gests that tyrosine 140 may be involved in the liganding of the amino group, 
the moiety common to all the neurotransmitters (BISMUTH et al. 1997). 

We have explored the role of the hydrophilic loops connecting the put a
tive transmembrane domains. Deletions of randomly picked non-conserved 
single amino acids in the loops connecting helices 7 and 8 or 8 and 9 result in 
inactive transport upon expression in He La cells. However, transporters where 
these amino acids are replaced with glycine retain significant activity. The 
expression levels of the inactive mutant transporters were similar to those of 
the wild-type, but one of these, ~Val-348, appears to be defectively targeted 
to the plasma membrane. Our data are compatible with the idea that a minimal 
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length of the loops is required, presumably to enable the transmembrane 
domains to interact optimally with each other (KANNER et al. 1994). Further
more, it is possible that parts of some of the loops may line the translocation 
pathway of the transporter. Consistent with this is the critical role of residue 
glutamate 101 located in the first intracellular loop of GAT-l in GABA trans
port. Its replacement to aspartate leaves only 1 % of the transport activity 
(KESHET al. 1995). The fifth extracellular loop of the GABA transporters plays 
a role in substrate selectivity. GAT-l is inhibited by ACHC, but not by f3-
alanine (KEYNAN et al. 1992). Replacement of the residues of this external loop 
by those from GAT-3, which is sensitive to f3-alanine, leads to an increased 
sensitivity of GAT-l to this analog (TAMURA et al. 1995). 

Transport by GAT-l is sensitive to the polar sulfhydryl-reagent (2-
aminoethyl) methanethiosulfonate. Following replacement of endogenous 
cysteines to other residues by site-directed mutagenesis, we have identified 
cysteine-399 as the major determinant of the sensitivity of the transporter 
to sulfhydryl modification. Cysteine-399 is located in the intracellular loop 
connecting putative transmembrane domains 8 and 9. Binding of both sodium 
and chloride leads to a reduced sensitivity to sulfhydryl reagents, whereas 
subsequent binding of GABA increases it. Strikingly binding of the non
transportable GABA analogue SKF 100330A gives rise to a marked pro
tection against sulfhydryl modification. These effects were not observed in 
C399S transporters. Under standard conditions GAT-l is almost insensitive 
toward the impermeant [2-(trimethylamonium)ethyl] methanethiosulfonate. 
However, in a chloride-free medium addition of SKF 100330A renders wild 
type GAT-I, but not C399S, very sensitive to this impermeant reagent. These 
observations indicate that the accessibility of cysteine-399 is highly dependent 
on the conformation of GAT-l (GOLOVANEVSKY and KANNER 1999). 

H. Conclusions 
A series of breakthroughs, including the purification of some of the sodium
coupled neurotransmitter transporters, followed by the cloning of their 
cDNAs, have considerably improved our understanding of the structure of 
these transporters. Studies using site-directed mutagenesis revealed the impor
tance of specific residues in the function of these transporters. Additional 
mutations and further functional characterisation of all the mutated trans
porters should help to understand the functional contribution of different 
segments of these proteins to the overall transport process. Applying inde
pendent structural approaches will complement and extend our knowledge of 
the structure and function of these transporters. 
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CHAPTER 15 

Pharmacology of GABA Transporters 

IE. CLARK and w.A. CLARK 

A. Introduction 

It is widely accepted that r-aminobutyric acid (GABA) is the major inhibitory 
neurotransmitter in the mammalian central nervous system (CNS). Disrup
tions in GABAergic neurotransmission are implicated in a number of neur
ological and psychiatric disorders including epilepsy, schizophrenia, and 
affective disorders (BRAESTRUP and NIELSEN 1982; PERRY et al. 1973; SPOKES 
1980; LOSCHER and SCHWARTZ-PORSCHE 1986; REYNOLDS et al. 1990; 
HAMBERGER et al. 1991; BENES et al. 1992; SIMPSON et al. 1989, 1992; DURING et 
al. 1995; RIBAK et al. 1979; MELDRUM 1975; LLOYD et al. 1977; ENNA et al. 1976). 
There are then several clinical situations in which GABAmimmetic agents 
may prove therapeutically useful. In particular, because potentiation of 
GABAergic function is recognized as a means of producing anticonvulsant 
activity (MELDRUM 1995), it is reasonable to expect that low extracellular 
GABA concentrations be associated with poor seizure control (PETROFF et al. 
1996). Development of specific compounds which block reuptake or metabo
lism of GABA or stimulate particular GABA receptor subtypes will likely be 
useful in the treatment of conditions where a deficit in GABAergic tone is 
implicated. 

GABA is produced from glutamic acid by glutamic acid decarboxylase 
(GAD) and sequestered in a vesicular compartment (Fig. 1). Upon release 
from a presynaptic terminal, GABA may bind to two classes of receptors: 
GABAA ligand gated ion channels and GABAB G protein coupled receptors. 
GABAergic neurotransmission is terminated primarily by a specific high
affinity transport mechanism (IVERSEN and NEAL 1968), the discovery of which 
aided in establishing the neurotransmitter status of this amino acid. Following 
transport into glia or reuptake into the presynaptic terminal, GABA is con
verted to succinic acid semi-aldehyde (SSA) by GABA transaminase. Figure 
1 illustrates a number of possible sites for pharmacological intervention in the 
GABAergic synapse. Whereas specific agents have been developed to inter
act with many of these target proteins (for review see KROGSGAARD-LARSEN 
and BUNDGAARD 1991), the remainder of this review will focus on compounds 
targeting GABA transport, the application of these agents in basic research 
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Fig. 1. Schematic model of a GABAergic synapse illustrating sites potentially suscep
tible to pharmacological manipulation. GABA, y-aminobutyric acid; GABA-T, GABA 
aminotransferase; GABAAR, GABAA receptor channel; GABABR, GABAB G-protein 
coupled receptor; GAD, glutamic acid decarboxylase; GAT, GABA transporter; SSA, 
succinic acid semialdehyde; a, /3, y, trimeric guanine nucleotide binding protein 
subunits 

for determining physiological roles of GABA transport, and their therapeutic 
potential in treating disease states where an increase in GABAergic input is 
indicated. 

B. Physiological Relevance of GABA Transporters 

A number of investigations have elucidated specific physiological roles for 
GABA transporters. Inhibition of transport in rat hippocampus prolonged the 
decay phase of both GABAA- and GABAB-mediated postsynaptic potentials 
and increased the magnitude of GABAB-mediated responses (ISAACSON et al. 
1993; DINGLEDINE and KORN 1985; SOLIS and NICOLL 1992). In toad and catfish 
retinal horizontal cells, calcium-independent GABA efflux through reversal of 
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the transporter appeared to be the major mode of GABA release (SCHWARTZ 
1987). Reversal of GABA transport in rat hippocampus by depolarization 
and/or reversal of the sodium gradient resulted in activation of GABA recep
tors (GASPARY et a1. 1998). In the clinical sphere, decreased transporter
mediated GABA efflux was detected in the affected hippocampus of human 
subjects having temporal lobe epilepsy. This reduction in calcium-independent 
GABA efflux stemmed from a decreased number of GABA transporters and 
appeared to contribute to reduced inhibitory tone (DURING et a1.1995). Finally, 
BERNSTEIN and QUICK (1999) recently demonstrated that extracellular GABA 
modulated GABA transporter function. Specifically, exogenous GABA 
caused a dose-dependent increase in transporter number apparently by 
slowing transporter turnover. 

Despite the multitude of studies which confirm that GABAergic function 
can be altered as a direct result of inhibition of GABA transport, we must 
note that small increases in extracellular GABA concentrations are not readily 
detectable in vivo when transport is blocked. Whereas dose-dependent 
increases in extracellular GABA were detected with i.p. administration of 
high doses of tiagabine, NNC-711, or SK&F 89976A, no such changes were 
detectable at lower doses that are known to have anticonvulsant effects 
(WALDMEJER et a1. 1992; RICHARDS and BOWERY 1996). Therefore, the physio
logical alterations that are discerned with administration of GABA transport 
inhibitors in vivo and in vivo are not consistently accompanied by easily 
detectable elevations in extracellular GABA. However, this does not exclude 
the possibility that small changes in extracellular GABA do occur at doses of 
uptake inhibitors known to have anticonvulsant effects. In particular, inter
pretation of results from micro dialysis experiments must take into account the 
limitations of this method. Much of dialysate GABA is derived from meta
bolic, rather than synaptic, pools (SAYIN et a1. 1995). This confound is exacer
bated by the spatial limitations of the micro dialysis approach and long 
sampling intervals necessary to measure extracellular GABA. Yet even in the 
absence of conclusive data, a large body of experimental evidence strongly 
suggests that blockade of transporters at low doses of transport inhibitors has 
physiologically relevant effects on GABAergic transmission. Thus, GABA 
transporters are reasonable targets for the development of compounds for the 
treatment of diseases where enhanced inhibition is required. 

c. 'Neuronal'- and 'Glial'-Specific GABA 
Transport Inhibitors 

Early studies of native GABA transporters were aided by the use of such 
GABA analogs as j3-alanine, cis-3-aminocyclohexanecarboxylic acid (ACHC), 
and L-2,4-diaminobutyric acid (L-DABA) (Fig. 2), that are specific competi
tive inhibitors of GABA transport (SCHON and KELLY 1974,1975; IVERSEN and 
KELLY 1975; BOWERY et a1. 1976). These investigations yielded two principal 



358 

GABA 

o 

II uOH 
N 
H 

(R)-Nipecotic Acid 

IE. CLARK and w.A. CLARK 

o 

OH 

~-Alanine L-DABA 

Guvacine ACHC 

Fig.2. GABA and classical competitive inhibitors of GABA transport 

findings. First, reuptake of GABA was determined to be the primary means 
of maintaining low extracellular GABA concentrations. Second, transport 
mechanisms appeared heterogeneous and were broadly classified based on 
pharmacological sensitivities to these GABA uptake inhibitors. Transport into 
neurons was effectively inhibited by ACHC (BOWERY et al. 1976) or by L
DABA (IVERSEN and KELLY 1975; LARSSON et al. 1983) whereas transporters 
in central and peripheral glia transported f3-alanine and were inhibited by 13-
alanine (SCHON and KELLY 1974, 1975; GAVRILOVIC et al. 1984). GABA trans
porters were hence defined as 'neuronal' or 'glial' based upon these criteria. 
However, a number of discrepancies arose in the literature indicating that 
transport processes exhibited greater complexity than this pharmacological 
classification allowed. Studies of primary cultures of rat retinal MOller cells 
(IVERSEN and KELLY 1975), cerebellar stellate astrocytes (CUMMINS et al. 1982; 
LEVI et al. 1983), and oligodendrocytes (REYNOLDS and HERSCHOWITZ 1986) 
revealed that not all glial GABA transport was sensitive to f3-alanine, nor was 
f3-alanine a substrate for all glial GABA transport systems. In fact, transport 
in rat retinal MOller cells and cerebellar stellate astrocytes was sensitive to the 
putatively neuronal transport-selective agents ACHC and L-DABA (IVERSEN 
and KELLY 1975; LEVI et al. 1983). These complexities of GABA transport 
processes underscored the need for cloning and expression of the transporter 
species to resolve the observed inconsistencies. 
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D. GABA Transporter Heterogeneity 

