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Preface

Fluid flows occur everywhere in nature and occupy a relevant place in our tech-
nological world as well as in the running of a vast number of industrial processes.
They are not only essential to life, but also to understand fundamental physical
processes at all measurable scales, from the nanometric world to the cosmological
scales. The principles of fluid mechanics are used in almost every form of
mechanical and chemical engineering, with far-reaching effects on the techno-
logical advances that lead to the multitude of products which determine the high
standard of living that nowadays we take for granted. Fluid flows are also known
to be at the heart of health, biological, and environmental sciences, including the
flows in the human body and its energy supply, the multitude of flows in the entire
fauna and flora, and the atmospheric flow processes, which influence the weather
and the climate. Thus, fluid flows are vital and their understanding is an essential
part of the general education of humans.

This book presents a collection of papers dealing with recent advances in
computational and experimental fluid mechanics with applications to physics and
engineering. Among these papers, a few ones are reviews outlining the impact of
fluid mechanics on important active research areas such as weather prediction and
climate change, cancer research, and cosmology. The present collection includes
research work presented at the I Workshop of the Venezuelan Society of Fluid
Mechanics, held in the Margarita Island, Venezuela, on November 5–9, 2012
under the auspices of the Instituto Venezolano de Investigaciones Científicas,
IVIC, and the Fondo Nacional de Ciencia, Innovación y Tecnología, FONACIT, of
Venezuela. The book begins with invited lectures held during the Workshop by
renowned national and international scientists and engineers, covering a wide
range of topics, followed by a number of invited seminars presented by young
researchers and graduate students working actively in the field of fluid mechanics
and related areas.

The I Workshop of the Venezuelan Society of Fluid Mechanics represented a
unique opportunity to provide a forum for the presentation of state-of-the-art
research in theoretical, experimental, and applied fluid mechanics oriented to
engineering technology, where scientists, coming from different universities and
research institutions of the country, together with mechanical, chemical, and
petroleum engineers from public and private enterprises, with a huge experience in
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applied industrial problems, have participated in fruitful discussions on funda-
mental and technical aspects, paving the way for future collaborations.

The Workshop will be organized every 2 years. The 5 days of oral sessions
accommodated 45 talks and had close to 60 attendees with 10 international and 20
national researchers, and more than 30 graduate and undergraduate students. The
wide variety of topics presented included free-surface and interface flows, such as
drops and bubbles, turbulent flows, multiphase flows with applications to bio-
logical and oil extraction systems, shock structure and acoustic waves, opto-fluids,
granular fluids, astrophysical and cosmological flows, and computational fluid
dynamics. Among the renowned researchers, Joseph J. Niemela, from The Abdus
Salam International Centre for Theoretical Physics, ICTP, Trieste, Italy, showed
the results of controlled laboratory experiments of turbulent diffusion of heat at
high Rayleigh numbers; Dominique Legendre, from the Institut de Mécanique des
Fluides de Toulouse, IMFT, Toulouse, France, presented numerical simulations of
sliding drops on an inclined solid surface; Catalina Stern-Forgach, from the
Department of Physics of the Universidad Nacional Autónoma de México,
UNAM, Mexico, described the results of experimental measurements of shock
structure and acoustic waves inside a supersonic jet; and José R. Castrejón-Pita,
coming from the Department of Engineering of the University of Cambridge,
Cambridge, United Kingdom, spoke of the relevance of the breakup of liquid
surfaces to industry and discussed current issues faced by researchers working in
the field of droplet dynamics. Interesting lectures on bubble growth in viscous
liquids were given by Abraham Medina and Abel López-Villa, both from the
Instituto Politécnico Nacional (I.P.N.) of Mexico, while Julián Chela-Flores, from
The Abdus Salam International Centre for Theoretical Physics, ICTP, Trieste,
Italy, gave a magisterial conference on how fluid mechanics is playing a major role
in space exploration for understanding the cosmic distribution of life. The
theoretical physics of granular fluids and an introductory view of the jamming
transition problem were given by Leonardo Trujillo, from the IVIC’s Centre of
Physics. Other interesting talks were presented by Humberto Cabrera, from the
IVIC’s Department of Applied Physics, on the Soret effect in binary fluid mixtures;
by Luis R. Rojas-Solórzano, from the Department of Energy Conversion and
Transport of the Universidad Simón Bolívar, USB, Caracas, Venezuela, who
described a multiphase approach to model blood flow in micro-tubes; and Miguel
R. Paiva-Rojas, from the Refining and Industrialization Department of the Instituto
Tecnológico Venezolano del Petróleo, PDVSA-Intevep, Los Teques, Venezuela,
who spoke on the estimation of the gas–liquid–solid phase distribution in a cold
slurry bubble column system for hydro-conversion processes. Other local speakers
gave short oral presentations on computational and experimental drop dynamics,
compositional flows applied to the oil industry, granular and porous media flows,
and astrophysical flows.

The short oral presentations were organized by themes: Drops, Particles, and
Waves; Multiphase and Multicomponent Flow, Granular and Porous Media Flow;
and Astrophysical and Relativistic Flow. The book is aimed to undergraduate and
graduate students, as well as to physicists, chemists, and engineers dealing with
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fluid mechanics from both the experimental and theoretical point of view. The
material is also adequate for both teaching and research. The invited lectures and
the other selected contributions are introductory and use a minimum of
mathematics.

The editors are deeply indebted to the several institutions that made possible the
realization of the I Workshop of the Venezuelan Society of Fluid Mechanics. In
particular, we thank the Instituto Venezolano de Investigaciones Científicas, IVIC,
and the Fondo Nacional de Ciencia, Innovación y Tecnología, FONACIT, of
Venezuela for providing financial support. We are also grateful to the Instituto
Tecnológico Venezolano del Petróleo (PDVSA-Intevep), the Centro de Investi-
gaciones de Astronomía Francisco José Duarte, CIDA, the FUNDACITE-Miranda,
and the Mexican institutions: Consejo Nacional de Ciencia y Tecnología,
CONACYT, Consejo Mexiquense de Ciencia y Tecnología, COMECYT, Instituto
Nacional de Investigaciones Nucleares, ININ, and Cinvestav-Abacus of the In-
stituto Politécnico Nacional, I.P.N.

We also acknowledge the Organizing Committee of the I Workshop of the
Venezuelan Society of Fluid Mechanics: Armando Blanco, Leonardo Trujillo,
Jorge Troconis, Eric Plaza, Franklin Peña-Polo, and Joselyn Sequera for their
invaluable contribution to the final manuscript.

Caracas, June 2013 Leonardo Di G. Sigalotti
Jaime Klapp

Eloy Sira
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Environmental Fluid Mechanics: Applications
to Weather Forecast and Climate Change

Leonardo Di G. Sigalotti, Eloy Sira, Jaime Klapp and Leonardo Trujillo

Abstract Virtually all economic sectors as well as many public and private activities
are affected in some measure by changes in weather and climate. Uncertainties in
the scope and severity of these changes pose financial and social risks for individ-
uals, businesses, and government agencies, with direct influence on food security
and production, transport, health, electricity generation, and water resources. The
vulnerability of human settlement to extreme weather and climate episodes is a fur-
ther aspect that must be emphasized. Hence, achieving accurate weather and climate
forecasts has important implications to modern society. In this chapter, we present
an overview of the basic fluid-mechanical principles that govern the behaviour of
weather and climate. We shall mainly focus on the numerical modelling of weather
prediction and climate projections, spanning the range from the very first attempts,
based on simple barotropic models, to the development of general circulation models
of the atmosphere and ocean to the most recent multi-model ensemble forecasting
systems.
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1 Introduction

There are many different kinds of naturally occurring fluid flows in the environment.
Natural fluid motions are vital, and there is a general strong incentive to study them,
particularly those of air in the atmosphere and of water from underground aquifers to
surface flows in rivers, lakes, and oceans. Environmental concerns have encouraged
interdisciplinarity to a degree that has been increasing in proportion to the acuity
of the problems, giving rise to a body of knowledge that comprises several dis-
ciplines, including hydrology, meteorology, climatology, and oceanography among
others. Whereas the particular objectives of each of these disciplines, such as weather
forecasting in meteorology and climate change projections in climatology, encourage
disciplinary segregation, environmental concerns compel experts in those disciplines
to base their models on the solution of the equations of fluid dynamics.

The threat of climate change is one of the greatest challenges currently facing
society. Because of the increased threats imposed by global warming and the
increasing severity and occurrence of storms and natural disasters, improving our
understanding of the climate system has become an international priority. In sim-
ple words, climate refers to the average of weather conditions. Descriptions of
the climate generally encompass statistical information concerning the mean and
variability of relevant quantities, as temperature, precipitation, and wind, over a
multi-year time period. Fluctuations in the Earth system result naturally from inter-
actions between the ocean, the atmosphere, the land, the frozen portion of the Earth’s
surface (or cryosphere), and the changes in the Earth’s energy balance arising from
volcanic eruptions and variations in the Sun’s intensity. Although global warming has
been accepted as incontrovertible, humans continue to alter the composition of the
atmosphere, primarily through the burning of fossil fuels. The build up of greenhouse
gases and trace constituents is another factor that contributes to changes in the Earth’s
heat energy balance. Its impact on the planet has been detected and is projected to
become increasingly more important in the coming decades and centuries.

Today, a fundamental tool used for predicting weather and climate changes is
the use of numerical models, i.e., mathematical models run as computer simula-
tions. However, the basic ideas of weather forecasting and climate modelling were
developed about more than a century ago, long before the construction of the first
electronic computers (Phillips 1970; Lynch 2008). At these early times, observations
were rather sparse and irregular, especially for the upper air and over the oceans, mak-
ing weather forecasting very imprecise and unreliable. The basic laws of physics,
fluid motion, and chemistry played no role and were replaced by the forecaster with
crude techniques of extrapolation, knowledge of local climatology, and guesswork
based on mere intuition. It was not until the beginning of the last century that mete-
orologists started to recognize that fluid mechanics and thermodynamics represent
the set of fundamental physical principles that govern the flow of the atmosphere
(Abbe 1901; Bjerknes 1904; Willis and Hooke 2006). In particular, Abbe (1901)
proposed the first mathematical approach to forecasting, and shortly after Bjerknes
(1904) introduced the idea that rational forecasting should consist of a diagnostic
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step, in which the initial state of the atmosphere is determined observationally and
represented in charts giving the distribution of the variables at different levels, and a
prognostic step, in which the laws of fluid motion are used to calculate the changes of
this state over time. Non-linear advection—the transport of fluid properties and char-
acteristics by the motion of the fluid itself—was identified as the primary physical
process. However, he employed a graphical approach, rather than numerical meth-
ods, for solving the fluid dynamics equations and building up new charts describing
the atmosphere some hours later, with the process being repeated iteratively until the
desired forecast length was achieved.

The beginning of modern numerical weather prediction (NWP) was pioneered by
Richardson (1922), who first attempted a direct solution of the equations of motion
using finite difference methods (Lynch 2006). His work impelled profound devel-
opments in the theory of meteorology and is the foundation upon which modern
forecasting is built. Since then, the advances in numerical analysis, which enabled
the design of stable algorithms, the development of the digital computer technol-
ogy, and the invention of the radiosonde, and its introduction in a global network,
providing timely observations of the atmosphere in three-space dimensions (i.e., in
latitude, longitude, and height), have completed the task. A definite impulse to mod-
ern meteorology was given later on by Charney (1947, 1948, 1950), who developed
a set of equations known as the quasi-geostrophic vorticity system for calculating
the large-scale motions of planetary-scale waves (Charney 1948), giving the first
convincing physical explanation for the development of mid-latitude cyclones–his
baroclinic instability theory. This theory was capable of producing a quantitatively
accurate prediction of the atmospheric flow (Charney et al. 1950; Platzman 1979). In
1979 he leaded an ad hoc study group on carbon dioxide and climate for the United
States National Research Council, with their final written report being one of the
earliest modern scientific assessments about global warming (Charney et al. 1979).
They estimated that doubling of CO2 emissions will produce a global warming near
3 ◦C with a probable error of ±1.5 ◦C, which is quite close to the best estimate value
of about 3 ◦C for the global temperature increase given by the Intergovernmental
Panel on Climate Change (IPCC) Fourth Assessment Report published in 2007.

With the advances in computer technology, numerical weather predictions have
achieved breakthrough improvements in many aspects. In the 1960s, operational fore-
casts started to use models based on numerical solutions of the primitive equations—a
set of non-linear differential equations, consisting of a form of the familiar Navier-
Stokes equations, a continuity equation, and a thermal energy equation (Charney
1955; Hinkelmann 1959; Phillips 1960; Smagorinsky 1963). A six-level primitive
equation model was introduced into operations at the National Meteorological Cen-
ter in Washington in June, 1966, running on a CDC 6600 computer (Shuman and
Hovermale 1968). Manipulating the vast datasets and performing the complex cal-
culations necessary to modern weather prediction require some of the most powerful
supercomputers in the world. Even with the increasing power of supercomputers,
the forecast skill of NWP models extends to about only 6 days. The density and
quality of observations used as input to the forecasts and the deficiencies in the
models themselves are important factors affecting the accuracy of the predictions.
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A more fundamental problem lies in the chaotic nature of the fluid-dynamics
equations used to simulate the atmosphere. In addition, these equations need to
be supplemented with parameterizations that attempt to capture the phenomenology
of small-scale processes, including solar and terrestrial radiation, moisture content
(cloudiness and relative humidity), surface hydrology (precipitation, evaporation,
snow melt and run-off), heat exchange, soil, vegetation, surface water, and the effects
of terrain. On the other hand, the development of regional (limited area) models has
facilitated accurate forecasting of the tracks of tropical cyclones and hurricanes as
well as of air quality (Shuman 1989; van Dop and Steyn 1991). The inclusion of
the interactions of land and vegetation with the atmosphere has led to more realistic
forecasts (Xue et al. 1996).

The chaotic nature of the atmospheric flow imposes a limit on predictability, as
inherent errors in the initial state grow rapidly and render the forecast useless after
some days. A numerical prediction method, known as ensemble forecasting, which
is a form of Monte Carlo analysis has been introduced in which multiple numerical
predictions, each starting from slightly different initial conditions, are run and the
combined outputs are used to deduce probabilistic information about future changes
in the atmosphere (Molteni et al. 1996; Toth and Kalnay 1997; Buizza et al. 1999).
With this approach, probability forecasts for a wide range of weather events are cur-
rently generated and disseminated for use in the operational centres. For instance,
seasonal forecasts, with a range of 6 months, are prepared at the European Centre
for Medium-Range Weather Forecasts (ECMWF) and at the National Center for
Environmental Prediction (NCEP) in Washington. They are made using a coupled
atmosphere/ocean model, and a large number of forecasts are combined in an ensem-
ble each month. In particular, these forecast ensembles have demonstrable skills for
tropical regions with recent impressive predictions for the onset of El Niño and La
Niña events. However, in middle latitudes, as in Europe, no significant skill has yet
been achieved by these models. In fact, seasonal forecasting for middle latitudes
remains one of the great problems facing us today.

Weather and climate are different in the sense that climate predictions do not
need knowledge of weather in detail. A good analogy of the difference between
weather and climate is to consider a swimming pool. Suppose that the pool is being
slowly filled. If someone dives into it, this will certainly generate waves on the
water surface. The waves represent the weather, while the average water level is
the climate. A new diver jumping into the pool next day will produce more waves,
but the water level will be higher as more water has flowed into the pool. In the
atmosphere the ‘water hose’ is increasing the amount of greenhouse gases, which
will cause the climate to warm even though we still have a changing weather (waves).
Thus, climate scientists use models to forecast the average water level in the pool
and not the waves. However, climate modelling derives from efforts first formulated
to numerically predict the weather. The first successful long-range simulation of the
general circulation of the atmosphere was developed in 1956 (Phillips 1956), which
realistically depicted monthly and seasonal patterns in the troposphere (Cox 2002).
This work had a galvanizing effect on the meteorological community and thereafter
several general circulation models (GCMs) were developed. One early model of
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particular interest has been that developed at the National Center for Atmospheric
Research (NCAR) (Kasahara and Washington 1967). By the early 1980s, NCAR
has developed the Community Climate Model (CCM), which has been continuously
refined into the next 20 years (Williamson 1983; Williamson et al. 1987; Williamson
and Olson 1994), with the Community Atmosphere Model (CAM 3.0) being the
latest version (Collins et al. 2004). On the other hand, coupled atmosphere/ocean
climate models such as HadCM3 and HadGEM are used at the Hadley Centre for
Climate Prediction and Research in the United Kingdom for a wide range of climate
studies (Lynch 2006). Advanced models, such as the atmospheric GCM ECHAM5
developed at the Max Planck Institute for Meteorology (Roeckner et al. 2003), are
under continuing refinements and extensions, and are increasing in sophistication and
comprehensiveness. Most of them simulate not only the atmosphere and oceans but
also a wide range of geophysical, chemical, and biological processes and feedbacks.
In particular, these models, now called Earth System Models, are applied to the
practical problem of weather prediction and also to the study of climate variability
and mankind’s impact on it.

2 Weather Modelling and Prediction

The atmosphere is a fluid (composed mostly of air) that covers the entire Earth
surface. Most of the phenomena which we associate with day-to-day weather occur
in its lowest layer, called the troposphere, which ranges in thickness from about
8 km at the poles to 16–20 km over the equator. The troposphere is denser than
the layers of the atmosphere above it and contains up to 75 % of the mass of the
atmosphere, with approximate composition of 78 % nitrogen, 21 % oxygen, and 1 %
small concentrations of other trace gases. Nearly all atmospheric water vapour (or
moisture) and aerosols are found in the troposphere. Since temperature decreases
with altitude, warm air near the surface of the Earth can readily rise, being less dense
than the colder air above it. This induces a vertical movement, or convection, of air
which generates clouds and ultimately rain from the moisture within the air, giving
rise to much of the weather we experience in our daily lifes.

The troposphere is capped by the tropopause, a boundary region of stable
temperature, separating the troposphere from the stratosphere, where the air temper-
ature begins to rise. Such a temperature increase prevents much of the air convection
beyond the troposphere, and consequently most weather phenomena, including tow-
ering cumulonimbus thunderclouds, are confined to the troposphere. For instance,
most commercial aircrafts fly in the lower stratosphere, just above the tropopause
where clouds are usually absent, as also are significant weather perturbations (Petty
2008). However, vigorous thunderstorms as, for example, those of tropical origin
may overshoot into the lower stratosphere and undergo low-frequency vertical oscil-
lations of an hour-order duration, or less (Shenk 1974), which in turn may induce
low-frequency atmospheric gravity waves capable of affecting both atmospheric and
oceanic currents in the region (Bromirski et al. 2010). Sometimes the temperature
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does not decrease with height in the troposphere, but rather increases, which is known
as a temperature inversion. In general, temperature inversions limit or prevent the ver-
tical mixing of air, causing a state of atmospheric stability. This can lead to episodes
of air pollution, where air becomes stagnant and pollutants emitted at ground level
remain trapped underneath the temperature inversion zone (Phalen and Phalen 2012).

Among the most significant scientific advances of the past century is our ability
to simulate complex physical systems using numerical methods and predict their
evolution. One outstanding example is the development of GCMs of the atmosphere
and ocean, which can be used to predict the weather for several days in advance with
a high degree of confidence and gain insight into the factors that cause changes in
the climate as well as into their likely timing and severity. Here we shall review the
most important numerical weather prediction models, which were the precursors to
climate prediction systems, viewed as a problem in non-linear fluid mechanics.

2.1 Barotropic Models

Barotropic models are short-range prediction models that include only the reversible
part of atmospheric physics. That is, the atmosphere is treated as a one-component gas
consisting of dry air so that irreversible processes, such as non-adiabatic heating and
cloud formation, are not taken into account. The barotropic model was the first kind
of NWP model ever successfully implemented (Charney 1948; Charney et al. 1950).
It is probably the simplest model that can realistically model atmospheric flow around
the Earth. Meteorologists use the word barotropic to describe an atmosphere where
isosteric surfaces—surfaces of constant specific volume—and isobaric surfaces—
surfaces of constant pressure—coincide. In other words, the gradient of the specific
volume (or density) and the gradient of pressure are parallel and proportional to each
other so that the density is a function of pressure (adiabatic atmosphere).

Typical barotropic models are based on a set of equations known as the quasi-
geostrophic system (Charney et al. 1950). These equations are derived from the Euler
equations of motion by assuming that the Coriolis force resulting from horizontal
air currents exactly balances the horizontal pressure gradients (geostrophic balance),
while in the vertical direction hydrostatic equilibrium is assumed. If the atmosphere
is divergence-free, the curl of the Euler equations of motion reduces to the barotropic
vorticity equation (Bennett et al. 1993):

Dζ

Dt
= 0, (1)

where D/Dt is the substantial time derivative and ζ is the absolute vorticity defined
by

ζ = m2
[

∂

∂x

( v

m

)
− ∂

∂y

( u

m

)]
+ f, (2)



Environmental Fluid Mechanics 9

where v and u are the horizontal geostrophic wind components in the direction of
the map coordinates x and y, respectively, m is the map factor, and f = 2Ω sin φ

is the Coriolis frequency. Here Ω is the angular velocity of planetary rotation and φ

is the latitude. Since the model has non-divergent flow, a streamfunction Ψ can be
defined by

v = m
∂Ψ

∂x
, u = −m

∂Ψ

∂y
, (3)

so that
ζ = m2∇2Ψ + f. (4)

In low-pressure systems, where the Rossby number (Ro) is small, the effects
of planetary rotation are large compared to the net wind acceleration, allowing the
use of the geostrophic approximation given by Eqs. (1–4) (Marshall and Plumb
2008). Typical barotropic models for operational weather prediction were based
on an extended version of Eqs. (1–4) to account for small deviations from strict
geostrophic balance—the so-called semi or quasi-geostrophic equations (Phillips
1970; Chynoweth and Sewell 1991). Since the pioneering work of Charney (1948)
and (Charney et al. 1950), the quasi-geostrophic equations have become an accepted
system of approximate equations for the study of mid-latitude motions of the
atmosphere on a sypnotic scale, while allowing for the presence of mesoscale phe-
nomena such as the atmospheric fronts.

A barotropic instability is a wave instability associated with shear in a jet-like
current and this appears to be of central importance in the tropics. Early attempts
of forecasting in the tropics with a barotropic atmospheric model were addressed
to predict upper-air flow patterns in the tropical Pacific areas of both the Northern
and Southern hemispheres (Jordan 1956; Vederman et al. 1966). A similar model
was applied to forecasts of flow patterns at 500 mb level in the Indian region (Shukla
and Saha 1970). Barotropic prediction models have also provided the basis for a
significant advance of the state of the art of tropical cyclone motion and hurricane
track forecasting in the range from one to several days (Bennett et al. 1993; Sanders
and Burpee 1968; Sanders et al. 1980; DeMaria 1985). Although there are some
situations where tropical cyclone motion can only be modelled using a more general
form of the basic equations as, for example, in the case when a vortex interacts
with a vertically-sheared basic current, there has been evidence that some aspects
of tropical cyclone motion can be described with simple barotropic models. For
instance, the SANBAR model (Burpee 2008)—a barotropic tropical cyclone track
prediction model designed for the North Atlantic tropical cyclone basin and used
operationally during 1973–1984 and 1985–1989, was recognized to be superior to
other forecast methods for medium range track forecasts of low-latitude Atlantic
tropical cyclones (Neumann and Pelissier 1981). It has also been shown that for the
Australian/Southwest Pacific region many aspects of tropical cyclone motion can
be explained using a theory based on a barotropic vorticity equation (Holland 1983,
1984). In fact, calculations of the terms in the full form of the vorticity equation, using
aircraft and rawinsonde composite data, have shown that the dominant contribution
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to the local vorticity change in the regions near the tropical cyclone centre comes
from the horizontal advection term (Chan 1984).

Barotropic NWP models have also been used to demonstrate the close coupling
existing between the westwards propagating African waves and the broad scale
African monsoons on the time scale of 3–5 days (Krishnamurti et al. 1980). It is
well-known today that about 80 % of all tropical cyclones on the globe forms near or
within the intertropical convergence zone (ITCZ) (Gray 1979). In satellite images,
the ITCZ is sometimes observed to undulate, forming cloud patterns. At times, such
an undulating ITCZ breaks down into several tropical disturbances within which
tropical cyclones may form (Gray 1979; Zehr 1993). The resulting tropical cyclones
and typhoons then move into higher latitudes, allowing the ITCZ to reform and
perhaps start the cycle over again (Guinn and Schubert 1993). These undulations
are a clear signature of easterly waves in the tropical troposphere. Easterly waves
have early been recognized to play an important role in tropical cyclogenesis (Riehl
1945). These have since been observed in the Atlantic Ocean and West Africa (Reed
et al. 1977; Chen and Ogura 1982), in the Pacific Ocean (Nitta et al. 1985; Nitta and
Takayabu 1985; Tai and Ogura 1987; Heta 1991), and in the South China Sea and
India (Saha et al. 1981). All these studies concluded that easterly waves occur in the
lower tropical troposphere and have typical wavelengths and speeds in the ranges
from 2,000 to 4,000 km and 5–8 ms−1, respectively. While nearly 60 % of all Atlantic
tropical cyclones originates from African easterly waves (Avila and Clark 1989),
observational and numerical studies indicate that they result from a convectively
modified form of combined barotropic and baroclinic instability of the African east-
erly jet, which has maximum winds of 10–15 ms−1 near 700 mb and 15 ◦N (Norquist
et al. 1977; Thorncroft and Hoskins 1994a,b). Barotropic model simulations based
on the shallow-water equations have suggested that the ITCZ break-down may play
a role in producing the observed tendencies for tropical storms to cluster in time
and form polewards of the central latitude of the ITCZ and to the east of existing
tropical storms (Nieto Ferreira and Schubert 1997). More recently, barotropic insta-
bility calculations have also been employed to investigate the possible importance of
barotropic shear variations for explaining the effect of the Madden-Julian oscillation
on hurricane formation over the eastern and western North Pacific (Hartmann and
Maloney 2001).

In spite of its numerous applications during more than 40 years, the quasi-
geostrophic modelling was abandoned because of the development of more efficient
ways of integrating the primitive equations (Bengtsson 1999). On the other hand, the
incorporation of physical processes, radiation, clouds, precipitation processes, etc.
was by far more complicated to implement in the quasi-geostrophic models, and this
was an additional reason not to use them any longer in NWP.

2.2 Baroclinic Models

The occurrence of large vertical temperature gradients in the troposphere can lead to
the formation of convective air currents, which transport the excess energy away from
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the surface to higher altitudes where the air is significantly cooler. When this happens
we say that the atmosphere is statically unstable. In analogous manner, when the
latitudinal temperature distribution is such that a large equator-to-pole temperature
gradient exists, the atmosphere will break down into wind flows to move the excess
energy from the regions of excess (warm tropics) to regions of deficit (cool poles).
In this case, the atmosphere is said to be baroclinically unstable. This imbalance of
energy is essentially due to an excess of radiational heating in the tropical latitudes.
In a stratified fluid, a source term of the form ∇ρ × ∇ p/ρ2 appears in the vorticity
equation whenever isopycnic (constant density) surfaces and isobaric surfaces are
not aligned, which is responsible for the baroclinic contribution to the local vorticity
(Marshall and Plumb 2008). In meteorology, a baroclinic atmosphere is one in which
the density depends on both the temperature and the pressure.

The most important application of the baroclinic instability is the cyclogenesis
process at mid-latitudes, which represents the development of sypnotic scale weather
disturbances. In other words, it is the leading mechanism shaping the cyclones and
anticyclones that influence weather at mid-latitudes. For instance, in the ocean the
baroclinic instability is responsible for the generation of mesoscale eddies that play
a role in the transport of tracers, which are used in oceanography to deduce flow
patterns in the ocean (Davis 1991). In general, vorticity is the curl of the velocity
field and its evolution can be broken into contributions from advection (as vortex
tubes move with the flow), stretching and twisting (as vortex tubes are pulled or
twisted by the flow), and baroclinic vorticity generation (Nadiga and Aurnou 2008).
Therefore, the study of the evolution of these baroclinic instabilities is a crucial part
of developing theories of mid-latitude weather. The birth of baroclinic NWP models
started with the classical work of Charney (1947) and Eady (1949). The energy source
for baroclinic instability is the potential energy associated with the environmental
flow, and since then meteorologists have become aware that baroclinic instability can
develop even in situations of rapid rotation (small Ro) and strong stable stratification
(large Richardson number, Ri) as is typically observed in the atmosphere, where Ri
is a dimensionless number that serves to quantify the ratio of potential to kinetic
energy.

Since a tropical cyclone is a huge tropospheric convection cell and the axis of
the horizontal wind circulation remains almost vertical during the movement, there
was a need to develop baroclinic prediction models capable of simulating the three-
dimensional atmospheric motion more closely than single-level barotropic models.
After the Electronic Numerical Integrator and Computer (ENIAC) forecast chaired
by Charney in the 1950s in Aberdeen, Maryland (Platzman 1979), several baroclinic
models were developed in the next few years, which were all based on the quasi-
geostrophic system of equations (Phillips 1951, 1954; Charney and Phillips 1953;
Matsumoto 1956; Wiin-Nielsen 1959; Kasahara 1960). Most of these models were
employed to evaluate the instantaneous movement velocity of tropical cyclones from
multi-level data, i.e., the atmosphere is divided into two, or more, levels where
prognostic and diagnostic variables are evaluated from known data at these levels.
However, it was soon argued that early experiments with baroclinic models capable
of generating additional kinetic energy from the store of available potential energy
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failed (Ellsaesser 1968), and that the multi-level models were worse than the single-
level barotropic forecasts (Bengtsson 1964; Shuman 1989). One major cause of the
failure was due to a net accumulation of kinetic energy in the models owing to the
presence of the baroclinicity source and the absence of a dissipative sink of kinetic
energy. Therefore, the single-level model was preferred when regular operational
weather forecasting commenced in 1958.

2.3 Primitive Equation Models

As numerical weather prediction passed its infancy, the quasi-geostrophic approx-
imation was replaced by the primitive equations. On the basis that these equations
would simulate the atmospheric dynamics and energetics more realistically than
the filtered equations, Hinkelmann (1951) first tackled the issue of suitable initial
conditions for integration of the primitive equations, followed by other important
studies of initialization (Charney 1955; Phillips 1960). The first applications of the
primitive equations were a success (Hinkelmann 1959; Smagorinsky 1963) and soon
thereafter, they started to be used in operational settings in 1966 at the Deutscher
Wetterdienst in West Germany (Reiser 1986) and at the National Meteorologi-
cal Center in Washington (Shuman and Hovermale 1968), followed by the United
Kingdom Meteorological Office in 1972 and the Australian Bureau of Meteorology
in 1977 (Leslie and Dietachmayer 1992; Lynch 2008).

The primitive equations are a set of non-linear differential equations that form the
basis for any NWP scheme. Their precise form depends on the coordinate system used
to represent the vertical structure of the atmosphere, which may be either the pressure
(p), the geometrical height (z), or the potential temperature (θ) (Kasahara 1974). In
particular, models based on pressure as a vertical coordinate must be distinguished
into three types: pressure, log pressure, and the so-called σ -system, where σ = p/p0
and p0 is the Earth’s surface pressure (Phillips 1957). The use of pressure as a
vertical coordinate became very popular during the 1950s and 1960s (Hinkelmann
1959; Eliassen 1949; Leith 1965). However, this scheme has certain computational
disadvantages in the vicinity of mountains because the lower limit of the atmosphere
is not a coordinate surface. In fact, there have been very few attempts to incorporate
details of the Earth’s orography in these models. To overcome this difficulty, the
σ -system was proposed in which the Earth’s surface is always a coordinate surface
(Phillips 1957; Smagorinsky et al. 1965; Sela and Bostelman 1973). Moreover, the
use of the potential temperature (defined as θ = T (p0/p)κ , where κ = Rg/cp,
Rg is the specific gas constant, cp the specific heat at constant pressure, and T the
temperature) as a vertical coordinate in primitive-equation models commenced in
the 1970s (Eliassen and Raustein 1968, 1970; Shapiro 1973). Although the approach
is particularly suitable for resolving details of frontal structure, it still faces the same
degree of complexity in handling the lower boundary conditions as in the isobaric
coordinate system. While the representation of bottom topography has historically
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been crude, the choice of vertical coordinates is perhaps the single most important
feature that differentiates between models and is still an active area of research.

In the pressure as well as in the height and potential temperature coordinate
systems, special procedures were implemented to take into account the effects
of the Earth’s orography, consisting of examining the height of the mountains
and shaping them as lateral boundary conditions at the grid points. Although the
σ -system is not free of shortcomings, the idea of transforming the Earth’s surface
to a coordinate surface has also been applied to the height and potential temperature
coordinate systems as well. A comprehensive overview of models using all three
vertical coordinates as well as a concise review of the equations of oceanic motion,
sub-grid-scale parameterizations, and numerical approximation techniques can be
found in Haidvogel and Beckmann (1999). A convenient way to introduce a general
system that utilizes any well defined variable as a vertical coordinate has been dis-
cussed by Kasahara (1974). For example, in the z-system any fluid quantity will be
a function of the Cartesian coordinates (x , y, z) and time t , while in the generalized
coordinate system (the s-system), the independent variables would be (x , y, s, t)
such that s = s(x , y, z, t). When x , y, and t are held fixed, this equation gives a
single-valued monotonic relation between s and z. The basic primitive equations for
large-scale atmospheric flows written in the s-system are as follows: the horizontal
equation of motion

Dv
Dt

= − 1

ρ
∇s p − g∇s z − f k × v + F, (5)

where v = ui + vj is the horizontal velocity, with u and v being its x-and
y-components, ∇s = ∇z + (∂s/∂z)∇s z(∂/∂s) is the gradient operator in the
s-system, k is the unit vector along the s-coordinate, f is the Coriolis frequency
(= 2Ω sin φ), Ω is the angular velocity of the Earth’s rotation, φ the geographical
latitude, ρ the atmosphere density, g the Earth’s gravitational acceleration, p the
pressure, F the frictional force per unit area, and

D

Dt
=

(
∂

∂t

)
s
+ v · ∇s + ṡ

∂

∂s
, (6)

is the total time derivative in the s-system, where ṡ is the generalized vertical velocity;
the continuity equation

D

Dt
ln

(
ρ

∂z

∂s

)
+ ∇s · v + ∂ ṡ

∂s
= 0; (7)

the hydrostatic equation

ρ
∂z

∂s
= − 1

g

∂p

∂s
; (8)
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the ideal gas law
p = ρRgT ; (9)

and the first law of thermodynamics

D

Dt
ln θ = Q

cpT
, (10)

where θ is the potential temperature as defined in the text above and Q is the rate
of heating/cooling per unit mass per unit time. Equations (5–10) constitute the basic
set of dynamical principles for NWP. In predicting the atmospheric flow, we must
define appropriate boundary conditions as required by any solution of the problem.
In general, it is convenient to choice the upper boundary condition as a vertical
coordinate surface, s = sT = const., so that there is no mass transport through it
(ṡ = 0). As a lower boundary condition of the atmosphere, it is usually assumed that
there is no mass flow through the Earth’s surface, which is located at fixed altitude H
above the mean sea level z = 0. In the s-system, the Earth’s surface is expressed by

s = sH = s(x, y, H, t), (11)

where the value of s at z = H may vary with time and space. Since the air at the
Earth’s surface may move only along the Earth’s surface itself, the lower boundary
condition must read

ṡ = ∂sH

∂t
+ vH · ∇sH , (12)

at s = sH . If the Earth’s surface coincides with a constant s-surface, then Eq. (12)
becomes ṡ = 0 at s = sH . It is worth noticing that many worldwide groups were
also examining how to used “hybrid” coordinates, where the vertical coordinate may
be a function of height in the mixed layer, a function of isentropes in the interior,
and some function of the terrain in the bottom boundary layer (Spall and Robinson
1989; Arakawa and Konor 1996; Rõõm et al. 2007).

For prediction of large-scale weather phenomena, it is important to add to the
above set of equations the prediction of the water vapour field. Water vapour is a
dynamically active constituent of the tropical atmosphere which, though to a sig-
nificant extent locally controlled by vertical advection, precipitation, and surface
evaporation, is also affected by horizontal advection. Water vapour affects the flow
in turn, because a humid atmosphere supports deep, precipitating convection more
readily than a dry atmosphere. For instance, precipitation heats the atmosphere, and
this heating drives the flow. The differential equation for the specific humidity q,
defined as the mass of water vapour per unit mass of air, in the s-system has the form
(Sobel 2002):

Dq

Dt
= Qq , (13)
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where Qq represents sources and sinks of moisture due to unresolved processes,
such as transport of water vapour as well as loss by condensation (Yanai et al. 1973).
Similarly, Q in Eq. (10) represents sources and sinks of heat, such as radiative
transfer of electromagnetic energy. For example, Q = Qc + Q R + Qd , where Qc

is the apparent source of heat associated with buoyant moist convection (i.e., release
of latent heat by condensation of water vapour or freezing of liquid water as well
as transport of heat), Q R represents radiative heating or cooling, and Qd represents
diffusive or turbulent transport by motions that are not directly associated with deep
convection (Yanai et al. 1973). In order to obtain a closed dynamical system, we need
to parameterize these sources and sinks as functions of the large-scale state variables
v, q, and T . In particular, Qc and Qq are determined by a convective parameterization
(Arakawa 1993). A detailed discussion of the parameterization problem is precluded
here and the reader is referred to a few useful textbooks for a detailed account
(Emanuel 1994; Smith 1997).

Weather models that have grid-boxes with sides between 5 and 25 km can
explicitly represent convective clouds, although they need to parameterize the cloud
microphysics which occur at much smaller scales (Narita and Ohmori 2007). For
example, the formation of large-scale clouds (stratus-type) is more physically based
and form when the relative humidity reaches some prescribed value. On the other
hand, the amount of solar radiation reaching the ground and the formation of cloud
droplets, which occur on the molecular scale, must be parameterized before they
can be included in any model. Atmospheric drag produced by mountains must also
be parameterized because limitations in the resolution of elevation contours may
produce significant underestimates of the actual drag (Stensrud 2009). A parameter-
ization of the surface flux of energy between the ocean and the atmosphere is also
required in order to determine realistic sea surface temperatures and type of sea ice
found near the ocean’s surface (McGuffie and Henderson-Sellers 2005). In addition,
the impact of multiple cloud layers as well as soil type, vegetation type, and soil
moisture are factors that must be taken into account in NWP models (Melnikova
and Vasilyev 2005; Stensrud 2009). Within air quality models, parameterizations
are required to take into account atmospheric emissions from multiple relatively
tiny sources, as roads, urban areas, fields, and factories, within specific grid-boxes
(Baklanov et al. 2009).

In the last three decades a myriad of primitive-equation models has been reported
in the literature, most of which have found applications in ocean dynamics and
tropical cyclone forecasting (Arakawa and Suarez 1983; Beckers 1991; Song and
Haidvogel 1994; Ezer and Mellor 1997; Barnier et al. 1998; Fraedrich and Frisius
2001). For testing and operational models, the process of entering observational
data to generate initial conditions is called initialization. On land, terrain maps that
are available at resolutions down to 1 km are employed to facilitate atmospheric
circulation models within regions of rugged topography. This permits depict features
such as downslope winds, lee waves—atmospheric standing waves due to wind flows
towards a mountain, —and related cloudiness that affects the incoming solar radiation
(Stensrud 2009). In country-based weather services, the main input data is produced
by observations from radiosondes (placed in weather balloons that measure relevant
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atmospheric parameters and transmit them to a fixed receiver) and from weather
satellites. Permanent weather observation stations either report hourly in METAR
reports—the most popular format in the world for the transmission of weather data—
or every 6 h in SYNOP (surface synoptic observations) reports. In general, these
observations are irregularly spaced and so they must be processed by data assimilation
and objective analysis methods, which perform quality control and obtain values at
locations usable by NWP models (Krishnamurti 1995). Many of these models are
global, primitive-equation models based on finite-difference techniques, where the
world is represented as discrete points on a spherical grid in latitude and longitude
(Chaudhari et al. 2007), while a few other models are based on spectral methods that
solve for a range of wavelengths. Today, information from weather satellites is used
where traditional data sources are not available. Research projects use reconnaissance
aircrafts to fly in and around weather systems of interest, such as tropical cyclones.
In particular, reconnaissance aircrafts are also used over the open oceans during the
cold season into systems which cause significant uncertainty in forecast guidance,
or which are expected to be of high impact from 3 to 7 days into the future over the
downstream continent.

The horizontal domain of a NWP model can be either global, covering the entire
globe, or regional—also known as limited-area models,—covering only part of the
Earth. The latter models allow for the use of finer grid spacing than global models
because the available computational resourses are focused on a specific area, thereby
allowing explicit resolution of small-scale meteorological phenomena that cannot be
represented on the coarser grid of a large-scale, or global, model. In general, regional
models use information from global models to specify boundary conditions at the
edge of their domain and eventually allow systems from outside the limited area to
move into it. For instance, high-resolution models (also called mesoscale models),
such as the Weather Research and Forecasting (WRF) model, which was created
through a partnership including the National Oceanic and Atmospheric Administra-
tion (NOAA), NCAR, and more than 150 other organizations and universities in the
United States and other countries, and the Nonhydrostatic Mesoscale Model (NMM),
which was designed for forecasting operations at various National Weather Service
offices in the United States, are primitive-equation codes based either on hybrid or
σ vertical coordinates that are employed to explore ways of improving the accu-
racy of hurricane track, intensity, and rainfall forecasts, among other meteorological
questions.

3 Climate Modelling

Climate is a complex, large-scale phenomenon that emerges from complicated inter-
actions among small-scale physical systems. As mentioned by Schmidt (2007) in
his Physics Today’s article on the physics of climate modelling: the task climate
modellers have set for themselves is to take their knowledge of the local interactions
of air masses, water, energy, and momentum and from that knowledge to explain the
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climate system’s large-scale features, variability, and response to external pressures,
or “forcings”. That is a formidable task, and though far from complete, the results
so far have been surprisingly successful.

Computer models of the coupled atmosphere-land surface-ocean-sea ice system
are essential scientific tools for understanding and predicting natural and human-
caused changes in the Earth’s climate. Recently, these models have added more
components such as interactive atmospheric aerosols, atmospheric chemistry, and
representations of the carbon cycle. There is no doubt that the study of climate
change and its impacts are of enormous importance for our future and that global
climate models are perhaps the best means we have of anticipating the likely changes.
In general, climate models are used for a variety of purposes, which range from the
study of the dynamics of the climate system to projections of future climate. In recent
years, the most talked-about use of climate models has been to project temperature
changes resulting from increases in atmospheric concentrations of greenhouse gases.

3.1 Phenomena of Interest in Climate Modelling

A number of well-known phenomena may contribute to climate change over short and
long periods, which include the global carbon cycle, El Niño-Southern Oscillation
(ENSO) climate pattern and its counterpart La Niña, the greenhouse warming, the
atmospheric chemistry, the ocean circulation, and extreme events such as mesoscale
storms and volcanic eruptions.

3.1.1 The Global Carbon Cycle

In the geological history of the Earth, carbon has been cycling among large reservoirs
in the land (including plants and fossil fuels), oceans, and the atmosphere. This
natural cycling of CO2 usually takes millions of years to move large amounts of
carbon from one system to another. However, atmospheric carbon dioxide comes
increasingly from human activities, which together with other trace (greenhouse)
gases in the atmosphere absorb radiation emitted from the Earth, thereby trapping heat
in the atmosphere and contributing to its warming. For instance, since the Industrial
Revolution in the nineteenth century, the amount of CO2 in the atmosphere has risen
by 30 % as a result of the sustained increase in burning of fossil fuels (oil and natural
gas) and other carbon based fuels, principally wood and coal, due to the rise of
industry and transportation emissions.

There are two large reservoirs of carbon that are capable of taking significant
amounts of CO2 out of the atmosphere at comparable rates: the oceans and the land
plants. A comprehensive study of the ocean storage of CO2 derived from human
activity based on a decade-long survey of carbon distributions in the Atlantic, Pacific,
and Indian oceans indicate that the oceans have taken up to 118 billion metric tons
of CO2 from human sources (anthropogenic CO2) between the period from 1800 to
1994, implying that the oceanic sink accounts for ∼48 % of the total fossil-fuel and
cement-manufacturing emissions (Sabine et al. 2004).
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3.1.2 Greenhouse Gases and Aerosols

Trace (or greenhouse) gases in the atmosphere, such as water vapour, carbon dioxide,
ozone, methane, nitrous oxide, and carbon monoxide, are present in the atmosphere
in a tiny percentage (∼1 %) compared to its total composition, mostly nitrogen and
oxygen. However, such a small amount contributes significantly to long-term changes
in the Earth’s climate. They absorb and re-emit some of the outgoing energy radi-
ated from the Earth’s surface, retaining the excess heat in the lower atmosphere and
affecting the surface energy balance of the planet. Some greenhouse gases remain in
the atmosphere for decades or even centuries, warming the atmosphere and result-
ing in long-term changes to global climate. The factors that influence the Earth’s
energy balance are quantified in terms of radiative forcing. While some greenhouse
gases, like carbon dioxide, have always been present in the atmosphere, some others
may be new compounds, introduced into the air by man-made mechanisms such as
manufacturing processes. This human-induced (anthropogenic) warming has had a
discernible influence on many physical and biological systems, and future warming
is projected to have important impacts on the sea level rise, increased frequency and
severity of extreme weather events, loss of biodiversity, and agricultural productivity.

Cumulative anthropogenic emissions of CO2 are recognized to be a major cause
of global warming (Botzen et al. 2008), with the developed countries contributing to
more than 80 % of industrial CO2 emissions (Höhne et al. 2010). A recent analysis
estimates that water vapour accounts for about 50 % of the Earth’s greenhouse
effect, with clouds—formed by suspended water droplets and ice crystals (Kiehl
and Trenberth 1997)—contributing 25 %, carbon dioxide 20 %, and other minor
trace gases and aerosols accounting for the remaining 5 % (Schmidt et al. 2010).
Though to a relatively minor extent, aerosols—fine solid particles of various types and
concentrations suspended in the atmosphere such as smoke, dust, smog, ashes, pollen,
and other sources (Hinds 1999)—can also affect the behaviour of the Earth system.
For example, aerosols can absorb and scatter radiation, which can cause either warm-
ing or cooling of the atmosphere. Therefore, they are important in the formation and
behaviour of clouds, and can influence the water cycle and shift the Earth’s radiative
balance.

3.1.3 El Niño and La Niña

El Niño is a natural fluctuation of the global climate system. Originally it was
the name given to the periodic warming of ocean waters along the tropical South
American coasts and out along the Equator to the dateline. Today, the name is used
to describe the whole El Niño-Southern Oscillation (ENSO) phenomenon. During El
Niño events, warmer than average sea surface temperatures occur in the central and
eastern equatorial Pacific accompanied by high air surface pressure in the western
Pacific, while during La Niña—the opposite extreme of the ENSO cycle,—cooler
than average see surface temperatures predominate in the equatorial central and east-
ern Pacific accompanied by low air surface pressure in the western Pacific (Trenberth
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et al. 2007). ENSO is an important component of the climate system since El Niño/La
Niña phases impact weather on a global scale.

Under normal conditions, i.e., when neither El Niño nor La Niña are present,
the Walker circulation—parcels of air following a closed circulation in the zonal
and vertical directions in the lower tropical atmosphere—is seen at the sea surface
in the form of easterly trade winds that move air and water warmed by the Sun
towards the west (Briggs and Smithson 1986). During El Niño events, the trade
winds weaken, leading to a rise in sea surface temperature in the eastern equatorial
Pacific and a reduction of up-welling off South America. Heavy rainfall and flooding
occur over Peru, and drought over Australia and Indonesia. The supplies of nutrient-
rich water off the South American coasts are cut off due to the reduced up-welling,
adversely affecting fisheries in that region. In the tropical South Pacific the pattern
of occurrence of tropical cyclones shifts eastwards, so there are more cyclones than
normal in areas such as the Cook Islands and French Polynesia. Conversely, during
La Niña events, the trade winds strengthen and the pattern is a more intense version
of the normal conditions, with an even colder tongue of sea surface temperatures in
the eastern equatorial Pacific. Typically, this anomaly happens at irregular intervals
of 2–12 years, and lasts 9 months–2 years, with an average period length of 5 years
(Philander 1990).

The strong El Niño event of 1982–1983 has inspired innovative climate research,
which has resulted in greater predictability of ENSO. In particular, the NOAA’s
research laboratories have taken a leadership role in furthering ENSO observations
and research to improve understanding, predictions, and impacts. This not only serves
society’s need for information about weather and climate, but also helps plan and
respond to weather and climate impacts. For example, ENSO has widespread impacts
on a global scale such as drought, wildfires, crop failure, starvation, increased tropical
storm/hurricane activity, damage to ecosystems, flooding, and increased spreading
of infectious diseases. Understanding and predicting ENSO has resulted in more
accurate climate predictions and, hence, in a reduction of its impacts through bet-
ter planning. For example, scientists are now taking their understanding of ENSO
a step further by comparing comprehensive descriptions of these events from the
observed record with those simulated by numerical prediction models (Emile-Geay
et al. 2013a,b).

3.1.4 Atmospheric Chemistry

The composition and chemistry of the atmosphere is important primarily because
of the interactions between the atmosphere and living organisms. As a matter of
fact, the composition of the atmosphere changes as a result of natural events such as
volcano emissions, lightning—massive electrostatic discharges between electrically
charged regions within clouds, or between a cloud and the Earth’s surface,—and
bombardment by solar wind particles, and also as a result of air pollution derived
from human activities. Well-known examples of problems currently addressed by
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atmospheric chemistry include ozone depletion, acid rains, photochemical smog,
greenhouse gases, and global warming (Seinfeld and Pandis 2006).

Progress in atmospheric chemistry is often driven by the interplay between obser-
vations, laboratory measurements, and numerical modelling. One common trade-off
in numerical modelling is between the number of chemical compounds and reac-
tions that are modelled and the representation of chemical transport and mixing in
the atmosphere. Typical box models might include hundreds, or even thousands, of
chemical reactions but will only have a rather crude representation of mixing in the
atmosphere. In contrast, existing 3D models based on primitive equations represent
many of the physical processes of the atmosphere but due to constraints on compu-
tational resources will have far fewer chemical reactions and compounds. A trend
today is to incorporate atmospheric chemistry as modules in existing climate models.

3.1.5 The Ozone Layer

The ozone layer is a deep layer located in the stratosphere between 30 and 90 km
above the ground, encircling the Earth and where most of the atmospheric ozone (O3)
is concentrated. It is well-known that though ozone represents only a small fraction
of the gas present in the atmosphere, it plays a protective role by shielding humans
and other types of life from the harmful ultraviolet (UV) radiation that comes from
the Sun (Seinfeld and Pandis 2006). Ozone on the Earth’s stratosphere is a bluish gas
created by UV light striking oxygen molecules containing two oxygen atoms (O2)
and separating them into individual oxygen atoms, which can then recombine with
other O2 molecules to form O3.

Over the last two or three decades, the ozone layer has become more widely appre-
ciated by the public as it was realized that certain industrial processes and consumer
products result in the atmospheric emission of chemicals, such as chlorofluorocar-
bons and hydrochlorofluorocarbons, which have contributed to the depletion of the
ozone layer through a complex series of chemical reactions (Steger and Bowermas-
ter 1990). There is also evidence that natural sources of bromides and chlorides
from ocean spray and volcanos can contribute to depletion of the ozone (Steger and
Bowermaster 1990). As a consequence of these discoveries, an international treaty
was signed in 1973, called the Montreal Protocol, and since then other international
agreements were also put in place to limit the emissions of human-made, ozone-
depleting substances. As a result of these efforts, it is expected that the ozone layer
will progressively recover in the coming decades.

Since ozone is also a greenhouse gas in the upper atmosphere, it will have
an impact on Earth’s climate. For instance, the increase of primary greenhouse
gases may affect how the ozone layer will recover in the coming years. Therefore,
understanding precisely how ozone abundances will change in the future with dimin-
ished chlorofluorocarbon emissions and increased emission of greenhouse gases
remains an important challenge for atmospheric scientists. On the other hand, satel-
lite data after the volcanic eruptions of El Chichón (Mexico) in 1982 and Mount
Pinatubo (the Philippines) in 1991 showed a 15–20 % ozone loss at high latitudes,
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and a greater than 50 % loss over the Antarctic, suggesting that volcanic eruptions
can play a significant role in reducing ozone levels. Eruption-generated particles, or
aerosols, appear to provide surfaces upon which chemical reactions with chlorine-
and bromine-bearing compounds from human-made chlorofluorocarbons take place.
Thus, although volcanic aerosols provide a catalyst for ozone depletion, the real cul-
prits in destroying ozone are human-generated chlorofluorocarbons (Solomon 1990;
Newman et al. 2007).

Ozone depletion in the Earth’s ozone layer is seen to occur most severely in the
polar regions. The discovery of the Antarctic ozone hole announced in 1985 (Farman
et al. 1985) came as a shock to the scientific community, because the observed decline
in polar ozone was far larger than anyone had anticipated (Zehr 1994). A review of
the status of the ozone hole based on continued total-ozone measurements at Halley,
Antarctica, reported in 2002 (Jones and Shanklin 1995), indicated that the ozone
hole continued to deepen and that ozone loss extends into the months of January and
February with a significant increase in UV-B radiation over the Antarctica in summer.
The evolution of the ozone hole in the Antarctic stratosphere is continually monitored
and improved measurements of ozone depletion are currently being reported (Huck
et al. 2007). Significant depletion also occurs in the Arctic ozone layer during the
late winter and spring period (between January and April). However, the maximum
depletion was generally less severe than that observed in the Antarctic, with no large
and recurrent ozone hole having taken place in the Arctic. However, an unprecedented
large Arctic ozone hole was detected in 2011 (Manney et al. 2011). The hole possibly
formed because the Arctic stratosphere remained cold longer than usual between
December 2010 and March 2011. This way, cold air allowed water vapour and nitric
acid to condense into polar stratospheric clouds, which catalyzed the conversion of
chlorine into chemically active forms that destroyed ozone.

3.1.6 Paleoclimatology

A credibility test for existing climate models is their ability to simulate past climatic
periods as the Cretaceous and the Last Glacial Maximum, which represent abnor-
mally warm and cold climates, respectively. However, paleoclimatology also studies
the climate prior to the widespread availability of records of temperature, precipi-
tation, and other instrumental data. Unfortunately, records of past climate changes
from satellites and human measurements generally cover less than 150 years, which
are too short to examine the full range of climate variability. Therefore, it is crucial
to examine climate changes going back to hundreds and thousands of years using
paleoclimatic records from tree rings, corals, sediments, microfossils, glaciers, and
other natural proxy sources (Cronin 2010).

Understanding how climate has changed on interannual to interdecadal time scales
in the past can help scientists understand how climate may change in the future.
For example, since the paleoclimate record shows that the Earth’s climate system is
capable of undergoing abrupt changes, drastic changes in the frequency and intensity
of extreme events may be a symptom of this process. The study of past climate change
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also helps us understanding how humans influence the Earth’s climate. For instance,
the climate record over the last 1,000 years clearly shows that temperatures have
increased significantly in the twentieth century, and that this warming was likely to
have been unprecedented during all this period. The paleoclimatic record may also
help unravel how much of this warming can be explained by natural causes and how
much by human influences.

3.1.7 Global Ocean Circulation

The ocean is the major driver of global climate. It redistrubutes large amounts of
heat around the planet via global ocean currents through regional scale up-welling
and down-welling, and via a process called thermohaline circulation (Di Lorenzo et
al. 2008; D’Orgeville and Peltier 2009), which refers to large-scale currents that are
driven by fluxes of heat and freshwater across the sea surface and subsequent interior
mixing of heat and salt (Rahmstorf 2003). Although winds and tides are important
in creating turbulence, this driving mechanism is clearly distinct from wind-driven
circulation: thermohaline circulation requires thermohaline surface forcing caused
by differences in temperature and salinity of the water, while wind-driven circulation
does not. Marine and coastal ecosystems, as we know them today, have adapted over
time to the ocean circulation patterns. In addition, global climate change alters the
factors that impact ocean circulation, such as wind, precipitation, temperature, and
salinity patterns. These changes in forcing mechanisms may also lead to an increase
in storm activity, thereby affecting local weather.

On the other hand, thermohaline circulation, which behaves as a conveyor belt,
originates in the northern Atlantic Ocean where cold, dense waters sink to the deep
ocean. These waters travel across ocean basins to the tropics where they warm and up-
well to the surface, which are then drawn to polar latitudes to replace the cold sinking
waters. During this process, heat is transferred to the atmosphere, causing the water to
become cold and dense, and thus renewing the conveyor cycle. On the other hand, the
salinity and the density of polar waters could be reduced by the melting of polar ice,
which, in turn could weaken the rate at which the water sinks and alter the movement
of heat around the Earth. Moreover, changes in global air temperatures over land and
the ocean, as well as increased temperature variations, will alter atmospheric pressure
gradients that drive the strength of winds over the ocean. Stronger winds are expected
to induce a rapid, intense up-welling that provides a large influx of nutrients in a short
amount of time, which can also increase the frequency and distribution of hypoxic
events—low oxygen zones (Grantham et al. 2004; Chan et al. 2008). On the other
hand, increased variability of winds due to global climate change may cause stronger
and longer ENSO regimes (Yeh et al. 2009).
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3.1.8 Extreme Weather Events

When a meteorological event comes as a surprise, such as a very hot summer, a
unexpectedly mild winter, a flood, a drought, or a tornado, climate change is usually
mentioned as one possible underlying cause. Yet, climate scientists warn us about
the intrinsic erratic nature of weather, as well as on the difficulties of disentangling
the climate change contribution to weather variability. However, changes in some
types of extreme events have already been observed as, for example, increases in the
frequency and intensity of heat waves and heavy precipitation events. Since 1950,
the number of heat waves has increased and widespread increases have occurred
in warm nights (Trenberth et al. 2007). In addition, the extent of regions affected
by droughts has also increased as precipitation over land has marginally decreased,
while evaporation has increased due to warmer conditions. In general, the number
of heavy daily precipitations that lead to flooding has also risen, but not everywhere.
On the other hand, it is well-known that tropical storm and hurricane frequencies
vary from year to year, but evidence suggests substantial increases in intensity and
duration since the 1970s (Trenberth et al. 2007). In the extra-tropics, variations in
tracks and intensity of storms are a reflection of variations in major features of the
atmospheric circulation, such as the North Atlantic oscillation.

In a warmer future climate, there will be an increased risk of more intense,
more frequent, and longer-lasting heat waves. The European heat wave of 2003
was a clear example of the type of extreme heat event lasting from several days
to over a week that is likely to become more common in a warmer future climate
(Meehl et al. 2007). Most atmosphere/ocean GCMs predict increased dryness during
summer and increased wetness during winter in most parts of northern middle and
high latitudes (Meehl et al. 2007). Therefore, along with the risk of droughts, there
will be an increased chance of intense precipitation and flooding due to the greater
water-holding capacity of a warmer atmosphere so that intense and heavy downpours
will be interspersed with longer relatively dry periods.

There is evidence from modelling studies that future tropical cyclones could
become more severe, with greater wind speeds and more intense rainfalls (Bender et
al. 2010). While it has been suggested that such changes may already be underway,
there are clear indications that the average number of Category 4 and 5 hurricanes
per year has increased over the past 30 years (McQuaid 2012). However, the over-
all frequency of Atlantic hurricanes is not expected to increase dramatically as the
climate warms (Knutson et al. 2008; Zhao et al. 2009). In fact, the signal forced
by greenhouse gases is a long-term trend, and a period of 30 years is too short to
be able to distinguish a long-term trend from the multi-decadal fluctuations that are
known to exist in the Atlantic (Landsea 2007). While the effects of global warming
on hurricanes is still a matter of debate, climatic changes are responsible for the
rise of the global sea levels at a rate of about 1.7 mm per year between 1950 and
2009, and at an accelerated pace of 3.3 mm from 1993 on, due to the expansion of
warmer waters, ice melting in the poles, and shift of rainfall patterns. The northeast
Atlantic coast is one region where this phenomenon is underway. A recent study has
shown that sea levels from North Carolina to Canada have been rising at three to four
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times the global average since 1950 (Sallenger et al. 2012). By definition, higher
seas mean higher storm surges, and hence huge storms. Whether amplified by global
warming or not, they can go from destructive to catastrophic, implying that danger
is compounded by the fact that most coastal fortifications were built when sea levels
were lower, on the assumption that conditions would not change.

3.2 General Circulation Models

A general circulation model, often shortened as GCM, uses essentially the same
partial differential equations of motion as a NWP model. The abbreviation GCM also
refers to a global climate model, which is almost the same as a general circulation
model, except that the former is used when the model is dealing specifically with
global climate change. Although the main purpose of GCMs is to numerically predict
changes in climate as a result of slow changes in some boundary conditions or
physical parameters, such as, for example, the greenhouse gas concentration, they
can also be used for weather forecasting as well as for understanding climate. In
general, NWP models are employed to predict the weather in the short (from 1 to
3 days) and medium (from 4 to 10 days) range in the future, while GCMs are run
much longer in time (from years to decades and decades to centuries) to learn about
the climate in a statistical sense. A good NWP model can accurately predict the
movement and evolution of atmospheric disturbances such as frontal systems and
tropical cyclones. Although GCMs are capable to do this as well, most of them err
so much after about 2 weeks or so, becoming useless for a perspective of weather
forecasting in the long term. For example, an error in the sea surface temperature
of a few centigrades, or even a small but systematic bias in cloudiness throughout
the model, matter little to a NWP model, but for a GCM these factors are of great
importance because they are relevant over a long-term evolution.

State-of-the-art GCMs use models capable of simulating surface and deep ocean
circulations coupled to atmospheric GCMs. These models can be further coupled
to dynamic models of sea ice and conditions on land. Coupled atmosphere/ocean
GCMs are the models most often used to make predictions of future climate. These
are very data intensive and require the most powerful supercomputers in the world
to run. A recent trend in GCMs is to apply them as components of Earth System
Models, which consist of coupling GCMs to ice sheet models for the dynamics of
the Greenland and Antarctic ice sheets as well as to one or more chemical transport
models (CTMs) for species relevant to climate. For example, a carbon CTM may
allow a GCM to better predict changes in CO2 concentrations resulting from changes
in anthropogenic emissions. In addition, this approach allows accounting for inter-
system feedbacks as may be the effects of climate change on the recovery of the
ozone hole (Allen 2004). Uncertainties in climate prediction depend on uncertainties
in chemical, physical, and social models (Kerr 2001). In other words, even though
progress has been made in incorporating more realistic chemistry and physics in
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the models, significant uncertainties and unknowns remain, especially regarding the
future course of human population, industry, and technology.

The first long-range simulation of the general circulation of the atmosphere was
carried out by Phillips (1956), using a two-level, quasi-geostrophic model on a
β-plane channel with rudimentary physics. Following Phillips’ seminal work, several
GCMs were developed. One early model of particular interest is the
Kasahara-Washington model (Kasahara and Washington 1967), which was devel-
oped at NCAR. After several attempts to create a basic representation of large-scale
atmospheric flow, scientists at Princeton University’s Geophysical Fluid Dynam-
ics Laboratory (GFDL) produced a model that incorporated large eddies, making
the simulation much more representative of the atmosphere (Smagorinsky 1963;
Smagorinsky et al. 1965). This experiment was deemed a major success and the
model was considered to be the first true GCM. With this success research groups
at UCLA’s Lawrence Livermore National Laboratory (LLNL) and NCAR began to
develop their own models (Ghan et al. 1982; Williamson 1983; Cess et al. 1985; Cess
and Potter 1987; Williamson et al. 1987; Williamson and Olson 1994; Collins et al.
2004). Even with drastic advances in technology and scientific knowledge, clima-
tologists still have to make many compromises in terms of realistically modelling
the Earth. For example, until recently most models focused only on atmospheric
circulation—ECHAM5 is an example of a relatively recent atmospheric GCM code
developed by the Max Planck Institute for Meteorology (Roeckner et al. 2003)—and
it was only during the 1990s that the first atmosphere/ocean coupled models began to
appear. One important drawback of these models was an extremely coarse resolution
so that many processes had to be parameterized, small-scale disturbances like thun-
derstorms and cyclones were not accounted for, and peninsulas, islands, and great
lakes did not exist. While fine resolution may be ideal, a balance must always be
struck between model resolution and computer power available.

As climate models evolved through the 1990s, scientists began to shift from repro-
ducing general circulation to experimenting with the feedbacks of climatic processes
due to increasing greenhouse gases, changing ocean currents, and the way the model
responds to forced perturbations such as ENSO. As the next generation of models
comes out, improvements and sophistications make them more reliable for global
predictions and more capable of regional analyses. Examples of such models are
the latest version of the Community Climate System Model CCSM3 (Gent 2006;
Collins et al. 2006), the HadCM3—a well established coupled climate model that
is cheap to run in current computers (Gordon et al. 2000; Pope et al. 2000)—and
HadGEM1—a state-of-the-art global environment model (Johns et al. 2006; Martin
et al. 2006; Stott et al. 2006)—both used at the Hadley Centre for climate modelling in
the United Kingdom, the GISS GCM ModelE—the current incarnation of the GISS
series of coupled atmosphere/ocean models developed by the National Aeronautics
and Space Administration (NASA) (Schmidt et al. 2006),—and the European Centre
for Medium-Range Weather Forecasts (ECMWF) coupled global model (Bechtold et
al. 2008a,b). In particular, these models provide the ability to simulate many different
configurations of Earth System Models, including interactive atmospheric chemistry,
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aerosols, carbon cycle and other tracers, as well as the standard atmosphere, ocean,
sea ice, and land surface components.

Today, citizens and policy-makers want to know what heat waves, droughts, or
floods are likely to occur in their particular region. Since the attention of the commu-
nity turned to making predictions in ever more detail, only models that incorporate
a much more realistic ocean and clouds would be able to calculate that. A scheme
for representing clouds was developed in the 2000s at the Max Planck Institute for
Meteorology (Gramelsberger 2010). This code uses 79 equations to describe the
formation of stratiform clouds, incorporating a variety of constants, some known
precisely from experiments or observations, and some others that had to be adjusted.
The computation for each grid cell was a challenge even for the fastest supercom-
puters. Looking farther afield, the future climate system could not be determined
very accurately until ocean/atmosphere GCMs are linked interactively with models
for changes in vegetation. Dark forests and bright deserts do not only respond to
climate, but also influence it. Since the early 1990s, and particularly during the last
decade, the more advanced GCMs had incorporated dynamic global vegetation mod-
els suitable for use in NWP models and coupled GCMs, allowing for the simulation
of vegetation-atmosphere interactions, photosynthesis and respiration processes as
well as the representation of regional properties of vegetation (Quillet et al. 2010).

4 Predictability and Ensemble Forecasting

The accuracy of a given forecast depends on the internal error growth of the model,
the model accuracy, and the errors in the initial state. When solving the equations
at a global scale, the boundaries are periodic and the problem is an initial value
problem. The initial conditions are integrated forward in time to obtain future states
of the system. However, due to the intrinsic non-linear nature of the equations, the
information of the initial conditions is lost within a few days, and the exact state
of the system (weather) becomes unpredictable. In other words, given the chaotic
nature of the atmosphere, we can never create a perfect forecast system because
it is impossible to observe every detail of the atmosphere’s initial state. Therefore,
tiny errors in the initial conditions will be amplified, always imposing a limit to
how far ahead we can predict any detail. If, on the other hand, we are interested in
climate predictions, statistics of the system can still be obtained. In this case, the
initial conditions become unimportant and the problem reduces to a boundary value
problem. Only the response of the climate to external forcings such as changes in
solar radiation, concentration of greenhouse gases, etc., is of interest.

The first attempt to address this problem in NWPs has been to calculate how
errors of the initial state are likely to grow in particular meteorological situations.
For instance, Epstein (1969) first proposed using an ensemble of stochastic Monte
Carlo simulations to produce means and variances for the state of the atmosphere, and
successively it was demonstrated that these simulations produced adequate forecasts
only when the ensemble probability distribution was a representative sample of the
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probability distribution of the atmosphere (Leith 1974). Accepting the findings from
chaos theory about the sensitivity of the prediction to uncertainties in the initial
conditions, it has become a common practice to undertake a set of forecasts, or
ensemble, with the same model but starting the runs from slightly different initial
conditions. Small perturbations are added to the reference model, with amplitudes
selected to be within the accuracy of the initial state.

Starting in 1992, ensemble forecasts have been used operationally by the ECMWF
and the NCEP to account for the stochastic nature of weather processes. In partic-
ular, the ECMWF has made major contributions to this technique and has over the
last years also developed and improved an operational system for ensemble pre-
diction (Molteni et al. 1996; Mullen and Buizza 2002; Buizza et al. 1999, 2003,
2007). The ECMWF weather prediction model is run 51 times from slightly dif-
ferent initial conditions. One forecast, called the EPS control forecast, is run from
the operational ECMWF analysis, followed by 50 additional integrations, called the
perturbed members, which are designed to represent the uncertainties inherent in
the operational analysis. The initial perturbations are generated using the singular
vector technique to simulate the initial probability density (Barkmeijer et al. 1999).
In contrast, the NCEP ensemble—the Global Ensemble Forecasting System—uses
bred vectors, which are related to Lyapunov vectors and created by adding initially
random perturbations to the model (Toth and Kalnay 1997; Kalnay 2003).

Ensemble forecastings are being used for many proposed problems, including
global weather, hurricane track, intensity forecasts, and seasonal climate simula-
tions. Seasonal forecasts, with a range of 6 months, are currently made using coupled
GCMs by combining large numbers of forecasts in an ensemble each month, with
impressive predictions for tropical regions and for the onset of El Niño and La Niña
events. In the same way that many forecasts from a single model can be used to
form an ensemble, multiple models can also be combined to produce an ensem-
ble forecast. This approach is called multi-model ensemble forecasting, and it has
been shown to improve forecasts when compared to a single model-based approach
(Krishnamurti et al. 2000; Weigel et al. 2008, 2009; Zhou and Du 2010). One recent
multi-model concept to medium-range weather forecasts is the THORPEX Interac-
tive Grand Global Ensemble (TIGGE) (Bougeault et al. 2010). However, a recent
comparison of the TIGGE multi-model forecasts with reforecast-calibrated ECMWF
ensemble forecasts in extra-tropical regions has shown that the latter were of com-
parable or superior quality to the multi-model predictions (Hagedorn et al. 2012).
The reforecast calibration procedure is particularly helpful at locations with clearly
detectable systematic errors such as areas with complex orography or coastal grid
points, while the multi-model approach might be advantageous in situations where
it is able to suggest alternative solutions not predicted by the single-model of choice.
Therefore, it would be desirable in the not so distant future to explore the relative
merits of multi-model versus reforecast-calibrated predictions for other user-relevant
variables such as precipitation and wind speed. Moreover, models within a multi-
model ensemble can be adjusted for their various biases, which is a process known
as superensemble forecasting. This type of forecast significantly reduces errors in
the model output (Cane and Milelli 2010).
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5 Future Perspectives and Challenges

Decision-makers from 155 nations agreed in 2009 to establish the world’s first
framework for climate services, an effort that will supply on-demand climate predic-
tions to governments, businesses, and individuals. By providing tailored information
on how climate change will affect certain regions and sectors, the Global Framework
for Climate Services will help the world better adapt to the challenges of climate
variability and change. This vision marks a new era in climate science, one in which
seasonal weather forecasting and long-term climate projections will merge seam-
lessly, giving rise to decadal climate predictions that have the skill and reliability of
weather forecasts. Provision of these data to local planners and policy-makers will
really be a service to society.

Evidence that climate predictions can provide precise and accurate guidance about
how the long-term future may evolve is basically lacking. In this sense, scientists
and decision-makers alike should think of climate models as just one of a range of
tools to explore future possibilities. Unfortunately, predictive skill is unknown for
climate at the decade-to-century timescale. Unlike weather forecasts, whose value
in informing decision-making can routinely be tested over time by comparison with
observed weather patterns, there is currently no such empirical evidence with which
to test the skill of climate predictions. Certainly, as knowledge of the climate system
and how it responds to greenhouse gases improves, model predictions will change,
as will their probability distributions.

The sophistication of prediction models is closely linked to the available computer
power. The advances in digital computer technology as well as the developments
in atmospheric dynamics, instrumentation, and observing practice have all pointed
towards increasing forecast accuracy apace over the half-century of NWP activi-
ties, and progress continues on several fronts. However, some formidable challenges
remain. The effective computational coupling between the dynamical processes and
physical parameterizations is one of these big challenges. On the other hand, nowcast-
ing is the process of predicting changes over periods of a few hours. Current numer-
ical methods provide guidance which occasionally falls short of what is required
to take effective action and avert disasters. Although greatest value is obtained by
a systematic combination of NWP products with conventional observations as well
as radar and satellite imageries, much remains to be done to develop optimal now-
casting systems. On the other side, the chaotic nature of the atmosphere imposes
limitations to the validity of deterministic forecasting. Ensemble forecasts provide
probabilistic guidance, but so far their use has proved to be quite difficult in many
cases. While reasonably good progress in seasonal forecasting for the tropics has
been made, long-range forecasts for temperate regions remain a further challenge.
Accompanied to this is the modelling and prediction of climate change, a matter of
increasing importance and concern. As technology continues advancing at a faster
rate than ever, we may be optimistic that future developments will lead to notable
improvements in both weather and climate prediction.
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Turbulent Diffusion of Heat at High Rayleigh
Numbers

Joseph J. Niemela

Abstract Thermal convection is observed in controlled laboratory experiments at
very high Rayleigh numbers using a relatively large apparatus filled with low tem-
perature helium gas. The low temperature environment offers two advantages toward
the study of turbulent convection; namely the favorable properties of the working
fluid in achieving very high Rayleigh numbers and the low thermal mass of the
heated metallic surfaces at cryogenic temperatures. The latter property is exploited
in order to provide a means of measuring an effective thermal diffusion coefficient
of the buoyancy-driven turbulence by propagating thermal waves into the bulk and
observing the damping of their amplitude with distance. The diffusivity measured
directly in this way compares well with values inferred from the time-independent
measurements of the global turbulent heat transfer at Rayleigh numbers of order
109 but are significantly different at Rayleigh numbers of order 1013 which can be
interpreted as a consequence of the formation of well developed bulk turbulence
decoupled from the thermal boundary layers at the heated horizontal surfaces.

1 Introduction

Thermal convection is common to many natural and engineering systems, and tur-
bulence in these flows is more the rule than the exception, especially for large scale
natural phenomena. Familiar examples are convection in stars, in the outer core of the
earth, and in the atmosphere. Considering stellar convection alone, we could argue
that turbulent convection itself is the most ubiquitous type of flow that we know of.
Unfortunately, the values of the principal control parameter for stellar convection
are quite high and pose problems for laboratory experiments, notwithstanding the
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obvious difficulties in matching fluid properties and boundary conditions. If we con-
centrate on the first problem, namely the principal control parameter, and simplify
the rest of the problem by selecting an artificial system with well defined boundary
conditions, we have the possibility to make some progress. This assumes, of course,
that in doing this we retain the essential physics of the problem. It is important to
note that even a relatively simple system becomes highly nonlinear at high values
of the control parameter, and therefore poses a challenging problem in itself. The
system referred to here is Rayleigh-Bénard convection (RBC), in which a layer of
fluid is contained between two heated horizontal surfaces. The upper (lower) surface
is cooled (heated) so that a mechanically unstable density gradient is formed across
the fluid layer, which is assumed to be thin, in the sense that we can neglect com-
pressibility effects. In actuality, compressibility cannot be entirely neglected, and
a correction for adiabatic temperature gradients is necessary. We also confine our
attention to fluids for which the coefficient of thermal expansion has a reversed sign,
requiring the opposite heating arrangement (e.g. water below 4 ◦C). Any parcel of,
say, hot fluid near the lower boundary is subject to buoyancy forces which promote
its vertical rise, leading to convective currents, with the same consideration applying
to cold fluid near the top of the layer. The degree to which buoyancy overcomes dis-
sipative processes and can lead to convection is given by the dimensionless Rayleigh
number Ra given by

Ra = gζ∂T H3

Ωφ
, (1)

where ζ, Ω and φ are, respectively, the isobaric thermal expansion coefficient, kine-
matic viscosity and thermal diffusivity of the fluid, ∂T the temperature difference
across the fluid layer of height H and g the acceleration due to gravity. The inter-
play between heat and momentum diffusion is important, especially for turbulent
convection, and that is characterized by the Prandtl number

Pr = Ω

φ
. (2)

2 Apparatus

The apparatus and methodology for the present work has been described in detail
in Niemela and Sreenivasan (2003, 2006, 2008). In brief, the fluid—in this case
helium gas near 5 K—is held between two OHFC copper plates separated vertically
by thin cylindrical stainless steel sidewalls with a fixed diameter of 50 cm. The
height of the fluid layer in these experiments was either 50 or 12.5 cm, so that the
diameter-to-height aspect ratio was Ψ = 1 or 4, respectively. The OHFC copper
used for the heated horizontal surfaces was annealed to have a conductivity near
1 kW m−1K−1 at helium temperatures. More importantly, it is nearly five orders
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of magnitude larger than the molecular conductivity of the working fluid so that the
corresponding Biot number is extremely small. This means that constant temperature
conditions are assured even when the fluid is turbulent. Heating is provided by a
serpentine metallic film encased in mylar and sandwiched to the top and bottom plates
by additional copper plates. The top plate is regulated to have constant temperature
and is connected through a variable resistance to liquid helium bath which acts as the
cold reservoir. Outside the sample space a common cryo-pumped vacuum provides
protection against either conductive or convective heating in parallel, and radiative
heating is controlled through the use of various concentric shields surrounding the
sample space, the inner-most one being at the temperature of the top plate.

Mean pressure is measured by a Baratron gauge, using heads appropriate to the
absolute pressure so as to maximize resolution. Temperature measurements rely
on semiconductor resistance thermometers made of doped germanium. Within the
fluid, cubes of neutron transmutation doped germanium, 250µ on a side, are used to
monitor temperature fluctuations.

The fluid has some special properties: its kinematic viscosity Ω can be quite
small when the density is large (i.e, near the critical point). The thermal expansion
coefficient ζ is naturally large in the ideal gas limit, as its value is simply the inverse
of the absolute temperature. The thermal diffusivity can be both very small and very
large depending on the operating point in the pressure-temperature phase space.
That is, near the critical point (at 5.2 K) the specific heat CP diverges and so the
thermal diffusivity φ = k/ρCP vanishes, where k and ρ are, respectively, the thermal
conductivity of the fluid and its density. In addition, ζ is thermodynamically related
to the specific heat and so it also gets quite large near the critical point. Taken together,
cryogenic helium gas presents a widely tunable fluid that allows both extremely large
values of the principal control parameter Ra but also large ranges of it.

3 An Effective Diffusivity

Let us consider the simple diffusion equation

θT

θt
= φ

θ2T

θx jθx j
. (3)

Under conditions of fully developed bulk turbulence (i.e. decoupled from any
solid boundaries) we may consider that the turbulence can be modeled as a “fluid”
having an effective diffusivity φeff . We may then consider Eq. (3), with an effective
diffusivity φeff replacing the molecular value φ . The corresponding time scale, then,
for turbulent diffusion is dimensionally given by L2/φeff on some characteristic
length scale L . On the other hand, we know for turbulent flows with characteristic
length scales L and velocity scales u, the corresponding time scale is of order L/u.
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Equating the two times scales gives φeff ∇ uL . Taking its ratio with the molecular
value then gives

φeff

φ
∇ uL

φ
= Pe, (4)

where Pe is the Péclet number. From Niemela et al. (2001) we know that
Pe = 0.13Ra0.50. We will return to consider this further below.

For a flow with mean velocity U sweeping along a heated surface we may also
define an effective heat diffusivity starting with the diffusion-advection equation

θT

θt
+ U j

θT

θx j
= φ

θ2T

θx jθx j
. (5)

Decomposing velocity and temperature for turbulent flows into mean and fluctu-
ating parts and averaging over the fluctuations (see Tennekes and Lumley 1997) we
obtain for the heat transfer

q j = ρcP

(
σu j − φ

θT

θx j

)
, (6)

where σ and u represent fluctuating components of temperature and velocity,
respectively. By Reynolds’ analogy we can define an eddy diffusivity for heat, φT as

σu j = −φT
θT

θx j
(7)

so that we may write for the total heat transfer Q in the vertical direction (for instance)

Q

ρcp
= −(φT + φ)

θT

θx3
. (8)

Approximating the gradient in temperature as the average over the entire fluid layer,
H/∂T , and taking as a definition of the dimensionless heat transport the Nusselt
number Nu, where Nu is given by

Nu = Q H

k∂T
, (9)

we obtain from Eq. (8)

Nu = φeff

φ
, (10)
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where
φeff = φT + φ. (11)

It is interesting to note that Eq. (10) can be reconciled with Eq. (4) only if

Nu ∇ Ra1/2. (12)

In fact, Eq. (4) resulted from our consideration of a hypothetical fully developed
turbulence—i.e., without considering any boundary effects. We know that in the
case that the diffusive boundary layers are artificially removed in RBC simulations
(Lohse and Toschi 2003), Nu is indeed described by Eq. (12).

4 Time-Dependent Measurements of the Effective Diffusivity

Despite its academic interest, could we in fact measure an effective thermal diffusivity
of convective turbulence directly? The thermal diffusivity of solids, or any purely
conducting material, can be measured by applying a time-varying temperature at
one surface and measuring the damped amplitude or phase of the resulting heat wave
at some known distance along the direction of its propagation. The corresponding
experiment then is to oscillate the temperature of the bottom boundary of a Rayleigh-
Bénard cell and to then measure temperature at that frequency carefully at a known
height within the layer. Certainly this will work when the fluid is quiescent, but
the question is whether it will work when there are in addition turbulent eddies
transporting heat.

The experiment performed was just this: at the top plate we retained a constant
temperature as usual, while the bottom plate was subject to a sinusoidally oscillating
heat flux with a non-zero mean value giving rise to an oscillation of the bottom plate
temperature at the same frequency about some mean value larger than that of the top
plate.

Let us consider only the oscillating part of the bottom plate temperature, which
is of the form

T = T0 cos(κt). (13)

A solution of Eq. (3) satisfying this boundary condition is

T = T0 exp

(
− z

βS

)
cos

(
κt − z

βS

)
, (14)

where βS = (2φ/κ)1/2 is the penetration depth. Equation (14) describes a wave-like
phenomenon whose phase and amplitude depend on the thermal diffusivity of the
medium and the frequencyκ of the oscillation. Knowing the oscillation frequency, the
position of the temperature sensor, and the amplitude of the temperature oscillation
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at the plate, the only unknown is the thermal diffusivity, which is then measured.
With φeff in place of φ , Eq. (14) describes a heat wave that experiences damping and
phase variation according to an effective penetration depth

βeff =
√

2φeff

κ
. (15)

If we also measure the dimensionless heat transfer or Nusselt number Nu simul-
taneously, we have two independent measurements of diffusivity: one through Nu,
that requires no assumptions but only indirectly gives the diffusivity, and the other
which is directly sensitive to the diffusivity but requires that we postulate a turbulent
“fluid”. To see how Nu infers the diffusivity, we refer to Eq. (9). Multiplying both
numerator and denominator by the heat capacity of the fluid we obtain Eq. (10),
where we identify Q H/∂T as the effective thermal conductivity of the fluid and
φeff is then that value multiplied by the heat capacity.