Recent molecular cloning studies identified a family of high affinity GABA 
transporters having unique primary sequences and pharmacological profiles. 
Five transporters were identified (GAT-1 (GUASTELLA et al. 1990), GAT-B or 
GAT-3 (CLARK et al. 1992; BORDEN et al. 1992), GAT-2 (BORDEN et al. 1992), 
BGT-1 (YAMAUCHI et al. 1992), and TAUT (SMITH et al. 1992)), which trans
ported GABA with varying affinities (Table 1). GAT-I, originally isolated 
from rat brain, transported GABA with high affinity and was sensitive to the 
GABA transport inhibitors ACHC and L-DABA (KM = 7.0pmol/l) 
(GUASTELLA et al. 1990). GAT-3 was isolated from rat midbrain, transported 
both GABA and j3-alanine with relatively high affinity (KM = 2.3 pmolll and 
6.7 pmolll, respectively) (CLARK et al. 1992), and was inhibited by j3-alanine. 
GAT-2, also isolated from rat brain, transported GABA with relatively high 
affinity (KM = 8pmolll) (BORDEN et al. 1992), and was sensitive to j3-alanine 
(ICso = 19 pmol/l) (BORDEN et al. 1994a). BGT-1, cloned first from Madin
Darby canine kidney (MDCK) cells (YAMAUCHI et al. 1992) and later from 
neonatal mouse brain (Lm et al. 1993), transported both GABA and the 
osmolyte betaine. The relative affinity of BGT-1 for GABA was several 
fold higher than that for betaine (KM = 93 pmolll and 398 pmolll, respectively) 
(YAMAUCHI et al. 1992). TAUT, isolated both from MDCK cells and rat brain, 
exhibited high affinity transport for taurine (KM = 10 pmol/l) , low affinity 
for GABA (KM = 1 mmol/l), and was inhibited by f3-alanine (ICso = 100 pmolll) 
(SMITH et al. 1992). The identification of a subfamily of transporters that 
transported j3-alanine with high affinity suggested that the glial GABA trans
porter had been identified. However, data from in situ hybridization histo
chemistry and immunocytochemistry for the cloned transporters could not be 
reconciled with the pharmacological characterization of native transporters as 
strictly 'neuronal' or 'glial.' The most abundant GABA transporter message in 
the rat brain, GAT-I, was found principally in neurons (DURKIN et al. 1995; 
RATTRAY and PRIESTLEY 1993). Yet GAT-1 mRNA was also identified in certain 
specialized glial cells including Muller cells of the retina (BRECHA and 
WEIGMANN 1994) and Bergmann glia in the cerebellum (RATTRAY and PRIEST
LEY 1993), providing an explanation for the earlier finding that some glia were 
capable of transporting L-DABA and ACHC (IVERSEN and KELLY 1975; LEVI 
et al. 1983). Similarly, GAT-3 mRNA was identified in both neuronal and 
glial cell populations throughout the rat brain (DURKIN et al. 1995; CLARK 
et al.1992), indicating that select putative 'neuronal' GABA transporters also 
transport j3-alanine. In summary, molecular studies have identified a class of 
Na+- and Cl--dependent transporters that transport GABA with varying affini
ties and that cannot be characterized strictly as neuronal or glial based on 
pharmacological sensitivities. These molecular details of GABA transport are 
fairly recent developments and significantly add to our fundamental 
knowledge of the actions of transport inhibitors from studies predating the 
cloning achievements. 
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Compounds with increased potency and specificity are persistently sought to 
aid in examining the physiological relevance of GABA transport and its con
tributions to GABAergic neurotransmission. 4,5,6,7-Tetrahydroisoxazolo[4,5-
c]pyridin-3-01 (THPO), an analogue of the potent GABAA receptor agonist 
muscimol (KROGSGAARD-LARSEN and JOHNSTON 1975), specifically inhibited 
GABA transport and displayed no measurable affinity for GABAA receptors 
(KROGSGAARD-LARSEN 1980). THPO was one of the first specific GABA uptake 
inhibitors found to display anticonvulsant properties in rodent models of 
epilepsy (CROUCHER et al.1983), and its actions were initially attributed to spe
cific inhibition of glial GABA transport (KROGSGAARD-LARSEN 1980). This 
work confirmed previous data with less lipophilic glial and neuronal GABA 
uptake inhibitors exhibiting anticonvulsant properties in the rodent (FREY et 
al. 1979; HORTON et al. 1979). Taken together, data from studies with THPO 
and related compounds delineated the GABA transporter as a potential target 
for the development of anticonvulsants and highlighted the need for more 
potent, specific, lipophilic compounds. 

II. Prodrugs of Nipecotic Acid, Hydroxynipecotic Acid, 
and Isoguvacine 

Nipecotic acid and guvacine (Fig. 2) are specific GABA transport inhibitors 
and substrates for all of the GABA transporters identified to date. However, 
these compounds are neither selective nor potent, nor do they penetrate the 
blood-brain barrier well. In an attempt to generate more lipophilic GABA 
transport inhibitors that would more readily cross the blood-brain barrier, pro
drugs of the transporter specific agents nipecotic acid, hydroxynipecotic acid, 
and isoguvacine were developed (FREY et al. 1979; LOSCHER 1982; FALCH and 
KROGSGAARD-LARSEN 1981; CROUCHER et al.1983; BONINA et al.1999). Systemic 
administration of (±)-nipecotic acid or (±)-cis-4-hydroxynipecotic acid pro
vided no protection against audiogenic seizures in genetically susceptible mice 
(DBA/2 mice) (CROUCHER et al. 1983; BONINA et al. 1999). In contrast, i.p. 
administration of (±)-nipecotic acid pivaloyloxymethyl ester or (±)-cis-4-
hydroxynipecotic acid methyl ester protected against both chemically- and 
sound-induced seizures (CROUCHER et al. 1983). The authors noted, however, 
that following systemic administration of these esters, a range of cholinergic 
side effects and an apparent 'GABA toxicity' were observed. Recently, 
another prodrug of nipecotic acid, nipecotic acid tyrosine ester, protected 
against audiogenic seizures in a dose-dependent manner with no apparent 
cholinergic side effects when administered i.p. in DBA/2 mice (BONINA et al. 
1999). Nipecotic acid tyrosine ester was a more potent anticonvulsant (tonic 
seizure, EDso = O.13mmollkg and clonic seizure, EDso = 0.173mmollkg) 
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(BONINA et al. 1999) than nipecotic acid pivaloyloxymethyl ester and cis-4-
hydroxynipecotic acid methyl ester (tonic and clonic seizures: ED so = 

1.7mmollkg and approximately 3.0mmollkg, respectively) (CROUCHER et al. 
1983). However, nipecotic acid tyrosine ester was less potent than the GAT
I-selective uptake inhibitor tiagabine (tonic seizure, EDso = l.umollkg and 
clonic seizure, ED so = 5.umol/kg) (BONINA et al. 1999). While prodrugs have 
largely been more effective in penetrating the blood-brain barrier than the 
parent compounds, data generated with these compounds raise different con
cerns for drug development. Some undesirable characteristics of prodrugs 
include low potency, ability to act as false transmitters at GABAergic termi
nals, and serious side effects following generation of toxic products, all of 
which pose challenges in the current development of potent GABA uptake 
inhibitors for systemic administration. 

III. Nipecotic Acid and Guvacine Derivatives 

In further efforts to design lipophilic GABA uptake inhibitors having higher 
potency for in vivo study and potential therapeutic use, YUNGER et al. (1984) 
initiated synthesis of compounds structurally related to nipecotic acid and 
guvacine (Fig. 2). Armed with evidence that many neuroleptics reportedly 
block synaptosomal accumulation of GABA (FJALLAND 1978), Yunger and col
leagues substituted lipophilic side chains, reminiscent of those found in the 
structures of some neuroleptics, onto the nitrogen atom of amino acids known 
to block GABA uptake. This work resulted in a novel series of selective and 
potent agents that readily penetrated the blood-brain barrier after peripheral 
administration. Attachment of a 4,4-diphenyl-3-butenyl group to the amines 
of nipecotic acid and guvacine resulted in the compounds N-( 4,4-diphenyl-
3-butenyl)-nipecotic acid (SK&F 89976A) (Fig. 3) and N-(4,4-diphenyl-
3-butneyl)-guvacine (SK&F 100330A) (Fig. 4). Both compounds were potent 
competitive inhibitors of GABA uptake and were not substrates for the 
carrieres). Each agent was -20-fold more potent than the cognate parent com
pound in competing GABA interaction with carrieres) in rat diencephalic 
membranes (Table 1) (YUNGER et al. 1984). In addition, each novel compound 
was found to have potent and relatively long-acting anticonvulsant activity in 
rats and mice following oral or i.p. administration (YUNGER et al. 1984). Elec
trophysiological studies determined that these compounds increased GABA
mediated inhibition in vivo in the rat CNS (ALBERTSON and JOY 1987). Further 
work confirmed that these compounds potentiated GABAergic tone by block
ing GABA uptake resulting in increased seizure thresholds (SWINYARD et al. 
1991). 

Several other potent, selective, and relatively lipophilic derivatives of 
nipecotic acid and guvacine were developed using a strategy similar to that 
used for synthesis of the SK&F compounds. N-Alkylation of guvacine to yield 
[1-[2-bis[ 4-( trifluoromethyl )phenyl]-methoxy ]ethyl] -1 ,2,5,6-tetrahydro-3-
pyridine-carboxylic acid, or CI-966 (Fig. 4) (BJORGE et al. 1990), resulted in 
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an agent more potent than guvacine at inhibiting GABA uptake (Table 1) (for 
review see TAYLOR and SEDMAN 1991), and which did not serve as a transport 
substrate. CI-966 exhibited potent anticonvulsant activity in several rodent 
models of seizure following systemic administration. Inhibition of hippocam-
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pal population spikes elicited by microiontophoretic application of GABA in 
CAl was significantly enhanced in rats given systemic injections of CI-966 
(EBERT and KRNJEVIC 1990). These effects were attributed to a deficit in GABA 
clearance from the synapse due to GABA transport blockade by CI-966. Pre
liminary clinical studies in human subjects were discontinued, however, due to 
adverse neurological and psychological effects lasting for several days which 
arose at higher doses of CI-966 (for review see TAYLOR and SEDMAN 1991). The 
potent ability of CI-966 to block transport and the resulting action of excess 
synaptic GABA on GABA receptors may have elicited these adverse effects. 
Another guvacine derivative, 1-(2-((( diphenylmethylene )amino )oxy )ethyl)-
1,2,5,6-tetrahydro-3-pyridinecarboxylic acid, or NNC-711 (Fig. 4), displayed 
potent and selective GABA uptake inhibition with anticonvulsant activity in 
rodent models of seizure (SUZDAK et a1. 1992). NNC-711 was -85-fold more 
potent than the parent compound guvacine in inhibiting GABA uptake into 
a crude synaptosome preparation (Table 1) and remains the most potent 
GABA uptake inhibitor reported to date (SUZDAK et a1. 1992; BORDEN 1996). 
The nipecotic acid derivative (R)-N-[4,4-bis(3-methyl-2-thienyl)but-3-en-1-
yl]nipecotic acid, also tiagabine or NO 328 (Fig. 3), was found to be a potent 
non-competitive inhibitor, but not a substrate, of GABA transport (BRAESTRUP 
et a1. 1987). Tiagabine was -60-fold more potent than its parent compound 
nipecotic acid at inhibiting GABA uptake in crude rat brain synaptosomes 
(Table 1) (BRAESTRUP et a1.1990). Furthermore, tiagabine exhibited a relatively 
broad anticonvulsant activity in several rodent models of seizure at doses that 
did not produce sedation or motor debilitation, i.e., side effects commonly 
observed with other derivatives of nipecotic acid and guvacine (NIELSEN et a1. 
1991). At doses 10- to 14-fold those yielding anticonvulsant effects, tiagabine 
produced motor impairment. The ratio between anticonvulsant activity and 
motor disruption, or therapeutic index, was thus greater for tiagabine than for 
SK&F 100330A or any of the reference anti-epileptic drugs tested, suggesting 
that tiagabine may circumvent some neurological side-effects in humans 
(NIELSEN et a1.1991). Indeed, tiagabine has been approved in the United States 
as add-on therapy for refractory epilepsy (for review see LEACH and BRODIE 
1998) and is currently under investigation as a monotherapy for childhood and 
newly diagnosed epilepsy. Apparently the most specific anti epileptic drug in 
clinical use, tiagabine, is the only GABA transport inhibitor that has been 
studied extensively both in vitro and in vivo and found thus far to be both 
therapeutically useful and safe. 

F. Specific GABA Transport Inhibitors 
I. Compounds Selective for GAT-l 

The recent identification of four unique transporters having moderate to high 
affinity for GABA facilitated the examination of the selectivity of these potent 
nipecotic acid and guvacine derivatives in the hope of determining their mo-
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lecular site(s) of action. Transport studies with each of the cloned rat and 
human GABA transporters revealed that SK&F 89976A, SK&F 100330A, CI-
966, NC-711, and tiagabine were highly selective for GAT-1 (Table 1) (CLARK 
and AMARA 1994; BORDEN et al. 1994a) and displayed relatively low affinities 
for GAT-2, GAT-3, and BGT-l. These data strongly suggest that the anticon
vulsant effects of these agents are sequelae of GAT-1 transporter blockade 
and emphasize the critical importance of this protein as an exciting target for 
pharmacological manipulation. In addition, these results provoke questions 
concerning the potential physiological roles which the other GABA carriers 
may fulfill. 

II. Compounds Selective for GAT-2, GAT-3, and BGT-l 

The lack of selective agents for investigating the physiological relevance 
of GAT-2, GAT-3, and BGT-1 in GABAergic neurotransmission prompted 
at least two groups to search for novel compounds with specificity for these 
other carriers. DHAR et al. (1994) reported that the bicycloheptane EGYT-3886 
([ (-)-2-phenyl-2-[ (dimethylamino )ethoxy ]-(1R)-1 ,7,7 -trimethylbi
cyclo[2.2.1 ]heptan] was a nonselective inhibitor of all of the cloned 
transporters and shared many structural features with CI-966. With this 
in mind, a number of triarylnipecotic acid derivatives were synthesized 
mimicking the structural features of EGYT-3886 and CI-966. From 
this series of compounds, (S)-1-[2-[tris( 4-methoxyphenyl)methoxy]ethyl]-3-
piperidine carboxylic acid ((S)-SNAP-5114) (Fig. 3) was identified as a novel 
ligand with selectivity for GAT-3, exhibiting 4-, 40-, and 28-fold selectivity 
for GAT-3 vs GAT-2, GAT-1, and BGT-1, respectively (Table 1). Similarly, 
two novel nipecotic acid derivatives, 1-(3-(9H-carbazol-9-yl)-1-propyl)-4-( 4-
methoxyphenyl)-4-piperidinol (NNC 05-2045) and 1-(3-(9H-carbazol-9-yl)-1-
propyl)-4-(2-methoxyphenyl)-4-piperidinol (NNC 05-2090) (Fig. 3), displayed 
mild selectivity for mGAT-2 (BGT-1) and mGAT-4 (GAT-3) (Table 1) 
(THOMSEN et al. 1997). NNC 05-2090 was 14-,30- and ll-fold more selective 
for BGT-1 vs GAT-1, GAT-2, and GAT-3, respectively, and proved to be the 
most selective BGT-1 transport inhibitor reported to date. In rodent models 
of seizure, both NNC compounds were found to have dose-dependent anti
convulsant effects that differ from those observed for inhibitors of GAT-1 
(DALBY et al. 1997). Inhibition of GAT-3 was the likely mechanism of action 
in the observed anti-epileptic effects of these two nipecotic acid derivatives. 
It must be noted, however, that both of these compounds exhibited nmolll to 
,umol/l affinities for al adrenergic receptors and D2 dopamine receptors, and 
NNC 05-2045 displayed nmolll affinity for sigma receptors (DALBY et al. 1997). 
Although these authors ruled out dopaminergic and sigma receptor mecha
nisms as responsible for anticonvulsant effects of NNC-2045, given that 
adrenoreceptor agonism has been shown to reduce seizure severity (BROWN
ING 1987; LAIRD and JOBE 1987; McNAMARA et al. 1987), an al receptor mech
anism could not be excluded. Therefore, it is possible that the observed 
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anticonvulsant effects were partly mediated through adrenergic agonism. With 
the availability of (S)-SNAP-5114, NNC 05-2045, and NNC 05-2090, the indi
vidual contributions made by each GABA transporter to GABAergic neuro
transmission in the CNS are now beginning to be differentiated. The promising 
anticonvulsant properties of these agents verify that a number of GABA trans
porter subtypes may prove to be extremely useful therapeutic targets. Cer
tainly, the development of additional novel, potent, and selective non-GAT-1 
transport inhibitors would greatly facilitate such studies. 

G. GADA Uptake Inhibitors as Experimental Tools 

I. GABA Transport Inhibition and Sleep 

GABA uptake inhibitors have proven to be valuable tools in discerning the 
degree of involvement of GABAergic neurotransmission in various physio
logical states. For example, potentiation of GABA activity by benzodiazepines 
or sustained application of GABA into extracellular fluid was shown to 
promote sleep (SCHERSCHLICHT and PIERE 1988; JUHASZ et a1. 1989). Localized 
and sustained perfusion of the GABA uptake inhibitor THPO into the thala
mic relay nucleus in awake cats reduced wakefulness (JUHAsz et a1.1991). This 
latter study strongly supported a role for GABA in sleep by revealing that 
manipulation of endogenous GABA levels had sleep promoting effects similar 
to those observed upon application of exogenous GABA (JUHASZ et a1. 1989). 
Separately, the GABA uptake inhibitor SK&F 89976A was used to examine 
the mechanism of action of modafinil (FERRARO et a1. 1996), an agent used for 
the treatment of hypersomnia in narcoleptic patients (BASTUJI and JOUVET 
1988). While the vigilance promoting effects of modafinil were attributed to 
an increase in dopamine release, this work tested the hypothesis that the 
effects on dopamine release were mediated through GABAergic mechanisms. 
Indeed, an increase in GABAergic tone secondary to administration of the 
uptake inhibitor SK&F 89976A, the GABAB receptor antagonist phaclofen, 
or the GABAA receptor agonist muscimol blocked the actions of modafinil on 
dopamine release (FERRARO et a1. 1996). In contrast, blockade of GABAergic 
neurotransmission with the GABAA receptor antagonist bicuculline aug
mented the effect of modafinil on dopamine release. Thus, the vigilance pro
moting effects of modafinil stemmed from an inhibition of tonic GABA 
release that in turn disinhibited dopamine release. 

More recently, tiagabine was used in an attempt to determine which 
actions of GABAergic compounds (benzodiazepines, agonist modulators of 
GABAA receptors, and GABAA receptor agonists) may govern specific sleep 
related changes (LANCEL et a1. 1998). In contrast to benzodiazepines, tiagabine 
administration caused a marked dose-dependent enhancement of EEG power 
density in all frequency bands during non-rapid eye movement sleep (non
REMS), and had minimal effects on EEG activity during wakefulness and 
REMS. These data indicated that tiagabine promoted overall synchronization 
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of EEG signals and was unlikely to enhance the amplitude and duration of 
inhibitory postsynaptic potentials. The effects of tiagabine were most similar 
to those of the GABAA receptor agonists muscimol and 4,5,6,7-
tetrahydroisoxazolo(5,4-c)pyridin-3-01 (THIP), and any differences in their 
effects were attributed to the activation of GABAB receptors by excess synap
tic GABA (LANCEL et a1. 1998). Because alterations in endogenous extracel
lular GABA concentrations result in physiologically relevant activations of 
both GABAA and GABAB receptors, GABA transport inhibitors have 
become essential tools in examining GABAergic components in sleep. 

II. Depolarizing Effects of GABA and Inhibition of GABA Uptake 

Although GABA typically elicits hyperpolarizations as a result of the inward 
flow of chloride ions through GABAA receptors, a number of groups have 
shown that GABA can have depolarizing effects in neurons in vitro (Hu and 
DAVIES 1997; DAVIES and SHAKESBY 1999; PHILLIPS et a1. 1998; AVOLI and 
PERREAULT 1987; CHERUBINI et a1. 1991; VAN DEN POL et a1. 1996). In particular, 
NNC-711 and tiagabine have been used to probe the excitatory effects of 
GABA in rodent brain. NNC-711 and tiagabine each elicited depolarizations 
in cortical slice preparations from DBA/2 and BALB/c mice (Hu and DAVIES 
1997; DAVIES and SHAKESBY 1999) and NNC-711 potentiated GABA-induced 
depolarizations (DAVIES and SHAKES BY 1999). These depolarizations were 
calcium-dependent, blocked by tetrodotoxin, and inhibited by the GABAA 

receptor antagonist bicuculline. Since GABA, muscimol, and THIP each 
elicited de polarizations in the same cortical preparation, the depolarizations 
appeared to be mediated by GABAA receptors. Although the mechanism(s) 
underlying GABA-induced depolarizing events in these preparations remain 
unclear, evidence has accumulated to suggest that these responses are reliable 
in adult neuronal preparations. GABA uptake inhibitors are particularly 
useful in exploring these events as they permit the manipulation of endoge
nous GABA levels for examination of the physiological relevance of these 
phenomena. 