The experiment is aided by the fact that metals at low temperature have high con-
ductivity compared to the fluid, as was noted above, and also have nearly negligible
heat capacity compared to the fluid. The resulting low thermal mass allows us to pro-
duce large amplitude, high frequency heat waves that can penetrate with detectable
amplitude through the entire bulk region.

The frequency of the modulation, fM (in Hz), was chosen to be both below and
above the characteristic frequency of the largest scale circulation. The amplitude was
also varied and a dimensionless form is given by

∂M = (T0)rms/∼∂T ≥. (16)

Here and elsewhere ∼...≥ refers to averaging over integral periods of the modulation.
The experimental procedure consisted of applying sinusoidal heating at the bottom

with a DC offset and then waiting for at least 200 cycle times of the large scale
circulation to reach a statistical steady state before taking measurements. To obtain
Nu conventionally, the temperature difference was averaged over integer numbers of
the modulation cycle. From this both < Ra > and < Nu > could be computed.

Fluctuations in the temperature within the bulk were measured at the mid-height
of the cell, and about 4.4 cm radially inward from the sidewall. This point was 25 cm
above the bottom plate for Ψ = 1 and 6.25 cm above the bottom plate for Ψ = 4. Data
were collected at a rate of 50 Hz using the off-balance signal from an audio frequency
bridge circuit with lock-in detection. By Fourier analysis it was possible to measure
the amplitude of the signal due specifically to the heat wave having frequency fM .
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Table 1 Experimental conditions and measurements

Ψ < Ra > fM (Hz) ∂M φ (cm2 s−1) φeff (cm2 s−1) φ
φeff < Nu >

1 3.4 × 109 0.01 0.05 4.03 × 10−2 3.893 96.6 98.6
4 1.9 × 109 0.032 0.15 7.04 × 10−3 0.583 82.9 81.6
1 4.5 × 1012 0.04 0.28 7.93 × 10−4 3.6099 4,535 975.6
1 1.0 × 1013 0.025 0.22 4.79 × 10−4 3.31 6,904 1,277

5 Results and Discussion

Table 1 shows experimental conditions and measurements made in both Ψ = 1
and Ψ = 4 cells. In particular, the last two columns show the ratio of measured
diffusivities and the measured (time-averaged) Nusselt number. For the first two
rows at low Ra, the values in the last two columns are in excellent agreement. This
is remarkable given that in two very different-height systems Eq. (14) returns the
same effective diffusivity that one would have inferred from the Nu-measurements.
However, the situation changes for the last two rows, which correspond to the same
Ψ = 1 cell but at much higher Ra. In this case, the measured diffusivity is larger
than we would have expected and its ratio with the molecular value is roughly five
times that of the measured Nu.

The result is illustrated graphically in Fig. 1. Here we plot the various values
of Nu corresponding to the last two columns of Table 1 for ψ = 1. In addition,
values of Nu taken in the absence of modulation, namely those from Niemela and
Sreenivasan (2003), are included. The dashed line represents Ra1/2. One striking fact
is that < Nu > and Nu are the same within experimental uncertainty for all Ra, even
when the amplitude of modulation is of the same order as the average temperature
difference.

The dashed line in Fig. 1 is meant to denote the expected slope of Nuφ if the
effective diffusivity were determined by Eq. (3). It is arbitrarily adjusted to connect
through the two upper data points. It is tempting to think that at high Ra we are
measuring for the most part pure bulk turbulence by the propagation of heat waves
while at lower Ra we are sensitive to extended boundary layers above the heated
plates.

The heat transfer measured by Nu or < Nu > does not require any assumptions
about the fluid layer. It is simply the integration of the contributions of all features
of the flow, even if the entire contribution is only from two thin boundary layers
near the top and bottom plates at high Ra. On the other hand, the heat wave, at a
first approximation, is assumed to propagate through a homogeneous medium. The
fact that the thermal boundary layer is much smaller than wither the molecular or
effective penetration depth (a fact that is true for all Ra investigated here) would
seem to validate its use in RBC.
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Fig. 1 Nu vs. Ra for Ψ = 1 both with and without modulation. Included are values for Nuφ as
computed by the ratio of the effective to molecular diffusivity. Inverted open triangles, raw Nu from
Niemela and Sreenivasan (2003) without modulation; open circles, Nuφ for low Ra; solid squares,
Nuφ for high Ra; solid circles, < Nu > for low Ra; solid triangles, < Nu > for high Ra

It should be noted that Nu can be determined as the ratio between the half-height
of the layer and the thermal boundary layer thickness. That is:

Nu → H

2β
, (17)

where β is the thermal boundary layer thickness. On the other hand, Nuφ is not depen-
dent on the thermal boundary layer thickness at all, but rather on the ratio between
βeff and βS , the effective and molecular Stokes layer thicknesses, respectively, so that

Nuφ →
(

βeff

βS

)2

. (18)

In Niemela and Sreenivasan (2008) it was proposed that the heat wave method
“failed” at high Ra due to the emergence of a highly turbulent core region, which
was assumed, for simplicity, to have an infinite conductivity. In this situation the
amplitude of the heat wave would clearly cease to decrease with distance within the
core region, and therefore the position of the sensor would no longer be a relevant
parameter (i.e., it could be changed within the core region without affecting the mea-
surement). Note that the conclusions are not really that different than the discussion
above; namely, that at very high Ra there may exist a region of well-developed bulk
turbulence completely decoupled from the boundaries.
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Finally, the data here are few and additional conclusions would clearly benefit
from distributed temperature measurements instead of one fixed sensor position and,
of course, a larger coverage of Ra. Such experiments are currently underway.
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Numerical Simulation of Sliding Drops
on an Inclined Solid Surface

Marco Maglio and Dominique Legendre

Abstract We consider numerical simulations of drops sliding on an inclined solid
surface. The simulations are performed using our in house research code JADIM
based on the Volume of Fluid formulation of the mass and momentum equations.
Special algorithms have been developed for the simulation of the hysteresis of the
contact line as well as for the description of moving contact lines. The onset of motion
is analyzed and the effect of the contact line hysteresis is studied. The critical angle
of inclination, as well as the corresponding drop shape, are discussed and compared
with previous experiments. The sliding velocity for a constant angle of inclination
is also considered and compared with experiments. The different shapes observed in
experiments (rounded, corner, cusp, or pearling drop) are recovered depending on
both the fluid properties and the angle of inclination. The drop sliding velocity is
then considered for larger values of the hysteresis.

1 Introduction

Motion of drops on surfaces is a phenomenon observed in everyday life as well
as in many environmental or industrial applications: coating processes, combus-
tion processes, pesticide and insecticide pulverization on cultivations, lab-on-a-chip
devices, etc. In particular, small droplets have the capability to stick on non-horizontal
surfaces. Despite its apparent simplicity, the behaviour of a drop on an inclined solid
surface is far to be completely understood. It involves static, hysteresis, and dynamic
contact line behaviours. Depending on the fluid properties, the hysteresis and the wall
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inclination, different drop shapes (rounded, corner, or pearling drop) can be observed
(Le Grand et al. 2005). In addition, its numerical modelling is still a great challenge.
For example, up to now the different sliding regimes observed in the experiments
have not been reproduced by numerical simulations.

From the numerical point of view, the description of a moving contact line cannot
be performed by direct discretization of the equations. Indeed, the solution of the
Navier-Stokes equations gives an infinite viscous dissipation at the moving contact
line when a no-slip condition is applied on the wall (Huh and Scriven 1971). As a
consequence, refining a grid induces a divergence of the viscous stress at the contact
line (Afkhami et al. 2009).

In order to be predictive (i.e., with no adjustable parameters), numerical simula-
tions of moving contact lines at the macroscopic scale must describe correctly the
contact angle and the contact line speed. A full numerical simulation would consist
in resolving all scales involved in the problem, i.e., from the macro scale L to the
nano-metric scale associated with the effective slip length ζ. For example, let us
consider a millimeter-size droplet as studied in this work with an equivalent radius
a = (3V/4∂)1/3 ◦ 1 mm, where V is the drop volume. The full resolution of all
scales involved in this problem would require N2D ◦ (R/ζ)2 ◦ 1012 nodes for
a 2D simulation and N3D ◦ (R/ζ)3 ◦ 1018 nodes for a 3D simulation. Such a
grid size is obviously not compatible with the present computer’s resources and/or
requires an extremely long CPU time even on parallel computers. Consequently, it
is clear that the simulation of the contact line hydrodynamics can not be performed
up to the nano-scale level for a millimeter size drop. For L = O(1) mm, the grid
size Ω is limited to some microns. In contrast, Molecular Dynamics simulations are
able to describe the nano-scale effects (Blake 2006), but due to the limited computer
resources, the size of the macro scale is limited and simulations are only possible for
nano-drops (Winkels et al. 2012).

Different approaches can be used to overcome the singularity at the contact line
(Bonn et al. 2009). The hydrodynamic models are based on analytical solutions of the
interface shape, while the contact line velocity Ucl is obtained by matching methods.
Typically, an inner region, whose characteristic length is imposed by the slip length
ζ, is matched to an outer region (the apparent region) of characteristic size L where
no-slip occurs. Assuming Stokes flow at both scales, the apparent or dynamic contact
angle φd is found to be a function of the wall contact angle φW (considered to be
constant), the capillary number Ca = μdUcl/Ψ , the logarithm of the scale ratio
ln (L/ζ), and the viscosity ratio q (Voinov 1976; Dussan 1976; Cox 1986). We have
developed a sub-grid model of moving contact lines based on this matching relation
between the molecular wetting at the nano-scale (not solved) and the macro-scale
that is solved.

The paper is decomposed as follows. The problem considered in this paper is
presented in Sect. 2. The numerical code JADIM as well as the numerical modelling
developed for the static, hysteresis, and dynamic contact angle, are described in
Sect. 3. Section 4 reports experimental tests concerning the onset of motion of a drop
deposited on a inclined wall. Section 5 presents the simulation concerning the sliding
regime and Sect. 6 contains the conclusions.
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Fig. 1 Definition of parameters for a drop on an inclined surface

2 Statement of the Problem

We consider a drop of volume V = 4∂a3/3 (where a is the equivalent radius used as
the characteristic length scale) located on a inclined surface (see Fig. 1). We denote
by ρL , μL , and Ψ the drop density, the drop viscosity, and the surface tension of
the interface between the drop and the air, respectively. Here ρG and μG denote
the density and viscosity of the air. The surface wettability is characterized by the
advancing φA and receding φR contact angles. The inclination is characterized by
the angle θ made by the surface and the horizontal. With the density and viscosity
ratios, ρG/ρL and μG/μL , being much smaller than unity, the problem is completely
characterized by the introduction of two additional dimensionless numbers, namely
the Eötvös number Eo = ρga2/Ψ and the Morton number Mo = μ4

L g/ρLΨ 3. The
values of the Ohnesorge number Oh = μL/

∇
ρLΨa are also specified.

Two series of numerical experiments are presented. In Sect. 4, we first focus on
the angle and the drop shape at the onset of motion. At time t = 0, the drop is a
hemispherical cap (the initial contact angle is φi = 90∼) and the wall is horizontal
(θ = 0). Once the drop shape is stabilized, the wall is inclined at t = t0, following a
linear time evolution given by θ(t) = ∂(t − t0)/T . The characteristic time T of the
inclination is chosen to be much larger than the physical times of the problem, i.e. the
visco-capillary time tμ ◦ μLa/Ψ and the inertia-capillary time ti ◦ √

ρLa3/Ψ . In
practice, T is chosen such that T > 10 max(tμ, ti ). The angle at the onset of motion
is denoted by θc and corresponds to the angle when the advancing and receding
points of the drop are both moving in the direction of sliding.

In Sect. 5, we consider the sliding velocity of a drop on a surface with a fixed
angle of inclination θ. The drop is initially a hemispherical cap making a contact
angle φi = 50∼ with the wall. We record the time evolution of the drop velocity and
determine the sliding velocity corresponding to the steady state once gravity balances
capillary and viscous forces.
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Fig. 2 Domain definition and initial layout of the simulations

For each simulation, a cap of initial radius R0 = a
[
2 / (2 − 3 cos φi + cos3 φi )

]1/3

is deposited on the surface. We define x as the direction of sliding along the plane,
y as the normal direction of the plane, and z as the lateral direction. Since the plane
(x, y) is a symmetry plane for the problem, the computational domain shown in Fig. 2
is reduced to half the space as defined by z ≥ 0. The dimensions of the computational
domain are Lx = 6.5 a and L y = Lz = 2.25 a, where Lx , L y , and Lz are the domain
sizes along the x-, y-, and z-directions, respectively. A symmetry condition is thus
imposed on the plane (x, y) and periodicity is enforced on both sides of the box in
the sliding direction, allowing for long-term simulations in a reduced domain. For
pearling drops, as described in Sect. 5, the length Lx of the domain was doubled, i.e.
Lx = 13 a.

3 Numerical Code

3.1 Volume of Fluid (VoF) Solver

The numerical simulations reported in this work were performed using the Volume of
Fluid (VoF) solver developed in the JADIM code (Bonometti and Magnaudet 2007;
Dupont and Legendre 2010). The one-fluid exact system of equations is obtained by
introducing the distribution C , which is used to localize one of the two phases. In this
study, we define C as C = 1 within the liquid drop, and C = 0 for the external fluid.
The one-fluid function C makes possible the definition of the one-fluid variables
U = CUL + (1 − C)UG for the velocity, P = C PL + (1 − C)PG for the pressure,
ρ = CρL + (1−C)ρG for the density, and μ = CμL + (1−C)μG for the viscosity.
The position of the interface is then given by the transport equation:
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σC

σt
+ U · →C = 0. (1)

The two fluids are assumed to be Newtonian and incompressible, with no phase
change. Under isothermal conditions and in the absence of any surfactant, the surface
tension is constant and uniform at the interface between the two fluids. Under these
conditions, the velocity field U and the pressure P satisfy the classical one-fluid
formulation of the Navier-Stokes equations:

→ · U = 0, (2)

ρ

(
σU

σt
+ U · →U

)
= −→ P + → · κ + ρg + FΨ , (3)

where κ is the viscous stress tensor, g is the gravity, and FΨ is the capillary force
contribution given by

FΨ = Ψ (→ · n) nβI , (4)

where Ψ is the surface tension, n denotes the outward unit vector normal to the drop
surface, and βI is the Dirac distribution associated to the interface position.

The system of Eqs. (1)–(3) is discretized using the finite volume method and
time is advanced through a third-order Runge-Kutta scheme for the viscous stresses.
Incompressibility is satisfied at the end of each time step through a projection method.
The overall algorithm is second-order accurate in both time and space. The volume
fraction C and the pressure P are volume-centred, while the velocity components are
face-centred. Due to the discretization of C , the interface is numerically represented
by a surface of finite thickness and cells cut by the interface correspond to regions
with 0 < C < 1. One important aspect of our approach compared to the classical VoF
or Level Set methods (Sussman et al. 1998; Scardovelli and Zaleski 1999; Sethian
1999) concerns the technique used to control the stiffness of the interface. In our
approach no interface reconstruction or redistancing techniques are employed. The
interface location and stiffness are both controlled by an accurate transport algorithm
based on an FCT (Flux-Corrected-Transport) scheme (Zalesak 1979). This method
leads to an interface thickness of about three grid cells by the implementation of a
specific procedure to calculate the velocity used to transport C in flow regions of
strong strain and shear (Bonometti and Magnaudet 2007).

The numerical description of the surface tension is one crucial point when we
consider systems where capillary effects control the interface shape. This interfacial
force is solved using the classical CSF (Continuum Surface Force) model (Brackbill
et al. 1992):

FΨ = Ψ→ ·
( →C

‖→C‖
)

→C. (5)

A classical problem connected to this formulation is the generation of spurious cur-
rents (Lafaurie et al. 1994; Popinet and Zaleski 1999). In order to decrease the inten-
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sity of spurious currents, a classical solution, introduced by Brackbill et al. (1992),
is employed which consists in calculating the surface curvature from a smoothed
density gradient, while the discretization of the delta function uses an non-smoothed
density. The spurious currents have been characterized by Dupont and Legendre
(2010). Their maximum magnitude is shown to evolve as 0.004Ψ/μ, in agreement
with other codes that use the Brackbill’s formulation.

3.2 Numerical Modelling of the Contact Angle

The aim of the numerical method is to handle static (either with or without hysteresis)
and dynamic contact lines. The method has been developed to simulate the transition
from a static contact line in the hysteresis range to a moving contact line and vice
versa. The numerical scheme used in this study has been initiated by Dupont and
Legendre (2010) for 2D and axisymmetric geometries. It has also been used to study
droplet spreading in axisymmetry (Legendre and Maglio 2013). In this paper, the
method is extended to 3D geometries.

The calculation of the capillary term requires the knowledge of the contact angle
made by the interface at the wall. Indeed, the capillary contribution (5) in the momen-
tum equation requires the knowledge of →C . Since →C/‖→C‖ is the unit vector
normal to the interface, the boundary condition for →C is thus given directly by the
value of the contact angle φW , as shown by the following relation:

→C

‖→C‖ = n = sin φW n‖ + cos φW n⊥, (6)

where n‖ and n⊥ are the unit vector components of the normal vector parallel and
perpendicular to the wall.

The general method is divided into two steps. We first determine the value of the
contact angle to be applied at the wall. This value is then imposed as a boundary
condition using relation (6) for the calculation of the capillary contribution (5) in the
momentum balance equation (3).

Static contact angle
The static equilibrium of a drop on an horizontal wall is characterized by the static

contact angle φS between the interface and the wall. A simple force balance at the
interface gives the Young-Dupré relation:

Ψ cos φS = −ΨSG − ΨSL , (7)

where ΨSL , ΨSG , and Ψ are, respectively, the values of surface tension for the
solid/liquid, solid/gas, and gas/liquid interfaces. The value of the static contact angle
φS is a parameter of the simulation, characterizing the fluid-fluid-wall wettability.
Simulations can also be performed by imposing a constant contact angle. This is the
simplest situation in which relation (6) is used by imposing φW = φS . In Dupont
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and Legendre (2010), some simulations have been performed by imposing a static
contact angle φS in order to compare with the dynamic models.

Dynamic contact line
As was outlined in the introduction, direct numerical simulations that resolve all

scales involved in the problem are not possible. In particular, simulations of contact
line hydrodynamics cannot be performed up to the nano-scale. A sub-grid description,
as introduced by Dupont and Legendre (2010), must be implemented for macroscopic
simulations of problems controlled by moving contact lines. This description, which
is implemented in JADIM, aims to correctly reproduce the physics at the contact
line. The model is based on considerations at the macroscopic scale based on the
analytical derivation by Cox (1986) that connect the macroscopic region (imposed
by the grid resolution Ω) to the inner region (imposed by the slip length ζ). Thus,
at the macroscopic scale, the wall condition seen by the fluid is a no-slip boundary
condition:

UW = 0. (8)

This consists in imposing a zero numerical slip length ζN = 0. At the macroscopic
level, the interface shape characterized by the dynamic apparent contact angle φd is
connected to the microscopic contact angle φS by means of the relation (Cox 1986):

g(φd) − g(φS) = Ca ln(
L

ζ
), (9)

for two fluids of arbitrary viscosity, where g(φ) is a function that simplifies to:

g(φ) =
∫ φ

0

x − sin x cos x

2 sin x
dx, (10)

when the surrounding fluid is of much smaller viscosity (for example, the air). In
practice, the functions g(x) and g(x)−1 can be approximated with good accuracy
by means of a fitting polynomial (Dupont and Legendre 2010). When the condition
φd < 3∂/4 is satisfied, Eq. (9) reduces to the well-known Cox-Voinov relation:
φ3

d = φ3
S + Ca ln (L/ζ) (Voinov 1976; Cox 1986). In relation (9), L is imposed by

the grid spacing and ζ is the physical slip length. Due to the use of a staggered
grid, where the VoF function C is located at the centre of the volume, while the
velocities are face-centred, the interface is transported by the velocity a distance
Ω/2 and therefore one has L = Ω/2. Several experiments have demonstrated that
the apparent region is characterized by L ◦ 10µm and that the characteristic slip
length is ζ ◦ 1−10 nm (Marsh et al. 1983; Ngan and Dussan 1989; Dussan et al.
1991; Shen and Ruth 1998). More recently, Rio (2005) and Le Grand et al. (2005)
have shown that Eq. (9), in its simplified form φ3

d = φ3
S + 9Ca ln(L/ζ), provides a

good description of their experiments. The length L is taken as the distance at which
the measurement is taken and ζ is used as an adjustable parameter. Thus, Rio (2005)
showed that for two different measurement techniques the macroscopic length was
L ◦ 30µm, using the Laser measurement, and L ◦ 200µm, using the optic circle
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technique. From these results, the microscopic length ζ was found to be between
ζ = 7 nm and ζ = 15 nm, depending on the characteristics of the measurement and
the model employed to fit the data. The slip length should be intended as the molecular
slip, which is of the order of some molecules. Considering the value usually found for
water-like liquids on solid substrates (Lauga et al. 2007), we have chosen ζ = 10−9

m in Eq. (9) for the simulations reported in this work.
Several authors have dealt with the “stress singularity” paradox by introducing

the Navier slip condition, that gives a relation between the fluid velocity at the wall
UW and a numerical slip length ζN :

UW = ζN

(
σU

σy

)
W

. (11)

For example, this has been implemented by Renardy et al. (2001) in the case of a
VoF scheme and by Spelt (2005) in a Level-Set code. Both of these methods impose
a static contact angle φS at the wall, assuming that the microscopic contact angle is
φW = φS . The dynamic contact angle is then obtained solving the full hydrodynamic
problem up to a microscopic neighborhood. Unfortunately, due to the grid refinement
limitation, these simulations use unrealistically large slip length values and, therefore,
the slip length ζN becomes in practice an adjustable parameter for the simulation (see
Bonn et al. (2009) for a similar comment). The grid convergence of the simulations
is then reached but an unphysical slip condition is required for this.

Hysteresis of contact angle
A number of numerical calculations has considered the modelling of the dynamic

contact angle, while only few studies have implemented models for the hysteresis
of the contact line of sessile drops. Some examples can be found in the literature
(Dimitrakopoulos and Higdon 1999; Spelt 2005; Fang et al. 2008; Yokoi et al. 2009).
All these methods consist in implementing the following conditions for the normal
velocity Ucl of the contact line:

Ucl < 0 if φd < φR, (12)

Ucl = 0 if φR ≤ φd ≤ φA, (13)

Ucl > 0 if φA < φd . (14)

The method implemented here makes possible the transition from a static (resp.
moving) to a moving (resp. static) contact line. The procedure is divided into two
steps:

Step 1: For every cell containing the interface (0 ≤ C ≤ 1), the angle φ∗ that
cancels the local momentum balance Eq. (3) is determined by an iterative procedure
using a simple Newton-Raphson scheme. The iteration is stopped when φn+1 −φn <

ψφ with a convergence limit of ψφ = 10−4.
Step 2. The value of φ∗ is compared to the hysteresis range and two possible

situations can be found:
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(i) the contact angle is inside the hysteresis: φR ≤ φ∗ ≤ φA. The contact line is
static and the contact angle is imposed as φ∗ so that the momentum balance locally
cancels. Thus, if the interface was immobile at the beginning of the time step, it
remains immobile for the next time step; if the interface was previously in motion,
the interface is stopped.

(ii) the contact angle is outside the hysteresis: φ∗ < φR or φ∗ > φA. As a con-
sequence, the contact line cannot be static. The value of the contact angle is then
calculated using the dynamic model described above. The static contact angle is the
advancing (resp. receding) angle when φ∗ > φA (resp. φ∗ < φR).

3.3 Numerical Validation and Grid Convergence

The validation as well as the time and grid convergence of the numerical method
used for the simulation of the dynamic contact angle have been extensively discussed
in Dupont and Legendre (2010), Maglio (2012), and Legendre and Maglio (2013).
Static, hysteresis, and dynamic situations have been considered for spreading drops,
drops on inclined surfaces, and drops in a surrounding shear flow. In particular, a
very satisfactory agreement has been found with experiments of spreading drops
for both water drops and viscous drops. The inertia-capillary regime of spreading
characterized by a contact line expansion varying as t1/2 and the Tanner’s evolution
going as t1/10 have been recovered. Comparisons of our model with other variants,
i.e. static contact angle versus dynamic contact angle and no-slip condition versus
slip condition, were also reported by Maglio (2012). These comparisons clearly stress
the importance of considering a dynamic model for the simulation of moving contact
lines. For the study reported in this paper, additional tests have been performed to
ensure grid and time convergence for the onset of motion, as well as for the sliding
drop velocity. They are discussed in the sections below.

4 The Onset of Motion

The angle of inclination θc of the surface at the onset of motion can be obtained by
considering the force balance acting on the drop. The volume V of the largest drop
that can stick on the surface is given by the balance between the weight of the drop
and the interfacial force acting along the contact line cl:

ρgL V sin θc + Ψ

∫
cl

cos φ sin εdl = 0, (15)

where φ is the local contact angle and ε is the angle between the unit normal point-
ing outwards the drop and the direction perpendicular to the sliding direction. By
definition ε = 90∼ at the front of the drop and ε = −90∼ at the rear. Thus, the above
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relation reduces to
ρL V g sin θc = χcΨ(cos φR − cos φA), (16)

where χc is the characteristic length χ at the onset of motion, where χ is given by

χ = − 1

cos φR − cos φA

∫
cl

cos φ sin εdl. (17)

Furmidge (1962) found that relation (16) is in excellent agreement with the experi-
ments, if χ is assumed to be the drop width w. As shown by relation (17), χ is not
necessarily the drop width because it depends on the contact line shape. Neverthe-
less, for some particular drop shapes it is possible to demonstrate that χ = w. This
is the case of a spherical cap drop with a small hysteresis range (φA ◦ φR) and of a
parallel sided drop with circular advancing and receding contact lines.

Using the equivalent radius a as the characteristic length, we can rewrite relation
(16) in terms of the Eötvös number Eo = ρga2/Ψ :

sin θc = χ

a

3

4∂
(cos φR − cos φA) Eo−1 (18)

so that the critical contact angle varies as (cos φR − cos φA) Eo−1 and depends on the
contact line shape.

Much work, mostly experimental, has focused on the characterization of the onset
of motion (Bikerman 1950; Rotemberg et al. 1984; Dussan 1985; Milinazzo and
Shinbrot 1988; Extrand 1995; Dimitrakopoulos and Higdon 1999; Podgorski 2000;
Le Grand et al. 2005). Considering a spherical cap drop with a small value of the
contact angle hysteresis (i.e. φA ◦ φR), Dussan (1985) showed that the onset of
motion is described by

sin θc = 3

∂ 21/3

(1 + cos φA)1/2

(2 + cos φA)1/3 (1 − cos φA)1/6 (cos φR − cos φA) Eo−1. (19)

This analytical solution is thus only valid for small values of the hysteresis, with
φA − φR being typically less than 10∼. Relation (19) indicates that the characteristic
length is χc = 25/3(1+cos φA)1/2 (2+cos φA)−1/3 (1−cos φA)−1/6 a. A plot of this
relation as a function of φA reveals that the variation is moderate for 30∼ ≤ φA ≤ 145∼
so that in a first approximation χc can be expressed using φA = 90∼:

χc ◦ 24/3 a. (20)

Among the existing experimental studies, here we consider those by Podgorski
(2000) and Le Grand et al. (2005), who reported well documented experiments of
silicon oil drops deposed on different inclined surfaces. The corresponding experi-
mental conditions are displayed in Fig. 3. We see that these experiments have focused
on small hysteresis ranges. The purpose of our study is to compare our simulations
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Fig. 3 Phase diagram (φA − φR)–Eo for the cases considered. Experiments: � Le Grand et al.
(2005), ∝ Podgorski (2000). Numerical simulations: � Eo = 0.32 (FL1), � Eo = 0.63 (FL2), •
Eo = 1.26 (FL3), � Eo = 0.57 (47V100), � Eo = 0.57 (47V100), and � Eo = 0.58 (47V10)

with the experimental results for this small range of the contact angle hysteresis and
then to extend the study to a larger hysteresis range. For the sake of direct comparison,
we have considered two situations reported by Le Grand et al. (2005), corresponding
to fluids 47V10 and 47V100, with Eötvös numbers of 0.58 and 0.57, and hysteresis
ranges of (42.7∼, 52.9∼) and (45.5∼, 50.5∼), respectively. We have further extended
the experimental studies by considering three larger contact angle hysteresis, i.e.,
(φA, φR) = (80∼, 100∼), (60∼, 120∼), and (40∼, 140∼), for Eo = 0.32, 0.63, and
1.26. The drop properties used in these simulations are listed in Table 1.

The grid and time convergence is here discussed for fluid FL1 in Table 1. Two
regular grids M1 and M2 are considered. They are, respectively, made of 150×50×
50 and 300 × 100 × 100 nodes in the x-, y-, and z-directions. The drop radius a
corresponds to 22.5 and 45 nodes, respectively. The grid M1 is first used for discussing
the effect of the time step. The simulations produced θc = 31.5∼, θc = 34.0∼, and
θc = 34.7∼ for time steps Ωt = 2 × 10−5 s, 10−5 s, and 5 × 10−6 s, respectively.

Table 1 Onset of motion: parameters used for the simulations

Fluid a ρ μ Ψ Eo Oh Mo
(mm) kg/m3 Pa.s N/m (-) (-) (-)

FL1 0.595 655 0.01 7.2 0.32 0.19 4.0 × 10−4

FL2 0.595 655 0.0168 3.6 0.63 0.45 3.2 × 10−2

FL3 0.595 655 0.01 1.8 1.26 0.38 2.6 × 10−2

47V100 1.127 964 0.103 20.9 0.57 0.68 1.3 × 10−1

47V10 1.127 936 0.01 20.1 0.58 0.69 1.3 × 10−5
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A simulation performed using grid M2 and Ωt = 5 × 10−6 s yielded θc = 36.0∼,
which differs only by ∼3 % from the corresponding value obtained using the grid
M1. Therefore, in order to minimize the computational time, the results reported in
this section were obtained using Ωt = 1×10−5 s and the mesh M1 (150×50×50).

4.1 Drop Shape During Surface Inclination

We first consider the case when Eo = 0.63 and (φA, φR)=(100∼, 80∼) (see Table 1)
in order to describe the evolution of the shape and the contact angle during the
inclination of the surface. Figure 4 shows the shape of the drop from the beginning
of the simulation until the onset of motion for different inclinations of the surface.
During the tilting of the surface, the drop re-arranges its shape while remaining
pinned to the inclined surface. Figure 4h corresponds to the onset of motion and Fig.
4i shows when the drop is sliding.

Figure 5 represents the corresponding evolution of the contact angle at the front
and rear points of the drop. As explained in Sect. 2, the surface was inclined after
the drop stabilization. This corresponds to the vertical line at θ = 0∼. Then, we can
notice that the advancing angle at the front of the drop reaches first the limit value of
hysteresis (φA = 100∼). The onset of motion is observed once the rear contact angle
reaches the inferior limit given by the receding angle, here φR = 80∼. For this case,
the sliding happens at 18∼. This is confirmed by Fig. 6 (top), where the velocities for
the front, rear, and centre of mass of the drop are displayed. We can see that the front
contact line and the centre of mass start to move first. The rear stagnation point starts
moving at a larger angle, which corresponds to the onset of motion. Figure 6 (bottom)
shows the evolution of the contact angle along the contact line as a function of the
local angle ε between the normal of the contact line and the z-direction, for different
inclinations of the surface. Due to the initial condition (the drop is initialized as a
spherical cap), the contact angle is everywhere 90∼. Then, the contact angle evolves
progressively until it reaches the distribution corresponding to the beginning of the
sliding, where the advancing and receding limits are clearly observed at the front and
the rear of the drop, respectively.

4.2 Angle of Inclination at the Onset of Motion

The shapes of the drops at the onset of motion for all the cases considered are shown
in Fig. 7. For each case, the shape is compared with the spherical one at the beginning
of the simulation in order to outline the deformation. The value of the critical angle
θc is also shown in the figure. For the smallest Eötvös number Eo = 0.31, with the
hysteresis of φA − φR = 120∼ − 60∼ and φA − φR = 140∼ − 40∼, the drop is found
to remain pinned to the wall for the vertical inclination. When the Eötvös number
increases, the critical angle θc decreases, because the drop is more deformed by
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Fig. 4 Eo = 0.63 and φA − φR = 100∼ − 80∼. Shapes of the drop during the tilting of the surface.
a beginning of the simulation; b θ = 0∼ (end of stabilization); c θ = 2∼; d θ = 6∼; e θ = 9∼; f
θ = 12∼; g θ = 15∼; h θ = 18∼ (onset of motion); and i θ = 39∼

gravity and reaches faster the shape of motion. As expected, we observe also that the
hysteresis range increases the retention force of the drop on the surface.

The angle of inclination θc at the onset of motion is shown in Fig. 8. Considering
the equilibrium force balance (18), the figure shows sin θc as a function of (cos φR −
cos φA)Eo−1. The experimental values of Le Grand et al. (2005) and Podgorski (2000)
are also shown for comparison. Surprisingly, all the results seem to collapse on the
same evolution whatever are the value of the contact angle hysteresis and the Eötvös
numbers considered. For (cos φR − cos φA)Eo−1 ≤ 1, the critical angle is correctly
described by relation (18), where the characteristic length χc = 24/3 a is deduced
from the analytical relation (19) obtained by Dussan (1985). For larger values of
(cos φR − cos φA)Eo−1, the numerical results are always under the line representing
relation (18) with χc = 24/3 a. They correspond to lower values of χc, which can be
explained by a more elongated shape of the drops. According to Fig. 8, a drop cannot
slide on a wall regardless of its inclination if (cos φR − cos φA)Eo−1 � 2.
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Fig. 5 Eo = 0.63 and φA − φR = 100∼ − 80∼. Evolution of the advancing (�) and receding (�)
angles. The corresponding inclination of the surface is shown on the top of the graph. The angle at
the onset of motion θc = 18∼ is shown using a larger dash line

5 Sliding Velocity

In this section, we consider the terminal velocity UT of a drop sliding on a wall with
a fixed inclination θ. We first compare our simulations with the experiments of Le
Grand et al. (2005). Then, we discuss the effect of the contact angle hysteresis on
the sliding velocity. The parameters used for the simulations correspond to fluids
47V100 and 47V10, while the drop size is taken from the experiments of Le Grand
et al. (2005), (see Table 1). The corresponding contact angle hysteresis ranges (φA,
φR) are (52.9∼, 42.7∼) and (50.5∼, 45.5∼), respectively. A spherical cap of volume
V = 6 mm3 with a contact angle φS = 50∼ is assumed as an initial condition (at
t = 0). The numerical layout of the simulation is identical to the one presented in
the previous section. The wall inclination θ is fixed during the entire simulation. We
have performed simulations for θ in the range from θc to 90∼, where θc is the angle at
the onset of motion. We have checked for some cases (typically for the two fluids at
θ = 50∼) that the terminal velocity is similar when increasing progressively the wall
inclination from 0∼ to θ following the procedure described in the previous section.

In the simulations described here we have used Ωt = 1 × 10−5 s and mesh M1
(150 × 50 × 50). The time and grid convergence has also been checked by varying
the grid spacing and the time step on the drop velocity. For example, with mesh M1
the terminal velocity of a 47V100 drop is UT = 0.00204 m s−1, UT = 0.00188
m s−1, and UT = 0.00179 m s−1 for Ωt = 1 × 10−5 s, Ωt = 0.5 × 10−5 s, and
Ωt = 0.2 × 10−5 s, respectively. For a finer grid, say M3, with 225 × 75 × 75 nodes
and Ωt = 0.2 × 10−5 s, the simulation gives UT = 0.00199 m s−1, which implies
about a 1 % difference with the value obtained using grid M1.
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Fig. 6 Eo = 0.63 and φA − φR = 100∼ − 80∼. (Top) Contact line velocities at the front (�), at
the rear (�) and at the centre of mass (�). The corresponding inclination of the surface is shown
on the top of the graph. The angle at the onset of motion θc = 18∼ is shown using a larger dash
line. (Bottom) Distribution of the contact angle along the contact line for different inclinations of
the surface. �: θ = 0∼; +: θ = 9∼; �: θ = 19∼ (close to the starting point). Contact angle φ along
the contact line orientation ε

The drop shapes are depicted in Figs. 9, 10 for fluids 47V100 and 47V10, respec-
tively. For both fluids the angles θ = 15∼, θ = 50∼, and θ = 90∼ are shown.
In accordance with the experiments of Le Grand et al. (2005), different shapes are
observed. When increasing the drop velocity (by increasing θ and decreasing the
viscosity), the shape varies significantly and so we observe rounded, corner, cusp,
and pearling drops. For all cases considered, the front contact line remains circu-
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Fig. 7 Drop shapes at the onset of motion compared with the shape at the beginning of the
inclination, for different Eötvös numbers and hysteresis ranges. For φA = 100∼: φR = 80∼ and
Mo = 0.000421; for φA = 120∼: φR = 60∼ and Mo = 0.00321; and for φA = 140∼: φR = 40∼ and
Mo = 0.02568

lar, the difference being mainly noticed at the rear contact line. For the smallest
velocities (θ = 15∼ and θ = 50∼ for 47V100 and θ = 15∼ for 47V10), the
shape of both the advancing and the receding contact lines is circular. For inter-
mediate velocities, the rear contact line is progressively deformed to form a corner
(θ = 50∼ for 47V10) and then a cusp (θ = 90∼ for 47V100). For the largest velocity
(θ = 90∼ for 47V10), the pearling regime is observed. The pearling regime is char-
acterized by the emission of droplets from the tip of the cusp. As was reported by
Le Grand et al. (2005) (see their Fig. 6), the size of the first droplet is larger than
the second one. The transition between the cusp regime and the pearling regime is
observed between θ = 60∼ and θ = 70∼ for fluid 47V10. The corresponding capil-
lary number is close to Ca = μUT /Ψ ∼ 0.01, in agreement with the experiments of
Le Grand et al. (2005).

The time evolution of the drop velocity U for some particular inclinations is
shown in Fig. 11 for fluids 47V100 (left) and 47V10 (right), respectively. For both
fluids, U increases at the beginning of the simulation, reaches a maximum around
t ∼ 0.01 s, and then decreases and stabilizes to a constant value corresponding
to the drop terminal velocity UT . As expected, the terminal velocity is found to
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Fig. 8 Variation of the angle sin θc with (cos φR − cos φA) Eo−1. Experiments: � Le Grand et al.
(2005), ∝ Podgorski (2000). Numerical simulations: � Eo = 0.32 (FL1), � Eo = 0.63 (FL2),
• Eo = 1.26 (FL3), � Eo = 0.57 (47V100), � Eo = 0.57 (47V100), � Eo = 0.58 (47V10),—
sin θc ◦ 0.6(cos φR − cos φA) Eo−1 derived from relation (20) (Dussan 1985) with χc = 24/3 a, . .

. . drop sticked on a vertical surface

increase with θ. Figure 11 (right) shows that the velocity is not perfectly stabilized
for the less viscous fluid 47V10 with the largest angles θ = 70∼ and θ = 90∼.
This is due to the pearling observed at the rear of the drop. The inspection of the
first part of the evolution reveals that the evolution of the centre of mass follows
V ∼ g sin(θ) t . It corresponds to the volume acceleration inside the drop due to
gravity. The drop deforms and the front and rear contact angles evolve from the initial
value φS = 50∼ to the advancing and receding contact angle φA and φR , respectively.
Thus, during this first phase of the evolution, the advanced and receding contact
lines remain immobile and the drop sticks on the surface. Once the drop deformation
has induced values for both the front and rear contact angle outside the hysteresis
range (see previous section), the drop starts to slide until it reaches the terminal
velocity UT . The drop Reynolds number Re = ρUT a/μ, based on the terminal
velocity, as obtained for θ = 90∼, is Re = 0.035 and 2.8 for fluids 47V100 and
47V10, respectively, evidencing a viscous dominated situation. As a consequence,
the contact line Reynolds number Recl = ρUcl L/μ ∼ ρUT Ω/μ is much smaller
than unity, in agreement with the range of validity of the Cox’s hydrodynamic model
for the apparent contact angle [relation (9)].

The terminal velocity UT results from the following force balance:

ρgV sin θ − χΨ(cos φR − cos φA) + FD = 0, (21)

where FD is the drag force experienced by the drop. In FD we can identify two
different viscous contributions. The first corresponds to the bulk contribution Fbulk

D ,
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Fig. 9 Drop shape when the
terminal velocity is achieved
for fluid 47V100 at different
inclinations. First column:
view normal to the wall.
Second column: side view.
Top θ = 15∼, middle θ = 50∼,
bottom θ = 90∼

resulting from the viscous effects at the macro scale L . This effect comes from
the internal motion and the viscous stress in the air. The second is the contact line
contribution Fcl

D , which results from the viscous dissipation at the contact line. The
drop terminal velocity can be simply derived from the force balance (21) when
considering the two following assumptions. The dissipation at the contact line is
negligible compared to the bulk dissipation, i.e. Fbulk  Fcl and the drop motion
is controlled by viscous effects, i.e. Re< 1. Under such conditions, the drag force
experienced by the drop can be written as:

FD ◦ Fvi ◦ −Cμ∂aUT , (22)

where C is a coefficient depending a priori on the drop shape. Note that for a spherical
drop of radius a settling in air, the Stokes drag gives C = 6. Assuming that the drop
shape during the sliding is similar to its shape at the onset of motion (i.e. χ ◦ χC ),
we can write

χΨ(cos φR − cos φA) ◦ ρgV sin θC
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Fig. 10 Drop shape when the
terminal velocity is achieved
for fluid 47V10 at different
inclinations. First column
View normal to the wall.
Second column Side view. Top
θ = 15∼, middle θ = 50∼,
bottom θ = 90∼

so that the force balance gives the following relation between the capillary and the
Eötvös number:

Ca ◦ 4

3C
Eo(sin θ − sin θC ). (23)

The capillary number is plotted as a function of the Eötvös number in Fig. 12.
For both fluids, the linear dependence shows that relation (23) makes possible the
description of the sliding velocity. The experimental results of Le Grand et al. (2005)
are also depicted for comparison. The figure confirms the good agreement with the
predicted value of θc corresponding to the onset of motion. Figure 12 shows very
good agreement with the experiments for the more viscous fluid, 47V100 (left),
while a significant deviation is found for fluid 47V10 (right). For fluid 47V100,
the evolution is split up into two linear regimes. The first regime agrees with the
experiments of Le Grand et al. (2005). Relation (23) fits both the simulation and
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Fig. 11 The time evolution of the drop velocity V for different values of θ. From bottom to top
θ = 15, 35, 50, 70 and 90∼. (left) fluid V100, (right) fluid V10

the experiments with C ∼ 83. On the other hand, the second regime corresponds
to C ∼ 50. This lower value is due to the change of the drop shape. The receding
contact line shape generates a lower resistance in the force balance. These values
of C show that the drag force experienced by a viscous drop sliding on an inclined
wall is one order of magnitude bigger than the one experienced by a settling drop
(C = 6). For fluid 47V10, relation (23) is also seen to fit the numerical simulation for
C ∼ 83, while the experiments are better described using C ∼ 131. Our numerical
results for fluids 47V100 and 47V10 follow a similar evolution (C ∼ 80−83), while
a significant difference is observed with the experiments made with the two fluids.
One possible explanation of this discrepancy could be the contact line contribution

47V10
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Fig. 12 Evolution of the drop capillary number as a function of the Eötvös number Eoθ . (∼)
experiments of Le Grand et al. (2005), � Numerical simulations. (left) fluid 47V100: . . . . Ca =
0.009 Eo sin θ, - - - Ca = 0.015 Eo sin θ. (right) fluid 47V10: . . . . Ca = 0.0095 Eo sin θ,
—Ca = 0.0057 Eo sin θ
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Fcl
D to the drag force. In our simulations, only the large scale dissipation is considered

since we do not solve the hydrodynamics at the contact line. While Eq. (9) relates
the value of the apparent contact angle to the velocity of the contact line, no sub-grid
dissipation was introduced in our models. For the more viscous fluid, the agreement
is very satisfactory, suggesting that the main dissipation occurs in the bulk, since Fcl

D
is small compared to Fbulk . For the less viscous fluid, the contribution of Fcl

D is more
important and could be of the same order of Fbulk , resulting in an underestimated drag
force in our simulations since the models do not take into account the contribution
of Fcl

D .
We finally consider the effect of the contact angle hysteresis on the drop sliding

velocity. The simulations were performed for fluid 47V100 since the agreement with
the experiments was very good. A surface inclination of θ = 50∼ and contact angle
hysteresis of (φA, φR)=(50.5∼, 45.5∼), (58∼, 38∼), (63∼, 33∼), and (68∼, 28∼) were
considered. As expected, the simulations indicate that the sliding velocity decreases
when increasing the hysteresis range. Figure 13 depicts the drop capillary number as
a function of cos φR − cos φA. This plot shows that the decrease is linear and reveals
that (cos φR − cos φA) is again the pertinent parameter for taking into account the
hysteresis.

6 Conclusions

We have reported numerical simulations of drops on a inclined solid surface. Both the
onset of motion and the sliding regime have been considered. The simulations have
compared satisfactorily with the experiments of Le Grand et al. (2005). In addition,
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Fig. 13 Effect of the hysteresis on the drop velocity for fluid 47V100 and θ = 50∼. Ca is plotted
as a function of cos φR − cos φA. � simulations, . . . . y = 0.0128 − 0.013x
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we have extended the analysis of the effects of the contact angle hysteresis to values
of the hysteresis range beyond those usually considered in current experiments. The
critical angle of inclination, corresponding to the onset of motion, depends on the
Eötvös number, the hysteresis, and the shape of the contact line. When the drop starts
to slide, an almost rounded shape is observed in all cases, which contrasts with the
very different shapes observed when the drop is sliding. All the experimental and
numerical results are found to collapse on the same evolution as shown when sin θc

is plotted as a function of (cos φR − cos φA) Eo−1. Regarding the sliding regime,
the characteristic shapes observed in the experiments have been recovered by the
simulations. Rounded, corner, cusp, and pearling drops have all been observed. The
sliding velocity has been found to be in very good agreement with the experiments
for the more viscous fluid, while a significant discrepancy has been seen for the
less viscous fluid. One possible explanation for this discrepancy are the effects of
dissipation at the contact line, which were not included in the present models. A
proper inclusion of the effects of dissipation at the contact line is therefore needed to
validate this hypothesis. Our study has also stressed the effect of the hysteresis on the
sliding velocity. When increasing the hysteresis range, the sliding velocity is found
to decrease as cos φR − cos φA, which appears to be the pertinent parameter for the
description of the effects of hysteresis in the sliding motion. Future work will focus
on considering the effects of the hysteresis on the different sliding regimes and, in
particular, on the pearling regime.
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Fluids in Cosmology

Jorge L. Cervantes-Cota and Jaime Klapp

Abstract We review the role of fluids in cosmology by first introducing them in
General Relativity and then by applying them to a FRW model of the Universe. We
describe how relativistic and non-relativistic components evolve in the background
dynamics.We also introduce scalar fields to show that they are able to yield an
inflationary dynamics at very early times (inflation) and late times (quintessence).
Then, we proceed to study the thermodynamical properties of the fluids and, lastly,
its perturbed kinematics. We make emphasis on the constrictions of parameters by
recent cosmological probes.

1 Introduction

Modern cosmology is understood as the study of fluids and geometry in the Uni-
verse. This task involves the development of theoretical ideas about the nature of
fluids and gravity theories, both to be compared with current observations that cos-
mic probes have been undertaking. The present understanding is condensed in the
standard model of cosmology, that incorporates the material content of the stan-
dard model of particle physics and Einstein’s theory of General Relativity (GR)
with a cosmological constant. These two schemes, the fluid and gravity parts, have
made predictions that have been tested and confirmed, albeit there are still some
issues that remain open. Certainly, we have really no firm knowledge of what dark

J. L. Cervantes-Cota (B) · J. Klapp
Departamento de Física, Instituto Nacional de Investigaciones Nucleares, ININ, Km 36.5,
Carretera México-Toluca, La Marquesa 52750, Estado de México, Mexico
e-mail: jorge.cervantes@inin.gob.mx

J. Klapp
Departamento de Matemáticas, Cinvestav del Instituto Politécnico Nacional (I.P.N.),
07360 México, D. F, Mexico
e-mail: jaime.klapp@inin.gob.mx; jaime.klapp@hotmail.com

L. Di G. Sigalotti et al. (eds.), Computational and Experimental Fluid Mechanics with 71
Applications to Physics, Engineering and the Environment, Environmental Science and Engineering,
DOI:10.1007/978-3-319-00191-3_4, © Springer International Publishing Switzerland 2014



72 J. L. Cervantes-Cota and J. Klapp

matter and dark energy are, as well as their nature and detailed properties. Still we
are confident of some specific roles that these dark components play in cosmology
and astrophysics. Their influence is at least gravitational, as so far we know from
cosmic measurements. This knowledge allows us to build a picture of fluids in the
background and perturbed geometry in the history of the Universe and this is what
we deal with in the present work.

The purpose of the present review is to provide the reader with a panorama of
the role that fluids play in the standard model of cosmology. Tracking the recent
history, in the late 1940s George Gamow (1946, 1948) predicted that the Universe
should had begun from a very dense state, characterized by a huge density at very
high temperatures, a scenario dubbed the Big Bang, that was conjectured by George
Lemaître in the early 1930s. This scenario predicts that matter and light were at very
high energetic states in thermal equilibrium and described by a Planckian blackbody.
As the Universe expanded, it cooled down, and eventually matter and light decou-
pled. The image of the last scattering of light is a fingerprint of the initial state and
remains today imprinted in the Cosmic Microwave Background Radiation (CMBR).
Gamow’s scenario predicted that this primeval radiation would be measured at a tem-
perature of only a few Kelvin’s degrees; since the expansion of the Universe cools
down any density component.

The CMBR was for the first time measured by A. A. Penzias and
R. W. Wilson in 1965 (Penzias and Wilson 1965). Later on, in the early 1990s
Mather et al. (1990) and Smoot et al. (1992) measured further important properties
of this radiation: its tiny anisotropies for large angular scales and its blackbody na-
ture. The first property—also imprinted in the matter distribution—accounts for the
perturbed fluids in the Universe that led to structure formation in the cosmos. The
second property is a distinctive sign of the equilibrium thermodynamic properties of
the primeval plasma—composed of photons, electrons, and baryons, plus decoupled
(but gravitationally coupled) neutrinos, dark matter, and dark energy. The evolution
and effects of these fluids is the main concern of the present review.

We begin our work by explaining the context of fluids in GR, and especially
in cosmology. We then analyze the evolution of perfect fluids—since real fluids
allow them to be described as such- and their background dynamics. We explain
that the main cosmic components are baryons, photons, neutrinos, dark matter, and
dark energy. We also introduce scalar fields since they are ubiquitous in modern
cosmology because they enable to model different cosmic dynamics, from inflation
(Guth 1981; Linde 1990) and dark energy (Caldwell et al. 1998; Copeland et al. 2006)
to dark matter (Matos et al. 2000; Magaña and Matos 2012). Then, we proceed to
study the thermodynamical properties of the fluids (as in Cervantes-Cota 2004) and,
lastly, its perturbed kinematics. We make emphasis on the constraints of parameters
as imposed by recent cosmological probes.

In this work, we use “natural” units � = c = kB = 1 and our geometrical sign
conventions are as in Misner et al. (1973).
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2 Fluids in General Relativity

The GR theory is based on the Einstein-Hilbert Lagrangian density

L = 1

16ζG
(R + Lm)

◦−g, (1)

where R is the Ricci scalar, G the Newton constant, g = |gμ∂ | is the determinant of
the metric tensor, and Lm is the material Lagrangian that will give rise to the fluids.
By performing the metric variation to this equation, one obtains the well known
Einstein’s field equations

Rμ∂ − 1

2
R gμ∂ = 8ζGTμ∂, (2)

where Rμ∂ is the Ricci tensor and Tμ∂ is the stress energy–momentum tensor

whose components are given by Tμ∂ ∇ − 2◦−g
ΩLm

◦−g
Ωgμ∂ . Tensors in Eq. (2) are

symmetric which is a requirement of the theory. Being space-time 4D the imposed
symmetry implies that Eq. (2) represents a collection of ten coupled partial differen-
tial equations. However, the theory is diffeomorphism invariant, and one adds to them
a gauge condition, implying in general four extra equations to Eq. (2) that reduce
the physical degrees of freedom. Thus, symmetries and gauge choice determine the
fluid properties allowed by the theory.

The stress energy-momentum tensor T encodes the information of the fluid, and
all kinds of energy types contribute to curve space-time: density, pressure, viscosity,
heat, and other physical quantities. But before introducing them, one needs other
elementary concepts.

Giving some reference frame, one defines the four-velocity u ∇ dx/dφ as the
vector tangent to the worldline of a particle, with x being the local coordinates and
φ the proper time along the worldline; its four-momentum is p = mu, where m is the
rest mass of the particle. Now, given a space-time surface, xΨ = const., one defines
its associated one-form as ˜dxΨ , to obtain the components T( ˜dxΨ, ˜dxρ) = T Ψρ ,
which is interpreted as the flux of momentum Ψ, pΨ =< ˜dxΨ, p >, passing through
the surface xρ = const. In this way, T 00 is the energy density, which is the flux of
momentum (p0 = particle’s energy) that crosses the surface x0 = t = const. and T 0i

is the flux of energy that crosses the surface xi = const.; where latin labels run from
1 to 3 and greek labels from 0 to 3. Given the symmetry of the tensor, T i0 = T 0i ,
that is, energy fluxes are equal to momentum densities since mass equals relativistic
energy. Finally, the components T i j denote the momentum flux i crossing the surface
x j = const., and again symmetry implies that T i j = T ji , avoiding a net intrinsic
angular momentum.

The left-hand side of Eq. (2) is known as the Einstein tensor (Gμ∂) and, giving
the symmetries of the theory, it happens to fulfill the Bianchi identities, that is, its
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covariant derivative is null. This in turn implies, on the right-hand side, a conservation
law for any fluid within this theory. The conservation law reads:

T ∂
μ ;∂ = 0. (3)

As we shall see, this equation is the most important since it encodes the thermody-
namic laws of matter.

3 Fluids in Cosmology

The kinematical properties of a fluid element are determined by its velocity, ac-
celeration, shear, and vorticity. All these quantities are defined in the space-time,
and for convenience one uses comoving coordinates, that is Lagrangian coordinates
that follow the flow motion. We refer the reader to standard gravity textbooks for
details (Misner et al. 1973; Schutz 1985). One splits the space-time structure into
surfaces of simultaneity to rest frame observers, with a projected metric on the sur-
face hμ∂ = gμ∂ + uμu∂ ; where uμ are the components of the four velocity u. In
this frame it is natural to define an expansion tensor, θμ∂ = θ(μ∂) = ∼(μu∂), and
the vorticity tensor, σμ∂ = σ(μ∂) = ∼[μu∂], where ∼ operates on the projected 3D
space. The trace of the expansion tensor is a scalar measure of the volume expansion,
given by θ = ∼μu∂ , and the shear tensor is the projected symmetric free-trace part
of θμ∂ , such that θμ∂ = κμ∂ + 1

3θ hμ∂ (Ellis et al. 2012).
Accordingly, the energy-momentum tensor associated to the fluid can be separated

into components parallel and orthogonal to the four velocity as:

Tμ∂ = βuμu∂ + qμu∂ + q∂uμ + P hμ∂ + ζμ∂, (4)

where β = TΨρuΨuρ is the energy density that includes rest masses and possibly
the internal energy, such as the chemical energy; P = hΨρ TΨρ/3 is the pressure;
qμ = −hΨ

μTΨ∂u∂ is the momentum density or energy flux due to either diffusion or

heat conduction; and ζμ∂ = [h Ψ
(μh ρ

∂) − 1
3 hμ∂hΨρ ]TΨρ is the trace-free anisotropic

stress tensor due to viscosity.
A perfect fluid is an inviscid fluid with no heat conduction, that is, qμ = 0 and

ζμ∂ = 0. It is analogous to an ideal gas in standard thermodynamics. In terms of the
full metric, it is a standard practice to represent it as:

T μ∂ = (β + P)uμu∂ + Pgμ∂, (5)

in comoving coordinates, uμ = ψ
μ
0 . Equation (5), is the energy-momentum tensor

that correctly describes fluids in the background geometry of the Universe.
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4 Fluids in the Standard Model of Cosmology

The Universe is described by its material components and geometry. The former is
fed with microscopic or thermodynamic information about the fluids and the latter is
determined by Eq. (2). In the following, we explain the features of the geometry and
the properties of the fluids that have governed the evolution of the standard model
of cosmology.

The cosmological principle states that the Universe is both spatially homogeneous
and isotropic on large scales, and this imposes a symmetry on the possible fluids
present in it. Any departure from this symmetry in the fluid would be reflected in the
geometry through Eq. (2). The symmetry assertion is compatible with observations
made of the all-sky cosmic microwave background radiation from the last twenty
years, through the satellites COBE (Smoot et al. 1992) in the 1990s, the Wilkinson
Microwave Anisotropy Probe (WMAP) (Bennett et al. 2013; Hinshaw et al. 2013)
in the 2000s, and the Planck (Ade et al. 2013c) nowadays, although some large scale
CMBR anomalies in the isotropy have been detected (Ade et al. 2013d) that require
further investigation. On the other hand, homogeneity and isotropy have also been
tested for the distribution of matter at large scales, see for instance Marinoni et al.
(2012); Hoyle et al. (2013).

In GR, as in any other metric theory, symmetries of the physical system are intro-
duced through the metric tensor. The homogeneous and isotropic space-time symme-
try was originally studied by Friedmann, Robertson, and Walker (FRW) (Friedmann
1922, 1924; Robertson 1935, 1936a,b; Walker 1937). The symmetry is encoded in
and defines the unique form of the line element:

ds2 = gμ∂dxμdx∂ = −dt2 + a2(t)

[
dr2

1 − kr2 + r2(dε2 + sin2ε dχ2)

]
, (6)

where t is the cosmic time, r , ε , and χ are polar coordinates, and the constant
curvature can be adjusted to take the values k = 0, +1, or −1 for a flat, closed, or open
space, respectively. a(t) is the unknown potential of the metric that encodes the size
at large scales, and more formally, it is the scale factor of the Universe that measures
how the model grows or shrinks as time evolves. Measurements show that it always
grows, but a bounce in the very early or final stages is possible (De-Santiago et al.
2013).

The beautiful symmetric FRW solutions to the Einstein Eqs. (2) represent a cor-
nerstone in the development of modern cosmology, since with them it is possible to
understand the expansion of the Universe. Although in the first years of relativity,
Einstein sought for a static solution – since observations seemed to imply that – it
was soon realized by E. Hubble and others in the mid 1920’s that the Universe is
indeed expanding, following Hubble’s law (Hubble 1929).

Using the FRW metric and a perfect fluid, the GR cosmological field equations
are,
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H2 ∇
(

ȧ

a

)2

= 8ζG

3
β − k

a2 (7)

and
ä

a
= −4ζG

3
(β + 3P), (8)

where H is the Hubble parameter that has dimensions of inverse of time, and there-
fore, it encodes the model’s expansion rate ; H−1 is proportional to the age of the
Universe. Moreover, β and P are the density and pressure that enter in Eq. (5). Dots
stand for cosmic time derivatives.

As explained above, the energy-momentum tensor is covariantly conserved, as
shown by Eq. (3). In the present case, it implies the continuity equation,

β̇ + 3H(β + P) = 0. (9)

Equations (7), (8), and (9) involve three unknown variables (a, β, p) for three
equations, but the system is not mathematically closed, since the equations are not
all linearly independent, but just only two of them. Thus, an extra assumption has
to be made to solve the system. The answer comes from the micro-physics of the
fluids considered. For the moment let us assume a barotropic equation of state that
is characteristic for different cosmic fluids, i.e., w = const. so that

P

β
= w =

⎧⎪⎪⎨
⎪⎪⎩

1
3 for radiation or relativistic matter,
0 for dust,
1 for stiff fluid,

−1 for cosmological constant or vacuum energy,

(10)

to integrate Eq. (9), yielding

β = Mw

a3(1+w)
or

βi

βi0
=

(a0

a

)3(1+wi )

, (11)

where Mw is the integration constant and has different dimensions for different
w-fluids. The equation on the right shows a different re-scaling of the integration
constant, where the subscript i stands for the different i-fluids. Quantities with either
a subscript or superscript “0” are evaluated at the present time. With this equation
the system is mathematically closed and can be solved.

The system of ordinary differential equations described above needs a set of
initial, or alternatively boundary conditions to be integrated. One has to choice a set
of two initial values, say, (β(t≥), ȧ(t≥)) ∇ (β≥, ȧ≥) at some (initial) time t≥, in order
to determine its evolution. A full analysis of this assumption can be found in many
textbooks (Misner et al. 1973; Weinberg 1972, 2008). In order to show some physical
consequences of the early Universe, we assume that k = 0. This is consistent with
data from recent cosmological probes, as we shall explain shortly. This tell us that
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curvature has not played a role for most of the age of the Universe. On the other
hand, this can be justified as follows: from Eqs. (7) and (11) we may see that the
expansion rate, given by the Hubble parameter, is dominated by the density term as
a(t) → 0, since β ∼ 1/a3(1+w) > k/a2 for w > −1/3, that is, the flat solution fits
very well the very beginning of times. Therefore, taking k = 0, Eq. (7) implies that

a(t) = [6ζG Mw(1 + w)2] 1
3(1+w) (t − t≥)

2
3(1+w)

=
⎧⎨
⎩

( 32
3 ζG M 1

3
)1/4 (t − t≥)1/2 for w = 1

3 radiation,

(6ζG M0)
1/3 (t − t≥)2/3 for w = 0 dust,

(24ζG M1)
1/6 (t − t≥)1/3 for w = 1 stiff fluid,

(12)

and
a(t) = a≥eHt for w = −1 cosmological constant, (13)

where quantities with subscript “≥” are integration constants, representing quantities
evaluated at the beginning of times, t = t≥. It is thought that within a classical theory
(as GR) this initial time is at most as small as the Planckian time (tPl = 10−43s), since
prior to it GR has to be modified to include quantum effects. To obtain Eq. (13), the
argument given above to neglect k is not anymore valid, since here β = const.; that is,
from the very beginning it must be warranted that H2 ⊥ 8ζG

3 β≥ > k/a2≥ , otherwise
k cannot be ignored. Nevertheless if Λ is present, it will eventually dominate over
the other decaying components, this is the so-called cosmological no-hair theorem
(Chambers and Moss 1994). A general feature of all the above solutions is that they
are expanding, at different Hubble rates, H = 2

3(1+w)
1
t for Eqs. (12) and H = const.

for Eq. (13).
From Eq. (12) one can immediately see that at t = t≥, a≥ = 0 and from Eq. (11),

β≥ = ≤, that is, the solution has a singularity at that time, at the beginning of the
Universe. This initial cosmological singularity is precisely the Big Bang singularity.
As the Universe evolves the Hubble parameter goes as H ∼ 1/t , i.e., the expansion
rate decreases, whereas the matter-energy content acts as an expanding agent [cf.
Eq. (7)]. It decelerates the expansion, however, by decreasing asymptotically [cf.
Eqs. (8) and (11)]. In this way, H−1 represents an upper limit to the longevity of the
Universe; for instance, H−1 = 2t for w = 1/3 and H−1 = 3t/2 for w = 0, t being
the age of the Universe.

The exponential expansion (13) possesses no singularity (at finite times), being the
Hubble parameter a constant. A fundamental ingredient of this inflationary solution is
that the right-hand side of Eq. (8) is positive, ä > 0, and this occurs when β+3p < 0,
that is, one does not have necessarily to impose the stronger condition w = −1, but
it suffices that w < −1/3, in order to have a moderate inflationary solution; for
example, w = −2/3 implies a = a≥t2: a mild power-law inflation.

It is convenient to define dimensionless density parameters as Ωi ∇ 8ζGβi
3H2 . With

them, Eq. (7) can be expressed as the constraint:
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Fig. 1 The parameter Ω as a function of the scale factor, a, in a radiation dominated Universe (the
dust model behaves similarly). For closed models, with k = +1, Ω diverges as the scale factor
tends to its maximum value, whereas for open models, with k = −1, Ω tends asymptotically to
zero as the Universe expands. Finally, for a flat metric, with k = 0, Ω always remains equal to one

Ω ∇ ΩR + ΩM + ΩΛ = 1 + k

a2 H2 , (14)

where i labels the different components present in the Universe: R stands for the
radiation components (photons, neutrinos, and relativistic particles), M for matter
which is composed of dark matter (DM) and baryons, and Λ for a cosmological
constant. The actual values of the density parameters (ΩR,ΩM ,ΩΛ) impose a value
for the curvature term. If Ω > 1, it turns out that k is greater than zero, meaning a
Universe with a positive, closed curvature. If Ω < 1, then k < 0, which corresponds
to a negative, open curvature. Obviously, a critical value is obtained when Ω = 1,
then the spatial curvature is null, k = 0. The value of the energy density for which
Ω = [β+Λ/(8ζG)]/βc = 1 holds is known as the critical density, βc ∇ 3H2/8ζG.
The last term in Eq. (14) can be defined as Ωk = −k/(a2 H2), and thus the Friedmann
equation becomes a constraint for the density parameters, i.e.,

∑
i Ωi = 1, and this

expression holds at any time. It is worth mentioning that solutions Ω(a) are unstable
in the presence of a curvature term (see Fig. 1). In fact, this is related to the flatness
problem in the old cosmological picture: Why the Universe is nowadays close to a
flat model? Inflation offered the solution to this issue.

In (background) cosmology, typical times and distances are determined mainly
by the Hubble parameter, and in practice measurements are often related to redshift,
as measured from stars, gas, etc. It is then useful to express the individual density
parameters in terms of the redshift (z), 1 + z ∇ a0/a(t), where a0 is the scale factor
at present and is set to unity by convention. Today z0 = 0 and towards the early
Universe the redshift grows. In terms of the redshift the density parameters are, from
Eq. (11),

Ωi = Ω
(0)
i (1 + z)3(1+wi ), (15)
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where wi is the equation of state parameter for each of the fluids considered. Now, the
Hubble parameter can be put in terms of the density parameters. In the standard model
of cosmology, considering baryons, photons, neutrinos, cold dark matter (CDM), and
a cosmological constant (Λ) – termed ΛCDM –, one has:

H2 = H2
0

∑
i

Ω
(0)
i (1 + z)3(1+wi ). (16)

As defined above, the density parameter depends on 1/H2, so to avoid a bias
with the expansion rate one defines the physical density parameter σi ∇ Ωi h2,
where h is a dimensionless number given by the Hubble constant H0 ∇ 100h km
s−1 Mpc−1. The physical density parameters of matter are important since they
are directly determined from CMBR experiments. The current best-fit values for
the physical density parameters from Planck are (Ade et al. 2013a): σb = 0.022,
σDM = 0.120, from which one computes the best fits

Ω
(0)
b = 0.0492, Ω

(0)
DM = 0.267, Ω

(0)
Λ = 0.683, h = 0.671. (17)

The Universe at present is dominated by dark energy, which accounts for 68 % of
the energy budget, dark matter for 27 %, and in minor proportion baryonic matter
only for about 5 %, from which visible matter is made of. Photons and neutrinos
contribute in a much less proportion at present. When one considers a curved model,
the best fit for the curvature parameter is Ω

(0)
k = −0.01 with an uncertainty of a few

percent (Ade et al. 2013a).
Since the scale factor evolves as a smooth function of time, one is able to use it

as a variable, instead of time, in such a way that d/dt = a H d/da. This change of
variable helps to integrate the continuity equation for non-constant w(a) to obtain:

β(a) = β0e−3
∫ [1+w(a)]da/a . (18)

If, for instance, one parameterizes dark energy through an analytic function of the
scale factor, w(a), one immediately obtains its solution in terms of

t =
∫

1◦
8ζGβ(a)/3

da

a
. (19)

From Eq. (19) one obtains the age of the Universe in terms of the redshift, H0, and
the density parameters:

t0 = H−1
0

∫ ≤

0

dz

(1 + z)H(z)
. (20)

When combining different cosmological probes one obtains for the ΛCDM model
an age of t0 = 13.81 ± 0.06 Gyr (Ade et al. 2013a).
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In general, if dark energy is a function of the redshift, from Eq. (18) one can
generalize the Friedmann equation to:

H(z)2/H2
0 = Ω

(0)
M (1 + z)3 + Ω(0)

γ (1 + z)4 + Ω
(0)
k (1 + z)2 + Ω

(0)
DE f(z), (21)

where DE stands for dark energy, and

f(z) = exp

[
3
∫ z

0

1 + w(z∗)
1 + z∗ dz∗

]
. (22)

Different DE models can be directly parametrized through w = w(z). The most pop-
ular one is perhaps the Chevalier-Polarski-Linder’s (Chevallier and Polarski 2001;
Linder 2003) formula w = w0 + wa(z/(1 + z)), where w0 and wa are constants.

We would like to remark that the first strong evidence for the existence of dark
energy, and hence for a present accelerated expansion of the Universe, came from
fits of supernovae luminosity curves to data (Cervantes-Cota and Smoot 2011). Two
different supernova groups (Riess et al. 1998, 1999; Perlmutter et al. 1999) found
a clear evidence for Λ in the late 1990s. The presence of a cosmological constant
makes the Universe not only expanding, but also accelerating and, in addition, its
age is older, and not in conflict with the globular cluster ages (Jimenez et al. 1996;
Richer et al. 2001). In the course of the years, various supernova groups have been
getting more confident that the data is compatible with the presence of dark energy,
dark matter, and a high value of the Hubble parameter. By moving a little beyond the
standard model of cosmology and letting w be a constant (but not necessarily −1),
one of the latest data released, the Union2 compilation (Amanullah et al. 2010),
reports that the flat concordance ΛCDM model remains an excellent fit to the data,
with the best fit to the constant equation-of-state parameter being w = −0.997+0.050

−0.054

for a flat Universe, and w = −1.035+0.055
−0.059 for a curved Universe. Also, they found

that Ω
(0)
M = 0.270 ± 0.021 (including baryons and DM) for fixed Ω

(0)
k = 0. That

is, Ω
(0)
Λ = 0.730 ± 0.021. Using CMB Planck data, these numbers change a few

percent, having little less DE and more DM, as shown by Eq. (17).

4.1 Fluids’ Chronology

The standard model of cosmology is described by a set of periods in which different
fluids dominated the dynamics. We first consider a period of inflation in which the
Universe experienced an accelerated expansion rendering enough e-folds to explain
the horizon and flatness problems of the old Big Bang theory (Cervantes-Cota 2004).
This very early epoch is well described by an exponential expansion characterized
by an equation of state w = −1. This is achieved through a scalar field that slowly
rolls its potential, as we will see in Sect. 5.1. Eventually, the scalar field steps down
the potential hill and begins to oscillate, to behave as a fluid of dust (w = 0) (Turner
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1983). This period is thought to be short to let particle production and to heat the
Universe in a period of reheating (Albrecht 1982; Dolgov and Linde 1982; Abbott
et al. 1982) and/or preheating (Kofman et al. 1994, 1996), for a modern review see
Allahverdi et al. (2010). This is needed since after inflation the Universe is cooled
down exponentially and it is deprived of particles. The new produced particles,
generically lighter than the scalar field mass, are relativistic (T ∝ m, m being
its rest mass), and therefore they are well described by w = 1/3. This epoch is
important because it marks the beginning of the hot Big Bang theory. In this very
early epoch particle physics theories (such as grand unification schemes) should
describe the details of particle interactions to eventually reach the lower energies
of the well tested standard model of particle physics. Then, the material content of
the Universe consisted of a hot plasma with photons, protons, neutrons, neutrinos,
electrons, and possibly other particles with very high kinetic energy. After some
cooling of the Universe, some massive particles decayed and others survived (protons,
neutrons, electrons, and DM) whose masses eventually dominated over the radiation
components (photon, neutrinos, and possibly dark radiation; the latter being any
other relativistic degree of freedom present at that epoch) at the equality epoch
(βrel = βm) at zeq ∼ 3402 (Ade et al. 2013a). From this epoch and until recent
e-folds of expansion (zDE ∼ 0.8), the main matter component produced effectively
no pressure on the expansion and, therefore, one can accept a model filled with dust,
w = 0, to be representative for the energy content of the Universe in the interval
3402 < z < 0.8. The dust equation of state is then representative of inert CDM.
DM does not (significantly) emit light and therefore it is dark. Another possibility
is that dark matter interacts weakly, which is generically called WIMP (Weakly
Interacting Massive Particle); the neutralino being the most popular WIMP candidate.
Another popular dark matter candidate is the axion, a hypothetical particle postulated
to explain the conservation of the CP symmetry in quantum chromodynamics (QCD).
Back to the Universe evolution, from z ∼ 0.8 (Busca et al. 2013) until now the
Universe happens to be accelerating with an equation of state w ⊥ −1, due to
some constant energy that yields a cosmological constant, Λ = 8ζGβ = const. The
cosmological constant is the generic agent of an inflationary solution (see the k = 0
solution in Eq. 13). The details of the accelerated expansion are still unknown and it is
possible that the expansion is due to some new fundamental field (e.g., quintessence)
that induces an effective Λ(t) ∼ const. (see Sect. 5.2). We call (as M. Turner dubbed
it) dark energy (DE) this new element. Dark energy does not emit light nor any
other particle, and as known so far, it simply behaves as a (transparent) media that
gravitates with an effective negative pressure. The physics behind dark energy or even
the cosmological constant is unclear since theories of grand unification (or theories
of everything, including gravity) generically predict a vacuum energy associated with
fundamental fields, < 0|Tμ∂ |0 >=< β > gμ∂ , that turns out to be very large. This
can be seen by summing the zero-point energies of all normal modes of some field
of mass m, to obtain < β >⊥ M4/(16ζ2), where M represents some cut-off in the
integration, M ∝ m. Then, assuming that GR is valid up to the Planck (Pl) scale, one
should take M ⊥ 1/

◦
8ζG, which gives < β >= 1071 GeV4. This term plays the

role of an effective cosmological constant Λ = 8ζG < β >⊥ M2
Pl ∼ 1038 GeV2,
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which must be added to Einstein’s Eqs. (2), or directly to Eqs. (7) and (8), yielding an
inflationary solution as given by Eq. (13). However, since the cosmological constant
seems to dominate the dynamics of the Universe nowadays, one has that

Λ ⊥ 8ζGβ0 = 3H2
0 ∼ 10−83 GeV2, (23)

which is very small compared to the value derived above on dimensional grounds.
Thus, the cosmological constraint and the theoretical expectations are rather dissim-
ilar, by about 121 orders of magnitude! Even if one considers symmetries at lower
energy scales, the theoretical Λ is indeed smaller, but never as small as the cos-
mological constraint: ΛGU T ∼ 1021 GeV2, ΛSU (2) ∼ 10−29 GeV2. This problem
has been reviewed many decades ago (Weinberg 1989; Carrol et al. 1992) and still
remains open.

5 Scalar Fields as Perfect Fluids

Scalar fields are ubiquitous in cosmology since they allow for modeling different
cosmic dynamics, from inflation (Guth 1981; Linde 1990) and dark energy (Caldwell
et al. 1998; Copeland et al. 2006) to dark matter (Matos et al. 2000; Magaña and
Matos 2012). The full characterization of scalar fields is not describable in terms
of perfect fluids, but its background dynamics allows for that. A scalar field with
mass, mχ , has an associated Compton wavelength, ξC = 1/mχ . Thus, one can
conceive the fluid picture as a collection of scalar particles with a typical size of
ξC . For if ξC = H−1

0 the corresponding scalar field mass is of course very light,
mχ = 10−33eV. If ξC < H−1 the particle is localizable within the Hubble horizon,
otherwise its mass is too light and counts effectively as a massless particle.

A canonical scalar field (χ) is given by the Lagrangian density

L = 1

2
Ωμχ Ωμχ − V (χ), (24)

where the first term accounts for the kinetic energy and V (χ) is its potential.
The energy-momentum tensor of the χ-field is

Tμ∂(χ) = ΩL

Ω(Ωμχ)
Ω∂χ − L gμ∂ = ΩμχΩ∂χ − 1

2
ΩξχΩξχ gμ∂ + V (χ)gμ∂. (25)

The field energy density and pressure are, by associating β(χ) = T00(χ) and P(χ) =
Tii (χ)/a2 (no i-sum),
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β(χ) = 1

2
χ̇2 + V (χ) + 1

2a2(t)
(∼χ)2 ⊥ 1

2
χ̇2 + V (χ),

P(χ) = 1

2
χ̇2 − V (χ) − 1

6a2(t)
(∼χ)2 ⊥ 1

2
χ̇2 − V (χ), (26)

where the gradient terms (in comoving coordinates) are neglected. This typically
occurs for the background cosmology and the reason for this is that the Universe is
assumed to be sufficiently homogeneous within a horizon distance.

The equation of state associated to a scalar field is

w = P

β
=

1
2 χ̇2 − V (χ)

1
2 χ̇2 + V (χ)

, (27)

with w taking values in the interval −1 ≤ w ≤ 1.
The conservation of energy, Eq. (9), yields, using Eq. (26), the equation of motion

for the χ-field,
χ̈ + 3H χ̇ + V ∗(χ) = 0, (28)

where the prime stands for the scalar field derivative. The expansion term plays the
role of a friction, whereas the potential contribution depends upon the scalar field
model at hand.

In what follows, we present the main features of two applications of the scalar
field dynamics: inflation and quintessence. We will refer the reader to recent reviews
on these subjects for a more profound account of these topics, (cf. Mazumdar and
Rocher 2011; Baumann 2012; Tsujikawa 2012).

5.1 Inflation

The scalar field responsible for the inflationary dynamics is dubbed the inflaton.
There are hundreds of models of inflation and several theoretical aspects related to
perturbations (see Sect. 7.1), non-Gaussianities, etc; for a recent review see Baumann
(2012). The basics of the dynamics is as follows: the inflaton evolves from an initial
value (χ≥) down the hill of the potential, but typically in a slow roll-over way, to a
final state in which reheating takes place.

In order to get enough e-folds of inflation the scalar field should stay long time,
compared to the cosmic time, in a potential ‘flat region’ where the potential is almost
constant V (χ) ∼ V (0). To construct such a flat curvature for the potential and to
permit the χ-field to evolve slowly, one has to impose the slow roll-over conditions,
namely, that χ̈ ⊥ 0. From Eq. (28), it implies that χ̇ ⊥ −V ∗/3H , which in turn
means that (Steinhardt and Turner 1984):
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χ̈

3H χ̇
= − V ∗∗

9H2 + 1

48ζG

(
V ∗

V

)2

 1, (29)

or in terms of the dimensionless potential slow-roll parameters, ε ∇ 1/(16ζG)(V ∗/V )2

 1 and η ∇ 1/(8ζG)(V ∗∗/V )  1.
This condition also ensures that β(χ) ⊥ V (χ) > 1

2 χ̇2, and so from Eq. (27)
one has w ⊥ −1, which guarantees an accelerated expansion. However, if the initial
conditions are such that at the outset 1

2 χ̇2 ∝ V (χ), then the solution takes the
form, χ̇2 = const./t2 and χ = χ0 − A ln(1 + Bt), where A and B are constants.
Then, the kinetic terms fall faster than the logarithmic decrease of a polynomial
potential. Therefore, after some asymptotic time the Universe will be dominated
by its potential and thus, inflation follows (Linde 1990). However, in other gravity
theories the kinetic terms play an important role and could prevent the Universe from
inflation (Cervantes-Cota and Dehnen 1995a,b).

The scalar field solution with w ⊥ −1, considered in Eq. (10), emulates a vacuum
energy term or a cosmological constant. Given the slow roll-over of the χ-field this
behaviour happens for a minimum of N e-folds of expansion in which the Hubble
rate is effectively given by

H2 = 8ζG

3
V (χ ⊥ const.). (30)

In this way, H ⊥ const. and the scale factor exhibits an exponential behaviour, as
given by Eq. (13). Strictly speaking, during inflation χ is an increasing function of
time, since V ∗ < 0 in Eq. (28). However, under slow roll-over conditions its charac-
teristic evolution time will be much greater than the cosmological time. Therefore,
H will be a very slow, monotonically decreasing function of time.

Inflation lasts for a sufficient number of N e-folds to solve the horizon and flatness
problems in cosmology, and this depends very much on the energy scale of inflation.
In standard inflationary scenarios N ∼ 60. This ensures that a possible curved model
will look like a flat one for all the expansion history, including today (see Fig. 2 and
compare with Fig. 1).

Among the multiple inflaton potentials considered in the literature, the most
favoured models by the Planck CMBR temperature map fits (Ade et al. 2013b)
are those having potentials with V ∗∗ < 0. Exponential potential models, the simplest
hybrid inflationary models, and monomial potential models of degree n ≥ 2 do not
provide a good fit to the data. The most favoured models are Hill-top models, a sim-
ple symmetry breaking potential, natural inflation, R2 inflation, and non-minimal
coupled to gravity with a Mexican-hat potential; see Ade et al. (2013b) for details.
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Fig. 2 The parameter Ω as a function of the scale factor, a, during inflation and thereafter in a
radiation/matter dominated Universe. Inflation makes the space to look like as flat, even if it is
initially curved. If there are enough e-folds of inflation to solve the horizon problem, it implies that
the Universe nowadays is still flat. Later on, the behaviour is as in Fig. 1

5.2 Dark Energy: Quintessence

Dark energy is a generic name for an energetic “fluid” that has had little or no evo-
lution in the past few giga-years of the cosmic expansion. Since then dark energy
dominates the total density of the Universe over all other components (dark matter,
baryons, photons, and neutrinos). During dark energy domination, the Hubble pa-
rameter, as given by Eq. (7), is basically a constant. Thus, a cosmological constant
added to the gravitational theory is the simplest candidate for dark energy that fits
the data from the different cosmic probes. There are at least seven independent ob-
servations that imply the presence of dark energy: the ages of some globular clusters
surpasses the age of the Universe in models without dark energy (Jimenez et al.
1996; Richer et al. 2001); the supernovae best fits to distance moduli (Riess et al.
1998, 1999; Perlmutter et al. 1999); the dynamics of clusters of galaxies (Allen et
al. 2004); the combination of the CMBR lensing deflection power spectrum with
temperature and polarization power spectra (Sherwin et al. 2011); the measurements
of the integrated Sachs-Wolf effect (Giannantonio et al. 2012); the measurements of
Baryon Acoustic Oscillations (BAO) (Eisenstein et al. 2005); and the change of the
Hubble rate behaviour from galaxy surveys (Busca et al. 2013).