H. Conclusion 
GABA transporters are physiologically important proteins whose functions 
directly impact the inhibitory tone of the CNS. Disruption of GABAergic neu
rotransmission has been correlated with a number of neurological and psy
chiatric disorders. Therefore, it is reasonable to suggest that compounds which 
modulate GABAergic tone by altering GABA uptake may be useful in treat
ing some of these clinical conditions. Indeed, tiagabine is a prime example of 
a selective and potent GABA transport inhibitor that is prescribed currently 
as an add-on therapy for refractory epilepsy. The availability of several potent 
and selective GAT-1 transport inhibitors has advanced our understanding of 
the contributions of GAT-1 to GABAergic transmission and its potential as a 



368 IE. CLARK and w.A. CLARK 

therapeutic target. However, due to the lack of diverse potent inhibitors selec
tive for GAT-2, GAT-3, and BGT-l, our understanding of the contributions 
made by these transporters to GABAergic function lags well behind that of 
GAT-I. Development of compounds specific for these targets is essential for 
achieving a more complete understanding of GABA neurotransmission. These 
efforts may also uncover nuances within the GABAergic system which might 
be exploited in the treatment of epilepsy, schizophrenia, and affective 
disorders. 
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CHAPTER 16 

Structures, Diversity and Pharmacology of 
Glycine Receptors and Transporters 

H. BETZ, R.J. HARVEY and P. SCHLOSS 

A. Introduction 

I. The Neurotransmitter Glycine 

The amino acid glycine is highly concentrated in the ventral and dorsal horns 
of the spinal cord, in many brain stem nuclei, and in sensory relay stations such 
as the cochlear nucleus and the retina. Traditional physiological studies have 
shown that glycine is a major inhibitory neurotransmitter that performs a vital 
role in the control of both motor and sensory pathways (APRISON 1990). In 
presynaptic nerve terminals of glycinergic interneurons in spinal cord and 
brain stem, cytosolic glycine is concentrated in small clear synaptic vesicles by 
an H+-dependent vesicular glycine transporter. Excitation of these interneu
rons leads to the calcium-triggered fusion of these synaptic vesicles with the 
presynaptic plasma membrane, thus liberating glycine into the synaptic cleft. 
Glycine then binds to postsynaptic glycine receptors (GlyRs), causing gating 
of an integral anion channel that increases the chloride ion conductance of the 
plasma membrane. This postsynaptic action of glycine is selectively antago
nized by the plant alkaloid strychnine. In mature neurons, where the chloride 
equilibrium potential approximates the resting potential, GlyR activation 
results in chloride ion influx. This neutralizes depolarization by sodium ion 
influx, thereby inhibiting the propagation of action potentials. However, a 
different response is found in the developing nervous system, where immature 
neurons contain very high intracellular chloride concentrations (WANG et 
a1. 1994). Here, glycine-induced increases in chloride conductance cause Cl
efflux, resulting in depolarization of the postsynaptic cell (see REICHLING et al. 
1994; BOEHM et al. 1997). The presynaptic neurotransmitter pool of glycine is 
replenished by (i) synthesis from metabolic precursors by the enzyme serine 
hydroxymethyl-transferase and (ii) re-uptake from the synaptic cleft by presy
naptic sodium-dependent glycine transporters. Genetic disruption of glyciner
gic neurotransmission in hereditary neuromotor disorder results in complex 
neurological phenotypes characterized by hypertonia and an exaggerated 
startle reflex (SHIANG et a1. 1993; BUCKWALTER et al. 1994; KINGSMORE et al. 
1994; RYAN et al. 1994, SAUL et al. 1994; FENG et al. 1998). 
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In addition to its role as an inhibition neurotransmitter substance, glycine 
also serves as a co-agonist of glutamate at excitatory synapses which contain 
the NMDA-subtype of glutamate receptors (JOHNSON and ASCHER 1987). The 
properties of the receptors mediating this co-transmitter function of glycine 
are discussed in the review by HOLLMANN in the Handbook of Experimental 
Pharmacology, vol. 141 (HOLLMANN 1999). 

B. Structure and Diversity of Glycine Transporters 
I. Structure of Plasma Membrane Glycine Transporters 

Rapid re-uptake into the presynaptic terminal or surrounding glial cells via 
specific Na+- and Cl--dependent neurotransmitter transporters is the prin
cipal means of terminating the action of most neurotransmitters. Once in the 
cytosol, transmitters can be reloaded into synaptic vesicles via vesicular trans
port systems that are different from the neurotransmitter transporters in 
the plasma membrane (see below). The cloning of the Na+-dependent rat y. 
aminobutyric acid (GABA) and human norepinephrine transporters revealed 
that these polypeptides display a remarkable amino acid identity (GUASTELLA 
et al.1990; PACHOLCZYK et al. 1991). Subsequent homology screening led to the 
isolation of additional highly related cDNAs encoding transporters for other 
neurotransmitters, such as glycine, dopamine, and serotonin (for reviews see 
CLARK and AMARA 1993; SCHLOSS et al. 1994; WORRAL and WILLIAMS 1994). All 
members of the Na+- and Cl--dependent neurotransmitter transporter family 
share a common, putative twelve transmembrane domain (TMD) structure 
with extended cytoplasmic N- and C-terminal regions. The latter contain puta
tive phosphorylation sites that could be used for the regulation of transport 
activity. In addition, a long putative extracellular loop containing N
glycosylation sites is conserved between the third and fourth membrane
spanning domains (TMD3 and TMD4). However, while there is a common 
model for all transporters distal from the third TMD, there is still controversy 
over the topographical arrangement of the first three TMDs. The original 
model (Fig. 1A) which (based on hydropathy analysis) had been proposed for 
GATl (GUASTELLA et al. 1990) was later adopted for all other members of the 
neurotransmitter transporter family. This topology was confirmed for the 
human norepinephrine transporter by immunofluorescence studies with anti
peptide antibodies (BROSS et al.1995), and for the serotonin and GABA trans
porters by analyzing the accessibility of cysteine residues (CHEN et al. 1997) 
and epitope tagging of COOH-terminal truncations (CLARK 1997), respec
tively. However, when the topology of the glycine transporter GLYTl was 
investigated by introducing N-glycosylation sites along the polypeptide 
sequence followed by examining their use in an in vitro transcription/transla
tion assay, a new arrangement of the first third of this protein was suggested 
(OLIVARES et al. 1997). Accordingly (Fig. lB), TMD1 does not span the mem
brane, and thus the loop connecting TMD2 and TMD3 which was formerly 
believed to be intracellular is located extracellularly. TMD3 is thought to be 
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Fig.lA,B. Possible topological arrangements of GLYTl. A In the originally proposed 
topology model based on hydropathy analysis, the N- and C-terminal (NT and CT) 
regions are localized in the cytoplasm, and the polypeptide traverses the membrane 
twelve times as indicated. B In the alternative model by OLIVARES et al. (1997) the first 
transmembrane domain does not fully cross the membrane, and thus the first extra
cellular loop (ELI) in model A is now located intracellularly, and the region connect
ing TMD2 and TMD3 (ILl) extracellularly. TMD 3 is thought to be large enough to 
span the membrane twice (3/3*), which results in the correct extracellular location of 
the glycosylated (Y) loop between TMD3 and TMD4 
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large enough to span the membrane twice, which results in the correct extra
cellular location of the glycosylated loop between TMD3 and TMD4. Simul
taneously, BENNETf and KANNER (1997) predicted a similar model for GAT1. 
Additional experimental work is clearly necessary to establish firmly the 
transmembrane organization of these proteins. 

II. Diversity and Regulation of Plasma Membrane 
Glycine Transporters 

Whereas only one transporter type has been found for each of the biogenic 
amines norepinephrine, dopamine and serotonin, two different murine and 
human transporter genes (GLYTl and GLYT2) have been identified for 
glycine (GUASTELLA et al. 1992; Lru et al. 1992, 1993; SMITH et al. 1992; KIM et 
al. 1994; MORROW et al. 1998). The GLYTl gene encompasses 16 exons and 
generates three different glycine transporter isoforms (BOROWSKY et al. 1993; 
KIM et al. 1994; ADAMS et al. 1995). The GLYTla and 1b/1c mRNAs are 
transcribed from two different promoters; the GLYTlc variant is produced by 
alternative splicing and encodes a protein with an extra N-terminal 54 amino 
acids relative to the isoform synthesized from the GLYTlb transcript (ADAMS 
et al. 1995). Thus, with the exception of their N-termini, the three isoforms are 
nearly identical, and heterologous expression of the corresponding cDNAs 
confers similar uptake properties. The GLYT2 gene also produces two mRNA 
variants by alternative use of exons 2a or 2b, respectively (PONCE et al. 1998). 
However, whereas the recombinant GLYT2a protein actively accumulates 
glycine into transfected cells, GLYT2b, which is only five amino acids longer 
than GLYT2a, seems to function only as a glycine exchanger in the heterolo
gous expression system (PONCE et al. 1998). 

Functional analysis of GLYTlb and GLYT2a stably expressed in HEK-
293 cells was performed to compare the kinetics, pharmacological profiles, ion 
dependence, and electrical properties of the two isoforms (LOPEZ-CORCUERA 
et al. 1998). GLYTlb exhibits a lower affinity for glycine (Km: 447.umol/l) than 
GLYT2b (Km: 220.umol/l), but both transporters translocate glycine with a 
stoichiometry of at least two sodium ions and one chloride ion per glycine 
molecule. Electrophysiological recordings using the whole cell patch-clamp 
technique revealed transport associated currents of -16pA and -9pA for 
GLYTlb and GLYT2a, respectively. Glycine transport by GLYTlb, but not 
GLYT2a, is sensitive to sarcosine (Fig. 2), which serves as a substrate for 
GLYTlb and evokes currents similar as glycine at this transporter isoform. 
Studies on the regulation of transport activity have, to date, only been per
formed for GLYT1. Treatment of GLYTl in glioma cells or HEK-293 cells 
expressing GLYTl with the protein kinase C (PKC) activator phorbol 12-
myristate 13-acetate (PMA) decreased specific glycine accumulation (GOMEZA 
et al. 1995; SATO et al. 1995b). This down-regulation resulted from a reduction 
of the maximal transport rate and was blocked by the PKC inhibitors 1-(5-
isoquinolinsulfonyl)-2-methylpiperazine (H7) and staurosporine. Interest-
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Fig.2. Chemical structures of compounds that are useful pharmacological tools in the 
study of glycine receptors and transporters. Upper panel: the a-amino acids glycine, 
sarcosine, and serine and the f3-amino acids f3-alanine, taurine, f3-aminobutyric acid 
(f3-ABA), and f3-aminoisobutyric acid (f3-AIBA). Middle panel: the piperidine deriva
tive nipecotic acid, and the quinolinic acid-based substances 5,7-dichloro-4-
hydroxyquinoline-3-carboxylic acid (5,7CIQA), 7-chloro-4-hydroxyquinoline (7CIQ), 
7-trifluoromethyl-4-hydroxyquinoline-3-carboxylic acid (7TFQA), and 7-trifluo
romethyl-4-hydroxyquinoline (7TFQ). Bottom panel: the GlyR antagonists strychnine, 
picrotoxinin, and cyanotriphenylborate. Note that the aromatic ring positions indicated 
by arrows on the strychnine molecule can be replaced without affecting toxicity; this 
property has been utilized in affinity purification of the GlyR and the synthesis of 
fluorescent derivatives of strvchnine 
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ingly, the inhibitory effect of PMA treatment was also observed after remov
ing all predicted phosphorylation sites for PKC in GLYTl by site-directed 
mutagenesis, suggesting that regulation via PKC may involve indirect phos
phorylation mechanisms (SATO et al. 1995b). A PKC-induced down-regulation 
of transporter activity has also been reported for the GABA, dopamine and 
the serotonin transporters (SATO et al. 1995a; KITAYAMA et al. 1994; OSAWA et 
al. 1994; QUIAN et al. 1997; SAKAI et al. 1997). For the latter, it was shown that 
PMA-induced reduction of the maximal transport rate was due to a subcellu
lar redistribution of transporter proteins from the plasma membrane to the 
trans-Golgi network (QUIAN et al. 1997). As for GLYTl, removal of all puta
tive PKC phosphorylation sites did not abolish the phorbol ester mediated 
effect (SAKAI et al. 1997). It therefore appears that a general mechanism exists 
by which activation of presynaptic second messenger systems regulates the 
concentration of active neurotransmitters in the synaptic cleft by stimulating 
the internalization of cell surface neurotransmitter transporters. 

III. Distribution of Plasma Membrane Glycine Transporters and 
Possible Physiological Function 

In the last few years, several laboratories have analyzed the expression pat
terns of GLYTl and GLYT2 in the CNS (GUASTELLA et al. 1992; SMITH et al. 
1992; BOROWSKY et al.1993; ADAMS et al.1995; JURSKY and NELSON 1995; ZAFRA 
et al. 1995a,b). In situ hybridization and immunocytochemical techniques have 
shown that GLYTl is widely expressed in the spinal cord, brainstem, and cere
bellum, and to a lesser extent in the cortex and hippocampus. As revealed 
by high-resolution autoradiography and immunoelectron microscopy, mainly 
glial cells around both glycinergic and non-glycinergic neurons synthesize 
GLYTl. In contrast, the highest expression of GLYT2 is found in the spinal 
cord and brainstem, but exclusively on axons and terminal boutons. The cel
lular localization of GLYT2 correlates well with the distribution of GlyRs, i.e., 
areas devoid of GlyRs do not express GLYT2. This suggests that GLYT2 forms 
the presynaptic uptake system responsible for terminating glycinergic neuro
transmission. Around such glycinergic synapses, GLYT1 might also contribute 
to the regulation of extracellular glycine produced by glial cells. Based on 
other in situ hybridization studies (SMITH et al. 1992) it has been suggested 
that GLYTl is located at non-glycinergic synapses, and might regulate N
methyl-D-aspartate receptor (NMDAR) function by controlling glycine 
concentrations at the NMDAR modulatory glycine site. This hypothesis is sup
ported by the recent finding that exogenous glycine as well as GLYT1 antag
onists selectively enhanced the amplitude of the NMDA component of a 
glutamatergic excitatory postsynaptic current of hippocampal pyramidal 
neurons (BERGERON et al. 1998). Moreover, it has been shown that glycine 
uptake by GLYTI dramatically reduces NMDAR currents evoked in Xenopus 
oocytes co-expressing the recombinant GLYT1 and NMDAR (SUPPLISSON and 
BERGMAN 1997). The results of these experiments show that GLYT1 can indeed 
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reduce glycine near the membrane to concentrations below 1,umolll (the 
saturating concentration for activation of NMDARs) provided the glycine 
concentration in the bath solution is similar to that of the CSF (1-10,umolll). 
These findings make GLYTl a feasible target for therapeutic agents directed 
toward diseases related to hypofunction of NMDARs. 

IV. The Vesicular Glycine/GABA Transporter 

As discussed above, glycinergic neurotransmission depends on regulated exo
cytosis of glycine, which in turn requires the packaging of this amino acid into 
small synaptic vesicles. This process is mediated by a vesicular transporter that 
is driven by the pH gradient (L\pH) across the vesicular membrane. The cloning 
of genes encoding two different vesicular transporters for biogenic amines 
(VMATl; VMAT2) and one for acetylcholine (VAChT) has revealed a new 
gene family of H+-dependent transporter proteins (reviewed in VAROQUI and 
ERICKSON 1997). The uptake of GABA and glycine into synaptic vesicles has 
been shown to equally depend on the electrical gradient (L\'JI) and L\pH (FYKSE 
and FONNUM 1988, 1996). Recently, using a genetic and pharmacological 
approach in Caenorhabditis elegans, cDNAs encoding vesicular GABA trans
porters (VGATs) from worm and rat were isolated (MAclNTIRE et al. 1997). 
Hydropathy plots for the predicted polypeptides suggest the existence of ten 
TMDs, with the N- and C-termini being located in the cytosol. Interestingly, the 
primary structures of the VGATs exhibit no significant homology to the vesic
ular transporters for monoamines or acetylcholine. Hetorologous expression 
of the C. elegans protein and its mammalian counterpart revealed 
vesicular GABA transport with adequate bioenergetic dependence on L\'JI and 
L\pH. GABA transport was only weakly inhibited by glycine (ICso: 25 mmolll) , 
and no significant uptake of [3H]glycine was detectable. In the same year, a 
mouse cDNA almost identical to that encoding VGAT was identified by screen
ing genome databases (SAGNE et al. 1997). Because heterologous expression of 
this gene conferred [3H]GABA as well as [3H]glycine uptake, and in situ 
hybridization revealed co-distribution with both GABAergic and glycinergic 
neuronal markers, this transporter was termed "vesicular inhibitory amino acid 
transporter" (VIAAT).A detailed immunocytochemical analysis using specific 
antibodies against the N- and C-terminal epitopes ofVGAT has shown that the 
protein is highly concentrated in the nerve endings of both GABAergic and 
glycinergic neurons in rat brain and spinal cord (CHAUDHRY et al. 1998). Taken 
together, these data corroborate the idea that both inhibitory neurotransmitters 
share a common vesicular uptake mechanism. As a consequence, glycine and 
GABA could be accumulated and released from the same nerve terminal. 
Indeed, co-release of glycine and GABA from the same terminal has been 
demonstrated recently in spinal cord by electrophysiological methods (JONAS et 
al.1998). Co-transport of GABA and glycine also appears useful in systems that 
switch during development from GABAergic to mainly glycinergic neuro
transmission, such as the lateral superior olive (KOTAK et al. 1998). 
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C. Structure and Diversity of Glycine Receptor Channels 

I. GlyRs are Ligand-Gated Ion Channels of the nAChR Superfamily 

Glycine receptors were originally isolated from rodent spinal cord using 
aminostrychnine-agarose columns (PFEIFFER et al. 1982). Purified adult GlyRs 
consist of two N -glycosylated integral membrane proteins of 48 kDa (a) and 
58 kDa (f3) as well as an associated peripheral membrane protein of 93 kDa, 
which was named gephyrin. The sequences of GlyR a and f3 subunits were 
determined using cDNA cloning strategies (GRENNINGLOH et al. 1987, 1990a), 
and show considerable sequence similarity to subunits of the nicotinic acetyl
choline receptor (nAChR), y.aminobutyric acid type A (GABAA ) receptor, 
and serotonin type 3 (5HT3) receptor (BETZ 1990). Alignments ofthe members 
of this ligand-gated ion channel superfamily also revealed that certain 
structural motifs are well conserved, such as a dicysteine motif in the large N
terminal extracellular domain and four hydrophobic membrane-spanning 
domains (M1-M4) (see Fig. 2). Crosslinking experiments have shown that 
GlyRs are pentameric proteins (LANGOSCH et al. 1988). In adult spinal cord, 
Gly Rs contain three a (a1; see below) and two f3 subunits (LANGOSCH et 
al. 1988; KUHSE et al. 1993), whereas embryonic receptors appear to be homo
oligomers containing exclusively a2 subunits (HOCH et al. 1989). The 
pentameric structure of the GlyRs resembles that of nAChR and GABAA 

receptor proteins, which are thought to represent pentamers of related sub
units (see BETZ 1990; NAYEEM et al. 1994). 