Another possible candidate for dark energy is a canonical scalar field, dubbed
quintessence (Caldwell et al. 1998). The equations governing the scalar field dynam-
ics in a cosmological background are those displayed in Sect. 5. Basically, the FRW
equations, i.e., Eqs. (7) and (8), are now fulfilled with the density and pressure terms
given by Eqs. (26). To complete the whole picture, we add the rest of the known four
material elements (dark matter, baryons, photons, and neutrinos) to the scalar field.

In a similar fashion to inflation, one demands that V (χ) > 1
2 χ̇2 has a flat poten-

tial and allows for an accelerated behaviour. One may again use the slow roll-over
parameters (ε, η) to ensure an accelerated dynamics, but here we have the other
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four components that may spoil the exact accelerated dynamics. Still, this approach
works well.

Originally, runaway potentials were considered, but nowadays there is a vast set of
models that achieve the desired accelerated dynamics, including non-standard kinetic
terms (Copeland et al. 2006; De-Santiago et al. 2013) or scalar fields interacting
with matter (Aviles and Cervantes-Cota 2011), among many others. To avoid the
over dominance of the scalar field during the early stages of the cosmic dynamics,
one looks for scaling properties (of tracker nature) of the scalar field dynamics
in which the field energy density (βχ) evolves proportionally to the material fluid
energy density (βm) with βχ < βm , and only until recently the scalar field turns to
dominate. Depending on the evolution of the scalar-field equation of state, Eq. (27),
quintessence models can be freezing or thawing (Caldwell and Linder 2005). The
former class is when the scalar field gradually slows down to eventually freeze in
a constant value. The latter class implies that the scalar field has recently started to
change from a past constant value. These behaviours can in principle be tested (see
Tsujikawa (2012) for a recent review on the subject).

6 Thermodynamics in the Early Universe

In the early Universe one considers a plasma of particles and their antiparticles, as was
done originally by Gamow (1946), who first considered a physical scenario for the
hot Big Bang model as a description of the beginning of the Universe. Later on, with
the development of modern particle physics theories in the 70’s it was unavoidable
to think about a physical scenario which should include the “new” physics for the
early Universe. It was also realized that the physics described by GR should not be
applied beyond Planckian initial conditions, because there the quantum corrections
to the metric tensor become very important, a theory which is still in progress.

After preheating/reheating, one assumes that the Universe is filled with a plasma
of relativistic particles which include quarks, leptons, and gauge and Higgs bosons,
all in thermal equilibrium at a very high temperature, T , with some gauge symmetry
dictated by a particle physics theory.

Theoretically, one introduces some thermodynamic considerations necessary for
the description of the physical content of the Universe, which we would like to present
here. Assuming an ideal-gas approximation, the number density ni of particles of
type i , with a momentum p, is given by a Fermi or Bose distribution (Kolb and
Turner 1990):

ni = gi

(2ζ)3

∫
d3 p

e(Ei −μi )/T ± 1
, (31)

where Ei =
√

m2
i + p2 is the particle energy, μi is the chemical potential, the sign

(+) applies for fermions and (−) for bosons, and gi is the number of spin states.
One has that gi = 2 for photons, quarks, baryons, electrons, muons, taus, and their
antiparticles, but gi = 1 for neutrinos because they are only left-handed. For the
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particles existing in the early Universe one usually assumes that μi = 0: one expects
that in any particle reaction the μi are conserved, just as the charge, energy, spin, and
lepton and baryon number are. For a photon, which can be created and/or annihilated
after some particle’s collisions, its number density, nγ , must not be conserved and
its distribution with μγ = 0, E = p = σ, reduces to the Planckian one. For other
constituents, in order to determine the μi , one needs ni . Note from Eq. (31) that
for large μi > 0, ni is large too. One does not know ni in advance. However, the
WMAP data constrains the baryon density at nucleosynthesis such that (Cyburt et
al. 2005):

η ∇ nB

nγ

∇ nbaryons − nanti−baryons

nγ

= 6.14 ± 0.25 × 10−10. (32)

The smallness of the baryon number density, nB , relative to the photon’s, suggests
that nleptons may also be small compared to nγ . Therefore, one takes for granted that
μi = 0 for all particles. The ratio nB/nγ is very small, but not zero. The reason of
why matter prevailed over antimatter is one of the puzzles of the standard model of
cosmology called baryogenesis (Kolb and Turner 1990). There are some attempts to
achieve baryogenesis at low energy scales, as low as few GeV or TeV (Dolgov 1992;
Cohen et al. 1993; Cervantes-Cota and Dehnen 1995b; Trodden 1999; Bezrukov and
Shaposhnikov 2008). Recent attempts to solve this problem are looking for prior to
lepton asymmetry, leptogenesis, generated in the decay of a heavy sterile neutrino
(Davidson et al. 2008), to then end with baryogenesis.

The above approximation allows one to treat the density and pressure of all par-
ticles as a function of the temperature only. According to the second law of thermo-
dynamics, one has (Weinberg 1972):

d S(V, T ) = 1

T
[d(βV ) + PdV ], (33)

where S is the entropy in a volume V ∼ a3(t), with β = β(T ) and P = P(T )

in equilibrium. Furthermore, the following integrability condition Ω2 S
ΩT ΩV = Ω2 S

ΩV ΩT is
also valid, which turns out to be

d P

dT
= β + P

T
. (34)

On the other hand, the energy conservation law, Eq. (9), leads to

d

dt

[
a3(t)

T
(β + P)

]
= 0, (35)

after using Eq. (34). Using Eq. (34) again, the entropy equation can be written as
d S(V, T ) = 1

T d[(β + P)V ] − V
T 2 (β + P)dT . These last two equations imply that

the entropy is a constant of motion:
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S = a3

T
[β + P] = const.. (36)

Moreover, the density and pressure are given by

β ∇
∫

Ei ni dp, P ∇
∫

p2

3Ei
ni dp. (37)

For photons or ultra-relativistic fluids, E = p, and the above equations become
P = 1

3β, thus confirming Eq. (10) for w = 1/3. After integration of Eq. (34), it
comes out that

β = bT 4 , (38)

where b is a constant of integration. In the real Universe there are many relativistic
particles present, each of which contributes like Eq. (38). By including all of them,
β = ∑

i βi and P = ∑
i Pi , where the summations are over all relativistic species,

one has that b(T ) = ζ2

30 (NB + 7
8 NF ), which depends on the effective relativistic

degrees of freedom of bosons (NB ) and fermions (NF ). Therefore, this quantity varies
with the temperature. Different i-species remain relativistic until some characteristic
temperature T ⊥ mi and after this point NFi (or NBi ) no longer contributes to b(T ).
The factor 7/8 accounts for the different statistics of the particles [see Eq. (31)].
In the standard model of particle physics b ⊥ 1 for T  1 MeV and b ⊥ 35 for
T > 300 GeV (Kolb and Turner 1990). In particular, one accounts for the effective
number of neutrinos (Neff ) in terms of photons’ degrees of freedom as

β∂

βγ

= 7

8

(
4

11

)4/3

Neff , (39)

with Neff = 3.046 for standard model neutrino species (Mangano et al. 2005). Ex-
tra neutrino-type relativistic species—dark radiation—should augment Neff , as was
recently suggested from measurements of different cosmological probes. Combining
Planck with previous CMB data and Hubble Space Telescope measurements, it has
been concluded that Neff = 3.6 ± 0.5 with a 95 % confidence level (Di Valentino et
al. 2013).

For relativistic particles, we obtain from Eq. (31) that

n = cT 3, with c = ζ(3)

ζ2 (NB + 3

4
NF ). (40)

where ζ(3) ⊥ 1.2 is the Riemann zeta function of 3. Nowadays, nγ ⊥ 411T 3
2.73 cm−3,

where T2.73 ∇ Tγ0/(2.73 K). The precise measured value is Tγ0 = 2.72548 ±
0.00057◦ K (Fixsen 2009). The mean energy per photon is 6.34 × 10−4 eV which
corresponds to a wavelength of 2 mm, and hence it is called cosmic “microwave”
background radiation.



Fluids in Cosmology 89

Using the relativistic equation of state given above (w = 1/3), From Eq. (36) it
follows that T ∼ 1/a(t). From its solution in Eq. (12) one has

T = 4

√
M 1

3

b

1

a(t)
= 4

√
3

32ζGb

1

(t − t≥)
1
2

, (41)

which predicts a decreasing temperature behaviour as the Universe expands. Then,
initially at the Big Bang, t = t≥ implies that T≥ = ≤, and so the Universe was not
only very dense but also very hot. As time evolves the Universe expands, cools down,
and its density diminishes.

The entropy for an effective relativistic fluid is given by Eq. (36) together with its
equation of state and Eq. (38), i.e., S = 4

3 b (a T )3 = const. Combining this with Eq.
(41), one can compute the value of M 1

3
to be M 1

3
= ( 3

4 S)4/3/b1/3 ⊥ 10116, since b ⊥
35 and the photon entropy S0 = 4

3 b (a0 T0)
3 ⊥ 1088 for a0 → dH (t0) = 1028 cm

and Tγ0 = 2.73 K, as evaluated at the present time. One defines the entropy per unit

volume, entropy density, to be s ∇ S/V = 4
3

ζ2

30 (NB + 7
8 NF )T 3, then at the present

time s ⊥ 7nγ . The nucleosynthesis bound on η, Eq. (32), implies that nB/s ⊥ 10−11.
We now consider particles in their non-relativistic limit (m ∝ T ). From Eq. (31)

one obtains for both bosons and fermions that

n = g

(
mT

2ζ

)3/2

e−m/T . (42)

The abundance of equilibrium massive particles decreases exponentially once
they become non-relativistic. This situation is referred to as in equilibrium anni-
hilation. Their density and pressure are given through Eqs. (37) and (42) by β = nm
and P = nT  β. Therefore, using these last two equations, the entropy for non-
relativistic particles, given by Eq. (36), diminishes also exponentially during the in
equilibrium annihilation. The entropy of these particles is transferred to that of the
relativistic components by augmenting their temperature. Hence, the constant total
entropy is essentially the same as the one given above, but the i-species contributing
to it are just those which are in equilibrium and maintain their relativistic behaviour,
that is, particles without mass such as photons.

Having introduced the abundances of the different particle types, we would like
to comment on the equilibrium conditions for the constituents of the Universe as it
evolves. This is especially important in order to have an idea of whether or not a
given i-species disappears or decouples from the primordial brew. To see this, let us
consider ni when the Universe temperature, T , is such that (a) T ∝ mi , during the
ultra-relativistic stage of some particles of type i and (b) T  mi , when the particles
i are non-relativistic, both cases in thermal equilibrium. From Eq. (40), one has that
for the former case ni ∼ T 3 and the total number of particles, ∼ ni a3, remains
constant, whereas for the latter case, using Eq. (42), ni ∼ T 3/2e−mi /T , i.e., when
the Universe temperature goes down below mi , the number density of the i-species
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Fig. 3 Evolution of the particle density for different i-species. If a given i-species is in equilibrium,
its abundance diminishes exponentially after the particle becomes non-relativistic (solid line). How-
ever, interactions of an i-species can freeze out, then it decouples from equilibrium and maintains
its abundance (dashed line). Figure adapted from Kolb and Turner (1990)

significantly diminishes; it occurs an in equilibrium annihilation. Let us take as an
example the neutron-proton annihilation. Then we have

nn

n p
∼ exp

(
m p − mn

T

)
= exp

(
−1.5 × 1010K

T

)
, (43)

which drops with the temperature from near 1 at T ≥ 1012 K to about 5/6 at
T ⊥ 1011 K and 3/5 at T ⊥ 3 × 1010 K (Narlikar 2002). If this is valid forever, we
then end up without massive particles and our Universe would have been consisted
only of radiative components. However, our own existence prevents that! Therefore,
eventually the in equilibrium annihilation had to be stopped. The quest is now to
freeze out this ratio to nn/n p ⊥ 1/6 (due to neutron decays) until the time when
nucleosynthesis begins (i.e., when nn/n p reduces to 1/7) in order to leave the cor-
rect number of hadrons and achieve later successful nucleosynthesis. The answer
comes from comparing the Universe expansion rate, H , with the particle physics
reaction rates, Γ . Hence, for H < Γ the particles interact with each other faster
than the Universe expansion rate, then equilibrium is established. For H > Γ the
particles cease to interact effectively, then thermal equilibrium drops out. This is
only approximately true; a proper account of that involves a Boltzmann equation
analysis. For that analysis numerical integration should be carried out in which
annihilation rates are balanced with inverse processes (Steigman 1979; Kolb and
Turner 1990). In this way, the more interacting the particles are, the longer they
remain in equilibrium annihilation and, therefore, the lower their number densities
are after some time, e.g., baryons vanish first, then charged leptons, neutral leptons,
etc.; finally, the massless photons and neutrinos, whose particle numbers remain
constant, as it was mentioned above (see Fig. 3). Note that if interactions of a given
i-species freeze out while it is still relativistic, then its abundance will be significant
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at the present time and will account for dark radiation, as was recently suggested by
Di Valentino et al. (2013).

It is worth mentioning that if the Universe would expand faster, then the temper-
ature of decoupling, when H ∼ Γ , would be higher and thus, the fixed ratio nn/n p

would be greater and the 4He abundance would be higher, leading to profound im-
plications in the nucleosynthesis of light elements. Thus, the expansion rate cannot
be arbitrarily modified during the equilibrium era of some particles. Furthermore,
if a particle species is still highly relativistic (T ∝ mi ) or highly non-relativistic
(T  mi ), when decoupling from the primordial plasma occurs, it maintains an
equilibrium distribution; the former being characterized by Tr a = const. and the
latter by Tma2 = const. [cf. Eq. (46)].

There are also some other examples of decoupling, such as neutrino decoupling:
during nucleosynthesis there exist reactions, e.g. ∂∂̄ ←→ e+e−, which maintain
neutrinos efficiently coupled to the original plasma (Γ > H ) until about 1 MeV,
since Γ/H ⊥ T 3 MeV−3. The reactions are no longer efficient below 1 MeV and
therefore neutrinos decouple and continue evolving with a temperature T∂ ∼ 1/a.
Then, at T >∼ me = 0.51 MeV the particles in equilibrium are photons (with NB = 2)
and electron-positron pairs (with NF = 4), which contribute to the entropy with
b(T ) = (11/2)(ζ2/30). Later, when the temperature drops to T  me, the reac-
tions are again no longer efficient (Γ < H ) and, after the e± pair annihilation, there
will be only photons in equilibrium with b(T ) = 2(ζ2/30). Since the total entropy,
S = (4/3)b(aT )3, must be conserved, a decrease of b(T ) must be balanced with an
increase of the radiation temperature so that Tγ /T∂ = (11/4)1/3, which should re-
main so until today, implying the existence of a cosmic background of neutrinos with
a present temperature of T∂0 = 1.95 K. This cosmic relic has not been measured yet.

Another example is the gravitation decoupling, which should be also present if
gravitons were in thermal equilibrium at the Planck time and then decouple. Today,
the temperature background should be characterized at most by Tgrav = (4/107)1/3

K ⊥ 0.91 K.
For the matter dominated era we have stressed that effectively one has P = 0.

Next we will see the reason for this. First, consider an ideal gas (such as atomic
hydrogen) with mass m, then β = nm + 3

2 nTm and P = nTm . From Eq. (35), one
equivalently obtains that

d

da
(βa3(t)) = −3P a2(t), (44)

which after substitution of β and P , as given above, becomes

d

da

(
nma3(t) + 3

2
n Tma3(t)

)
= −3 n Tma2(t), (45)

where nma3(t) is a constant. This equation yields

Tma2(t) = const., (46)
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so that the matter temperature drops faster than the radiation temperature as the
Universe expands [cf. Eq. (41)]. Now, if one considers both radiation and matter, one
has that β = nm + 3

2 nTm + bT 4
r and P = nTm + 1

3 bT 4
r . The source of the Universe

expansion is proportional to β + 3P = nm + 9
2 nTm + 2bT 4

r , where the first term
dominates over the second, precisely because Tm decreases very rapidly. The third
term diminishes as ∼ 1/a4, whereas the first does it as ∼ 1/a3. After the time of
density equalization, βm = βr , the matter density term is greater than the others and
this explains why one assumes a zero pressure for that era.

From now on, when we refer to the temperature, T , it should be related to the
radiation temperature. The detailed description of the Universe thermal evolution
for the different particle types, depending on their masses, cross-sections, etc., is
well described in many textbooks, going from the physics known in the early 1970s
(Weinberg 1972) to the late1980s (Kolb and Turner 1990), and therefore it will not be
presented here. However, we notice that as the Universe cools down a series of spon-
taneous symmetry–breaking (SSB) phase transitions are expected to occur. The type
and/or nature of these transitions depend on the specific particle physics theory con-
sidered. Among the most popular ones are the Grand Unification Theories (GUT’s),
which bring together all known interactions except for gravity. One could also regard
the standard model of particle physics or some extensions of it. Ultimately, when
constructing a cosmological theory, one should settle the energy scale that one wants
to describe physically. For instance, at a temperature between 1014 and 1016 GeV
a transition to the SU (5) GUT should take place, if this theory would be valid, in
which a Higgs field breaks this symmetry to SU (3)C ×SU (2)W ×U (1)HC , a process
through which some bosons acquire their masses. Due to the gauge symmetry, there
are color (C), weak (W), and hypercharge (HC) conservation, as the subscripts indi-
cate. Later on, when the Universe evolved to around 150 GeV the electroweak phase
transition took place in which the standard model Higgs field broke the symmetry
SU (3)C ×SU (2)W ×U (1)HC to SU (3)C ×U (1)E M ; through this breaking fermions
acquired their masses. At this stage, there were only color and electromagnetic (EM)
charge conservation, due to the gauge symmetry. Afterwards, around a temperature
of 200 MeV (Aoki et al. 2009) the Universe should undergo a transition associ-
ated to the chiral symmetry-breaking and color confinement from which baryons
and mesons were formed out of quarks. Subsequently, at approximately 10 MeV
(Dolgov 2002) the synthesis of light elements (nucleosynthesis) began and lasted
until temperatures below 100 keV, when most of the today observed hydrogen, he-
lium, and some other light elements abundances were produced. So far the nucle-
osynthesis represents the earliest scenario tested in the standard model of cosmology.
After some thousands of years (z ∼ 3402 (Ade et al. 2013a)), the Universe became
matter dominated, over the radiation components. At about 380,000 years (z ∼ 1090
(Jarosik et al. 2011; Ade et al. 2013a)) recombination took place, that is, the hydro-
gen ions and electrons combined to form neutral hydrogen atoms, then matter and
electromagnetic radiation decoupled from each other. At this moment, the (baryonic)
matter structure began to form. Since that moment, the surface of last scattering of
the CMBR evolved as an imprint of the early Universe. This is the light that Penzias
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and Wilson (1965) first measured, and that, later on, was measured in more detail by
BOOMERANG (de Bernardis et al. 2000), MAXIMA (Hanany et al. 2000), COBE
(Smoot et al. 1992), WMAP (Bennett et al. 2013), and now Planck (Ade et al. 2013a),
among other probes.

7 Perturbed Fluids in the Universe

In the previous sections, we have outlined how the evolution of a homogeneous Uni-
verse can be described by means of a few equations and simple concepts such as
the ideal perfect fluids. The next step is to introduce in this scenario small inhomo-
geneities that can be treated as first order perturbations to those equations, the goal
being the description of the structures we see today in the Universe. This perturba-
tive approach is sufficient to accurately explain the small temperature anisotropies
(∆T/T ∼ 10−5) observed in the CMBR today, but it can only describe the distrib-
ution of matter today at those scales that are still in the linear regime. At the present
epoch, scales smaller than ∼30 Mpc h−1 (Reid et al. 2010) have already entered the
non linear-regime (∆β/β >> 1) due to the fact that matter tends to cluster under
the effects of gravity. These scales can therefore be described only by means of
numerical or semi-numerical approaches (Carlson et al. 2009).

The approach is quite straightforward. It involves a differential equation for the
density perturbation of each individual constituent: scalar fields in inflation, or
baryons, radiation, neutrinos, DM, and DE (usually treated as cosmological con-
stant) in later times, and in general it needs to be solved numerically. In the context
of the metric theories of gravity, and in particular GR, the metric is treated as the
general expansion term g(0)

μ∂ plus a perturbation hμ∂ :

gμ∂ = g(0)
μ∂ + hμ∂, (47)

with hμ∂ << g(0)
μ∂ , where (0) indicates unperturbed homogeneous quantities.

Inhomogeneities in the distribution of the components of the Universe are a source
of scalar perturbations of the metric. Nevertheless, vector or tensor perturbations
can modify the metric as well. The standard cosmological model does not predict
vector perturbations that would introduce off-diagonal terms in the metric tensor.
These perturbations would produce vortex motions in the primordial plasma, which
are expected to rapidly decay. Models with topological defects or inhomogeneous
primordial magnetic fields instead predict a consistent fraction of vector perturbations
(Seljak and Zaldarriaga 1997; Turok et al. 1998; Kim and Naselsky 2009).

On the other hand, the standard cosmological model predicts the production
of gravitational waves during the epoch of inflation, when the Universe expanded
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exponentially. Gravitational waves induce tensor perturbations hT
μ∂ on the metric of

the type:

hT
μ∂ = a2

⎛
⎜⎜⎝

0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

⎞
⎟⎟⎠

where h+ and h× are the polarization directions of the gravitational wave. This tensor
is traceless, symmetric, and divergentless, i.e. it perturbs the time space orthogonally
to the direction of propagation of the wave. The amplitudes of these tensor perturba-
tions are expected to be small compared to the scalar ones, and therefore negligible
in a first approximation as far as we are interested in studying the perturbations of
the metric tensor. Nevertheless, these waves are expected to leave an imprint in the
polarization of the CMBR, and their eventual detection would unveil an extremely
rich source of information about an epoch of the Universe that is very hardly observ-
able otherwise.

It is important to underline that choosing to model the metric perturbations cor-
responds to choosing a gauge, i.e. a specific coordinate system in which the metric
tensor is represented. Changing the coordinate system, of course, do not change
the physics, but can remarkably vary the difficulty of the calculations and ease the
understanding of the physical meaning of the different quantities. In order to solve
the perturbed equations one chooses convenient gauges for the different expansion
epochs and depending on whether the formalism is theoretical or numerical, as we
will see below.

The presence of weak inhomogeneous gravitational fields introduces small per-
turbations in the metric tensor. The most general perturbation to the FRW metric is:

ds2 = a2(η)
[
−(1 + 2A) dη2 − Bi dxi dη + [(1 + 2D)ψi j + 2Ei j ]dxi dx j

]
,

(48)
where η and xi are comoving coordinates in which the expansion factor a(η) is
factored out. Different choices of them imply different gauges. We refer to Mukhanov
et al. (1992); Ma and Bertschinger (1994, 1995) and Lyth and Liddle (2009) for an
account of the physical meaning of the metric potentials and a full treatment of the
perturbations.

In correspondence to the above metric perturbations, the energy-momentum tensor
is also perturbed. One has:

T 0
0 = −(β + ψβ),

T 0
i = (β + P)(vi − Bi ),

T i
0 = −(β + P)vi ,

T i
j = (P + ψP)ψi

j + ζ i
j , (49)
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where vi = dri/dt is the velocity in local orthonormal coordinates [dt = a (1 +
A) dη; dri = a dxi ] and ζ i

j are the anisotropic stresses; if they are null the perturbed
fluid is also a perfect fluid. Anisotropic stresses are important before last scattering,
when the primordial plasma was coupled. Later on, when structure formation begins
they are set to zero.

A convenient gauge choice is given through two scalar functions Φ(η, xi ) and
Ψ (η, xi ) as (Mukhanov et al. 1992):

ds2 = a2(η)
[
−[1 + 2Φ(η, xi )] dη2 + [1 + 2Ψ (η, xi )]dxi dxi

]
, (50)

where the perturbed part of the metric tensor is:

h00(η, xi ) = −2Φ(η, xi ), h0i (η, xi ) = 0, hi j (η, xi ) = a2ψi j (2Ψ (η, xi )).

(51)
This metric is just a generalization of the well-known metric for a weak gravita-

tional field usually described in the textbooks (e.g. Chap. 18 of Misner et al. (1973))
for the case of a static Universe [a(η) = 1]. The function Φ describes Newton’s
gravitational field, while Ψ is the perturbation of the space curvature. The above
gauge is the Newtonian conformal gauge, which has the advantage of having a di-
agonal metric tensor gμ∂ in which the coordinates are totally fixed with no residual
gauge modes and therefore with a straightforward interpretation of the functions
introduced.

Another example of a gauge that is particularly popular in the literature is the
synchronous gauge, defined by:

ds2 = a2(η)[−dη2 + (ψi, j + hi, j ) dxi dx j ], (52)

which is especially used in numerical codes for calculations of the anisotropies
and inhomogeneities in the Universe. It behaves well numerically by choosing that
observers fall freely without changing their spatial coordinates.

The full perturbed equations are obtained by substituting the above expressions,
for the chosen gauge, into the Einstein equations. Alternatively, one may obtain the
continuity equation from the time (μ = 0) component of Eq. (3) and the Euler
equation from its space sector (μ = i). Here we do not write down the perturbed
equations for any particular gauge, but rather refer the reader to standard textbooks
(Lyth and Liddle 2009), where these equations are fully described.

7.1 Perturbations During Inflation

The primeval fluctuations are thought to be present at the very beginning of time,
at the inflationary epoch. The perturbations are produced by quantum fluctuations
of the χ-field during the accelerated stage. These fluctuations are usually studied in

http://dx.doi.org/10.1007/978-3-319-00191-3_18
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the comoving gauge in which the scalar field is equal to its perturbed value at any
given time during inflation and therefore, the perturbation information resides in the
metric components (see Mukhanov et al. (1992); Cervantes-Cota (2004) and Lyth
and Liddle (2009) for reviews on the subject).

To understand how perturbations evolve it is necessary to introduce the concept
of horizon (Cervantes-Cota and Smoot 2011). There are two types of horizons in
cosmology: the causal or particle horizon (dH ) and the event horizon (de). The former
determines the region of space which can be connected to some other region by causal
physical processes, at most through the propagation of light with ds2 = 0. For the
radiation cosmological era, one has that dH (t) = 2t = H−1 and for the matter era
one has dH (t) = 3t = 2H−1; H−1 is sometimes called the Hubble horizon. During
inflation (under an exponential expansion of the Universe) dH (t) = H−1(eHt − 1)

(H = const.) and hence, the causal horizon grows exponentially. The event horizon,
on the other hand, determines the region of space which will keep in causal contact
(again complying with ds2 = 0) after some time; that is, it delimits the region from
which one can ever receive (up to some time tmax) information about events taking
place now (at time t). For the matter/radiation dominated eras de → ≤ as tmax → ≤.
However, during inflation one has that de = H−1(1 − e−(tmax−t)H ) ⊥ H−1, which
implies that any observer will see only those events that take place within a distance
≤ H−1. In this respect, there is an analogy with black holes, from whose surface no
information can get away. Here, in an exponentially expanding Universe, observers
encounter themselves in a region which is apparently surrounded by black holes
(Gibbons and Hawking 1977; Linde 1990), since they receive no information located
farther than H−1.

Now, we turn back to the perturbation discussion. During the de Sitter stage the
generation of perturbations, which is a causal microphysical process, is localized in
regions of the order of de = H−1 in which the microphysics operates coherently.
At this time, the wavelength of inhomogeneities grows exponentially (as the causal
horizon does) and eventually they cross outside the event horizon. Much later on,
they re-enter into the event horizon, at the radiation and matter dominated epochs, to
yield an almost scale invariant density perturbation spectrum (Harrison-Zel’dovich,
nS = 1), as is required for structure formation and measured by different cosmolog-
ical probes.

It was shown that the amplitude of inhomogeneities produced corresponds to the
Hawking temperature in the de Sitter space, TH = H/(2ζ). In turn, this means that
perturbations with a fixed physical wavelength of size H−1 are produced throughout
the inflationary era. Accordingly, a physical scale associated to a quantum fluctua-
tion, ξphys = ξa(t), expands exponentially and once it leaves the event horizon, it
behaves as a metric perturbation; its description is then classical, general relativistic.
If inflation lasts for enough time, the physical scale can grow as much as a galaxy
or horizon-sized perturbation. The field fluctuation expands always with the scale
factor and after inflation, it evolves according to tn (n = 1/2 radiation or n = 2/3
matter). On the other hand, the Hubble horizon evolves after inflation as H−1 ∼ t .
This means that it will come a time at which field fluctuations cross inside the Hub-
ble horizon and re-enters as density fluctuations. Thus, inflation produces a gross
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Fig. 4 Quantum perturbations were initially subhorizon-sized. During inflation they grow expo-
nentially (ξphys. = ξa(t)), whereas the event horizon remains almost constant. Then, eventually
they cross outside H−1 and evolve as classical perturbations. Later on, they re-enter the event hori-
zon to produce an almost scale invariant, Harrison-Zel’dovich density perturbation spectrum. In
the figure are depicted two physical perturbations scales: galaxy and horizon-sized. Figure adapted
from Kolb and Turner (1990)

spectrum of perturbations, the largest scale ones being originated at the start of in-
flation with a size H−1

i , and the smallest ones with size H−1
f at the end of inflation

(see Fig. 4).
The power spectra for scalar (S) and tensor (T ) perturbations are given by:

PS(k) ⊥
(

H2

16ζ3χ̇2
c

) ∣∣∣∣∣
k=aH

, PT (k) ⊥
(

H2

4ζ2m2
Pl

) ∣∣∣∣∣
k=aH

, (53)

where χ̇c is the classical scalar field velocity. The equations are evaluated at the hori-
zon crossing (k = aH ) during inflation. Each of the k-modes generate an anisotropy
pattern in the CMBR that was measured for scalar perturbations by the COBE (Smoot
et al. 1992) and later probes. The Planck satellite may have the chance to detect the
ratio of tensor to scalar amplitudes r ∇ CT

l /C S
l < 0.12 (95% limits) (Ade et al.

2013a), since the tensor modes modulate CMBR photons coming from last scattering.
The power spectra above give rise to the observed curvature and tensor power

spectra in terms of the wavenumber (k) in a power law manner (Lyth and Liddle
2009):
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PR(k) = AS

(
k

k0

)nS−1+ 1
2 dnS/dlnk ln(k/k0)

, Pt (k) = At

(
k

k0

)nt

(54)

that has been determined by recent CMBR probes, such as Planck to give a best fit
of nS = 0.96 and dnS/dlnk ⊥ −0.0090 (Ade et al. 2013a). One should also have a
tensor spectral index nt that has not been measured yet.

These scalar and metric perturbations are small, but still very important. We
discuss in the next section how to include them so that the information contained can
be recognized and exploited.

7.2 Perturbations Inside the Horizon

We explained that in the early Universe baryons were tightly coupled to photons in
an expanding background. Baryonic and dark matter potential wells provoked the
local collapse of density fluctuations up to a certain point, at which the radiation
pressure was big enough to pull out the matter apart and smooth the potential wells.
These oscillations of the plasma are in fact acoustic waves. As we know, any wave
can be decomposed into a sum of modes with different wave numbers, k = 2ζ/ξ.
Since these modes are in the sky, their wavelengths are measured as angles rather
than as distances. Accordingly, instead of decomposing the wave in a Fourier series,
what is normally done is to decompose the wave in terms of spherical harmonics,
Ylm(n̂), where n̂ is the direction of a measured photon. The angular power spectrum
can be expanded in Legendre polynomials, since there is no preferred direction in the
Universe and only the angular separation ε is relevant. A mode l plays the same role
of the wavenumber k, thus l ⊥ 1/ε . We are interested in the temperature fluctuations
that are analyzed experimentally in pairs of directions n̂ and n̂∗, where cos(ε) = n̂ ·n̂∗.
We then average these fluctuations, obtaining the multipole expansions:

∆T

T
=

≤∑
l=1

l∑
m=−l

alm(x, η)Ylm(n̂), PS(ε) =
∑ (2l + 1)

4ζ
Cl Pl(cosε), (55)

where PS(ε) is the angular power spectrum, Pl are the Legendre polynomials, and
the Cl are estimated as averages of the alm over m. All this information can be used
to determine the cosmological parameters Ωi . We will not discuss here the detailed
calculations nor the curve that must be adjusted to obtain the best fit values for such
parameters. The peak of the fundamental mode appears at approximately

l � 200◦
Ω(0)

. (56)

BOOMERANG (de Bernardis et al. 2000) and MAXIMA (Hanany et al. 2000)
were two balloon-borne experiments designed to measure the anisotropies at scales



Fluids in Cosmology 99

smaller than the horizon at decoupling (εhor−dec ∼ 1◦), hence measuring the acoustic
features of the CMBR. The sensitivity of the instruments allowed for a measurement
of the temperature fluctuations of the CMBR over a broad range of angular scales.
BOOMERANG found a value of l = 197 ± 6 and MAXIMA-1 found a value of
l ⊥ 220. This implies that the cosmological density parameter Ω(0) ⊥ 1 (see Eq.
(14)), suggesting that the Universe is practically flat, Ω

(0)
k ⊥ 0. These two ex-

periments provided the first strong evidence for a flat Universe from observations.
Happily, this result was expected from inflation since an accelerating dynamics ef-
fectively flattens the curvature of the event horizon, which we later identify with our
Universe (see Fig. 2). These results were confirmed by WMAP in a series of data re-
leases in the last decade, as well as by other cosmological probes: the Universe is flat
or pretty close to be flat. The problem in the exact determination of the curvature is
because the CMBR anisotropies show strong degeneracies among the cosmological
parameters (Bond et al. 1997; Zaldarriaga et al. 1997). However, the satellite Planck
offers results on the density parameters with uncertainties less than a percent level,
Ω

(0)
k = −0.0105 (Ade et al. 2013a).
Since baryons and photons were in thermal equilibrium until recombination, also

called last scattering (ls), the acoustic oscillations (BAO) were also imprinted in the
matter perturbations, as they were in the CMBR anisotropies. The sound horizon, at
the moment when the baryons decoupled from the photons, plays a crucial role in
the determination of the position of the baryon acoustic peaks. This time is known
as the drag epoch which happens at zd = 1/ad − 1. The sound horizon at that time
is defined in terms of the effective speed of sound of the baryon-photon plasma,
c2

s ∇ ψpγ /(ψβγ + ψβb),

rs(zd) =
∫ ηd

0
dη cs(η) = 1

3

∫ ad

0

da

a2 H(a)
√

1 + (3Ωb/4Ωγ )a
. (57)

Note that the drag epoch does not coincide with the last scattering. In most scenarios
zd < zls (Hu and Sugiyama 1996). The redshift at the drag epoch can be computed
with a fitting formula that is a function of σm = Ω

(0)
m h2 and σb = Ω

(0)
b h2 (Eisenstein

and Hu 1998). The WMAP team, and recently Planck, computed these quantities for
the ΛCDM model, obtaining zd = 1059.29 ± 0.65 and rs(zd) = 147.53 ± 0.64
Mpc (Ade et al. 2013a).

BAO can be characterized by the angular position and the redshift (Seo and Eisen-
stein 2003; Amendola and Tsujikawa 2010):

εs(z) = rs(zd)

(1 + z) dA(z)
, (58)

ψzs(z) = rs(zd) H(z), (59)

where dA(z) = 1
H0|Ωk |1/2(1+z)

sink

(
| Ωk |1/2

∫ z
0

dz∗
H(z∗)

)
is the proper (not comov-

ing) angular diameter distance to the redshift z, with sink = sin for Ωk < 0 and
sink = sinh for Ωk > 0; where H(z) is determined by Eq. (21). The angle εs(z)
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corresponds to the direction orthogonal to the line-of-sight, whereas ψzs(z) measures
the fluctuations along the line-of-sight. Observations of these quantities are encour-
aging to determine both dA(z) and H(z). However, from the current BAO data is
not simple to independently measure these quantities. This will certainly happen in
forthcoming surveys (Schlegel et al. 2011). Therefore, it is convenient to combine
the two orthogonal dimensions to the line-of-sight with the dimension along the
line-of-sight to define (Eisenstein et al. 2005):

DV (z) ∇
(

(1 + z)2dA(z)2 z

H(z)

)1/3

, (60)

where the quantity DM ∇ dA/a = (1 + z)dA(z) is the comoving angular diame-
ter distance. The BAO signal has been measured in large samples of luminous red
galaxies from the SDSS (Eisenstein et al. 2005). There is a clear evidence (3.4κ ) for
the acoustic peak at a scale of 100h−1 Mpc. Moreover, the scale and amplitude of
this peak are in good agreement with the prediction of the ΛCDM as confirmed by
the WMAP and Planck data. One finds that DV (z = 0.35) = 1370 ± 64 Mpc, and
more recently new determinations of the BAO signal has been published (Carnero
et al. 2012) in which εs(z = 0.55) = 3.90◦ ± 0.38◦ and w = −1.03 ± 0.16 for the
equation of state parameter of the dark energy, or Ω

(0)
M = 0.26 ± 0.04 for the matter

density, when the other parameters are fixed. One also defines the BAO distance
dz ∇ rs(zd)/DV (z), which has been measured by surveys. For instance, an analysis
of the BOSS survey gives d(0.57) = 13.67 ± 0.22 (Anderson et al. 2012), which is
the current most precise determination of the BAO scale.

Measuring the BAO feature in the matter distribution at different redshifts will help
break the degeneracy that exists in the determination of the cosmological parameters.
By combining line-of-sight with angular determinations of the BAO feature one will
constrain even more the parameter space. Furthermore, a complete combination of
BAO, the full matter power spectrum, direct H(z) measurements, supernovae Ia
luminosities, and CMBR data will certainly help envisage the true nature of the
mysterious, dark Universe.

8 Outlook

We have reviewed the role that fluids have played in the entire history of the Universe.
Their components are relatively simple and behave as perfect fluids, at least at the
background level. The fluids’ evolution is as follows: first, scalar fields governed a
very early inflationary dynamics with an equation of state w ∼ −1. After inflation,
the Universe was deprived of particles and it had a very low temperature. Then,
reheating/preheating took place to give rise to the hot Big Bang era, governed by a
radiation period with w = 1/3. But the density of radiation and/or relativistic particles
(photons, neutrinos) decayed faster than that of non-relativistic particles (protons,
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neutrons, DM) and eventually matter dominated over the relativistic components in
a dust (w = 0) period of the evolution. More recently, but still seven billion years
ago, dark energy with w ∼ −1 entered to dominate the dynamics and to inflate the
Universe again.

Real fluids are in a perturbed state, and the five main components of the Universe
(photons, neutrinos, baryons, dark matter, and dark energy) are not the exception.
The plasma that composed the hot Big Bang era oscillated with the well-known
kinematics of perturbed fluids, and as a consequence anisotropies in the CMB and
inhomogeneities in the matter distribution left a unique fingerprint that we measure
at present. On the other hand, if dark energy is the simplest candidate, the cosmolog-
ical constant, its perturbations are null, since it is simply a geometrical term in the
Einstein’s equations. But if it is a fluid, perturbations are to be computed to understand
their effect on structure formation.

Cosmological and astrophysical observations, since the early 1990s, have been
playing a main role in the cosmological science, which was governed mainly by exact
solutions and mathematical analyses. Indeed, we have just entered in a high precision
era in which the observations demand to construct new theoretical observables, and
vice versa. In the coming years, we expect not only to learn more about the fluids
in cosmology, such as dark matter and dark energy, but also about the left-hand
side of Einstein’s equations: is GR correct? or, are modified gravity schemes more
properly fitted to the cosmic kinematics? These are quests that challenge our present
knowledge and that should be answered in the coming years.
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Fluid Mechanics and Systems Biology for
Understanding the Cosmic Distribution of Life:
A Review

Julián Chela-Flores

Abstract Due to progress in instrumentation both in cryogenics and in space explo-
ration, the 20th century witnessed the extension of fluid mechanics applications in
two novel systems. While the major aim for the first of these two cases—low temper-
ature physics—was to understand the underlying microscopic theory, in the second
case of fluid mechanics in the outer Solar System the major problem was, and still
is, one of instrumentation, rather than theory. This second kind of environments may
provide hints regarding the central problem of astrobiology, namely the search for
life outside our own planet. The Galileo Mission (1995–2003) allowed closer prob-
ing of the Jovian satellite Europa, both with imaging techniques, as well as with
spectroscopy of its icy surface over a deep ocean that is covered with chemical ele-
ments. Other examples of oceans are found in Ganymede and Callisto, two other icy
Galilean moons, but possibly these oceans are not in contact with a silicate core, as
in the cases of the life-friendly world: the Earth. In addition, Europa, with possibly
the same internal geological structure as our planet, is also potentially a life-friendly
world. These appealing phenomena are currently the source of plans for the next
European mission to Europa that will provide a baseline for the search of life. For
this purpose knowledge of our oceans will guide us in the search of life in other solar
system oceans. These possibilities have encouraged underlining technologically fea-
sible proposals for delivering small missiles (“penetrators”) with appropriate instru-
mentation. Whenever compatible with the available payloads, one objective of these
instruments has been to identify bioindicators. We are interested essentially in under-
standing the surficial sulfur stains of Europa’s icy surface. Although not included in
the most recent approved mission for Europa, penetrators remain a valid alternative
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in lunar research that we have shown to be relevant to the basis of astrobiology. In
this context we have argued that already existing miniaturized mass spectrometers
are particularly relevant. The arguments of this work bring together fluid mechanics,
systems biology, and feasible cutting-edge technology.

1 Introduction: Novel Applications of Fluid Mechanics

Generally fluid mechanics is understood as the response of fluids to forces exerted
upon them. The fluids that first concerned this discipline were restricted to those
that were easily observable, mainly liquid water. Interest in the field goes back to
Classical Greece, to the well-known work of Archimedes (c. 290–280 BC-212/211
BC).

Since those early times significant changes have taken place in fluid mechanics,
but we shall dwell especially on relatively recent events. For we will not concern
ourselves with the details of the development by Leonhard Euler and Daniel Bernoulli
in the 18th century, or with the work of G. G. Stokes and William Thomson in the 19th
century, or even the definite steps forward taken by Ludwig Prandtl at the beginning
of last century.

Instead, we wish to highlight briefly scientific disciplines in which fluid mechanics
has been fundamental and those that are closely related to the main objectives of the
science of astrobiology (the reader will find in Sect. 5 the relevant references). This
is a relatively new science that studies the origin, evolution, distribution, and destiny
of life in the universe. Astrobiology is flourishing in the present and our opinion is
that it will continue to flourish at a faster pace in the future, due to the many space
agencies including the European Union, the United States, Russia, Japan, the Popular
Republic of China, India, and to these larger efforts other countries are beginning to
join forces, including our own country for some time now 1999–2005 (Chela-Flores
et al. 2000; Falcón and Loyo 2007). But let us begin firstly by returning to fluid
mechanics on Earth. One evident example that is relevant to astrobiology is physical
oceanography (as in the new environments provided by the icy satellites off Jupiter):
this sub-discipline of oceanography is concerned with the properties of seawater
including temperature, density and pressure, movement (waves, currents, and tides),
and the interactions between the ocean water and its overlying atmosphere. In Sect. 5
we shall return to this topic in relation with the plumes that may reach the icy surface
of Europa, the Galilean satellite of Jupiter. Oceanography is a wider discipline, since it
deals with topics beyond fluid mechanics, including chemical oceanography, marine
geology, and marine ecology.

Secondly, once again fluid mechanics is particularly relevant for atmospheric
science (meteorology, climatology, and aeronomy). These disciplines are concerned
with composition, structure, and dynamics of the Earth’s atmosphere (Vallis 2006).
Fluid mechanics is also needed in aeronomy, since this sub-discipline of atmospheric
science studies the physics and processes of the upper atmosphere, information of
which may be measurable in the middle term in worlds around other stars.
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In Sect. 2 there is a brief description, by way of illustration, of how progress in
instrumentation has extended the range of applications of fluid mechanics to include
quantum fluid phenomena (superfluidity). But later on we shall underline how for
astrobiology more relevant are oceanography, as well as atmospheric science. These
two sciences are and, due to a series of possible space probes, will be increasingly
more relevant in extra-terrestrial conditions, and in the short term, in an extra-solar
context.

2 A 20th Century Application of Fluid Mechanics

Fluid mechanics has ventured into new pathways, of which one originated from
improved low temperature instrumentation and the other was due to the exploration of
the Solar System and will be introduced in the next section. But we underline here that
technology has found applications for fluids firstly, at extremely low temperatures,
and secondly additional applications arose in locations out of this world. Both of
these unusual venues for fluids have concerned our research in the past. In the first
case of “extreme fluids” the major difficulty was to propose the correct theory. In the
second case the main issue was of a different kind, once the extraterrestrial fluids
(oceans) were identified, the question was not a theoretical one, but the question that
was called for was one of identifying, developing, testing, and challenging space
agencies for approval of the appropriate instrumentation.

Returning to the first case, the development of advanced cryogenic technology at
the beginning of the 20th century (in 1908) allowed to liquefy helium at (4.2 K) into a
state that is called helium I. Special attention was paid to liquid helium when it cooled
to near absolute zero (0 K [−273.15 ◦C]) in both of the stable isotopes of helium:
3He and 4He. It was in 1938 when an unusual set of properties was shown to occur
in liquid 4He underneath a critical temperature. Hence, liquid helium I assumes
different properties and we called this new state of condensed matter helium II,
a true “superfluid”. (One of the properties that first gave this liquid its name was
the capability of displacing itself without viscosity). The major problem that raised
by the discovery of superfluid 4He was to find its theoretical bases at a microscopic
level. (Subsequently, in 1972, it was shown that the phenomenon also occurs in the
second stable isotope 3He at temperatures that were even lower than in the liquid
4He).

Quantum mechanics gives a general understanding of superfluidity, since for 4He,
the liquid state consists of atoms with null total spin angular momentum. Conse-
quently, the distribution between their possible states is given by Bose statistics.
Neglecting interactions between the 4He atoms, Bose condensation takes place (but
the subsequent introduction of interactions does not change significantly the micro-
scopic explanation). With the development of field theory, an alternative approach
to fluid mechanics of superfluid 4He was suggested amongst various attempts
(Chela-Flores 1975). As the temperature is lowered this field theoretic approach
allows the subsequent estimate of the increment of the fraction of condensed atoms
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(Chela-Flores 1976). The theory even allows an understanding of diffraction data,
both X-rays, as well as neutron diffraction (Chela-Flores 1977). Although not dis-
cussed in these three papers, Bose condensation essentially applies also to the case
of 3He superfluidity, where Fermi statistics are required for the 3He fermions. The
insight that led to this further understanding was based on the earlier theory of super-
conductivity, where the fermions pair in structures known as Cooper pairs that have
integral spin for which the correct statistics is, once again, that of Bose.

3 An Additional Application of Fluid Mechanics

We wish to underline that, once again, it is instrumentation, rather than theory (as
in the above case of superfluidity of 4He) that now takes the central position of our
enquiries for the new venue of the extraterrestrial fluids. Indeed, with the advent of
advanced space technology the exploration of the outer Solar System was possible
in the three decades that went from 1973 till 2003. Gradually it became evident that
large bodies of liquid water were present in our cosmic neighborhood. Evidence
began to emerge during the first steps of exploration of the possible presence of large
oceans on the moons of the giant planets: Jupiter and Saturn.

The science of oceanography was untested in these novel environments, a situation
that began to change at the very end of last century, as we will briefly refer to in Sect. 1.
But within the 20th century the Galilean moons Europa, Ganymede, and Callisto were
shown to be very likely the host of oceans of liquid water. These steps forward in the
exploration of the outer Solar System have been a gradual process:

• Pioneers 10 and 11 were the first Jovian flybys: Pioneer 10 (1972) flew by Jupiter
in December 1973. This was a major achievement for the period, since it was the
first such mission. Pioneer 11 (1973) passed by Jupiter in December 1974.

• Voyager 1 went past Jupiter on March 5, 1979. Voyager 2 traveled more slowly
and went by Jupiter on July 9, 1979.

• A decade later the Galileo mission built its success on the heritage from the much
more modest missions mentioned above. Galileo was placed into Earth orbit in
1989, but from 1995–2003 the Galileo mission successfully explored the Jovian
System, providing strong evidence for satellites, where life as it is known to have
emerged on Earth, may have also have taken its initial steps providing an oppor-
tunity to identify a “second Genesis” using the suggestive phrase of Christopher
McKay. (For a detailed discussion of the consequences of life on Europa, the reader
should consult “A second Genesis: Stepping-stones towards the intelligibility of
nature” (Chela-Flores 2009), especially Chaps. 8–12 and the Glossary, p. 199 for
the original use of the suggestive phrase for the origin of life in an extraterrestrial
context).

The Galileo mission has added insights, such as the presence on Europa of some
form of ‘ice tectonics’. The Jet Propulsion Laboratory, which handled Galileo for
NASA, has released some images that suggest that part of the surface is understood

http://dx.doi.org/10.1007/978-3-319-00191-3_8
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in terms of shifting plates of ice. From all the information gathered from Voyager and
Galileo, reasonable guesses have been put forward regarding possibly a substantial
amount of liquid water between the Europan silicate crust and its icy surface.

4 New Paths for Fluid Mechanics in the 21st century

A preliminary proposal for a return mission to Europa and the Jupiter system was
entitled LAPLACE. In February 2009 NASA and ESA took a preliminary decision
to support a Jupiter mission with the name of the Europa-Jupiter System Mission
(EJSM) replacing temporarily and extending our original Laplace proposal (Grasset
et al. 2009).

The Jovian System exploration was reformulated by ESA as a European-led sin-
gle spacecraft mission to the Jovian system, namely, the JUpiter ICy moon Explorer,
JUICE (Dougherty et al. 2011). The timeline is launch in 2022, and arrival at the
Jupiter system in 2030. The new mission is based on the design of the Jupiter
Ganymede Orbiter, which is the ESA flight element of EJSM-Laplace Mission.
Indeed, since three of the Galilean satellites are thought to host internal oceans,
the JUICE mission will study the moons as potential habitats for life.

In this context an appropriate technology concerns the micro-penetrator. These
instruments consist of small projectiles that can be delivered at high velocity to reach
just beneath the surface of planets or their satellites for probing samples of surficial
chemical elements, amongst other investigations. This type of instrumentation (the
penetrators) has a long history of feasible technological development by several space
agencies.

Although the limited payload constraints does not include penetrators in the
JUICE mission, it is forcing a choice between penetrators and landers. Some advan-
tages of the penetrator approach are nevertheless evident and remain a valid instru-
ment for studying our origins in lunar research (Chela-Flores 2012). The low mass
of these instruments, combined with their agility in deployment, makes them wor-
thy complements to orbiter missions launched without landers. We have attempted to
describe the feasibility of this technology both on the surface of Europa (Gowen et al.
2011), or on the Moon (Smith et al. 2012). The Europa’s stained icy surface has been
the focus of recent search for possible biomarkers. The science of biogeochemistry
presents us the tantalizing option of inferring from the sulfur surficial patches tests
of biogenic chemical elements. Several Earth-bound regions are good analogues of
what may be happening in recent geologic times on Europa. These regions are on the
Canadian Arctic (Damhnait et al. 2012) and in the Antarctic (Chela-Flores 2011).

Fluid mechanics provides a rationale for the mechanisms that could bring
biomarkers from the seafloor to the icy surface. The original intention of some
oceanographers was to understand the special changes in the Europa’s surface in
the Conamara Chaos Region (cf., Sect. 5). With the Galileo Mission we were able
to retrieve detailed images of Europa’s frozen and stained surface. One of the most
intriguing and possibly significant was the Conamara Chaos.
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The surface morphology can be understood in terms of oceanic plumes bear-
ing chemical elements, including sulfur from hydrothermal sources in the oceanic
bottom. A little beyond the present time technology will allow us to probe the
atmospheres of planets beyond the Solar System, where the atmospheric sciences will
be set in a new context (cf., Sect. 8) and this, once again, will allow fluid mechanics
to explore a novel physical context, namely, the atmospheric structure of hot giants,
Neptunes and super-Earths (Segura et al. 2010).

Several other instrumentation issues are also relevant. For instance, laser-induced
breakdown spectroscopy (LIBS). This has been a technique for the analysis of ele-
ments by retrieving a unique elemental fingerprint spectrum. Since chemical elements
are known to emit light of a given frequency when excited to sufficiently high tem-
peratures, LIBS suggests itself for detecting all elements in a given target. There are
advantages when planning the exploration of the Solar System.

LIBS shows potential for development instrumentation with characteristics typical
of LIBS, but in addition rapid in situ analysis is possible with little or no sample
preparation and the feasibility of automated spectroscopic analysis (Multari et al.
2010). But as in the case of the penetrators the payload constraint of, for instance the
JUICE Mission, does exclude some of these relevant instruments.

5 Buoyant Plumes from the Underlying Seafloor

These are possibilities that can eventually be tested in the laboratories of fluid
mechanics. The original intention was to simulate the circulation of Europa by solv-
ing the magneto-hydrodynamic equations of motion for a stratified incompressible
conduction fluid in a rotating frame of reference. The argument was centered on the
fact that the tidal forces can implement oceanic motions in the oceanic annulus gen-
erated by the other Galilean moons, by hydrothermal venting from crustal heating
and by the intense Jovian magnetosphere. In addition, there will be oceanic strati-
fication influenced by large-scale ocean circulation driven by hydrothermal venting
from below and conductive cooling from above.

Such stratification is expected to determine the height of the hydrothermal plume
rise, which if the conditions are given could be comparable with the ocean depth
and modify the surficial ice. This was a phenomenon that could be observed by the
space probes around Europa. This anomalous ice morphology began to be studied in
terms of fluid mechanics around the time when Galileo Mission data from the Jovian
System was available (Thomson and Delaney 1996).

Five years later, it was demonstrated that these plumes could indeed bear sufficient
energy to alter the morphology of the surficial ice, as observed by the Galileo probe
around the Conamara Region (Thomson and Delaney 2001). In detail, Thomson and
Delaney interpreted this region as melt-through structures formed by oceanic plumes
that rise to the base of the ice shell-surface from magmatically heated regions deep
in the seafloor. But what is most interesting from our point of view is that these
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mechanisms of plume delivery from the hydrothermal vents could be the source of
biomarkers.

On Earth the origin of life may have occurred around hydrothermal vents, where
chemosynthetic bacteria may have flourished. In a similar manner, traces of living
organisms could be part of the supply of the stained ice, where sulfur is a main chem-
ical component. Mass spectrometry is the appropriate instrument that could decide
whether the internal source of sulfur is of biogenic origin, as the fractionation pro-
duced by living organisms can be radically different from that produced by inorganic
means (Dudeja et al. 2012).

6 Fluid Mechanics and a System-Level Understanding of Exolife

Systems biology has been a remarkable step forward in the life sciences, especially
after we have learnt how to handle large data banks. The first steps in this direction
were in the area of molecular biology with the genome and proteome projects. One
specific area of impact has been molecular medicine. We have suggested extending
systems biology to all areas of the life sciences, especially regarding “exolife” life,
namely life elsewhere in the Universe, which is the main topic of the new science of
astrobiology (Chela-Flores 2013a).

In fact, systems astrobiology is forced upon us, since our objective is not to reduce
problems to first principles, but more modestly our main objective is to attempt defin-
ing a set of parameters that may lead to identifying the condition for the presence of
complex life on an exo-world (exo-planets and exo-moons). The relevant parameters
include amongst many others: an anomalous fraction of oxygen, the star class hosting
the Earth-like planet, the age, the metallicity of the star, the position of the exo-planet
in the habitability zone of its star, and the possible presence of an exo-moon.

Life in the Universe will emerge from statistical analysis of large data banks that
are now rapidly beginning to accumulate. Our combined assumptions of convergence
and the cosmos as a complex system imply that all the Earth-like exo-planets that
will be in the habitable zone of their corresponding star will have an identifiable
bioindicator (anomalous production of biogenic gases).

The signs of life are predicted to be a biologically produced atmosphere, largely
fractionated towards one of the biogenic gases (in the case of the Earth the large
fractionation triggered by biosystems is the 21 % of oxygen). Such atmospheres
would not be the result of natural accretion processes in the processes that give
origin to the planets, but instead, the emergence of the biogenic atmospheres would
be the result of the innate phenomenon of life that the laws of biochemistry will allow
in brief geologic times.

Systems astrobiology is analogous to systems biology, but it has to wait for its
full implementation until after we have gathered enough data from the sector of our
Galaxy. The practical reason why systems biology is a promising frontier for the
future of astrobiology is that it is not easy to have access to information on these
planets, except through the now incipient data banks of observable geophysical data,
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such as methane and oxygen atmospheres, as well as information on the presence of
liquid water beyond the present data that has already been searched. In view of the
large rate of data retrieval systems astrobiology needs to be formulated at present to
prepare for its most convenient management and interpretation.

Since we are discussing how fluid mechanics has found a new area of application
in the astrobiology of moons of our solar system, we shall dwell with some care on the
question of the relevance of the moons for favouring the origin of life. The potential
detection of exo-moons has raised the possibility of bringing the distribution of life in
the cosmos closer to reality. The bases of exomoonology are the initial success of the
CoRoT mission that was the first space mission designed to search for exo-planets
similar to the Earth itself. It was launched with a Soyuz-Fregat rocket in December
2006. CoRoT is the French Space Agency (CNES) mission containing a small space
telescope in a terrestrial orbit at a height of 900 km.

7 Distribution of Life in Other Solar Systems: Kepler Worlds

On the other hand, the Kepler Mission, unlike CoRoT, is in a solar orbit. It was
launched on March 7, 2009 from Cape Canaveral Air Force Station in Florida. It has
a capability to scan some 150,000 stars in the local neighborhood of our Galaxy for
extrasolar planets (Kipping 2009a). Its main objective is to search for exo-planets,
especially Earth-like planets. At the time of writing, Kepler now has selected out of
the 150,000 stars a set of 2326 candidate transiting planets.

The search for exo-planets can be viewed as the first step in an eventual discovery
of life as a complex cosmic system. Following the lines outlined above, we expect
that a rationalization of life will eventually emerge from the data banks of a very large
number of stars in our galactic sector. The geophysical data, rather than data banks of
biological information, will provide a gradual emergence of the living phenomenon.
The geophysical (atmospheric) bio-indicators point towards ecosystems that have
evolved around stars producing measurable biomarkers in our galactic sector. Subse-
quently, with better missions and with improved instrumentation, this identification
of life as a complex system can be extended from a sector of the Galaxy now being
probed to other more distant parts of the Universe. It will be at that stage that the
methods of computational biology are necessary.

8 The Moon’s Influence on the Emergence of Habitability

The presence of an exo-moon would stabilize the magnetic axis of the exo-Earth and
hence discard oscillations in the range 0–80◦ that would constrain the evolution of
life from small anaerobic to large complex life capable of photosynthesis (Kipping
2009b; Chela-Flores 2013b). Although no exo-moon has been discovered so far
they are in principle detectable with the Kepler data and, indeed, hints of an exo-
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moon-forming region around exo-planets have been reported (Heller and Barnes
2012). On Earth the stability of the terrestrial magnetic axis is a well-known factor
for the evolution of complex multicellular life. The Moon has stabilized the axis of
rotation of the Earth, so that its axis of rotation stays in the same direction.

This has had a profound effect on Darwinian evolution, since drastic climatic
changes would restrict the survival to only small, robust organisms to survive (Batalha
et al. 2012). We have been presented with a remarkable discovery of several oceans
in the moons of the outer solar system. The knowledge we are gathering from the
moons of our solar system to which fluid mechanics has made a contribution (cf.,
Sect. 5), will in turn serve to understand the role of exo-moon in the emergence of
life in systems of habitable environments around other stars.

The more challenging possibilities that we have to face include the example of a
Neptune around an M2 star with a widely separated Earth-like Moon (Kipping et al.
2012). If a moon happens to be leading the planet, as it passes by, it will pull the planet
across the face of the star a little faster than average. If it happens to be following,
it will hold the planet back. Whether the moon is leading, or trailing, the silhouette
of the planet and moon will be wider than that of a planet alone. The planet-moon
system will block more of the star’s light.

If the moon is directly in between the planet and the visual range of Kepler, on
the other hand, or if it is between the planet and the star, more starlight will reach
Kepler’s sensors – and the moon itself will not be visible. After the planet passes
around the star several times the changes in speed caused by a moon can be compared
with an average speed, and so that moons that are completely hidden on one pass
can have a chance to show themselves on the next.

It should be kept in mind that the feasible detection of exo-moons will add addi-
tional parameters for the emergence of habitability on their exo-planets, as it has
happened in our own local environment (cf., Sect. 6). The Moon has been a stabi-
lizing factor for the axis of rotation of the Earth. In the case of Mars, for instance,
the lack of large satellites has allowed axis obliquity change. Consequently, the ice
at the poles could in some moonless exo-planets be displaced to the equator. But the
Moon has helped stabilize the Earth, so that its axis of rotation stays in the same
direction, leading to less climatic change than if the Earth resembled the moonless
planet Venus. The emergence of more complex multi-cellular organisms has been
favored compared to a planet where drastic climatic change would allow only small,
robust organisms to survive.

With the advent of exomoonology (Kipping et al. 2012), the new batch of data
to arrive will be particularly relevant for adding yet another factor in defining hab-
itability and life, as suggested in a systems astrobiological approach. We will face
with the Kepler data and the HEK Project a selection of data for discriminating
those Kepler worlds that have more favorable options for habitability if they have
companion satellites.
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9 Insights from a System-Level Understanding

The systems biology approach should also give us insights into one of its branches,
namely astrobiology, whose major problem is to understand habitability in alternative
abodes for life. With its geophysical/astronomical data, astrobiology can follow up
the tracks of genetics and biochemistry for solving fundamental problems that were
intrinsic to these disciplines of the life sciences such as protein, or proteome folding.
By having the option of focusing on how systems properties emerge in astrobiology,
we can raise the question whether habitability can be interpreted as an emergent
phenomenon. We suggest basing such an approach on different forthcoming projects:

9.1 The Kepler Mission

This NASA mission is already producing valuable data related to over 2000 candi-
dates for exo-planets (at the time of writing).

9.2 The FINESSE Mission

The NASA Mission FINESSE, Fast INfrared Exoplanet Spectroscopy Survey Explorer
(Swain 2010) is to be launched in 2016. It is also a source of data in the near future.
It would measure the spectra of stars and their planets.

FINESSE will analyze the planetary atmospheric components using a space tele-
scope to survey more than 200 planets around other stars. This mission attempts
to find the fraction of biogenic gases in exo-planet atmospheres and how the Solar
System fits into the family of planets in the galactic neighborhood focused by the
Kepler mission. FINESSE science objectives overlap the topic of our interest, since
firstly, they intend to measure fundamental parameters in the exo-atmospheres to
allow knowing the physical and chemical processes of their atmospheres.

Secondly, the science objectives once again overlap with one of the atmospheric
science sub-disciplines—climatology—concerned with the weather in the same lay-
ers of the atmosphere over given periods of time. The second relevant FINESSE
science objective is to trace the composition and temperature change with longitude
and time. It is expected that the details of the day side-night side differences will
allow the mission to determine insights into the exo-planet climate. A project now in
its first steps, the “Hunt for Exomoons with Kepler”, (the HEK project mentioned in
Sect. 8) aims at distilling the entire list of known transiting planet candidates found
by Kepler.

This effort is pursued in order to track down the most promising candidates for
hosting at least an all-important moon, whose interaction with the host planet is
relevant for the pathway along which life evolves.
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9.3 The TESS Mission

With Transiting Exoplanet Survey Satellite Mission, TESS (Foust 2012) the Kepler
search for exo-planets will be extended to additional G, K type of stars up to the 12
magnitude, including over two million stars and M type (red-dwarfs) to about one
thousand up to 30 parsecs.

9.4 The EChO Mission

With the Exoplanet Characterisation Observatory Mission, EChO (Tinetti et al.
2012), exo-moons down to 0.33R⊕ would be detectable for our target stars, pro-
viding a complementary set of information from what is being searched from the
Kepler data (Kipping et al. 2012). In addition, ECho will be able to analyze the
atmospheres of super-Earths in the habitable zones of their host stars. One of their
objectives is to measure the spatial (vertical and horizontal) and temporal variability
of the thermal/chemical atmospheric structure of hot giants, Neptunes, and super-
Earths orbiting bright stars.

10 Discussion and Conclusions

From the point of view of the comparatively recent science of astrobiology (Chela-
Flores 2011), we have aimed to illustrate a novel area of application of the time-
honored discipline of fluid mechanics. Since ancient times fluid mechanics has been
relevant in a context of our civilization. An extraordinary new venue for fluid mechan-
ics emerged early in the 20th century for macroscopic quantum phenomena of the
quantum liquids.

These relatively new applications became even broader, due to the technological
revolution in instrumentation that we are going through at present. This on-going
revolution is to be materialized with the forthcoming extension of aeronomy from
its present Solar System constraints to planetary systems around other stars, since
as mentioned in Sect. 2 aeronomy is concerned with the physics and processes of
the upper atmosphere. Now we are in a position to anticipate that the upper exo-
atmospheres will be measurable with the coming step forward in instrumentation
with the missions FINESSE, EChO, and TESS (cf., Sect. 9).

An underlying hypothesis in the previous work (Chela-Flores 2013a) has been
evolutionary convergence, namely, independent evolution of similar genetic or mor-
phological features. Assuming both biochemistry (Pace 2001) and biology (Dawkins
1983) to be universal sciences, evolutionary convergence has been assumed to be pos-
sible, even in other lines of biological evolution elsewhere in the universe (Conway-
Morris 1998, 2003; Chela-Flores 2007). For a more careful detailed discussion of
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evolutionary convergence we refer the interested reader to Chap. 12 in “The Science
of Astrobiology” (Chela-Flores 2011).

The eventual verification of the validity of the fluid mechanics theory that has been
applied to the internal ocean of Europa (cf., Sect. 5) does not have to wait for long-
term technological developments. We originally proposed with our JPL co-workers
instruments of the kind of cryobots and coupled hydrobots that may penetrate the
icy cover to probe directly the oceanic phenomena that were to be modelled by fluid
mechanics (Horvath et al. 1997). However, it is clear now that the surficial probing that
can be performed with the help of the micro-penetrators would suffice for extracting
most of the relevant information from the upper layers of the icy Europan surface
(Gowen et al. 2011).

Finally, a point that we would like to highlight is that the new venues for the
science of astrobiology have been suggested by older approaches that come from the
life and physical sciences. Indeed, systems chemistry is a physical science clearly
outlined (Anderson 1972), in which an interdisciplinary approach focuses on com-
plex interactions in chemical systems, using a new point of view, holism rather than
reductionism, where collective phenomena are the main ingredient in basic research
of chemical systems. It attempts to produce a more holistic understanding of bio-
chemistry, especially the question of folding in proteins.

On the other hand, systems biology is a life science in which an interdisciplinary
approach focuses on complex interactions in biological systems, using a new point
of view. It attempts to produce a more holistic understanding of biology, especially
genetics. The new approach aims to construct a network of interacting processes that
can be related to the information sciences (Buchanan et al. 2010). A major aim is to
discover emergent properties of a system that would be understood by focusing on its
complex interactions and relying on the information sciences. These computational
techniques have given rise to systems astrobiology, where the new space science is
also considered as a branch of biology (Chela-Flores 2013a).

Instead of applying the new methodology of systems biology to genetics, it is
applied to other biologically relevant questions, namely the origin, evolution, distri-
bution, and destiny of life in the Universe. The distribution of systems of habitable
worlds with their biomarkers will be testable in the short term with forthcoming
space missions mentioned above. This would justify subsequent use of quantitative
systems biology methods that are already available in other branches of biology.
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The Impact of Computational Fluid Mechanics
on Cancer Research

Dimas C. Belisario and Leonardo Di G. Sigalotti

Abstract This chapter presents an overview of recent contributions that show how
fluid mechanics is drastically changing cancer research. The review will mainly
focus on the computational modelling of fluid-mediated processes related to can-
cer dynamics, spanning different representation scales from cells to organs. Fluid
mechanics seems to act as a fundamental organizing principle in many aspects of
cancer, including its growth, progression, metastasis, and therapy. On the other hand,
it is clear that fluid-dynamics modelling can make a huge contribution to many areas
of experimental cancer investigation since there is now a wealth of data that requires
systematic analysis. The relevance of microfluidics in the isolation, detection, mole-
cular characterization, and migration of tumour cells is also discussed. In the last
part of the chapter, future challenges and perspectives are briefly outlined.

1 Introduction

Cancer cannot be defined as just one disease, but rather as a broad group of more
than 200 diseases. From the biological point of view, it is a complex phenomenon
that can be characterized by a small set of hallmarks that point to a cascade of events
from the molecular to the organismal level (Hanahan and Weinberg 2011). At the
molecular level, cancer arises through a series of genetic mutations, which allow
cells to grow and divide uncontrollably. An alteration of the DNA molecule can
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disrupt the genes and produce faulty proteins, causing the cells to become abnormal
(or malignant) and lose their restraints on growth.

In healthy individuals, the immune system can recognize abnormal cells and
destroy them before they get a chance to divide. However, some mutant cells may
escape detection and survive to form a tumour (or neoplasm), which looks like a small
ball of cells and feeds on oxygen and nutrients that diffuse to its surface. As cells
in the core of the tumour become starved of oxygen (hypoxic cells), they release
substances (growth factors) that stimulate the growth of new blood vessels; a process
called angiogenesis (Dvorak et al. 1988). These angiogenic growth factors activate
receptors present on endothelial cells in pre-existing blood vessels. The activated
endothelial cells begin to release enzymes (proteases) that allow them to escape
from the parent vessel walls. These then proliferate into the surrounding matrix
and form solid sprouts connecting neighbouring vessels, which extend towards the
tumour, supplying it with blood (Leung et al. 1989; Hanahan and Folkman 1996). For
a while, the tumour grows as a cohesive ball of cells with smooth edges. However,
eventually some rogue cells break away from the growing tumour and invade the
adjacent tissue. This is a key process in the growth of most cancers and an escape route
for metastasis—the formation of secondary tumours owing to spreading of cancer
cells to more distant parts of the body through the lymphatic system or bloodstream.
Metastasis is the main cause of deaths due to cancer (Sporn 1996). For example, as
a cause of mortality in the United States, metastatic cancer is second only to heart
disease, with one out of four deaths being from cancer.

Cancer invasion occurs through several important steps, involving the interplay
between the cells themselves and their microenvironment (Liotta and Kohn 2001):
reduction in or loss of cell-cell adhesion, cell adhesion to the extracellular matrix
(the surrounding connective tissue), secretion of enzymes that digest the extracellular
matrix, and movement (migration) of the cancer cells coupled with their prolifera-
tion. Cancer cells experience both self-adhesion (cell-cell adhesion) and cell-matrix
adhesion, while cell movement through the surrounding tissue may occur through
diffusion with no preferred direction and by directed motion due to the breakdown of
the extracellular matrix components (Hanahan and Weinberg 2000; Friedl and Wolf
2003; Weinberg 2007).

Notwithstanding decades of research in cancer biology and medicine, our present
ability to predict and treat metastatic cancer is still very limited. The main difficulty
to reliably forecast the risk of cancer metastasis for individual patients stems from the
fact that cancer itself is the result of a complex interplay between a large number of
factors. While biological data continue to pile up at an enhanced rate, a major obsta-
cle to progress lies precisely on how to handle this overwhelming flow of data. As a
result of this difficulty, cancer research has commenced to undergo radical changes
towards a more quantitative approach, where mathematical models are slowly mak-
ing their way out as predictive tools using the parameters and information from
state-of-the-art experiments. Integrating mathematics, physics, and mechanics with
genomic investigations of cancer and its therapy opens a window towards a novel
multidisciplinary approach, which encompasses biomathematics and computation,
cancer biology, bioengineering, and imaging (Suresh 2007; Michor et al. 2011).
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Through the use of mathematical modelling and simulation software, this new
approach to cancer research has the potential to predict prognosis, optimize sur-
gical and pharmacological treatments for various cancers, and ultimately guide the
design of novel therapeutics (Quaranta et al. 2005). For an extensive review on the
novel mathematical tools applied to the modelling of cancer onset, evolution, and
growth the reader is referred to Bellomo et al. (2008).

A branch of physics and engineering which is transforming the fight against cancer
is fluid mechanics. As advocated by Koumoutsakos et al. (2013) in a recent review
on the subject: after a century of rapid advances in theory, numerical methods, hard-
ware, and software, the fluid mechanics community has developed a powerful arsenal
of multiscale imaging, analysis, and simulation tools that are highly suitable for the
investigation of transport processes in cancer. Fluid mechanics has been recognized
to play an important role in most aspects of cancer, including tumour inception,
growth, metastasis, and therapy. In this chapter, we review the most important con-
tributions that project fluid mechanics as an essential organizing principle for cancer,
spanning spatial scales from the gene to the organ and timescales of microseconds,
as in gene mutations, to decades, as is pertinent to metastasis. We shall primarily
focus on progress achieved in numerical simulation models of aspects of cancer that
interface with fluid mechanics and discuss how significant future progress in the area
is promising to change dramatically both the way experimental oncology is going on
and our understanding of the processes involved from cancer initiation to metastasis
and from the molecular to the patient level.

2 The Microscopic Level

The starting point of cancer is the generation of a neoplastic cell through phenotypic
alterations, resulting from genetic mutations. However, this concept has not yet been
well addressed through mathematical modelling, which so far has mainly focused on
angiogenesis and invasion. After the onset of neoplasia, the characterization of the
system suggests the identification of three natural scales, which are also connected
to different stages of the disease, i.e., processes on the cellular scale (microscopic
level) are triggered by signals stemming from the sub-cellular level and these have
an impact on the macroscopic scale (organism), when tumours grow and spread.

On the microscopic (cellular) level, fluid-dynamic models have been proposed
to simulate the effects of cell-cell interactions. These interactions are fundamental
at all stages of tumour formation, whether they are among abnormal cells and host
cells, or among abnormal cells themselves. If tumour cells skip recognition and
suppression by the action of the immune system, the tumour may evade apoptosis
or co-opt host cells, allowing progressive growth. During invasion and metastasis,
alterations in cell-cell adhesion between individual tumour cells are key to driving
the process. Existing experimental data suggests that tumour cell-adhesion to the
endothelium under hydrodynamic shear rate—the change in flow velocity within the
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micro-capillaries—is a critical step that results in circulation-mediated metastasis
(Liang et al. 2008, 2010; Fu et al. 2012).

The mechanism of cell-cell adhesion—a non-local interaction between two cells
through transmembrane receptor binding—has naturally suggested the use of dis-
crete cell approaches, which retain the finite cell size and permit incorporation of
molecular interactions and/or forces that act between cells. A drawback of these
approaches is the significant computational time required to simulate large popu-
lations. Therefore, it is desirable to augment such methodologies with continuous
models that capture the dynamics of population-level behaviour. The past decade
has witnessed the development of a wide variety of discrete models of increas-
ing sophistication that incorporate cell adhesion, which can be classified into two
major classes: lattice-based and lattice-free approaches. Examples of the former
class include many cellular automata models (Deutsch and Dormann 2005; Moreira
and Deutsch 2005) and discrete-continuum techniques (Anderson 2005; Anderson
et al. 2006), where the discrete cells are allowed to interact with each other and sur-
rounding continuous fields representing the extracellular matrix densities and growth
factor concentrations. In particular, this latter approach has primarily been applied
to models of tumour cell invasion, where some models have incorporated the effects
of cell-adhesion, cell-migration, and phenotypic mutations (Anderson et al. 2006).
These have suggested that invasive fingering is essentially driven by environmental
heterogeneity. A spatially extended approach of the lattice-based class is the Cellular
Potts Model, which has been adapted and applied to cell populations (Graner and
Glazier 1992; Glazier and Graner 1993) and to simulation models of solid tumour
growth (Turner and Sherratt 2002) and angiogenesis (Bauer et al. 2007).

In contrast to the above grid-imposed models, lattice-free models allow individual
cells to move freely through continuous space. In a number of models of this type,
cells are given variable, yet predefined, shapes such as deformable ellipsoids of
fixed volume (Dallon and Othmer 2004; Palsson 2008). In more refined models,
cells are allowed to shift between spheroidal and polyhedral shapes (Schaller and
Meyer-Hermann 2005), or adopt continuously deforming shapes according to their
interactions with neighbours and the environment (Newman 2005). Models have
also been proposed in which individual cells are described as fluid-elastic structures
in which their membrane is represented by a deformable boundary immersed in a
fluid (Rejniak 2007; Dillon et al. 2008). In these models, adhesive forces are again
represented by force balances that describe the movement and deformation of cells,
while channels at their membranes permit the influx of fluid into them required for
growth.

Hybrid models aimed at studying the adhesive rolling of leukocytes over a
P-selectin coated surface in parabolic shear flow in microchannels, where the
immersed boundary method is used for cell deformation coupled with a Monte
Carlo simulation for receptor/ligand interaction, have reproduced the characteris-
tic “stop-and-go” motion of rolling leukocytes and the “tear-drop” shape of adherent
leukocytes as observed in experiments (Pappu et al. 2008). A software environment
capable of simulating blood flows on cellular scale inside microfluidic devices have
been recently proposed, where the blood is modelled as a suspension of liquid blood
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plasma, immersed blood cells, and magnetic beads (Gusenbauer et al. 2011). The
blood flow is represented on a fixed grid by solving the lattice-Boltzmann equa-
tions, while the boundary of each suspended object is represented by a set of discrete
Lagrangian immersed boundary points that do not need to lie on the fluid grid. A
direct application of this model in biomedicine is the use of self-organized magnetic
bead chains to isolate circulating tumour cells employing lab-on-a-chip technologies
(see Sect. 5 below).

3 Continuous Macroscopic Level

The body of literature devoted to models which link the cellular scale to the macro-
scopic tissue scale has increased at a high rate during the last few years. We foresee
that this trend will continue as cancer research in the immediate near future will
focus on refining and improving the existing models, allowing us not only to under-
stand but also diagnose and treat cancer beyond our present technical abilities. While
discrete models permit the straightforward incorporation of many intra-, extra-, and
inter-cellular processes, they can require a formidable number of cells to describe the
transition from the cellular to the tissue level, making the problem computationally
intractable. On the other hand, discrete models often resist a thourough analytical
investigation that can shed light on generic properties of the system under study. Both
of these difficulties can be relaxed by considering continuum-scale models based on
fluid-dynamic simulations with genetic and molecular elements, where cells are rep-
resented through their density at the tissue level and where relevant aspects of cancer
such as tumour inception, growth, metastasis, and therapy that have direct relevance
to flow-mediated processes can be thouroughly analyzed. In most of these models,
events at the cellular scale are accounted for by the particular choice of terms and
parameter functions that enter the governing evolution equations.

3.1 Tumour Onset, Growth, and Invasion

A cell becomes cancerous when a set of mutations is accumulated in its genome.
These mutations are linked to oncogenes—genes that have the potential to cause
cancer—and to tumour suppressor genes, which in contrast prevent a cell from
becoming cancerous. The combination of thousands of mutant genes across different
cell lines enables uncontrolled tumour growth. As the cancerous cells accumulate
genetic mutations, the rate of mutations increases as the molecular mechanisms of
genome maintenance are lost (Negrini et al. 2010). One outcome of this series
of mutations is an increase in the proliferation rate and a decrease in the death rate
of the cells, giving rise to a tumoral mass consisting of distinct cell types intertwined
with the extracellular matrix (Egeblad et al. 2010). However, even a fast growing
clump of tumour cells cannot grow beyond a certain size, since there is a balance
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between cells inside the tumour consuming nutrients and nutrient diffusion into the
tumour.

Once cells have formed a tumour mass, its sustained metabolic activity requires
oxygen and nutrients, which in the avascular stage (i.e., tumours without blood ves-
sels), are provided by diffusion through the surrounding perfused tissue. At this stage,
the tumour has a volume that usually never exceeds 1 mm3 and consists of an inner
zone of necrotic cells surrounded by an intermediate zone of quiescent (or dormant)
cells, owing to the lack of oxygen and nutrients, and an outer zone of proliferative
cells (Koumoutsakos et al. 2013). Tumour substances (angiogenic growth factors),
generated by the hypoxic zone near the necrotic one, induce blood vessel growth.
During this step, one sees at a macroscopic scale capillary sprouts from existing
vasculature moving towards the tumour to feed it and allow its further growth. In
particular, sprouting and intussusceptive angiogenesis entail flow-related processes.
In the former case, new blood vessels sprout from the existing vasculature and grow
to form a new vascular network, characterized by intermittent and low-shear-stress
conditions inside the vessel (Song and Munn 2011). The initiation of blood flow
leads to active vessel remodelling, maturation, and differentiation into venules and
arterioles. In contrast, intussusceptive angiogenesis is the process of transcapillary
pillar formation inside existing vessels that result in the formation of new vessels
(Styp-Rekowska et al. 2011). It involves three different steps: microvascular growth,
arborization, and branching remodelling (Djonov et al. 2003). Its initiation possibly
involves the imbalance of forces experienced by endothelial cells due to blood flow,
cell-cell adhesion, and the extracellular matrix (Davies 2005).

Tumour vasculature shows increased vascular density and branching patterns,
distorted and enlarged vessels, and highly convoluted segments (Goel et al. 2011;
Narang and Varia 2011). The presence of large inter-cellular spaces renders the ves-
sels leaky, allowing for enhanced macromolecule transport between the lumen and
the extracellular space, offers ways for tumour cells to enter the vasculature, and leads
to an increase of the interstitial vasculature (Narang and Varia 2011). The vascular
shear rate has been found to influence vascular lumen formation as well as prolifera-
tion and migration of endothelial cells (Yamane et al. 2010), while pulsatile flow has
been shown to stimulate angiogenesis in an in vitro environment (Cullen et al. 2002).
In tumour-associated vasculature, the highly tortuous vessels increase the resistance
to blood flow. The leakage of blood plasma leads to an increase in the interstitial
pressure, causing vessel occlusion and acute hypoxia, which in turn leads to the
persisting release of vascular endothelial growth factor. In response, angiogenesis
continues, the network structures changes, and maturation is prevented, promot-
ing vascular leakage. Once the tumour has acquired its own blood supply (vascular
stage), peripheral tumour cells can escape via the circulatory system (migration) and
set up secondary tumours elsewhere in the body (metastasis). After angiogenesis and
metastasis, the patient is left with multiple tumours in different parts of his/her body
that are very difficult to detect and even more difficult to treat. From a clinical point
of view angiogenesis and vascular tumour growth together with metastasis is what
cause the patient to die, and modelling and understanding these different stages is
crucial for cancer therapy. However, a recent clinical study has reported a high degree
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of regression of a nonmelanoma skin tumour, particularly a basal cell carcinoma with
a high microvessel density, after photodynamic therapy (Cabrera et al. 2012). While
the tumour destruction was induced by the diffusion of cytotoxic agents from the
irradiated zone to the neighbourhood of the tumour zone, this may represent a case
where the process of angiogenesis may play a beneficial role in the regression of
contiguous untreated tumours.