To date, several amino acid residues and protein subdomains have been 
identified that influence the assembly of recombinant GlyRs in heterologous 
expression systems (see below). Substitution of N38 (Fig. 3) with alanine, a 
putative glycosylation site in the GlyR a1 subunit, abolishes glycine activated 
currents (AKAGI et al. 1991b), suggesting that N-linked glycosylation may 
influence receptor assembly. Mutation of cysteine residues in the con
served dicysteine motif (C138 and C152) (Fig. 3) shared with GABAA , 

GABAc, nAChR, and 5HT3 receptors (AKAGI et al. 1991b) also eliminates 

Fig.3. A schematic representation of the transmembrane topology and location of 
functionally important residues in the human GlyR al subunit. Structural motifs: 
regions involved in subunit processing and receptor assembly are indicated by filled 
green circles; conserved cysteine residues that are believed to form disulphide bridges 
are denoted by filled black circles. Natural GlyR point mutations (filled yellow circles): 
A52S is found in the GlyR al subunit gene in spasmodic mice; mutations I244N, P250T, 
Q266H, R271Q/L, K276E, and Y279C are found in the human GlyR al subunit gene 
in different hyperekplexia families. Agonist and antagonist binding site determinants 
(filled blue circles): in the GlyR al subunit residues G160, K200 and Y202 are involved 
in strychnine binding, the efficacy of taurine is influenced by residues 1111 and A212, 
while F159, Y161 and T204 are important determinants of agonist affinity and speci
ficity. S267 is a target for alcohol and volatile anaesthetics. Channel function: G254 is 
a major determinant of main-state conductances and CTB block. Intracellular modifi
cation (filled grey circle): S391 in the al subunit is a part of a potential phosphoryla
tion site for protein kinase C 
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0391: serine 
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GlyR currents. Disruption of a second cysteine loop (C198-C209) (Fig. 3), that 
is only found in GlyRs and invertebrate glutamate gated chloride channels 
(CULLY et al. 1994), has similar effects (RAJENDRA et al. 1995b). These cysteine 
loops are generally considered to be crucial for stabilizing the assembly of 
ligand-gated ion channels. In the M2 domain of the human GlyR a1 subunit, 
substitution of R252 also prevents receptor assembly (LANGOSCH et al. 1993). 
Further information on the domains of GlyR a and 13 subunits that are impor
tant for subunit-subunit interactions (KUHSE et al. 1993) has been obtained 
from the analysis of chimeric subunits, which highlighted the importance of 
several discontinuous motifs in the large extracellular domain for the stoi
chiometric assembly of GlyR a and 13 subunits (Fig. 3). However, despite these 
studies, very little is known about the 3-D structure of GlyR subunits. Recently, 
parts of the human GlyR a1 subunit were modeled using a 1-D-3-D structure 
mapping approach based on a significant match with the biotin repressor 
(GREADY et al. 1997). This model predicts that the extracellular domain of the 
GlyR a1 subunit contains SH2-like (N-terminal) and SH3-like (membrane
proximal) domains, separated by a deep crevice which includes the dicysteine 
motif conserved in nAChR, GABAA , GABAc, and 5HT3 receptor subunits. 
This model, however, differs significantly from one generated for the agonist 
binding site of the homologous a1 subunit of the nAChR that is based on 
partial sequence similarities to copper binding proteins (TSIGELNY et al. 1997). 
Clearly, further structural information is required to allow for predictive mod
elling of the GlyR's agonist binding site. 

II. Glycine Receptor Isoforms 

The existence of multiple isoforms of the GlyR was first suggested by the 
disclosure of a neonatal rodent GlyR that exhibits a lower strychnine-binding 
affinity, an altered apparent molecular weight (49kDa) of its a subunit and 
distinct immunological properties as compared to the adult receptor (BECKER 
et al. 1988). Molecular cloning studies confirmed that GlyRs are heteroge
neous. At first, peptide sequences derived from purified adult spinal cord 
GlyRs enabled the isolation of cDNAs for the 48kDa (a1) and 58kDa 
(13) subunits (GRENNINGLOH et al. 1987, 1990a). Using homology screening 
approaches, further clones corresponding to two additional GlyR a subunits 
(a2 and a3) were isolated (GRENNINGLOH et al.1990b; KUHSE et al.1990b, 1991; 
AKAGI et al. 1991a). More recently, a fourth a subunit gene has been charac
terized (MATZENBACH et al. 1994). Localization of gene expression patterns 
using in situ hybridization techniques has revealed that the different a and 13 
subunit genes exhibit spatially and temporally distinct patterns of expression 
in spinal cord, brain stem, higher brain regions and the retina (KUHSE et 
al. 1991; FUJITA et al. 1991; MALOSIO et al. 1991a,b; SATO et al. 1991, 1992; 
WATANABE and AKAGI 1995). For example, transcripts for the GlyR a2 subunit 
are abundant in the embryonic and neonatal brain and spinal cord while the 
a1 and a3 subunit genes appear to be expressed only postnatally. Surprisingly, 
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the GlyR f3 subunit gene is very widely expressed, and f3 subunit transcripts 
are found in some adult brain regions (e.g., certain layers of the olfactory bulb 
and cerebellum) that are devoid of a1, a2 and a3 subunit transcripts (FUJITA 
et al. 1991; MALOSIO et al. 1991a). While it is possible that additional GlyR a 
subunits remain to be identified, it is also conceivable that the f3 subunit forms 
part of another receptor complex. 

Additional GlyR subunit diversity arises from alternative splicing of 
primary gene transcripts. Two forms of the rat (MALOSIO et al. 1991b), mouse 
(RYAN et al. 1994), and human (SHIANG et al. 1993) GlyR a1 subunit (a1 and 
a1ins) arise by the choice of one of two 3' acceptor sites; the longer form con
tains an additional eight amino acids (SPMLNLFQ), including a serine residue 
that might serve as a target for phosphorylation by cAMP-dependent protein 
kinase (MALOSIO et al. 1991b). Alternative splicing of one of two homologous 
68 bp exons in the rat, mouse and human a2 subunit genes (KUHSE et al. 1991; 
MATZENBACH et al.1994; CUMMINGS et al.1998), which encodes part of the large 
extracellular domain, yields two further variants named a2A and a2B that 
differ in sequence by only two amino acids. The role of the a2A and a2B vari
ants is presently unknown. A rat GlyR d2 subunit variant (a2*) has also been 
described (KUHSE et al.1990a) which contains a codon for glutamic acid (GAG) 
instead of the glycine codon (GGG) found at the equivalent position (residue 
167 of the mature polypeptide) in other mouse (MATZENBACH et al. 1994), rat 
(AKAGI et al.1991a; KUHSE et al.1991) and human (GRENNINGLOH et al.1990b; 
CUMMINGS et al. 1998) GlyR a2 subunit cDNAs and/or genomic sequences. 
Recombinant GlyRs containing the a2* subunit (see below) have a -40-fold 
reduced glycine affinity and a -560-fold reduced strychnine sensitivity (KUHSE 
et al.1990a).Although it has been suggested (KUHSE et al.1990a) that a2*-con
taining receptors represent the strychnine-insensitive neonatal GlyR isoform, 
sequencing of the mouse and human GlyR a2 subunit genes (MATZENBACH et 
al. 1994; CUMMINGS et al. 1998) appears to contradict this proposal. In both 
species, only a single exon (exon 6) encoding this part of the protein exists, and 
this specifies a glycine codon (GGG) at position 167. In the case of the human 
subjects, DNAs from 40 individuals were sequenced. Hence, it is probable that 
the sequence exchange in the a2* isoform is either (i) a rare allelic variant 
found only in the rat, or (ii) a result of a reverse transcription error during 
cDNA library construction. Alternative splicing of cassette exons also intro
duces extra peptide sequences into the large intracellular M3-M4 loops of the 
mouse GlyR f3 subunit (HECK et al. 1997) and the human GlyR a3 subunit 
(NIKOLIC et al. 1998). The latter insertion (TEAFALEKFYRFSDM) is of 
particular interest as it influences the kinetics of GlyR desensitization. 

III. Ligand-Binding Determinants 

The first indications that the ligand-binding site resides on GlyR a subunits 
came from photo affinity labeling experiments using the selective GlyR 
antagonist strychnine (GRAHAM et al. 1981, 1983). Protease mapping of 
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[3H]strychnine-labeled rat GlyR preparations revealed that this antagonist 
was incorporated between amino acids 170 and 220 of the N-terminal domain 
of the GlyR a1 subunit (GRAHAM et al.1983; RUIz-GOMEZ et al.1990). Further 
information about ligand-binding site determinants has been collected from 
functional expression studies with recombinant GlyRs in both Xenopus laevis 
oocytes and mammalian cells (e.g., HEK-293). In these heterologous expres
sion systems, GlyR a subunits assemble into homo-oligomeric chloride chan
nels, which can be opened by micromolar concentrations of glycine, taurine, 
or f3-alanine, and are blocked by nanomolar concentrations of strychnine 
(SCHMIEDEN et al. 1989; SONTHEIMER et al. 1989). In contrast, the GlyR 13 
subunit is incapable of forming functional homomeric GlyRs (PRIBILLA et al. 
1992; BORMANN et al. 1993), but when included in heteromeric GlyRs alters 
crucial functional aspects of the ion channel. By comparing the properties of 
different GlyR a subunit variants (KUHSE et al. 1990a,b; SCHMIEDEN et al. 1989, 
1992, 1993), it has become clear that several discontinuous domains of the a 
subunit extracellular domain are responsible for forming the ligand-binding 
pocket (Fig. 3). As stated above, residue G 167 of the ci2 polypeptide (equiva
lent to G160 in the a1 subunit) has been shown to define a crucial position for 
both agonist and antagonist (strychnine) binding (KUHSE et al. 1990a; 
VANDENBERG et al. 1992). Subsequently, the two neighboring aromatic residues 
(F159 and Y161 in the a1 sUbunit) were found to account for agonist selec
tivity and antagonist efficacy (SCHMIEDEN et al. 1993). Two other residues in 
the GlyR a1 subunit, K200 and Y202, have also been identified as determi
nants of the strychnine binding site (VANDENBERG et al.1992), whereas residues 
1111 and A212 are important for the potency of the glycinergic agonists 13-
alanine and taurine (SCHMIED EN et al. 1992). 

Studies of spontaneous mutations in GlyR subunit genes (see also 
Chap. 12) have revealed additional residues involved in agonist binding (Fig. 3). 
For example, the mouse mutant spasmodic (RYAN et al. 1994; SAUL et al. 1994) 
has a missense mutation in the GlyR a1 subunit gene. This results in an alanine 
to serine conversion at position 52, which in turn results in a -6-fold reduction 
of glycine affinity, without affecting strychnine binding (RYAN et al. 1994; SAUL 
et al. 1994). Point mutations of the GlyR a1 subunit gene found in the human 
neurological illness hyperekplexia (SHIANG et al. 1993; MOORHOUSE et al. 1999; 
SAUL et al. 1999) lie in exposed domains that may be responsible for linking 
agonist binding and channel gating. Homomeric GlyRs containing the substi
tutions R271L, R271Q, K276E, or Y279C (residues located in the M2-M3 
loop), or Q266H (within M2) have a decreased sensitivity to glycine and a loss 
of j3-alanine and taurine responses (LANGOSCH et al.1994; RAJENDRA et al.1994; 
LAUBE et al. 1995b; LYNCH et al. 1997; MOORHOUSE et al. 1999), but do not affect 
receptor expression as assessed by [3H]strychnine binding. There is evidence 
that some of these mutations (R271L1Q, K276E and Q266H) reduce the single
channel conductance and/or open channel probability of the expressed GlyRs 
(LANGOSCH et al. 1994; RAJENDRA et al. 1995a; MOORHOUSE et al. 1999), imply
ing that the M2-M3 loop is vital for coupling signal transduction and ligand 
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binding. Mutation P250T (SAUL et al. 1999), in the M1-M2 loop, decreases 
single-channel conductances, but also affects the desensitization and res en
sitization properties of the expressed mutant GlyRs. The substitution 1244N, 
within M1, also reduces channel gating (LYNCH et al. 1997), but additionally 
impairs the efficiency of GlyR expression. These data have suggested a complex 
ligand-binding/signal transduction mechanism that involves both the large 
extracellular domain of GlyR subunits and the short intracellular and extra
cellular loops between M1 and M2, and M2 and M3, respectively. 