3.2 Fluid-Dynamic Models

In general, computational models at the macroscopic scale are formulated in terms of
mass balance equations for the cellular components, coupled to a system of reaction-
diffusion equations for the concentration of extracellular chemicals, which can be
written in the form (Bellomo et al. 2008):

ζ(∂iΩi )

ζt
+ ◦ · (∂iΩi vi ) = φi , i = 1, 2, . . . , n, (1)

ζck

ζt
+ ◦ · (ckvl) = ◦ · (Qk◦ck) + Ψk, k = 1, 2, . . . , m, (2)

where ∂i and Ωi denote, respectively, the density and concentration of the i th cellular
component (i.e., cells, extra-cellular matrix, or extra-cellular fluid), vi is the mass
velocity vector of the i th population, ck are the concentrations of the chemicals
and nutrients, and vl is the velocity of the liquid (blood). The term φi in Eq. (1) is a
source/sink term for each component, including production (cell birth) or destruction
(cell death) terms. Tumours constantly produce waste products, mainly water, and a
multitude of chemical factors. In particular, when a cell dies, its membrane ruptures
releasing its content, which is mostly re-usable organic material. In Eq. (2), Qk is
the diffusion coefficient of the kth chemical factor and Ψk is a source term for the
particular nutrient or chemical. In the language of fluid mechanics Ωi is just the
volume fraction of the i th constituent so that the tumour is modelled as a multiphase
material. The sum of the volume fractions over all constituents must therefore equal
one.

In order to close the above system of equations, an equation for the velocity com-
ponents (vi ) must be specified. Depending on the choice of this equation, macroscopic
models can be defined as phenomenological or mechanical models. Phenomenolog-
ical models are based on a diffusion equation for cell movement, i.e.,

vi = −Di◦Ωi , (3)

where Di is the diffusion coefficient. If this quantity is a positive constant, cell
movement will be described by linear diffusion. However, in several models,
the motion of cells is described by non-linear diffusion, where Di = Di (Ω, c)
(Thompson and Byrne 1999; Sherratt and Chaplain 2001). While these models are
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suitable for describing some interplay between cells such as contact inhibition, they
cannot really account for the influence of an elastic membrane. However, they have
been successfully used for evaluating the efficacy of therapy or resection in the case
of brain tumours (gliomas) (Swanson and Alvord 2002), or the influence of acid-
ity (Gatenby and Gillies 2004). Alternatively, phenomenological models can specify
biased movement such as chemotaxis (Chaplain 1996)—the characteristic movement
or orientation of a microorganism or cell in response to a chemical concentration
gradient either towards or away the chemical stimulus—or haptotaxis (Anderson
2005)—the directional motility or outgrowth of cells towards or along a gradient of
chemoattractants or adhesion sites in the extracellular matrix. An extension of the
model combining diffusion and haptotactic movement predicted that heterogeneity
of the extracellular matrix affects cancer invasion (Perumpanani and Byrne 1999).

As tumour cells proliferate, they push into the surrounding tissue and cause pres-
sure to build. This pressure, along with other mechanical interactions, have very
important implications on tumour growth and progression. Incorporation of the phys-
ical forces that influence cell motion requires complementing Eqs. (1) and (2) with
the momentum balance equations (Bellomo et al. 2008):

∂iΩi

(
ζvi

ζt
+ vi · ◦vi

)
= ◦ · Ti + Ωi fi + Fi , i = 1, 2, ..., n, (4)

for each constituent. Here Ti is the stress-tensor, fi is the body force acting on the
i th constituent, and Fi is the interaction force with the other constituents. In order to
close this system of equations we need to specify constitutive equations that relate
the forces to the level of stress and compression. For instance, as a cell undergoes
mitosis and divides into two cells, these will generate a pressure on neighbouring
cells, causing an increase in tumour size. If cells are assumed to behave as a fluid,
the simplest constitutive equation for the stress can be written as

Ti = −ρi I, (5)

where ρi is the response of the cells to compression and I is the unit tensor. Here the
implicit assumption is made that cells behave as elastic liquids.

In many instances the filtration of organic liquids through tumours has been simu-
lated by modelling the tumour as a growing and deformable porous medium. If cells
move as an elastic fluid within a rigid extracellular matrix, Eqs. (1) and (2) can be
closed using Darcy’s law

vi = −K◦ρi , (6)

where K is the permeability of the matrix. Modifications of this equation for a
deformable porous medium and for mass exchange between the constituents are
given in De Angelis and Preziosi (2000) and Chaplain et al. (2003). Darcy models
have been considered by several authors in simulations of tumour growth (Cristini et
al. 2003), of fluid flow in solid tumours (Soltani and Chen 2011), and more recently
for describing cancer-therapeutic transport in the lung (Erbertseder et al. 2012). The
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former models have predicted interstitial velocities in very good agreement with
experimental results, while the latter has described the flow, transport, and reaction
processes of a therapeutic agent in the pulmonary circulation in healthy and cancerous
pulmonary tissue. In this case, the phase moving within the tissue continuum consists
of two components, namely the interstitial fluid and the therapeutic agent. While it
is assumed that the fluid phase is incompressible, the movement of the dissolved
drug molecules in the interstitial tissue of the lung is modelled using a single-phase,
two-component approach in a rigid, porous medium. With the additional assumption
that the flow within the tissue is creeping, the flow velocity of the interstitial fluid
can be very well described by Darcy’s law (Baxter and Jain 1989; Baish et al. 1997;
Erbertseder et al. 2012).

Alternatively, the cell-matrix medium can be viewed as a viscous fluid (Stokes
flow), where the stress depends on the viscosity (Friedman and Hu 2007), or as a
viscoelastic fluid (Holmes and Sleeman 2000). Other models treat the tumour tissue
as a mixture of cells living in a porous medium made of extracellular matrix and
filled with extracellular liquid (Graziano and Preziosi 2007). Darcy’s law can be
used to model both fluid flow and cell motion, where the latter is treated as a granular
material flowing in the porous extracellular matrix scaffold. For example, the case of
a multicell spheroid can be modelled as a growing poro-elastic medium using Eqs. (1)
and (2) coupled to a variant of Eq. (4) for the interstitial pressure p, where the inertial
terms are neglected and the stress-tensor of the mixture (i = tc, tumour cells; i = l,
extracellular fluid with chemicals and nutrients) is given by Tm = −[p + ρtc]I,
and a composite velocity equation (Bellomo et al. 2008). This scheme has been
used together with experimental data to show the cell-size reduction by solid stress
inside tumour spheroids (Ambrosi and Mollica 2002; Roose et al. 2003). Combining
Darcy’s law with Stokes flow gives a further constitutive relation, known as the
Brinkman equation. Models based on Darcy-Stokes flow have been used to study
tumour morphology and stability (Zheng et al. 2005; Pham et al. 2011). However,
models based solely on Stokes flow has been found to be more consistent with
experimental data from in vitro three-dimensional multicellular tumour spheroids
(Pham et al. 2011).

A number of illustrative mechanical models describing the growth of avascular
tumours are reviewed in Roose et al. (2007), and details of some of the existing mod-
els can be found in the references therein. Multiscale mechanical models designed for
simulating the growth of both avascular and vascular tumours, including environ-
mental conditions, distribution of oxygen, elastic membrane response, membrane
degradation, and the dynamics of the motion of the tumour have also started to
appear in the literature (Mantzaris et al. 2004; Plank et al. 2004; Macklin et al. 2009;
Bresch et al. 2010). While some of these models can be applied to investigate the
therapeutic benefits of anti-invasive agents, they provide the basis of a numerical
platform for more refined tumour growth simulations. On the other hand, the process
of invasion of adjacent tissue by cancer cells has been recently modelled by assum-
ing that cells migrate through a combination of diffusion and haptotaxis as well as
undergoing proliferation and by incorporating the effects of cell-cell and cell-matrix
adhesion (Chaplain et al. 2011). Multiscale models describing the growth of in vitro
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multicellular tumour spheroids and in vivo avascular tumour nodules that incor-
porate heterogeneous population of cells, drug diffusion, drug pharmacokinetics,
cell-cycle-phase transitions, and the diffusion of multiple nutrients are being used to
formulate effective therapeutic strategies by understanding the interactions between
drugs and the heterogeous microenvironments in growing tumours (Venkatasubra-
manian et al. 2008).

Although macroscopic models based on a fluid-dynamic approach are deeply
influencing modern cancer research in that they exhibit the general behaviour of
tumour growth, angiogenesis, and invasion, they fail to examine details of the phe-
nomena occurring at the single cell level. In particular, this makes detailed mod-
elling of processes such as angiogenesis difficult because calculating average cell
density fails to include the spatial structure of the vascular network. Moreover, it
is not completely clear if invasion and metastasis are driven by average population
behaviour, or instead by cells which deviate from the mean. For example, it is quite
possible that individual rogue cells drive the macroscopic processes of invasion or
metastasis. However, their individual behaviour is certainly not captured by a contin-
uum approach. Although the development of multiscale approaches is very recent,
future practical models must be based on some modular approach where at a certain
scale the processes have to be consistent with the lower and higher scales. In this
framework, the overall system can be regarded as a network of several interacting
subsystems, each developed at a specific scale, while interactions between contigu-
ous systems need to deal with compatibility (and possibly boundary) conditions at
each specific scale. A brief outline of these issues is given in Sect. 6. The interested
reader is referred to Bellomo et al. (2008), where perspectives of such a complexity
multiscale theory is amply discussed.

4 Models of Vascular Transport and Angiogenesis

The blood flow in microvessels, whose diameters are ∇100µm or less, is called the
microcirculation (Sugihara-Seki and Fu 2005). Microvessels have irregular inter-
connections that form a network in tissues and are responsible for the exchange of
materials between blood and surrounding tissues. Research on the flow through the
neoplastic vacuslature of solid tumours has been largely motivated by the desire to
understand the role of fluid convection in the treatment of cancer by therapeutic
monoclonal antibodies. A key problem in this kind of treatment is the low transport
rates into the main body of the tumour across the vasculature, which leads to low
and ineffective concentrations of the therapeutic macromolecules. It is a common
observation that interstitial fluid pressure is higher in both human and experimen-
tal solid tumours than in normal tissue (Heldin et al. 2004). Enhanced interstitial
pressure is the result of a richly developed and highly permeable vascular network,
combined with facilitated transendothelial fluid transfer (Boucher and Jain 1992; Lee
et al. 1994). Clinically, a high interstitial pressure is marked by a reduced delivery
and uptake of anticancer drugs (or macromolecules) and, hence, lack of therapeutic
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effects. Therefore, the analysis of blood flow and transport processes in the growing
networks requires accurate modelling of blood flow in microvessels, solute transport,
and angiogenesis.

Physically, blood is a suspension of red blood cells, white blood cells (leukocytes),
and platelets in plasma. It is an incompressible Newtonian fluid with viscosity of
about 1.2 cP at 37∼ C. Red blood cells are the most abundant, with a volume fraction
of 40–45%, and therefore they strongly influence the rheology of blood. Because of
their flexible viscoelastic membranes, they can easily pass through capillaries with
diameters less than their major diameters at rest (∇8µm). In fact, the minimum
diameter of a cylindrical tube that will allow a normal red cell to pass through intact
is as narrow as ∇2.8µm (Halpern and Secomb 1989). Leukocytes are generally
spherical with a mean diameter of ∇6–8µm and are much less deformable than red
cells. Despite their relatively small numbers, leukocites can contribute significantly to
blood flow resistance (Schmid-Schönbein et al. 1981). The rheological properties of
blood flowing in microvessels have been extensively studied by in vitro experiments,
using a suspension of red cells flowing through capillary tubes (Sugihara-Seki and
Fu 2005).

Accurate numerical simulations of blood flow in microvessels must certainly
include detailed models of blood cells as well as the glycocalyx layer attached to the
the endothelial surface. The dimensional irregularities of vessel diameters is another
important factor. The Reynolds number of the blood flow in microvessels is ≥1, so
that in general non-linear convective acceleration terms (v · ◦v) in the momentum-
balance equations describing the plasma flow and the cell motion can be neglected
(Sugihara-Seki and Fu 2005). Since the plasma is known to be an incompressible
Newtonian fluid, its motion is governed by the Navier-Stokes equations

∂
ζv
ζt

= −◦ p + μ◦2v, (7)

along with the continuity equation

◦ · v = 0, (8)

where v is the velocity vector, p is the pressure, ∂ is the density, and μ is the dynamic
viscosity of the plasma. Early simulations aimed at modelling the flow of red cells
in narrow tubes under axisymmetry, the flow fields around cells and shear stress on
the cell membrane, and flow resistance due to irregularities of vessel lumen as well
as the effects of glycocalyx and leukocytes are reviewed in Sugihara-Seki and Fu
(2005), and described in full detail in the references therein. More recent simulations
using continuum-based models have shown that coupling of solid components and
fluid flow in these models poses a number of challenging problems (Pozrikidis 2005;
Noguchi and Gompper 2005; Liu and Liu 2006; Skotheim and Secomb 2007; Wu
and Aidun 2010; Fedosov et al. 2012). For example, computational complexity can
be reduced by coupling discrete models of red cells with mesoscopic methods for
flow discretization such as the lattice Boltzmann method, multiparticle collisional
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dynamics, and dissipative particle dynamics (Dupin et al. 2008). Numerical simu-
lations have indicated that the effect of leukocyte adhesion to the vessel walls on
flow depends strongly on the number of adherent leukocytes and the vessel diameter
(Pappu et al. 2008). Owing to many similarities in the process of leukocyte and cir-
culating tumour cell adhesion, models developed for leukocytes can also be applied
to circulating tumour cells during the metastasis process.

Microvessel walls consist mainly of endothelial cells. Vascular endothelium is the
principle barrier to, and regulator of, material exchange between circulating blood and
the body tissues. The ultrastructural pathways and mechanisms whereby endothelial
cells and the cleft between the cells modulate microvessel permeability to water and
solutes have been a classical question in microvessel transport since the early 1950s.
If capillary walls act like semi-permeable membranes, fluid motion across them
depends on the net imbalance between the osmotic absorption pressure of the plasma
proteins and the capillary hydraulic pressure generated by the heart beating (Levick
and Michel 2010). Most existing models of transport through the inter-endothelial
clefts are based on continuum approaches. However, it was suggested that more
suitable analyses should be based on the molecular nature of the fluid because of the
sizes of the mean intermolecular distances (∇0.3 nm) and the cleft width (∇18 nm)
(Sugihara-Seki et al. 2008). The development of multiscale computational models
(Praprotnik and Delle Site 2008), coupling, for example, the molecular structure
of the glycocalyx with a continuum description of the flow, is highly suitable in
this context. Moreover, solute transport from the vasculature to the cells has been
largely modelled as passively transported elements with a flux proportional to the
drug concentration. Solute transport inside the tumour was recently analyzed using
computational models of diffusion based on high-resolution images (Baish et al.
2011).

On the other hand, tumour-induced angiogenesis has been modelled using both
continuum and discrete models (Qutub and Mac Gabhann 2009). In a more recent
continuum approach, the extracellular population is modelled by a density function
that resolves the vascular branching patterns (Bergdorf et al. 2010). Cell-based and
lattice-based discrete models are described in Bauer et al. (2009) and Chaplain (2000),
respectively, while a hybrid modelling where a discrete tip-cell representation is
coupled to a continuum description of the blood vessels is given in Milde et al. (2008)
and Travasso and Corvera Poiré (2011). A model for sprouting angiogenesis based
on Poiseuille flow inside a network of connected pipes can be found in McDougall
et al. (2002), which was successively extended to account for the variability in blood
viscosity and evolving capillary vessels that can dilate and constrict to study the
transport of therapeutic agents inside the growing vasculature (Stephanou et al. 2006)
and combined with a continuum model of tumour growth (Macklin et al. 2009). An
in-depth report on recent simulation models of vascularized tumours is given in
Lowengrub et al. (2010), and references therein.
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5 Microfluidics in Cancer

Microfluidics typically deals with the manipulation of fluids that are geometrically
constrained to a submillimeter scale. Such small scales offer a number of advantages
including cost effectiveness, low consumption of reagents, cellular separations and
detections with high resolution and sensitivity, and other less obvious features of
fluids in microchannels, such as laminar flow (Whitesides 2006). The early devel-
opment of microfluidics in life science applications has been mainly focused on the
analysis of biomolecules from small volumes of fluids (typically nanolitres or less).
However, the use of microfluidics in manipulating and analyzing individual cells has
notably increased in recent years. Its application to biological systems is compelling
because it allows manipulation at the single or even subcellular level. Recently, there
has been a push towards applying microfluidic tools to specific biological research
areas so that development of these engineering approaches can be better guided.

Microfluidic devices allow for a lab-on-a-chip array to simplify single cell analy-
sis by providing a microenvironment that is of micrometer dimension and contain-
ing nanomoles of reagent/media. They also allow for controlled placement of cells
and precise delivery factors (Chao and Ros 2008). One conventional system that is
commonly used as a model to study cell migration is the transwell Boyden cham-
ber, in which a porous membrane with pore size of ∇5–10µm is placed between
cells and chemoattractant so that cells are attracted to move across the membrane
(Karnoub et al. 2007). Rapid advances in microtechnology have made microfluidic
devices easy to design and construct. For instance, polydimethylsiloxane (PDMS)
membrane stamps are typically molded off through soft lithography and other rapid
prototyping techniques (Xia and Whitesides 1998). Refinements in the fabrication
process, such as e-beam lithography, makes it possible to construct channels on the
submicron or even nanoscale, which in theory would be able to constrain a fluid
volume down to a femtolitre (billionth of microlitre) range (Qin et al. 2010). Recent
microfluidic approaches in studying cellular migration are reviewed in Huang et al.
(2011).

Another application of microfluidic-based devices is in the isolation, detection,
and molecular characterization of circulating tumour cells. Efficient methods for
the isolation and characterization of circulating tumour cells can also contribute to
a much better understanding of the metastatic process. The development of passive
microfluidic cell separation biochips, which can isolate circulating tumour cells from
whole blood without the use of antibodies or magnetic beads, is revolutionizing dis-
ease detection, diagnosis, and prognosis as cancer cells can be obtained from blood
(termed liquid biopsy) rather than via the needle aspiration tumour biopsy, which is
invasive, painful, and cannot be performed on a regular basis (Lim 2012). Recent
overviews of various methods for circulating tumour cell isolation, detection, and
molecular characterization can be found in Hou et al. (2011), Lianidou and Markou
(2011), and Yu et al. (2011). Isolation of cells with differential deformabilities
remains a great challenge (Wirzt et al. 2011; Gossett et al. 2012). Microfabrication-
assisted technology, using microscale arrays of round or rectangular posts, channels,
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or other simple patterns, has the potential to solve this problem. For instance, a
mechanical separation chip, which employs artificial microbarriers in combination
with hydrodynamic forces to separate deformable from stiff cells, has been used to
demonstrate the separation of: (i) an artificial mixture of two breast cancer cell types
(MDA-MB-436 and MCF-7) with distinct deformabilities and matastatic potentials,
and (ii) a heterogeneous breast cancer cell line (SUM149), into enriched flexible and
stiff sub-populations (Zhang et al. 2012). The flexible phenotype is associated with
overexpression of multiple genes involved in cancer cell motility and metastasis.

Microfluidic devices have also been used for studying metastatic cancer cell inva-
sion. Much of the initial work in applying microfluidics to metastasis has focused
on studying how cancer cells respond to concentration gradients of chemicals sus-
pected to drive cell motion. For example, with the aid of a PDMS-based device it has
been possible to monitor 3D migration of the invasive MDA-MB-231 (mammary
carcinoma) cells across extracellular matrix-coated microgaps with real-time light
microscopy and map out their migration paths (Chaw et al. 2007). This not only per-
mits to quantify the percentage of migrated cells, but also to obtain information on
migration of individual cells. Microdevices for cell isolation and enumeration from
blood have also been presented by several other authors (Cheng et al. 2007; Vicker-
man et al. 2008; Tan et al. 2009). Today, most of these devices has the potential to be
used for routine monitoring of cancer development and cancer therapy in a clinical
setting. Recently, a microfluidic optical stretcher have been used to study mechanical
properties of cells from the inside (Lautenschläger et al. 2009). This helps investigate
how the cytoskeleton, cell mechanics, and cell motility may be related, so that we
may better understand how to develop therapies that hinder movement of metastatic
cells.

6 Future Challenges and Perspectives

In this chapter we have reviewed recent modelling aspects of cancer fluid mechanics
at different representation scales. In particular, model simulations of how cellular
changes affect macroscopic distributions are especially important when examining
sustained angiogenesis, tissue invasion, and metastasis. Although these models have
been successful in describing macroscopic evolution properties of cancer, it is well
known that they occur through genetic mutations and evolutionary selection; a link
that has not yet been fully modelled. On the other hand, while all macroscopic models
either assume that cells move through a diffusion-like process or act as an elastic
fluid, only discrete models have the ability to track the behaviour of single cells.
Therefore, macroscopic continuum models should be derived from the underlying
cellular models by suitable asymptotic methods linking inter-cellular distances to
those typical of the tissue level. This necessity has recently given rise to multiscale
modelling constructs, where the dynamics at the cellular scale is coupled with the
continuum mechanics of solid tumours. However, as is the case with very complex
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systems, all of the components cannot be usually included if we wish to develop
practical models.

One possible solution to the above difficulty that has been envisaged is to make
use of the so-called theory of modules proposed by Hartwell et al. (1999), where the
whole system is decomposed into subsystems (or modules) such that the identification
of each module is related to the expression of specific biological functions. However,
this modular approach must overcome a number of challenges before becoming a
workable and practical multiscale modelling framework. For instance, the analy-
sis of large interacting systems as occurs if the numerous signalling pathways or
interacting cytokines are incorporated, which will unavoidably lead to a significant
increase in system size and complexity. Other difficult features involve the processes
of angiogenesis and metastasis, where a detailed modelling of branching, anastomo-
sis, vascular normalization as well as active cell migration to blood vessels, intravasa-
tion, extravasation, and distant site colonization in metastatic spread are completely
ignored by present models. In addition, factors as cell geometry, diffusion terms,
chemotaxis and haptotaxis, and cell invasion as an active and coordinated process
represent future challenges that must be accurately modelled if we want to reproduce
cancer in the computer and convert such complexity multiscale models into powerful
tools for the diagnosis, prediction, and therapy of cancer.
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Growth of Bubbles in Reservoirs and its
Consequences on the Foam Formation

Abel López-Villa and Abraham Medina

Abstract The effect of partial confinement on the shape and volume of bubbles
generated by injection of gas at a constant flow rate, into a highly viscous liquid is
studied numerically and experimentally. By using the Boundary Element Method,
numerical solutions of the Stokes equations for the viscous liquid yield the evolution
of the surface of a bubble. These solutions and experiments show that cylindrical,
conical, and pipe walls with periodic corrugations, concentric with the gas injection
orifice in the horizontal bottom of the liquid, may strongly affect the shape and
volume of the bubbles. Thus, the presence of walls could be used to control the size
of the generated bubbles without changing the gas flow rate. A well-known scaling
law for the volume of the bubbles generated by injection of gas at a high flow rate
in a highly viscous, unconfined liquid is extended to take into account the presence
of cylindrical or conical walls around the injection orifice. In addition, we study
numerically the thickness film that is formed between the free surface of a bubble
and the cylindrical walls in both cases.

1 Introduction

The growth and detachment of bubbles, generated by the continuous injection of
gas into a quiescent liquid, has long been studied in conditions where the viscosity
of the liquid does not play an important role. Results of these studies are of inter-
est in the metallurgical and chemical industries, for example, where liquids of low
viscosity, such as liquid metals and aqueous solutions, need be handled. Bubbles in
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these liquids can be used to modify the concentrations of different substances and
promote chemical reactions between them, to clean liquids from impurities captured
by adhesion or diffusion processes, and for many other purposes (López-Villa et al.
2011).

The generation and dynamics of bubbles in highly viscous liquids is also of inter-
est, but it has been scarcely studied. Thus, while many aspects of the dynamics
of bubbles in unbounded viscous liquids are well understood, the formation and
detachment of bubbles in confined systems has received less attention. Bubbles in
highly viscous liquids are commonly found when dealing with polymers in their
liquid phases, in the flows of lava, and in processes of oil extraction from production
pipelines, among others. The latter example is the main motivation of the present
work, which is of great interest in the so-called gas lift technique of enhanced oil
recovery, where bubbles formed by injecting gas in oil extraction pipes help pumping
the oil.

Scaling laws show that the volume of the bubbles generated by gas injection at
high flow rates into highly viscous liquids increases as the power 3/4 of the flow rate
and it is independent of the diameter of the injection orifice. The simplest way to
control the size of the bubbles in a given liquid is, therefore, to act on the flow rate
of gas. This possibility, however, is limited in the application at hand, because the
flow rate of gas to be injected in the confined space of an extraction pipe is often
determined by other requirements of the gas lift technique. The confinement of the
bubble brings to the front elements of the generation process such as the viscous drag
of the bubbles and the shear stress in the vicinity of the walls, which are disregarded
in inviscid analyses but offer a clue to the solution of the size-control problem. In this
Chapter, we show that the shape of the tube in the vicinity of the injection orifice, or
the use of properly shaped injection nozzles, may cause substantial distortion of the
growing and shape bubbles and modify their volume at detachment. The extent of the
confinement can be gradually increased by decreasing the radius of the cylinder, the
amplitude and frequency of the corrugations, or the angle of the cone, which allows
for quantification of the wall effect on the evolution and size of the bubbles. This size
is determined numerically and experimentally, and scaling laws that are extensions
of well-known laws for unconfined liquids are proposed and validated.

The numerical treatment was made using the Boundary Element Method (BEM).
Boundary integral equations are a classical tool for the analysis of boundary value
problems for partial differential equations. The term “Boundary Element Method”
(BEM) denotes any method for the approximate numerical solution of these boundary
integral equations. The approximate solution of the boundary value problem obtained
by BEM has the distinguishing feature that it is an exact solution of the differential
equation in the domain and is parameterized by a finite set of parameters living on
the boundary (Costabel 1986).

The chapter is organized as follows. In Sect. 2, a formulation of the problem in
terms of the dimensionless equations for the motion of the liquid, the dimension-
less boundary conditions, and the evolution of the free surface is given. In Sect. 3,
a brief description of the BEM is presented. In Sect. 4, we present the results of the
numerical solutions and discuss the evolution of the free surface during the growth
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(a) (b) (c)

Fig. 1 Two-dimensional projections of the reservoirs, concentric to the gas injection needles

of the bubble at a constant gas flow rate in conical, cylindrical, and cylindrical cor-
rugated containers. In Sect. 5, we describe a set of experiments that were carried out
to validate the numerical results. Finally, Sect. 6 summarizes the main findings and
limitations of this work.

2 Equations for Bubble Growth in a Confined Liquid

Suppose that a constant flow rate Q of an incompressible gas of negligible density
and viscosity is injected into a liquid, of density ζ and viscosity μ, initially at rest
in a reservoir under the action of gravity. The gas is injected through a circular
orifice of radius a at the centre of the base (of radius R◦) of the reservoir. The lateral
wall of the reservoir may be cylindrical, conical, making an angle ∂ to the vertical, or
periodically ribbed cylindrical, as sketched in Fig. 1. The gas accumulates in a bubble
attached to the base of the reservoir. The volume of this bubble increases with time
until it detaches and begins to ascend in the liquid, being replaced by a new attached
bubble. The effect of the inertia is assumed to be negligible on the motion induced
in the liquid by the growth and displacement of the bubbles. A sufficient condition
for the effect of the inertia to be negligible is that Re = ρQ/μRb ∇ 1 (Wong et al.
1998; Higuera 2005; Ajaev and Homsy 2006). Here Rb is the characteristic radius
of the detaching bubble, or of its upper cap, which has to be found.

In particular, the model used here is valid for bubble formation in a highly viscous
liquid in confined axi-symmetric geometries (López-Villa et al. 2011). The continuity
and Navier-Stokes equations have the following dimensionless forms, respectively
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∼ · v = 0, (1)

0 = −∼ p + ∼2v − Boi. (2)

Here the distances and times are scaled with the radius of the orifice a and the viscous
time μa/Ω ; where p is the pressure, v is the velocity field, with v = v◦Ω/μ, i is the
normal vector pointing in the upward vertical direction (x is the vertical coordinate),
and Bo is the Bond number given by

Bo = φga2

Ω
, (3)

where ζ is the liquid density, g is the acceleration due to gravity, a is the radius of
the orifice of gas injection, and Ω is the surface tension. When the bubble grows, we
assume that the dimensionless gas flow rate is constant. The dimensionless capillary
number is

Ca = μQ

Ωa2 , (4)

where Q is the constant flow rate of gas.
When a bubble is formed in the liquid, a free surface of the form f (x, t) > 0

exists, and therefore Eqs. (1) and (2) must be solved with the boundary conditions
on the surface of the ith bubble

D fi

Dt
= 0, (5)

−pni + Ψ ≥ · ni = (∼ · ni − pgi )ni . (6)

In the inner cylinder’s surface, at r = R◦, and at infinity we have that

v = 0, (7)

because the fluid does not move there. Moreover, the pressure far from the bubble
must satisfy

p + Box = constant, (8)

where pg(t) is the uniform pressure of the gas in the bubble, which must be found
by assuming that the volume V of the bubble increases linearly with time at a rate
equal to Q for the attached bubble. In dimensionless variables, this condition reads

dV

dt
= Ca. (9)

In these equations D/Dt = ρ/ρt + v·∼ is the material derivative at points on
the surface of the bubble, n=∼ f/|∼ f | is a unit vector normal to the surface of the
bubble, Ψ ≥ = ∼v+(∼v)T is the dimensionless viscous stress tensor, and x are r are the
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(a) (b)

Fig. 2 Details of the contact line

distances along the axis of the reservoir and normal to it, respectively. Equation (5)
means that the surface of the bubbles is a fluid surface separating the liquid from the
gas, and therefore there is no mass exchange through it, while Eq. (6) is the balance
of the stress acting on the surface of the bubbles.

If the gas pressure in each bubble, pgi , is known, Eqs. (1) and (2) together with
the boundary conditions (5–9) determine the velocity fields and the fluid pressure,
and in particular the velocity on the surface of each bubble. In order to determine
pgi and complete the formulation of the conditions to be used, the volumes of the
released bubbles (i > 1) are considered to be constant and equal to their values at
the instant of release.

An additional condition is needed at the contact line between the growing bubble
and the solid. Here the contact line will be taken to coincide with the edge of the
orifice when the angle of the liquid–gas surface with the horizontal bottom is larger
than the contact angle (i.e. when −nx0<cos∂ , where nx0 is the vertical component
of the unit normal n0 to the attached bubble), and to spread away from the orifice,
with the liquid–gas surface making a constant contact angle with the solid bottom
(−nx0 = cos∂), otherwise (Higuera 2005; see Fig. 2).

The line of contact of the bubble (i = 1) adhered to the reservoir base is a circle
which may either coincide with the edge of the orifice or move to a position r > 1
to be determined. Figure 2 illustrates both possibilities. In the first case (Fig. 2a), the
radius of the contact line coincides with the hole edge, r = 1. In the second case
(Fig. 2b), the angle formed by the bubble surface shape and the base of the reservoir
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must match the contact angle ∂ , which is a property of the liquid and the material of
the shell.

Then the problem contains five dimensionless parameters, which are the Bond
number Bo, a capillary number Ca, the dimensionless radius of the base of the
reservoir R = R ◦ /a, the semi-angle of the conical base θ, and the contact angle ∂

between the liquid and the base (see Fig. 2). In the case when the walls of the tubes
are corrugated, the mean is the tube radius, i. e., only for this case we have a further
parameter: the frequency parameter w, which will be introduced later in Sect. 4.

The set of equations given above satisfy the boundary conditions of quite flow at
infinity, the non-slip conditions on the walls, and the quasi-static pressure balance.
The evolution of the free surface (bubble shapes) is given by the solution of Eq. (5),
which is here solved using a fourth order Runge-Kutta scheme, after the hydrody-
namic problem, imposed by Eqs. (1) and (2), is solved by using the BEM method
(López-Villa et al. 2011). Figure 1 shows a schematic of the shape of the reservoir
containing a viscous liquid.

3 Numerical Solution Method

We seek for axi-symmetric solutions of Eqs. (1–9). We use a standard Boundary
Element Method (e.g., Pozrikidis 1992, 2002) to solve them along with a fourth
order Runge-Kutta method to calculate the evolution of the free surface f given by
Eq. (5).

3.1 History

After three decades of development, the Boundary Element Method (BEM) has found
a firm footing in the arena of numerical methods for partial differential equations.
Compared to more popular numerical methods, such as the Finite Element Method
(FEM) and the Finite Difference Method (FDM), both of which can be classified as
domain methods, the BEM distinguishes itself as a boundary method, meaning that
the numerical discretization is conducted at reduced spatial dimension. For exam-
ple, for problems in three-space dimensions, the discretization is performed on the
bounding surface only, while in two-space dimensions, the discretization is on the
boundary contour only. This reduced dimension leads to smaller linear systems, less
computer memory requirements, and more efficient computation. This effect is most
pronounced when the domain is unbounded. Unbounded domains need be truncated
and approximated by domain methods. The BEM, on the other hand, automatically
models the behaviour at infinity without the need of deployment of a mesh to approx-
imate it. In the modern day industrial settings, mesh construction is the most intensive
labour and also the most costly portion of numerical modelling, particularly for the
FEM. Without the need of dealing with the interior mesh, the BEM is more cost effec-
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tive in mesh preparation. For problems involving moving boundaries, the adjustment
of the mesh is much easier with the BEM; hence it is again the preferred tool. With
these advantages, the BEM is indeed an essential part in the repertoire of the modern
day computational tools (Alexander et al. 2005).

One can view BEM as the numerical implementation of boundary integral equa-
tions based on Green’s formula, in which the piecewise element concept of the FEM
is utilized for the discretization.

3.2 BEM for Axi-Symmetric Domains

In this section, we describe the standard BEM for three-dimensional flow in an
axi-symmetric domain. Our goal is to reduce the boundary integral equation to a
one-dimensional equation, or a system of one-dimensional equations, over the trace
of the boundaries in an azimuthal plane. First, the Green’s functions of Stokes flow
represent solutions to the continuity equation ∼ · v = 0 and the singularly forced
Stokes equation

− ∼P + μ∼2v + gσ(x − x0) = 0, (10)

where σ(x − x0) is the Dirac delta function in three dimensions, g is an arbitrary
constant, and xo is an arbitrary point. Introducing the Green’s function G in three
dimensions, we may write the solution of Eq. (10) in the form

ui = 1

8κμ
Gij(x − x0)gi . (11)

Here x is the observation or field point. Physically, Eq. (11) expresses the velocity
field due to a concentrated point force of strength g placed at point x0, and may
be identified with the flow produced by the slow settling of a small particle. In the
literature of boundary integral methods, the Green’s function may appear under the
names fundamental solution or propagator (Pozrikidis 1992).

It is convenient to classify the Green’s functions into three categories depending
on the topology of the flow domain. First, we have the free-space Green’s function for
infinite unbounded flow; second, the Green’s functions for infinite or semi-infinite
flow that are bounded by a solid surface; and third, the Green’s function for internal
flow that is completely confined by solid surfaces. The Green’s functions in the second
and third categories are required to vanish over the internal or external boundaries
of the flow. As the observation point x approaches the pole x0, all Green’s functions
exhibit a singular behaviour and, to leading order, behave like the free-space Green’s
function. The Green’s functions for infinite unbounded or bounded flow are required
to decay at infinity at a rate equal to or lower than that of the free-space Green’s
function. We find that

ρGij(x − x0)

ρxi
= 0. (12)
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for the divergence of Eq. (11).
Integrating Eq. (12) over a volume of fluid that is bounded by the surface D and

using the divergence theorem, we find

→
D

Gi j (x − x0) ni (x) d S (x) = 0, (13)

independently of whether the pole xo is located inside, right on, or outside D.
The vorticity, pressure, and stress fields associated with the flow given by Eq. (11)

may be represented by the corresponding forms:

βi = 1

8κμ
ψi j (x − x0) g j, (14)

P = 1

8κμ
p j (x − x0) g j, (15)

Ψik = 1

8κμ
Ti jk (x − x0) g j , (16)

where ψi j , p j , andTi jk are the vorticity tensor, the pressure vector, and the stress
tensor associated with the Green’s function. In particular, the stress tensor Ti jk is
defined as

T i jk (x − x0) = −σik p j (x − x0) + ρGi j (x − x0)

ρxk
+ ρGi j (x − x0)

ρxi
. (17)

Note that Ti jk = Tkji as required by the symmetry of the stress tensor Ψ . When the
flow domain is infinite, we require that ψi j , p j , andTi jk vanish as the observation
point is moved to infinity.

First, for axi-symmetric flow with no swirling motion, we observe that in cylindri-
cal coordinates, none of the boundary variables is a function of the azimuthal angle
ε. This reduces the number of variables.

In the problem of bubble generation, the contours are the surfaces of the bubbles
and the solid surfaces of the reservoir, which are all surfaces of revolution. The
unknowns involved in the formulation of the boundary element are the velocities of
the fluid particles that define the surfaces of the bubbles and the stresses on the wall
of the vessel.

We introduce the dimensionless driving pressure P = p + Box , which allows us
to write Eq. (2) as

− ∼ P + ∼2v = ∼ · Ψ = 0, (18)

where Ψ = −PI+Ψ ≥ is a modified stress tensor, where the fluid pressure is replaced
by the driving pressure. The stress of the liquid on the surface of the ith bubble, given
by the left-hand side of Eq. (6), is therefore

−pni + Ψ ≥ · ni = −Pni + Ψ
≥ · ni + Boxni .
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We will use the notation f = Ψ · n for the modified stress on the limiting contour
of the liquid, where n is the normal to the contour directed towards the liquid. With
this notation -pni + Ψ ≥ · ni = f + Boxni and so the boundary condition (6) on the
bubble surface i takes the form

f = (∼ · ni − Box − pgi)ni (19)

In addition, we use the Green’s functions for axi-symmetric flow, which are the
solutions of the Stokes equations (10) in unlimited space for the action of forces
concentrated on a circumference of radius r0 centred at point x0 on the axis of sym-
metry. These forces can be either parallel or perpendicular to the axis of symmetry,
which gives rise to two distinct solutions whose velocity and pressure distributions
denoted as Gx (x, x0) and Px (x, x0) for the axial force, and Gr (x, x0) and Pr (x, x0)

for a radial force. Here, x0 = (x0, r0) and x = (x, r) (a generic point) in cylindrical
coordinates as was defined above. The problems that must be solved to determine
the Green’s functions are

∼ · Gx = 0, 0 = −∼ Px + ∼2Gx + 8κσ(x, x0)ex, (20)

and
∼ · Gr = 0, 0 = −∼ Pr + ∼2Gr + 8κσ(x, x0)er, (21)

with the conditions (Gx , Px ) → 0 and (Gr , Pr ) → 0 at infinity. In these equations
ex and er are the unit vectors parallel and perpendicular to the axis of symmetry, σ is
the Dirac function, and the 8κ factor is introduced by convention. We will also use
the notation Tr and Tx for the stress tensor of solutions (20) and (21). These solutions
are known and are given in Appendix A.

Since ∼ · v = ∼ · Gx = 0, we find that ∼ · (Gx · Ψ − v · T x ) = Gx · (∼ · Ψ) −
v(∼T x ). Using Eqs. (18) and (20) [i.e. ∼ · Ψ = 0 and ∼ · T x = 8κσ(x, x0)ex] on
the right part of the above equality, integrating the result over the volume occupied
by the liquid, and using the Gauss theorem for flow in an axi-symmetric domain by
transforming the integral of the left part of the equality in a surface integral and this
in a line integral on the meridional section of the bubbles and the walls of the tube
denoted by C, we obtain

− →
c

Gx (x, x0) · f (x) r (x) dl (x) + →
c

v (x) · Tx (x, x0) n (x) r (x) dl (x)

= 8κr0vx(x0), (22)

where f (x),r(x), and dl(x) are defined in a point x on the contour C, where r(x) and
dl(x) are, respectively, the distance from this point to the axis of symmetry and the
arc element on the boundary. Similarly
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− →
c

Gr (x, x0) · f (x) r (x) dl (x) + →
c

v (x) · Tr (x, x0) n (x) r (x) dl (x)

= 8κr0vr (x0). (23)

In the derivation of Eqs. (22) and (23) we have assumed that the circumference
on which the force is applied is concentrated in the volume occupied by the liquid.
Otherwise, the right-hand sides of these equations would vanish. The second integral
on the right side of Eqs. (22) and (23) diverges when the point x0 belongs to the
contour C. A detailed calculation, by deforming the contour in the vicinity of x0
(see, for example, Pozrikidis 1992) shows that for x0 χ C,

vj (x0) = − 1

4π
→
C

G j
k (x, x0) fk (x)

r

r0
dl + 1

4π

PV→
C

vk (x) T j
kl (x, x0) nl (x)

r

r0
dl,

(24)
where PV indicates the principal value of the integral and subscript notation has been
used, with (j, k, l) = x or r, to write the equation in a more compact form.

Equation (24) is a ratio between speeds and stresses on the contour C of the surface
domain occupied by the liquid. If the stresses f are known at all points of C, this
equation is then employed to calculate the velocity of the liquid in C. Similarly, if
v is known in C the equation will then allow for the calculation of f (except for an
undetermined constant P (Pozrikidis 2002).

In the problem of bubble generation, v = 0 on the solid surfaces wetted by the
liquid. There, the liquid velocity on the bubbles is not known, however, the modified
stress is obtained by using Eq. (19). Moreover, the stress given by Eq. (19) would
then be known if pgi is known. In this case, the solution of Eq. (24) determines the
velocity of the liquid on the surfaces of the bubbles and the stresses on the solid
surfaces. With pgi unknown, the stress on the bubble i is the sum of a known stress
(∼ · ni − Box)ni , and a uniform normal stress, −pgi ni .

Given the linearity of Eq. (24), the velocity on the surfaces of the bubbles and the
stress on the solid surfaces take the form

v = v0 +
∑

i
vi (pgi ) and f = f 0 +

∑
i

f i (
pgi

)
, (25)

where v0 and f 0 are the velocity and the stress calculated for pgi = 0 in Eq. (19)
and vi and f i are the velocity and the stress calculated for f = 0 on all surfaces of
the bubbles except for bubbles i, where f = −ni .

Equation (24) provides the solution of Eq. (23) in terms of the pressures of the
gas in the bubbles, pgi . We now need to establish appropriate equations to calculate
these pressures. These equations express the conditions (9) and that the volumes of
the released bubbles (i > 1) are constant. In terms of the velocity of the liquid, as
given by Eq. (24), the time rate of change of the volume of bubble j is

dVj

dt
= 2κ →C j

v · njrdl = a j0 +
∑

i
a ji pgi , (26)
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where C j is the contour of the bubble. The coefficients a j0 and a ji are easily calcu-
lated from the velocities v0 and vi and satisfy the linear equations

a10 +
∑

i
a1i pgi = Ca and a j0 +

∑
i
a ji pgi = 0 for j > 1, (27)

from which the pressures pgi can be calculated.
To complete the formulation of the problem, we must solve Eq. (5) for the surface

of each bubble moving with the local velocity of the liquid. The position x(t) of a
fluid particle on the surface of a bubble satisfies the equation

dx
dt

= v (x, t) , (28)

where v(x, t) is the solution of Eqs. (24–27) at point x on the surface and at time t.
To solve numerically the integral equation (24), the contours of the bubbles and

solid surfaces must be discretized. This is done using Ni nodes distributed at the same
distance on the bubble boundary i and Nd nodes at the base of the reservoir, distributed
non-uniformly in space with increasing separations from the axis of symmetry. The
integrals in Eq. (24) are calculated using a Gaussian integration allocation with six
points in the interval between each pair of nodes.

This surface is discretized with a finite number of nodes that move as material
particles. Numerical tests conducted with different numbers of nodes show that a
discretization of 120 nodes gives sufficient resolution.

A value of ∂ = 45⊥ was used for the contact angle in the calculations. Numerical
computations with other values of ∂ show that the effect of the contact angle on the
volume of the bubbles is small provided that ∂ is smaller than about 90⊥.

4 Numerical Results

With the numerical method described above, we have obtained a set of important
results. These results are here compared qualitatively with experiments that validate
the reliability of the method.

4.1 Cylindrical Reservoir

A few numerical calculations were carried out to study the growth and detachment of
a bubble in a cylindrical reservoir. Figure 3 shows a bubble which is about to detach
from the base of the reservoir for Bo = 0.2, Ca = 10, and dimensionless radii of the
reservoir R = 5, 4, and 3.5. Figure 4 shows the variation of the volume of detachment,
V f , and the aspect ratio of the bubble, Λ (defined as the ratio of L f to the maximum
diameter of the bubble), with R.
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(a) (b) (c)

Fig. 3 Meridional sections of bubbles that are about to detach from the base of a cylindrical reservoir
for Bo = 0.2, Ca = 10, and R = 5 (a), 4 (b), and 3.5 (c)

(a)

(b)

Fig. 4 a Volume V f and b aspect ratio Λ of a detaching bubble from the base of a cylindrical
reservoir as functions of R for Bo = 0.2 and Ca = 10

The finite radius of the reservoir affects only the high-flow-rate regime for the
values of Bo and R used here. The decrease of Λ with increasing R in Fig. 4b is in
qualitative agreement with the estimate L f /R ≤ Ca/(BoR4) for columnar bubbles.
The decrease of V f in Fig. 4a also agrees with previous estimates, according to which
the ratio of the volume of a columnar bubble to the volume of a bubble detaching
in an infinite reservoir is of order (Ca/Bo)1/4/R for Ca/Bo large compared to
R4. Figure 5 shows V f as a function of Ca for Bo = 0.2 and three values of R.
The nearly linear increase of V f agrees with the estimate V f ≤ Ca/Bo. Note that
V f ≤ (Ca/Bo)3/4 for a bubble in an infinite reservoir. The numerical calculations
also predict (results not shown here) that the centre of mass of a columnar attached
bubble rises linearly with time during the growth of the bubble, and that the velocity
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Fig. 5 Volume of a detaching
bubble from the base of a
cylindrical reservoir as a
function of Ca for Bo = 0.2
and R = 4 (dotted), 5 (solid),
and 6 (dashed)

Fig. 6 Meridional sections of detaching bubbles growing from the base of conical reservoirs for
Bo = 0.2, Ca = 50, R = 1.2, and varying values of θ

of the centre of mass is nearly constant, except in the early stages of the process,
when the bubble is still small compared to the radius of the tube.

4.2 Conical Reservoirs

Figure 6 shows the shape of a bubble which is about to detach from the base of a
conical reservoir for Bo = 0.2, Ca = 50, R = 1.2, and different values of the semi-
angle of the cone θ, and Fig. 7 shows the volume V f and the aspect ratio Λ of the
detaching bubble as functions of θ for R = 1.2 and different values of Bo and Ca.
We see that the volume of the bubble always increases when the angle of the cone
decreases, the effect being more pronounced for small values of the Bond number,
for which the bubble is larger and therefore more easily affected by the wall of the
reservoir. Figure 7a displays an important result of this work, namely, that at low
Bond numbers and high capillary numbers the volume of the bubbles can be easily
controlled through the angle of the cone without having to change the flow rate. This
is a desirable aspect in some applications.



154 A. López-Villa and A. Medina

Fig. 7 a Volume V f and
b aspect ratio Λ of a detach-
ing bubble from the base of
a conical reservoir as func-
tions of θ, for R = 1.2 and
(Bo, Ca) = (0.2, 10) (solid),
(2, 10) (dashed), and (2, 20)
(dotted). The symbols in
b show experimentally
obtained values of Λ for
Bo = 0.0176 (�) and
Bo = 0.15 (�), with Ca =
50.78, and R = 1.2

(a)

(b)

These results can be rationalized by means of a straightforward extension of
the estimations of the previous section for the high-flow-rate regime in cylindrical
reservoirs. Figure 6 shows that the bubbles in conical reservoirs are columnar for
moderately small values of θ, with a cap that increases linearly with its height above
the bottom of the reservoir. (See also Fig. 7b; the bubble is slender for θ smaller than
about 30⊥).

4.3 Corrugated Pipes

For the corrugated case, the numerical calculations were mainly aimed at understand-
ing the effects of corrugation on the bubble shape. When using different number of
nodes for the tube walls, we observe that, as in the case of smooth walls, the number
of nodes is not important.

Figure 8 shows the bubble shapes for different pipe corrugation wave lengths, in
the viscous case, and Fig. 9 shows the same in the inviscid approximation, where Ca
= 0.1 and Bo = 0.2 in Fig. 9a and Ca = 1 and Bo = 0.2 in Fig. 9b. We see that the
film thickness and the bubble volume are small in the case of small capillary number.
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Fig. 8 Bubble shapes with the same amplitude and varying wave length of the corrugations for a
viscous liquid with Ca = 25 and Bo = 0.2

(a) (b)

Fig. 9 Bubbles growing in a near inviscid liquid a Ca = 0.1, Bo = 0.2 and b Ca = 1, Bo = 0.2.
Notice that the thickness of the film is very thin

In Figs. 10 and 11 we see the process of bubble detachment. These result may
have possible applications to understand the foams formed in viscous fluids in porous
media (Kovscek et al. 1995; Yan et al. 2006).
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Fig. 10 Details of bubble detachment and the effect of the tube wall

(a) (b)

Fig. 11 Comparison with a porous medium
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(b)(a)

Fig. 12 a Bubble in a vertical tube. Notice the existence of a film of thickness b*. b Plot of the
scaled dimensionless film thickness b/R as a function of the scaled capillary number Ca/R2

4.4 The Film Thickness

In Fig. 12a, we see that during growth of the bubble in the pipe there is an annular
film of thickness b◦. In a classical study, Bretherton (1961) showed, by using the
lubrication theory, that the dimensionless thickness of the film b = b◦/a scales as

b

R
≤

(
Ca

R2

) 2
3

, (29)

which is valid whenever Ca → 0 and R and the Bond number are also small.
Figure 12b shows a numerically obtained curve that obeys this scaling. In this plot
the continuous curve was obtained with our numerical solution method, while the
dashed part of the curve shows the trend given by Eq. (29), which was numerically
inaccessible. In spite of this, we clearly see that b → 0 as Ca → 0. Physically, the
condition Ca → 0 means that the bubble in an inviscid liquid is touching the inner
solid wall.

Figure 13a shows some bubble profiles: in this case they were obtained for low
capillary numbers and it is evident that the film thickness tends to zero for small
values of Ca and R. It can also be seen that the profiles show some “corrugations”.
This occurs because they become unstable when the height of the tube is very large
compared to its radius. In our case, the height of the tube is 30 times its radius. Also,
it is observed experimentally that when Ca << 1 the profiles of even small bubbles
may become unstable.

Moreover, very different results are obtained when the film thickness is computed
for highly viscous liquids, i.e., for Ca >> 1 in the limit of low Bond numbers. In this
case, the film thickness tends to a constant value when the capillary number increases
(see Fig. 13b). Figure 14 shows how b → constant for Ca >> 1. In dimensional
terms the actual thickness of the annular film, b◦ →1.5a◦, i.e., the lower value of
b* is 1.5 times the radius of the gas injection orifice. Physically, this condition is
attained for highly viscous liquids or at very large gas flow rates.
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(a) (b)

Fig. 13 Bubble shapes in cylinders filled with (a) liquids of low viscosity and (b) with highly
viscous liquids. In (a) the height and the film thickness between the bubble and the wall diminishes
when Ca → 0 (Ca =0.4, 0.3, 0.2, and 0.1). In (b) the film thickness b → constant, for Ca >> 1.

The larger bubble corresponds to Ca = 3. The other cases are Ca = 20, 10, and 5. The dimensionless
pipe radius is R = 5

Fig. 14 Thickness of the annular film, b, as a function of the capillary number, Ca. Notice that
b → constant for Ca >> 1.

5 Experiments

A series of experiments were carried out to study the growth and detachment of
bubbles in highly viscous liquids. Glycerine and silicone oil have been used in the
experiments. The properties of glycerine at 25o are: density ζ = 1260 kg/m3, vis-
cosity μ = 7.9 × 10−1 Ns/m2, and surface tension Ω = 6.3 × 10−2 N/m, while
those of the silicone oil at the same temperature are: density ζ = 971 kg/m3 and
viscosity μ = 9.71 × 10−1 Ns/m2. In each experiment, a large open container with
a horizontal bottom was filled with liquid up to a height of 100 mm. At the bottom
of the container a circular orifice of radius a = 0.3 mm was drilled.

A glass tube of inner radius R◦ = 3.2 mm was positioned vertically and concen-
trically with the orifice to form a cylindrical reservoir. Conical reservoirs of various
angles were formed by carefully inserting cones made of acetate sheet concentrically
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Fig. 15 Volume of a bubble attached to the base of a conical reservoir filled with glycerine as a
function of time during the growth of the bubble for Bo = 0.0176, R = 1.2, and different values of
the semi-angle of the cone: θ = 10⊥(�), 20⊥(x), 25⊥(�), 30⊥(�), and 90⊥(∗)

with the orifice. Air was pumped through a capillary tube 40 cm long and 0.6 mm of
inner diameter, which ends at the orifice in the bottom of the container. We found in
a previous work (Corchero et al. 2006) that a length of 40 cm suffices to make the
pressure drop in the air line large compared to the pressure variations in the bubble
during the growth process and therefore ensures a constant flow rate in our experi-
ments, which was one of the premises of the numerical work. To check that the flow
rate is constant, the evolution of the attached bubble was video recorded; the contour
of the bubble was extracted from the video images using a standard algorithm (Russ
2002) implemented in a home-made code. The volume of the bubble, V(t), and the
height of its centre of mass, xC M (t), were computed assuming that the bubble is
axi-symmetric. Some sample plots of V as a function of time for a bubble growing
in glycerine within conical reservoirs of various angles are shown in Fig. 15. The
approximate linear variation of V with time shows that the flow rate is nearly con-
stant and independent of the angle of the cone. The value of the flow rate determined
by fitting a straight line to the experimental data of Fig. 15 is Q = 364.5 mm3/s. The
same procedure was used to measure the flow rate of air injected into silicone oil and
in cylindrical containers. The flow rate was found to be nearly constant in all cases.

In addition, Fig. 16 shows the shapes of bubbles in glycerine that are about to
detach from the injection orifice in conical reservoirs of various angles. Here θ = 90⊥
corresponds to a bubble detaching in an infinite reservoir. The shape of the bubbles
begins to differ significantly from this case when θ becomes smaller than about
30⊥. Coalescence between previously detached bubbles can be seen in some of the
images. The presence of the conical wall of the reservoir increases the drag of the
ascending bubbles, decreasing their velocity and apparently promoting coalescence.
We plan to analyze this important aspect of the generation of bubbles in a future work.
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Fig. 16 Growth of bubbles at different angles of inclination θ

Fig. 17 Centre of mass of a bubble attached to the base of a conical reservoir as a function of time
during the growth of the bubble for Bo = 0.04, Ca = 70.23, R = 1.2, and θ = 15⊥. Symbols are
experimental results and the solid curve shows the results of the numerical computation

The gas flow rate in this sequence of experiments is that measured from Fig. 15. Values
of the dimensionless parameters are Bo = 0.0176, Ca = 50.78, and R = 1.2.

The aspect ratio Λ of the bubbles in Fig. 16 and in other companion experiments
was also extracted from the images and included in Fig. 7b (triangles and diamonds),
where it is compared to the numerical results obtained for similar dimensionless
parameters. The comparison is reasonably good, though the experimental values of
Λ increase with decreasing θ slightly faster than predicted numerically, and become
larger for small values of θ. We think that the difference is due to the vertical momen-
tum carried by the injected gas, which was not taken into account in the numerical
calculations. The evolution of the centre of mass of the bubble is shown in Fig. 17,
where it is also compared to the numerical results. The nearly linear increase of xC M

with time must be compared to the xC M ∝ t1/3 evolution expected for a round bubble
growing in an infinite reservoir (Davidson and Schuler 1960). The difference clearly
shows the effect of the conical wall.

In the experiments with cylindrical reservoirs only silicone oil was used because
glycerine tends to produce small bubbles that linger in the reservoir for a long time and
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(a) (b) (c) (d) (e)

Fig. 18 Five equispaced images spanning the period of growth of a bubble attached to the base
of a cylindrical reservoir for Bo = 0.04, Ca = 209.94, and R = 10.66. The period of bubbling is
1.33 s

Fig. 19 Dimension of profile bubbles formed inside a tube with periodic corrugations c = 7.33,
dimensionless radius R* = 3.7, Bo = 0.2, and different capillary numbers

interfere with the observation of the bubble attached to the orifice. Figure 18 shows
five equispaced images in time that span the cycle of growth and detachment of a
bubble. In this experiment, the flow rate of gas measured from the video recording is
Q = 419.59 mm3/s and the period of bubbling is 1.33 s. Values of the dimensionless
parameters are Bo = 0.04, Ca = 209.94, and R = 10.66. Figure 19 shows profile
bubbles formed inside a tube with periodic corrugations c = 7.33, dimensionless
radius R* = 3.7, Bo = 0.2, and different capillary numbers.

6 Conclusions

The growth of a bubble due to the injection of gas at a constant flow rate through an
orifice in the horizontal base of a container filled with highly viscous liquids has been
investigated numerically and experimentally for the case in which nearby solid walls
partially confine the space where the bubble is allowed to grow. Conical, cylindrical,
and corrugated cylindrical walls coaxial with the injection orifice have been used in
order to allow for an easy control of the extent of the confinement by simply changing
the angle of the cone, the radius of the cylinder, or the frequency in the corrugated
case.
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Numerical solutions of the Navier-Stokes equations for the liquid and the evolution
equation for the free surface of the bubble show that the wall near the injection
orifice may have an important effect on the shape of the bubble and its volume at
detachment. Calculations for small Bond numbers (Bo = 0.2) and moderately large
capillary numbers (of the order of 10) show that vertically elongated bubbles with
volumes significantly larger than those of the round bubbles, generated in the absence
of walls, are obtained when the radius of the cylindrical wall is smaller than about
six times the radius of the orifice, or when the semi-angle of the cone is smaller than
about 30⊥. The calculated distributions of forces on the surface of the bubble and the
wall suggest that buoyancy, viscous drag, and viscous friction with the wall all play
a role in the dynamics of the bubbles.

Experiments have been carried out with two different viscous liquids to explore
wide ranges of the Bond and capillary numbers by keeping the inertial effects of the
liquid small. Good qualitative agreement has been found between the numerical and
the experimental results. The well-known scaling law for the volume of a bubble
at detachment from the bottom of an unconfined liquid has been extended to take
into account the presence of conical or cylindrical walls. For a conical reservoir, the
semi-angle of the cone appears as an extra factor θ−1/4 multiplying the standard
(Ca/Bo)3/4 scaling. For a cylindrical reservoir, the exponent may change from 3/4
to 1 when the radius of the cylinder decreases.

The results of this work may have implications for the methods of enhanced oil
recovery, where properly shape injection nozzles may help optimizing the volume
of the bubbles generated in oil production pipes without changing the flow rate of
the gas or the injection of foams in both homogeneous and fractured reservoirs.
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and SIP20131821-IPN. We also acknowledge the CONACyT for partial support through the project
SENER-CONACyT 146735.

Appendix A. The Green’s functions for Axi-symmetric flow.

This Appendix lists Green functions for axi-symmetric flow generated by a unit ring
force located at (x0, r0) and pointing in the direction eθ with θ = r, x. Define

Z = x − x0,

L =
√

Z2 + (r + r0),

D =
√

Z2 +
√

Z2 + (r + r0),

S =
√

Z2 + r2 + r2
0 ,

m = 2(rr0)
1
2

L
,
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and the elliptic integrals
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Theoretical Physics of Granular Fluids
and Solids

Leonardo Trujillo and Leonardo Di G. Sigalotti

Abstract Here we present a brief introduction to some theoretical ideas for granular
matter. We start by reviewing the physical properties and constraints of
granular materials. We then outline some approaches towards a thermodynamics
for granular materials. We analyze the grain flow as a fluid mechanical phenomenon,
with a brief introduction to the kinetic theory of inelastically colliding hard particles.
We present a nonlinear theory of elasticity for granular solids. Finally, we briefly
discuss the problem of formulating continuous field equations in discrete particulate
systems and non–local constitutive relations.

1 Introduction

One grain of sand is a solid, but a lot of grains together can behave like a solid or a
liquid. Their physical behaviour involves complex nonlinear phenomena, including
non-equilibrium static configurations, energy dissipation, nonlinear elastic response,
and peculiar flow dynamics (Guyon et al. 1990; Nagel 1992; Mehta and Barker
1994; Jaeger et al. 1996; de Gennes 1998, 1999; Kadanoff 1999; Rajchenbach 2000;
Herrmann 2002; Aranson and Tsimring 2006). Classical examples are sand, pow-
ders, sugar, salt, and gravel. No limitations are imposed on the size of the particles,
which may range from the nanometer scale, as in pigments and aerosols, to the scale of
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mined or quarried materials and rocks. The mechanical response of granular packings
to external perturbations plays a major role in numerous scientific endeavours (such
as soil mechanics and geophysics), as well as in industry (oil exploration, structural
stability, product formulation in pharmacology and domestics, granular composites,
heterogeneous materials, etc.) (Ottino and Khakhar 2001). Investigations in granular
materials gather teams from civil, chemical and mechanical engineers, food technol-
ogists, powder metallurgists, materials scientists, pharmaceutical scientists, applied
mathematicians, and physicists. Beyond their practical importance, granular mate-
rials interest physicists because they are an unusual form of matter with interesting
properties that are not yet fully understood. So far, there is no accepted set of uni-
versal governing equations describing the physics of granular materials (Kadanoff
1999; Aranson and Tsimring 2006). Important contributions have been made to
improve our understanding of many new aspects using modern tools from statistical
dynamics to fluid mechanics. Foundational issues in granular materials are offering
a great challenge for theoretical physicists. On the other hand, a precise model for
granular dynamics would be particularly useful for optimizing industrial devices
and processes. In addition, a mathematical model for granular materials, expressed
in the form of governing equations with proper boundary conditions and/or initial
conditions would be very useful for computational simulations of complex practical
problems in science and engineering.

The question “which are the theoretical foundations of granular physics?” is not a
mere philosophical one because it is not well understood how to formulate concisely
a chain of logical arguments that can reveal what are the basic assumptions, how a
theory for granular materials can be constructed part-by-part, what are its strengths
and limitations, how many theoretical scenarios one can imagine for the gas, liquid
or solid state coexistences, plastic flow, and glassy behaviour, and how, at least in
principle, accurate calculations can be performed to decide unambiguously how the
initial configurations evolve in time.

Here we present a brief introduction to some theoretical ideas for granular matter.
In Sect. 2 some characteristic features, complexities, and constraints about granular
materials are enumerated. The theoretical landscape is outlined through three main
subjects: granular thermodynamics (Sect. 3); granular hydrodynamics (Sect. 4); and
granular elasticity (Sect. 5). In Sect. 6, we address the problem of a formal justifi-
cation of continuous matter fields for particulate discrete systems and constitutive
relations. Section 7 summarizes the conclusions.

2 Some Features on Granular Materials

What are granular materials? They are materials made of sets of discrete macro-
scopic solid particles (granules). In order to characterize a granular material let us
first consider the following attributes and physical constraints (Guyon et al. 1990;
Nagel 1992; Mehta and Barker 1994; Jaeger et al. 1996; de Gennes 1998, 1999;
Kadanoff 1999; Rajchenbach 2000; Herrmann 2002; Aranson and Tsimring 2006):
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• Size: The lower size limit for grains in granular materials is about one micron
(de Gennes 1998, 1999). However, it is believed that the physics of granular
media can also be applied to much bigger objects. An interesting example are
the rings of Saturn, which are composed of a myriad of individual particles that
continually collide (Esposito 2010). The size of Saturn ring particles may extend
over kilometers, i.e., from fine dust to embedded moonlets (Borderies et al. 1985).
A sand grain (the archetypal granular particle) is of the order of 108 times more
massive and voluminous than, say, a water molecule. This difference is not a
particularly fundamental one as far as the microscopic description of particles
motion is concerned since both types of particles can be treated according to the
laws of classical mechanics. However, grain size has an important bearing on the
applicability of the continuum hypothesis as will be discussed below. In the context
of granular materials the size matters because the size of a grain affects the entire
static or dynamic collective behaviour. Perhaps the best known of these effects is
the so-called Brazil nut effect, whereby larger particles placed into a mechanically
agitated system rise to the surface rather than sinking to the bottom (Kudrolli
2004).

• Shape: Real granular systems are composed of heterogeneous constituents with a
rather intricate morphology, such as rocks, rice, flakes, etc. Sand is composed of
finely divided rock and mineral particles, which under the effect of the air flow
their shapes become well rounded as, for example, in sand dunes. Up to now,
the mechanical response of a granular material and the shape of its constituents
remain an open problem, making systematic studies infeasible. Idealized models
for granular media consist of a packing formed by spherical particles in three
dimensions (3D) or disks in two dimensions (2D). While the former model allows
for efficient simulations of large systems, it is often insufficient when the static
behaviour of such systems is considered. For example, results of experiments
on a 2D model system, made of discrete square cells submitted to a point load,
have shown that the collective response of the pile contradicts the standard elastic
predictions and supports a diffusive description of stress transmission (Da Silva
and Rajchenbach 2000). On the other hand, in vibro-fluidized systems complex
collective behaviours and patterns emerge when the interactions between grains
have shape anisotropy as occurs, for example, in a system of vertically vibrated
rods, which can range from a nematic-like gas phase to single and multiple rotating
vortices (Aranson and Tsimring 2006).

• Many-body classical system: Granular materials are macroscopic systems made of
a large number of interacting particles. The term macroscopic implies that classical
mechanics must be employed to provide an accurate description of the system. The
dynamics of a granular material is governed by Newton’s equations of motion for
the centre-of-mass coordinates ri and Euler angles ζi of its constituent particles i
(with i = 1, . . . , N ):

mi
∂2ri

∂t2 = Fi (r j , v j , ζ j , Ω j ),
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Îi
∂2ζi

∂t2 = Mi (r j , v j , ζ j , Ω j ), ( j = 1, . . . , N ), (1)

where Fi and Mi are, respectively, the force and torque acting on particle i of
mass mi and tensorial moment of inertia Îi , v j are the linear velocities, and Ω j

denote the angular velocities.
• Non-thermal system: Granular materials can be used to explore the non-thermal

and non-equilibrium behaviour found in microscopic systems because they are not
affected by thermal fluctuations and typically exist far from equilibrium. Under
suitable conditions, a non-cohesive granular system can be maintained in a gas-like
state of colliding particles by continuous vibration of the container. This picture
has led several authors to use kinetic theory and thermodynamical concepts to
describe granular media. In contrast to a molecular gas in equilibrium, where the
mean kinetic energy (mean-square velocity) of a molecule is proportional to the
gas temperature (thermodynamic temperature), the natural equilibrium state of a
granular material is a static configuration due to the inelastic nature of particle
collisions. Therefore, a stationary fluidized state needs a constant flow of energy
into the system. This steady state driven by the energy flux can be assumed as a
condition of thermal equilibrium. On the other hand, in analogy to a molecular gas,
we can define a granular temperature Tg , which is proportional to the mean kinetic
energy E of the particles’ velocity (Goldhirsch 2008). Let us remark that this
generalized notion of temperature is introduced for pure theoretical convenience
to take advantage of the existing thermodynamical analogy. In fact, the definition
of thermodynamic variables for non-equilibrium states is theoretically straightfor-
ward. The thermodynamics of non-equilibrium states has always been a matter of
debate. Alternatives for a thermodynamic formulation for granular materials have
been proposed by Edwards and Oakeshott (1989), Herrmann (1993), and Hong
and Hayakawa (1997). Certainly, the problem of a thermodynamic formulation
for granular materials deserves a deeper analysis (cf. Kadanoff 1999)

Here we can anticipate that granular materials represent a good framework to
explore the frontiers of many-body classical mechanics. However, at the lower limit
the problem of solving the dynamics of a mechanical system becomes intractable
for N ◦ 3 (c.f., Poincaré’s three-body problem). This is one reason to consider pair-
wise interactions between particles in computational simulations based on Molecu-
lar Dynamics techniques, thus limiting the study of multiple collisions and contacts.
Therefore, we need to resort to a statistical approach of the problem. However,
statistical mechanics is well understood for systems where the thermodynamical
limit is satisfied (i.e., when the number of particles is around the Avogrado’s number
N ∇ 1023). On the other hand, classical statistical mechanics is founded on the postu-
late of equal a priori probability which is valid for systems that are in thermodynamic
equilibrium. Both conditions are not satisfied by granular materials. An inevitable
consequence of these properties is a plethora of theoretical complexities, where some
methodological questions arise: What should a theory for granular physics deliver?
and What would be the postulates for such a theory? At least it seems that a statisti-
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cal description cannot be avoided. Classical statistical mechanics addresses this via
ensemble averaging. Given the discrete nature of granular materials an alternative
approach is to implement space-time averaging directly, starting with an equation
governing the motion of a centre-of-mass point in an inertial frame (Murdoch and
Bedeaux 1994). On the other hand, continuum field theories have been developed
to model reproducible macroscopic behaviour. Such theories involve fields whose
values can be related to those of experimental measurements. As a granular system
implies a discrete distribution of matter and experiments inherently involves probing
a system at specific scales of length and time (e.g., in a monochrome CCD camera
data are limited by the maximum resolution of pixels and maximum recording rate),
it is clearly of interest to link field values of continuum mechanics with space-time
averages of fundamental discrete entities.

Where is located the physics of granular media among the research fields in
physics? Granular physics is a very old subject dating back to the 17th century. The
work of Coulomb, published in 1776, is considered to be one of the earliest sci-
entific studies of granular media. His report: “Essai sur une application des règles
de Maxims et Minimins à quelques problèmes de statique relatifs à l’architecture”,
published in Mémoires de Mathématique et de Physique de l’Academie Royale des
Sciences, pages 343–382, addresses the issue of the origin of the static angle of
repose, defined as the maximum angle that a sandpile can build up while remaining
stable against gravity-driven avalanches. Once the sample begins to flow, the mov-
ing sand expands under shear so that the grains move out of each other’s way. This
dilatancy was noted by Reynolds in 1885 in his work “On the Dilatancy of Media
Composed of Rigid Particles in Contact”, published in the Philosophical Magazine.
Another major contribution was made by Bagnold in his 1941 classical book: “The
Physics of Blown Sand and Desert Dunes”, which remains a basic reference even 72
years after its publication. However, the study of granular materials has been ignored
by physicists until 1987 when the papers: “Self Organized Criticality: A Universal
Explanation for 1/f Noise” in Physical Review Letters by Bak, Tang and Wiesen-
feld (see Nagel (1992) for a detailed account of this problem), and “Why the Brazil
Nuts are on Top: Size Segregation of Particulate Matter by Shaking” by Rosato and
collaborators (Kudrolli (2004) presents a review about the segregation problem in
granular materials) appeared. These two papers were at least partly responsible for
the subsequent wealth of attention paid by physicists to granular systems, inspiring
experimental and theoretical investigations of the fascinating nonlinear dynamics
exhibited by these deceptively simple seemingly systems. The importance of funda-
mental research in granular materials has been appreciated very early by engineers
but physicists have joined in more recently. Frequently, granular matter is consid-
ered to be a new type of condensed matter, as fundamental as liquids and solids. An
inspiring statement by P.G. de Gennes was “Granular matter, in 1998, is at the level
of solid state physics in 1930” (de Gennes 1998, 1999).

Now the physics of granular materials is broad and interdisciplinary in scope,
focusing on collective phenomena of many-body systems, with statistical physics
and nonlinear dynamics as the central foundations. On the other hand, the contem-
porary field of “ill”-condensed matter physics: Soft Matter, includes granular mate-
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rials together with colloids, complex fluids, liquid crystals, and polymers. Granular
physics also covers fluid dynamics, rheology, and tribology. Experiments in granular
physics range from easily accessible table-top experiments to studies in geomorphol-
ogy to astronomical observations.

3 New Kinds of Thermodynamics

A first step towards a mathematical theory for granular materials is the quest to
answer the following question: Can one construct a thermodynamics for compact,
slowly moving grains? Thermal energy is unimportant for the dynamics of granu-
lar media. Therefore, the concept of “temperature” could be superfluous. However,
there are a number of contexts in which a generalized notion of temperature is impor-
tant. Many attempts have been made to extend the concepts of thermodynamics to
non-equilibrium systems—such as those exhibiting spatio-temporal chaos or weak
turbulence and aging such as glasses (Cugliandolo et al. 1997). In this context we can
define an “effective temperature” for stationary non-equilibrium systems. As we have
argued above, in vibro-fluidized systems an analogous “effective temperature”—the
granular temperature—(which is proportional to the mean kinetic energy of the par-
ticles velocity) may also be defined for granular materials.

Since 1989, Edwards and co-workers (e.g., Edwards and Oakeshott 1989) have
proposed an alternative description of granular materials in complete analogy with
statistical mechanics. In their formulation, the granular temperature does not appear.
The basic assumption is that the volume V of a powder has the role played by
the energy of a classical statistical system. Thus, instead of the Hamiltonian of the
system, they introduced a function W , which specifies the volume of the system
in terms of the positions of the individual grains. Then, physical observables are
obtained by averaging over the usual equilibrium distribution at the corresponding
volume, energy, etc., but restricting the sum to the blocked configurations defined as
those in which every grain is unable to move. This definition leads immediately to
an entropy Sedw given by the logarithm of the number of blocked configurations of
given volume:

Sedw := φ ln

[∫
Ψ(V − W )d(all configurations)

]
, (2)

where Ψ is the Dirac delta function and φ is the analog of the Boltzmann’s constant.
Associated with this entropy are the state variables such as the “compactivity”:

X−1 := ∂

∂V
Sedw(V ), (3)

and the Edwards temperature, Tedw:
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T −1
edw := ∂

∂ E
Sedw(E). (4)

The compactivity characterizes the static system, i.e., in the close-packed limit X = 0
and in the limit of low density X = ∼.

Another proposal of thermodynamics for moving granular materials was intro-
duced by Herrmann (1993). As the starting point, the conservation of energy was
modified to include the effects due to dissipation by the interaction between colliding
inelastic grains at a mesoscopic level (first law):

ρI = ρEint + ρD + ρW, (5)

where, for a given time interval, ρEint is the variation of the internal energy in a
thermodynamical sense due to variations in the kinetic and potential energy, ρD is
the energy dissipated by the system, and ρI is the energy that was injected to the
system in order to maintain a stationary energy flux state. The variation ρI is related
to some kind of work performed on the system as, for example, gravity on a inclined
plane, or on the plate of a mechanical shaker, and ρW is the work done to allow
changes of (bulk) volume in the system. The excess of dissipated energy is given by

ρD := ρD − ρI. (6)

This excess of dissipated energy can be associated to the internal pressure acting on
collisions as a form of compression P and their conjugated variable C :

ΨD = PΨC . (7)

The quantity C was named “contactopy”, in analogy to the entropy, and has dimen-
sions of volume (contact volume). In this sense, the contactopy is similar to the
Edwards’ approach. From the point of view of classical mechanics, this contactopy
is congruent with the “dissipation function” introduced by Lord Rayleigh to describe
dissipational effects in dynamical systems. For instance, an analog to the second law
of thermodynamics is that any change of state at constant internal energy Eint should
decrease the contactopy:

ρC ≥ 0. (8)

In addition, a granular potential can be defined as

G := Eint + PC . (9)

Therefore, the definition for granular temperature (at constant compression) is given
by

Tg = ∂G

∂S
, (10)
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where S is the Boltzmann’s entropy. The granular temperature controls the granu-
lar canonical ensemble with the granular free energy Fg , defined as the Legendre
transformation of the granular potential:

Fg = G − Tg S. (11)

In equilibrium Fg should have a minimum.
An analogy between the configurational statistics of weakly excited 2D granular

materials in a vibrating bed and the Fermi statistics was done by Hong and Hayakawa
(1997). They defined the entropy as S = ln W , with W being the total number of
ways of arranging N particles into a system. Since excluded volume grains are not
allowed to occupy the same states, the statistics is given by a Fermi-like statistics:

W =
∏

i

[
θ!

Ni !(θ − Ni )!
]
, (12)

where Ni is the number of particles at the i-th row and θ is the degeneracy of each
row (i.e., θ = L/d, where L is the width of the container and d the diameter of
the grain). The density profile as a function of the height z was calculated via the
maximization of S, giving a Fermi-like distribution

ζ(z) = Ni

θ
= 1

(1 + exp [σ(z − μ)])
, (13)

where σ → mgd/T at the low temperature limit and μ is the Fermi-like energy
measured in units of d and given by the initial number of layers measured from the
bottom.

In the context of granular elasticity Jiang and Liu (2003) introduced the elastic
free energy potential

f = κ

m
f1 + 1

2
Kbu2

nn + Kau0
klu

0
kl + κgz, (14)

where Kb and Ka are the constant compressional and shear moduli, respectively, unn

is the trace of the strain tensor ui j , u0
i j is its traceless part, i.e., u0

i j = ui j − unnΨi j/3,
g is the standard value of Earth’s gravitational acceleration, and z denotes the height
coordinate. The bulk and shear elastic moduli are given by

Kb = K̃bΨ
b, Ka = K̃aΨa, (15)

with K̃b, K̃a > 0 for Ψ ◦ 0 and K̃b, K̃a = 0 for Ψ = 0 so that the elastic moduli
remain finite. The exponents a and b are related to the type of contact between the
grains. That is, when a = b = 0 linear elasticity is recovered, whereas a = b = 1/2
implies Hertz contacts. This formulation provides a much better approximation to
granular elastic behaviour in which we can specify any type of contact by suitably
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choosing the exponents a and b. Using the Jiang-Liu model for granular elasticity
we can calculate a stability criterion for the granular packing and yield. In this way,
the stability criterion demands that the elastic energy must be a convex function of
the state variables, i.e., ∂ f/∂Ψ < 0, and satisfy the cross convexity condition

(
∂2 f

∂Ψ2

) (
∂2 f

∂u2
s

)
≥

(
∂2 f

∂Ψ∂us

)2

,

with deformation Ψ and shear strain us .

4 Hydrodynamic Theory for Granular Materials

A granular medium behaves in many ways like an ordinary fluid. Insofar as possible,
individual grains are treated as the molecules of a granular fluid. One example is
the motion of sand on a vibrating plate. At sufficiently high vibrations the individ-
ual grains randomly jump up and down colliding among them. Other examples are
the displacements inside a shear-cell or the flows of grains driven by gravity down
inclines. These observations have inspired several authors to use continuum bal-
ance equations for mass, momentum, and energy analogous to fluid dynamics (Haff
1983). Whereas classical fluids are well described by the Navier-Stokes equations,
no constitutive laws can indeed reproduce the diversity of behaviours observed for
granular materials. Here, we restrict the discussion to rigid dry grains only and do
not consider soft particles, cohesive and friction effects, and the interaction with the
surrounding fluid.

Under the action of gravity, a fluidized state can be reached when the granular
material is vibrated in the vertical direction by means of a harmonic displacement of
the bottom plate of the form A(t) = A0 sin(Ωt), where A0 is the maximum amplitude
and Ω = 2β f is the circular frequency of oscillation. For most dissipative systems
perturbed by external forces, energy balance can be described by the expression
d E/dt = I − D, where E is the total energy of the system, I is the power induced
by the external force, and D is the power dissipated by the system. Note that in the
absence of dissipative processes and external forces the total energy of the system is a
constant because both I and D vanish identically. If the medium attains a statistically
stationary state, the time averages of I and D, say 〈I ⊥ and 〈D⊥, must be equal. In
other words, a granular system in a steady state far from equilibrium requires a con-
stant flux of external energy (thermostat) to balance the dissipated power (Herrmann
1993; Aumaître et al. 2001). In analogy with a molecular gas, we may introduce the
definition of granular temperature as being proportional to the mean kinetic energy
of the grains. However, this temperature bears no relation with the internal (thermo-
dynamic) temperature of the grains and gives only a measure of the particle velocity
fluctuations. We refer the reader to Goldhirsch (2008), Baldassarri et al. (2005), and
Baxter and Olafsen (2007), where a complete discussion is given on the definition
of temperature in granular materials.
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Since granular systems are dissipative and far from equilibrium we cannot expect
a priori that the granular temperature can be used to establish (a) the direction of
the heat flux and (b) a thermalization criterion in the sense of the thermodynamic
temperature. The former point is clearly evidenced by the temperature gradients
that appear in a granular system lying between a vibrating wall (heat source) and a
reflecting wall (Brey et al. 2000). On the other hand, recent experiments have shown
that fluidized granular systems behave as thermal baths satisfying the fluctuation-
dissipation relation (Baldassarri et al. 2005). Because of the inelastic nature of grain
collisions we cannot expect equipartition of the granular energy. In fact, the non-
equipartition of the granular energy has been observed in binary mixtures of grains
differing in size and/or density (Barrat and Trizac 2002; Feitosa and Menon 2002).
Moreover, the numerical simulations carried out by Barrat et al. (2004) have also
shown that the classical Green-Kubo relations are satisfied by each component of a
granular mixture on its own. They observed that when the concentration of one of
the components reaches the dilute limit, it acts as a thermometer without affecting
the system considerably. In this case the thermometer measures its own temperature
and not that of the surrounding granular medium. These findings imply that we must
be careful in establishing direct analogies between a thermal bath and the fluidized
state of granular materials.

On the other hand, further recent experiments have revealed that the granular tem-
perature is not uniform through a granular layer (Olafsen and Urbach 1998; Prevost
et al. 2004; Olafsen and Urbach 2005). In particular, the experiments of Olafsen
and Urbach (1998) have shown that as the rate of injection of energy to the system
is decreased by decreasing the amplitude of the vibrations, the system cools pro-
gressively down and favours the growth of small localized transient clusterings. By
cooling of the granular system we mean a decrease of the particle velocity fluctuations
and hence a decrease of the system kinetic energy. As long as the size of the pertur-
bation is further decreased, a phase transition occurs leading to the nucleation of a
single localized cluster of motionless particles surrounded by a granular fluid. Simi-
lar results were also found by Prevost et al. (2004), who observed the homogeneous
nucleation of a crystal in a dense layer of steel spheres. It comes from these experi-
ments that the coexisting phases are characterized by different granular temperatures
that do not satisfy the zeroth law of thermodynamics. Therefore, the assumption of
thermal equilibrium for a granular medium must be seriously questioned.