IV. Ion Channel Function 

Single-channel electrophysiological analysis has revealed that in addition 
to Cl-, GlyR ion channels are permeable to other halides as well as nitrate, 
bicarbonate, and small organic ions. Ion substitution studies on native neuronal 
GlyRs have disclosed a permeability sequence of SCN-> 1-> N03-> Br-> Cl-> 
HC03-> acetate> F> propionate (BORMANN et al.1987). The membrane span
ning segments M1 to M3 are highly conserved between GlyR, GABAA , and 
GABAc receptor subunits, strongly suggesting their importance in chloride 
channel function. In particular M2 has a high content of uncharged polar amino
acid residues such as serine and threonine, and is thought to constitute an a
helical hydrophilic chloride channel lining. Evidence in support of this theory 
was provided by studies using synthetic peptide corresponding to the M2 
segment of the GlyR a1 subunit, which is capable of producing channel activity 
in liposomes and planar lipid bilayers (LANGOSCH et al.1991; REDDY et al.1993). 
Additional studies have assigned determinants of resistance to channel block
ade by the plant alkaloid picrotoxinin to the M2 segment of the f3 subunit (PRI
BILLA et al. 1992). Residues within the C-terminal half of M2 in GlyR a and f3 
subunits have also been shown to be responsible for the main-state conduc
tances of homo- and hetero-oligomeric GlyRs. GlyR a subunit homomeric 
receptors show distinct main-state conductances of 86 (a1), 111 (a2), and 105 
(a3) pS (BORMANN et al. 1993). Mutation of glycine 254 in the GlyR a1 subunit 
(Fig. 3) to alanine (which is found in the equivalent position in a2 and a3 sub
units) gave rise to a main-state conductance of 107 pS, showing that the identity 
of the amino acid at this position is a major determinant of channel conduc
tance. The main-state conductances ofheteromeric a1f3, a2f3,and a3f3GlyRs are 
significantly lower (44,54, and 48 pS) than those of homomeric a subunit GlyRs 
(BORMANN et al. 1993) and are consistent with values recorded from spinal 
neurons (TAKAHASHI et al. 1992). These findings strongly suggest that most 
native GlyRs are heteromeric, and indicate that the M2 domains of both GlyR 
a and f3 subunits contain crucial determinants of ion channel function. 

V. The Peripheral Membrane Protein Gephyrin 

Most neurotransmitter receptors are found in dense clusters at postsynaptic 
specializations opposite nerve terminals releasing the appropriate neuro-
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transmitter. For the GlyR, this specialized arrangement is believed to be 
achieved by gephyrin, a peripheral membrane protein of 93 kDa that co
purifies with GlyRs (PFEIFFER et a1. 1982; GRAHAM et a1. 1985; SCHMITT et a1. 
1987). Gephyrin co-distributes with GlyRs at inhibitory synapses (ZARBIN et 
a1. 1981; ThILLER et a1. 1985, 1987; ALTSCHULER et a1. 1986) and serves as an 
anchor molecule, linking GlyRs to the sUbsynaptic cytoskeleton by binding 
polymerized tubulin with nanomolar affinity (KIRSCH et a1. 1991; KIRSCH and 
BETZ 1995). Molecular cloning studies have shown that several isoforms of 
gephyrin exist, which result from complex alternative splicing of four cassette 
exons (PRIOR et a1. 1992). 

Northern blot (PRIOR et a1. 1992), in situ hybridization (KIRSCH et a1. 
1993a), and immunocytochemical (ARAKI et a1. 1988; KIRSCH and BETZ 1993) 
studies indicate that gephyrin is abundant not only in spinal cord, but also in 
brain; in addition, gephyrin transcripts are found in peripheral tissues, such as 
liver, kidney, heart, and lung. This suggests that gephyrin may play other roles 
in addition to GlyR clustering. Indeed, the primary sequence of gephyrin 
shows unexpected similarity to three Escherichia coli proteins (MoeA, Moab, 
and MogA), a Drosophila melanogaster protein (cinnamon), and an Ara
bidopsis thaliana protein (cnx1), all of which are involved in the synthesis of 
a molybdenum-containing co-factor (Moca) that is essential for the activity of 
molybdoenzymes (PRIOR et a1. 1992; BETZ 1998). Gene targeting of the mouse 
gephyrin gene (FENG et a1. 1998) has recently shown that gephyrin is indeed 
required for the activity of the molybdoenzymes sulfite oxidase and xanthine 
dehydrogenase found in peripheral tissues. In addition, gephyrin binds molyb
dopterin with high affinity and can re-constitute Moco biosynthesis in Moco
deficient bacteria, a molybdenum-dependent mouse cell line, and in aMoco 
deficient plant mutant (STALLMEYER et a1. 1999). Furthermore, gephyrin has 
been found at GABAergic synapses in hippocampus (CRAIG et a1.1996), spinal 
cord (TODD et a1. 1996), and retina (SASSOE-POGNETTO et a1. 1995), suggesting 
that this multifunctional protein also plays a role in postsynaptic GABAA 

receptor clustering (see ESSRICH et a1. 1998; BETZ 1998). 
Using cultured embryonic spinal neurons, it has been shown that the for

mation of membrane-associated gephyrin deposits precedes the postsynaptic 
localization of GlyRs (KIRSCH et a1.1993b; KIRSCH and BETZ 1995,1998). Elim
ination of gephyrin by treatment with antisense oligonucleotides (KIRSCH et 
a1. 1993b) or by targeted disruption of the gephyrin gene (FENG et a1. 1998) 
prevents the correct synaptic clustering of GlyRs. Similarly, addition of strych
nine or L-type Ca2+ channel blockers to spinal neuron cultures blocks gephyrin 
and GlyR cluster formation (KIRSCH and BETZ 1998), indicating that the 
activation of embryonic GlyRs, resulting in Ca2+ influx, is crucial for the for
mation of gephyrin and GlyR clusters at developing postsynaptic sites. In addi
tion, compounds that disrupt the integrity of microtubules (e.g., demeco1cine) 
and microfilaments (e.g., cytochalsin D), affect the packing density of gephyrin 
and GlyR specializations formed in these cultures (KIRSCH and BETZ 1995). 
These cytoskeletal structures appear to operate antagonistically: microtubules 
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condense GlyR clusters, while microfilaments disperse them. Thus, a complex 
interaction between GlyRs, gephyrin and the cytoskeleton is responsible for 
the correct topology of inhibitory post-synaptic specializations in spinal cord. 
GlyRs are thought to bind to gephyrin via sequences located within the large 
intracellular loop of the GlyR f3 subunit. In overlay and transfection experi
ments (MEYER et al. 1995), this interaction was shown to involve a 33 amino
acid portion of the M3-M4 loop, with an 18 amino acid 'core sequence' 
(RSNDFSIVGSLPRDFELS) containing the minimal binding-site determi
nants. This core sequence is capable of conferring gephyrin-binding properties 
on GABAA (MEYER et al. 1995) and NMDA (KINS et al. 1999) receptor sub
units, which would not normally link to gephyrin. Most recently, site-directed 
mutagenesis combined with a novel assay, using green fluorescent protein
gephyrin binding motif fusion proteins (KNEUSSEL et al. 1999), has indicated 
that the core motif may form an imperfect amphipathic helix, and that binding 
to gephyrin may be mediated by hydrophobic residues on one side of this 
structure. The gephyrin residues interacting with this hydrophobic domain are 
presently unknown. 

VI. Pharmacology of GlyRs 

1. Antagonism of GlyR Function by Strychnine 

Alkaloids are basic heterocyclic compounds that are found in plants. One 
typical example is strychnine (Fig. 2), which is derived from the tree Strych
nos nux vomica (poison nut) native to Sri Lanka, Australia, and India. Strych
nine is a potent convulsant that acts by antagonizing glycinergic inhibition. 
Structurally related alkaloids, such as brucine, also act as competitive glycine 
antagonists at the inhibitory GlyR, and studies with a range of strychnine ana
logues have established detailed structure-function relationships (reviewed in 
BETZ 1985; BECKER 1992). Strychnine represents a unique tool in the investi
gation of postsynaptic GlyRs and is widely used to distinguish glycinergic from 
GABAergic inhibition. Glycine-displaceable [3H]strychnine binding (YOUNG 
and SNYDER 1973) still constitutes the most reliable ligand binding assay for 
this receptor system. Further, strychnine provides a natural photoaffinity label 
for the GlyR as, upon UV illumination, [3H]strychnine is incorporated into the 
ligand-binding a subunit (GRAHAM et al. 1981, 1983). Lastly, substitutions at 
the aromatic ring have little effect on the toxicity of strychnine (BETZ 1985) 
and have been exploited to generate affinity columns for GlyR purification 
(PFEIFFER et al. 1982) and fluorescent derivatives for visualizing the distribu
tion of native neuronal GlyRs (ST JOHN and STEVENS 1993). 

The physiological symptoms of strychnine poisoning (BECKER 1992) 
underline the importance of glycinergic inhibition in the control of both motor 
behavior and sensory processing. Onset of symptoms is usually within 15-
20min of ingestion. Consistent with a systemic disinhibition of motorneurons, 
sublethal strychnine poisoning leads to motor disturbances and increased 
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muscle tone. These characteristic motor symptoms are accompanied by 
unusual sensory impressions; due to disinhibition of the respective afferent 
pathways, intoxicated patients report hyperacuity of vision and audition in 
addition to acute pain. Higher doses of strychnine (5-8mg/kg body weight) 
cause convulsions and ultimately death by interference with pulmonary func
tion, by depression of respiratory center activity, or both. Due to its high tox
icity, strychnine was used as a rat poison for over 5 centuries. Strangely, the 
disinhibition of both motor and sensory pathways by strychnine has also been 
used therapeutically as a stimulant in humans. The nux vomica seeds are still 
used as a homeopathic medicine to treat stomach upsets, headache, nausea, 
and fever. Strychnine was even used as a performance-enhancing drug by 
Roman gladiators, who used the alkaloid in combination with wine to give 
them an edge in sporting combat. 