The development of statistical descriptions for granular systems involves aver-
aging over the ‘microscopic’ laws for the particles’ motion to obtain ‘macroscopic’
balance equations for the hydrodynamic fields. A basis for the derivation of granular
hydrodynamic equations (analogous to the Navier–Stokes equations) and detailed
expressions for the constitutive relations (transport coefficients) is provided by the
kinetic theory of gases conveniently modified to account for inelastic binary col-
lisions. We refer the reader to the book by Brilliantov and Pöschel (2004), which
provides an excellent introduction of the current knowledge about granular gases.
The balance laws for a granular fluid can be obtained on the basis of a mean field
kinetic equation, like the Boltzmann or Enskog–Boltzmann equation. The only “non-
classical” term is the collision rate of dissipation per unit volume per unit time due
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to inelastic collisions. Many calculations are based on the kinetic theory of nonuni-
form gases (Chapman and Cowling 1970), using the Chapman–Enskog procedure.
Jenkins and Mancini (1987, 1989) introduced a remarkable extension of the kinetic
theory of nonuniform gases to bidisperse granular mixtures. In the context of the
so–called Revised Enskog Theory (RET) for multicomponent mixtures (López de
Haro et al. 1983), they derived balance laws and constitutive relations for a dense
binary mixture of smooth, nearly elastic particles by assuming a Maxwellian velocity
distribution. They investigated in detail the use of the theory to a steady rectilinear
shearing flow induced by the relative motion of parallel boundaries in the absence
of external forces. Important modifications in these models were introduced by
Arnarson and Willits (1998),Willits and Arnarson (1999), Alam et al. (2002), and
Arnarson and Jenkins (2004). It is important to notice that there has also been an
attempt to extend the kinetic theory of multicomponent mixtures to systems consist-
ing of an arbitrary number of inelastic particles (Garzó et al. 2007a, b).

The starting point here are the conservation equations for the mixture density,
momentum, and energy:

Dκ

Dt
= −κ≤ · u, (16)

κ
Du
Dt

= −≤ · P̂ +
∑

i

ni Fi , (17)

κ
d

2

DT

Dt
= d

2
T ≤ · J − ≤ · Q − P̂ : ≤u +

∑
i

Ji · Fi − D, (18)

where κ is the total mixture mass density, u is the mass average velocity of the mix-
ture, P̂ is the pressure tensor, ni is the number density of species i , Fi is the external
force acting on the particle, T is the mixture granular temperature, J is the diffu-
sive mass-flux, Q is the mixture energy flux, and D is the total inelastic dissipation
rate. Here D(·)/Dt = ∂(·)/∂t + u · ≤(·), is the substantial derivative (or mater-
ial derivative), the symbol : denotes full tensor contraction, and d is the dimension
(d = 2, 3). Equations (16–18) are rigorous consequences of the Boltzmann–Enskog
kinetic equation and must be supplemented with constitutive relations for P̂, J, Q,
and D .

4.1 Kinetic Theory and Granular Temperature

Here we shall give a brief account of the kinetic theory for smooth inelastic hard
particles. To do so we consider a binary granular mixture with unequal granular
temperatures and derive explicit expressions for the inelastic dissipation rate and the
granular temperature ratio of the species.
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4.1.1 Mean Fields

As a mechanical model for granular fluids we consider a binary mixture of slightly
inelastic, smooth particles (disks/spheres) with radii ri (i = A, B) and masses mi in
two and three dimensions (d = 2, 3). The system contains a number Ni of particles
of species i in a volume V . The volume has a constant regular shape, and no particles
are allowed to flow across the surface so that the total number of particles is constant.

Mean values are calculated in terms of the single particle velocity distribution
function fi (c, r, t) for each species. By definition fi (c, r, t)dcdr is the number of
particles which, at time t , have velocities in the interval dc centered at c and positions
lying within a volume element dr centered at r. The information that there is a number
Ni of particles of species i in the volume V of the system is expressed by means of
the normalization condition

∫
dcdr fi (c, r, t) = Ni (r, t). (19)

If the particles are uniformly distributed in space, so that fi is independent of r, then
the number density ni (r, t) of species i is

ni (r, t) =
∫

dc fi (c, r, t). (20)

The total number density n is the sum over both species, n = n A + nB . The mass
density of each species κi is defined by the product of ni and mi , and the total
mixture density is κ = κA + κB = κAζA + κBζB , where ζi is the d-dimensional
volume fraction for species i : ζi = θdnird

i /d, where θd is the surface area of a
d-dimensional unit sphere. The mean value of any quantity ψi = ψi (c) of a particle
species i is given by

〈ψi (c)⊥ ∗ 1

ni

∫
dcψi (c) fi (c). (21)

The mean velocity of species i is ui = 〈ci ⊥ and the mass average velocity (i.e., the
barycentric velocity) of the mixture is defined by

u ∗ 1

κ
(κAuA + κBuB). (22)

The peculiar velocity Ci of particle i is its velocity relative to the barycentric velocity,
so that

Ci ∗ ci − u, (23)

and the diffusion velocity vi of species i is its relative mean motion

vi ∗ 〈Ci ⊥ = ui − u. (24)
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The granular temperature of species i is proportional to its mean kinetic energy and
obeys the relation

Ti ∗ 1

d
mi 〈Ci · Ci ⊥ = 1

d
mi 〈C2

i ⊥, (25)

while the temperature of the mixture is

T ∗ 1

n
(n ATA + nB TB). (26)

Moreover, the coefficient of restitution for collisions between particles i and j is
denoted by ei j , with ei j ≥ 1 and ei j = e ji .

4.1.2 The Boltzmann–Enskog Equation for a Mixture

The distribution functions fi (ci , r, t) for the two species are determined from the set
of nonlinear Boltzmann–Enskog equations

( ∂

∂t
+ ci · ≤ + Fi

mi
· ∂

∂ci

)
fi (ci , r, t) =

∑
j

Ji j
[
ci | fi (ci ), f j (c j )

]
. (27)

The Boltzmann–Enskog collision operator Ji j
[
ci | fi , f j

]
describing the scattering

of pairs of particles is

Ji j
[
c1| fi (c1), f j (c2)

] ∗ gi j r
d−1
i j

∫ ∫
dc2dσ̂ε(σ̂ · c21)(σ̂ · c21)

×
[

1

e2
i j

fi (c∝
1) f j (c∝

2) − fi (c1) f j (c2)

]
, (28)

where gi j is the radial distribution function, ri j = ri +r j , σ̂ is the unit vector directed
from the centre of the particle of type i to the centre of particle j separated at contact
by ri j , and ε(x) is the Heaviside step function (ε(x) = 0, for x < 0 and ε(x) = 1,
for x > 0). The post–collisional velocities c∝

i are given in terms of the pre–collisional
velocities ci by

c∝
i = ci + M ji (1 + ei j )(σ̂ · c j i )σ̂ , (29)

where M ji = m j/mi j , mi j = mi + m j , and c j i ∗ c j − ci is the relative velocity
between particles.

Also, in the Boltzmann–Enskog collision operator we have used the Enskog
assumption for dense gases, i.e.,

f (2)
i, j (c1, c2) → gi j f (1)

i (c1) f (1)
j (c2), (30)
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for the complete pair velocity distribution function f (2)
i, j (c1, c2).

4.1.3 Analysis Based on the Boltzmann–Enskog Equation

To find the equation for 〈ψi ⊥, as defined by relation (21), we multiply both sides of
Eq. (27) by ψi and then integrate over all velocities c to get

∂

∂t
〈niψi ⊥ = −≤ · 〈ni ciψi ⊥ + ni

Fi

mi
·
〈∂ψi

∂ci

〉
+

∑
j

[
χi j (ψi ) − ≤ · θ i j (ψi )

]
, (31)

where χi j (ψi ) is the collisional source integral

χi j (ψi ) ∗ gi j r
d−1
i j

∫ ∫ ∫
dc1dc2dσ̂ε(σ̂ · c21)(σ̂ · c21)

[
ψ ∝

i − ψi
]

(32)

×
[
1 + (1/8)r2

i j (σ̂ · ≤)2 + · · ·
]

fi (c1) f j (c2),

and Λi j (ψi ) is the collisional flux integral

Λi j (ψi ) ∗ 1

2
gi j r

d
i j

∫ ∫ ∫
dc1dc2dσ̂ σ̂ε(σ̂ · c21)(σ̂ · c21)

[
ψ ∝

i − ψi
]

(33)

×
[
1 + (1/8)r2

i j (σ̂ · ≤)2 + · · ·
]

fi (c1) f j (c2).

When ψi (ci ) → ψi (Ci ), the balance equation may be written in the form

∂

∂t
〈niψi ⊥ = −≤ · 〈ni ciψi ⊥ +

〈
ni

∂Ci

∂t
· ∂ψi

∂Ci

〉
(34)

+
∑

j

[
χi j (ψi ) − ≤ · θ i j (ψi ) − θ i j

(
∂ψi

∂Ci

)
: ≤u

]
.

To investigate transport processes, we must solve the Boltzmann–Enskog equation
(27), with given initial conditions, to obtain the velocity distribution function. Some
rigorous properties of any solution of Eq. (27) can be obtained from the fact that in
any particle collision there are dynamical quantities that are rigorously conserved.
For a granular fluid the independent conserved properties are mass and momentum.
The transformation (29) conserves momentum but, when e < 1, it does not conserve
energy. Therefore, in a binary collision the change of kinetic energy ρE �= 0. In the
lowest–order approximation we assume that the fluid has a local Maxwell–Boltzmann
(Maxwellian) distribution given by

fi (ci ) ≈ f (0)
i (ci ) = βd/2ni

(
mi

2Ti

)d/2

exp

[
− mi

2Ti
(ci − u)2

]
. (35)
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4.1.4 Energy Balance

Taking ψi = 1
2 mi C2

i and using the balance law (34), we obtain the balance of
fluctuation energy (granular temperature) for each species:

∂

∂t
(ni Ti )+≤·(ni ui Ti ) = −≤·Qi −P̂i : ≤u+Ji ·Fi + κi

κ
vi ·(≤·P̂−nF)+Di . (36)

The Chapman–Enskog method is a perturbation method based on a power series
expansion of fi (ci ) in terms of the Knudsen number Kn = l/L , where l is the mean
free path and L a characteristic length. The method provides different expressions for
the pressure tensor P̂i , the energy (heat) flux Qi , and the kinetic energy dissipation rate
Di . The species stress tensor has at the Navier-Stokes level, the standard Newtonian
form

P̂i = pi Î + μi (≤u + ≤uT ), (37)

where pi is the partial pressure of species i , μi is the viscosity of species i , and Î
denotes the unit tensor. The equation of state for the partial pressure of species i can
then be written as: pi = ni Zi Ti , where Zi := (1 + ∑

j=l,s Ki j ) is the compress-

ibility factor of species i and Ki j := ζ j gi j
(
1 + Ri j

)d
/2, with gi j being the radial

distribution function and Ri j = ri/r j the size-ratio. The energy flux is given by

Qi = −κi

√
Ti≤Ti , (38)

where κi is the analog of the thermal conductivity of species i . Finally, the rate of
kinetic energy dissipation of species i is given by

Di =
∑

j

β
d−1

2

dγ(d/2)
gi j r

d−1
i j mi ni n j M ji

[
M ji (1 − e2

i j )

(
2Ti

mi
+ 2Tj

m j

)

+ 4(1 + ei j )
Ti − Tj

mi + m j

](
2Ti

mi
+ 2Tj

m j

)1/2

. (39)

In the elastic limit ei j = 1, the above constitutive relations reduce to the “classical”
theory of non-uniform dense gases (Chapman and Cowling 1970). On the other hand,
keeping the next order gradient terms corresponds to the Burnett or super-Burnett
hydrodynamics (García-Colín et al. 2008; Serero et al. 2008). Let us mention that
a complete treatment of the energy flux Qi should include a “non-Fourier” term
which relates the energy flux with the density gradient ≤n. This term does not have
an analogue in the hydrodynamics of molecular fluids and should be included in
the calculation of temperature and density profiles of a vertically vibrated granular
system. Early studies of granular mixtures, as referred to above, used a nearly elastic
formalism. Recently, an important step was taken by Serero et al. (2007) and Garzó
et al. (2009), where it has been proposed a new Sonine approach for the calculation
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of higher order expansions to treat strong inelasticity. These contributions open a
new perspective to increase the accuracy of hydrodynamics calculations for granular
binary mixtures.

4.1.5 Temperature Ratio

We can split Eq. (39) into two terms:

1. The inter-species collisional dissipation rate D I
i

D I
i :=

√
2d√

βθd

∑
j

gi j Rd
i j (1+ R ji )

d−1 M2
j i (1−e2

i j )
ζiζ j

rd+1
i

T 3/2
i

m1/2
i

(
1 + mi Tj

m j Ti

)3/2

(40)
2. The exchange collisional dissipation rate D E

i

D E
i : =

√
2d√

βθd
gik Rd

ik(1 + Rki )
d−1 Mik Mki (1 + eik)

ζiζk

rd+1
i

T 3/2
i

m1/2
i

(
1 − Tk

Ti

)

(
1 + mi Tk

mk Ti

)3/2

(41)

Hence, we could assert that the exchange term D E
i is a clear consequence of the

non-equipartition assumption. Note that
∑

i=A,B D E
i = 0. On the other hand, with

the assumption of equipartition of granular energy (TA = TB = T ) we have that
D E

i = 0 and so Eq. (40) reduces to:

D I
i :=

√
2d√

βθd

∑
j

gi j Rd
i j (1 + R ji )

d−1 M2
j i (1 − e2

i j )
ζiζ j

m1/2
i rd+1

i

T 3/2
i

m1/2
i

(
T

M ji

)3/2

.

(42)
We can conclude that physically the lack of energy equipartition is determined by

the different dissipation rates given by Eqs. (40) and (41). The way how the energy
is injected into the two-species system determines together with the dissipation rates
the functional form of the temperature ratio. To illustrate this point, let us consider
the case of a uniformly heated granular system. This idealized situation has been
used to model rapid granular flows. To study the system we start from the stochastic
equation of motion for a particle

mi
dci

dt
= FD

i + mi ξ̂i . (43)

In this equation FD
i is the force due to inelastic collisions and ξ̂i is the random

acceleration due to external forcing, which is assumed to be Gaussian white noise
and uncorrelated for different particles
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〈ξiα(t)ξ jσ(t ∝)⊥ = ξ2
0 Ψi jΨασΨ(t − t ∝), (44)

where Greek indices denote Cartesian components and ξ2
0 is the strength of the

correlation which is proportional to the rate of the energy input per unit mass. The
average is done over the noise source. When we consider the associated forcing term
in the Boltzmann–Enskog equation, the balance equation for species temperatures
satisfies, in the stationary state, the relation

miξ
2
0 = Di . (45)

Using this relation it is straightforward to derive the corresponding equation for
the temperature ratio TA/TB (with rA > rB):

c1

(
TA

TB

)3/2

+ c2

(
1 + m B

m A

TA

TB

)3/2

+ c3

(
1 + m B

m A

TA

TB

)1/2 (
TA

TB
− 1

)
+ c4 = 0,

(46)
where the coefficients are given by

c1 = 2d−1(1 − e2)Rd
B AζAgAA

(
m B

m A

)3/2

,

c2 = √
2(1 − e2)(1 + RB A)d−1(ζB M2

B A − ζA Rd
B A M2

AB)gAB,

c3 = 2
√

2(1 + e)(1 + RB A)d−1 MB A(ζB MB A − ζA Rd
B A MAB)gAB,

c4 = −2d−1(1 − e2)Rd
B AζB gB B .

We can suppose that this theoretical construction could describe, at least in a first-
order approximation, the bulk of a vibrated granular system. Under this assumption
any further analysis should be restricted to regions far from the boundaries.

5 Theory of Elasticity for Granular Materials

The mechanical properties of granular systems are largely affected by the interaction
between the grains. The nonlinear elastic nature of contact surfaces are responsi-
ble for many observable features as the formation of three-dimensional force chain
networks (Jaeger et al. 1996), the increase of material stiffness with depth (Landau
and Lifshitz 1970), the scattering effects on wave propagation (Jia 2004), and the
structure signature of granular phases (Corwin et al. 2005). It is well-known that
conventional linear elasticity fails to explain such complexities because it does not
provide a satisfactory description of the relations between stress and strain in a gran-
ular system. This can be seen from the expression of the free energy for an elastic
medium

fel = 1

2
Kbu2

nn + Kau0
i j u

0
i j , (47)
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where Kb and Ka are the constant compressional and shear moduli, respectively,
unn is the trace of the strain tensor ui j , and u0

i j is its traceless part, i.e., u0
i j = ui j −

unnΨi j/3. This form of the free energy does not include the mechanical yield maximal
shear stress that makes the system to become mechanically unstable. Moreover, it is
quadratic in ui j , providing a stable solution regardless of the stress and strain values
(Jiang and Liu 2003). This is a major drawback because yield in granular matter is an
essential phenomenon that leads to phase transition (Corwin et al. 2005). Therefore,
under linear elasticity the system is unable to experience an unstable configuration
for given values of the stress and strain. Another deficiency of the linear model lies
on the stress-strain relation

ηi j = −KbunnΨi j − 2Kau0
i j , (48)

which can be obtained from Eq. (47) by applying the thermodynamic relation ηi j =
−(∂ fel/∂ui j ) (Landau and Lifshitz 1970). The above expression implies that for pure
shear stresses ηi j = 2Kau0

i j (Jiang and Liu 2007c). This result obviates the possibility
of volume dilatancy (a physical effect observed in compact granular media, which
induces an increase of their overall volume under shear stresses (Reynolds 1885).
While this theory is adequate for describing ordinary solids (Jiang and Liu 2007c), it
gives a poor description of granular matter. Also, Eqs. (47) and (48) do not take into
account the interaction between granular particles, which may deform as a result of
the contact with one another. This is known in the theory of elasticity as the contact
problem, which was first solved by Hertz (Hertz 1882; Landau and Lifshitz 1970).
A mathematical solution to this problem is given in Landau and Lifshitz (1970),
where the free energy is proportional to h5/2 and the applied force to h3/2, with h
being the relative change in height. Here h corresponds to unn so that Kb must be
proportional to u1/2

nn in order to achieve Hertz’s solution. This relation between the
compressional modulus and the deformation experienced by the body is known as
the Hertz’s Contact Model and it is widely used to simulate nonlinear elastic contacts
between grains (Corwin et al. 2005). In this approach, the grains are modelled as
spheres and the applied forces are assumed to be sufficiently small (de Gennes 1999).
In 1873, Boussinesq proposed a modified theory of elasticity, where Eq. (48) remains
the same except for the fact that the stress-dependent elastic moduli Kb and Ka are
both assumed to be approximately equal to −u1/2

nn (Boussinesq 1873). With this
provision, Eq. (48) takes the form

ηi j ∇ u1/2
nn

(
−unnΨi j − (3 − 6ν)

(1 + ν)
u0

i j

)
, (49)

where ν is the constant Poisson ratio and (3 − 6ν)/(1 + ν) = 2Ka/Kb (Jiang
and Liu 2007c). This nonlinear relation is consistent with a quasi-elastic model.
However, it still possesses some deficiencies. First, it does not predict the effects
of dilatancy; second, the yield condition is absent, and third, a free energy equa-
tion cannot be formulated because ∂ηi j/∂ukl �= ∂ηkl/∂ui j (Jiang and Liu 2007c).
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This last point can be better understood if we return to the general thermody-
namic expression: ηi j = ∂ fel/∂ui j (Landau and Lifshitz 1970), which implies
that ∂ηi j/∂ukl = ∂2 fel/∂ukl∂ui j . Since the free energy is an exact differen-
tial, we must have that ∂2 fel/∂ukl∂ui j = ∂2 fel/∂ui j∂ukl so that the equality
∂ηi j/∂ukl = ∂ηkl/∂ui j holds. Considering that Eq. (49) fails to satisfy this last
equality, it follows that no free energy can be formulated.

5.1 The Jiang-Liu Model

Boussinesq’s elastic theory represents an improvement on linear elasticity because
it incorporates the interaction between bodies through the use of stress-dependent
elastic moduli. This explains why Eq. (49) has been employed to deal with granular
compression and sound wave propagation as shown by Jiang and Liu (2007c). How-
ever, a self-contained elastic theory must include the effects of mechanical yield and
volume dilatancy in order to correctly describe the dynamics of granular media. Such
a theory was recently developed by Jiang and Liu (2003, 2007a; 2007b). In particular,
their model relies on a formulation of the free energy that accounts for the occurrence
of instabilities as they are observed in granular media. They start by considering an
arbitrary equilibrium state with thermal temperature T and packing density κc, in
the absence of external forces and with an associated free energy density equal to
f1κ/m, where f1 is the free energy and m is the mass per grain (Jiang and Liu 2003).
In the presence of external forces and under the effects of gravity, the granular pack-
ing deforms leading to a change in the density given by Ψ = 1 − κc/κ = −unn . This
relation corresponds to a pure elastic change and it is valid only when the forces are
small enough and applied slowly. Since the contact areas between grains are finite,
the elastic moduli are also finite. Therefore, as long as the particles lose contact with
one another, their contact areas are set to zero. As mentioned above, the formulation
of the free energy that contains this observation as well as unstable configurations
of the system is given by Eq. (14). A stress-strain relation can be derived by using
Eqs. (14) and (15) into the energy and momentum conservation laws of Jiang and
Liu (2003) to yield

ηi j = −KbunnΨi j + 2Kau0
i j − 1

Ψ

(
1

2
bKbu2

nn + aKau0
klu

0
kl

)
, (50)

where the dominant non-linear terms are maintained. The above equation contains
the stress elements of both the linear and Boussinesq elasticity models as we may
see from inspection of the first two terms on the right-hand side of Eq. (50). In this
way, the stress is completely defined once we specify a and b together with the
stress-dependent elastic moduli, which account for the desired granular behaviour. If
we apply Hertz contacts, which are appropriate for spheres subjected to small forces
(Tykhoniuk et al. 2007), Eq. (50) becomes
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ηi j = Y
√

Ψ

(
BΨΨi j − 2Au0

i j + 1

2Ψ
Au2

s Ψi j

)
, (51)

where Y = 9Kb Ka/(3Kb + Ka), B = 5
4 K̃b/Y , A = K̃a/Y , and u2

s = u0
i j u

0
i j . We

may see that Eq. (51) is similar to Boussinesq’s stress formulation, given by Eq. (49),
except for an additional term. This difference arises because the Jiang-Liu model is
derived from an energy expression, whereas Eq. (50) does not (Bonneau et al. 2007).
The free-energy expression that is consistent with Eq. (51) reads

f = Y
√

Ψ

(
2

5
BunnΨ

2 + Au2
s

)
. (52)

This expression is stable only in the range of strain values that keeps it convex.
Therefore, Eq. (52) naturally accounts for unstable configurations of the system,
as the yield, which appears as a phase transition on a potential-strain diagram. The
stability condition that f is convex only for ηs/P ≥ √

2/ξ is reported in by Jiang and
Liu (2007a), where ηs is the pure shear stress, P = 1

3ηi i is the hydrostatic pressure,
and ξ = B/A. So, yield can be determined.

The Jiang-Liu model also includes the effects of volume dilatancy. These effects
are represented by the first term between parentheses on the right-hand side of
Eq. (51), where the pure shear stress is proportional to the shear strain and the
volumetric deformation Ψ. In addition, the last term represents a component of pure
shear deformation under hydrostatic pressure which also includes shear-induced
anisotropies (Jiang and Liu 2007c). Jiang and Liu (2008) present a detailed account
of how anisotropy arises from the shear stress. Here we shall only mention briefly
that compared to linear elastic theory, where the compliance tensor which links the
increments of stress and strain is both isotropic and constant (Landau and Lifshitz
1970; Jiang and Liu 2007c), in the Jiang-Liu formulation it is stress-dependent. If
only pure compression is considered, the Jiang-Liu formulation of the compliance
tensor takes the form appropriate for linear elastic theory, whereas in the presence
of shear extra terms appear which are linear and quadratic in ηi j . These extra terms
are anisotropic and arise due to the effects of shear. This is precisely what is meant
by shear-induced anisotropy in the Jiang-Liu formulation.

In summary, linear elasticity cannot be used to describe granular matter because
it does not allow the system to achieve an unstable configuration. Consequently,
mechanical yield will never be present. Moreover, it does not predict the effects
of volume dilatancy and its constant elastic moduli do not account for interactions
between the grains, making it only accurate for modelling ordinary solids. On the
other hand, in the Boussinesq’s elastic theory the interactions between particles
are incorporated by means of a Hertz contact model. However, it does not include
yield and volume dilatancy, and more importantly, it is not the result of a free-energy
formulation. Conversely, the Jiang-Liu model is based on an energy expression which
allows for unstable configurations so that yield is viable. The effects of dilatancy and
shear-induced anisotropies are also included. In this model, the elastic moduli can be
strain-dependent in a proportion that is determined by the type of contact. A drawback
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of this formulation is that it does not allow for irreversible grain deformation and that
it works only when the forces involved are sufficiently small and slowly applied. In
spite of this, the Jiang-Liu formulation provides a self-contained theory that allows
for a fairly accurate description of granular elasticity.

6 From Discrete Particles to Continuous Matter Field: The
Micro–Macro Problem

Exact continuum forms of matter fields, such as mass, momentum, and energy can
be established as relations between averages of microscopic quantities calculated
for macroscopic scales within a range of coarse-graining scales where the fields are
resolution independent. Another problem is the calculation of realistic constitutive
equations for continuous models. Here we shall briefly discuss the problem of the
micro-macro transition and microscopic constitutive laws.

6.1 Weighted Averages of Microscopic Quantities

The rigorous passage from a microscopic to a macroscopic (continuum) mechanical
description of granular and heterogeneous materials, including the mesoscopic dis-
order, has been recently addressed by Goldenberg and Goldhirsch (2002a, b, 2004,
2005, 2008); Goldenberg et al. (2006); Serero et al. (2008) and by Barrat and co-
workers for the case of amorphous glasses (Tanguy et al. 2002; Leonforte et al. 2004,
2005, 2006; Goldenberg et al. 2007).

In particular, Goldenberg and Goldhirsch established continuum fields in terms
of local spatially-weighted sums that average the particle motion in a way similar
to Smoothed Particle Hydrodynamics (SPH) methods (Monaghan 1992). In SPH,
the continuum fields are represented by a finite set of particles through the use of a
smoothing procedure in which a quantity F (such as the density) is approximated by
the summation interpolant

F(r) =
∑

i

Fi (r)W (r − r∝, h), (53)

where W (r − r∝, h) is a smooth (differentiable) function, commonly referred to
as the interpolating kernel, and h is the smoothing length, which determines the
spatial resolution and defines the involved scales for the spatial averages (Mur-
doch and Bedeaux 1994; Goldenberg and Goldhirsch 2002b, 2004; Glasser and
Goldhirsch 2001). Exact continuum forms of the balance equations (for mass,
momentum, and energy) can be established as relations between weighted space
(and time) averages (Murdoch and Bedeaux 1994; Glasser and Goldhirsch 2001;
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Goldenberg and Goldhirsch 2002b, 2004). In this framework, it is possible to
derive an exact expression for the stress field, providing a way for a systematic
study of the constitutive relations. Goldenberg and Goldhirsch (2005, 2002a, b,
2008) have shown that this coarse-grained stress field reproduces the experimen-
tally observed response of granular packings to localized perturbations in 2D (Geng
et al. 2001, 2003) and 3D (Reydellet and Clément 2001; Serero et al. 2001).
On the other hand, in applications to amorphous glasses (Leonforte et al. 2004),
a striking outcome was that for a smoothing length h ∇ d, where d is the particle
diameter, the stress field is such that the force chains have no effects on scales above
the spatial average, implying that they need not be seen as a fundamental structural
feature for the force response at a macroscopic level (Goldenberg and Goldhirsch
2005, 2002a, b, 2008). The short correlation length of the contact forces suggests
that both the macroscopic fields and their fluxes can be defined as scale invariant.
For 2D polydisperse packings, with average size 〈d⊥, the stress field is independent
of the range of coarse-graining scales for h ◦ 〈d⊥ (Goldenberg et al. 2006). The
range of scale independence can be as small as 3–5 particle diameters (Goldenberg
et al. 2006). These findings justify the applicability of a continuum description for
granular materials. On the other hand, further work is required to understand the
correspondence between the spatially-weighted summation technique and the SPH
computational method. This study opens the possibility to introduce a new compu-
tational method which should be very useful for simulations of granular materials in
physics and engineering.

6.2 Non-Local Fluidity Relation

For continuous theories the link between the macroscopic fields and the microscopic
properties of the material is established through the constitutive relations. In Sect. 4.1,
we have illustrated how the kinetic theory of dense gases can be used to derive the
transport constitutive relations for a continuum fluid dynamics description of granu-
lar flows. However, under this approach it is impossible to describe simultaneously
the coexistence of fast and slow flows observed in experiments. The description of
the re-arrangement of a granular packing induced by monotonic deformations and
local spatial variations demands incorporating relaxation rates D in the constitutive
equations that relate the time rates of the stress tensor ηi j to D. Static states often
reveal spatial fluctuations which are stronger at state limits. They change in jumps
during monotonic deformations, i.e., as local plastic events occurring above a micro-
scopic yield stress. On the other hand, non-local elastic reorganization occurs as a
consequence of the microscopic fluctuations.

Recently, the rheology of dense granular flows have been analyzed using non-local
constitutive laws for the flow of dense disordered materials (Picard et al. 2005; Boc-
quet et al. 2009). In this approach the dynamics is based on a mesoscopic treatment
between the microscopic and macroscopic scales: local plastic events associated with
a microscopic yield stress and the non-local elastic release of the stress over the sys-
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tem. This idea was extended by Kamrin and Koval (2012), postulating a non-local
fluidity relation for flowing granular materials which captures several known finite-
size effects observed in steady flow. The model expresses a continuum field equation
for the flow law in terms of a fluidity ratio and an extra Laplacian term that is scaled
by the grain size. This approach not only predicted areas of fast-flowing grains, but
also the sites where grains would be slowly moving, at the very edges of each.

7 Conclusions

In this chapter, we have presented an introductory discussion of different theoretical
scenarios for the mathematical analysis of physical properties observed in granular
materials. The physical attributes and constraints in granular materials are so complex
that the construction of a unified theoretical framework seems unreachable. How-
ever, such difficulties should be an appealing challenge for theoretical physicists and
applied mathematicians. Three main foundational theoretical issues were addressed
in this work: (i) Granular thermodynamics; (ii) Granular hydrodynamics; and
(iii) Granular elasticity.

Concerning thermodynamics we would like to emphasize that although thermal
energy is not the relevant parameter, one can construct thermodynamical-like state
functions or potentials using other relevant variables for granular materials, as for
example, volume, energy dissipation, the number of particles, or a modified elastic
free energy. Nevertheless, it is important to explore possible connections between
these formulations. The incorporation of a thermodynamical framework should be
beneficial to state the postulates of a theory for granular matter. This framework has
to be related with statistical average. Let us quote an interpretation of thermody-
namics advanced by Callen (1974): Thermodynamics is the study of those properties
of macroscopic matter that follow from the symmetry properties of physical laws,
mediated through the statistics of large systems. Grounded on this interpretation,
two underlying principles consistently emerged: The bases of macroscopic thermo-
dynamic laws lie in the symmetries of microscopic physical laws; and the irrelevant
details of specific systems are blurred by the properties of large statistical collections.
To illustrate this, Callen presented a model in which the energy plays no relevant
role in order to emphasize the lack of uniqueness of the energy in thermodynam-
ics. Therefore, granular matter represents a quite good physical model to explore
the ideas presented by Callen (1974), in congruence with the alternative granular
thermodynamics reviewed in Sect. 3. This exercise should pave the way towards the
collection of foundational blocks.

Granular hydrodynamics and kinetic theory are perhaps the major developed theo-
retical frameworks for granular matter. Due to the fact that the grains are macroscopic
and one can often measure the dynamics of each and every grain, hydrodynamic the-
ories are often expected to describe scales that they cannot model or resolve. There
are many examples in which granular hydrodynamics provides good description for
granular flows. Some remarkable analogies with different fluid-mechanical phenom-
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ena are the granular parallels of convection, buoyancy, the Leidenfrost effect, and
the hydraulic jump. However, there are some experiments and simulations where
granular hydrodynamics does not work. On the other hand, due to the lack of strong
scale separation one needs to go beyond the Navier-Stokes level of description and
this rises certain problems that require further study.

We have shown that for the solid state of granular matter it is possible to derive an
elastic theory which includes important signatures characterizing particulate systems.
A fundamental ingredient is that the Jiang-Liu granular elasticity takes into account
a general form of the type of contacts between the grains, with the Hertz’s contact
model as a particular case. On the other hand, the Jiang-Liu formulation directly
extends the Boussinesq modified theory of elasticity and removes their thermody-
namic inconsistency via a correct formulation of the strain free energy functional.
In addition, under certain limits the Jiang-Liu theory includes the well-known linear
elasticity of isotropic and homogeneous elastic solids. The theory also emphasizes
the role of intrinsic key features of granular dynamics such as volume dilatancy,
mechanical yield, and anisotropies in the stress distribution. However, this formu-
lation is not complete and must be extended to include the effects of grain rotation
into the constitutive relations for the non-linear elastic theory. An open question is:
How should the spatial distribution of elastic constants be in heterogeneous granu-
lar packings? An answer to this question is very important for the analysis of force
networks which form the skeleton that carries most of the load in a static granular
medium.

The theoretical ideas illustrated in this paper represent a starting point towards
the construction of a general theory for granular matter. A necessary goal is to
explore how granular thermodynamics, hydrodynamics, and elasticity work together
to provide interpretations of observations and how this partnership can be made more
efficient. Providing a formal justification for continuum matter fields, a promising
program towards a unified theory could be advanced from the new recent ideas
introduced by Yiang and Liu for the construction of a granular solid hydrodynamics
(Jiang and Liu 2009). They proposed a continuum mechanical theory which includes
the energy currents and the entropy production. Their principal postulate is that
granular media are elastic when at rest, but turn transiently elastic when the grains
are agitated.

Finally, let us remark the necessity to account for random effects to determine the
response of granular matter and their heterogeneous nature.

References

Alam M, Willits JT, Arnarson BÖ, Luding S (2002) Kinetic theory of a binary mixture of neraly
elastic disks with size and mass disparity. Phys Fluids 14:4085–4087

Aranson IS, Tsimring LS (2006) Patterns and collective behavior in granular media: theoretical
concepts. Rev Mod Phys 78:641–692

Arnarson BÖ, Willits JT (1998) Thermal diffusion in binary mixtures of smooth, nearly elastic
spheres with and without gravity. Phys Fluids 10:1324–1328



Theoretical Physics of Granular Fluids and Solids 189

Arnarson BÖ, Jenkins JT (2004) Binary mixtures of inelastic spheres: simplified constitutive theory.
Phys Fluids 16:4543–4550

Aumaître S, Fauve S, McNamara S, Poggi P (2001) Power injected in dissipative systems and the
fluctuation theorem. Eur Phys J B 19:449–460

Baldassarri A, Barrat A, D’Anna G, Loreto V, Mayor P, Puglisi A (2005) What is the temperature
of a granular medium? J Phys: Condens Matter 17:S2405

Barrat A, Trizac E (2002) Lack of energy equipartition in homogeneous heated binary granular
mixtures. Granular Matter 4:57–63

Barrat A, Loreto V, Puglisi A (2004) Temperature probes in binary granular gases. Phys A 334:
513–523

Baxter GW, Olafsen JS (2007) The temperature of a vibrated granular gas. Granular Matter
9:135–139

Bocquet L, Colin A, Ajdari A (2009) Kinetic theory of plastic flow in soft glassy materials. Phys
Rev Lett 103:036001

Bonneau L, Andreotti B, Clément E (2007) Surface waves in granular media under gravity and their
relation to booming avalanches. Phys Rev E 75:016602

Borderies N, Goldreich P, Tremaine S (1985) A granular flow model for dense planetary rings.
ICARUS 63:406–420

Boussinesq J (1873) Essai théorique sur l’équilibre d’élasticité des massifs pulvérulents et sur la
poussée des terres sans cohésion. Comptes Rendus des Séances de l’Académie des Sciences
77:1521–1525

Brey JJ, Ruiz-Montero MJ, Moreno F (2000) Boundary conditions and normal state for a vibrated
granular fluid. Phys Rev E 62:5339

Brilliantov NV, Pöschel T (2004) Kinetic theory of granular gases. Oxford University Press, Oxford
Callen H (1974) Thermodynamics as a science of symmetry. Found Phys 4:423–443
Chapman S, Cowling TG (1970) The mathematical theory of nonuniform gases. Cambridge Uni-

versity Press, Cambridge
Corwin EI, Jaeger HM, Nagel SR (2005) Structural signature of jamming in granular media. Nature

435:1075–1078
Cugliandolo L, Kurchan J, Peliti L (1997) Energy flow, partial equilibration, and effective temper-

ature in systems with slow dynamics. Phys Rev E 55:3898–3914
de Gennes PG (1999) Granular matter: a tentative view. Rev Mod Phys 71:374–382
Edwards SF, Oakeshott RBS (1989) Theory of powders. Phys A 157:1080–1090
Esposito LW (2010) Composition, structure, dynamics, and evolution of Saturn’s rings. Annu Rev

Earth Planet Sci 38:383–410
Feitosa K, Menon N (2002) Breakdown of energy equipartition in a 2D binary vibrated granular

gas. Phys Rev Lett 88:198301
García-Colín LS, Velasco RM, Uribe FJ (2008) Beyond the Navier-Stokes equations: burnett hydro-

dynamics. Phys Rep 465:149–189
Garzó V, Dufty JW, Hrenya CM (2007a) Enskog theory for polydisperse granular mixtures.

I. navier-stokes order transport. Phys Rev E 76:031303
Garzó V, Dufty JW, Hrenya CM (2007b) Enskog theory for polydisperse granular mixtures.

II. sonine polynomial approximation. Phys Rev E 76:031304
Garzó V, Vega-Reyes F, Montanero JM (2009) Modified Sonine approximation for granular binary

mixtures. J Fluid Mech 623:387–411
Geng J, Howell D, Longhi E, Behringer RP, Reydellet G, Vanel L, Clément E, Luding S (2001)

Footprints in sand: the response of a granular material to local perturbations. Phys Rev Lett
87:035506

Geng J, Rydellet G, Clément E, Behringer RP (2003) Green function measurements of force trans-
mission in 2D granular materials. Phys D 182:274–303

de Gennes PG (1998) Reflections on the mechanics of granular matter. Phys A 261:267–293
Glasser BJ, Goldhirsch I (2001) Scale dependence, correlations, and fluctuations of stresses in rapid

granular flows. Phys Fluids 13:407–420



190 L. Trujillo and L. Di G. Sigalotti

Goldenberg C, Goldhirsch I (2002a) Force chains, microelasticity, and macroelasticity. Phys Rev
Lett 89:084302

Goldenberg C, Goldhirsch I (2002b) On the microscopic foundations of elasticity. Eur Phys J E
9:245–251

Goldenberg C, Goldhirsch I (2004) Small and large scale granular statics. Granular Matter 6:87–96
Goldenberg C, Goldhirsch I (2005) Friction enhances elasticity in granular solids. Nature

435:188–191
Goldenberg C, Atman APF, Claudin P, Combe G, Goldhirsch I (2006) Scale separation in granular

packings: stress plateaus and fluctuations. Phys Rev Lett 96:168001
Goldenberg C, Tanguy A, Barrat J-L (2007) Particle displacements in the elastic deformation of

amorphous materials: local fluctuations vs. non-affine field. Europhys Lett 80:16003
Goldenberg C, Goldhirsch I (2008) Effects of friction and disorder on the quasistatic response of

granular solids to a localized force. Phys Rev E 77:041303
Goldhirsch I (2008) Introduction to granular temperature. Powder Technol 182:130–136
Guyon E, Roux S, Hansen A, Bideau D, Troadec J-P, Crapo H (1990) Non-local and non-linear

problems in the mechanics of disordered systems: application to granular media and rigidity
problems. Rep Prog Phys 53:373–419

Haff PK (1983) Grain flows as a fluid-mechanical phenomenon. J Fluid Mech 134:401–430
Herrmann HJ (1993) On the thermodynamics of granular media. Journal de Physique II (France)

3:427–433
Herrmann HJ (2002) Granular matter. Phys A 313:188–210
Hertz H (1882) Über die Berührung fester elastischer körpe. J. Reine Angewandte Mathematik

92:156–171
Hong DC, Hayakawa H (1997) Thermodynamic theory of weakly excited granular systems. Phys

Rev Lett 78:2764–2767
Jaeger HM, Nagel SR, Behringer RP (1996) Granular solids, liquids, and gases. Rev Mod Phys

68:1259–1273
Jenkins JT, Mancini F (1987) Balance laws and constitutive relations for plane flows of a dense,

binary mixture of smooth, nearly elastic, circular disks. J Appl Mech 54:27–34
Jenkins JT, Mancini F (1989) Kinetic theory for binary mixtures of smooth, nearly elastic spheres.

Phys Fluids A 1:2050–2057
Jia X (2004) Codalike multiple scattering of elastic waves in dense granular media. Phys Rev Lett

93:154303
Jiang Y, Liu M (2003) Granular elasticity without the coulomb condition. Phys Rev Lett 91:144301
Jiang Y, Liu M (2007a) From elasticity to hypoplasticity: dynamics of granular solids. Phys Rev

Lett 99:105501
Jiang Y, Liu M (2007b) A brief review of “granular elasticity”, why and how far is sand elastic?

Eur Phys J E 22:255–260
Jiang Y, Liu M (2008) Incremental stress-strain relation from granular elasticity: comparison to

experiments. Phys Rev E 77:021306
Jiang L, Liu M (2009) Granular solid hydrodynamics. Granular Matter 11:139–156
Jiang Y, Liu M (2007c) Hydrodynamic theory of granular solids: Permanent, transient, and granular

elasticity. arXiv: 0706.1352v1
Kadanoff LP (1999) Built upon sand: theoretical ideas inspired by granular flows. Rev Mod Phys

71:435–444
Kamrin K, Koval G (2012) Nonlocal constitutive relation for steady granular flow. Phys Rev Lett

108:178301
Kudrolli A (2004) Size separation in vibrated granular matter. Rep Prog Phys 67:209–247
Landau LD, Lifshitz EM (1970) Theory of elasticity. Pergamon Press, New York
Leonforte F, Tanguy A, Wittmer JP, Barrat J-L (2004) Continuum limit of amorphous elastic bodies

II: linear response to a point force. Phys Rev E 70:014203
Leonforte F, Boissière R, Tanguy A, Wittmer JP, Barrat J-L (2005) Continuum limit of amorphous

elastic bodies III: three dimensional systems. Phys Rev E 72:224206



Theoretical Physics of Granular Fluids and Solids 191

Leonforte F, Tanguy A, Wittmer JP, Barrat J-L (2006) Inhomogeneous elastic response of silica
glass. Phys Rev Lett 97:055501

López de Haro M, Cohen EGD, Kincaid JM (1983) The Enskog theory for multicomponent mixtures.
I. linear transport theory. J Chem Phys 78:2746–2759

Mehta A, Barker GC (1994) The dynamics of sand. Rep Prog Phys 157:384–416
Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574
Murdoch AI, Bedeaux D (1994) Continuum equations of balance via weighted averages of micro-

scopic quantities. Proc R Soc Lond Ser A 445:157–179
Nagel SR (1992) Instabilities in a sandpile. Rev Mod Phys 64:321–325
Olafsen JS, Urbach JS (1998) Clustering, order, and collapse in a driven granular monolayer. Phys

Rev Lett 81:4369–4372
Olafsen JS, Urbach JS (2005) Two-dimensional melting far from equilibrium in a granular mono-

layer. Phys Rev Lett 95:098002
Ottino JM, Khakhar DV (2001) Fundamental research in heaping, mixing, and segregation of

granular materials: challenges and perspectives. Powder Technol 121:117–122
Picard G, Ajdari A, Lequeux F, Bocquet B (2005) Slow flows of yield stress fluids: complex

spatiotemporal behavior within a simple elastoplastic model. Phys Rev E 71:010501
Prevost A, Melby P, Egolf DA, Urbach JS (2004) Nonequilibrium two-phase coexistence in a

confined granular layer. Phys Rev E 70:050301
Rajchenbach J (2000) Granular flows. Adv Phys 49:229–256
Reydellet G, Clément E (2001) Green function probe of a static granular piling. Phys Rev Lett

86:3308–3311
Reynolds O (1885) On the dilatancy of media composed of rigid particles in contact, with experi-

mental illustrations. Phil Mag 20:469–481
Serero D, Rydellet G, Claudin P, Clément E, Levine D (2001) Stress response function of a gran-

ular layer: quantitative comparison between experiments and isotropic elasticity. Eur Phys J E
6:169–179

Serero D, Noskowicz SH, Goldhirsch I (2007) Exact results versus mean field solutions for binary
granular gas mixtures. Granular Matter 10:37–46

Serero D, Goldhirsch I, Noskowicz SH, Tan M-L (2008) Hydrodynamics of granular gases and
granular mixtures. J Fluid Mech 554:237–258

Serero D, Goldenberg C, Noskowicz SH, Goldhirsch I (2008) The classical granular temperature
and slightly beyond. Powder Technol 182:257–271

Da Silva M, Rajchenbach J (2000) Stress transmission through a model system of cohesionless
elastic grains. Nature 406:708–710

Tanguy A, Wittmer JP, Leonforte F, Barrat J-L (2002) Continuum limit of amorphous elastic bodies:
a finite-size study of low-frequency harmonic vibrations. Phys Rev E 66:174205

Tykhoniuk R, Tomas J, Luding S, Kappl M, Heim L, Butt H-J (2007) Ultrafine cohesive powders:
from interparticle contacts to continuum behaviour. Chem Eng Sci 62:2843–2864

Willits JT, Arnarson BÖ (1999) Kinetic theory of a binary mixture of nearly elastic disks. Phys
Fluids 11:3116–3122



Shock Structure and Acoustic Waves
in a Supersonic Jet

Catalina Stern Forgach and José Manuel Alvarado Reyes

Abstract Even though supersonic flows have been studied for a long time, many
questions remain unanswered about their behavior. The understanding of jet noise
goes in parallel with the understanding of jet turbulence. It has been speculated that
different kinds of vortex interactions in the near field, can produce sound. Also, that
the interaction between the flow and the shock structure produces noise. It is now
known that noise, in supersonic and subsonic jets, is made up of two basic compo-
nents; one from the large turbulence structures and instability waves, and the other
from the fine-scale turbulence. Measurements inside a supersonic jet are difficult.
Hot wires are easily broken and homogeneous seeding for Laser Doppler and Particle
Image Velocimetries is complicated. We have developed a non-intrusive technique
that uses the heterodyne detection of Rayleigh scattering. The laser light scattered
elastically by the molecules of the flow at a particular angle, has information about
density fluctuations of a particular size. It can be shown that the signal that comes
out of a quadratic photo detector is proportional to the spatial Fourier transform as a
function of time, of the density fluctuations for a wave vector given by the scattering
angle. The spectral analysis of the data has allowed us to identify fluctuations of
different origins; entropic and acoustic. We have taken data at many points inside
and outside the flow. The technique is sensitive to the wave vector so we can study
fluctuations that propagate in different directions. Fluctuations in the direction of
the flow are shifted in frequency with respect to fluctuations perpendicular to the
flow at the same location. The frequency shift allows us to measure the local speed
of the flow. Outside the flow, only acoustic fluctuations are detected. We have been
able to determine the far field acoustic radiation pattern for a given wave vector.
Inside the jet, the analysis is much more complicated because the acoustic and the
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entropic peaks overlap when we use simple Fourier transforms. However, with the
use of parametric periodgrams we have been able to identify each type of fluctua-
tion. Moreover, we found a third peak at a much lower frequency that appears and
disappears as we move along the centerline of the jet. This peak appears also in other
positions outside the centerline. We have used Rayleigh scattering and Schlieren to
visualize the shock structure. We can then associate each spectrum with a position
in the jet relative to the shock structure. The slow peak appears always at a shock,
probably due to the interaction between the flow and the shock structure. We are now
working on the visualization of the flow, and hope that the combination of all the
techniques will give us further insight into the global behavior of the flow, especially
in the interfaces between the flow and the shocks and between the mixing layer and
the stationary fluid.

1 Introduction

Supersonic noise is of great importance in several industrial applications
(Nichols et al. 2011). The objective of this work is to understand the production
and propagation of acoustic waves in a supersonic jet. On one hand, there are several
hypotheses about acoustic production in supersonic jets, related to vortex interactions
in the mixing layer, the interaction between the flow and the shock structure, and to
small scale turbulence. Each kind of aerodynamic events produces waves of different
frequency (Bodonyy and Lele 2006). The traditional methods to study these flows
are intrusive: hot wire anemometry, laser Doppler, or particle image velocimetries
and sometimes involve complicated correlations of signals from three dimensional
arrangements of microphones in the far acoustic field outside the flow with flow
measurements in the near field. We hope to develop simpler methods to relate the
acoustic field to aerodynamic events in the flow.

In the late seventies, in the École Polytechnique in France, a non-intrusive opti-
cal technique was developed to detect density fluctuations inside and outside of the
flow (Stern and Grésillon 1983). This technique takes advantage of the heterodyne
detection of laser light elastically scattered by the molecules of a transparent gas
in motion (Rayleigh scattering). It can also be used to measure the mean veloc-
ity in the scattering volume. In the Hydrodynamic and Turbulence Laboratory in the
Physics Department of the School of Science in UNAM, the technique has been com-
plemented with signal processing methods that increase the resolution in frequency
space and with different forms of visualization of the shock structure (Aguilar 2003).

The acoustic emission pattern for some frequencies has been measured with the
technique mentioned. Also, with the help of visualizations, it has been possible to
relate measurements of density fluctuations with the shock structure.
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Fig. 1 The discontinuity at the end of the nozzle creates a perturbation that gives rise to a stationary
shock pattern, when the flow is supersonic

2 Theoretical Background

In this section, some relevant concepts of supersonic flows will be reviewed first
and then, some concepts from the electromagnetic theory behind the measuring and
visualization techniques.

2.1 Supersonic Jets, Shock Structure, Density Fluctuations,
and Sound Production

2.1.1 Supersonic Jets and Shock Structure

When a stream of fluid comes out of a nozzle, and mixes with the surrounding nozzle,
a jet is formed. The two dimensionless parameters that characterize these flows are
the Reynolds Number Re = vD/ν and the Mach Number M = v/cs , where v is the
speed of the flow, D the exit diameter of the nozzle, ν the kinematic viscosity and
cs the local speed of sound. When M is close to or larger than 0.3, compressibility
effects, that is density fluctuations, become important. The jet is supersonic for M ◦ 1
at the exit.

Figure 1 shows the structure of a supersonic jet. The discontinuity at the edge
of the nozzle produces a perturbation that propagates at the speed of sound. Each
new perturbation catches on the previous one. The addition of these perturbations
creates a conic region of very high density called shock. Starting with an expansion,
a stationary pattern of shocks is formed in the supersonic region of the jet (Goldstein
1976).

As the speed decays the flow becomes subsonic and the shocks disappear.
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2.1.2 Density Fluctuations

The equations that describe a compressible flow are more complicated than for the
incompressible case. However, if small oscillations about a point of equilibrium are
considered, the equations can be linearized. Monin and Yaglom (1987) have shown
that if the equations of motion are written in terms of the vorticity ζ, the divergence
D of the velocity, the entropy S, and the pressure P, all possible motions can be
described by three non-interacting modes:

dζ(t)

dt
= 0

d S(t)

dt
= 0

d2 D(t)

dt2 + a2
0k2 D(t) = 0

d2 P(t)

dt2 + a2
0k2 P(t) = 0. (1)

The incompressible vorticity (ζ) mode and the entropy (S) mode are stationary
or move at constant speed. The acoustic (P) or potential (D) mode is related to
pressure fluctuations that propagate at the speed of sound as can be seen from the
wave equation. The entropic and acoustic modes, related to the compressible part of
the flow, can be studied by Rayleigh scattering.

2.1.3 Acoustic Emission

There are several theories that try to explain acoustic emission by a jet based on
the near field aerodynamics, either vortex interactions in the shear layer like pairing,
tearing, or merging, or small scale motions due to instabilities generated at the nozzle.
In general, it is now accepted that noise, in supersonic and subsonic jets, is made
up of two basic components: one from the large turbulence structures and instability
waves, the other from the fine-scale turbulence (Tam 1992, 1998, 2012; Veltin 2008).
There are other possible sources of emission like the interaction of the flow with the
shock waves and the feedback of acoustic waves that re-enter the flow.

Traditionally, experimental studies on acoustic waves are done by placing many
microphones in the far field and correlating these measurements with events measured
inside the flow. Most of the local techniques are intrusive, like hot wires or LDA and
PIV that require homogeneous seeding (Goldstein 1983). Not only there is a problem
trying to determine uniquely sources from far field measurements, but also certain
phenomena like the diffraction of the acoustic waves by the mixing layer are usually
not taken into account.
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Fig. 2 Molecules scatter
light in all directions. By
selecting the orientation of
the detector, we select the
scattering angle and thus the
size of the fluctuations to be
studied

2.1.4 Rayleigh Scattering

The elastic scattering of an electromagnetic wave of wavelength λo by a neutral
particle of dimensions smaller than the wavelength is known as Rayleigh scattering.
In a static transparent gas, light is scattered homogeneously. If the gas is in motion
or with strong density variations, the characteristics of the scattered light reflect the
characteristics of the structure and motion of the gas (Jackson 1962). Figure 2 shows
the wave vectors of the incident and scattered light.

The total scattered field can be obtained from the integral

−−∇
EST = −∇

ES (∼r , t) ≥ d3r →n
(−∇

r → , t
)

exp
(
−i

−∇
k∂ · −∇

r → ) = −∇
ES (∼r , t) n(

−∇
k∂, t), (2)

where
−∇
ES (∼r , t) is the field scattered by one molecule, n(∼r , t) is the distribution of

molecules in the scattering volume Vs and n
( ∼k∂, t

)
is the spatial Fourier transform

of the density fluctuation. The scattered field has information about the motion of
the molecules in the scattering volume through the spatial Fourier transform of the
density.

2.2 Experimental Techniques

Rayleigh scattering has been used in two different ways: to visualize the flow and to
obtain the spatial Fourier transform of the density fluctuations as a function of time.
Shadowgraphs have been used also to visualize.

2.2.1 Visualization Methods; Rayleigh and Shadowgraphs

The shock structure can be visualized if the light scattered at small angles is captured
with a lens and sent into a screen. The part of the laser bean that is not scattered is
blocked (Azpeitia 2004) (see Fig. 3).
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Lens
Screen
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Jet

Fig. 3 Set-up for Rayleigh scattering

laser
Objective 40X Lens f=20cm Lens f=15cm

screen

Fig. 4 Set-up for shadowgraphs (without attenuator in the middle) and Schlieren (with attenuator)
(Salazar 2012)

If a cylindrical lens is placed in front of the laser, a sheet of light is formed and a
larger section of the jet can be observed on the screen.

Shadowgraphs and Sclieren methods are used to detect changes in the index of
refraction that cannot be seen by the naked eye (Settles 2001; Salazar 2012) (see
Fig. 4).

2.2.2 Heterodyne Detection of Rayleigh Scattering

The amplitude of the light scattered by the molecules is extremely small, and it cannot
be measured by a common diode. To solve this problem we mix it, on the surface of
the photodetector, with a reference beam of light called the local oscillator. The local
oscillator is displaced in frequency with respect to the incident beam by 110 MHz.
This technique is known as heterodyne detection. Figure 5 shows the experimental
set-up.

The beam that comes out of the laser is sent into an acoustic modulator. The
modulator acts as a Bragg cell and several orders of diffraction come out. The order
zero goes through without being deviated; we refer to this beam as incident or primary.
The order one is diffracted at a certain angle, is less intense, and is displaced in
frequency by 110 MHz. We will refer to this beam as the local oscillator. Both beams
are manipulated so that they cross at an angle θ in the volume to be studied. The local
oscillator is sent directly to a photodetector, the main beam is blocked just after the
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Fig. 5 The light from the laser is sent to an acousto-optic modulator to obtain several orders of
diffraction displaced in frequency. One of these beams is used as the local oscillator to be mixed
with the scattered light at the surface of the detector

scattering. On the photodetector then arrives the part of the incident field scattered at
the angle θ and the local oscillator. The scattering angle determines the wavenumber
of the fluctuations that are studied through the equation

k∂ = 2ko sin
θ

2
, (3)

where
−∇
ko is the wavevector of the incident field,

−∇
k∂ is the wavevector of the density

fluctuations, ko =
∣∣∣−∇ko

∣∣∣, and k∂ =
∣∣∣−∇k∂

∣∣∣.
The photodetector is sensitive to the intensity of the incident light, so the current

it produces is proportional to the square of the electric field incident on its surface.
The current of the photodiode is then proportional to

(−−∇
EST + −−∇

EO L

)2 =
∣∣∣−−∇EST

∣∣∣2 +
∣∣∣−−∇EO L

∣∣∣2 + 2 ∼EST · ∼EO L . (4)

The first two terms are constant and give a constant voltage. The first is too small to
be extracted from the total value, and the second is of no interest. The third term gives
a time dependent current that oscillates at the frequency difference of the frequencies
of both electric fields, contains the information we are interested in, and is modulated
by the amplitude of the local oscillator. The current proportional to this term is known
as the heterodyne current (Yariv 1976).

It can be shown that the spectral density of the heterodyne current I(ω) produced
by all the scatterers is of the form
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I (ω) = 1
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]
(5)

where η is the efficiency of the detector, no the mean density, W is related to the
Gaussian profiles of the beams and S(∼k,ω) is the form factor defined by

S(
−∇
k∂,ω) =

∣∣∣n(
−∇
k∂,ω)

∣∣∣2

n0V
(6)

Density fluctuations have been studied with Rayleigh scattering using other tech-
niques (Panda and Seasholtz 1998).

3 Experimental Results

3.1 Visualization

When the near region is illuminated, the first shock created by the discontinuity at
the nozzle can be observed (Fig. 6). The exiting flow expands as it comes out of the
nozzle, but the stationary gas compresses it. The result is a high density region in
form of a V.

When the flow is illuminated by a sheet of light, various shocks can be observed
(Fig. 7).

In the shadowgraphs and Schlieren images the shock structure is better defined
than in those shown above. Part of the internal structure can be observed. Figure 8
shows three first shocks for flows with different exit velocities. When the speed is
very high, instead of a sharp cross, a flat region appears known as Mach’s disk.

3.2 Heterodyne Detection and Spectral Densities

To obtain I(ω), the current that comes out of the photodetector i(ω,t) can be sent
directly to a spectrum analyzer or acquired and processed with a computer. Due to
the fact that the technique is sensitive to wave vector

−∇
k∂ determined by the optical

set-up, we can observe fluctuations propagating in different directions. To apply the
previous equations, it is necessary to make sure that the beams remain Gaussian along
the optical path. We have checked this in different points, and measured precisely
the scattering volume.
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Fig. 6 The flow goes upward. The first shock composed of an expansion and a compression is
observed

Fig. 7 The flow goes from left to right. A series of shocks can be observed

Fig. 8 First shock for three different exit velocities. The crossover from expansion to compression
flattens as the speed of the flow increases
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Fig. 9 Spectral densities for fluctuations traveling perpendicular to the flow. a centerline at 1.3
diameters from the nozzle, b outside the jet

We are also able to determine the width of the jet at each x location. When the
flow exits the nozzle, the flow becomes narrower before it opens again; that is, even
though it comes out of a contraction, it behaves as if it went through a contracting
divergent nozzle (Carreño Rodríguez 2010).

Figure 9a shows a spectral density obtained with a spectrum analyzer for density
fluctuations in the axis of the jet, at 1.3 diameters from the nozzle, propagating in a
direction perpendicular to the flow. The spectrum is symmetric centered at the fre-
quency of the optical modulator. The spectrum appears to be broad and corresponds
mainly to fluctuations of entropic origin due to the turbulent nature of the flow. How-
ever, a small bump on either side of the center, at a frequency that can be identified
with an acoustic fluctuation can be observed.

Figure 9b shows density fluctuations outside the flow. The center of the peak
corresponds to an acoustic wave traveling in a direction opposite to the wave vector
defined by the optics.
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Figure 10a shows the spectral density obtained at the same point than Fig. 9a
but for fluctuations traveling parallel to the flow. In this case, the fluctuations are
convected with the flow and the entropic peak is displaced to the right because of the
Doppler shift. The local mean velocity can be measured from the frequency shift. In
this figure the acoustic peak cannot be observed on the right, probably because it is
submerged under the entropic peak. The peak on the left comes from outside of the
jet due to the length of the scattering volume.

Figure 10b is similar to Fig. 10a but at a different location along the centerline. It
is important to notice a low frequency peak.

From Fig. 10 two important observations can be made. First, if the acoustic peak
exists, it could be hidden under the broad entropic peak; or its frequency could be
so close to the entropic frequency that they form together a broad peak and the two
frequencies cannot be identified separately. The second observation is that in certain
locations, always at the centerline of the jet, a peak appears at a much lower frequency
than the entropic peak.

3.3 Signal Processing and Parametric Periodgrams

From the conclusions above, it became necessary to search for an appropriate signal
processing that would increase the spectral resolution. The first thing to be considered,
besides Nyquist theorem, is that a very high sampling frequency would indeed give a
very faithful reconstruction of the signal in time but extremely poor in the frequency
domain. The spectral densities obtained with the spectrum analyzer showed the need
for much better frequency resolution. The second thing is the method to obtain a
spectral density with less noise.

This seems a simple matter but most oscilloscopes and spectrum analyzers do not
allow the user to choose freely the sampling frequency.

After analyzing several techniques, we decided to use Burg parametric period-
grams. If the acquisition is done right, there is a wide range within which the spectral
density is independent of the number of parameters (Alvarado Reyes 2004, 2010).

3.4 Slow Mode and Shock Structure

Figure 11 shows a series of spectra for fluctuations traveling perpendicular to the
flow, obtained with periodgrams at different locations along the centerline.

Three peaks are visible. The acoustic peak is always at the same location. The
entropic peak changes with the local speed of the flow. As expected, the speed of
the flow changes very little in the supersonic region. The slow peak appears and
disappears along the centerline and changes slightly its frequency. It is interesting to
note that when the new peak has its highest amplitude, the acoustic peak disappears
and vice versa. We are searching for an explanation for this effect.
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Fig. 10 Spectral densities for fluctuations traveling parallel to the flow. a at 1.3 diameters from the
nozzle, b at another location along the centerline. A low frequency peak appears at certain positions.
The acoustic peak on the left comes from outside of the jet. For small angles the scattering volume
is very long in the direction perpendicular to the wave vector

If we compare Figs. 7 and 11, we obtain Fig. 12 where we can determine that
the regions of maximum amplitude of the low frequency peak, correspond to the
crossover between expansion and compression in the shocks. The x coordinate (along
the centerline of the jet) is given in multiples of the nozzle diameter.

This low frequency can be related to the interaction between the shock structure
and the flow. The shock structure appears very stable in all the images. However,
there is a possibility that it oscillates at a frequency that cannot be detected by the
eye. This will be determined with further tests with a high speed camera. In both
cases, this slow mode would be maximum close to the shock structure.
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3.5 Emission Pattern

We have taken data at many positions inside and outside the jet, and processed the
signals with Burg’s periodgrams, for different directions of the wave vector. At each
point, we determined the direction for which the amplitude of the acoustic fluctuation
is the largest. Figure 13 shows the spectra at the same point for different directions
of the wave vector.
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Fig. 13 Periodgrams obtained at the same point for different directions of the wave vector outside
the jet. The maximum amplitude corresponds to the direction of propagation of the fluctuation
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Fig. 14 Acoustic radiation pattern for a supersonic jet

We define the direction of maximum amplitude as the direction of propagation of
the acoustic fluctuations. As shown in Fig. 14, we were able to construct an acoustic
emission pattern for a jet.

It must be pointed out that with our technique, we can only detect ultrasound
waves. To reduce the frequencies we can detect for acoustic waves a larger wavelength
for the incident laser is required.

3.6 Particle Image Velocimetry (PIV)

So far, we have been able to determine the speed of the flow either by the Doppler
shift of the spectrum, or by the angle of the shock wave. The two measurements
give different results, probably due to the lack of precision in the measurement of
the angle. To have a better measurement to compare with, we are in the process of
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(a) (b)

Fig. 15 Variation of the index of refraction. a Original dot net, b dot net modified by the jet flow

doing Particle Image Velocimetry on the flow. It is very difficult to seed high speed
gas flows because most commercial particles are too heavy to follow the flow. The
way seeds are introduced must not affect the flow speed and the distribution should
be homogeneous at least for some time. It is well known that turbulence and large
vertical motions redistribute the particles (Echeverría Arjonilla 2013).

In our experiments, we have detected that the seeds modify the shock structure.
The first shock occurs closer to the nozzle, the angle becomes larger, and thus the
local speed decreases. We are not sure yet whether it is the presence of the titanium
dioxide particles or the system of injection that produces this modification.

3.7 Quantification of the Index of Refraction

The images shown in Figs. 6, 7, and 8 have been used so far to provide only qualitative
information, except for the determination of the angle of the shock wave and thus
the local speed.

Schlieren images and shadowgraphs can be used, with the help of a net of dots,
to quantify the variation of the index of refraction. To do so, an image of a net of
points is placed behind the location where the flow will be. An image without flow
is taken as shown in Fig. 15a and b (Porta 2013)

The change in the position of each dot is related to the change in the index of
refraction and thus to the density. Figure 16 shows the field of displacements of the
dots. We are on the process of relating this field with the size of the shocks.

4 Conclusions and Future Work

Rayleigh scattering has proven to be a very useful tool because it is non-intrusive,
does not require seeding, and measures directly the motion of the fluid.
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Fig. 16 Displacement field
which is proportional to
the gradient of the index of
refraction

Heterodyne detection of Rayleigh scattering can differentiate among three differ-
ent density fluctuations: acoustic waves propagating at the speed of sound, entropy
fluctuations convected by the flow velocity, and a low speed fluctuation that might
be related to interaction between the flow and the shock structure. It is still necessary
to determine if the shock structures fluctuate with time.

With this technique we have observed that, contrary to what most textbooks prove,
a contraction can produce a supersonic flow and a stable shock structure. We have
shown that the flow gets narrower just outside of the nozzle and then reopens again
(Carreño Rodríguez 2010). This happens in a length shorter than a diameter.

This technique can also be used to measure the local speed of flow in any direction.
The precise measurement of the frequency, that can be done when the spectral density
is calculated with periodgrams, gives a precise measurement of the speed.

The system is sensitive to the direction of propagation of the fluctuations, so it
can be used to determine the acoustic radiation pattern of the flow for a wave number
determined by the optics. It is quite easy to change the scattering angle, and thus
the wave number. Its limitation consists that only fluctuations with the wave vector
determined by the optical set up can be detected.

The spectral density is related to the energy, so it can be seen how the energy is
distributed among the different kinds of fluctuations for each wave number.

The supersonic structure can be visualized with Rayleigh scattering, with Schlieren
images and with shadowgraphs. Each technique gives different information about
the shock structure and about the changes in the index of refraction.

The work that is presently being done in PIV and the quantification of the index
of refraction will complement the information we already have. The visualization of
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the flow simultaneously to the shock structure is still a big challenge, because the
shocks scatter an enormous amount of light that hides all other motions.

The biggest problem of the heterodyne detection of Rayleigh scattering is the
spatial resolution of the scattering volume. The scattering volume is formed by the
intersection of the local oscillator and the primary beam. Very small angles (about 2
mrad) have to be used to detect lower frequencies of acoustic interest. As a conse-
quence, the scattering volume is very thin but very long, so the spatial resolution in
the direction perpendicular to the direction of propagation is very bad. Presently, a
system with two local oscillators crossing the primary beam at the same angle in the
same location is being developed. Correlations between the two signals should help
reduce the problem.

In textbooks, shocks are lines representing sudden changes in the density. We know
however, that the change in density is continuous. Our next interest is to determine
experimentally the changes in the density across the shocks, and give an operational
way to measure the interface. Also Schlieren images and shadowgraphs will show if
there is any internal structure.
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Complex Fluids, Soft Matter and the Jamming
Transition Problem

Alberto A. Díaz and Leonardo Trujillo

Abstract We present an introductory view of the jamming transition problem, start-
ing from Soft Matter, passing through Granular Matter and ending up with Jamming.
Various properties of Soft Matter are discussed, because almost all the systems in-
cluded in this category can be jammed. Then, we discuss fundamental and intrinsic
aspects of Soft Matter systems. Although they look like a hodgepodge of things, they
share some common features. Here, we propose that Granular Matter could provide
a framework to understand essential aspects of Soft Matter. Granular materials can
mimic glassy, liquid, solid, and gas-like behaviours and one can use them to un-
derstand the other members of Soft Matter. Finally, we present an overview of the
jamming transition problem and outline a program towards a unified theory of Soft
Matter.

1 What is Soft Matter?

Before entering into our discussion on the jamming transition problem, we have to
address some questions and definitions briefly. We start with Soft Matter1 (SM),
because jamming transition appears in systems included under this common denom-
ination, so What is Soft Matter?

1 fr. Matière Molle.
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The definition of SM has been controversial owing to the existence of a plethora
of features characterizing each one of the different members of this rare family.
Kleman and Lavrentovich (2002) wrote that what we call SM covers a large variety of
systems; from polymers to colloids, from liquid crystals to surfactants, and from soap
bubbles to solutions of macromolecules. Regarding the above intuitive conception
of SM, Jones (2002) expressed that many such materials are familiar from everyday
life: for example, glues, paints, and soaps, while others are important in industrial
processes, such as polymer melts which are moulded and extruded to form plastics;
colloids which are used in pharmaceutical applications; surfactants which may act as
detergents, wetting agents, emulsifiers, foaming agents, and dispersants; and liquid
crystals in LCDs and glasses. Much of the food we eat and indeed much of the stuffs
of life are part of this wide family, and all of them share similar qualities of mutability
and responsiveness to its surrounding. Biological systems are of great importance,
in fact, Poon et al. (2002) established that soft condensed matter is the place where
physics meets biology and Jones (2002) quoted a William Burroughs’(1961) apt
phrase—we are ourselves soft machines—.

The above sketch brings to us an idea of the vast field of SM physics. It looks
like a hodgepodge of weird characters (and granular materials (GM) have not been
introduced yet. We consider that GM systems play a key role in our approach of
unification of SM; they could have a sort of “messianic presence” because they
will appear as unifiers). So, how can we define SM?, what kind of materials can be
classified as SM?, and what do these apparently disparate materials have in common?
In regard to a definition of SM many questions may still arise.

In his Nobel lecture in 1991 (de Gennes 1991), the French physicist de Gennes
said that the name complex fluids to talk about SM is an ugly name, which tends
to discourage young students. However, Piazza (2011) shows us that complex fluids
could be a convenient subclass of SM. de Gennes (2005) defines SM as all physio-
chemical systems which have a large response function.2 As a realization of this, in
the same report, four examples are illustrated. They are related to vulcanization of
rubber, nematic liquid crystals, ferroelectric smectics C◦, and single domain nematic
rubbers. In the first of those examples, a very diluted additive is enough to switch a
system of polymer chains (the latex of hevea tree) from liquid to solid state: a rubber.

A further definition of SM was given by Möhwald (2005) as materials that are held
together by non-covalent interactions. This interactions are typically weak, often on
the order of kB T (where kB is the Boltzmann’s constant and T is the temperature),
and thus comparable to entropic forces. Möhwald gave this definition by analogy
with supramolecular chemistry. In particular, he considered that SM is not easily

2 When experiments are performed on thermodynamic systems, the quantities which are easiest to
measure are the response functions. Generally, we change one parameter in the system and see how
other parameters respond to that change under highly controlled conditions. They also provide a
measure of the size fluctuations in a thermodynamic system (Reichl 1998). Response functions are
the usual method for characterizing the macroscopic behaviour of a system. They are experimentally
measured from changes in thermodynamic coordinates with external probes.
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defined in terms of elastic moduli. For instance, polymer science is part of SM but
there exist polymers as hard as steel.

Piazza (2011) established a broad classification of SM in contrast to Jones’ defini-
tion. The second dubbed SM as a convenient term for materials in states of matter that
are neither simple liquids nor crystalline solids of the type studied in other fields of
solid state physics (Jones 2002). This definition is more related to stiffness deforma-
bility, i.e., a gentle external influence has a big effect. The first wrote that there is not
a single name to label all those systems, and although scientists dubbed them SM,
this term is suitable for a group of materials, like those similar to ricotta, whipped
cream, toothpaste, etc. However, others are really too soft, to the point that they are
not even solids, but rather liquids. In these cases, we should speak more precisely of
complex fluids to distinguish them from simple fluids such as air or pure water. On
the other hand, opals and concrete do not fit neither soft nor fluid, and so they should
be dubbed supramolecular materials.3

Kleman and Lavrentovich (2002) wrote that every system that falls under the
name of SM belongs, with very few exceptions, to organic chemistry because the
building blocks of SM are organic molecules with often complicated architectures,
anisometric in shape, and bounded by weak interactions. In fact, they considered
colloids, biological matter (proteins, membranes, DNA and their associates, like
viruses or microtubules4), liquid crystals, and polymers as SM. In contrast, in Piazza’s
book (Piazza 2011) we find that colloids, micelles, vesicles, and emulsions; colloid
crystals, gels, and glasses; liquid crystals, granular matter, membranes, biopolymers,
and biological machines can be classified as SM. However, this classification will
make sense if we would be able to highlight common features for all of these systems.
Here we are concerned with this labour but not following the same pathway.

A very interesting definition of SM was given by Witten (1999)—SM is a fluid
in which large groups of the elementary molecules have been constrained so that
the permutation freedom within the group is lost—. This definition is related to
the following facts: i) the mobile molecules of a simple fluid may freely exchange
positions, so that their new positions are permutations of their old ones, ii) in contrast,
the molecules of an ideal solid have fixed positions and may not readily permute in
this way.

Hamley (2007) wrote the following about SM: The term soft matter originates
from macroscopic mechanical properties. We mean here, materials such as colloids,
surfactants, liquid crystals, certain biomaterials, and polymers in the melt or solu-
tion. Many soft materials can be induced to flow under certain conditions (this could
be dubbed in some cases as an unjammed state). This weak ordering results from the
lack of three dimensional atomic-range order as found in a crystalline solid. Never-
theless, there is always a degree of local order at least as great as that in a liquid.
From the viewpoint of kinetic energy, a crude distinction between soft materials and

3 Supramolecular structures are large molecules formed by bonding smaller molecules together.
4 They are the third component of the cytoskeleton and are rigid hollow rods approximately 25 nm
in diameter. They are dynamic structures that undergo continual assembly and disassembly within
the cell, and are composed of a single type of globular protein, called tubulin.
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hard is on the basis that the molecular kinetic energy for the former is close to kB T ,
whereas for the latter it is much less than kB T (when temperature is near ambient).

We can make two observations on Hamley’s consideration for SM: (i) it is in
agreement with Mohwald’s definition and (ii) Hamley establishes that SM can be,
under certain conditions, in congruence with another key issue: the unjammed state
in SM.

Let us summarize that SM is a convenient classification for materials in physical
states that are neither simple liquids nor crystalline solids of the type studied in
other branches of condensed matter physics. Physicists are able to describe with
good approximation fluids and ordered solids, but what do they do with SM? It
does not exist a theory to do it, and there is a need to describe them. Nowadays,
the interest is centred on: colloidal dispersions, where sub-micrometric particles of
solid or liquid are dispersed in another liquid, for instance: blood and milk; polymer
melts or solutions in which the size and connectivity of the molecules lead to striking
new properties, such as viscoelasticity5; liquid crystals, where anisotropic molecular
shapes lead to states with an intermediate order between a crystalline solid and a
liquid; and GM. The latter are broadly defined as the class of materials composed
of a large number of discrete solid particles or grains, where the grains are large
enough that they are free of thermal fluctuations. They are very common, but their
description is one of the hardest problems in modern science and engineering, with
several implications in technological and industrial processes. We could certainly
ask why? Some reasons are: they are complex heterogeneous materials, which are
out of equilibrium, interacting through dissipative dynamics. Their sizes range from
very tiny particles such as sand grains to very big objects such as rocks, stellar dust,
and asteroids. Moreover, GM are neither microscopic nor macroscopic enough to try
studying them with “classical” statistical mechanics, condensed matter physics, or
quantum mechanics.

5 Viscoelasticity is referred to as the phenomenon in which the stress and strain of some materials
depends on time. Viscoelasticity is the combination of viscous and elastic response of a material
subjected to constant strain, constant stress, or oscillatory stress and strain. Let recall that elasticity
deals with the mechanical properties of elastic solids, which obey Hooke’s law: stress (σ ) is pro-
portional to strain (γ ), i.e., σ = Gγ , where G is the shear modulus which is independent of the
applied strain at low values. On the other hand, viscosity deals with the properties of liquids in the
classical theory of hydrodynamics according to Newton’s law: σ = ηγ̇ , where η is the viscosity
which is independent of the applied shear rate at low values. Whether a material behaves as an
elastic solid or a viscous liquid depends on the length time over which an experiment will be done.
Shear modulus is defined as the ratio of shear stress to the shear strain, and it is useful for measuring
the stiffness of materials.
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1.1 What do These Apparently Disparate Materials Have in
Common?

Jones (2002) establishes a group of common features for SM listed as follows6:

• Length scales intermediate between atomic sizes and macroscopic scales:

1. Colloid particles are typically less than a micrometre in size.
2. Polymeric chains have overall dimensions of tens of nanometres.
3. The self-assembled structures formed by amphiphilic7 molecules have dimen-

sions in a similar range.
4. The size for grains in GM are roughly 1μ. On the upper size limit, the physics

of granular materials may be applied to ice floes, where the individual grains
are icebergs, and to asteroids belts of the solar system with individual grains
being just the asteroids.

• Fluctuations and Brownian motion: Although typical structures in SM are larger
than atomic sizes, they are small enough for Brownian motion—the fluctuations
that take place in any thermal system—. For Brownian motion to be important,
the typical energies associated with the bounds between structures and with the
distortions of those structures must be comparable in size to the thermal energies.
SM systems should be visualized as being in a constant state of random motion:
polymer chains in solution are continually writhing and turning, and the mem-
branes formed by sheets of self-assembled amphiphilic molecules are not rigid
plates but are continually buckling and flexing under the influence of Brownian
fluctuations. Returning to GM, we face a wall: they do not undergo thermal fluctu-
ations, but the above explanation contradicts this statement, so what is the problem
here? The answer could be that we should expand the definition of SM to include
non-thermal systems as well.

• The propensity of SM to self-assemble8: Related to the importance of Brownian
motion is the fact that most SM systems are able to move towards equilibrium.
But the equilibrium state of lowest free energy in a SM system is often not a
state of dull uniformity; the balance of energy and entropy in SM systems yield
rich phase behaviour in which complex structures arise spontaneously. This self-
assembly can take place at the level of molecules, but even more complexity occurs
when the ordering takes place hierarchically, with molecules coming together to

6 We have introduced features for granular matter trying to make a broad classification of all of
them.
7 Amphiphilic molecules possess both hydrophilic (polar) and lipophilic (fat loving) parts. They
are related to molecules having a polar, water-soluble group attached to a nonpolar, water-insoluble
hydrocarbon chain.
8 What does a self-assembly mean? It is a type of process in which a disordered system of pre-
existing components forms an organized structure of patterns as a consequence of specific, local
interactions among the components themselves, without external direction.
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form supramolecular structures (such as micelles9), which self-organize with a
high level of order. In this way, structures with high complexity are put together
without external intervention, driven solely by the second law of thermodynamics
(a spontaneous process is the time evolution of a system in which it releases free
energy, usually as heat, and moves to a lower thermodynamically stable state). In
contrast, GM are driven by dissipative forces. In fact, one of the most important
properties of GM is the irreversible energy dissipation in the course of interaction
between particles. We can then ask: Should we speak about self-assembly in GM?
What is the meaning of the Second Law of thermodynamics here? These are two
important questions that we can take from the plethora of possibilities, and we
must think about them.

2 What is the Basic Aim of Condensed Matter Physics?

Physicists have created many theories to explain the Universe, one of them is con-
densed matter physics. It is one of the most important, which has allowed us to
develop almost all the current technology: transistors, AFM, computers, cell phones,
an so forth. However, it fails when it tries to explain SM. One example of this failure
is related to the presence of the boson peak (BP) in glasses. Remarkable differences
between crystalline solids and amorphous solids, like glasses, are observed mainly
in the thermodynamics and transport properties. At low temperature, glasses reveal
an excess of specific heat and a plateau in the thermal conductivity. This anomalies
originate from the anomaly in the frequency spectra of atomic vibrations. These
phenomena are related to the occurrence of the BP, which is universally observed
for all glasses in measurements of specific heat, light, X-ray, and neutron scattering.
However, the nature of the BP is a theoretical open problem (Chumakov et al. 2011).
It is important to recall here that, in crystals, the low frequency DOS follows the
Debye model (Zorn 2011). In spite of apparent deficiencies in condensed matter the-
ory, we have learnt something important. As in it, we should tackle the problem in
a similar way: understanding the collective properties of large assemblies of atoms
and molecules in terms of the interactions between their components.

In regard to the aim of SM physics, we would like to talk about the style of SM
research following de Gennes’ arguments (de Gennes 1991). One major feature is
the possibility to do very simple experiments. Second, some outstanding theoretical
analogies between SM and other fields sometimes emerge, for instance:

• Edwards (1964) showed a correspondence between the conformations of a flexible
chain and the trajectories of a non relativistic particle; the statistical weight of the
chain corresponding to the propagator of the particle. In the presence of external
potentials, both systems are ruled by exactly the same Schrödinger equation.

9 A micelle is an aggregate of surfactant molecules dispersed in a liquid colloid. A surfactant is a
substance which exhibits some superficial o interfacial activity.
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• A wonderful analogy was found by McMillan and by de Gennes and coworkers. It
consisted in relating smectic A phase10 in liquid crystals to superconductors. They
knew that the problem of type-II superconductors in a magnetic field is exactly
equivalent to that of a vortex state in rotating superfluid helium. The analogy here
is a smectic A phase inside which we add chiral solutes playing the role of the
field. In some favorable cases, as predicted in 1988 by Lubensky (1988), this may
generate a smectic phase drilled by screw dislocations—the so called A* phase.

• Another interesting example is the protein folding. Prasanth and Ioan (2012) inves-
tigated similarities between protein folding and granular jamming. They demon-
strated that folded proteins exhibit signatures common to both glassiness and
jamming by using temperature—and force—unfolding molecular dynamics sim-
ulations. They generalized the phase diagram proposed by Liu and Nagel (1998) to
include folded-unfolded proteins. Below certain values of the external force, tem-
perature, and environmental parameter concentration proteins fold and undergo
changes in mechanical properties similar to jamming of grains.11 As Cates et al.
(1998) proposed, fragile materials may jam or unjam depending on the direction
of the applied forces. Based on this consideration Prasanth and Ioan advanced that
proteins seem to share such unusual mechanical properties in the sense that an indi-
vidual protein exhibits different resilience to unfolding under external pulling with
atomic force microscopy or single-molecule tweezers, depending on the direction
of the pull (see Wilcox et al. 2000; Brockwell et al. 2003).

3 Granular Materials: Are they Solid or Liquid?

Granular materials are collections of many macroscopic solid grains large enough
(with typical sizes > 1 μm) so that thermal fluctuations are negligible (Aranson and
Tsimring 2009), i.e., Brownian motion is unimportant (de Gennes 1999). They are
highly dissipative, and this is one of the reasons for the uselessness of thermodynamic
concepts, such as energy equipartition, which become generally inapplicable. To
illustrate the importance of the energy scales in GM, or the unimportance of thermal
fluctuations, Aranson and Tsimring (2006) established that the energy of a 1 mm
grain moving with a typical velocity of 1 cm/s exceeds its thermal energy by at least
ten orders of magnitude. Compared to String Theory, Particle Physics, or Quantum

10 In the smectic-A mesophase, the director is perpendicular to the smectic plane and there is no
particular positional order in the layer. Similarly, the smectic-B mesophase is faced with the director
perpendicular to the smectic plane, but the molecules are arranged into a network of hexagons within
the layer. In the smectic-C mesophase, molecules are arranged as in the smectic-A mesophase, but
the director is at a constant tilt angle measured normally to the smectic plane.
11 They should have considered the work done by Ciamarra et al. (2010), where they made certain
modifications to the Liu-Nagel’s phase diagram taking into account the role of infinite relaxation
times and the convex shape of the jamming region.
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Information the physics of granular matter looks “mundane”. However, GM have
striking features and despite their humble appearance, their bulk properties are often
different from conventional solids, liquids, and gases due to the dissipative nature
of forces acting on interacting grains, such as inelastic collisions, dry friction, or
viscous drag (similar to fluid dynamics when Stokes’ law is invoked). On the other
hand, tangential friction forces play an important role in the dynamics of granular
matter, especially in dense systems, and we should have in mind that these forces are
hysteretic and history dependent (de Gennes 1999).

Piazza (2011) gives a definition of GM that fits well with our approach towards
unification. Nevertheless, it is different to our strategy. One statement is that GM are
often regarded as colloidal suspensions that have lost their suspending agent, but this
is not rigorously true since air could be considered as a solvent and it is always there,
exactly as in aerosols. GM could be considered as an additional state of matter in its
own right. Their pressure is not uniform as in a liquid and they press more on the
sidewalls than on the bottom of a container. For granular systems to remain active
they have to gain energy from external sources. This is an important factor in the
study of hopper collapse (Janssen and Vereins 1895; Forterre and Pouliquen 2009).
In addition to shear and vibrations, external volume forces such as gravity, electric,
and magnetic fields as well as the flow of interstitial fluids may also activate grains.
When subjected to a large enough driving force, a granular system may exhibit a
transition from a granular solid-like state to a liquid or flowing state, and various
ordered patterns of grains may develop (Aranson and Tsimring 2009). In particular,
dissipation is responsible for the fact that most static regimes of GM are metastable
and so the system does not typically evolve towards a certain free energy minimum. In
fact, dissipation (or dissipative interactions) among grains leads to different dynamics
that cannot be described by standard equilibrium statistical thermodynamics.

A very old and famous problem in GM is related to sphere packings in three-
dimensional Euclidean space. This is known as Kepler’s problem. This problem
can be stated as follows: What is the arrangement of (many) identical spheres that
has a maximum density packing? (Weaire 1999). Kepler formulated this question
around 1611. In relation to this problem, in 1960, Bernal (1960) published a paper
in Nature, where he went far beyond by studying the coordination of randomly
packed spheres. This problem is connected to the foundations of the geometry of
the Jamming Transition Problem. It is curious that yet, we fall so frequently in the
realm of GM-problems and its puzzles, or in the words of Corwin (2012): “while the
horizons of physics have stretched to encompass the extremes of the universe, it is
remarkable that there are still fundamental puzzles awaiting us at bottom of a bucket
of sand”.

GM could be considered as a tool to simulate other SM systems or complex
fluids. An example of this is the work done by Weeks (2012): Melting Colloidal
Crystals from the Inside out, where it is established that a collection of hard
spheres, that interact only through short-range repulsive forces, are useful for sim-
ulations of melting in colloidal crystals. Another beautiful example is the work of
D’Anna et al. (2003), where they report an experimental investigation of an archetypal
non-equilibrium system. They used a sensitive torsion oscillator immersed in a
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granular system of millimetre-size grains that were fluidized by strong external vibra-
tions. The vibro-fluidized granular medium is a driven environment, with continuous
injection and dissipation of energy, and the immersed oscillator can be seen as anal-
ogous to an elastically bound Brownian particle. By measuring the noise and the
susceptibility, they showed that the experiment can be treated with an equilibrium
formalism. They proposed that the vibro-fluidized granular system behaves as a ther-
mal bath satisfying a fluctuation-dissipation relation, thus giving access to an exper-
imental estimation of the granular viscosity and effective temperature. Nevertheless,
these quantities are anisotropic and inhomogeneous.

As was mentioned before, in SM the interactions are typically weak and on the
order of kB T , but not zero. Nonetheless, in GM, kB T ∇ 0 implies that entropy
considerations can easily be outweighed by dynamical effects, that now become of
a paramount importance. A key role of the temperature is that it allows a system to
explore phase space. In a granular material, kB T ∇ 0, precludes such exploration.
Unless perturbed by external disturbances, each metastable configuration of the ma-
terial will last indefinitely, and so no thermal averaging over nearby configurations
will take place (Jaeger and Nagel 1996). Another role of temperature in ordinary
gases or liquids is to provide a microscopic velocity scale. Again in GM this role
is completely suppressed, because the only velocity scale is imposed by the macro-
scopic flow itself. It is possible to formulate an effective granular temperature in
terms of velocity fluctuations around the mean flow velocity (Owaga 1978; Savage
1984; Walton and Braun 1986; Haff 1985; Campbell 1990; Ippolito et al. 1995; Warr
and Huntley 1995; Warr et al. 1995). However, such approaches do not always re-
cover thermodynamics or hydrodynamics due to the inelastic nature of collisions
between grains.

Regarding to phases in GM, Jiang and Liu (2007) made a classification of them in
terms of energy. Independently of the grain ratio of deformation and kinetic energy,
these phases may loosely be referred to as gaseous, liquid, or solid. The first phase
is relatively well understood: moving fast and being free most of the time, the grains
in the gaseous phase have much kinetic energy, which is dissipated by collisions
between the particles (Jiang and Liu 2007). In the denser liquid phase, there is less
kinetic energy, more deformation, and a complex rheology that has been scrutinized
recently (Jiang and Liu 2007). In the static regime, with the grains deformed in a com-
pressed packing, the energy is almost elastic. Up to now, there is no theory capable
of accounting for GM statics and dynamics simultaneously. However, Aranson and
Tsimring (2009) proposed that some combination of fluid dynamics with phase-field
modelling, based on an order-parameter description of the state of a granular mater-
ial, could be one possible candidate for a unified theory. Kadanoff (1999) expresses
that the study of collisions and flow in these materials requires new theoretical ideas
beyond those in the standard statistical mechanics, hydrodynamics, or traditional
solid mechanics. These materials show complex flow patterns similar to those of
ordinary liquids, but also freezing, plasticity, and hysteresis. GM can mimic: glass,
liquid, plastic flow, glassy behaviour, folding of proteins, and so on.

We employ points and straight lines to understand the dynamics of rigid solids, par-
ticles, and systems of them. This allowed us to construct buildings, bridges, rockets,
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vehicles, etc. We use points to understand some properties of matter and interactions
so that all the complexity is reduced to “tiny” non-physical objects. So, when GM is
considered as a set of spheres, we could use them to understand the dynamics of gels,
colloids, polymers, etc. We join them to form chains and other structures. GM could
be considered as the next step in abstraction to model and understand heterogeneous
materials. Perhaps, if we go far beyond, GM can be used as a cornerstone to construct
a unified theory for SM. The jamming transition problem in granular matter could
help us to understand and develop such a theory for SM.

4 What is Jamming?

In this section, we review some significative scientific papers about the jamming
transition problem. We present a brief discussion and quotations about some phe-
nomenological, experimental, computational, and theoretical facts.

Let us start with a brief history about jamming transition (JT). The study of
jammed systems began as a culinary curiosity in 1727, when the reverend Stephen
Hales studied how peas pack when compressed in an iron pot. If we fill a pot with
peas, we are then able to pass our hands through the bulk of peas because they flow
out of the way like a liquid. However, as the pressure and the density, are increased,
we will find a critical point, above which the peas jam into a stable amorphous solid
(Corwin 2012). When the packing fraction is increased sufficiently, loose particles
jam to form a rigid solid in which the constituents are no longer free to move (Zhang
et al. 2009).

Above this threshold for stress (the critical point in “the flowing of peas”), a
concentrated colloidal dispersion of hard particles under shear may jam. According
to Ball and coworkers (Ball and Melrose 1995; Melroseb and Ball 1995; Farr et
al. 1997), the jamming apparently occurs because the particles form force chains12

along the compressional direction. Indeed, the shape of the distribution of normal
forces is a manifestation of the jamming/unjamming transition (Corwin et al. 2005).
As was argued by Cates et al. (1998), once the contacts arise, an array or network
of force chains can support the shear stress indefinitely, and hence the material is a
solid.

Liu and Nagel (1998) sketched a speculative phase diagram for jamming. This
phase diagram depends on temperature, load, and density. According to this picture,
jamming can occur only when the density is high enough. One can then unjam the
system either by raising the temperature or by applying a stress. The ideas introduced
by Liu and Nagel were more general than those of Cates et al. (1998) (CWBC)
work in the sense that the former pointed out that the class of jammed materials

12 An important feature of granular materials is that the internal forces are not carried uniformly by
the material, but instead through long chain-like structures whose density and orientation depend
on the state and history of the sample. This feature allows us to study some problems of information
propagation in GM using percolation theory.
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may actually be broader than suggested by the latter, because the CWBC work
considered jamming only in systems with no attractive interactions, where the particle
dynamics is constrained through an applied stress, and where the individual particles
are large enough that there is no thermal motion. These two constraints may not
be essential. Liu and Nagel conjectured that it is possible to correlate jamming and
glass transitions. The phase diagram, proposed by them, was an attempt to answer the
following question: Might the concept of jamming and fragility include microscopic
systems with attractive interactions, which unjam as one raises the temperature, as
well as stressed macroscopic systems with repulsive interactions, which unjam as
one applies an incompatible stress? (Liu and Nagel 1998)

The off-equilibrium solidification in colloids, characterized by the sudden arrest
of the dynamics of their constituent particles, shows kinetic heterogeneities near the
onset of solidification. The particles’ mobilities become heterogeneous in space and
intermittent in time. This general observations led to Liu and Nagel to speculate
that different transitions due to the kinetic arrest can be unified by a jamming phase
diagram (Kumar and Wu 2004).

The term jamming has been reserved to describe situations in which both the
flowing phase and the jammed phase are disordered (Ellenbroek 2007). In this sense,
we think that it could be possible to apply the concept given by Witten in relation to
SM, that is, to define jamming using the concept of permutation freedom.

Trappe et al. (2001) provided a link between the glass transition, gelation, and
aggregation. Their results support the concept of a jamming phase diagram for at-
tractive colloidal particles. They plotted the full 3D jamming phase diagram for
attractive colloidal systems, using φc = φ0e−Uc/αkB T , σy = σφ(φ − φc)

μφ , and
σy = σU (U − Uc)

μU to determine the phase boundaries. In this equations φc, φ0,
α, U , Uc, kB , σy , and T are, respectively, the critical value of the volume fraction,
the initial volume fraction, the parameter depending on the relative range of the de-
pletion interaction (α ∇ 1), the interparticle attractive energy and its critical value,
the Boltzmann’s constant, the yield stress,13 and a temperature scale fixed by U .
This is a compendium of contributions from different physical systems and which
correctly captures the overall shape and behaviour. According to Trappe et al. (2001),
the shape of the experimental phase diagram differs significantly from that proposed
by Liu and Nagel (1998). In the new phase diagram the curvature is contrary and
diverging at each vertex. They wrote that: These divergences reflect the particular
details of attractive colloidal particles and correspond to irreversible aggregation,
where φc

−1 is large; to the limit of hard spheres, where T/U is large; and to high vol-
ume fractions of strongly attracting particles that form, for example sintered solids,
where σy is large.

On the other hand, O’Hern et al. (2003) explained that jamming occurs when a
system develops a yield stress in a disordered state and that the appearance of a yield

13 Following H. A. Barnes (1999), yield stress is defined for liquids and solids. In the first case,
yield stress is a point at which, when decreasing the applied stress, solid-like behaviour is first seen,
i.e., no continual deformation. In the latter case, it is essentially the point at which, when increasing
the applied stress, the solid first shows liquid-like behaviour, i.e. continual deformation.
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stress is equivalent to an infinite stress relaxation time. They presented similarities
between the transitions in all the systems able to undergo JT. First, the increase of
the stress relaxation time tends to be super-Arrhenius14 as a function of the control
parameter (Pusey and van Megan 1987; Kivelson and Tarjus 1998; D’Anna and Gre-
maud 2001). The other property is that all the systems show kinetic heterogeneities
near the onset of jamming (i.e., where particle mobilities became heterogeneous in
space and intermittent in time) (Langer and Liu 1997; Kob et al. 1997; Doliwa and
Heuer 1998; Ediger 2000; Weeks et al. 2000).

There exists the possibility to unify different non-equilibrium transitions in col-
loids and other SM systems under the concept of jamming. In this sense, Kumar
and Wu (2004) offered a convincing proof towards this unification. Phases such as
gelation, coagulation, kinetic arrest, dynamic slow-down, and ergodic-nonergodic
transitions have been used to loosely describe the solidification phenomena. Their
proof is based on simulations showing that near the jamming transition, the shear
viscosity diverges following a critical-like scaling law as observed for realistic col-
loids.

Let us address the following question: Is there a structural signature of jamming in
SM or in GM, that could distinguish it from its flowing counterpart? Corwing, Jaeger,
and Nagel (2005) found evidence for such a signature by measuring the contact force
distribution between particles during shearing. Since the forces are sensitive to small
variations of the particle positions, the distribution of forces can serve as a probe to
observe correlations in the position of nearest neighbours. Their result demonstrated
a clear signature of the jamming/unjamming transition, which manifests itself in the
shape of the distribution of normal forces ρ( f ). Jammed packings are characterized
by a distribution that decays exponentially at large forces. This shape reflects the
non-equilibrium character of the jammed state. By contrast, ρ( f ) in the flowing
regime is well described by a model that assumes that the system is in equilibrium.

Moreover, Biroli (2007) presented a brief status quo of the jamming transition as
well as its relation with glass-transition, suggesting that jamming is a new kind of
phase transition. On the other hand, Keys et al. (2007) showed that, when approaching
the jamming transition, these systems display growing length and timescales, thus
strengthening the idea that the jamming transition is indeed a critical phenomenon.15

Biroli proposed some questions that must be addressed in deep:

• What is the physical mechanism behind the formation of amorphous solids?
• Is the abrupt dynamical arrest merely a crossover with little or no universality or

is there a true underlying phase transition of a new kind?
• Could it be that explanations of the glass transition work for the jamming transi-

tion?

14 For some super-cooled liquids, the temperature dependence on relaxation times or on transport
properties, such as the diffusion constant, is stronger than predicted by Arrhenius law. Arrhenius
law refers to the fact that in some viscous liquids log η (η is the viscosity) is linear in T −1 (T is the
temperature).
15 Critical phenomena are phenomena observed near a critical point and this is precisely a point in
the phase diagram where a continuous phase transition takes place.
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• What is the nature of the underlying phase transition? (if any).
• Could the emergence of rigidity be the driving mechanism of the transition, as has

been proposed?

In connection to jamming and glass transition, Biroli wrote that Keys et al. fitted the
growth of the time and length scales using laws that were introduced for glass forming
liquids, the Vogel-Fulcher-Tammann (VFT)16 law and power laws. Surprisingly,
the VFT fit gave a transition value, φc � 0.84, which is very close to the one
independently determined for the JT.

When jammed, the disordered system is caught in a small region of phase space
without possibility to scape. A wide class of materials, ranging from thermal systems
such as structural glasses, pastes, gels, and colloids, to the systems of particle whose
thermalization is negligible, such as granular materials, are characterized by a JT from
a flowing liquid-like state to a disordered solid-like state with mechanical strength.
Control parameters of the jamming transition include the temperature, the density
and the applied shear stress, and the flowing phase occurring at high temperature,
low density, and high applied shear stress (Ciamarra et al. 2010).

Mills et al. (2008) proposed a mechanism to explain the JT in GM. They suggest
that shear stress of non-cohesive GM in the vecinity of the JT is supposed to be con-
nected to the formation of transient clusters of particles. They considered that dense
granular flows are made of transient rigid clusters of caged particles immersed in
free particles. When approaching the quasistatic regime, the growth of these clusters
is responsible for jamming when they invade all the flow. Near the jamming tran-
sition, GM fluctuates between two jam-flow states which generates, on average, a
frictional force proportional to the mean velocity relative to the jammed state.

There are important results related to jamming, which must be reproduced in
a complete theory if they are correct at all. One of them was reported by Song,
Wang, and Makse (2008). They presented a statistical description of jammed states
in which the random close packing can be interpreted as the ground state of the
ensemble of jammed matter. They demonstrated that random packings of hard spheres
in three dimensions cannot exceed a density limit of ∇63.4 %. On the other hand, Lu,
Brodsky, and Kavenpoor (2008) proposed a thermodynamic unification of jamming.
They quantified jamming using a thermodynamic approach by accounting for the
structural aging and the shear-induced compressibility of dry sand. Specifically, the
jamming threshold is defined using a non-thermal temperature. An equation of state
was derived, which governs the mechanism of shear banding and the associated
features of shear softening and thickness invariance. A controversial problem then
emerged in relation to the definition of temperature because it is defined in thermal
equilibrium.

Jamming was suggested as a viable mean to unify all fragile systems, and this
was thought using three independent variables: pressure, packing fraction, and an
effective temperature. We shall go further trying to unify granular matter with SM,
including liquid crystals. We think that it is possible to construct this unification.

16 ξ = ξ0e
A

T −T0 .
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However, we need a confirmation of jamming in liquid crystals using the arguments
discussed above in this article. Perhaps, more than a unification this could be inter-
preted as a link between GM and SM so that some results applicable to one system
may also apply to other systems, e.g., emulsions with granular matter, liquid crys-
tals, and foams. While this could be accomplished using thermodynamics or some
other theoretical approach, it is perhaps more suitable to use wave propagation in
random media to determine structural signatures of jamming or associated symme-
tries. Following the thermodynamic approach Song et al. (2008) introduced an aging
temperature and a external pressure depending on the shear-rate and free volume
to construct an equation of state that unifies different behaviours of fragile matter.
On the other hand, Jacquin et al. (2011) elaborated a microscopic mean-field theory
for the JT. In this theory, they describe athermal packings and observed geometric
phase transitions by using equilibrium statistical mechanics. They developed a fully
microscopic, mean-field theory of the JT for soft repulsive spherical particles. Then,
they derived some of the scaling laws characterizing the JT.

We would like to address a couple of facts: first, Liu and Nagel (1998) spec-
ulated about the existence of a more profound analogy between temperature and
shear stress and this was depicted in their phase diagram. On the other hand,
O’Hern et al. (2003) investigated the jamming transition at zero temperature and
zero applied stress. In this limit there is no particle motion and so the JT is
identified by the appearance of mechanical strength. They found that the jam-
ming point (J-point) has an extremely interesting mixed first-order/second-order
character.17 On approaching the JT from the flowing state, the relaxation time τ

grows rapidly as measured, for instance, from the decay of density auto-correlation
functions G(τ ) = ∼ρ(τ)ρ(t + τ)≥. It is therefore difficult to locate the precise points
of the jamming phase diagram where the relaxation time diverges. For this reason,
it could be convenient to consider a jamming surface of constant relaxation time τg .
This time is the timescale accessible to a typical experiment or numerical simula-
tion. In this spirit Zhang et al. (2009) introduced a new speculative jamming phase
diagram. The jamming surface is a surface of constant relaxation time τg and the
depicted surface does not touch the axes. A conclusion of this work, is that the
shape of the jamming surface at a infinite relaxation time is questioned and that the
jamming transition (infinite relaxation time) does not occur at any finite value of the
temperature, while it does occur in the inverse-volume-fraction shear plane. The new
hypothesis is that at zero temperature and zero applied stress, the JT may occur in a
whole density range, not exclusively at the J-point.

Experimentally, it is extremely difficult to access the complex dynamics of systems
very near the jamming transition. Instead, computational simulations allow to explore
the dynamics close to jamming. At this point, it is important to highlight the work
of Dagois-Bohy et al. (2012). They demonstrated that properly jammed systems
must be stable not only to compression but also to shear. However, widely used

17 Owing to the co-existence of quantities that vary continuously at the transition, such as the
pressure and the shear modulus, and of quantities that change discontinuously, such as the mean
contact number per particle (van Hecke 2010).
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numerical methods, in which particles are compressed together, can produce packings
that are unstable to shear. On the other hand, Goodrich et al. (2012) carried out an
analysis of finite-size effects in jammed packings of N soft, frictionless spheres
at zero temperature. They showed that the scaling behaviour of finite-size systems
jammed under varying constrains can provide strong evidence that the JT should be
considered as a phase transition. Their results are consistent with jamming being
either a random first-order or a mean-field second-order transition (Corwin 2012).
Ciamarra and Sollich (2012) introduced another point of view. They suggested that
the JT could be a first-order crossover of high-order jamming crossovers and density
anomalies. For athermal systems, these crossovers induce an anomalous behaviour of
the bulk modulus, which varies non-monotonically with the density. This transition
occurs when particles (interacting via repulsive contact forces) start to be closer
to each other to the point of contact (percolation transition). Otherwise, at finite
temperature they induce density anomalies consisting in an increased diffusivity
upon isothermal compression and in a negative thermal expansion coefficient.

5 What Kind of Materials can Undergo a Jamming Transition?

Some polymer-like magnetic fluids are capable to undergo a JT: if the magnetic
particles are large enough, they will, in the presence of a strong field, form long
chains bridging the whole system (this is the JT after which the system is truly
elastic) (e.g., Jiang and Liu 2004).

It is also possible to observe JT in magnetofluidized beds (MFBs). They consist
of magnetic particles suspended in a vertical gas flow and anchored to a magnetic
field (Valverde et al. 2010). The JT in this case is a jamming of athermal magnetic
particles driven by the magnetic stress induced by the externally applied magnetic
field. The size of particles in these systems usually range from tens to hundreds
of microns. Thus, van der Waals forces and Brownian motion are fully negligible.
The field strength needed for jamming is presented as a function of a dimensionless
number, defined as the ratio of the solid kinetic energy per unit volume to the magnetic
energy. An open problem in this field is related to the lack of an equation to predict
the strength of the field necessary to stabilize MFBs. The growth of particle chains
as the gas velocity is decreased drives the system to a JT at a critical gas velocity.

Other systems capable to undergo JT are: concentrated colloidal dispersions
(Cates et al. 1998), star polymers (Loppinet et al. 2001), gels (Ovarlez et al. 2010),
glasses (Liu and Nagel 1998; Trappe et al. 2001), granular polymers (Lopatina et al.
2011), GM, and molecular systems. In particular, Trappe et al. (2001) reports results
that support the concept of a jamming phase diagram for attractive colloidal parti-
cles, providing a unifying link between the glass transition, gelation, and aggregation.
This work could be considered as a strong support to our leading hypothesis because
it is related to JT as a unifying framework between aggregation and formation of
amorphous solids in soft matter physics.
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Jamming occurs when a system develops a yield stress in a disordered state
(O’Hern et al. 2003). Following Barnes (1999), it is possible to find yield stress
in: clay, oil paint, toothpaste, drilling mud, molten chocolate, creams, ketchups, and
other culinary sauces, molten filled rubbers and printing inks, ceramic pastes, electro-
viscous fluids, thixotropic paints, heavy-duty washing liquids, surface-scouring liq-
uids, mayonnaise, yoghurts, purees, liquid pesticides, bio-mass broths, blood, water-
coal mixtures, molten liquid-crystalline polymers, plastic explosives, foams, rocket
propellant pastes, and fire retardants among others.

It is possible to measure a yield stress in liquid crystals. Watanabe et al. (2006)
studied electro-rheological properties in smectic A phase of a liquid crystal, using
a parallel-plate type rheometer. They found that the yield stress was depending on
the current type of the electric field. Moreover, the yield stress only depends on the
electric field condition when the smectic structure grows and the yield stress, i.e.,
the structure generated, is hardly changed by variations in the electric field. Narumi
et al. (2008) found that there were partially collapsed structures at the first stage of
the yield process generating a large scale deformation. These studies have led us to
propose that it is possible to measure a jamming transition in liquid crystals.

A further definition is that jamming occurs when a system develops a stress relax-
ation time that exceeds the experimental time scales in a disordered state (O’Hern et
al. 2003). According to this definition, many systems can jam. For example, granular
materials (Jaeger et al. 1996; Majmudar et al. 2007; van Hecke 2010) and colloidal
suspensions. The latter are fluids, but jam when the pressure or packing fraction raises
(Kumar and Wu 2004; Ballesta et al. 2008; van Hecke 2010). Foams and emulsions
are able to undergo JT too. Let us remind that they are concentrated suspensions
of deformable bubbles or droplets. They flow when a large shear stress is applied,
but jam when the shear stress is lowered below the yield stress (Zhang and Makse
2009; Denkov et al. 2009; van Hecke 2010; Katgert and van Hecke 2010; Berthier
et al. 2011) In foams and emulsions, jamming at low shear rates is explained by the
thinning dynamics of the transient films formed between neighboring bubbles and
drops (Denkov et al. 2009). Foam is a good example of a system that is jammed,
but it is not fragile. Shaving foam, for example, is jammed because the bubbles are
tightly packed together under atmospheric pressure (Liu and Nagel 1998).

In molecular liquids, composed of molecules that do not form a covalent network,
but interact only through weak van der Waals forces or through transient hydrogen
bonds, temperature is important. They can jam if crystallization does not intervene
first. This process is called glass transition (Ediger et al. 1996; Debenedetti and Still-
inger 2001). Loppinet et al. (2001) demonstrated that solutions of star polymers above
the overlap concentration undergo a reversible thermal gelation. This phenomenon
was attributed to the formation of clusters causing a partial dynamic arrest of the
swollen interpenetrating spheres at high temperatures. They proposed a generalized
jamming phase diagram for regular and irregular star polymers in which gelation is
an alternative route to jamming and thus show analogies to glass formation.

An interesting paper by Kumar and Wu (2004) reports a three-dimensional jam-
ming phase diagram by considering inter-colloidal forces represented by a Derjaguin-
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Landau-Verwey-Overbeek potential.18 This potential describes the forces between
charged surfaces interacting in a liquid medium. It includes van der Waals forces and
electrostatic double layer effects. The jamming threshold is uniquely defined in terms
of the critical volume fraction, the critical temperature, and the critical yield stress.
The results of the simulations indicate that near the jamming transition the shear
viscosity diverges, following a critical-like scaling law as observed for realistic col-
loids. These results offer a convincing proof for unifying different non-equilibrium
transitions in colloids under the concept of jamming. Some of this transitions are:
gelation, coagulation, kinetic arrest, dynamic slow-down, and ergodic-nonergodic
transition. Concerning this work, it is important to quote the following fact: the shear
viscosity diverges as the transition temperature is approached with a power law be-
haviour of the form: η/ηs = (T −1

c − T −1)−0.155. Kumar and Wu observed that as
in the experiments, the shape of the surface separating the jammed and unjammed
states is concave everywhere in contrast to the original proposal of jamming phase
diagram by Liu and Nagel.

6 What is the Deal with Soft Matter and Jamming Transition?

As it was shown by Cates et al. (1998), Liu and Nagel (1998), and other authors, JT
can be used to unify fragile matter. Examples of fragile matter are: GM, foams, and
emulsions. They are athermal systems with no-minimum free energy state because
they are marginally stable. However, jamming is not only restricted to fragile matter,
as was suggested by Trappe et al., because JT can be used to unify different transitions
in fragile matter and SM. For attractive colloidal particles, we have: glass transition,
gelation, and aggregation. Let us recall that SM has two main common features: (i)
large scales between atomic size and macroscopic scales; (ii) fluctuations, Brownian
motion, and self-assemblage. In consequence, SM can be considered to be thermal
systems. But, as we argued, SM is able to undergo JT. A digression here concerned
with liquid crystals: they have two main ingredients to undergo JT, namely disorder-
disorder transition and the possibility to measure yield stress. Nonetheless, it is not
so simple, jammed state in these systems have to show a slow response to external
perturbations and the onset of structural heterogeneities.

As we quoted, magneto-rheological fluids are able to undergo JT. This suggests
that the phase diagram proposed by Liu and Nagel, Trappe et al., Ciamarra, and others,
should be extended to include external action-at-distance fields effects because in
MFBs the magnetic field plays an important role since the JT occurs at a certain value
of this field. It could be possible that for liquid crystals the phase diagram should
be expanded or even depicted another route to jamming in some transition in liquid
crystals, like gelation (Loppinet et al. 2001).
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Witten defined SM as a fluid in which large groups of the elementary molecules
have been constrained so that the permutation freedom within the group is lost. If
we can associate a symmetry to this freedom, we could describe jamming in terms
of some non-continous-symmetry breaking in disordered systems. One candidate
is a kind of relabelling symmetry. In Hamiltonian fluid dynamics the relabelling
symmetry is referred to as the symmetry under the exchange of labels between fluid
elements. Permutation freedom is related with spatial exchange. Therefore, in a first
attempt, we can define JT as the process in which permutation freedom is globally
lost in a disordered system, giving rise to a yield stress. Another important point to
be considered is that jamming is related to a percolation process. This was pointed
out in Ciamarra and Sollich (2012): at the JT a percolating network of contact forces
appears and the system acquires mechanical rigidity. This statement is presented
in gelation processes too (Jones 2002). In gels, if we reduce the number of bonds
towards the critical fraction Ec, we would expect the modulus of the gel (the shear
or the Young modulus) to vanish. Nonetheless, the process is not so simple because
we have to take into account the dangling ends. This ends are part of the infinite
network, but since they are only connected to the network by one end, they cannot
contribute to the transfer of stress across the sample. This is similar to the case of
wave propagation in GM. Regarding to gelation processes, a more realistic approach
was developed by Suarez et al. (2009). They considered dangling bond effects and
a soft-particle potential that stabilizes the structure, starting with a fractal structure
generated with diffusion limited aggregation (DLA).

The observation presented with gelation and geometry of paths (or graphs) led
us to a question: Is it possible to identify critical scaling laws joining geometry
and elastic or rheological properties in SM or fragile matter systems? Ciamarra
and Sollich (2012) stated the problem in the following sentence: Simple arguments
to explain mechanical properties in terms of geometric ones away from jamming
should therefore be developed; we speculate that they would need to take account
of the heterogeneity of the force network as a key feature of highly compressed
particle systems. The situation calls for findings related to the following equation:
Ξ ∇ (E − Ec)

α , where Ξ is an elastic property and E is a geometrical property of
the system. The exponent α should be peculiar of the system considered and their
interactions. For example, it would characterize granular matter, gels, polymers,
emulsions, foams, liquid crystals, and so on.

References

Anderson PW (1995) Science 267:1615
Araki T, Tanaka H (2006) Colloidal aggregation in a nematic liquid crystal: topological arrest of

particles by a single-stroke disclination line. Phys Rev Lett 97:127801.1–127801.4
Aranson IS, Tsimring LS (2009) Granular patterns. Oxford University Press, Oxford
Aranson IS, Tsimring LS (2006) Patterns and collective behavior in granular media: theoretical

concepts. Rev Mod Phys 76:641–692



Complex Fluids, Soft Matter and the Jamming Transition Problem 229

Bak P (1997) How nature works; the science of self-organized critically. Oxford University Press,
Oxford

Ball RC, Melrose JR (1995) Lubrication breakdown in hydrodynamic simulations of concentrated
colloids. Adv Colloid Interface 59:19–30

Ballesta P, Duri A, Cipelletti L (2008) Unexpected drop of dynamical heterogeneities in colloidal
suspensions approaching the jamming transition. Nature 4:550–554

Barnes HA (1999) The yield stress - a review or παντα ρει - everything flows? J Non-Newtonian
Fluid Mech 81:133–178

Berghmans M, This S, Cornette M, Bergbans H, De Schryver FC, Moldenaers P, Mewis J (1994)
Thermoreversible gelation of solutions of syndiotactic poly(methy1 methacrylate) in toluene: a
two-step mechanism. Macromolecules 27:7669

Bernal JD (1960) Geometry and the structure of monatomic liquids. Nature 185:6870
Berthier L, Biroli G (2011) Theoretical perspective on the glass transition and amorphous materials.

Rev Mod Phys 83:587–645
Berthier L, Jacquin H, Zamponi F (2011) Can the jamming transition be described using equilibrium

statistical mechanics? J Stat Mech P01004
Bi D, Zhang J, Chakraborty B, Behringer RP (2011) Jamming by shear. Nature 480:355–358
Biroli G (2009) Glass and Jamming Transition. Séminaire Poincaré XIII, 37 67.
Biroli G (2007) Jamming: a new kind of phase transition? Nature 3:222–223
Brockwell DJ, Paci E, Zinober RC, Beddard GS, Olmsted PD, Smith DA, Perham RN, Radford

SE (2003) Pulling geometry defines the mechanical resistence of a beta-sheet protein. Nat Struct
Biol 10:731–737

Campbell CS (1990) Rapid granular flows. Annu Rev Fluid Mech 22:57–92
Cang H, Li J, Novikov VN, Fayer MD (2003) Dynamical signature of two ideal glass transition in

nematic liquid crystals. J Chem Phys 119:10421–10427
Cates ME, Wittmer JP, Bouchaud JP, Claudin P (1998) Jamming, force chains, and fragile matter.

Phys Rev Lett 81:1841–1844
Chumakov AI, Moncaco G, Crichton WA, Bosak A, Rüffer R, Meyer A, Kargl F, Comez L, Fioretto

D, Giefers H, Roitsch S, Wortmann G, Manghnani MH, Hushur A, Williams Q, Balogh J, Parlinski
K, Jochym P, Piekarz P (2011) Equivalence of the boson peak in glasses to the transverse acoustic
van hove singularity in crystals. Phys Rev Lett 106:225501

Ciamarra MP, Sollich P (2012) High-order jamming crossovers and density anomalies.
arXiv:1209.3334

Ciamarra MP, Sollich P (2013) The first jamming crossover: geometric and mechanical features. J
Chem Phys 138: 12A529.

Ciamarra MP, Nicodemi N, Coniglio A (2010) Recent results on the jamming phase diagram. Soft
Matter 6:2871–2874

Corwin EI, Jaeger HM, Nagel SR (2005) Structural signature of jamming in granular media. Nature
435:1075–1078

Corwin E (2012) Viewpoint: getting into a proper jam. Physics 5:97
Dagois-Bohy S, Tighe BP, Simon J, Henkes S, van Hecke M (2012) Soft-sphere packings at finite

pressure but unstable to shear. Phys Rev Lett 109:095703
D’Anna G, Gremaud G (2001) The jamming route to the glass state in weakly perturbed granular

media. Nature 413:407–409
D’Anna G, Mayor P, Barrat A, Loreto V, Nori F (2003) Observing brownian motion in vibration-

fluidized granular matter. Nature 424:909–912
Dawson K, Foffi G, McCullagh GD, Scortino F, Tartaglia P, Zaccarelli E (2002) Ideal glass in

attractive systems with different potentials. J Phys Condens Matter 14: 2223
de Gennes PG (1991) Nobel lecture: soft matter http://www.nobelprize.org/nobelprizes/physics/

laureates/1991/gennes-lecture.pdf
Debenedetti PG, Stillinger FH (2001) Supercooled liquids and the glass transition. Nature 410:259–

267

http://www.nobelprize.org/nobelprizes/physics/laureates/1991/gennes-lecture.pdf
http://www.nobelprize.org/nobelprizes/physics/laureates/1991/gennes-lecture.pdf


230 A. A. Díaz and L. Trujillo

Denkov ND, Tcholakova S, Golemanov K, Lips A (2009) Jamming in sheared foams and emulsions,
explained by critical instability of the films between neighboring bubbles and drops. Phys Rev
Lett 103:118302

Doliwa B, Heuer A (1998) Cage Effect, Local anisotropies, and dynamic heterogeneities at the
glass transition: a computer study of hard spheres. Phys Rev Lett 80:4915–4918

Durian DJ, Weitz DA (1994) Foams. In: Kirk-Othmer, Kroschwitz JL (eds) Encyclopedia of chem-
ical technology. Wiley, New York

Ediger MD, Angell AC, Nagel SR (1996) Supercooled liquids and glasses. J Phys Chem 100:13200–
13212

Ediger MD (2000) Spatially heterogeneous dynamics in supercooled liquids. Annu Rev Phys Chem
51:99–128

Edwards SF (1964) The statistical mechanics of polymers with excluded volume. Proc Phys Soc
85:613–624

Ellenbroek WG (2007) Response of granular media near the jamming transition. Ph.D. Thesis
(Delft-Leiden, Casimir PhD Series)

Ellenbroek WG, van Hecke M, van Saarloos W (2009) Jammed frictionless disks: connecting local
and global response. Phys Rev Lett E 80:061307

Farr RS, Melrose JK, Ball RC (1997) Kinetic theory of jamming in hard-sphere startup flows. Phys
Rev E 55:7203–7211

Forterre Y, Pouliquen O (2009) Granular flows. Séminaire Poincaré XIII http://iusti.polytech.univ-
mrs.fr/pouliquen/publiperso/bourbaphyspouliquen2light.pdf

de Gennes PG (1999) Granular matter: a tentative view. Rev Mod Phys 71:S374–S382
de Gennes PG (2005) Soft matter: more than words. Soft Matter 1:16
Goodrich CP, Liu AJ, Nagel SR (2012) Finite-size scaling at the jamming transition. Phys Rev Lett

109:095704
Guenet JM (1999) Physical gels from PVC: molecular structure of pregels and gels to chain mi-

crostructure. In: Morishima Y, Norisuye T, Tashiro K (eds) Molecular interactions and time-space
organization in macromolecular systems. Springer, Berlin

Haff PK (1985) Physical picture of kinetic granular fluids. J Rheology 30:931–948
Hamley IW (2007) Soft matter: synthetic and biological self-assembling materials. Wiley, West

Sussex
Ippolito I, Annie C, Lemaitre J, Oger L, Bideau D (1995) Granular temperature: experimental

analysis. Phys Rev E 52:2072–2075
Jacob X, Aleshin V, Tournat V, Leclaire P, Lauriks W, Gusev VE (2008) Acoustic probing of the

jamming transition in a unconsolidated granular material. Phys Rev Lett 100:158003
Jacquin H, Berthier L, Zamponi F (2011) Microscopic mean-field theory of the jamming transition.

Phys Rev Lett 106:135702
Jaeger HM, Nagel SR (1996) Granular solids, liquids and gases. Rev Mod Phys 68:1259–1273
Jaeger HM, Nagel SR, Behringer RP (1996) Granular solids, liquids, and gases. Rev Mod Phys

68:1259–1273
Janssen HA, Vereins Z (1895) Versuche ber getreidedruck in silozellen. Dtsch Eng 39:1045
Jiang YM, Liu M (2004) Energy instability unjams sand and suspension. Phys Rev Lett 93:148001
Jiang Y, Liu M (2007) From elasticity to hypoplasticity: dynamics of granular solids. Phys Rev Lett

99:105501
Jones RAL (2002) Soft condensed matter. Oxford University Press, Oxford
Kadanoff LP (1999) Built upon sand: theoretical ideas inspired by granular flows. Rev Mod Phys

71:435–444
Katgert G, van Hecke M (2010) Jamming and geometry of two-dimensional foams. EPL 92:34002
Keys AS, Abate AR, Glotzer SC, Durian DJ (2007) Measurment of growing dynamical length

scales and prediction of the jamming transition in a granular material. Nature 3:260–264
Kivelson D, Tarjus G (1998) SuperArrhenius character of supercooled glass-forming liquids. J

Non-Cryst Solids 86:235–237

http://iusti.polytech.univ-mrs.fr/pouliquen/publiperso/bourbaphyspouliquen2light.pdf
http://iusti.polytech.univ-mrs.fr/pouliquen/publiperso/bourbaphyspouliquen2light.pdf


Complex Fluids, Soft Matter and the Jamming Transition Problem 231

Kleman M, Laverntovich OD (2002) Soft matter physics: an introduction. Springer, Berlin
Kob W, Donati C, Plimpton SJ, Poole PH, Glotzer SC (1997) Dynamical heterogeneity in a super-

cooled Lennard-Jones mixture. Phys Rev Lett 79:2827–2830
Kumar A, Wu J (2004) Jamming phase diagram of colloidal dispersions by molecular dynamics

simulations. Appl Phys Lett 84:4565–4567
Langer SA, Liu AJ (1997) Effect of random packing on stress relaxation in foam. J Phys Chem B

101:8667–8671
Liu AJ, Nagel SR (2001) Jamming and rheology. Taylor and Francis, New York
Liu AJ, Nagel SR, van Saarloos W, Wyart M (2011) The jamming scenario-an introduction and

outlook. Oxford University Press, Oxford
Liu AJ, Nagel SR (1998) Jamming is not just cool anymore. Nature 396:21–22
Lopatina LM, Olso Reichhardt CJ (2011) Jamming in granular polymers. Phys Rev E 84:011303
Loppinet B, Stiakakis E, Vlassopoulos D, Fytas G, Roovers J (2001) Reversible thermal gelation

in star polymers: an alternative route to jamming of soft matter. Macromolecules 34:8216–8223
Lu K, Brodsky EE, Kavehpour HP (2008) A thermodynamic unification of jamming. Nature 4:404–

407
Majmudar TS, Sperl M, Luding S, Behringer RP (2007) Jamming transition in granular systems.

Phys Rev Lett 98:058001
Melrose JR, Ball RC (1995) The pathological behavior of sheared hard-spheres with hydrodynamic

interactions. Europhys Lett 32:535–540
Mills P, Rognon PG, Chevoir F (2008) Rheology and structure of granular materials near the

jamming transition. EPL 81:64005
Mills P, Chevoir F (2009) Rheology of granular materials and sound emission near the jamming

transition, powder and grains. In Nakagawa N, Luding S (eds) Proceedings of the 6th international
conference on micromechanics of granular media

Miskin MZ, Jaeger HM (2013) Adapting granular materials through artificial evolution. Nat Mater
(published online)

Möhwald H (2005) Not a soft science. Soft Matter 1:328
Müller O, Hahn D, Liu M (2006) Non-Newtonian behaviour in ferrofluids and magnetization re-

laxation. J Phys Condens Matter 18:s2623–s2632
Narumi T, Uematsu H, Hasegawa T (2008) Solid-like properties of liquid crystal in smectic phase

controlled with electric field applied. In: Proceeding of AIP conference, vol 1027, pp 484–486
O’Hern CS, Silbert LE, Liu AJ, Nagel SR (2003) Jamming at zero temperature and zero applied

stress: the epitome of disorder. Phys Rev E 68:011306
Olsson P (2010) Diffusion and velocity autocorrelation at the jamming transition. Phys Rev E 81:

040301(R)
Ovarlez G, Barral Q, Coussot P (2010) Three-dimensional jamming and flows of soft glassy mate-

rials. Nature 9:115–119
Owaga S (1978) In: Cowin SC, Satake M (eds) Proceedings of US-Japan seminaron continuum-

mechanical and statistical approaches in the mechanics of granular materials, Gakujutsu Bunker
Fukyukai, Tokyo, Japan

Parisi G, Zamponi F (2010) Mean-field theory of hard sphere glasses and jamming. Rev Mod Phys
82:789–845

Piazza R (2011) Soft matter: the stuff that dreams are made of. Springer, Berlin
Pontoni D, Finet S, Narayanan T, Rennie AR (2003) Interactions and kinetic arrest in an adhesive

hard-sphere colloidal system. J Chem Phys 119:6157
Poon W, McLeish T, Donald A (2002) Soft condensed matter: where physics meets biology. Phys

Educ 37:25–33
Prasanth J, Ioan A (2012) Similarities between protein folding and granular jamming. Nature com-

mun 3:2177
Pusey PN, van Megan W (1987) Observation of a glass transition in suspensions of spherical

colloidal particles. Phys Rev Lett 59:2083–2086



232 A. A. Díaz and L. Trujillo

Pusey PN (1991) Les Houches Summer School Proceedings. In: Hansen PJ, Levesque D, Zinn-Justin
J (eds) Liquids, freezing and the glass transition Part II. Elsevier, Amsterdam

Reichl LE (1998) A modern course in statistical physics. Wiley interscience publication, New York
Renn SR, Lubensky TC (1988) Abrikosov dislocation lattice in a model of the cholesterictosmectic-

A transition. Phys Rev A 38(4):2132–2148
Saitoh K, Magnanimo V, Luding S (2012) Slow dynamics near jamming. In: Proceeding of 28th

international symposium on rarefied gas dynamics AIP conference, vol 1501, pp 1038–1043
Sander LM (2000) Diffusion-limited aggregation: a kinetic critical phenomenon? Cont Phys 41:203–

218
Savage SB (1984) The mechanics of rapid granular flows. Adv Appl Mech 24:289
Segre PN, Prasad V, Schofield AB, Weitz DA (2001) Glasslike kinetic arrest at the colloidal-gelation

transition. Phys Rev Lett 86:6042
Siemens AON, van Hecke M (2010) Jamming: a simple introduction. Physica A 389:4255–4264
Silbert LE, Liu AJ, Nagel SR (2005) Vibrations and diverging length scales near the unjamming

transition. Phys Rev Lett 95:098301
Song Ch, Wang P, Makse H (2008) A phase diagram for jammed matter. Nature 453:629–632
Stiakakis E, Vlassopoulos D, Loppinet B, Roovers J, Meier G (2002) Kinetic arrest of crowded soft

spheres in solvents of varying quality. Phys Rev E 66:051804
Suarez MA, Kern N, Pitard E, Kob W (2009) Out-of-equilibrium dynamics of a fractal model gel.

J Chem Phys 130:194904
Tighe BP (2011) Relaxation and rheology near jamming. Phys Rev Lett 107:158303
Trappe V, Prassad V, Cipelletti L, Segre PN, Weitz DA (2001) Jamming phase diagram for attractive

particles. Nature 411:772–775
Valverde JM, Espin MJ, Quintanilla MAS, Castellanos A (2010) Fluid to solid transition in mag-

netofluidized beds of fine powders. J Appl Phys 108:054903
van Hecke M (2010) Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J

Phys Condens Matter 22: 033101
Vitelli V (2010) Attenuation of shear sound waves in jammed solids. Soft Matter 6:3007–3012
Vollmayr-Lee K, Kob W, Binder K, Zippelius A (2002) Dynamical heterogeneities below the glass

transition. J Chem Phys 116:5158
Walton OR, Braun RL (1986) Viscosity, granular-temperature and stress calculations for shearing

assemblies of inelastic, frictional disks. J Rheology 30:949
Warr S, Huntley JM (1995) Energy input and scaling laws for a single particle vibrating in one

dimension. Phys Rev E 52:5596–5601
Warr S, Huntley JM, Jaques GTH (1995) Fluidization of a two-dimensional granular systems:

experimental study and scaling behaviour. Phys Rev E 52:5583–5595
Watanabe K, Narumi T, Watanabe H, Hasegawa T (2006) Influence of several conditions on yield

stress of smectic liquid crystal. In: Proceeding of JSME fluid engineering conference, pp 06–21,
CD

Weaire D (1999) A short history of packing problems. Forma 14:279285
Weeks ER, Crocker JC, Levitt AC, Schofield A, Weitz DA (2000) Three-dimensional direct imaging

of structural relaxation near the colloidal glass transition. Science 287:627–631
Weeks ER (2012) Melting colloidal crystals from the inside out. Science 338:55–56
Wilcox AJ, Choy J, Bustamante C, Matouschek A (2000) Effect of the protein structure on mito-

chondrial import. Proc Natl Acad Sci 9:1399–1401
Witten TA (1999) Insights from soft condensed matter. Rev. Mod. Phys. 71:S367–S373
Witten TA (2005) How Soft Matter correlates: three examples. J Phys Condens Matter 17:S1651–

S1658
Xu N (2011) Mechanical, vibrational, and dynamical properties of amorphous systems near jam-

ming. Front Phys 6:109–123
Zhang Z, Xu N, Chen DTN, Yunker P, Alsayed AM, Aptowicz KB, Habdas P, Liu AJ, Nagel SR,

Yodh AG (2009) Thermal vestige of the zero-temperature jamming transition. Nature 459:230–
233



Complex Fluids, Soft Matter and the Jamming Transition Problem 233

Zhang HP, Makse HA (2009) Jamming transition in emulsions and granular materials. Phys Rev E
72:011301

Zhao C, Tian K, Xu N (2011) New jamming scenario: from marginal jamming to deep jamming.
Phys Rev Lett 106:125503

Zorn R (2011) The boson peak demystified? Physics 4:44



A Multiphase Approach to Model Blood
Flow in Micro-tubes

T. M. Mubita, L. R. Rojas-Solórzano and J. B. Moreno

Abstract The development of micro-fluidic devices to support the systemic circu-
lation of blood has been used either as a temporary bridge or as a recovery method
to treat different heart diseases. Blood flow through these artificial micro-channels is
a major challenge because blood at scales from tens to hundreds of microns behaves
as a multiphase suspension of deformable particles. A homogeneous model of blood
is not adequate if the effect of cell segregation through these devices is of interest to
evaluate blood cell damage (e.g., hemolysis or thrombosis). To determine the flow
field and model the occurrence of segregation, an Eulerian frame of reference is
employed. The simulations are performed in a tube of internal diameter of 217µm.
We find that the results contribute to improve the understanding of the fluid dynamics
of blood as a multi-component medium. Our simulations are based on an alternative
methodology for blood modelling at a lower computational cost compared to DNS.

1 Introduction

The use of micro-fluidic components has become important in developing equipment
for blood transport. During the design process, it is critical to predict the location of
regions with large damage generation and potential deposition of blood aggregates
in order to minimize these conditions. This fact is particularly relevant to devices
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containing small channels, junctions, or gaps, in which near wall shear forces and
contact with a foreign surface can cause cell activation or damage.

To accurately predict the rate of damage in these “hot spot” zones, it is very
important to take into account that blood can be regarded as a homogeneous fluid
at a macroscopic level, while at the microscopic level, blood must be considered as
a tissue comprising various types of cells (i.e., red blood cells, RBCs; white blood
cells, WBCs; and platelets, PLTs) and a liquid intercellular material (i.e., the plasma).
This corpuscular nature of blood makes the blood cells have different flow patterns
under microcirculation, which are distributed in different regions around the conduct
where they flow through.

It has been well recognized that in the flow of blood, the mutual interactions of the
RBCs with each other and with platelets lead to an organization of these individual
blood components, such that RBCs tend to accumulate at the centreline of the blood
vessels (the Fahraeus–Lindquist effect), while platelets are observed to be displaced
laterally towards the walls of the vessels in a non-diffusive manner (Almomani et al.
2008).

It has also been reported that due to the presence of RBCs, an increased platelet
concentration near the wall (platelet margination) can be observed. In dilute-rich
plasma, suspension platelets behave similarly to rigid particles and accumulate at
a radial location near 60 % of the tube radius (Aarts et al. 1988). Goldsmith et al.
(1995) studied whether red cells exert a physical or chemical effect that promotes
aggregation of platelets. Zhao et al. (2008) studied a suspension of RBCs and platelet-
sized fluorescent polystyrene particles at controlled flow rates (6–30 mL h−1) through
a micro-channel containing a 100–200µm expansion. Zhao et al.’s work focused on
determining the effect of hematocrit on the enhanced platelet concentration in sudden
expansions.

Numerical simulations and mathematical formulations have been conducted by
a number of research groups to model the spatial distributions of blood elements.
Approaches like kinetic theory model, employed by Gidaspow and Huang (2009)
and mixture theory model proposed by Massoudi and Antaki (2008) only assume
blood as a mixture consisting of RBCs suspended in the plasma, while ignoring the
presence of other cells. A two-blood-cell approach was used by Yeh et al. (1994),
who characterized the platelet lateral migration (i.e., towards the wall) using a con-
vective diffusive transport equation for platelets, and incorporating an empirical drift
function, based on the flow visualization of RBCs and platelet-sized latex beads solu-
tions in a micro-tube. Jung and Hassanein (2008) used the averaging technique to
simulate leukocyte migration due to flow-dependent interactions with RBCs within
disturbed flow in a sudden expansion and a carotid artery by using a multiphase
non-Newtonian model. Jung and Hassanein’s research constitutes a good approach
in which the multiphase nature of the blood is taken into account despite there is not
enough information about how they validated the model.

The aim of this research is to propose and validate a numerical model of blood
flow that uses a multiphase computational fluid dynamics approach, to investigate
the blood flow behaviour at the microscopic level in order to gain accurate insight
into the detailed migration of blood cells within a straight micro-tube.
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Fig. 1 Computational domain

2 Physical Properties and Numerical Set-up

2.1 Computational Domain and Boundary Conditions

The numerical simulations are performed using an Eulerian–Eulerian multiphase
model. The blood is considered as a fluid that consists of plasma, RBCs, and
PLTs. The plasma is modelled as a continuous Newtonian fluid with a viscosity of
0.0012 Pa-s and a density of 1,025 kg m−3. RBCs and PLTs are taken as a spherical
particle-like fluid dispersed with a density of 1,100 and 1,040 kg m−3, respectively.
Sauter mean diameters of 6µm for RBCs and 2.5µm for PLTs are assumed. In this
study, the viscosity of the disperse phases is considered to be constant through the
computational domain, with a value of 0.002 Pa s.

Figure 1 illustrates a schematic of the computational domain showing the tube
with a constant cross-section. The internal diameter of the tube is 217µm (equivalent
to ∼35 times the mean Sauter diameter of RBCs) and the geometry is depicted by
assuming axis-symmetry. At the beginning of the simulation, the whole tube was full
of a uniform mixture of plasma, RBCs, and PLTs with volume fractions (α) of 58, 40,
and 2 %, respectively. The inlet flow is adjusted such that the axial velocities within
the tube lead to similar values to the equivalent Poiseuille average wall shear rate of
555 s−1used by Yeh et al. (1994). Initially, the radial velocities of each phase were
set to zero. A free-stress boundary condition is assumed at the exit of the domain,
while a zero velocity/no-slip condition is assumed at the walls. Because of the low
Reynolds number (<5), turbulence effects were not considered.

2.2 Computational Methodology

The numerical simulations of the 3D, steady, laminar, multiphase flow are performed
using ANSYS-CFX ® v12. The numerical model proposed is based on the Eulerian-
Eulerian approach. The conservation equations for multiphase flows are presented
below. The continuity equation for each phase (k = plasma, RBCs, or PLTs) is given
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by:
∂αkρk

∂t
+ ∇.(αkρkuk) = 0 (1)

where t is time, ρk ,αk , and uk are, respectively, the density, volume fraction, and
velocity vector of phase k. In addition, the volume fraction of each phase must satisfy
the following constraint,

n∑
k=1

αk = 1, (2)

with n = 3 being the total number of phases. The volume fraction occupied by one
phase cannot be occupied by other phases.

The momentum equation for each phase is given:

∂

∂t
(αkρkuk) + ∇.(αkρkukuk)

= −αk∇p + ∇ · τk + αkρkg

+
n∑

P=1

Rkl(uk − u1) + F, (3)

where p is the pressure shared by all phases, g is the gravity, Rkl is the interaction
force coefficient between the continuum and disperse phases, which depends on
the geometry of the interface and local slip Reynolds number, F is a force term
containing the lift force, virtual mass, and drag, and τk is the stress tensor of phase
k for Newtonian fluids, given by:

τk = αkμk(∇uk + ∇uT
k ) + αk

(
λk − 2

3
μk

)
(∇ · uk)I, (4)

where μk and λk are, respectively, the dynamic and bulk viscosity of phase k, and I
is the unit tensor.

2.3 Verification of Grid Independence

A second-order discretization scheme is used to calculate the advection terms in
the discrete finite volume equations. The standard calculation is case-dependent and
takes a CPU time from 8 to 36 h on a processor AMD Turion64 with operative systems
MS Windows 7, SP2.

In order to corroborate that the solution is independent of the grid resolution,
a study of grid convergence is undertaken. With this study, the truncation error
is reduced and the best degree of grid resolution is defined. The method consists
of iterative and parameter convergence studies using multiple solutions with sys-
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Table 1 Uniform structured
grids with total number of
cells

Mesh Elements

Coarse 61,740
Medium 152,920
Fine 387,266

tematic parameter refinement to estimate numerical errors and uncertainties. The
adopted method for discretization error estimation is the Grid Convergence Index
(GCI) based on the Richardson Extrapolation (RE) method, which involves compar-
isons between three different grid sizes (Roache 1994). The GCI method has shown
good performance for numerous and different CFD applications. In order to quantify
the discretization error, the systematic procedure recommended by Celik (2008) is
followed. The method considers the situation for three solutions corresponding to fine
φ1, medium φ2, and coarse φ3 grids with hexahedral elements; three convergence
conditions are possible: (i) monotonic convergence; (ii) oscillatory convergence; and
(iii) divergence.

The finite element meshes carefully modelled the near-wall region. Table 1, gives
the number of computational cells for each one of the meshes generated. The refine-
ment factors, r21 = hmedium/hfine and r32 = hcoarse/hmedium, which are based on a
representative cell, mesh, or grid size h, were 1.3 in all cases. The grid refinement
should be done systematically; the use of a constant parameter refinement ratio is
not required but simplifies the analysis. Celik (2008) suggested that a factor greater
than 1.3 would be desirable, based on experience and not on formal derivation. As
illustrated in Fig. 2a, there is a reduction of the PLTs volume fraction as the grid is
refined, indicating that the dependence of the numerical simulation on the cell size
is reduced. Further refinement of the grid will give oscillatory convergence in most
of the measurements points, which is an indication of the small difference between
the results of the grids.

The three grids used with the GCI method showed that the apparent order of
accuracy ranges from 2.64 to 13.96, with an average of 7.15 in the measurement line
located at 70 mm from the inlet. This averaged apparent order of accuracy is used
to assess the GCI index values for individual grids, which is plotted in the form of
error bars, as shown in Fig. 2b. The maximum discretization uncertainty is 6.52 %
with an average value of 1.39 %; the highest differences obtained occur at distances
from 5.9 to 6.8µm from the tube wall.

3 Results and Discussions

The blood cells are modelled as liquid dispersed droplets in a three-dimensional
Poiseuille flow with gravitational acceleration perpendicular to the tube axis, where
the Froude number is 0.33. The section of the micro-tube subjected to analysis cor-
responds to a region of hydrodynamically developed flow far downstream from the
inlet.
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Fig. 2 a Platelets
concentration profile in a
section of the tube obtained
for three different meshes,
b Medium-grid solution, with
discretization error bars
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Fig. 3 Platelets’ volume
fraction. The Reynolds
number as calculated at the
inlet of the channel was
RePLTs = 1.62
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Fig. 4 a RBCs concentration profile, Reynolds number, calculated at the inlet of the channel,
ReRBCs = 1.71, b Plasma concentration profile, RePlasma = 2.62

The volume fraction of the disperse phases and plasma are plotted as a function
of the radial location in Figs. 3 and 4.

Because of the low Froude number, RBCs tend to migrate towards the bottom of
the pipe, increasing their concentration in this region. As they are settled down, a
displacement of plasma and platelets occurs towards the upper side of the pipe. The
maximum concentration of plasma and RBCs are in the upper and bottom wall,
respectively. However, in the case of PLTs, the highest concentration is located
very near the upper wall. This behaviour has been reported by several authors for
neutrally buoyant solid spherical particles (Won and Yul 2008), buoyant particles
(Hogg 1994), drops (Nourbakhsh and Mortazavi 2010), and in Eckstein et al. (1988)’s
work, where they found that this behaviour is also characteristic of the flow of platelets
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Fig. 5 Comparison between
the platelets’ concentration
profile as obtained
experimentally and
numerically. The error bars
represent the relative errors of
computed results
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in microcirculation. In general, this behaviour is related to multiphase flow, when
the relationship between the channel size and the particle size is relatively large and
the Reynolds number (Re) is low.

The peak in the platelets concentration profile is attributed to a lateral migration
of particles that tend to cluster at a distance from the wall known as the equilibrium
position ye, which is defined as the lateral distance from the centreline of the channel
to the peak position of the particle concentration distribution, (r/R). According to Ho
and Leal (1974) and the first studies of Segré and Silberberg (1962), using spherical
particles with neutral buoyancy, it is observed that in the absence of any slip velocity,
the particles tend to migrate away from the wall and the centreline canals, accumulat-
ing in an equilibrium position equal to 0.6. However, if we compare with the results
reported by Yeh et al. (1994) for a geometry equal to the one used in this chapter
(see Fig. 5), the equilibrium position for their experimental data is 0.98, while in our
simulation is 0.96, yielding approximately a relative error of 2 %. In addition, we
may see that our model is able to predict the platelet concentration at the centre of
the pipe; though as we approach to the wall, the concentration numerically obtained
is approximately five times lower than that reported experimentally.

To analyze the reason for this deviation, it is important to note that Tilles and
Eckstein (1987), Aarts et al. (1988), and Zhao et al. (2007) among others, have
reported that the margination and accumulation of platelets in a region near the wall
is influenced mainly by the hydrodynamic interaction of these cells with the red blood
ones, thus increasing its concentration as the hematocrit increases. In principle, the
deviation can be explained by the fact that our computational model does not take
into account the interactions among the disperse phases, but only those between the
disperse and continuum phases, under the assumption that each phase is present in
each control volume and has a volume fraction equal to the fraction of the control
volume occupied by that phase.
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Fig. 6 Radial profiles of
the forces that affect the
movement of the phases
through the tube
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Since in this case the Froude number is very small, PLTs lateral migration is
controlled by gravity. RBCs, which are heavier than the fluid, migrated to the bottom
of the tube, while all PLTs eventually tended to migrate to the top. Therefore, in a
given section of the pipe there is a single equilibrium position. A region of dense
solids can be supported by a less concentrated (and therefore, less-dense) layer owing
to the interplay of sedimentation and shear-induced diffusion (Matas et al. 2004).

In addition, the interplay of viscous, drag, and inertial forces gives rise to a variety
of possible fluid phase distributions. Ranking the importance of different forces helps
predicting multiphase flow behaviour. In Fig. 6, the different forces are plotted in the
radial position. The drag force, due primarily to the viscous nature of the carrier-
continuum fluid phase, is dominant at the walls and is responsible for entraining
particles along the flow main stream. The lateral dispersion, responsible for the
transverse migration of particles across the flow streamlines, is likely to be dominated
by the wall inertial forces.

It is clear that the drag force increases as the distance between the wall and the
particles decreases. The increase is due to viscous effects derived from the wall
presence; when the particle Reynolds number, Rep = dpus/ν, is small, the inertial
term in the Navier-Stokes equations is small compared to the viscous term at distances
of the order of the particle radius, dp/2, from the particle centre. Here us is the
dimensional magnitude of the slip velocity and ν is the kinematic viscosity of the
continuous phase.

The buoyant weight of the particles defines a slip velocity that can be either
upward or downward, depending of the disperse phase concentration ratio (see Fig. 7).
Although, in our case the difference is not so remarkable, this small variation is the
effect of the particle migration close to the tube wall which generates a wall-induced
lift force, driving the PLTs away from the wall.
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Fig. 7 Platelets slip velocity
obtained by varying the
volume fraction of phases
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It is important to note that the lateral migration is only observed in the PLTs, while
for RBCs only sedimentation occurs. This implies that the phenomenon depends on
the size of the particles among other factors. This can be seen in Fig. 8, where the
results are compared when PLTs and RBCs are modelled by assuming they have
the same volume fraction (2 %) or when they have volume fractions of 2 and 40 %,
respectively.

The peak of highest concentration is still observed for the platelet phase at the
same equilibrium position. However, it is placed to the other side of the tube. For
RBCs, the concentration profile does not change even though the volume fraction
varies from 40 to 2 %.

Since the density difference between the plasma and the platelets is small and the
platelet diameters are smaller than the RBC ones, the magnitude of the gravitational
force is higher for RBCs and makes the major contribution to the motion of these
particles. So, if the particle is only slightly buoyant, it stabilizes at a position close to
the wall, and depending on the concentration of the other disperse phases, this will
be at the top or at the bottom of the tube. In this case, the particles have sufficient
buoyancy to dominate the far field of the velocity field, but insufficient to affect the
region where there is a balance of the viscous forces with the shear advection term.
Then, platelets cannot go all the way onto the wall because of the repulsion and so
it will stabilize at a stand-off distance from one of the walls.

For larger buoyancy, the migration of the phase settling under gravity resembles
that caused by a sedimenting particle, and therefore the effect of shear and wall
repulsion is negligible.
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Fig. 8 Concentration profile
when varying the volume
fraction of the dispersed phase
at the tube inlet: a platelets,
b red blood cells
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4 Concluding Remarks

Numerical simulations of the motion of two disperse phases, of different densities
and concentrations, have been carried out in order to model the migration of blood
cells through a micro-tube.

In summary, although the physical mechanisms of the lateral migration are com-
plex and are still under active research, we have presented a simple and accurate
approach to model the movement of blood cells through micro-conducts. The results
obtained in this investigation show that the underlying dynamics is due to the compe-
tition of three effects: one linked to wall-induced shear stress, producing a core-ward
drift; one associated to the shear and the curvature of the Poiseuille flow, produc-
ing a motion towards the wall (Ho and Leal 1974); and the other one related to the
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concentration and diameter of the disperse phases, which become a key factor when
the phases are not neutrally buoyant.

It should be pointed out that although the scenario of platelet cell migration in
microcirculation is qualitatively described by our numerical simulation, we were
unable to quantitatively account for the effects of the RBCs migration. In this sense,
we may state that the numerical model is able to describe with a good approximation
the physical phenomenon of segregation, but further fine tune-up is still required to
account for the effects of RBCs migration on the PLTs segregation.
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Perspective: The Breakup of Liquid Jets
and the Formation of Droplets

José R. Castrejón-Pita and Ian M. Hutchings

Abstract The breakup of liquid surfaces is a topic of great relevance to industry
that often presents complications for both experimental and theoretical physicists.
Although they have been widely studied since the end of the eighteenth century,
many of the phenomena involved in the processes of the breakup of liquids and the
formation of new surfaces and droplets are still not fully understood. In this chapter
we discuss some of the current issues faced by researchers working in the field of
droplet dynamics.

1 Introduction

The creation and behaviour of droplets might appear superficially to be perfectly
predictable phenomena and thoroughly explored topics of research. After all, sev-
eral numerical methods are available both commercially and non-commercially that
appear to model not only the breakup of streams or jets of Newtonian liquids from
dripping taps (faucets), spray nozzles, and inkjet printers, but also the breakup of
viscoelastic and granular flows. In reality, however, only a few of these simulations
have ever been rigorously experimentally validated, and most of those that have were
assessed under conditions outside the range covered by real industrial processes. As
a consequence, the use of modelling methods is not extensive in industry and, in
the few cases in which modelling is used, it is merely employed as a first-approach
tool. More often, the development and optimization of products and manufacturing
processes rely on empirical trial and error testing. In industries dealing with liquid
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delivery, these optimization processes involve not only adjustment of the properties
of the fluids, but also modification of the geometry of the system (e.g. a nozzle and/or
the liquid conduits) and its drivers (e.g. pumps, heating elements, or piezoelectric
transducers). It is clear that, given the maturity of some of the technologies, most
current practical methods for the production of droplets, aerosols, or liquid jets (e.g.
inkjet and sprays) are very complex and as such are very difficult to characterize
or model. In general terms, the modelling of commercially available systems is not
easy as most are ‘black boxes’ in which none of the fluid dynamical conditions are
known accurately. Studies of inkjet print-heads present unique difficulties because
they contain very small internal channels, operate at very high repetition frequencies,
tend to lack optical access to the print-head interiors, and the droplets produced are
very small and travel at high speeds. This discussion is therefore focused on inkjet
systems and, in particular, on the processes of droplet generation and deposition.
Although there are many fields of research into applications of droplets, this chapter
discusses only some of the topics of academic and scientific interest presently faced
by inkjet technology.

2 Droplet Production

It is generally accepted that there is still much to understand about the breakup
of liquids into droplets (Eggers 1997; Basaran 2002). Some remarkably complete
and early studies were performed by Lord Rayleigh during the nineteenth century,
providing much of the basic understanding that is still currently used to predict
jet behaviour and drop formation. In recent years, the study of the formation and
behaviour of jets and drops has gained additional importance, motivated by their
application in inkjet printing technology. Inkjet printing has been identified by many
as a technology that can potentially change the way some products are delivered
by manufacturing processes. This is because inkjet offers several advantages over
traditional techniques. Inkjet printing is very efficient, robust, versatile, digital, and
non-contact. It is efficient because it utilises only the material required, producing
little or no waste; it is robust because it is a mature technique widely used, and it is
versatile because several techniques exist for the printing of different inks or liquids.
In addition, it offers the advantage of being digital so that no master template is
required and thus printed patterns can be readily modified or changed on demand.
Another advantage is that the print-head is never in physical contact with the substrate.
All these characteristics have made inkjet a technology with enormous potential, with
applications being actively explored in novel areas of biological deposition and the
printing of electronic devices. Traditional inkjet processes are also being increasingly
employed to increase versatility in commercial printing. Current investigations of
inkjet systems are focused on fundamental studies to describe the physics of liquid
jetting and on empirical investigations aimed at adapting current technologies to the
printing of non-conventional materials (Hutchings and Martin 2013). Examples of
these are investigations of the thinning and breakup of liquids, the delivery of active
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Fig. 1 Images showing the breakup of a modulated continuous liquid jet, travelling downwards
from a nozzle at the top of the image, as the modulation amplitude is increased. Theory predicts a
monotonic decrease in the breakup length (i.e. the distance from the nozzle to the breakup point)
with the modulation amplitude. In most commercial examples of continuous inkjet printing, the
breakup length exhibits a reversal as shown here, i.e., above a certain amplitude of modulation the
breakup distance increases with the amplitude

components in pharmaceutical applications, and printing processes for conductors
and semi-conductors for printed electronics, displays, sensors, and photovoltaic cells.

Two basic inkjet processes are commonly used by industry: Drop on Demand
(DoD) and Continuous InkJet (CIJ). In the first method, droplets are produced by the
action of a heater or piezoelectric transducer in response to an electric signal (called
the waveform) (Castrejón-Pita et al. 2011a). In contrast, in CIJ mode a continuous
jet of ink is harmonically perturbed to produce a train of equally spaced droplets
(Castrejón-Pita et al. 2011b). Most CIJ systems rely on piezoelectric elements to
produce the perturbation that initiates the breakup into droplets. Once the droplets
are formed, these are usually electrically charged and then directed by electric fields to
form the desired pattern on the substrate. In many commercial and industrial systems,
the pressure or velocity responses to the electrical driving signal, the waveform in
DoD and the harmonic signal in CIJ, are very often unknown, which presents a major
complication for modelling (Castrejón-Pita et al. 2011a).

The surface perturbation (as illustrated in Fig. 1) that leads to breakup of modu-
lated continuous jets is described by the Weber-Rayleigh equation:

r = a + ξ0eikz+(α+i2π f )z/v, (1)

where v and a are the speed and the initial radius of the jet, ξ0 and k are the initial
amplitude and the wave number of the harmonic perturbation (k = 2π/λ), and λ is
its wavelength. The growth rate α depends on the fluid properties as follows:
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Fig. 2 Different stages of the thinning and breakup of a drop of water (a near-inviscid Newtonian
liquid) emerging from a nozzle. The whole process shown in the pictures takes approximately 33 ms.
Visualised by using high speed shadowgraph imaging, details in Castrejón-Pita et al. (2012)
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where l = k2 +ρ/μ. Here ρ, σ , and μ are the density, surface tension, and viscosity
of the fluid (or ink), respectively. Detailed derivations of these equations are available
elsewhere (Strutt 1896; Brenn et al. 2000). Equation (1) can be used to calculate fluid
properties from observed jet profiles (Castrejón-García et al. 2011). In commercial
CIJ systems, the precise point of breakup which defines the breakup distance (i.e., r =
0), is important as it needs to be in the correct position to ensure that charge is correctly
induced on the drops so they can be deflected in a controlled way by an electrostatic
field. It has been demonstrated that Eq. (1) can be used very accurately to predict
fluid properties and breakup distances for low-amplitude modulations (González and
García 2009) yet it fails to predict the behaviour observed experimentally for high
amplitude oscillations. Figure 1 shows the point of breakup for different amplitudes
of modulation, from which it is clear that the breakup length does not decrease
monotonically with the amplitude of modulation. This phenomenon is often seen in
industry and called breakup reversal; it is not yet understood. Various hypotheses
have been proposed to explain this effect but none has yet been successfully verified
experimentally. This is an important commercial issue as industry relies on empirical
experimentation to set up the jetting conditions, which is a complex procedure as it
depends on the fluid properties and the nozzle design.

Other studies of drop formation aim to understand and predict the breakup behav-
iour of droplets and liquid filaments. This is a fundamental step towards the complete
modelling of inkjet systems. The different behaviours observed for liquids of differ-
ent viscosities are very familiar, as water dripping from a tap shows very different
behaviour from syrup flowing from a spoon, as illustrated in Figs. 2 and 3. The
breakup of viscous liquids has been extensively studied theoretically but little exper-
imental work exists, Brenner et al. (1996); Day et al. (1998); Basaran (2002); Chen
et al. (2002). During the filament thinning process that eventually leads to breakup,
several regimes have been identified. These regimes depend on the internal dynamics
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Fig. 3 Imaging of the thin-
ning and pinch-off process of
a droplet of glycerol and water
mixture with a viscosity of
365 mPa s. The images cover
a period of 120 ms and were
captured with the same system
as in Fig. 2

of the liquid and its properties, but the transitions from one regime to another are
processes that still require more experimental study. Experimental studies of thin-
ning liquid filaments are complicated, because the processes occur over a wide range
of timescales. Various regimes can be identifed which are dominated by the action
of different forces: in dripping the first forces to act are gravity and surface tension,
while later in time viscous forces come into play, then inertia and finally the viscosity
of the surrounding (outer) medium (Basaran 2002). This presents practical complica-
tions for high speed imaging as the resolution of conventional setups is compromised
by the frame speed. It is relatively easy to record images of high resolution at a slow
rate and to record low resolution images quickly, but not to record high resolution
images at high rates. This conflict has so far limited the observation of regime transi-
tions in drop formation. The gap between theory and experimental observation must
be bridged in order to understand the whole process of drop formation.

There are many industrial scenarios in which there is a need to understand the
mechanisms involved in drop formation. Current industrial challenges include stud-
ies to improve the reliability, quality, and speed of inkjet printing. Other efforts are
focused on the development and testing of methods to characterize dynamic liq-
uid properties such as viscosity, other rheological properties, and surface tension
at appropriate time and length scales found in industrial applications, which are
believed to play a decisive role in determining the dynamics of the droplet in both
CIJ and DoD systems.

3 Droplet Deposition

Another topic of industrial and academic interest is the impact and coalescence of
droplets on both solid and liquid substrates. On solid substrates the dynamics of the
contact line and the hysteresis of the dynamic contact angle are themes that have
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Fig. 4 The impact of a 2 mm
diameter drop of a glycerol
and water mixture with a
viscosity of 10 mPa s onto
a pool of the same liquid;
the impact speed was 2 m/s.
Observed by high speed
shadowgraphy, as described in
Castrejón-Pita et al. (2012)

been widely studied but still remain to be completely understood. Liquid-on-liquid
deposition is a rich field of research that relates to common events such as rain
droplets impacting onto rivers or the sea, or milk being poured into a cup of tea.
Single droplets impacting on a stationary pool of water are the simplest example
that can be studied and yet offer a very complex dynamics, as seen in the example
in Fig. 4. This type of impact is currently being investigated using state of the art
technologies such as high speed X-ray photography and ultra high speed imaging.
By using these methods, recent experiments have uncovered previously unknown
phenomena happening at the very first instants after the impact and coalescence
of fluids. One such previously unstudied phenomenon is the ejection of very thin
and fast sheets of liquids whose appearance can only be recorded by ultra high speed
imaging. This liquid sheet has been termed the fluid ejecta and precedes the spreading
of the droplet and the formation of the well-known splashing crown (Thoroddsen
2002, 2012).

Studies on the behaviour of the fluid ejecta still have much to offer and this is
an active area of research (Thoraval et al. 2012). Current studies on this topic are
focused on numerical modelling and on experimental work aiming to understand the
dynamics of the ejecta in terms of the fluid properties and the speed of impact. It
has been observed that the fate of the ejecta is highly dependent on the viscosity of
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Fig. 5 Close-up of the interface formed between an impacting water droplet and a pool of the same
liquid at different times. An ejecta sheet is clearly visible 100μs after impact. The sheet rapidly
becomes unstable due to surface tension and breaks up into micro-drops

the fluid as it can break up into micro-drops or remain as a liquid sheet (see Figs. 5
and 6). Recent work has suggested that the ejecta sheet formed by rain droplets
impacting the sea may be responsible for the formation of very small droplets that
form salt crystals that eventually nucleate clouds (Thoroddsen 2012). Furthermore,
the formation of such ejecta is a process that could be exploited in commercial
applications to produce very small droplets. Generally speaking, conventional DoD
droplet generators produce drops with diameters similar to the size of the nozzle used
to jet them (Chen and Basaran 2002). As the ejecta can breakup into droplets that are
much smaller than the size of the droplet, this is a mechanism that might be used to
produce micro-drops, although in industrial applications such as inkjet printing the
production of such tiny additional droplets is already known and is undesirable.

Novel applications for droplet-based technologies are currently being explored in
diverse manufacturing processes such as rapid prototyping, the printing of electronics
and bio-materials, 3D printing and coatings. The commercial success of many of
these ventures really depends on the capabilities of current technologies to handle
a large range of fluid viscosities, liquids with complex viscosities, fluids with high
solid contents, and granular material. In all these areas there is still much to be
learned both theoretically and experimentally. In particular, there are topics such as
non-Newtonian fluids and granular media, where great advances have been made
theoretically but technological limitations have prevented associated experimental
work. Novel applications are not only attracting the attention of industry but driving
science into previously unexplored regions.
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Fig. 6 Close-up of the interface formed between an impacting droplet of a glycerol and water
mixture with a viscosity of 10 mPa and a pool of the same liquid. In this case, in the ejecta sheet
the breakup of the liquid surface is prevented by the action of viscosity and as a consequence
micro-drops droplets are not formed

4 Conclusions

Many current studies in fluid mechanics are focused on real industrial problems,
such as the modelling of inkjet technologies. These studies are necessary in order
for industry to reduce the costs of development by transferring effort from empirical
testing to modelling. For that to happen, several limitations need to be overcome.
The validation of theoretical and numerical methods will benefit inkjet technologies
and enable conditions to be investigated that are not cost-effective to explore exper-
imentally. The realization of fully-validated algorithms can lead to the production
of systems with enhanced capabilities to jet and deposit micrometre-scale droplets
of complex liquids, increase the speed of printing, achieve high quality single-pass
printing, the sequential deposition of different fluid compositions, better feature def-
inition and the ability to deposit a much wider range of materials or liquids with high
solid content.
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Experimental Investigation of Thermal
Diffusion in Binary Fluid Mixtures

Humberto Cabrera

Abstract The mass transport of chemical species in response to a temperature
gradient, referred to as the Soret effect or thermal diffusion, leads under certain
conditions to a separation of the chemical constituents. The Soret coefficient is the
ratio of the thermodiffusion coefficient to the molecular diffusion coefficient. This
effect along with molecular diffusion occurs in many natural phenomena and engi-
neering systems. One early application of this effect was the separation of isotopes.
Understanding the Soret effect is also important for exploring the mechanics of crude
oil extraction and its reservoir characterization, as well as in the research of the global
circulation of see water. It has also been used for polymer characterization by thermal
field flow fractionation. Moreover, recent studies on the Soret effect of bio-systems,
like protein and DNA solutions, indicate that it might help revealing the mechanisms
behind the mysterious phenomenon of life. Many experimental techniques have been
developed for investigation of the Soret effect: thermogravitational columns, ther-
mal lens, diffusion cells, thermal diffusion forced Rayleigh scattering, thermal field
flow fractionation, and microfluidic fluorescence. In this chapter, we focus on the
investigation of thermal diffusion behaviour in simple liquid mixtures by a thermal
lens method. The big advantage of the thermal lens method is that it is fast, simple,
and the experimental set-up is much cheaper compared to other methods. In partic-
ular, a calibrated two-beam mode-mismatched thermal lens experiment is used for
determining the Soret coefficient for isopropanol/water and ethanol/water mixtures.
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The fitting curves show a very good agreement between the theoretical model and
the experimental data. The experimental results have also shown good agreement
with available thermodiffusion coefficient data.

1 Introduction

Thermal diffusion, known also as the Ludwig–Soret effect, plays an important role
in our understanding of the properties of liquid mixtures (Sitzber 1856; Soret 1879).
It characterizes the flux of matter in response to a temperature gradient, which leads
to the formation of a concentration gradient (Bierlein 1955). This stationary concen-
tration gradient is given by

◦c = −ST c0(1 − c0)◦T, (1)

where ST = DT /D is the Soret coefficient, D the mass-diffusion coefficient, DT the
thermal diffusion coefficient, T the temperature, c the molar fraction of component
1 (the heaviest component), and c0 its equilibrium value (Tyrell 1961).