2. Amino Acids and Piperidine Carboxylic Acid Compounds 

In addition to glycine, p-alanine and taurine (Fig. 2) also display inhibitory 
activity when applied to neurons (e.g., BOEHM et al. 1997), and these endo
geneous amino acids may well activate GlyRs in vivo (FLINT et al. 1998). 
The agonist and antagonist actions of several a- and fi-amino acids have been 
studied in detail on homomeric a1 GlyRs expressed in Xenopus oocytes 
(SCHMIEDEN and BETZ 1995). The agonistic activity of a-amino acids (e.g., 
glycine, sarcosine, alanine, and serine) (Fig. 2) exhibits a marked stereoselec
tivity and is susceptible to substitutions at the Ca-atom. However, antagonism 
by a-amino acids is not enantiomer-dependent nor influenced by Ca-atom sub
stitutions. In contrast, f3-amino acids such as taurine, f3-aminobutyric acid (13-
ABA), and fi-aminoisobutyric acid (fi-AIBA), which are partial agonists at 
GlyRs (Fig. 2), show competitive inhibition at low concentrations whereas high 
concentrations elicit significant membrane currents. Hence, the partial agonist 
activity of a given f3-amino acid on GlyRs may be determined by the relative 
amounts of the respective cis/trans isomers in the compound (SCHMIEDEN and 
BETZ 1995). Nipecotic acid (Fig. 2), and related compounds which contain a 
trans-fi-amino acid configuration, behave as competitive GlyR antagonists. 

3. Picrotoxinin, Cyanotriphenylborate, and Quinolinic Acid Derivatives 

The plant alkaloid picrotoxin, derived from the plant Anamirta coccu/in, is an 
equimolar mixture of picrotin and picrotoxinin (Fig. 2), and has been widely 
used to antagonize GABA responses. The action of picrotoxin at GABAA 

receptors shows a high degree of selectivity for picrotoxinin over picrotin, and 
is use-dependent and non-competitive. Picrotoxin therefore is considered a 
potent chloride channel blocker. Currently, picrotoxin is the best pharmaco
logical tool to discriminate homo-oligomeric from heteromeric GlyRs 
(PRIBILLA et al. 1992; HANDFORD et al. 1996). Native GlyRs and heterologously 
expressed heteroligomeric afi subunit GlyRs are largely resistant to block by 
picrotoxin, whereas GlyR aI, al, or a3 subunit homo-oligomers are sensitive 
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to micro molar doses (ICso -25.umolll). PRIBILLA et al. (1992) have demon
strated that this resistance to picrotoxin blockade is due to multiple amino 
acid substitutions within the channel lining M2 segment of the f3 subunit. 
However, more recent studies suggest that, in contrast to its action at GABAA 

receptors, picrotoxin blockade of GlyR function (i) exhibits no selectivity 
between picrotoxinin and picrotin, and (ii) is competitive and not voltage
dependent (LYNCH et al. 1995). The latter findings would be consistent with an 
extracellular alkaloid binding site. These apparently contradictory results 
might be explained by studies involving the hyperekplexia mutations R271L 
and R271Q, which transform picrotoxin from an allosterically-acting compet
itive antagonist to an allosteric potentiator at low (0.01-3.umolll) concentra
tions and to a non-competitive antagonist at higher (-3 mmol/l) concentrations 
(LYNCH et al.1995). This may be reconciled with picrotoxin binding both within 
the channel and on the extracellular domain. 

In contrast to picrotoxinin, the organic anion cyanotriphenylborate (CTB; 
Fig. 2) is a purely non-competitive, use-dependent antagonist. Blockade is 
more pronounced at positive membrane potentials (RUNDSTROM et al. 1994) 
suggesting that it is an open-channel blocker. CTB can also be used to dis
criminate some GlyR SUbtypes. Homomeric GlyR a1 subunit receptors are 
readily blocked by CTB with an ICso of 1.3.umolll whilst a2 subunit GlyRs are 
relatively insensitive (ICso»20.umolll) (RUNDSTROM et al. 1994). This dif
ference has been traced to residue G254 in the M2 segment of the GlyR a1 
subunit (Fig. 3). 

Derivatives of quinolinic acid compounds based on 2-carboxy-4-
hydroquinolines, which antagonize binding of the co-agonist glycine to the 
NMDAR, have also been tested as selective GlyR antagonists (SCHMIEDEN et 
al. 1996). In Xenopus laevis oocytes expressing GlyR a1 subunit homo
oligomers, the chloride-substituted derivatives 5,7-dichloro-4-hydroxyquino
line-3-carboxylic acid (5,7ClQA) and 7-chloro-4-hydroxyquinoline (7ClQ) 
inhibit glycine currents in a mixed high-affinity competitive and low-affinity 
non-competitive manner. The related compounds 7-trifluoromethyl-4-hydrox
yquinoline-3-carboxylic acid (7TFQA) and 7-trifluoromethyl-4-hydrox
yquinoline (7TFQ) exhibit purely competitive antagonism. These compounds 
(Fig. 2) not only represent novel tools to study native and recombinant GlyRs, 
but also suggest that the GlyR agonist/antagonist binding pocket may exhibit 
some structural similarity to that of the glycine binding site of the NMDAR. 

4. Potentiation of GlyR Function by Anesthetics, Alcohol, and Zn2+ 

Volatile anesthetics and ethanol enhance the effect of glycine at both native 
GlyRs (CELENTANO et al. 1988; AGUAYO and PANCETTI 1994) and recombinantly 
expressed homo-oligomeric a1 or a2 subunit GlyRs (MASCIA et al. 1996a,b). 
In contrast, such compounds inhibit heterologously expressed GABAc recep
tors formed from the p1 subunit (MIHIC and HARRIS 1996). This difference was 
exploited to identify the domain in the human GlyR a1 subunit that is respon-
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sible for enhancement of GlyR function by ethanol (MIHIC et al.1997). By con
structing chimeric GlyR al/GABAc receptor pI subunits, and subsequently 
using site-directed mutagenesis, a single amino acid, S267, in the M2 region of 
the GlyR a1 subunit (Fig. 3) was shown to be sufficient to abolish enhance
ment of GlyR function by ethanol and the volatile anaesthetic enflurane 
(MIHIC et al. 1997). The importance of S267 for potentiation by anaesthetics 
and ethanol has been underscored by a further study (YE et al. 1998) which 
demonstrated that ethanol enhancement is inversely correlated with the 
molecular volume of the residue present at position 267. 

The divalent cation Zn2+ is stored within synaptic vesicles in the mam
malian central nervous system, and is released upon nerve terminal stimula
tion. Elevated concentrations of Zn2+ in the synaptic cleft result in multiple 
effects on neuronal excitability by inhibiting or potentiating current flow 
through ligand-gated and voltage-operated ion channels. Although the pres
ence of Zn2+ had been demonstrated only in certain higher brain areas such 
as the hippocampus, recent findings show that both vesicular Zn2+ and metal
lothionein III, which is involved in regulating the availability of Zn2+, are abun
dant in spinal cord (VELAZQUEZ et al. 1999). Zn2+ exhibits biphasic effects on 
both native GlyRs on rat spinal cord neurons and on recombinantly expressed 
homo-oligomeric and heteromeric GlyRs (BLOOMENTHAL et al. 1994; LAUBE 
et al. 1995a). At low concentrations (0.5-1O,umolll) Zn2+ potentiates glycine
activated chloride currents, while higher concentrations (>100 ,umolll) of Zn2+ 

inhibit the glycine response. These changes are accompanied by respective 
shifts in agonist dose-response curves, whereas inhibition by the competitive 
antagonist strychnine is not changed (LAUBE et al. 1995a). Analysis of glycine
gated single channel events indicates that Zn2+ alters the open probability of 
the GlyR without changing its unitary conductance (LAUBE et al. 2000). Using 
chimeric alf3 GlyR subunit eDNA constructs, LAUBE et al. (1995a) found that 
the positive and negative modulatory effects of Zn2+ can be separated to dif
ferent regions of the a subunits, and proposed that determinants of the poten
tiating Zn2+ binding site are localized between amino acids 74-86 of the GlyR 
a1 subunit. 

More recent studies (LYNCH et al. 1998; LAUBE et al. 2000) suggest that 
Zn2+ modulation of GlyR currents involves complex allosteric processes. In 
GlyRs incorporating mutations in the M1-M2 or M2-M3 loops (which are 
thought to transduce agonist binding to channel opening), Zn2+ potentiation 
was uncoupled from glycine-gated currents, while Zn2+ potentiation of taurine 
currents was preserved (LYNCH et al. 1998). Interestingly, none of these muta
tions disrupted the ability of Zn2+ to inhibit glycine or taurine gated currents. 
Substitution of a critical aspartate residue, D80, in the a1 subunit abolished 
Zn2+ potentiation of glycine gated currents (LYNCH et al. 1998; LAUBE et al. 
2000); however, potentiation of taurine-gated currents by Zn2+ has been 
reported to remain intact in the mutant receptor (LYNCH et al. 1998). This 
suggests that the potentiating site for Zn2+ on GlyRs may be complex and 
susceptible to numerous distinct mutations, making it difficult to locate by 
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conventional methods. This would not appear to hold true for the inhibitory 
Zn2+ binding site on the GlyRs, which may involve histidine residues, like the 
recently reported inhibitory Zn2+ sites on GABAA and GABAc receptor sub
units (WANG et al.1995; WOOLTORTON et al.1997;FIsHER and MACDoNALD 1998; 
HORENSTEIN and AKABAS 1998). 

Some 5-HT3 receptor ligands have also been reported to produce both 
potentiating and inhibitory effects on glycine currents recorded from cultured 
spinal neurons (CHESNOY-MARCHAIS 1996). Of these, the tropeines tropisetron 
and atropine displayed only competitive inhibition at micromolar concent
rations when tested on recombinant GlyRs generated in Xenopus oocytes 
(MAKSAY et al. 1999). Notably, inhibition showed selectivity for the d2 subunit, 
suggesting that further exploration of these compounds might help to develop 
sUbtype-selective high-affinity antagonists. 

D. Concluding Remarks 

The presently available molecular and functional data demonstrate that our 
understanding of glycinergic inhibitory neurotransmission in the mammalian 
central nervous system has deepened enormously during the past decade. 
Despite a wealth of information on the expression and functional character
istics of different GlyR and glycine transporter isoforms, however, the phar
macology of glycinergic neurotransmission is still rather poor. Although a 
number of novel GlyR antagonists has become available recently in addition 
to the classical antagonist strychnine, compounds that selectively potentiate 
GlyR currents are still scarce. Such potentiators of GlyR function that mimic 
the actions of low concentrations of Zn2+ or high concentrations of ethanol, 
might serve as potent leads for the development of novel drugs that, in analogy 
to benzodiazepine at the GABAA receptor, boost inhibition of sensory 
afferents and/or motor outputs. Such compounds might have great promise for 
diverse medical indications including analgesia, muscle relaxation, and narco
sis. Due to the sparse expression of GlyRs in higher brain areas, central side 
effects commonly observed with GABAA receptor modulators should be rare. 
Similarly, selective inhibition of the presynaptic glycine transporter GLYT2 
also could provide for potentiation of glycinergic inhibitory pathways. In 
contrast, drugs targeting the glial GLYTl variants should increase excitatory 
NMDAR activity. In conclusion, the GlyRs and glycine transporters described 
here constitute an novel yet poorly charted field for neuropharmacological 
development. 
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