The thermal lens method (TL) is a powerful method that can be used to study
the Soret effect in transparent liquid mixtures. The TL measures the amount of heat
deposited in a medium after the absorption of light. Immediately after the absorption
of photons, the spatial heat distribution resembles the intensity distribution of the
beam spot. Later on, the thermal diffusion spreads the heat over distances more than
1 order of magnitude larger than the excitation beam spot radius. Since the refrac-
tive index depends on temperature, a spatial distribution of the refractive index of a
similar extent is generated in the absorbing medium. In addition to the temperature-
dependent refractive index gradient, the Soret effect can produce refractive index
changes and influence the total signal (Giglio and Vendramini 1974). For CW exci-
tation the generation of a stationary TL can take milliseconds to several seconds,
depending on the beam spot radius and the thermal diffusivity of the sample. The
TL alters the propagation of the probe beam through the medium by generating a
phase shift on the beam wavefronts. Since the first report on the thermal lens effect,
the sensitivity of the technique has been improved by changing the experimental
configuration. Early experimental arrangements used a single-beam configuration,
which employed a laser beam to excite the TL and probe it (Whinnery 1974). The
use of a second probe beam for testing the TL has improved the versatility and sen-
sitivity of the technique (Long et al. 1976; Shen et al. 1992; Marcano et al. 2006;
Cabrera et al. 2009a). The dual-beam configuration provides the possibility to use
signal processing devices, e.g. lock-in amplifiers, to improve the signal-to-noise ratio
and hence the sensitivity of the TL measurement. In addition, detection optics and
detectors can be optimized for a single, convenient probe laser wavelength rather
than requiring detection in what may be a more difficult spectral region, which is a
convenient choice for generating continuous scanning TL spectra (Shen et al. 1992).
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An advantage of the thermal lens method compared to the diffusion cell is the
short duration of a typical experiment (short equilibration times) due to small
distances on the order of the focal beam width. Furthermore, in thermal lens
experiments typical temperature changes are on the order of 10−2 − 10−5 ∇C
(Gordon et al. 1965; Whinnery 1974). This allows to work with extremely small
temperature and concentration gradients, so that the addition of a dye can be avoided
by using the natural absorption of the molecules. Such advantages make the Soret
coefficient independent of the effects of convection. In the same way, the sensitiv-
ity to convection may be neglected for fast diffusing systems such as, for example,
water/organic solvent mixtures.

In this work, a calibrated two-beam mode-mismatched thermal lens experiment,
where the pump beam is tightly focused and the probe beam is collimated, was used
for determining the Soret coefficient of alcohol-water systems. This particular set-up
provides the maximum possible response in terms of the amplitude of the signal
in a CW photothermal experiment (Marcano et al. 2006). In addition, the alignment
procedure, the experiment itself as well as its calibration, and the interpretation of the
experimental results are simpler than working with the mode-matched configuration
(Long et al. 1976).

2 Theoretical Model

In the mode-mismatched dual-beam thermal lens experiment when an infinite
medium is illuminated, at time t = 0 along the z-axis, with a light beam of Gaussian
intensity I (r, z) = [2Pe/ ζ∂2

e (z)] exp[−2r2/∂2
e (z)], in the limit of small absorption

values, the temperature distribution is given by Shen et al. (1992)

ΩT (r, z, t) = 2Peφ

ζΨC p∂2
e

t∫
0

tc
tc + 2t ∼

exp

[
− 2tcr2

∂2
e (tc + 2t ∼)

]
dt ∼, (2)

where Pe is the excitation power, and φ, Ψ, and C p are, respectively, the absorption
coefficient, the density, and the specific heat of the medium. The quantity ∂e(z) =
∂0e[1 + (z − ae)

2/z2
e ]1/2 is the excitation beam radius at the sample cell, where ae,

∂0e, ze = ζ∂2
0e/ρe, and ρe are the waist position, the radius at the waist, the Rayleigh

parameter, and the excitation wavelength, respectively. The coordinate z is the sample
position, r is the coordinate radius, tc(z) = ∂2

e (z)/4Dth is the characteristic thermal
time constant, with Dth = k/ΨC p and k being the thermal diffusivity and thermal
conductivity, respectively.

If the refractive index n of the liquid mixture satisfies the condition Ωn/n << 1
(Gordon et al. 1965), its change with temperature and concentration is given by
(Bierlein 1955)
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Ωn(r, z, t) = θn

θT
ΩT (r, z, t) + θn

θc
Ωc(r, z, t), (3)

while the concentration change is (Bierlein 1955)

Ωc(r, z, t) = −ST c0(1 − c0)ΩT (r, z, t)σ (z, t), (4)

with

σ (z, t) = 1 −
≥∑

i=1

4

(2i − 1)ζ
sin

[
(2i − 1)ζ

2

]
exp

[
−(2i − 1)2 t

tD(z)

]
, (5)

where tD(z) = ∂2
e (z)/4D is the mass-diffusion time (Arnaud and Georges 2001).

The expansion in Eq. (5) converges rapidly. In order to obtain an accuracy better
than 1 % it is sufficient to retain terms up to i = 4 in the summation. When t >> tD ,
the exponential term vanishes and σ = 1, and so Eq. (4) reduces to Eq. (1).

The change of the refractive index acts as an optical element producing a phase
shift κ on the wavefronts of the probe beam. Inserting Eq. (4) into Eq. (3) and then
using Eq. (3), we obtain for the phase shift (Marcano et al. 2002; Cabrera et al. 2009a)

κ(r, z, t) = 2ζ

ρp
l[Ωn(r, z, t) − Ωn(0, z, t)]

= 2ζ

ρp
l

[
θn

θT
− θn

θc
ST c0(1 − c0)β(z, t)

]

× [ΩT (r, z, t) − ΩT (0, z, t)], (6)

where l is the sample cell length and ρp is the wavelength of the probe field. Substi-
tuting Eq.( 2) into Eq.( 6), κ can be written as (Marcano et al. 2002; Cabrera et al.
2009a)

κ(g, z, t) = ψsσ (z, t) − ψth

2

×
1∫

(1+2t ∼/tc)
−1

[1 − exp(−2m(z)gε)]
ε

dε, (7)

where ψs = (θn/θc)[Peφl ST c0(1 − c0)/kρp] is the induced concentration phase
shift amplitude and ψth = (θn/θT )(Peφl/kρp) is the induced thermal lens phase
shift amplitude. In the above equation, the ratio m(z) = [∂p(z)/∂e(z)]2 accounts
for the level of mode-matching between the beams, g = r/∂p(z) is a dimensionless
parameter, and ∂p(z) = ∂0p[1 + (z − ae)

2/z2
p]1/2 is the probe beam radius at the
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sample cell, with ap, ∂0p, and z p = ζ∂2
0p/ρp being the waist position, the radius

at the waist, and the Rayleigh parameter.
The phase shift is added to the wavefront of the propagating probe light. At the

exit of the sample the amplitude of the probe light is (Marcano et al. 2002)

E p(r, z, t) =
√

2Pp/ζ

∂p(z)
exp

[
− r2

∂p(z)
− ik pz − i

k pr2

2R(z)
+ i arctan

(
z − ap

z p
− iκ

)]
,

(8)
where Pp is the total power of the probe light beam, kp = 2ζ/ρp is the probe light
wave number, and R(z) = [(z − ap)

2 + z2
p]/z is the radius of curvature of the probe

beam at the sample position z.
Behind the sample cell the probe beam propagates freely up to the position of

the aperture. The next step is to calculate the probe beam amplitude at the posi-
tion of the detector. The Fresnel diffraction approximation provides the solution of
this problem. It is given by the convolution of the probe field amplitude E p(r, z, t)
at the exit of the sample with the impulse response of free space propagation
(Marcano et al. 2002).

Finally, the time-dependent total signal can be calculated using the definition
(Shen et al. 1992):

S(z, t) = I (z, t) − I0

I0
, (9)

where I (z, t) = 2ζ
∫

a |E p(r, z, t)|2rdr is the transmission of the aperture in the
presence of the excitation beam, I0 is its transmittance in the absence of the excitation
beam, and a represents the aperture surface. If we consider a small phase shift
(κ << 1) and aperture dimensions much smaller than the probe beam spot, a
simple solution can be obtained by means of Eq. (8) and the Fresnel diffraction
approximation. Considering the Soret effect in liquid mixtures, the time-dependent
total signal which is the sum of the pure thermal lens plus the Soret concentration
lens can be expressed as follows (Marcano et al. 2002; Cabrera et al. 2009a):

Stotal(z, t) = Sth − Ss = Peφl K (z, t)

kρp

[
θn

θT
− θn

θc
ST c0(1 − c0)σ (z, t)

]
, (10)

with

K (z, t) = arctan

{
4mχt/tc

χ2 + [1 + 2m]2 + [1 + 2m + χ2]2t/tc

}
, (11)
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σ (z, t) = 1 −
≥∑

i=1

4

(2i − 1)ζ
sin

[
(2i − 1)ζ

2

]

× exp

[
−(2i − 1)2 t

tD(z)

]
, (12)

where χ(z) = (z − ap)/z p + (z p/L − z)[1 + (z − ap)
2/z2

p] is the geometrical
parameter of the probe beam and L denotes the position of the plane detector.

The mode-mismatched scheme optimizes the value of the stationary total signal
when K (z, t) in Eq. (10) reaches its maximum value of ζ/2. In the stationary situation
(t → ≥), this value is reached at z = 0 for z p >> L >> ze. This corresponds to
a situation with a collimated probe beam and a tightly focused pump beam. Under
these conditions K (z, t) = ζ/2 , σ = 1, and Eq. (10) can be re-written as (Marcano
et al. 2006; Cabrera et al. 2009a)

Stotal≥ = Sth − Ss = ψth
ζ

2
− ψs

ζ

2
= Peφlζ

kρp2

[
θn

θT
− θn

θc
ST c0(1 − c0)

]
. (13)

Equation (13) provides a relation between the total signal Stotal≥ and the Soret
coefficient ST . Measuring the total signal and calculating the thermal lens signal, the
Soret signal can be obtained, which is then used to determine the Soret coefficient
whenever the rest of the parameters are known. However, the ratio of the Soret signal
and the pure thermal lens signal provides the more compact expression (Polyakov
and Wiegand 2009; Cabrera et al. 2013):

ST =
θn
θT

θn
θc c0(1 − c0)

Ss

Sth
. (14)

In this relation there are three unknown parameters: the Soret coefficient ST , the
thermal lens signal Sth , and the Soret signal Ss . With the use of Eq. (14) we do
not need to determine the absorption coefficient, and so avoid the addition of dye
to increase the absoption. This particular property reduces the uncertainty in the
determination of the Soret coefficient.

We can obtain the Soret signal Ss as the difference between the final steady-state
total signal Stotal≥ and the value of the pure thermal lens signal Sth, which is obtained
by extrapolating the fit of the thermal lens contribution from Eq. (10) in the 0–500 ms
range. Finally, the Soret coefficient ST is calculated using Eq. (14).
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3 Experimental Method

The dual-beam thermal lens experimental set-up (see Fig. 1) has recently been used
for the measurement of the Soret effect (Cabrera et al. 2009a,b, 2013). The system
is composed of two blocks as follows:

1. Probe beam and recording block. The He–Ne laser (ρp = 632.8 nm, Pp =
10 mW, Spectra Physics) generates the probe beam. This beam passes through
a 1 cm L1 and 30 cm L2 focal-length lenses, resulting in a 6 mm width near-
collimated probe beam. This beam is reflected by mirror E1, passes through the
dichroic beam combiner DivD, the sample M (contained in a 1 cm quartz cuvette),
and the interference filter F1 (central wavelength ρ = 632.8 nm, Thorlabs). The
dichroic mirror E2 then reflects the beam towards the 0.3 mm pinhole A and
the photodetector D (model DET 110/M, Thorlabs). The output signal of the
photodetector is transformed by the current pre-amplifier Amp (model SR570,
Stanford Research Systems) and introduced into the digital oscilloscope Osc
(model TDS 3052, Tektronix), where the signal is digitized, saved, and processed
statistically. The radiant flux of the probe beam at the sample surface is 0.2 mW.

2. Excitation beam block. The second harmonic of a diode pumped neodymium
yttrium aluminum garnet (Nd:Yag) CW laser (model GSF32–200,ρe = 532.8 nm,
Pe = 200 mW, Intelite) delivers the excitation beam through the shutter Sh (model
846, Newport Corporation), the beam splitter Div, and the 180 mm focal length
lens L3 to the beam combiner DivD, which reflects it to the sample M. The excita-
tion beam passes from the left to the right through the sample cell. The interference
filter F and the dichroic mirror E2 block the excitation beam preventing it from
reaching the pinhole A and the photodetector. The beam reflected from the beam
splitter Div is sensed by the photodetector Ref (model DET 110/M, Thorlabs),
which transforms the incident radiant flux into a synchronization signal for the
oscilloscope.

Measurements were taken according to the following procedure: the shutter Sh
modulates the beam with a period of 10 s, and for each sample the signal was obtained
from the average of 128 recordings at the digital oscilloscope. In order to measure
the value of the final steady-state total signal Stotal≥, we have recorded the relative
change of the transmission of the probe light through the aperture according to the
definition given by Eq. (9), which allowed us to determine Sth, Ss , and ST .

The water/isopropanol and water/ethanol mixtures were prepared using distilled
and de-ionized water (with a purity of better than 99 %) and Fisher Scientific chemical
organic components (with a purity of 99.8 %).
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Fig. 1 Experimental set-up. Lenses L1 and L2: form the beam expander, E1: mirror, DivD: dichroic
beam combiner, M: sample, F: interference filter, E2: dichroic mirror, A: pinhole, D: photodetector,
Amp: current pre-amplifier, Osc: digital oscilloscope, Sh: shutter, Div: beam splitter, L3: lens, and
Ref: reference photodetector

4 Results and Discussion

The evolution of the total experimental signal with time is shown in Fig. 2 for a
water/isopropanol mixture with an initial mass fraction of isopropanol c0 = 0.5 (at
298 K). Using Eq. (10), the best fit to the experimental data gives ST = −5.2 ×
10−3 K −1, when the fitting parameters are: ρe = 532.8 nm, ρp = 632.8 nm, z p =
100, 000 cm, ze = 0.0001 cm, ae = 0, ap = 0, L = 50 cm, m = 10, 000, θn/θT =
−3.474×10−4 K −1 (Mialdun et al. 2012), Pe = 73 mW , φ = 2×10−4 cm−1, l = 1
cm, k = 3×10−3 W cm−1 K −1, θn/θc = −0.0364 (Mialdun et al. 2012), c0 = 0.5,
and tD = 1 s. If we cut the fit at tc = 500 ms, only the pure thermal lens signal takes
place (first term of Eq. (10), represented by the red line).

As we may see from this figure, the signal first shows a rapid reduction due to
the pure thermal lens effect, followed by a further, much slower, decrease due to the
build-up of the Soret concentration gradient. Both processes can be easily separated
because the Soret component builds up with a time constant which is much greater
(td = 1 s) than the characteristic time constant of the thermal lens (tc = 500 ms)
(Arnaud and Georges 2001; Cabrera et al. 2009a). The separation of the time scales
allows for an analysis of the temporal build-up of the pure thermal lens, which is
shown in expanded scale in the inset box of Fig. 2. The fit was limited to a short period,
typically 500 ms, within which mass diffusion is inoperative and the signal is only
governed by the temperature-dependent refractive index gradient. The fit allowed
the determination of the transient steady-state thermal lens signal (Sth = −0.036),
from which the Soret signal (Ss = 0.005) was taken as the difference between the
final steady-state total signal (Stotal≥ = −0, 041) and the steady-state pure thermal
lens signal extrapolated from the fit using only the first term of Eq. (10). Then we
have determined the Soret coefficient (ST = −5.34 × 10−3 K −1) by means of
Eq. (14) with c0 = 0.5, θn/θT = −3.474 × 10−4 K −1 (Mialdun et al. 2012), and
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Fig. 2 Time evolution of the total experimental signal (Stotal≥ = −0, 041) for a water/isopropanol
mixture with c0 = 0.5 at T = 298 K. The red line is the best fit of the first term of Eq. (10) to the
experimental data and represents the pure thermal lens signal. The inset box shows the build-up of
the initial thermal lens effect in a 2 s period with tc = 500 ms

θn/θc = −0.0364 (Mialdun et al. 2012). The Soret coefficient obtained from the
fitting procedure (ST = −5.2 × 10−3 K −1) does coincide with the calculated one
using Eq.( 14) (ST = −5.34 × 10−3 K −1). This result demonstrates that the model
predictions are in good agreement with the experimental data.

We have applied a similar procedure to determine the Soret coefficients for dif-
ferent concentrations of water/isopropanol mixtures. The results are summarized in
Fig. 3 (Cabrera et al. 2013). For comparison, the data for the Soret coefficients from
recent measurements by Mialdun et al. (2012) and Mialdun and Shetsova (2008),
using three different instrumental techniques, and from early measurements by Poty
et al. (1974), using flowing cell methods, are also displayed in Fig. 3. These results
show a reasonably good agreement with ours in the region 0.2 < c0 < 0.8, except
for the Soret coefficient reported by Poty et al. (1974) for c0 = 0.7, which being too
high, deviates significantly from all other data. In the region with low water content
(c0 < 0.2), our results also disagree with those reported by Poty et al. (1974). In
addition, at low water concentrations the contrast factors are very low, which means
that the concentration variations become invisible to the optical techniques and so
the measurements of the transport properties are subject to large errors. The results
of the measurements in this region are not shown in Fig. 3 because they were con-
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Fig. 3 Soret coefficient of water/isopropanol mixtures as a function of the mass fraction of water
(black circles: present work). The open blue squares represent the experimental data reported by
Mialdun and Shetsova (2008), while open red circles correspond to data from Poty et al. (1974).
The green squares are the predicted values of the viscous energy model developed by Abbasi et al.
(2009). The continuous orange line is a spline fit to all available data (Mialdun et al. 2012)

sidered to be unreliable. Note that the Soret coefficient changes sign at low and high
isopropanol concentrations. In Fig. 3 we also compare our experimental results with
the predictions of the viscous energy model developed by Abbasi et al. (2009). A
reasonably good agreement is also observed.

We have also applied our technique to mixtures of ethanol and water at 298 K. The
solid red circles in Fig. 4 show the measured Soret coefficients ST as a function of
the mass fraction of ethanol. Positive Soret coefficients are observed for low ethanol
contents. By increasing the ethanol content, the Soret coefficient decays and changes
sign at c ∼ 0.3. In a mixture with high ethanol content, ST is negative (because
the ethanol molecules migrate to the hot side), whereas at low ethanol content, ST is
positive (in this case, the ethanol molecules migrate to the cold side). For comparison,
Fig. 4 also depicts the experimental results reported by Kolodner et al. (1988), Zhang
et al. (1996), and Kita et al. (2004). In addition, we also compare the results with the
predictions of Abbasi et al. (2009). We see that the agreement between these three
data sets, the viscous energy model, and our results is excellent.

We notice that for both mixtures the change of sign in the Soret coefficient
occurred at an alcohol mass fraction of c ∼ 0.3. Regarding this fact, a model for the
calculation of thermodiffusion in associating mixtures was proposed. In this model
a new approach for calculating the viscous energy and the ratio of the evaporation
energy to the viscous energy was developed (Abbasi et al. 2009). Thus, the vari-
ation of the viscous energy of the organic component is considered to control the
sign change in the Soret coefficient. In these two mixtures, the viscous energy of the
organic component decreases sharply with its concentration, which leads to a sign
change in the Soret coefficient. It then increases gradually with decreasing water con-
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Fig. 4 Soret coefficient as a function of the mass fraction of ethanol. Solid red circles refer to the
experimental data measured in the present work. Cross black circles represent previous results from
Kolodner et al. (1988), green solid circles from Zhang et al. (1996), and open blue squares from
Kita et al. (2004). The continuous black line draws the predictions of the viscous energy model
developed by Abbasi et al. (2009)

centration in the systems. For the isopropanol-water mixture, the isopropanol viscous
energy increases to the point where a second change of sign occurs. However, the
viscous energy of ethanol does not increase enough to cause a second change of sign
in the thermodiffusion factor (Abbasi et al. 2009).

5 Conclusions

We have used an optimized thermal lens experiment that allowed the precise determi-
nation of the values of the Soret coefficient for isopropanol/water and ethanol/water
mixtures. Our experimental results were seen to compare well with existing data
in the literature. We observed that the Soret coefficient of alcohol/water mixtures
depends strongly on the concentration, with a change of sign at alcohol mass frac-
tions of c ∼ 0.3. In addition, for the isopropanol/water mixture, the isopropanol
viscous energy increased to the point where a second change of sign occurred for
the Soret coefficient. These results suggest a relation with the variation of the acti-
vation energy of the organic component. While there is not a unique technique for
measuring the Soret coefficient, the results obtained here shows that a calibrated
two-beam mode-mismatched thermal lens experiment represents an additional inde-
pendent method, which provides new reliable benchmark data that agree quite well
with previously reported measurements in the literature.
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Stellar Mass Accretion Rates
from Fragmentation of a Rotating Core

Jaime Klapp, Leonardo Di G. Sigalotti and Miguel Zavala

Abstract We investigate the details of protostellar mass accretion, Ṁ , during the
collapse of isolated, initially uniformly rotating, low-mass cores, using hydrody-
namic models of star formation. The assumption of rigid rotation is supported by
recent observations that there is no apparent correlation between the level of tur-
bulence and fragmentation in dense cores, suggesting that turbulence works mainly
before gravitationally bound pre-stellar cores form and that their inner parts are likely
to be velocity coherent. We perform high-resolution calculations using the Smoothed
Particle Hydrodynamics (SPH) code GADGET-2, modified by the inclusion of sink
particles. We compare our results with theoretical models of star formation based
on gravoturbulent fragmentation and with observational data. We find that on the
small scales of low-mass, dense cores the details of mass accretion and the statistical
properties of the resulting stellar ensembles bear little dependence on whether the
contracting gas is turbulent or rotating as a whole.
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1 Introduction

As far as we know, all stars form by gravitationally-driven mass accretion from the
protostellar envelope of fragmenting molecular cloud cores. Although considerable
progress has been made in observing and understanding pre-main sequence evolution,
the earliest phases of star formation, i.e., the events which lead to Class I young stellar
objects (YSOs), still remain highly enigmatic. The Class 0 YSOs—the protostars that
have yet to accrete the bulk of their masses (André et al. 1993)—represent the most
crucial phase in the star formation process, when the physics that determines the
mass of the final star is imprinted on the system.

After a central protostellar core develops, theory predicts that material with higher
angular momentum continues to infall from the circumstellar envelope along stream-
lines which eventually miss the central protostar and is deposited in a circumstellar
disk. The disk quickly becomes rotationally unstable and transport mass onto the
protostar while redistributing angular momentum outwards. This process lasts for
a few times 105 yr when infall onto the protostar-plus-disk system terminates, sig-
naling the end of the Class I phase (Shu et al. 1987). To build up a star over these
timescales requires time-averaged accretion rates of ◦2 × 10−6–10−5 M∇ yr−1,
which are typically used in evolutionary calculations of protostars at the end of
accretion (Stahler 1988; Hartmann et al. 1997). In a first approximation, the mass
accretion rate can be defined as the ratio of the local Jeans mass, MJ, over the free-
fall time, tff : Ṁ ∼ MJ/tff = 5.4c3

s /G (Schmeja and Klessen 2004), where cs is the
isothermal sound speed and G is the gravitational constant. This gives a higher value
than the constant accretion rate of 0.975c3

s /G for the collapse of the singular isother-
mal sphere (Shu 1977). Numerical simulations of star cluster formation predicts that
stars and brown dwarves may be formed in burst over about 2×104 yr, implying infall
rates of ◦10−4–10−5 M∇ yr−1 (Bate et al. 2003). However, these infall rates imply
much higher luminosities than the values typically observed in protostars (Kenyon
et al. 1994). One way to solve this problem is by invoking a highly time-dependent
accretion. For instance, FU Orionis stars provide direct evidence for short episodes
of rapid accretion in early stages of stellar evolution, with accretion rates of 10−4 M∇
yr−1 or even more (Hartmann and Kenyon 1996), which are from one to two orders
of magnitude larger than typical values for low-mass objects (Furlan et al. 2008).

An alternative approach to the standard theory of star formation is to consider the
process of star formation itself as being controlled by the interplay between gravity
and supersonic turbulence (Mac Low and Klessen 2004). Numerical models of star
formation based on gravoturbulent fragmentation have predicted highly time-variant
accretion rates, with a sharp peak shortly after the formation of the protostellar
core in the range between 3 and 50c3

s /G, or equivalently, between 5 × 10−6 and
10−4 M∇ yr−1 (Schmeja and Klessen 2004). This range is in good agreement with
the observed one of ◦10−5–10−4 M∇ yr−1 for Class 0 YSOs (André et al. 1999;
Ceccarelli et al. 2000; Maret et al. 2002). The transition phase between Class 0 and
Class I sources takes place when about half of the final stellar mass has been accreted
by the protostar (André et al. 2000). This borderline typically takes place during or
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at the end of the peak accretion phase, thereby determining the lifetime of Class 0
objects. The accretion rates of Class I sources are believed to be between ◦10−7 M∇
yr−1, for the most evolved objects, and ◦5 × 10−6 M∇ yr−1, for the youngest ones
(Greene and Lada 2002; Boogert et al. 2002; Young et al. 2003). An analysis of
the outbursting system FU Ori based on Spitzer IRS data predicted that the disk
accretion of low-mass protostars will generally be unsteady for typical infall rates
(Zhu et al. 2007). A recent study has shown that magnetorotational instabilities in
the inner disk and gravitational instabilities in the outer disk are likely to combine
to produce outbursts of rapid accretion at a few AU from the central protostar (Zhu
et al. 2009), consistent with a highly time-dependent accretion scenario.

The mass accretion rates of protostellar cores in a dense cluster are different
from those of isolated protostars due to the dynamical interaction and competition
between the cores. For instance, in the first stage a protostar accretes local gas from
its immediate vicinity. Once the local reservoir is depleted, the protostar may accrete
gas streaming in from farther away or by encounters with non-collapsed clumps
(Klessen and Burkert 2000). This may well result in secondary accretion peaks
owing to the protostar first accreting only about half of its final mass from its direct
environment (first peak) and then the rest from later accretion events (secondary
peaks). Numerical simulations of small cluster formation based on gravoturbulent
fragmentation have shown the formation of secondary peaks in the mass accretion
rates of most protostars in the cluster (Schmeja and Klessen 2004). These models
have also predicted a strong correlation between the maximum mean accretion rate
and the final stellar mass. In addition, the maximum accretion rate was shown to be
one order of magnitude higher than the constant rate produced by the collapse of a
classical singular isothermal sphere (Shu 1977), while the accretion rates are seen
to decline exponentially from Class 0 to Class I phase, matching the observational
findings (Bontemps et al. 1996; Myers et al. 1998).

In this chapter, we present numerical simulations of the fragmentation of an
isolated, initially uniformly rotating, pre-stellar core, using the three-dimensional,
parallelized Smoothed Particle Hydrodynamics (SPH) code GADGET-2 (Springel
2005), which has been modified to include “sink” particles to increase the computa-
tional efficiency when small regions of high density contrast form (Bate et al. 1995;
Federrath et al. 2010). Except for turbulence, the initial conditions are the same used
in previous simulations of gravoturbulent fragmentation (Goodwin et al. 2004a,b;
Attwood et al. 2009). The assumption of initial uniform rotation is based on recent
evidence that the distribution of turbulent to gravitational energy versus core size in
detected protostellar cores is highly scattered, implying that there is no correlation
between the level of turbulence and fragmentation in these cores (Chen 2008). This
suggests that turbulence works mainly before gravitationally bound pre-stellar cores
form and that on such small scales the cores, at least in their inner parts, are velocity
coherent and essentially free of turbulence (Goodman et al. 1998). We address the
simulations to analyze the time evolution of the mass accretion process and values of
the peak accretion rates from pure rotational fragmentation and compare the results
with observations and previous models based on gravoturbulent fragmentation.
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2 Initial Model and Numerical Methods

The pre-stellar core is modelled as an isothermal sphere of molecular gas of tem-
perature T = 10 K and radius R ∼ 0.24 pc with initial uniform rotation about the
z-axis. Since the density structure of pre-stellar cores appears to consist of a central
kernel of approximately uniform density, surrounded by an outer envelope in which
the density falls off radially, we adopt a Plummer-like initial density profile,

ζ(r) = ζ0

[
R0(

R2
0 + r2

)
]4

, (1)

where ζ0 = 3 × 10−18 g cm−3 is the central density and R0 ∼ 0.024 pc is the
radius of the central kernel. The total mass of the core is M0 = 5.4M∇, while the
mass inside the central kernel is about 2M∇. With the above parameters the ratio of
thermal to gravitational energy is ∂ = 0.3 and the free-fall time is tff ∼ 38.5 kyr.

In the simulations presented here, we consider initial ratios of the rotational to
gravitational energy characterized by Ω0 = 0.05, 0.10, and 0.25, corresponding to
specific angular momenta of ∼1.6–3.5×1021 cm2 s−1, which are a bit lower than the
observationally estimated value of ◦5 × 1021 cm2 s−1 for the high-density nucleus
of the pre-stellar core L1544 in Taurus (Crapsi et al. 2007). The thermodynamics of
the system is described by a barotropic equation of state such that the sound speed
is given by

c2
s = p

ζ
= c2

0

[
1 +

(
ζ

ζcr

)2/3 ]
, (2)

where p is the gas pressure, c0 ∼ 0.19 km s−1 is the isothermal sound speed, and
ζcr = 10−13 g cm−3. In the low-density gas (ζ ≥ ζcr), with composition of 70 %
molecular hydrogen and 28 % atomic helium at 10 K, cs ∼ c0. At high densities, i.e.,
when ζ > ζcr, the gas becomes opaque to its own radiation and heats up adiabatically
with an effective adiabatic index φ ◦ 5/3. In this case, the sound speed rises as ◦ζ1/3

and the Jeans mass increases more rapidly as MJ ◦ ζ1/2.
The simulations are performed using a variant of the GADGET-2 code (Springel

2005), which includes sink particles (Bate et al. 1995). The code solves the
three-dimensional equations of hydrodynamics using a standard SPH discretization
(Monaghan 2005) and a TreePM method for calculating the gravitational forces. In
contrast to other standard SPH formulations, GADGET-2 employs an entropy con-
serving scheme which replaces the usual evolution equation for the internal energy.
The smoothing length, h, is allowed to vary adaptively in such a way that the mass
within the kernel volume remains a constant during the evolution. For equal-mass
particles this implies that the number of neighbours, Nneigh, is always the same. This
keeps numerical dissipation and diffusion at very low rates, thereby increasing the
reliability of the SPH calculations (Attwood et al. 2007). In the present simulations the
particles have unequal masses and so Nneigh is not exactly the same at each timestep.
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Therefore, in order to keep numerical dissipation and diffusion at acceptable low
levels we use large numbers of particles, Np, so that the ratio Np/Nneigh is large
enough to make the timescale of numerical dissipation to become close to the evolu-
tion time. For the runs of this chapter we use a spherically symmetric M4 interpolation
kernel (Monaghan and Lattanzio 1985), vary Np between 5 × 105 and 2 × 106, and
set Nneigh = 50 ± 3. In order to avoid spurious fragmentation, the gravitational soft-
ening, Ψ, is set equal to the minimum smoothing length, hmin, (Whitworth 1998) and
gravitational forces are spline-softened using the same M4 kernel function. Finally,
the code uses a leapfrog integration scheme to advance the hydrodynamical variables
from one timestep to another.

A Cartesian square box of sides equal to 2R is chosen as the computational volume.
The box is subdivided into cubic cells and the spherical cloud core is built up by
placing particles at the centres of cells at distances → R from the box centre. A small
random perturbation is applied to the position of particles so that they will be slightly
shifted from the centres of cells, solid-body rotation is enforced in a counterclockwise
sense by assigning to each particle an initial velocity v = (ρ0x,−ρ0 y, 0), where
ρ0 is the initial core angular velocity, and the mass of particles is modified by
adding a small-amplitude (a = 0.1), bar-mode perturbation. Moreover, artificial
fragmentation is suppressed as long as the minimum resolvable mass satisfies the
following condition (Hubber et al. 2006):

Mmin = Nneighm → MJ = θ5/2c3
s

6G3/2ζ1/2 . (3)

If we assume that all particles have approximately the same mass m, then m =
M0/Np, and from Eq. (3) it follows that

Np ≥ Nneigh

(
M0

MJ

)
, (4)

which defines a lower limit to the number of particles required to guarantee genuine
fragmentation in SPH simulations. At ζ = ζcr = 10−13 g cm−3, the Jeans mass is
∼0.005M∇ and from Eq. (3) it follows that m → mmax∼ 0.0001M∇, which represents
an upper limit on the particle mass m. For unequal particle masses, this inequality
can be re-written as

1

Nneigh

Nneigh∑
i=1

mi → mmax ∼ 0.0001M∇, (5)

which implies that the mean mass of particles within the kernel volume must be less
than about 0.0001M∇ in order to satisfy the Jeans condition. In our simulations,
we always use Np ≥ 5 × 105 SPH particles which is quite above the lower limit
of ◦8 × 104 SPH particles required to fulfill the Jeans condition when ζ = ζcr,
according to Eq. (4). Furthermore, a collapsing fragment region is replaced by a sink
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particle when the density of at least one SPH particle within that region exceeds
the threshold value of ζs = 10−11 g cm−3. When this happens a control (spherical)
volume of radius racc ∼ 4 AU centred at the position of the particle of maximum
density is temporarily created from the gas, which must pass a number of checks
before becoming a permanent sink (Federrath et al. 2010). In this way, the runaway
collapse of the fragments is effectively controlled and can be followed together with
the global evolution of the core.

3 Rotation Versus Turbulence

Extensive N2H+ (1–0) and NH3 mapping surveys of dense cloud cores indicate the
presence of local velocity gradients in the range between 0.5 and 6 km s−1 pc−1,
in both starless cores and cores with embedded YSOs (Caselli et al. 2002). If these
gradients represent rotation, the ratio Ω of kinetic rotational energy to gravitational
energy ranges between ◦10−4 and 0.07, implying an average value of Ω ◦ 0.03.
Such low values suggest that rotation is not significant in the support of most cores.
However, even relatively small rotational energies may strongly influence protostel-
lar formation during core collapse (Bodenheimer et al. 2000). For instance, angular
momentum evolution due to contraction may well induce disk formation accompa-
nied by fragmentation of the disk into multiple protostars (Hennebelle et al. 2004;
Walch et al. 2009). While detected local velocity gradients may be intrinsically related
to complex internal motions that deviate strongly from a simple model of coherent
rotation of the whole core, more recent observations have however interpreted these
velocity gradients as a signature of core rotation (Di Francesco et al. 2007). In addi-
tion, high angular resolution observations indicate rotational energies in the range
of Ω ◦ 0.01–0.1 for a large sample of both starless and dense cores with embedded
single or binary protostars in the NH3 and N2H+ emission lines (Chen 2008).

As an alternative to rotationally induced fragmentation, the supersonic turbulence
observed in the interstellar gas, on scales larger than the molecular gas clouds them-
selves, has been invoked as a mechanism capable to induce strong local fluctuations
in the velocity and density that may favour gravitational collapse on scales of ◦0.05
pc (Larson 2003; Klessen 2004; Mac Low and Klessen 2004), where turbulence turns
from supersonic to subsonic (Ballesteros-Paredes et al. 2007). For instance, turbu-
lence can carry enough energy to support typical molecular gas clouds from col-
lapsing and, at the same time, to generate a complex network of interacting shocks,
where filaments of enhanced density form at the stagnation points of convergent
flows. Eventually, gravity dominates in the densest and more massive parts of a fila-
ment, inducing localized collapse and the birth of stellar masses. In this picture, the
main source of angular momentum on global scales lies in the differential rotation
of the galactic disk, while on intermediate to small scales, comparable to the sizes
of dense cloud clumps and cores, angular momentum may be derived from the high
degree of vorticity inherent to turbulent flows (Jappsen and Klessen 2004).
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Although angular momentum is channeled mostly into vorticity as turbulence
distributes its energy among smaller scales, it is unknown whether turbulence can
also explain the low levels of rotation detected in dense cloud cores. In particular,
random Gaussian velocity fields with power spectra P(k) ⊥ k−3 to k−4 have been
found to reproduce both the observed line width-size relationship and the observed
projected rotational properties of molecular cloud cores (Burkert and Bodenheimer
2000). Since the fluctuation spectrum is dominated by the large-scale eddies, the
shape of the angular momentum distribution as inferred from the line-of-sight
velocity gradients is, at least, on a statistical basis, in good agreement with that
of the intrinsic angular momentum distribution of turbulent cores. In other words,
even if turbulent motions are random and chaotic, dominant large-wavelength modes
can lead to velocity gradients that look like ordered rotation. Although cores that are
described by the same power spectrum show a large spread in their rotational prop-
erties, which is in qualitative agreement with the large spread in observed binary
periods, the median angular momentum of the cores was an order of magnitude
larger than in the observations. While these results apply to cores that are mildly
subsonic, it has to be clarified whether uniform rotation may represent a reasonable
condition in shock-generated clumps and cores.

Observations in several molecular emission lines of the velocity structure of dense
cores suggest that turbulence is still present down to subcore scales of ◦2400 AU,
implying that cores are not quiescent, homogeneous structures (Volgenau et al. 2006).
However, recent high angular resolution observations of embedded binary protostars
indicate that the distribution of the ratio of turbulent energy to gravitational energy
versus core size is highly scattered (Chen 2008). This implies that there is no cor-
relation between the level of turbulence and fragmentation of the cores, suggesting
that turbulence works mainly before gravitationally bound pre-stellar cores form
and that down to subcore scales they may well be velocity coherent and essentially
free of turbulence. The verification or refutation of this trend must certainly await
for future higher sensitive observations of the velocity fields and structure of dense
cloud cores. However, it would be interesting to see whether initial uniform rotation
may reproduce many of the statistical properties predicted by gravoturbulent frag-
mentation models. Here we will focus primarily on the details of the time-dependent
mass accretion rates in initially uniformly rotating cores that fragment in multiple
protostars.

4 Results

In this section, we describe the results of five model calculations with varying levels
of initial uniform rotation (i.e., Ω0 = 0.05, 0.10, and 0.25, corresponding to angular
velocities of σ0 = 3.68 × 10−14, 5.21 × 10−14, and 8.23 × 10−14 s−1, respec-
tively) and varying spatial resolution. The models are labelled as AΩ0Nn, where
n = Np/105 = 5, 10, and 20 denotes the total number of SPH particles filling the
computational volume. The numerical models were all evolved up to 6tff (∼231 kyr),
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i.e., quite beyond the theoretically predicted Class 0/I borderline (∼115 kyr, when
50 % of the total mass has reached the central protostar) for a non-rotating (Ω0 = 0)
core starting to collapse with the same initial parameters as ours (Whitworth and
Ward-Thompson 2001).

4.1 Pre-Stellar Contraction

All core models collapsed initially to form an over-dense, central disk owing to spin
angular momentum. By about 1tff , the central density field approaches an r−3/2 pro-
file, while the density of the outer core regions maintains its initial r−4 dependence.
With the exception of the central disk flattening owing to rotation, this phase is
qualitatively similar to the semi-analytic model of Whitworth and Ward-Thompson
(2001), who assumed negligible internal pressure and hence free-fall, and the three-
dimensional numerical calculations of non-turbulent cores of Goodwin et al. (2004a),
where only one central protostar formed after ∼1tff , when the central density reached
the threshold value of 10−11 g cm−3 for sink formation. After this time, the accre-
tion rate became non-negligible, marking the end of the initial pre-stellar contraction
stage and the beginning of the Class 0 phase. During this latter phase, the accretion
rose to values as high as ◦10−4 M∇ yr−1 before declining steadily.

In contrast, the formation of a central point-mass (hereafter referred to as the
primary protostar) is delayed in our simulations until a substantial disk is built up
due to rotational motion of the core as a whole. For example, in the rapidly rotating
core model A0.25N5 the low angular momentum gas converging to the centre of the
disk condenses to form the first protostar on about 50 kyr (∼1.35tff ). At this time,
the mass interior to 70 AU was just around the primary protostar and beyond this the
disk extended to ◦1500 AU, with density variations of r−5/2. Although more rapidly
rotating cores are expected to reach high densities after longer times, resulting in less
dense and more extended disks, than slowly rotating cores, the primary protostar was
however seen to form at approximately the same time for all models independently of
Ω0. In all cases, the disk forms before the primary protostar and grows faster than it.
This is consistent with previous SPH collapse simulations of initially rigidly rotating
cores, including the effects of molecular line cooling (Walch et al. 2009), where for
Ω > 0.03 the disks always formed before the primary protostar, while for lower Ω

the primary formed first. This latter pattern has been also seen in collapse models
of turbulent dense cores (Goodwin et al. 2004a; Attwood et al. 2009), where the
incipient angular momentum produced by the turbulent flow led first to the formation
of a primary and then to a circumprimary disk.
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Fig. 1 Mean accreted mass (left panel) and mean accretion rate (right panel) for all fragmentation
models (thin solid lines). The numerical data are compared with the semi-analytic solution of
Whitworth and Ward-Thompson (2001) for a pre-stellar core collapse starting with the same initial
conditions, but with negligible pressure and Ω0 = 0 (dashed lines). The thick solid lines on the plots
of the right panel are the applied fits to the actual mean accretion rates, which scale with time as
◦t−2 for all models independently of the level of rotation and spatial resolution

4.2 Protostellar Accretion Phase

The protostellar evolution phase will critically depend on the rotational energy. Cores
with initially higher Ω0 produce disks that favours fragmentation into larger numbers
of secondary protostars. After about 77 kyr (∼2tff ) in our reference model A0.25N5,
the gas interior to ∼80 AU is undergoing adiabatic collapse with ζ > ζcr, whereas
the gas contained within the first 60 AU from the core centre has already achieved
peak densities above the threshold value for sink formation. At this time 19 newly
born protostars have been counted around the primary, which have accreted ◦24 %
of the total core mass. The delay between the primary formation and fragmentation
of the disk into the first secondary is typically less than 1 kyr. During growth of the
primary the disk has already accumulated sufficient mass from the outer core that it
quickly fragments into several secondaries in the space of a few kyr.

The actual mean accreted mass and mean accretion rates for all runs are depicted
in the left and right panels of Fig. 1, respectively. The mean values correspond to
averages of Ms and Ṁs, i.e., the masses and accretion rates of the individual sinks,
over the protostellar mass range at any time. The numerical data is compared with the
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Fig. 2 Peak accretion rates against final stellar masses for all runs. The straight dashed lines on
each plot are linear fits to the numerical data, suggesting a positive linear correlation between the
maximum accretion rates and the final masses of the stars

semi-analytic solution of Whitworth and Ward-Thompson (2001) for Ω0 = 0. The
thick solid lines on the plots of the right panel are the applied fits to the actual mean
accretion rates. For all models, the numerical data fits the power law Ṁs,av ⊥ t−2

independently of Ω0 and the spatial resolution. For comparison, the semi-analytic
solution of Whitworth and Ward-Thompson (2001) predicts a decline of the accretion
rate that varies with time as ◦t−1.67 in the long evolution.

The dependence of the maximum accretion rates on the final stellar masses is
shown in Fig. 2. The straight line in each plot is a linear fit to the numerical data.
Evidently, there is a positive correlation between the peak accretion rate and the final
mass of the protostar in which the peak accretion rate increases with the stellar mass.
Similar positive correlations were found in gravoturbulent fragmentation models of
massive (120M∇) cores (Schmeja and Klessen 2004), implying that this feature is
independent of the initial core parameters and whether the collapsing medium is
turbulent or not.

4.3 Accretion History of Primary Protostars

The accretion rates of the primaries that formed in our simulations are plotted in Fig. 3
as a function of time (left) and the parameter m = (Ms − Mi)/(Mf − Mi) (right),
where Mi and Mf denote the initial and final mass of the primary, respectively. The
horizontal dashed lines on the plots of the left panel confine the observed range of
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Fig. 3 Mass accretion rates of primary protostars as functions of time (left panel) and the mass
parameter, m = (Ms − Mi)/(Mf − Mi) (right panel), where Mi and Mf are the initial and final mass
of the primary, respectively. The horizontal dashed lines on the plots of the left panel confine the
observed range of peak accretion rates for Class 0 objects (André et al. 2000), while the thick solid
lines are applied fits to the actual data, showing the t−2 decline of the accretion rate with time

maximum accretion rates between ◦5 × 10−6 and 10−4 M∇ yr−1 for Class 0 YSOs
(André et al. 2000). The solid lines are applied fits to the actual accretion rates, which,
as for the mean accretion rates, closely follows a ◦t−2 variation in the long-term
evolution.

In general, the primaries exhibit peak accretion rates that are towards the upper
end of the observed range for Class 0 protostars. The decline is often interrupted
by the occurrence of secondary peaks, suggesting that primaries might have been
accreting gas from farther away or by encounters with non-collapsed clumps in their
long-term evolution. Towards the end of the calculations, when m ∼ 1, the accretion
rates decline to values around 10−7 M∇ yr−1 for all models, which match the typical
accretion rates for evolved Class I objects (Greene and Lada 2002; Young et al. 2003).
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Fig. 4 Duration of the Class 0 stage as a function of the final stellar mass for all runs. The plotted
data correspond to the precise time when the protostars have accreted half of their final masses. The
horizontal lines in each plot confine the observationally detected range of Class 0 lifetimes (André
et al. 2000)

4.4 Class 0 Lifetimes

The time at which about 50 % of the core mass has been converted into stars provide
a fair estimate for the Class 0 lifetime. This time is slightly shorter for the slowly
rotating cores (Ω0 → 0.10) than for the Ω0 = 0.25 core. However, in this latter model
the Class 0/I borderline also shifts towards shorter times when the initial number of
particles is increased. This occurs because the lower is the rotational energy and the
larger is the number of particles, the faster is the overall evolution. On average, the
models show that 50 % of the core mass has been converted into stars after ◦3.5tff
(∼130 kyr) so that the Class 0 stage lasts for ◦80 kyr in fairly good correspondence
with the observationally inferred Class 0 lifetimes (André et al. 2000).

We may also estimate the duration of the Class 0 phase for each individual protostar
by assuming that the transition time from Class 0 to Class I objects takes place when
the protostar has accreted half of its final mass. These times are shown in Fig. 4
against the final stellar mass. The horizontal lines confine the observed range of Class
0 lifetimes (André et al. 2000). We see that the number of stars with masses <0.1M∇,
including brown dwarves, drastically increases with increasing Ω0. Most stars in the
Ω → 0.10 cores had Class 0 lifetimes that are beyond the upper limit indicated by
the observations. A similar trend was also observed in gravoturbulent fragmentation
models, where most final stars spent more time in the Class 0 stage than suggested by
observations. Only for the most rapidly rotating cores (Ω0 = 0.25), a larger number
of stars was seen to fall within the observed range. Although a tendency exists for
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most stars to clump around ∼0.1M∇ (a tenth of the total core mass), there is no a
clear correlation between the Class 0 lifetimes and the final stellar masses.

5 Number and Mass of Protostars

The temporal evolution of all stellar masses is displayed in Fig. 5. The birth of Class
0 YSOs is marked with plus signs, which here correspond to the precise instant when
a permanent sink particle is activated. The two horizontal lines indicate the mean
mass of the stellar ensembles (upper line) and the hydrogen-burning limit of 0.08M∇
(lower line), separating low-mass hydrogen-burning stars from brown dwarves. After
6tff , models A0.05N5, A0.10N5, A0.25N5, A0.25N10, and A0.25N20 formed a
total number of 34, 48, 56, 112, and 115 sources, respectively. We see that more
brown dwarves are formed in the higher Ω0 cores and significantly more when
the number of particles is increased. Previous fragmentation calculations of mas-
sive clumps (120M∇) with driven supersonic turbulence have resulted in similar
numbers of protostars (Schmeja and Klessen 2004). However, in these models the
protostars are formed through filament fragmentation rather than disk fragmenta-
tion. On the other hand, our simulations form too many stars per core compared to
turbulent fragmentation models of low-mass cores with similar initial conditions
(Goodwin et al. 2004a, 2006; Attwood et al. 2009). A plausible explanation for this
discrepancy can be given in terms of (a) these latter models being calculated with a
much smaller number of particles, i.e., 2.5 × 104 against 5 × 105 particles for our
lower resolution runs, which in our case may favour the growth of density fluctuations
due to a much lower rate of numerical diffusion, and (b) the ability of initially rotat-
ing cores to build up more massive and extended disks early in the collapse. Thus,
increasing both the kinetic rotational energy and the number of particles results in
an increased number of stellar masses. A similar trend was also observed in gravo-
turbulent fragmentation models, where increasing the level of turbulence results in
more forming stars (Attwood et al. 2009).

As Ω0 is increased, the mean stellar mass decreases from ∼0.11M∇ for the Ω0 =
0.05 core to ∼0.06M∇ for Ω0 = 0.25. Note that increasing the number of particles
to one and two million in the Ω0 = 0.25 core lowered the mean stellar mass to
∼0.03M∇. In the low-Ω0 (→ 0.10) cores stars with masses < 0.08M∇ form ◦5 kyr
after the primary. This gap shortens when both Ω0 and the number of particles are
increased. Moreover, in our simulations all stars with masses → Ms,av are always
formed after about 100 kyr from the beginning of collapse independently of Ω0 and
the number of particles. In general, the first stars to form are the more massive ones.
This is particularly true for the Ω0 → 0.10 cores, where the primary and the next stars
that quickly form around it decline their accretion rates just before the disk becomes
Toomre unstable. This behaviour is less evident in the more rapidly rotating cores,
where many secondaries end up with masses comparable to or even higher than the
primary. Many other stars forming with masses <0.08M∇ remain in the disk and
accrete sufficient mass to become hydrogen-burning stars. However, since most of
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Fig. 5 Evolution of the protostellar masses for all simulations. The plus signs mark the birth point of
each protostar in the ensemble. The upper and lower horizontal lines indicate the mean final stellar
mass and the limit of 0.08M∇, separating hydrogen-burning stars from brown dwarves, respectively

these stars form in the outer parts of the disk, many of them undergo little accretion,
ending up essentially with the same mass with which they formed. They become
likely candidates to be ejected from the ensemble due to gravitational interactions
with other more massive stars.

Our simulations produced final primaries of mass ∼0.45, 0.32, and 0.20M∇
in models A0.05N5, A0.10N5, and A0.25N5, respectively. In contrast, models
A0.25N10 and A0.25N20, with much higher number of particles, produced final
primaries of lower mass (◦0.16M∇). In these cores the primary star is not neces-
sarily the most massive one. The gravoturbulent fragmentation models of Attwood
et al. (2009) predicted primary masses that were always <1M∇, with a clear delay
between the formation time of the primary and fragmentation of the disk into sec-
ondary companions. The delay observed before any secondaries form is substantially
reduced in our models. This occurs because accretion of high angular momentum gas
from the core envelope creates dense and extended disks that favours fragmentation
into secondaries soon thereafter the birth of the primary. Conversely, in the turbulent
models the angular momentum required to create a circumprimary disk is produced
by the vorticity inherent to the turbulent flow in the vicinity of the primary and its
instability will depend on the ability of the inhomogeneous flow to deliver mater-
ial onto it. As a consequence, the circumprimary disk needs more time to become
over-dense and extended to fragment into secondary protostars. For instance, the
Ω-distribution resulting from the collapse of highly turbulent, massive cloud clumps
has on average Ω < 0.05 (Jappsen and Klessen 2004).
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At the termination of the calculations (t = 6tff ), the efficiency of star formation,
that is, the mean fraction of the total core mass that ends up into stars, is fairly the
same for all models, with an average of ◦65 %. This is a bit higher than the ◦60 %
reported in gravoturbulent fragmentation models of low-mass cores (Attwood et al.
2009).

6 Conclusions

We have presented a set of SPH collapse calculations of pre-stellar, low-mass cloud
cores starting with uniform rotation and same initial parameters to previous gravo-
turbulent fragmentation models (Goodwin et al. 2004a,b, 2006; Attwood et al. 2009)
in order to contrast the details of the accretion phase and the statistical properties of
the forming stars.

The models are consistent with an intermediate mode of star formation where
groups of 10–100 stars form from a single core (Adams and Myers 2001). They
reproduce many of the statistical properties predicted by gravoturbulent fragmenta-
tion models, including the positive correlation between the peak accretion rates and
the final stellar masses, the values of the peak accretion rates, the lifetimes of Class 0
protostars, and the efficiency of star formation. In particular, the primary protostars
condense out from a central protostellar disk after ◦50 kyr from the beginning of
collapse. For similar initial conditions, the primaries were seen to form after 50 to
70 kyr in the turbulent core models (Attwood et al. 2009), with the primary forming
before the disk similarly to the case of slowly rotating cores with Ω < 0.03 (Walch
et al. 2009).

Our simulations predict peak accretion rates between ◦10−5 and 10−4 M∇ yr−1

in close correspondence with the observed range for Class 0 protostars (André et
al. 2000). After ∼231 kyr, the accretion rates are seen to decline to values around
◦10−7 M∇ yr−1, which matches the observed values for the most evolved Class
I objects. The models also predict a positive linear correlation between the peak
accretion rates and the final stellar masses in as much as the same way as pre-
dicted by highly turbulent collapse models of massive (120M∇) clumps (Schmeja
and Klessen 2004). In addition, the efficiency of star formation does not seem to
change appreciably with varying levels of the kinetic rotational energy and number
of particles, with about 65 % of the core mass being converted into stars. Similar high
levels (◦60 %) were also found in turbulent fragmentation simulations of low-mass
cores (Attwood et al. 2009).

We anticipate that most results of subsonically turbulent models at scales of ◦0.05
pc are reproducible from the collapse of initially slowly rotating (Ω < 0.03) cores. In
a further paper, we plan to perform new high-resolution fragmentation calculations
of both slowly rotating and weakly turbulent core models, but with the same net
angular momentum, in order to provide a better comparison for both types of initial
conditions.
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Biocompatible Treatment of Extra Heavy Oil
Produced in Venezuela

Ledys Y. Sánchez, Efrén D. J. Andrades, Erick A. Pacheco, Hilda C. Grassi,
Carlos R. Vera-Lagos and Victor J. Andrades-Grassi

Abstract In this chapter, we investigate the behaviour of biocompatible mixtures in
the treatment of Venezuelan extra heavy oil, using the non-ionic surfactant Polysor-
bate 80 (Tween 80) and low molecular weight linear n-alcohols with even and odd
numbers of carbon atoms. Venezuelan extra heavy oil was recovered from mixtures
that contained water, NaCl, polysorbate 80, and n-alcohols ranging from 1 to 8
carbon atoms. Water retained (in enhanced oil), density, conductivity, viscosity, drop
weight, and retained oil (in the borosilicate glass tube) were measured and com-
pared for the different n-alcohols in the mixture. We find that the mean (10.99 mS)
of the conductivities of the aqueous phase from mixtures with C-2 – C-5 alcohols
is statistically different and higher than the mean (4.91 mS) of the conductivities
of the aqueous phase from mixtures with C-6 – C-8 alcohols. Among the proper-
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ties of the recovered oil we find that there is a direct and oscillating correlation of
viscosity and water retained in the crude oil fraction, and an inverse correlation of
both with drop weight, indicating that the viscoelastic properties of recovered crude
oil after treatment are a function of the n-alcohol in the mixture. Oil retained in
the borosilicate glass tube as a function of the carbon number of the n-alcohol is
directly proportional to toxicity of the alcohol (expressed as A) and ovality of the
alcohol (expressed as molecular volume, θ3D), and inversely proportional to acentric
factor of the alcohol (expressed as ω). Moreover, the polarity, shape, and size asso-
ciated with the number of carbons in the n-alcohol may be responsible for the high
conductivity (10.99 mS) in the aqueous phase released after treatment with the C-2 –
C-5 alcohols and the low conductivity (4.91 mS) in the aqueous phase released after
treatment with the C-6–C-8 alcohols.

1 Introduction

The use of biocompatible molecules in the treatment of extra heavy oil, bitumens,
asphalts, and other hydrocarbons has been limited. Due to physical and chemical
conditions of oil deposits, the well is scarcely compatible with biological processes,
reducing the possibilities of oil enhancement in situ. Oil treatment ex situ faces
the challenges presented by complex hydrocarbon mixtures in their limitations as
microbial substrate, metabolic access, and toxicity of inorganic components such
as heavy metals (Leahy and Colwell 1990; Chase et al. 1991). Thus, any attempt
to take advantage of biological processes in enhanced oil recovery, requires the
improvement of the physico-chemical properties that focus on this purpose (Chang
et al. 1992; Torsvik et al. 1995; Kowalewski et al. 2006).

In any case, it is always desirable to treat the oil with the least toxic components
in order to approach biocompatibility. Also, the selection, adaptation, and genetic
modification of microorganisms is a necessary consideration in order to achieve
microbial growth in biocompatible formulations (Van Hamme et al. 2003). These are
the main objectives of this work, which is based on a formulation previously proposed
for the treatment of light and heavy oil that supports microbial growth (Grassi 2001),
its application to extra heavy oil with an optimal formulation, the incorporation of
other alcohols in addition to ethanol, and the evaluation of other properties in addition
to density, viscosity, and microbial metabolism of hydrocarbons previously evaluated
(Grassi 2001).

2 Materials and Methods

10 ml of extra heavy oil from Morichal, Estado Monagas, Venezuela, with 9 ◦API
gravity and density 1.01 g/mL were mixed with 5 mL of distilled water containing
17,800 ppm NaCl and left at 61 ◦C for 24 hours. 100μL of polysorbate 80 (Tween 80
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pharmaceutical grade) and 10μL of the test alcohol (analytical grade) were added
(optimal formulation 10:5:0.1:0.01 oil:brine-water:non-ionic-surfactant:alcohol).

In some experiments, Tween 80 was substituted by I200 (from Orimulsion�),
which was kindly supplied by the UBIP Project. This was mixed at 200 rpm at
61 ◦C for 90 min and then left at room temperature without mixing, allowing for the
separation of the respective aqueous phases from the recovered oil phases. The water
retained in the oil phase was calculated by the difference of volumes between the
separated aqueous phase and the added water (5 mL); the density (in units of mg/mL)
was measured by weighing several times a fixed volume of the recovered oil phase;
and the conductivity (mS) of the aqueous phase was measured in a TDSTestr 20
(OAKTON Instruments).

Video recordings (Tirtaatmadja et al. 2006) were taken for viscosity and drop
diameter. The viscosity (in units of cP) was calculated using the formula given by
Grassi (2001), after taking the time required (hours) for the oil phase to travel through
a calibrated cylindrical borosilicate glass tube (Corning Low Expansion Glass Pyrex
7740, error <2 %), while the drop weight (in grams, g) was calculated from the
drop volume (using the mean of the drops’ diameters) and density. The retained oil
(g) is the weight of the oil that remains in the glass tube, which is not referred to
as oil wettability because we cannot exclude the possibility of a catalytic reaction
such as those already described (Hayashi and Uozumi 1992). The significance of the
conductivity values obtained with alcohols C-2–C-5 and C-6–C-8 was calculated by
the Student’s t-test.

3 Results and Discussion

Table 1 and Fig. 1 show the density of the crude oil recovered after treatment with
Polysorbate 80 (Tween 80), brine water, and each of the linear n-alcohols containing
from one to eight saturated carbons. Alcohols with an even number of carbon atoms
(2, 4, 6, 8) yield lower density values than odd alcohols (1, 3, 5, 7).

The conductivity values of the aqueous phase that was separated from the mixtures
are also reported. High values were obtained for alcohols with 2–5 carbons, while
low values were obtained for alcohols with 6–8 carbons. We apply the Student’s t-test
on the results of conductivity for both groups of data (see Table 2), i.e., the aqueous
phase recovered from mixtures containing C-2–C-5 alcohols and from mixtures that
contain C-6–C-8 alcohols. This includes all the alcohols that are shown in Table 1,
except methanol and sec-butanol that though they behave as expected, the values
contribute to a distortion in the standard deviation. The null hypothesis, stating that
the means of the conductivities of the two groups are equal, is rejected. Therefore, the
alternative hypothesis indicating that the mean (10.99 mS) of the conductivities of
the aqueous phase from mixtures with C-2–C-5 alcohols is proven to be statistically
different and higher than the mean (4.91 mS) of the conductivities of the aqueous
phase from mixtures with C-6–C-8 alcohols.
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Table 1 Properties of crude oil and aqueous phase after treatment and recovery from mixtures

Alcohol Number
of carbons

Density
g/mL

Viscosity
cP

Conductivity
mS

Drop
weight g

Retained
oil g

Retained
water mL

Methanol 1 0.95 15831.5 926.8 0.062176 1.8474 2.0
Ethanol 2 0.77 6492.0 10.3 0.087082 1.6986 0
n-propanol 3 0.84 4573.7 11.2 0.150855 1.7666 0
n-butanol 4 0.74 6587.0 12.2 0.048431 1.179 0.5
n-pentanol 5 0.82 657.95 10.7 0.312988 1.5883 0.2
n-hexanol 6 0.61 2672.2 6.2 0.039923 1.7000 0.6
n-heptanol 7 0.89 3621.2 4.9 0.029823 2.2000 1.0
n-octanol 8 0.78 389.8 5.5 0.140079 2.979 0.1

iso-
propanol

3 0.78 10754.7 11.2 0.088213 1.2232 0.4

Sec-
butanol

4 0.89 2220.2 19.0 0.238594 2.0335 0.5

Iso-
butanol

4 0.94 599.0 10.6 0.655097 1.8666 0

Tert-
butanol

4 0.91 787.2 11.1 0.102916 2.7474 0.5

2-hexanol 6 0.82 1326.7 4.7 0.219828 3.2137 0.5
Benzyl
alcohol

7 0.92 3824.8 4.1 0.104046 1.6137 0.5

Ethanol+
I200

2 0.96 855.3 10.6 0.10857 2.3474 1.8

Benzyl
alcohol+
I200

7 0.66 7750.4 4.1 0.043196 4.1666 1.0

Figure 2 shows some of the properties of the crude oil recovered after treatment
with polysorbate 80, brine water, and each of the n-alcohols. As expected, the depen-
dence of the viscosity on the number of carbon atoms in the n-alcohol follows the
same trend as the retained water. Conversely, the drop weight exhibits an opposite
trend. In previous studies (Tirtaatmadja et al. 2006) of the relationship among elastic-
ity, dynamic surface tension, and viscosity in polyethylene oxide solutions containing
0.4 % 2-butanol, elasticity was shown to be independent of dynamic surface tension
and viscosity.

The addition of 2-butanol had the effect of decreasing the dynamic surface ten-
sion of the solutions at short times (10 ms) to the equilibrium value (>1 s). Therefore,
the authors suggest that the differences in the dynamic surface tension of the poly-
ethylene oxide solutions are not the cause of the observed differences in the evolution
of elasticity (Tirtaatmadja et al. 2006). In addition, we observe that the use of different
n-alcohols in the mixtures produces a profile for the drop weight that is opposite to
the trends for the viscosity and water retained (as functions of the number of carbon
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Fig. 1 Density (in units of g/mL) of the recovered crude oil (solid line) and conductivity (in units
of mS; dashed line) of the recovered aqueous phase after treatment, as a function of the number of
carbon atoms in the n-alcohol used in the mixture (methanol was omitted due to its high value)

Table 2 Student’s t-test of conductivity of the aqueous phase recovered from mixtures containing
C-2–C-5 alcohols and mixtures that contain C-6–C-8 alcohols

Variable Conductivity

T −19.2739
Df 5
P-value 6.934e-06
Lower confidence interval −7.597823
Upper confidence interval −4.968844
Mean of the differences −6.283333
Interpretation P < 0.001 The alternative hypothesis is accepted

atoms). The polysorbate 80 in its amphiphilic nature could behave as a compatibi-
lizing agent (Koning et al. 1998) between the alcohols and the rest of the aqueous
phase, on one hand, and the crude oil, on the other hand. Under the conditions of the
optimal formulation used in this work, it is possible to reach a transient miscibility
window (Guigley 2001) that allows for the improvement of extra heavy oil and the
separation of an aqueous phase that causes a partial exclusion of ionic and other
components from the crude oil.

We found that the retained oil (defined as the weight in grams of the recovered
oil that remains in the borosilicate glass tube) is proportional to the molecular shape
of butanol in the mixture (see Table 1): n-butanol (1.179 g), iso-butanol (1.8666 g),
sec-butanol (2.0335 g) and tert-butanol (2.7474 g). This indicates that the more linear
molecules promote less retention of the oil on the glass tube. It has been previously
found that there exists a relationship between ovality of the alcohols and toxicity
to Tetrahymena pyriformis (Vlaia et al. 2009). In order to ascertain the relationship
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Fig. 2 Viscosity (in units of cP, thin solid line), drop weight (in units of g, dashed line), and water
retained (in units of mL, thick solid line) in the recovered crude oil as a function of the number of
carbon atoms in the n-alcohol used in the mixture

Fig. 3 Oil retained in the glass tube in grams as a function of the number of carbon atoms in the
alcohol included in the mixture, compared with the acentric factor (omega value of the alcohol, ω)

(Reid et al. 1977), the ovality of n-alcohols (measured as molecular volume and described as θ3D)
(Vlaia et al. 2009), and the toxicity to Tetrahymena pyriformis (A) (Vlaia et al. 2009)

between the molecular shape of the alcohol and the toxicity, we compared the reported
biocompatibility/toxicity of the n-alcohols used in the mixtures to the amount of oil
retained in the calibrated borosilicate glass tube, assuming that the molecular shape
of the alcohol is relevant for this relation.

Figure 3 shows a linear relation for the toxicity (A) (data taken from Vlaia et al.
2009) and the retained oil (data from Table 1) with the number of carbons of the
n-alcohol; the former having a slope of 0.45 (R2 = 0.9879) and the latter of 0.42
(R2 = 0.9302). This analysis has excluded the values for oil retained using methanol,
ethanol, and n-propanol (Fig. 3, non-linear data) because these are nearly constant.
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A linear correlation is also found when comparing the data taken from Vlaia et al.
(2009) for the ovality of n-alcohols, measured as molecular volume and described
as θ3D, with a slope of 0.1 (R2 = 0.9976).

Furthermore, the acentric factor omega (ω) was originally proposed to represent
only the acentricity (or non-sphericity) of a molecule. However, it is currently widely
used as a parameter which in some manner measures the complexity of a molecule
with respect to both, geometry and polarity. In general, it increases with polarity.
Using the data for the acentric factor omega from (Reid et al. 1977), and including it in
Fig. 3, we found a linear relationship of ω as a function of the number of carbons of the
n-alcohols, with a slope of −0.018 (R2 = 0.9563). Linear n-alcohols with increasing
number of carbon atoms become less polar thus influencing the amount of retained
oil in the glass tube, which also correlates with ovality and toxicity. Moreover, the
polarity, shape, and size associated with the number of carbons in the n-alcohol may
be responsible for the high conductivity (10.99 mS) in the aqueous phase released
after treatment with the C-2 – C-5 alcohols as well as the low conductivity (4.91 mS)
in the aqueous phase released after treatment with the C-6–C-8 alcohols.

4 Conclusions

Attempts to take advantage of biological processes in enhanced oil recovery require
the improvement of physico-chemical properties that focus on microbial substrate,
metabolic access, and toxicity of inorganic components such as heavy metals. More-
over, it is desirable to treat oil with the least toxic components in order to approach
biocompatibility. Treatment of extra heavy oil with polysorbate 80, brine water, and
a linear n-alcohol results in the separation of enhanced petroleum from the aqueous
phase. Among the properties of the recovered oil, we found that there is a direct and
oscillating correlation of viscosity and water retained in the crude oil fraction, and
an inverse correlation of both with drop weight. We conclude that the viscoelastic
properties of recovered crude oil after treatment are a function of the n-alcohol in
the mixture. On the other hand, conductivity of the released aqueous phase under the
conditions of this work falls into two distinguishable categories: high conductivity
for n-alcohols that are smaller than six carbons and low conductivity for n-alcohols
that are C-6–C-8.

Previous studies have shown that the ovality and polarity of linear n-alcohols corre-
late with the toxicity and acentric factor of n-alcohols, respectively
(Reid et al. 1977; Vlaia et al. 2009). In this work, we found that, after treatment
of extra heavy oil with polysorbate 80, brine water, and each linear n-alcohol, the
values of the retained oil in the calibrated borosilicate glass tube correlate linearly
with the former parameters. Therefore, linear n-alcohols with increasing number
of carbon atoms become less polar influencing the amount of retained oil in the
borosilicate glass tube, which also correlates with ovality and toxicity. Moreover,
the polarity associated with the number of carbons in the n-alcohol may be respon-
sible for the high conductivity (10.99 mS) in the water released after treatment with



296 L. Y. Sánchez et al.

the C-2–C-5 alcohols and the low conductivity (4.91 mS) in the water released after
treatment with the C-6–C-8 alcohols. We conclude that it is possible to adapt the
crude oil to biocompatible purposes, using the appropriate mixtures designed with
optimal formulations of polysorbate 80, brine water, and low molecular weight linear
n-alcohols.
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Dynamical Behaviour of As(V) and Se(IV)
Adsorption in Biofilters: Analysis
of Dimensions, Flux and Removal
Percentage

Jaime Klapp, Carlos E. Alvarado-Rodríguez
and Elizabeth Teresita Romero-Guzmán

Abstract In this work, we study the dynamical behaviour of As(V) and Se(IV) ab-
sorption in a biofilter through a mathematical simulation, comparing dimensions,
flux, and removal percentage in packed columns. From the numerical simulation
we obtained breakthrough curves. When comparing the experimental and numerical
breakthrough curves, the best correlation gives R2 = 0.9825. A set of columns with
different dimensions and feed streams were simulated. “The higher and lower” calcu-
lated values in the adsorption of selenium (IV) were 3 and 17 %, respectively, whereas
the corresponding values for arsenic (V) adsorption were 6 and 17 %, respectively.

1 Introduction

Arsenic is a commonly occurring toxic metal in natural systems and is the root cause
of many diseases and disorders. Occurrence of arsenic contaminated water is reported
from several countries all over the world (Giles et al. 2011). A great deal of research
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over recent decades has been motivated by the requirement to lower the concentration
of arsenic in drinking water and the need to develop low cost techniques which can
be widely applied for arsenic removal from contaminated water (Giles et al. 2011).

For many years, selenium has been a largely unrecognized pollutant, particularly
in developing countries, and has been overshadowed by issues involving contami-
nants such as industrial chemicals, heavy metals, pesticides, and air pollutants just to
name a few. A continuous intake greater than 8 mg of selenium per day can produce
harmful health effects. The EPA limits the amount of selenium allowed in drinking
water supplies to 50 parts total selenium per billion parts of water (50 ppb) (Lemly
2004; WHO 2003). In Mexico, there have been reports of selenium contamination
in water. For instance, in the state of Puebla, the denim laundries have polluted the
waters, leaving residues of selenium (Hurtado and Gardea 2007).

Several vital characteristics are available and need to be listed to render the materi-
als valuable enough as an industrial sorbent. Such characteristics are: high adsorption
capacity, available in large quantities at one location, low economic value and less
useful in alternative products, and attached metals can be easily recovered while
biosorbent is reusable (Sisca et al. 2009).

If the biofilter is considered as a porous medium, a mathematical model can be
constructed for representing arsenic and selenium sorption. Using the mathematical
model and the simulation we can make an analysis of how the removal percentage
changes with the dimensions and the flux.

2 The Mathematical Model

For the simulations we use equations that represent the flow and adsorption in each
one of the different zones in the column.

For the unpacked zones the Navier–Stokes (1) and continuity (2) equations that
are used for calculating the velocity field in the column are (Bird et al. 2003):

ρ
∂v

∂t
+ (v · ∇)v = −∇ p + μ∇2v + ρg, (1)

∂ρ

∂t
= −(∇ · ρv), (2)

where ρ is the density, v is the velocity, t is the time, p is the pressure, μ is the
viscosity, and g is the gravity.

For the packed zone the velocity field in the porous media is obtained by solving
the Brinkman (3) and the modified continuity (4) equations that can be written in the
form:

− ∇ p − μ

k
v0 + μ∇2v0 + ρg = 0, (3)
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ε
∂p

∂t
= −(∇ · ρv0), (4)

where k is the permeability, v0 is the average lineal velocity in the porous media,
and ε is the porosity. The value of the porosity was determined in the laboratory. In
a dynamical system, the transport velocity manages the effective sorption velocity
in the inner surfaces, more than the sorption reactions (Walter et al. 1990).

Using the velocity field obtained from Eqs. (3) and (4), we then calculate the time
rate of change of the concentration in the column through the equation

ε
∂c

∂t
+ ρb

∂cp

∂c

∂c

∂t
+ ∇ · [−εDL∇c + vc] = 0. (5)

In Eq. (5), the velocity v in the advective term is calculated using Eq. (1) for the
unpacked zones and using Eq. (3) for the zone with porous media.

For the absorption we use a Freundlich (6) isothermal for arsenic and a linear
isothermal (7) for selenium:

cp = KF cN , (6)

cp = KLc, (7)

where c is the solute concentration in the solution, ρb is the porous medium density,
cp is the concentration of the solute sorbed in the biomass (the mass amount of solute
sorbed per unit of biomass), DL is the hydrodynamic dispersion tensor, and KF and
KLare the isotherm constants. The parameter values for the solution of the model
are listed in Table 1.

Equations (1, 2, 3 and 4) were solved with the following initial and bound-
ary conditions: Every limit except the upper and lower limits are homogeneous:

Table 1 Model parameters

Symbol Parameter Value

ρL Density of lemna minorb 109 kg/m3

ρE Density of eichhornia crassipesb 570 kg/m3

E Porosityb 15 %
K Permeabilityb 1.4×10−3 m/s
N Freundlich isotherm exponentb 0.7578
KF Constant of Freundlich isothermb 1.1007 mg/gr
KL Constant of lineal isothermb 0.1201 L/kg
αL Longitudinal dispersivitya 0.5 m
αT H Horizontal transversal dispersivitya 0.005 m
αT V Vertical transversal dispersivitya 0.005 m
μ Water viscosity 0.001 Pas·s
(aBear 1972; bMarín 2010)
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161,764 elements

(a) (b)

Fig. 1 a Computational mesh used in the numerical simulation. b Validation of the model by
comparing the experimental and numerical breakthrough curves

Dirichlet condition (v = 0). The upper limit is: Dirichlet condition v = −v0n, where
v0 = 1.48×10−4 m/s for As(V) and v0=1.031×10−4 m/s for Se(IV). For the lower
limit we use the pressure condition: p = p0, where p0 = 0. Equation (5) is solved
using the following initial and boundary conditions: The upper and lower limits
are Dirichlet conditions: n(−θs DL∇c + vc) = v∗cin and −n(−θs DL∇c + vc) =
v∗c, respectively. The other boundaries are walls with the homogeneous Dirichlet
condition: n(−θs DL∇c + vc) = 0 (Fig. 2). v is the magnitude of velocity vector.

The solution of the model was obtained using the COMSOL Multiphysics soft-
ware, version 3.5a. This software uses finite element methods to solve the rele-
vant partial differential equations. The final mesh is composed of 161,764 elements
(Fig. 1).

The model was validated through direct comparison between the numerical and
experimental breakthrough curves. The correlation obtained between the experi-
mental and numerical results gave R2 = 0.9825 for selenium (IV) and R2 = 0.9441
for arsenic (V). The experimental results for arsenic and selenium were taken from
Marín (2010) and Rodríguez (2011), respectively. Similar correlations were obtained
by Aksu and Gönen (2004) and Hasan et al. (2010) using different models.

3 Image Formation and Object Illumination

Using the validated mathematical model, we simulated the columns with the dimen-
sions shown in Table 2 for analyzing the change in the removal percent due to a
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Nin = 5 mL/min
Cin = 1e-4 mg/L

Nin = 2 mL/min
Cin = 2e-5 mg/L

Zmax = 25 cm

Zmin = 0 cm

Zmax = 25 cm

Zmin = 0 cm

(a) (b)

Fig. 2 a Feeding conditions for As(V). b Feeding conditions for Se(IV). Here Nin and Cin are the
inlet flux and the inlet concentration, respectively

Table 2 Dimensions of columns

Column Nominal diameter (in) Inner diameter (cm) Length (cm)

A 8 20.2 72
B 10 24.1 72
C 12 28.7 53
D 14 31.5 72
E 16 36.1 53

change in the flux of solution and dimensions of the column. The dimensions of the
columns are similar to those used in standard commercial columns.

The columns in Table 2 were evaluated for arsenic (V) absorption in Eicchornia
crassipes and for selenium (IV) absorption in Lemna minor. Each column was sim-
ulated using the parameters listed in Table 1 and a flux of 25, 50, 250 and 500 l/day.



302 J. Klapp et al.

(a) (b)

0 100 200 300 400 500
0

2

4

6

8

10

12

14

16

18

%
 A

rs
en

ic
 r

em
ov

al

Flux (Lt/day)

Column A
Column B
Column C
Column D
Column E

0 100 200 300 400 500
0

2

4

6

8

10

12

14

16

18

%
 S

el
en

iu
m

 r
em

ov
al

Flux (Lt/day)

Column A
Column B
Column C
Column D
Column E

Fig. 3 a Arsenic (V) and b Selenium (IV) removal for different fluxes as listed in the columns of
Table 2

4 Results

The higher percentage of arsenic (V) and selenium (IV) retention was obtained with
the lower flux in all cases.

For arsenic (V), the retention increases when the dimensions of the column in-
crease in both diameter and length. Column E in Table 2 had the higher removal
percent of arsenic (V), 17 %. In this case, the minimum value of arsenic (V) removal
was 6 % at 500 l/day. However, Fig. 3 shows that this is a convergence value for all
columns with the same flux.

In the case of selenium (IV), column D in Table 2 had the higher percent removal,
17 %. In this case, however, the minimum value of percent removal changes in each
column with a flux of 500 l/day (see Fig. 3).

The minimum percent removal of selenium (IV) was in column A, 2.5 %.
The arsenic (V) and selenium (IV) adsorption was simulated assuming different

isotherms. The results indicate that the absorption process that can be represented
with a linear isotherm is by far more affected by the dynamical conditions of the
process than with a Freundlich isotherm.

5 Conclusions

The absorption of selenium (IV) and arsenic (V) in columns packed with biomasses
of Lemna minor and Eicchornia crassipes, respectively, is affected significantly by
the flux in the inlet of the columns.
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The retention of arsenic (V) increases with increasing the length diameter of the
columns. However, the retention of selenium (IV) is seen to increase when the length
increases to a diameter of 14 in and decreases for a diameter of 16 in. This means
that there exists an optimal dimension for retention of selenium (IV) in columns with
diameters between 14 and 16 in.
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Drops, Particles and Waves



The Geometry of Drop-Formed Vortex Rings

Franklin Peña-Polo, Armando Blanco and Leonardo Di G. Sigalotti

Abstract Vortex rings are among the most important objects of fluid mechanics
for their numerous technological applications. They are common in inviscid and low
viscosity fluids and represent the simplest examples of organized structure formation.
The coalescence of a drop with a liquid surface is one process that can result in a
vortex ring. Although the phenomenon was observed more than a century ago, the
appearance of vorticity and its organization into a toroidal vortex have not yet been
completely understood. Here we use fast digital video imaging to study the geometry
of drop-formed vortices and the dependence of the early drop inflow on the underlying
dynamics above the liquid surface.

1 Introduction

Since its first investigation more than a century ago, it is well known that vortex rings,
similar to ordinary smoke rings in air, can also be formed when a drop coalesces with
the flat surface of another liquid (Thomson and Newall 1885). However, it was not
until the last twenty years that the problem has received considerable attention. A
key practical difficulty in resolving and predicting coalescence exists due to the
small length and time scales associated with the transition in topology when the drop
surface ruptures upon contact with the liquid surface.
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A number of investigations of drop coalescence through planar liquid surfaces
has focused on describing the underlying dynamics and morphology of merging just
above the interface (Charles and Mason 1960; Thoroddsen and Takehara 2000; Arya-
far and Kavehpour 2006; Blanchette and Bigioni 2006; Yue et al. 2006; Blanchette
and Bigioni 2009; Ray et al. 2010). It was demonstrated on experimental grounds
that coalescence of a free drop with a flat interface may either result in total merging
of the drop or, alternatively, in partial coalescence as it eventually pinches off, defy-
ing surface tension and leaving behind a daughter drop (Charles and Mason 1960;
Thoroddsen and Takehara 2000; Aryafar and Kavehpour 2006). Partial coalescence
may occur several times in succession to form what has been termed a coalescence
cascade (Thoroddsen and Takehara 2000). In particular, when the drop touches the
interface, its surface ruptures and part of its liquid is drained into the pool through a
rapidly expanding orifice due to the excess capillary pressure inside it, Δp = 2σ/R,
where σ is the strength of the surface tension with the ambient fluid and R is the
radius of the spherical drop. Depending on the drop size, the orifice widens on a time
scale of 10–200 µs (Blanchette and Bigioni 2006). When the drop surface ruptures,
the unbalanced surface tension forces initiate capillary waves that rise up the sur-
face of the drop and deform it as they converge on its summit. As a consequence,
the draining drop first deforms into a bell-shaped figure and then into a stretched
cylindrical column due to the inward pull of surface tension. If enough momentum
is carried by the capillary waves to delay the inward pull of surface tension at the
drop’s summit, the orifice collapses upon itself and the remnant drop liquid above
the surface pinches off. In general, this occurs for drops with Oh < (σ/ρR)3, where

Oh = ν
( ρ

σ R

)1/2
, (1)

is the dimensionless Ohnesorge number relating the viscous forces to the inertial
and surface tension forces, ν is the kinematic viscosity of the drop liquid, and ρ is
its density. A critical value of Oh ∼0.026, below which pinch-off is expected to
occur, was derived for ethanol/water and ethanol/glycerin solutions (Blanchette and
Bigioni 2006). We shall see that the same criterion also applies to other liquids as,
for instance, pure water and water/glycerin mixtures.

The instability that gives rise to organization of the ensuing flow into a vortex
ring beneath the interface follows a sequence of events that strongly depends on
the dynamics of the draining drop. It was long pictured that the drop discharges
its liquid through a thin microjet, which quickly rolls up giving rise to the vorticity
(Glezer 1988; Anilkumar et al. 1991; Baumann et al. 1992; Peck and Sigurdson 1994;
Shankar and Kumar 1995; Residori et al. 2000). In this view, the returning circula-
tory motion inside the nascent vortex due to viscous friction, even at low Reynolds
numbers, impedes the expansion of the orifice, thereby maintaining the microjet.
While this geometry is tantamount of that employed in laboratory experiments of
piston-generated vortex rings (Pullin 1979; Lim 1997; Cater et al. 2004), it does not
correctly describe the dynamics of early drop inflow.



The Geometry of Drop-Formed Vortex Rings 309

Investigations of drop inflow to explain the origin of vorticity have also been
carried out by a number of workers. Experimental observations by Cresswell and
Morton (1995) indicate that vorticity is generated at the free surface due to the
formation and separation of a boundary layer, presumably at the junction between
the drop and the receiving liquid, and the requirement that the viscous stress be zero
at the surface. A separate analysis by Rood (1994) and further experiments by Dooley
et al. (1997) interpreted the vortex roll-up at the junction of the drop-pool interface
as due to a surface-parallel acceleration of the fluid elements near the free surface,
which causes the flux of vorticity into the bulk fluid. While almost all previous
studies on drop inflow have concentrated on either describing the morphology of
drop penetration or explaining the sources of vorticity, there is a complete lack
of experiments describing the dependence of drop inflow on the dynamics above
the interface. With this in mind we have conducted a sequence of experimental
observations of partial drop coalescence for pure water and water/glycerin solutions.

2 Experimental Setup and Procedure

A Plexiglas container, with a base size of 3 × 3 cm2 and 10 cm high, was filled
with a solvent of pure distilled water and mounted on a rigid metallic support. After
pouring, the solvent was kept overnight to ensure complete quiescence. The drops,
once formed at the tip of an electronic pipette, were deposited on the liquid surface
by means of a micrometric translation stage with the aid of a Computer Numerical
Controlled (CNC) apparatus (Peña-Polo et al. 2010).

The translation of the drops was obtained using consecutive discrete steps of length
≈5.6 µm and duration of 200 ms in order to minimize induced drop vibrations and
produce sufficiently accurate contact with the liquid surface. The drops were made
up of distilled water with water:glycerin volume concentrations of 100:0, 90:10,
80:20, 70:30, and 60:40 and seeded with a small amount of sodium fluorescein
(10−8 moles/l) for visualization purposes. Drops with higher volume concentrations
of glycerin were also tried in a separate set of experiments. Different drop sizes
were employed, corresponding to volumes between 1 and 10 µl. Depending on
the drop size, plastic capillary tips of varied diameters from 0.3 to 1.2 mm were
used to produce pendant drops close to spherical. The size of the container was
chosen large enough to avoid undesirable effects of the wall boundaries on the drop
behaviour. All the experiments were carried out under isothermal conditions at a
room temperature of 25 ◦C. Lateral photographs of the drop inflow were obtained
using a PixeLINK PL-B774-PL-BL colour CCD camera, which allows a maximum
resolution of 1280 × 1024 pixels and maximum recording rate of 4,400 frames per
second (fps). In order to allow for a sufficiently long depth of field, a Schneider
Kreuznach 1.4/8 lens is used with the CCD camera at a distance of 10 mm from a
lateral wall of the container. Acceptable sharp images of the drops during coalescence
are obtained by fine tuning the lens focus and adjusting the lens aperture along with
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the intensity of the incident light. Illumination of the container was provided with
blue light-emitting diodes (λ = 480 nm) of very high brightness.

An image processing software was developed to digitize the images and convert
the edge of the projected drop into a large number of closely space data points for
analysis. Once the images are acquired, the data are transferred to a host computer
where a specialized software is used to record the drop vibrations in real time during
micrometric translation, perform accurate edge detection of the drop image, evaluate
its deformation at contact with the interface and during penetration into the bulk
fluid, and calculate other characteristics, including its centre of mass, surface area,
volume, and infall velocity.

3 Experimental Results

Here we deal with experimental observations of the partial coalescence of pendant
drops for which the interfacial tension force at the top of the capillary wall exceeds
the buoyancy force. This way, the drop is initially steadily pinned at the capillary
tip and macroscopic motion is minimal. This initial setup is different from most
experiments documented in the literature, where coalescence is driven by gravity,
i.e., the drop is freely suspended on a thin film of surrounding air above the liquid
surface. The initial drop shape and degree of interface deformation depend on the
Bond number

Bo = gΔρR2

σ
, (2)

where g is the Earth’s gravitational acceleration and Δρ is the density difference be-
tween the disperse (drop) and continuous phase (air). As the Bond number increases
above one, the drop shape evolves from spherical to oblate. The drops employed in
our experiments all have Bond numbers in the range 0.02 ≤ Bo ≤ 0.7 and Ohnesorge
numbers Oh < 0.026 so that pinch-off is always observed.

Figure 1 depicts the experimental drops in the Oh–Bo plane. The data markers
define five different sequences of water drops with varying glycerin concentrations
from 0 to 40 %. The solid line with crosses separates the region of total coalescence
for highly viscous drops (with > 50 % glycerin) from that of partial coalescence for
drops of lower viscosity. The two sequences of drops in region I produced a transient
pair of vortex rings with subsequent pairing off through a single passage, while pairing
off in the two sequences of region II occurred through a merging type interaction.
The drops in region III all coalesced to form a single vortex ring downstream. Drops
located above the solid line (not depicted here) fully merged with the lower liquid and
experienced rapid vortex dissipation. We note that for pendant drops the behaviour is
distinct from the “coalescence cascade” driven by inertial recoil (Charles and Mason
1960; Thoroddsen and Takehara 2000). For pendant drops no bouncing droplets are
left behind because the portion of liquid that pinches off rapidly retracts into a smaller
drop that remains steadily pinned at the capillary tip.
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Fig. 1 Experimental drops in the Oh–Bo plane. The five sets of data markers from bottom to top
represent water drops with increasing glycerin concentration. Each set contains drops with varied
volumes from 1 to 10 µl. The solid line with crosses separates the region of total drop absorption
from that of partial coalescence. The sequences in the gray(I) and light−gray(II) coloured regions
produced a transient pair of vortex rings with subsequent pairing off through a single passage and
through direct merging, respectively, while in region (III) all drops formed a single vortex ring
downstream.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 2 Side-view images showing the partial coalescence of a pendant drop of distilled water and
volume 10µl (Oh = 0.003, Bo = 0.187, lower sequence of region I) with a reservoir of the same
liquid. The numbers on the left top of each photograph give the time in milliseconds. The horizontal
black fringe in photographs c-g, separating the upper drop image from the lower one, is an optical
effect due to the refraction index of water and the inclination of the CCD camera with respect to a
plane perpendicular to the front wall of the Plexiglas container.

Figure 2 shows time lapse images of the process of partial coalescence for a
pure water drop on both sides of the interface. After contact with the surface, an
orifice forms which rapidly expands (Figs. 2a and b). The drop drains liquid into
the pool through the orifice as it is deformed by the running capillary waves into a
bell-shaped body (Fig. 2c). By this time, the orifice reaches its maximum opening
(about 60–70 % of the initial drop diameter). Owing to viscous friction, circulatory
motion has already penetrated the bulk fluid in the form of a single-branched vortex
sheet spiral (Figs. 2d and e). Meantime the draining drop stretches into a cylindrical
column, while a significant portion of its liquid has already submerged. The spiraling,
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Fig. 3 Side-view images of vortex penetration for a water drop of 10µl (lower sequence of region I;
top row) and a drop of the same volume with 30 % glycerin composition (upper sequence of region
II; bottom row) in a reservoir of distilled water. The numbers on the left top of each photograph
give the time in milliseconds.

which carries with it an increasing volume of dyed fluid, rapidly organizes itself into
a circular tube of vorticity. The base of the cylindrical column undergoes further
stretching due to the inward pull of surface tension and pinches off (Fig. 2f). During
this process, the drop discharges liquid into the pool through a thick laminar jet, which
then contracts and decays into a thin thread as the vortex ring descends (Figs. 2g–j).
The leading edge of the jet is unstable and rolls up into the nascent vortex, while
only a small amount of mass at its centre flows down undisturbed, crossing the plane
of the ring and bulging the lower cap of the descending drop.

The side-view images of Fig. 3 display the vortex evolution farther in time for a
drop of pure water (top row) and one composed of 30 % glycerin (bottom row). For
pure water, the lower bulge (Fig. 3b) detaches from the bulk of the drop and organizes
itself into a new vortex ring (Fig. 3c). Meantime, the primary vortex weakens due
to both entrainment of external liquid back into the moving region of vorticity and
convection of diffused vorticity towards its upper part, where it is deposited into
a trailing wake (Fig. 3d) (Maxworthy 1972). The two vortices interact coaxially,
producing an unstable manifold for leapfrogging motion (Figs. 3d–e). Due to mutual
induction, the rear ring descends faster and shrinks at the same time the front one
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widens and slows down. This typifies a kind of slip-through interaction with only
one passage as it has been observed in piston-generated vortices at low Reynolds
numbers (<103) (Yamada and Matsui 1978, 1979) and in numerical solutions of the
Navier-Stokes equations (Riley and Stevens 1993). The fatter vortex suffers severe
core distortion during its own passage due to the straining field of the leading one,
whereas the trailing wake shrinks and elongates upstream (Figs. 3f and g). Drops
with 10 % glycerin composition experienced a similar evolution independently of
their size.

For heavier drops (30 % glycerin composition), the lower bulge never detaches
from its parent drop due to increased viscous dissipation (Fig. 3i). However, a second
vortex ring of much smaller core radius suddenly emerges at the circular top of the
bulge (Fig. 3j). The new vortex strengthens and expands in radius, while the rear one
stretches and merges with it (Fig. 3k). Only the lower part of the weakened vortical
liquid is sucked by the pursuing vortex, while the upper part diffuses into a conical
trailing wake whose axis of symmetry approximately coincides with that of the final
vortex (Figs. 3l–n). When the glycerin concentration is raised to 40 %, the bulge no
longer forms and no secondary vortex ring appears. In this case, the primary vortex
ring evolves undisturbed into the pool. For even higher concentrations of glycerin
there is no conclusive evidence of sustained vorticity. For highly viscous drops strong
dissipation may lead to inhibition of the vorticity field.

4 Concluding Remarks

We have performed experimental observations of the process of partial coalescence
of pendant drops with a quiescent liquid surface. After rupture of the drop interface
upon contact with the surface, the drop discharges most of its liquid through an
expanding orifice. The erupting liquid rolls up due to viscous friction with the host
liquid. Just prior to pinch-off above the surface, the drop drains its last portion of
liquid through a thick laminar jet, which feeds the growing vortex. At pinch-off, the
orifice closes and the jet contracts, eventually diffusing away as the vortex continues
to move downwards. Recent experiments of electrically driven partial coalescence
of freely suspended charged drops have revealed a similar sequence of dynamical
events (Hamlin et al. 2012).

Our results suggest that the details of the dynamics of vortex penetration depends
on the relative density of the two liquids. For low density contrasts, a transient pair of
vortices is produced followed by pairing-off through a slip passage. When the density
contrast is increased, the two vortices merge with each other. For much higher density
differences, the dynamics simplifies as a single vortex is produced. Highly viscous
drops undergoing complete coalescence result in much weaker vortices, implying a
close relationship between the amount of stretching, or equivalently, the strength of
capillary wave damping and the strength of vorticity.
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Hydrodynamics of Multiple Coalescence
Collisions of Liquid Drops: From the Modelling
of the Coalescence Phenomenon to Flocculation
of Drops in 3D Using the SPH Formalism

Alejandro Acevedo-Malavé

Abstract In this chapter, we present three-dimensional numerical calculations of
the collision and coalescence of multiple water drops of equal size in a vacuum en-
vironment, using a Lagrangian mesh-free scheme based on the Smoothed Particle
Hydrodynamics (SPH) formalism. The water drops are modelled using a general
Mie-Grüneisen equation of state. Attention is focused for collision velocities from
low to moderate so that shattering separation is excluded. Depending on the collision
velocity three different possible outcomes are predicted by the calculations: perma-
nent coalescence, coalescence accompanied by fragmentation into a few satellite
droplets, and flocculation of the drops with no coalescence.

1 Introduction

Many studies have been proposed for the numerical simulation of the coalescence and
break up of liquid drops (Foote 1974; Nobari et al. 1996; Eggers et al. 1999; Cristini
et al. 2001; Mashayek et al. 2003; Narsimhan 2004; Roisman 2004; Pan and Suga
2005; Meleán and Sigalotti 2005; Jia et al. 2006; Decent et al. 2006; Azizi and Al
Taweel 2010; Acevedo-Malavé and García-Sucre 2011a,b,c, 2012). In these studies,
different numerical methods have been proposed to simulate the dynamics of liquid
drops by numerical integration of the Navier-Stokes equations. While most of them
have focused on describing the dynamics of drop coalescence, only a few has studied
the details of the liquid bridge that arises when two drops collide. The effects of the
Reynolds number, the impact velocity, the drop size ratio, and the internal circulation
on coalescence have been investigated and different regimes for droplets’ collisions
have been simulated. For binary collisions, these calculations have predicted four
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different regimes, namely bouncing, coalescence, reflexive separation, and stretching
separation. These numerical simulations indicate that collisions leading to rebound
between colliding drops can be described macroscopically.

The mechanism of formation of satellite drops at moderate collision velocities
was also studied, confirming that the principal cause of the formation of satellite
drops is the “end pinching”, while the capillary wave instabilities are the dominant
features in cases where a large value of the parameter impact is employed. Whereas
almost all of these previous calculations were confined either to 2D or axi-symmetry,
Acevedo-Malavé and García-Sucre applied the Smoothed Particle Hydrodynamics
(SPH) method to model for the first time the hydrodynamic coalescence collision
of two liquid drops in 3D. As a result of the collision process, the formation of a
circular flat film is first observed. In these references three possible outcomes for
the collision between the drops were found, which correspond to: permanent coales-
cence, fragmentation, and flocculation of drops. If the collision velocity is greater
than the range of values for permanent coalescence, a fragmentation phenomenon
is observed, and if the collision velocity is too low the surface tension forces are
dominant and the drops interact only through their deformed surfaces. A detailed de-
scription of the SPH equations and the approach used in this chapter can be found in
these previous references. In this work, the same SPH method is applied to simulate
the 3D hydrodynamic collision of multiple liquid drops and the formation of drop
clusters in a vacuum environment.

2 The Smoothed Particle Hydrodynamics Formalism

Smoothed Particle Hydrodynamics is a mesh-free, Lagrangian method for solving
the equations of fluid dynamics (Monaghan 1985). In the SPH model, the fluid is
represented by a discrete set of N particles. The position of particle i is denoted by
the position vector ri , with i = 1, . . . , N . In essence, the scheme is based on the
idea that the smoothed representation As(r) of a continuous function A(r) can be
represented by the convolution integral over the product of a smoothing function (or
interpolating kernel) and the function itself.

The smoothing function W must satisfy the normalization condition

∫
W (r − r◦, h)dr◦ = 1, (1)

where the integration is performed over all space and h is the smoothing length that
determines the spatial resolution. In the limit when h tends to zero, the smoothing
function W becomes a Dirac delta function and so the smoothed representation of
As(r), as stated above, tends to the exact function A(r). In SPH the integrals over all
space are replaced to second-order accuracy by summations over all neighbouring
particles.



Hydrodynamics of Multiple Coalescence Collisions of Liquid Drops 317

In this way, in SPH the mass density ρi at the location of particle i is given by the
summation

ρi =
∑

j

m j W (ri − r j , h), (2)

where m j is the mass of the j th particle that is a neighbour of particle i .
The position ri and velocity vi of particle i are given by the well-known SPH

discretization equations

dri

dt
= vi ,

dvα
i

dt
=

N∑
j=1

m j

(
σ

αβ
i

ρ2
i

+ σ
αβ
j

ρ2
j

)
· ∇W h

i j ,

(3)

where σ is the total stress tensor.
A cubic B-spline kernel is used as the smoothing function (Monaghan 1985).

We consider water drops and use a general Mie-Grüneisen equation of state with
different analytic forms for the states of compression (ρ/ρ0 − 1) > 0 and tension
(ρ/ρ0 − 1) < 0 (Acevedo-Malavé and García-Sucre 2011a).

3 Coalescence Collision of Multiple Drops and the Formation
of Drop Clustering

Here we describe the results of a set of collision models in which five liquid drops
are made to coalesce permanently for different choices of the value of the collision
velocity. In a first model configuration, four drops with a diameter of 30µm and
5512 particles each are made to collide with a central one with a collision velocity
of 15.0 mm/ms directed towards the centre of mass of the system.

We may see in Fig. 1 that at t = 3.08×10−4 ms a flat circular section forms, which
increases its diameter as the coalescence dynamics progresses. At t = 4.77×10−4 ms
the coalescence process begins, and the fluid of the four converging drops starts to
penetrate in the drop placed at the centre of the system. At t = 7.38 × 10−4 ms
a little wave front arises in the (x = 0, y = 0)-plane, which then disappears at t =
8.46 × 10−4 ms. As a result of coalescence, a bigger drop forms, which tends to
a spherical shape as the evolution proceeds (t = 1.10 × 10−3 ms). Figure 2 shows
the velocity vector field inside the drops as well as in their regions of contact at
t = 3.08 × 10−4 ms. It is important to note that inside the drops, the fluid tends to
a velocity value close to the initial velocity of 15.00 mm/ms, while in the areas of
contact of the drops the fluid velocity increases to about 17.00 mm/ms. This difference
in the velocity is due to the non-uniform pressure field that sets in inside the drops
when the coalescence process has begun.
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Fig. 1 Sequence of snapshots showing the coalescence collision of five drops (permanent coales-
cence) for Vcol = 15.0 mm/ms. Time is given in milliseconds. The origin of the coordinate system
coincides with the centre of each panel
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Fig. 2 Velocity vector field during the collision of five drops at t = 3.08 × 10−4 ms (permanent
coalescence) for Vcol = 15.0 mm/ms

In Fig. 3, we show the evolution when five drops of diameter 30µm and 5512
particles each collide with a higher velocity Vx = 30.0 mm/ms. As before the con-
figuration is such that four drops are made to collide with a central one. At the
beginning of the calculation at t = 1.51 × 10−4 ms, a flat circular section between
the drops forms again. This section disappears at t = 2.42 × 10−4 ms when coales-
cence begins. At t = 4.20 × 10−4 ms four wave fronts arise from the resulting mass
of fluid and these wave fronts start to form little satellite droplets. Figure 4 shows
the velocity vector field before fragmentation of the drops has taken place. Note
that the fluid velocity at the centre of the drops is around the initial collision value
of 30.00 mm/ms, while the fluid that is spread to the edges is accelerated reaching
speeds of about 49.00 mm/ms.

In Fig. 5, we model the flocculation process for five drops having 30µm of diam-
eter and 5512 particles each, and a much lower collision velocity Vx = 0.2 mm/ms.
As in the previous cases, the velocities of the four approaching drops are directed
towards the central drop. At t = 1.13 × 10−3 ms, a flat circular section forms among
the five droplets. As the simulation continues, the drops do not coalesce but rather
form a cluster, remaining in contact only through their deformed (flat) surfaces.
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Fig. 3 Sequence of times showing the evolution of the collision of five drops with Vcol =
30.0 mm/ms. Time is given in milliseconds. The origin of the coordinate system was made to
coincide with the centre of each panel
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Fig. 4 Velocity vector field for the collision of five drops at t = 3.31 × 10−4 ms for Vcol =
30.0 mm/ms

4 Conclusions

The SPH method was used to simulate the hydrodynamic collision of multiple drops
and the formation of clusters of liquid drops in a vacuum environment in three-space
dimensions. The characteristic behaviour of the collision process when multiple
drops are involved was reproduced. A circular section between the drops appears as
a consequence of the surface tension forces acting on the drop surfaces at contact.
Depending on the collision velocity, three possible outcomes are predicted after
the collision process: coalescence, coalescence accompanied by fragmentation into
satellite droplets, and clustering of drops with no coalescence. The non-uniform
pressure difference inside the drops tends to accelerate the fluid close to the zones
of contact between them. This work represents a step ahead towards the modelling
of drop coalescence in emulsion systems. In a future work, we plan to study the
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Fig. 5 Sequence of snapshots showing the evolution of the collision of five drops for Vcol =
0.2 mm/ms. Time is given in milliseconds. The origin of the coordinate system is made to coincide
with the centre of each panel
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collapse of the interfacial film in emulsion systems during drop coalescence. For
this purpose, a hybrid approach that combines SPH with molecular dynamics must
be implemented in order to solve the interfacial film just before the collapse of the
film occurs (100Å of thickness). In a future work this aspect of the problem will be
explored.
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A Three-Dimensional SPH Approach for
Modelling the Collision Process Between
Liquid Drops: The Formation of Clusters
of Unequal-Sized Drops

Alejandro Acevedo-Malavé

Abstract In this chapter, we present three-dimensional simulations of the coales-
cence collision and clustering of unequal-sized water drops in vacuum, using the
method of Smoothed Particle Hydrodynamics (SPH). The thermodynamics of the
problem is represented by a Mie-Grüneisen equation of state. Depending on the mag-
nitude of the collision velocity three different outcomes are observed: permanent
coalescence, permanent coalescence accompanied by fragmentation into satellite
droplets, and drop clustering with no coalescence (flocculation). When the inertial
forces prevail and the surface tension forces are too low permanent coalescence with
or without fragmentation into satellite droplets is observed, but for low collision ve-
locities of 0.5 mm/ms, or less, the simulations predict drop flocculation. In this latter
case, the drops remain attached to one another, forming a drop clustering.

1 Introduction

The study of the coalescence collision of liquid drops has important natural and in-
dustrial applications as, for example, in emulsification, combustion of fuel sprays,
spray coating, waste treatment, and raindrop formation among many others. The
coalescence of liquid drops has been studied extensively both numerically and ex-
perimentally. However, most existing numerical simulations have considered binary
drops in two-space dimensions or, in the best case, constrained by axi-symmetry
(Foote 1974; Chen 1985; Li 1994; Nobari et al. 1995; Eow and Ghadiri 2003a,b;
Mashayek et al. 2003; Meleán and Sigalotti 2005).

A first attempt to simulate head-on collisions of equal-sized drops for small Weber
numbers (We < 5) was reported by Foote (1974). The occurrence of bouncing and
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permanent coalescence from the head-on collision of binary drops was further in-
vestigated by Nobari et al. (1995). In more recent times, the coalescence produced
by the collision of axi-symmetric binary drops was simulated by Mashayek et al.
(2003), who investigated the effects of varying Reynolds numbers, impact velocity,
drop size ratio, and internal circulation on binary coalescence for low Weber num-
bers (◦1). These calculations were extended to off-centre collisions of binary drops
by Meleán and Sigalotti (2005), using Smoothed Particle Hydrodynamics (SPH).
On the other hand, Chen (1985) and Li (1994) studied the coalescence of two small
bubbles or drops using a model for the dynamics of the film thinning behaviour, in
which both London-van der Waals and electrostatic double-layer forces are taken into
account. In particular, the model proposed by Chen (1985) describes the film profile
evolution and predicts the film stability, timescale, and film thickness, depending on
the radius of the drops and the physical properties of the fluids and surfaces, while
Li (1994) proposed a general expression for the coalescence time in the absence of
the electrostatic double-layer forces.

Experimental studies of the binary collision of alkane droplets were carried out
by Ashgriz and Givi (1987, 1989). They found that for near head-on collisions with
increasing We, the impact can result in permanent coalescence, bouncing, and per-
manent coalescence again followed by reflexive separation into two or more drops.
As We is further increased, reflexive separation may result in a string of three or
more drops, whereas for very high impact velocities the collision may result in shat-
tering separation in which the colliding drops disintegrate into a cluster of much
smaller droplets. Similar experimental studies of binary collision of equal-sized
alcohol droplets were carried out by Brenn and Frohn (1989). Ashgriz and Poo
(1990) conducted experimental studies of the off-centre and grazing binary colli-
sion of water droplets for a wide range of We and impact parameters. In general,
they found permanent coalescence and bouncing at low and moderate We, reflexive
separation for higher We and low impact parameters (∇0.4), and stretching separa-
tion for both higher We and higher impact parameters. The collision of equal-sized
water and normal-alkane drops for 1 ∇ We ∇ 100 and radius of 0.1 mm have also
been studied experimentally by Jiang et al. (1992). Although different fluids were
used, these experiments were quite similar to those conducted by Ashgriz and Poo
(1990). However, there was a discrepancy in the experimental observations on head-
on collisions of water drops between the two studies. In the former case permanent
coalescence was always observed, while in the latter experiments reflexive separation
was observed.

In the petroleum refineries, coalescence of fine oil mist is sometimes attained using
electric fields to break up the emulsions. With this in mind, Eow and Ghadiri (2003a)
investigated the behaviour of a liquid-liquid interface and drop-interface coalescence
under the influence of an electric field. The measurement of the electric current
can be used to monitor and control the behaviour of a liquid-liquid interface, thus
providing an optimum condition for instantaneous and single-staged drop-interface
coalescence. In a companion chapter, Eow and Ghadiri (2003b) studied the effects
of the direction of the applied electric field as well as the geometryof the electrodes.
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Fig. 1 Time sequence showing the evolution of the collision of four drops (permanent coalescence)
with Vcol = 15.0 mm/ms. Time is given in milliseconds. The origin of the coordinate system
coincides with the centre of each panel

From this study it follows that the premature drop-drop coalescence in an electric
field is influenced by the natural mechanical vibration and cavitation within the drops.

Recent numerical simulations by Acevedo-Malavé and García-Sucre (2011a,b,c,
2012) considered the coalescence process of liquid drops in three-space dimensions,
using SPH methods. For binary drop collisions, they found that depending on the



328 A. Acevedo-Malavé

Fig. 2 Velocity vector field during the collision of four drops at t = 1.5 × 10−4 ms (permanent
coalescence) with Vcol = 15.0 mm/ms

impact velocity three possible outcomes may arise: drop flocculation, in which the
drops remain attached without fragmenting, for low impact velocities; permanent
coalescence into a bigger drop; and permanent coalescence with fragmentation into
satellite droplets for higher impact velocities. In this chapter, we extend these previous
simulations to multiple collisions of unequal-sized drops, where smaller drops are
made to collide with a bigger one for impact velocities in the range 0.5 ∇ Vcol ∇
30 mm/ms.

2 Basic Formulation and Numerical Methods

Here, we present only a brief description of the method, and refer the reader to
Acevedo-Malavé and García-Sucre (2011a,b,c, 2012) for more details. SPH is a
fully Lagrangian particle method used for simulations of discontinuous flows with
large deformations (Monaghan 1985). It solves the laws of mass, momentum, and
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Fig. 3 Time sequence showing the evolution of the collision of four drops (fragmentation) with
Vcol = 30.0 mm/ms. Time is given in milliseconds. The origin of the coordinate system coincides
with the centre of each panel

energy conservation.This equations are discretized through the use of an interpolating
kernel function W that gives the estimate of the field variables at a set of particles
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Fig. 4 Velocity vector field for the collision of four drops with Vcol = 30.0 mm/ms (permanent
coalescence with fragmentation) at t = 8.7 × 10−5 ms

suitably chosen to represent the fluid elements (Monaghan 1985). In practice, the
mean value As(r) of a function A(r) is expressed by the convolution integral of the
exact function with the kernel interpolant so that

As (r) =
∫

A (r) W
(
r − r∼, h

)
dr∼, (1)

where the integration is performed over all space and h is the smoothing length which
determines the spatial resolution. In the limit when h tends to zero, the smoothing
function W becomes a Dirac delta function, and the smoothed representation As(r)
tends to A(r).

In SPH, Eq. (1) is then approximated as a sum over all neighbouring particles.
For instance, the mass density at the position of particle i, say ri with i = 1, . . ., N ,
where N is the total number of neighbours, is given by

ρi =
∑

j

m j W (ri − r j , h), (2)
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Fig. 5 Time sequence showing the evolution of the collision of four drops with Vcol = 0.5 mm/ms
(flocculation). Time is given in milliseconds. The origin of the coordinate system coincides with
the centre of each panel

where the subscripts denote particle labels, m j is the mass of neighbouring particle
j, and W (ri − r j , h) is a spherically symmetric kernel function here given by the
cubic B-spline kernel of Monaghan (1985).

The position and velocity of particle i are given by the SPH representations

dri

dt
= vi , (3)

dvα
i

dt
=

N∑
j=1

m j

(
σ

αβ
i

ρ2
i

+ σ
αβ
j

ρ2
j

)
· ≥W h

i j , (4)

where σ is the total stress tensor. Here the Greek indices are employed to denote the
components of the vector and tensor fields.

Water drops are simulated using a general Mie-Grüneisen equation of state with
different analytic forms for the states of compression (ρ/ρ0 − 1) > 0 and tension
(ρ/ρ0 − 1) < 0 (Acevedo-Malavé and García-Sucre 2011a).
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Fig. 6 Velocity vector field for the collision of four drops at t = 7.2 × 10−3 ms with Vcol =
0.5 mm/ms (flocculation)

3 Coalescence, Fragmentation, and Flocculation of Drops

We simulate the impact of three unequal-sized water drops on a bigger drop. We
consider spherical drops of diameters 5, 8, 12, and 20µm represented by 4,456,
10,728, 15,504, and 34,040 SPH particles, respectively. The impacting drops have
all collision velocities that are directed towards the centre of the coordinate system.

For a collision velocity of 15.0 mm/ms, Fig. 1 shows that at t = 8.7 × 10−5 ms a
flat circular section appears after the drops enter in contact with one another, which
then increases in diameter as coalescence proceeds. At t = 1.5 × 10−4 ms, the fluid
of the smaller drops begins to penetrate into the bigger drop. By t = 3.5 × 10−4 ms
the smallest drop has already coalesced with the bigger one, while the other two
drops are already in the process of coalescing. Although we have terminated the
calculation at this time, the evolution will eventually end with the formation of a big
drop oscillating about a spherical shape (permanent coalescence). Figure 2 shows
the velocity vector field inside the colliding drops as well as in the region of contact
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between them at t = 1.5 × 10−4 ms. Inside the drops, the fluid velocity tends to
a value close to the impact velocity of 15.0 mm/ms, while in their areas of contact
maximum velocities of about 30.0 mm/ms are observed.

For impact velocities as high as 30.00 mm/ms, the evolution is similar except
that an outwardly directed flow develops in the contact region perpendicular to the
direction of incidence of the drops, which may eventually condense into satellite
droplets (see Fig. 3). While some of this liquid may return to the coalescing system,
some other may condense into independent small droplets; the final process leading
to permanent coalescence into a big drop accompanied by fragmentation into much
smaller droplets. In Fig. 4 we show the velocity vector field inside the drops at
8.7×10−5 ms. Maximum velocities are 25 mm/ms in the bigger drop and 32 mm/ms
in the smaller ones, while in the zones of contact between them the fluid reaches
velocities as high as 40 mm/ms.

When the impact velocity is lowered to Vcol = 0.5 mm/ms, the smaller drops do
not coalesce but rather remain attached to the bigger one as shown in Fig. 5. In this
case, the drops interact only through their deformed surfaces of contact, forming
a clustering (drop flocculation). The stretching of the drop surfaces at contact is
due to the fact that the surface tension forces prevail and the inertial forces are
too low to induce permanent coalescence. Figure 6 shows the velocity vector field at
t = 7.2×10−3 ms during the flocculation process. The maximum fluid velocity inside
the drops is now around 0.47 mm/ms for the bigger one and 0.3 mm/ms for the smaller
drops. In the zones of drop contact the maximum velocity is about 0.12 mm/ms.

4 Conclusions

In this chapter, we have presented numerical simulations of the coalescence colli-
sion of unequal-sized multiple drops in three-space dimensions, using the method
of Smoothed Particle Hydrodynamics (SPH). For impact velocities in the range of
0.5 ∇ Vcol ∇ 30 mm/ms, the simulations predict three different outcomes: (a) the
formation of a clustering of drops (flocculation), where the smaller drops do not
undergo coalescence but remain attached to the bigger one, for low impact veloci-
ties; (b) permanent coalescence for moderate impact velocities; and (c) permanent
coalescence accompanied by fragmentation into much smaller satellite droplets, as
a consequence of an outflow of liquid along the plane of contact between the drops,
for higher impact velocities. Future work in this direction will explore the ability
of the present SPH scheme to follow the collision process for much higher impact
velocities (∇30 mm/ms) in order to study shattering separation for colliding drops
of similar size and penetration of small drops into bigger ones.
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Numerical Simulations of Freely Oscillating
Drops

Jorge Troconis, Armando Blanco, Dominique Legendre, Leonardo Trujillo
and Leonardo Di G. Sigalotti

Abstract The non-linear oscillations of a viscous drop is a fundamental problem
in diverse areas of science and technology. In this paper, we analyze the large-
amplitude oscillations of an initially elongated liquid drop in two-dimensions by
solving the free boundary problem comprised of the Navier-Stokes equations, using
two different numerical codes. The drop models all start from the same deformation
in vacuum with zero gravity and varied Reynolds numbers (Re). We find that non-
isothermal drops undergo stronger damping than isothermal ones due to the additional
dissipative effects of heat conduction. Regardless of the drop parameters and physical
mechanisms of dissipation, the transition from periodic to aperiodic decay is seen
to occur for Re ◦ 1.5 in good agreement with linear theory and previous numerical
simulations.
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1 Introduction

The free oscillations of liquid drops have been studied extensively over more than
a century, both for the sake of basic scientific understanding as well as for their
dumbfounding applications in the chemical, pharmaceutical, and food industry.
The problem has applications in polymer processing, dispersion technologies, gene
chip arraying, inkjet printing, catalyst production, containerless processing technol-
ogy in space, and metereology among many others. In the absence of gravity, the
infinitesimal-amplitude oscillations of a drop were first shown to be correlated to its
surface tension, density, and size (Rayleigh 1879). Here by oscillations we refer to
periodic changes of the drop surface shape from spherical to ellipsoidal and back. A
few other analyses for viscous drops have been reported in the literature (Reid 1960;
Miller and Scriven 1968; Prosperetti 1980). It was shown that the initial motion of
a viscous drop is just that executed by a damped harmonic oscillator of natural fre-
quency ζ∇

n = (ζ2
n −b2

n)1/2, for which the amplitude decays exponentially with time,
where ζn is the Rayleigh frequency (Rayleigh 1879) and bn is a damping parameter
depending on the drop density, size, and dynamic viscosity. Moreover, a transition
from periodic to aperiodic decay of the oscillations was found to occur between Re
∼ 1.3 and 1.768 (Prosperetti 1980), where Re is the Reynolds number.

For inviscid drops undergoing slightly non-linear oscillations, the oscillation fre-
quency was shown to decrease with increasing initial amplitude (Tsamopoulos and
Brown 1983). On the other hand, numerical simulations of large-amplitude oscilla-
tions of slightly viscous drops have revealed that even a small viscosity may have
a relatively large effect on resonant-mode coupling (Lundgren and Mansour 1988).
Simulations addressed to study the effects of finite viscosity on large-amplitude,
oscillating drops were also considered by a number of authors (Basaran 1992; Becker
et al. 1994; Mashayek and Ashgriz 1998; Meradji et al. 2001; Moran et al. 2003;
López and Sigalotti 2006). These calculations have revealed that frequency modula-
tion and mode coupling are dominant, even for small initial deformations (Becker et
al. 1994), whereas internal circulation may have significant effects on the frequency
and damping rate during the first few periods of oscillation (Mashayek and Ashgriz
1998). In the absence of internal circulation, the damping rate is essentially governed
by the combined action of viscous and surface tension forces (López and Sigalotti
2006).

Experimental observations of acoustically levitated drops have confirmed quali-
tatively the behaviour predicted by the linear and non-linear theory (Trinh and Wang
1982). For instance, mode coupling and asymmetries in the oscillation amplitude
of high-order modes have been observed in drops with initial n = 2 deformations
larger than about 10 % of their spherical radius (Becker et al. 1991). Experiments of
low-viscosity drops oscillating in the microgravity environment of a Space Shuttle
flight have shown that the frequency shift of the oscillations agrees well with the
predictions of inviscid non-linear theory (Wang et al. 1996). Unprecedented micro-
gravity observations of the maximal shape oscillations of a surfactant-bearing water
drop during a mission of Space Shuttle Columbia have also been documented by
Apfel et al. (1997).
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In this paper, we describe two-dimensional numerical simulations of initially
elongated liquid drops undergoing free oscillations in vacuum with zero gravity,
using two different numerical approaches. We consider two separate sequences of
calculations: one where the drops are kept isothermal with associated Reynolds
numbers in the range 0.5 ◦ Re ◦ 50 and the other where non-isothermal conditions
are adopted for 0.5 ◦ Re ◦ 1,000. We consider arbitrary viscosity and limit our
analysis to non-rotating drops.

In typical experiments of shape recovery of deformed drops, the drop is first
distorted in a shear flow field or by acoustic levitation. After the shear flow is abruptly
stopped or the levitating force is reduced to the strength necessary to maintain the
drop suspended, the transient behaviour of the extended drop proceeds in one of two
ways: the drop may relax back to its original spherical shape, or, if the extension was
beyond a critical aspect ratio, it may break up into a number of smaller droplets. In
the present study, we will only be concerned with situations where the initial drop
deformations are below the critical elongation ratio, i.e., the drop will always relax
back to spheres.

2 Isothermally Oscillating Drops

Calculations of a fluctuating liquid drop under isothermal conditions were carried out
using the JADIM code for 0.5 ◦ Re ◦ 50, where Re = (∂Ω R)1/2/φ is the Reynolds
number, ∂ is the drop density, Ω is the surface tension, R is the drop radius, and φ is
the dynamic (shear) viscosity. We restrict ourselves to two-space dimensions so that
all variables are functions of the (x ,y)-coordinates and time t . In this way, the drop is
represented by an infinitely thin disk, with its oscillations about the spherical shape
corresponding to deformations of the disk perimeter about its unperturbed circular
shape.

The JADIM code is based on a finite-volume discretization method for solving the
Navier-Stokes equations, where all spatial derivatives are approximated by second-
order accurate central differences, coupled to the Volume of Fluid (VOF) method for
tracking and locating free surfaces and fluid-fluid interfaces (Magnaudet et al. 1995;
Legendre and Magnaudet 1998; Bonometti and Magnaudet 2007). Surface tension
forces are handled by adding to the Navier-Stokes equations a body force per unit
volume, Fs = −2κΩn, where κ = ≥ · n/2 is the curvature of the interface and n is
the unit normal to it. The unit vector n is evaluated according to n = ≥c/[c], where
c is the colour function (or volume fraction) identifying each fluid in the system and
[c] is the jump in c across the interface. In the VOF modulus of JADIM, the colour
function is evolved by solving the transport equation

Ψc

Ψt
+ v · ≥c = 0, (1)
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Fig. 1 Effect of Reynolds number on the large-amplitude oscillations when a drop is released from
an elliptic elongation with aspect ratio a/b = 4 under isothermal conditions as calculated with the
JADIM code. Underdamped oscillations are shown for 2.0 ◦ Re ◦ 50 (left panel) and overdamped
aperiodic returns to the circular rest state for Re ◦ 1.5 (right panel)

where c = 0 if there is no traced fluid inside the cell volume and c = 1 otherwise,
while 0 < c < 1 when the interphasal surface cuts the cell volume. The time inte-
gration of the equations is performed using an implicit Runge-Kutta/Crank-Nicolson
algorithm so that the overall code is also second-order accurate in time. A detailed
description of the JADIM code and its VOF modulus can be found in the above ref-
erences, while validation of the method on the motion and deformation of fluid-fluid
interfaces can be found in Legendre et al. (2003) and Merle et al. (2005).

The initial model was constructed by mapping the elliptic drop on a square grid
of 64 × 64 elements. The drop has density ∂ ∼ 1.764, uniform temperature T ∼
0.2, and internal pressure p ∼ 0.156 in reduced units. The area of the ellipse was
chosen to correspond to that of a circle of radius R ∼ 12.27. The outer vacuum
was approximated by assuming an ambient fluid (continuous phase) of density and
viscosity three orders of magnitude lower than the drop values. On the line borders
of the square grid no-slip boundary conditions are applied. All drops start with the
same parameters except for their coefficient of shear viscosity, φ, which was varied to
provide a set of elongated drops with 0.5 ◦ Re ◦ 50. Because of assumed reflection
symmetry about the semi-minor and semi-major axes of the ellipse, only a quarter
of the computational domain is effectively included in the calculations.

The variation of the drop aspect ratio with time is displayed in Fig. 1 for differ-
ent Reynolds numbers. When Re is decreased from 50 to 2, the amplitude of the
oscillations decreases as the strength of the viscous forces increases over the inertial
ones. At low Reynolds (2 ◦ Re ◦ 5), the drop recovers its circular shape after
about three to four periods, while several more are needed for the Re → 10 drops to
relax back to circles. A change in the regime of the oscillations from underdamped
(periodic), when 2 ◦ Re ◦ 50 (left panel), to critically damped, when Re = 1.5
and 1.25 (right panel), corresponding to a fast aperiodic return to the circular shape,
and then to overdamped when Re = 0.5, corresponding to a much slower aperiodic
decay mode, is clearly observed. This result is in good agreement with linear theory
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which predicts an aperiodic decay mode for Re between ∼ 1.3 and 1.768 (Prosperetti
1980). For globular drops, Basaran (1992) and Meradji et al. (2001) found the same
behaviour for 1.3 < Re < 1.4 and 1.2 < Re < 1.4, respectively, when the drop is
released from a second-harmonic shape with initial aspect ratio a/b ∼ 1.015.

3 Non-Isothermally Oscillating Drops

The non-linear oscillations of elongated drops under non-isothermal conditions are
investigated using a smoothed particle hydrodynamics (SPH) code. As before, atten-
tion is focused on large-amplitude oscillations of drops that are released from a static
elliptic shape with aspect ratio a/b = 4 in two-space dimensions. The SPH code
solves the equations of mass, momentum, and energy conservation in Lagrangian
form, including the effects of viscosity and heat conduction, coupled to the vdW
equations of state

p = ∂k̄B T

1 − ρ̄∂
− θ̄∂2, (2)

U = σ

2
k̄B T − θ̄∂, (3)

for the pressure and thermal energy, respectively. In these equations, σ is the number
of degrees of freedom of the molecules (= 2 in two dimensions) and k̄B = kB/m,
where kB is the Boltzmann’s constant and m is the particle mass. Furthermore,
θ̄ = θ/m2 and ρ̄ = ρ/m, where θ is the cohesive action and ρ is a constant
parameter due to the finite size of the particles.

The effects of surface tension are simulated here with the aid of Eq. (2) by separat-
ing the cohesive term, −θ̄∂2, from the remainder forces in the SPH representation of
the momentum equation. The same applies to the energy term, −θ̄∂, in Eq. (3). The
former term contributes with an attractive central force between the SPH particles,
while the latter one contributes with an effective heating due to the work done by the
cohesive pressure forces on the liquid within the free surface. A predictor-corrector
leapfrog scheme is used to advance the position, velocity, and thermal energy of
particles in time, from which updates of the density, temperature, and pressure are
computed. Numerical stability is guaranteed by limiting the time step according to
the CFL condition. A detailed account of the SPH code and its applications to model
free-surface phenomena can be found in López and Sigalotti (2006), Sigalotti et al.
(2006) and Sigalotti and López (2008).

In contrast to the isothermal models, the elliptic elongation is now obtained by
deforming a stable circular drop by means of an area-preserving coordinate trans-
formation (Twiss and Moores 1992). A circular drop is constructed numerically by
starting the calculation with a square-cell array of 900 SPH particles of equal mass,
separated along the x and y axes by a dimensionless distance κs = 0.78. We adopt
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Fig. 2 Transient shapes during the first oscillation period of a drop released from an elliptic elon-
gation with aspect ratio a/b = 4 at Re = 500 as calculated with the SPH code. The time is given
in reduced units

m = 1, θ̄ = 2, ρ̄ = 0.5, and k̄B = 1 in reduced units. The initial density, ∂0,
and temperature, T0, are chosen such that ∂0 < 1/ρ̄ and k̄B T0 > 2θ̄∂0(1 − ρ̄∂0)

2

for thermodynamic stability. With a subcritical temperature T0 = 0.2 and choosing
φ = 1, β = 1, and ψ = 5 in reduced units, where β is the bulk viscosity and ψ is the
coefficient of heat conduction, a stable circular drop of central density ∂(0) ∼ 1.769,
pressure p(0) ∼ 0.162, temperature T (0) ∼ 0.423, radius R ∼ 12.5, and surface
tension Ω = p(0)R ∼ 2.02, with no external atmosphere, is formed after t = 600.
A set of equilibrium circular drops was constructed with the same parameters as
before, except that the shear viscosity was varied in the range 0.0067 ◦ φ ◦ 13.36,
corresponding to Reynolds numbers in the interval 0.5 < Re < 1,000. Fluid motion
is generated by deforming the reference circular drops into an elliptic shape via the
density-conserving coordinate transformations (Twiss and Moores 1992):

x ∇ = x

1 + ε
, y∇ = (1 + ε)y, (4)

where ε is the elongation given by ε = (a/b)1/2 − 1. An ellipse with aspect ratio
a/b = 4 is obtained by setting ε = 1 in Eq. (4).

The time resolved evolution of a drop for Re = 500 is displayed in Fig. 2 during
its first period of oscillation. The drop first contracts along its major axis as part of
its surface energy is transformed into internal liquid movement, passing through a
transient approximate circular shape (t = 24) before reaching a maximum elongation
along the x-axis (t = 60). At this point, the rim pressure exceeds the stagnation
pressure inside the drop, causing it to contract back under surface tension and reach
a prolate shape after completion of the first oscillation period (t = 120). The variation
of the drop aspect ratio with time is shown in Fig. 3 for all runs. At comparable Re
the drops oscillate with lower amplitudes and undergo stronger dissipation than the
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Fig. 3 Effect of Reynolds number on the large-amplitude oscillations when a drop is released from
an elliptic elongation with aspect ratio a/b = 4 under non-isothermal conditions as calculated
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Fig. 4 Variation of the decay factor over several periods of oscillation for all runs: JADIM simu-
lations (open symbols) and SPH calculations (filled symbols)

isothermal models of Fig. 1. The damping of the oscillations is mostly due to viscous
dissipation and, to some extent, to the finite heat conductivity. The transition from
periodic to aperiodic decay occurs at the same Re predicted by the isothermal models,
suggesting that it is independent of the initial drop parameters and mechanisms of
dissipation.

Finally, Fig. 4 shows how the decay factor (or damping rate), defined as

χn = 1

Λn
ln

[
(a/b − 1)Λn−1

(a/b − 1)Λn

]
n = 1, 2, ..., (5)

varies as a function of the oscillation period for both the isothermal and non-
isothermal models, where n is the period number. For all Reynolds numbers, the
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damping rate decreases with increasing period number, decaying most rapidly dur-
ing the first period and changing only slightly with increasing time. Evidently, the
lower is the Reynolds number, the higher is the damping rate.

4 Conclusions

We have presented two-dimensional calculations of the free oscillations of a viscous
elongated drop surrounded by a vacuum in microgravity. The full Navier-Stokes
equations with appropriate interfacial treatment were solved, using a finite-volume
code under isothermal conditions and an SPH-based code under non-isothermal
conditions, including the effects of heat conduction.

The main characteristics of drop relaxation back to its stable circular shape, with
transition from periodic to aperiodic decay of the oscillations as viscosity is increased,
are found in good agreement with linear theory and previous simulations. We find
that heat conduction is an important additional mechanism for enhancing dissipation
at moderate to high Reynolds numbers.
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Brownian Dynamics Simulation by Reticular
Mapping Matrix Method

Eric Plaza

Abstract In this chapter, we present a method for the two-dimensional simulation of
Brownian particles in a fluid with restrictions. The method combines characteristics
of the cellular automata and Monte Carlo approaches, and is based on simple numer-
ical rules that use two matrices for controlling the movement of the particles. One
matrix serves to identify all particles on which statistical rules are adopted for their
motion. This information is then mapped onto another matrix representing the posi-
tions of particles. The motion of the particles is governed by a statistical assignation
mechanism, which allows to define either a random or non-random movement direc-
tion. The same probability of movement in each direction is assumed at each time
step and for each particle to simulate the physical behaviour of Brownian movement
in a two-dimensional network. For model validation, the predicted root-mean-square
displacement of all particles along with their translational velocities are compared to
theoretical values of the diffusion coefficient. The dependence of the computational
time on the number of particles and concentration is calculated for the models.

1 Introduction

Brownian particle dynamics describes the presumable random motion of macromet-
ric to nanometric suspensions in a fluid, and has direct applications in many important
industrial processes as, for example, in the manufacturing of paints, pastes, and ce-
ramics. The dynamics of suspensions in a fluid is also important in bio-molecular
transport, chemical processes, erosion, and so on.

The behaviour of incompressible fluids is governed by the well-known Navier-
Stokes equations (Landau and Lifshitz 1968). However, for most practical problems
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the analytical solution of these equations is mathematically unviable, and so different
numerical techniques have been proposed for solving them, most of which rely on
their spatial and temporal discretization (e.g., finite-difference, finite-element, and
particle methods among others). Other discrete methods, such as those consisting of
a regular grid of cells, simulate the motion of the particles in a fluid, according to
rules that can be either random or predetermined. A well-known example of these
methods was first described by (Wolfram 1983), which he called elementary cellular
automata. Earlier attempts to simulate fluid flows based on lattices were proposed
by (Hardy et al. 1973, 1976) and (Hardy and Pomeau 1977), who introduced the
first Lattice-Boltzmann model (the HPP model). In this model, the lattice is square
and motion of the particles is only allowed through any of the four sides whose cells
share a common edge. Later on, this model was extended by Frisch et al. (1986) to
include an hexagonal grid in the model, known as the FHP model after its inventors.
The simple update rules of FHP models are chosen to conserve the particle number
and momentum in the handling of particle collisions. Since the collision rules are
not deterministic, the FHP models can reproduce the macroscopic Navier-Stokes
equations with some simplifications. In contrast, other models that have been for-
mulated for studying particle motion are completely mesh-free. Examples of them
are the Smoothed Particle Hydrodynamics (SPH) method (Lucy 1977; Gingold and
Monaghan 1977; Monaghan 1988), where the fluid is represented by a finite set of
particles and field values are calculated by solving the hydrodynamics equations us-
ing a kernel function (in this case the particles can move arbitrarily in any direction
restricted only by the physics), and the Molecular Dynamics method and its sev-
eral variants, which solve the equations of motion for each particle for a large set,
validating it in the thermodynamic limit (Haile 1992).

Most effort in computational dynamics has been addressed towards the develop-
ment of numerical schemes capable of simulating real and complex physical systems
at a relatively low computational cost. In some cases such refinements may either
require the use of simplified algorithms to save computational resources or improve
the efficiency of existing codes. In particular, examples of such efforts are given by
Phillips et al. (2011) and Hellander and Lötstedt (2011), who have improved and
reformulated existing codes to optimize the particulate simulations.

The Brownian motion is a physical phenomenon involving the random movement
of small colloidal particles suspended in a liquid or gas medium as a consequence of
the molecular thermal agitation over the surface of the particles. Understanding the
microscopic properties of these displacements provides information on the macro-
scopic properties of the fluid where the particles are suspended like, for instance,
the fluid diffusion coefficient (Einstein 1996). Its dynamics is usually described by
two kinds of methods: Brownian dynamics (BD) (Ermak and McCammon 1978)
and Stokes dynamics (SD) (Bossis and Brady 1987). The main idea behind these
two methods is to divide the problem into two sub-problems: the particle motion
and the fluid flow, where the former is described by the Langevin equation and the
latter by the usual Navier-Stokes equations. However, one main disadvantage of the
Langevin equation is that it is not easy to deal with particles of irregular shapes.
As an alternative approach, it has been suggested to use the theory of fluctuating
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hydrodynamics (Landau and Lifshitz 1968), where the thermal fluctuations in the
fluid, which in turn result in the Brownian motion of the particles, are included in
the model. Such fluctuations have been recently modelled by adding a random stress
tensor to the Navier-Stokes equations (Ladd 1994; Nie and Lin 2009).

In this chapter, we present a novel approach for simulating the Brownian motion
of particles in a fluid. The model is based on a combination of two approaches:
a cellular automaton in the sense that the method uses a regular uniform lattice
(or “array”) with a discrete variable at each site (“cell”). The state of the cellular
automata is completely specified by the values of the variables at each site, which
are simultaneously updated using information from their values at neighbouring cells
at the preceding time step, according to a defined set of “local rules”. In contrast to
the cellular automata definition (Wolfram 1983), another lattice is used to control
the rules for motion of the particles. In addition, the approach uses a Monte Carlo
technique to randomly assign the movement direction of the particles.

In brief, the method uses a matrix called Mi , which represents the operations over
all particles in the simulation, and a second one called Me representing the positions
of these particles in a square grid. The motion of these particles is simulated by
adding (subtracting) a random integer (related to the direction of movement) to
(from) cells in the Mi matrix, and then by mapping these changes to positions in
the Me matrix. This method is called Reticular Mapping Matrix (RMM) due to its
conditioning to mapping operations between the matrix that generates the movement
of the particles and the one that represents the space where the particles are moved.
Using this approach, we study the Brownian motion of particles in a two-dimensional,
adiabatic fluid confined in a closed recipient. The method is validated by comparing
the model results with theoretical values of the mean-square displacement of the
particles, the mean velocity of particles, and the self-diffusion coefficient.

2 Simulation Technique

As mentioned above, Brownian motion is the random movement observed in mi-
croscopic particles immersed in a fluid, resulting from their bombardment by the
fast-moving atoms or molecules in the fluid. At the atomic scale, this bombardment
is not uniform, producing pressure differences over the surface of the particles and
causing their motion in a random direction. A mathematical description and a phys-
ical explanation of the phenomenon were provided by Einstein (1996), who related
the microscopic properties of the medium to a macroscopic quantity, the diffusion
coefficient D. For the self-diffusion coefficient of particles in a fluid, he derived the
expression:

D = RT/6πaNη, (1)

where R is the ideal gas constant, N is the number of particles, T is the temperature
(in Kelvins), η is the fluid viscosity, and a is the radius of the Brownian particle. For
Brownian motion, Einstein found that the mean displacement of the particles, λ, in
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Fig. 1 Example: particle 1 of Mi (position 1 × 1) is mapped to cell 4 of Me (position 1 × 4).
Particle 3 of Mi is mapped to position 16 of Me, and so on for all particles

one direction is given by
λ = ◦

2Dt, (2)

where t is the time.
The theory of Brownian motion was developed to describe the dynamic behav-

iour of particles whose mass and size are much larger than those of the solvent
molecules. The equations governing the motion of these particles were written down
by Langevin (1908) and a recent discussion on the validity of the theoretical results
on Brownian motion is given in Chavanis (2010). In general, the results obtained
shows that Brownian motion can be constructed as a scaling limit of a symmetric
“random walk”, in which the root-mean-square displacement of particles is a linear
function of time after many steps (Hansen and McDonald 2006).

In this work, we present a method for simulating the self-diffusive behaviour of
particles in a solution through a technique based on the mapping of results from a
matrix of operations to a matrix of space. In the simulation, each particle is located
randomly in a two-dimensional lattice. At each time step, a random movement di-
rection is assigned to all particles. In order to do so the model uses two matrices,
Me and Mi , as displayed schematically in Fig. 1. The numbers inside each cell of
matrix Mi represent the positions of the particles in the matrix Me, while the index
on the top left corner of each cell serves to identify each particle. In addition, in the
Me matrix, the number in the cell centre identifies a particle and the index on the top
left corner its position. (The dimensions of Mi and Me are N1 × N2 and N3 × N4,
respectively, where the product (N1)(N2) gives the total number of particles and
(N3)(N4) the total number of cells, see Fig. 1).

During each time step all particles within the network Me will be moved randomly
in one of a number of possible directions. In two dimensions, we have a set of
five directions of motion (i.e., rightward, leftward, upward, downward, and zero
movement). The motion of each particle is governed by the matrix operations in Mi ,
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Fig. 2 Displacement of particle 6 from position 13 to position 18. Assuming the operation 13 + 5
in cell Mi(6), we perform a downward movement (the number five corresponds to the file number
of matrix Me), that is the particle will be moved to position 18

where integers that are randomly added to each cell of Mi determine the direction of
motion of the particle in Me, i.e., the sum will represent the direction of movement. If
the sum is chosen to be +1 the particle will move towards the right. On the contrary, −1
means motion to the left, while +N3 and −N3 indicate downwardly and upwardly
directed motion, respectively, and “0” stays for zero movement (see Fig. 2). This
method is called Reticular Mapping Matrix, or simply RMM.

Brownian motion is therefore simulated by assigning to the particles a randomly
chosen direction of motion at each time step. A mechanism in the program prevents
the existence of particles with the same number within the matrix Mi , thus preventing
particles to be in the same position and traffic problems. Boundary conditions are
defined by imposing a set of rules at the grid borders. For the present simulations,
we assume that the fluid is confined in a box so that particles cannot escape from
the system. In addition, the method allows to easily change the weight of direction
probabilities as well as the statistical behaviour of the particles, as shown in Fig. 3.

In the code, random numbers are generated by a Matlab function (rand), which
returns uniformly distributed random numbers between 0 and 1. The choice of move-
ment direction is controlled by the code, where a segment between 0 and 1 is divided
into five intervals, with each segment corresponding to a specific direction. Once the
random numbers are generated, each number is evaluated and depending on which
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(a) (b)

(d)(c)

Fig. 3 Simulation performed for 1,000 time steps with Me = 150 × 150 = 22, 500 cells and
Mi = 50 × 50 = 2, 500 particles. Using the following probability weights: 30 % downward, 20 %
upward, 20 % rightward, 20 % leftward, and 10 % zero movement, we observe that after 1,000 time
steps, the particles tend to agglomerate towards the bottom of the simulation area. a First time step;
b time step 100; c time step 500; and d time step 1,000

interval it is, it will be moved in one randomly chosen direction. In a real suspension,
the particles are not isolated but are coupled via hydrodynamic forces. In this model,
however, it is assumed that there is complete separation between the timescales for
the dynamics of the fluid and the motion of the solid particles, as in the classical
theory of suspensions (Ermak and McCammon 1978).

3 Results and Discussion

In order to validate the results, we compute the mean-square displacement of all
particles, λ, associated with the self-diffusion coefficient D given by the relation
(Ermak and McCammon 1978; Hansen and McDonald 2006):



Brownian Dynamics Simulation by Reticular Mapping Matrix Method 351

0 20 40 60 80 100

10

12

14

simulation number

λ s(a
.u

.)

 

 

0 20 40 60 80 100

10

12

14

simulation number

λ s(a
.u

)

 

 

Me=50x50

Me=150x150

Me=100x100

Me=50x50

Me=100x100

Me=150x150

mean=12.7870
std=0.1312

φ=9%

φ=16%

mean=11.3254
std=0.3274

mean=12.2020
std=0.1639

mean=12.4735
std=0.1079

mean=11.5797
std=0.4235

mean=12.4452
std=0.2260

Fig. 4 Mean-square displacement of all particles, λs , for 100 simulations with two different particle
concentrations (φ): 9 % and 16 %. λs follows a linear behaviour as predicted by theory

Ds = ∇|r f (t) − ri (0)|2∼
4t

, (3)

where the brackets denote the average displacement of all particles. This expression
becomes a linear function of time after many random steps. The initial position of
particles is labelled by the subscript i and the final one by the subscript f . The
number of particles is N1 × N2 (where N1 is the number of columns and N2 the
number of files of Mi). After knowledge of the initial and final positions for each
particle in the sample, we may then calculate Ds using espression (3).

Figure 4 shows the results for 100 simulations after 300 time steps each. The
percentage of weight directions for particle movement was assumed to be 20 % for
all five possible directions, while the volume fraction (or concentration) φ was set to
9 % and 16 % for each case. We see that the mean-square displacement, λs , behaves
linearly for a representative number of simulations as predicted by theory. Note that
all quantities are dimensionless.

Figure 5 shows the theoretical (λt ) and the experimental (λe) mean-square dis-
placements as functions of the time steps, for different concentrations and sizes of
the network. Here λt was calculated using Eq. (2) with the diffusion coefficient given
by Eq. (1), while λe was computed using the relation:
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Fig. 5 λe and λt as a function of time for four different concentrations: φ = 1 %, 4 %, 9 %, and
16 % and Me = 200 × 200

λe = λs(a)(t/T ), (4)

where t is the total simulation time (in this case 1 s) and T is the total number
of time steps (300 steps). The experimental mean-square displacements are shown
for four different concentrations [i.e., λe1 (φ: 1 %), λe2 (φ: 5 %), λe3 (φ: 9 %), and
λe4 (φ: 16 %)] and four different network sizes: Me = 50 × 50 = 2, 500 cells,
Me = 100 × 100 = 10, 000 cells, Me = 200 × 200 = 40, 000 cells, and Me =
300×300 = 90, 000 cells. The theoretical value λt is the same for all plots because it
does not depend on the particle and network size. There are clear differences between
the experimental, λe, and the theoretical, λt , curves. The difference arises because
there is no a theoretical relationship between the size of particles, the network size,
and the concentration (Edelstein and Agmon 1993). Only for Me = 100 × 100
at a concentration of 4 % and for Me = 300 × 300 with a 1 % concentration, the
experimental mean-square displacements are seen to match the theoretical values.

It is therefore necessary to correlate the size of the network to the sizes of the
particles. To do so we introduce a simple method by assuming a square lattice, where
a reference particle size is defined as the total length of the network d divided by the
number of rows N3, that is



Brownian Dynamics Simulation by Reticular Mapping Matrix Method 353

Fig. 6 Scheme adopted to
define a reference particle
size. Setting a reference value
for the network size, say d,
it is possible to define other
particle sizes based on this
scale by just increasing the
number of cells of other
equal-sized networks

a = d

N3
. (5)

Figure 6 shows graphically this relation for three equal-sized networks with increas-
ing number of cells. We define a reference particle size and relates it to the total
network size. Here we assume the particle size of Einstein’s work, that is, 5 × 10−7

m and use a network with 100 × 100 cells as the reference case. If we multiply this
particle size by the number of cells N3 = 100 in a file, we obtain the length of the
network. Using this reference value and Eq. (5), we can obtain a relation for re-sizing
all other particles.

Using the above scheme we performed a set of simulations for: a1 = 5 × 10−7 m
(reference case), a2 = 1 × 10−6 m, a3 = 2.5 × 10−7 m, and a4 = 2 × 10−7 m, with
network resolutions of a1: 100 × 100 (reference case), a2: 50 × 50, a3: 200 × 200,
and a4: 250 × 250. The results of the simulations are shown in Fig. 7, where the
theoretical (dashed lines) and experimental (solid lines) mean-square displacements
are compared. As expected, an almost exact match is attained for particle size a1,
while for the other sizes the experimental and theoretical curves diverge by small
amounts. These small errors may be caused by the shape of the particles and the
limited number of directions allowed. We recall that in the simulations we have
allowed for only four possible directions for particle motion (excluding movement
along the cell diagonals) and the shape factor has not been taken into account.

We have also calculated the particle translational velocity as a function of the
time steps (500) for three different cases. First, using particle sizes of a1 = 5×10−7

m and a2 = 1 × 10−6 m, a volume fraction of 10 %, and a weight probability of
movement of 20 % in each direction (Brownian motion); second, the same values
of a1 and a2, a volume fraction of 10 %, and varying the probability weights in the
motion directions: 35 % downward, 15 % upward, 15 % rightward, 15 % leftward,
and 20 % non-movement; and third, the same size of particles as before and weight
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probabilistic directions of: 50 % downward, 10 % upward, 10 % rightward, 10 %
leftward, and 20 % non-movement.

The evolution of a1 and a2 is shown in Fig. 8. In the first case, the system is in
thermal equilibrium since the particle velocities are approximately constant in time
(Haile 1992). Conversely, in the second case, the particles tend to occupy lower
positions as time passes, agglomerating towards the bottom of the simulation area.
This produces a decrease of the particle velocities with time. Finally, the third case is
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similar to the second one, except for a faster equilibrium transition because a bigger
probability of movement in the downward direction was assumed for this case.

Finally, the duration of the simulations was also calculated for three distinct con-
centration volumes (φ = 10 %, 25 %, and 50 %) and Me = 300 × 300 = 90, 000,
250 × 250 = 62, 500, 200 × 200 = 40, 000, 100 × 100 = 10, 000, and
50 × 50 = 2, 500 cells. All runs were completed after 100 time steps, using a
movement probability of 20 % for each direction. The calculations were carried out
using Matlab on a personal computer (Intel Core 2 Duo processor and 3GB of RAM).
The results are shown in Fig. 9, where the computational time is plotted against the
number of particles. Independently of the number of particles, the heaviest calcula-
tions always corresponded to a concentration of 50 %, the trend being an increase of
the computational time with increasing concentration and number of particles.

4 Conclusions

We have shown that the dynamics of Brownian particles can be very well modelled
by the Reticular Mapping Matrix Method. Validation of the model was achieved
by reproducing the typical mean-square displacements of Brownian particles and
hence the values of the self-diffusion fluid coefficient. However, the model requires a
correlation between the particles’ size and the network size to achieve good agreement
between the theoretical and the experimental results. To solve this issue a correlation
spatial variable scheme was implemented. The design of the model is such that it
can be easily extended to account for more complex physical situations, including
tuning of different probability weights over different phases or groups of particles,
the presence of obstacles, and the extension to three-space dimensions.

Acknowledgments I want to thank my colleagues José Arévalo and Rafael Martín for useful
discussions and support.
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Faraday Wave Patterns on a Triangular
Cell Network

Franklin Peña-Polo, Iván Sánchez and Leonardo Di G. Sigalotti

Abstract We present experimental observations of the Faraday instability when an
air/water interface is split over a network of small triangular cells for exciting fre-
quencies in the range 10 ≤ f ≤ 30 Hz. Just above the threshold for instability, waves
appear on the water surfaces within all individual cells. After a transient state, adja-
cent cells progressively synchronize and self-organize to produce a regular pattern
covering the whole grid. Collective cell behaviour is seen to lead to four different
patterns depending on the forcing frequency range. Beyond ≈28 Hz, adjacent cells
no longer interact as the vibration wavelength becomes smaller than half the altitudes
of the triangular cells and so the waves remain constrained within individual cells in
the form of localized harmonic oscillons.

1 Introduction

When a close receptacle containing liquid is submitted to vertical vibrations, a pattern
of non-linear standing waves is often observed at the surface of the liquid. These
waves, known as Faraday waves (Faraday 1831), are parametrically excited when
the vertical vibrations exceed a critical frequency fc, or critical acceleration Γc.
The acceleration Γ is defined according to the relation Γ = Aω2, where A is the
excitation amplitude and ω(=2π f ) is the circular frequency. Faraday (1831) realized
that these waves are sub-harmonic because they oscillate at half of the harmonic
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excitation frequency. Modern experiments of single- and two-frequency forcing have
revealed that not only spatially regular patterns of parallel lines, squares, circles, and
hexagons may form but also many more complex symmetries such as quasi-patterns,
superlattice patterns, and oscillons (Douady 1990; Edwards and Fauve 1994; Binks
and van der Water 1997; Kudrolli et al. 1998; Arbell and Fineberg 2000a,b; Porter
and Silber 2002; Westra et al. 2003).

Understanding the types of patterns that form is challenging. The threshold for
instability and the observed patterns depend on the viscosity and surface tension of
the fluid, the acceleration Γ , and the shape and size of the vessel. The full mathemati-
cal description of the problem involves the Navier-Stokes equations in a domain with
a free surface, and the excitation makes the problem non-autonomous. In mathemat-
ics, a non-autonomous system is a system of ordinary differential equations which
explicitly depends on the independent variable. In this case, non-autonomicity results
from the external forcing that influences the fluid parameters when the oscillating
behaviour initiates. On the other hand, the mechanisms of pattern selection have
been investigated using the tools of symmetry and bifurcation theory (Silber et al.
2000; Rucklidge et al. 2003; Skeldon and Guidoboni 2007). The linear theory of
this instability has been developed by Benjamin and Ursell (1954), who showed that
the problem can be reduced to a set of Mathieu oscillators. However, the analysis
relies on the potential flow approximation which is restricted to inviscid fluids only.
If the instability is generated in a viscous liquid some mechanical energy is dissi-
pated. These effects are usually treated by adding a heuristic damping in the Mathieu
equation (Landau and Lifshitz 1987), which is proportional to the kinematic viscos-
ity ν. The inclusion of such a term has been successively used in a number of linear
analyses Müller (1993); Kumar and Tuckerman (1994); Kumar (1996) and Perlin
and Schultz (2000). However, this approximation ignores viscous boundary layers
along the vessel walls and beneath the surface, where additional dissipation occurs.

The most advanced theoretical investigation of the stability problem is fully
numerical, which renders a physical understanding difficult Kumar and Tuckerman
(1994). An analytic expression for the onset of sub-harmonic Faraday waves was
obtained by Müller et al. (1997), which is applicable to a wide frequency range cov-
ering both shallow gravity and deep capillary waves. While this analysis is applica-
ble in the limit of weak dissipation, an analytic treatment in the opposite limit was
undertaken by Cerda and Tirapegui (1997). The linear aspects of the Faraday insta-
bility since Benjamin and Ursell (1954) were revisited by Müller (1998). It was not
until very recently that the first numerical simulations of the dynamics of Faraday
waves started to appear in the literature Périnet et al. (2009, 2012), involving the
full solution of the Navier-Stokes equations in three-space dimensions coupled to a
front-tracking method for resolving the free surface. In particular, these simulations
have reproduced the square and hexagonal patterns seen in Kityk et al. (2005, 2009)
with the same physical parameters. The hexagonal pattern was seen to be succeeded
by recurrent alternation between quasi-hexagonal and beaded striped patterns.

In spite of recent progress, most work on Faraday waves assume that either the
liquid bath has infinite extent or that the liquid surface is perfectly flat at the edge
of the lateral walls where no-slip boundary conditions hold, which is unrealistic for
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experiments where the meniscus dynamics is important (Douady 1990). In general,
as the system is shaken, the effective gravitational acceleration varies, making the
meniscus length to become alternately large and small. In order to preserve the
fluid mass, surface waves are emitted from the sidewalls of the vessel at the driving
frequency f . Viscous dissipation is the primary cause for damping of these capillary
waves.

In containers of small size there exists a strong coupling between the capillary
waves generated by the meniscus and the Faraday waves, where the former extend
all over the liquid surface. Recent experimental observations with cylindrical ves-
sels of small diameters indicate that an increase of the Γc threshold is required for
exciting Faraday waves in such small recipients Nguyem Thu Lam and Caps (2011).
As previously for the viscosity, the addition of a phenomenological damping term,
proportional to the thickness of the boundary layer, to the linear theory for mod-
elling the viscous dissipation due to meniscus waves has successfully reproduced
the experimental measurements of Γc for instability (Nguyem Thu Lam and Caps
2011).

Alternatively to experiments with single small containers, the formation of regular
patterns has also been observed over a square network of centimeter-sized cells
(Delon et al. 2010). After a transient state, just above the Faraday threshold, adjacent
cells synchronize to form regular square lattices over the entire network, whose
orientation with respect to the grid depends on the exciting frequency range. In this
chapter, we extend these experimental observations to the case of an isometric grid
consisting of equilateral triangular cells and study the effects of this geometry on the
collective cell behaviour.

2 Experimental Set-Up

The experimental set-up consists of a transparent Plexiglas vessel with a base size of
15 × 15 cm2 and 15 cm high, containing on its bottom plate a vinyl grid consisting
of 60 equilateral triangular cells of sides 25 mm and depth 15 mm each. The cells
are filled with coloured distilled water up to a height of 7 mm, and placed on an
electromagnetic shaker which produces a clean vertical acceleration waveform. Small
holes (of diameter 0.5 mm) have been drilled at the bottom of each cell to ensure
equality of the fluid level in all cells. Fluid motion into these holes is prevented by
the viscosity of the fluid and the low frequencies of oscillation, typically of a few Hz.

The vessel acceleration, which is the relevant bifurcation parameter, is measured
by a piezoelectric accelerometer fixed onto the shaker table, receiving an oscil-
lating voltage. The signal from the accelerometer is acquired using a multifunc-
tional data acquisition board and processed by a host computer, where a software
is run to give the oscillation amplitude A in millimeters and the frequency f in Hz
from the maximum acceleration Γ normalized to the gravitational acceleration g0
(= 9.81 m s−1). For pattern visualization the Plexiglas vessel is illuminated from
above with white light using a pack of four halogen bulbs of 50 Watts each. The
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bulbs were placed at a height of 80 cm from the Plexiglas vessel and turned on only
during video recording for not more than 20 s in order to avoid alterations of the
density, viscosity, and surface tension of water due to heating. At such height, the
halogen bulbs will transmit an average heat power to the water surface of about 10 W,
which may produce a temperature increase of 1◦C only after 100 s of exposition. A
CCD camera PL-B742 is used to observe the pattern from the top, and a second CCD
camera (PL-B771) is positioned in front of one side of the vessel, tilted by an angle
varied between 0 and 45◦ with respect to a plane perpendicular to the wall of the
recipient, to record lateral and perspective views of the system. Pattern photographs
from the top were also taken with a NIKON D60 digital SLR camera for presentation
purposes. We varied the excitation frequency in the range between 10 and 30 Hz. For
frequencies below ≈10 Hz, it is the maximum peak elevation which prevents the
shaker from reaching the threshold acceleration Γc. Given the small size of the cells,
the interaction between the meniscus and the Faraday waves are expected to have
a stabilizing effect on the air/liquid interfaces (Nguyem Thu Lam and Caps 2011),
thereby rising the instability threshold above the value required for non-confined
liquids.

3 Observed Patterns

In a network of interconnected cells of small size, the relative effect of the numerous
capillary menisci at the cell walls is an important factor. Due to the external forc-
ing, the characteristic height of the menisci evolves according to h = [σ/ρg(t)]1/2

(Douady 1990), where σ is the surface tension of the liquid, ρ is its density, and g(t)
is the temporal modulation of gravity. This modification of the meniscus height leads
to the generation of capillary waves, which dissipate by viscous shear and interact
with the Faraday waves, excited sub-harmonically. This produces a stabilizing effect
on the free surface so that more energy is required to excite Faraday waves than in
large-recipient or non-confined fluids.

Just above ≈10 Hz, the wavelength of the forcing oscillations becomes smaller
than the size of the cells, and after a transient state, adjacent cells progressively
synchronize to form a regular pattern over the whole grid. Figure 1 shows top view
photographs of the grid when bumps of fluid higher than the depth of the cells form at
their intersections at f = 10 Hz and Γ ≈ 1.12g0. If the driving force is maintained,
the same pattern is recurrently repeated with periodic peak alternation occurring at
the network scale along the horizontal direction every half a period as shown by the
two images of Fig. 1. In this case, all adjacent cells collaborate synchronously to form
a well-defined pattern by sharing nearly all of their liquid content into the emerging
bumps. Some of them eventually pinch off at their ends and some liquid may be
exchanged between adjacent cells. A similar collective behaviour was observed for
higher exciting frequencies in the interval 10 ≤ f ≤ 14 Hz. In particular, Fig. 2
displays a perspective view of this mode for f = 12 Hz. Synchronization is due to
interacting cell waves converging at grid nodes as shown on the top left of Fig. 3.
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Fig. 1 Top view images of the resulting pattern at f = 10 Hz. Liquid bumps appear at grid nodes at
the dual vertical and triple horizontal network scale. Waves inside adjacent cells interact for a global
synchronization with alternation of the peak positions every half a period as seen by comparing the
two images

Fig. 2 Perspective view showing the bumps forming at grid intersections when a forcing frequency
of 12 Hz is applied. This mode is the same of that in Fig. 1, except that at this frequency the nodal
bump distribution looks a bit more irregular

Note that six cells arranged in a regular hexagon contribute to each bump in the
network.

We have observed three more modes of synchronized collective behaviour depend-
ing on the frequency range as shown schematically in Fig. 3. For 15 ≤ f ≤ 17 Hz, the
liquid bumps form at the edges of adjacent cells (top right), with no peaks appearing
on grid nodes. This pattern arises because waves inside four adjacent cells interact
at their common edges. In this case, the four contributing cells form a larger tri-
angle. For 18 ≤ f ≤ 20 Hz, the patterning consists of bumps appearing again at
cell edges (bottom left). However, this time only two adjacent cells are allowed to
contribute and their union forms a rhombus. A top view photograph of this mode is
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Fig. 3 Schematic of the four patterns observed according to the exciting frequency range: (i)
10 ≤ f ≤ 14 Hz (top left), (ii) 15 ≤ f ≤ 17 Hz (top right), (iii) 18 ≤ f ≤ 20 Hz (bottom left), and
(iv) 21 ≤ f ≤ 28 Hz (bottom right). Alternation of the patterns is shown up by green and red dots,
which mark the position of bumps at the beginning of and at half a period, respectively. The arrows
indicate wave interaction between adjacent cells for one pattern (continuous) and its alternating
counterpart (dashed). The yellow figures enclose the adjacent cells that work collectively

displayed in Fig. 4 at f = 19 Hz and Γ ≈ 2.38g0. The two images are separated
in time by half a period. Occasionally, some bumps may appear at grid nodes. For
21 ≤ f ≤ 28 Hz, peaks form synchronously at cell centres and edges owing to wave
interaction between two adjacent cells (bottom right of Fig. 3). At such frequencies
only part of the liquid inside a cell is shared with its neighbour, while the other part
remains trapped within the cell to form a localized harmonic bump.

Beyond ≈28 Hz, the wavelength of the driving oscillations becomes smaller than
half the triangular cell altitudes and so collective behaviour is no longer seen. The
waves appear within each individual cell without interaction. The resulting pattern
consists of localized harmonic oscillons forming at approximately the centre of each
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Fig. 4 Top view images of the observed pattern at f = 19 Hz. Liquid peaks appear at the edges
between adjacent cells. Occasionally some bumps may form at grid nodes. The alternation of the
bump positions is not easily discerned from the two images

Fig. 5 Example of non-collective behaviour at f = 30 Hz. At this frequency the waves remain con-
strained within each individual cell without interaction. The pattern consists of localized harmonic
oscillons at the centre of cells

cell as shown in Fig. 5 at f = 30 Hz (Γ ≈ 2.45g0). Note that the size of the peaks
is irregular and that no peaks are produced within some cells.

4 Conclusion

We have presented experimental observations of the Faraday instability on a net-
work of triangular cells. For exciting frequencies between 10 and 28 Hz, we have
observed four different mode patterns. Depending on the frequency range, collective
cell behaviour may results in symmetric patterns of liquid bumps, forming either at
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grid nodes or at cell edges. Above ≈28 Hz, no collective behaviour is observed and
temporally harmonic oscillons form at the centres of individual cells.

In previous experiments on a network of square cells, the liquid bumps formed
square lattices at frequencies between 10 and 16 Hz due to diagonal wave interaction
between adjacent cells (Delon et al. 2010). Evidently, changing the grid geometry
from square to triangular not only adds an extra degree of freedom for wave interac-
tion (due to the three altitudes in a triangular cell against the two diagonals in a square
cell), but also doubles the number of patterns that forms along with the frequency
range for which collective cell behaviour is observed.
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Gas-Liquid-Solid Volumetric Phase Distribution
Estimation in a Cold Slurry Bubble Column
System for Hydro-Conversion Processes

Miguel V. Paiva-Rojas, Virginia Contreras-Andrade and Solange C. Araujo

Abstract Hydro-cracking slurry bubble column design, scale-up, and operation are
strongly influenced by a fluid-dynamic parameter known as volumetric phase distri-
bution. This parameter depends on the operating conditions (gas flow, liquid flow,
pressure, and temperature) as well as on the gas, liquid, and solid physical properties.
Experiments were carried out at ambient temperature and atmosphere pressure (cold
conditions) in a 120 mm inner diameter plexiglas column (without any gas sparger)
with air and CO2, mineral oil, and coke with average particle sizes of 630 microns.
The column was operated to up-flow continuous recirculation with superficial gas
velocities ranging from 3 to 10 cm/s and a constant liquid-solid flow about 29 l/h.
Experimental measurements were done by two methods: direct phase trapping and
pressure drop. Measurement results indicate that the volumetric gas phase is highly
affected by the superficial gas velocity. However, the superficial gas velocity effect on
solid concentration is negligible. The experimental results were also compared with
experimental data from other authors, obtaining a good agreement. A gas volumetric
phase correlation was proposed.
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1 Introduction

Slurry bubble column reactors (SBCR) are used nowadays as part of hidro-cracking
units, having a notably importance for heavy crude oil processing. Several advantages
of their use include: high heat and mass transfer rates, high conversion levels by
strong gas-liquid-solid interactions, and improvement of catalyst recovery processes
(Chengtian et al. 2008). Also, these reactors reduce maintenance costs due to the
absence of moving parts or without any internal and improved control of the phase
residence time inside the equipment (Shah et al. 1982).

The design and scale-up of these equipments is strongly influenced by the fluid-
dynamic parameters. Some of the parameters with a major impact are the gas-liquid-
solid phase volumetric distribution, the pressure drop, the flow pattern, and the mixing
regime. Several of these variables, validated in an operation range and under certain
physical conditions, have been cleared through empirical and semi-empirical cor-
relations, which predominate as the bases of slurry bubble column reactor design.
However, there is not enough to get from a universal methodology to describe the
whole behaviour of a slurry bubble column (Hikita et al. 1981; Akita and Yoshida
1973; Shah et al. 1982). Additionally, process variables, like gas and liquid superficial
velocities and material physical properties, influence the fluid-dynamic performance,
which is a particular characteristic in each kind of process.

This work deals with the study of the gas-liquid-solid phase distribution based
on two physical properties (specific particle range size and gas density) and one
operation condition. For hydro-conversion processes, it is relevant to know the gas-
liquid-solid volumetric phase distribution since it affects the conversion rate, which
can be considered as the most important variable in these units.

2 Methodology and Experimental Setup

2.1 Experimental System and Materials

A schematic diagram of the slurry bubble column (SBC) used in this work is presented
in Fig. 1. The core of the system is a plexiglas column of 120 mm internal diameter
(ID) with an entrance at the bottom and an exit at the top, without any internal parts.
The experimental equipment has a slurry piston pump for the feedstock, a slurry
centrifugal pump for recycle, a mechanical agitated tank for the feedstock, and two
discharge tanks. The measurement variable system has a mass flow-meter transmitter
(FT) for gas Endress+Hauser Promass 83A 4–20 mA output range 0–450 kg/h error
±0.50 %, a pressure transmitter (PT) ABB 2600T model 261T dual wire 4–20 mA
output range 13.7–397 mbar accuracy ±0.15 %, a pressure differential transmitter
(DPT) Rosemount model 115T Smart 4–20 mA output range 0–20 bar error ±0.25 %,
and videographer recorder ABB model Screen Master 200 with four input channel.
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Fig. 1 Schematic diagram of slurry bubble column system

Table 1 Physical properties of fluid phases

Material Properties
Viscosity (cSt) Density (kg/m3) Superficial

tension (dyn/cm)

Mineral oil (VASSA) 2.49 815 27.4
Air 25◦ C; 1 atm 0.018 1.185
CO2 25◦ C; 1 atm 0.015 1.808

Commercial mineral oil VASSA LP-90 was used as the liquid phase because it
has low toxicity and due to the fact that its physical properties (density and viscosity)
at ambient temperature are similar to those of heavy oil, residual oil, or any other
heavy hydrocarbon in operation conditions of hidro-cracking processes. Air and
carbon dioxide were used at atmospheric pressure in the injection into the column.
The air was supplied from the compression system from pilot plant services, which
has about 6.8 bar, and carbon dioxide was supplied from gas cylinders, which have
about 55.1 bar, connected to a pressure regulator to make pressure drop to 6.8 bar.
The solid phase was ground petroleum coke. The particles sizes were measured by
laser scattering of HORIBA device. The properties of fluids and solids are shown in
Tables 1 and 2.
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Table 2 Physical properties of solid phases

Material Density (kg/m3) Particle size range (µm) Mean size (µm) Median size (µm)

Coke 1370 200–1100 629 617

2.2 Experimental Methodology

The unit was operating in recycling mode. In order to start the unit, a concentration
of 1.5 wt % of solid with respect to the feedstock was mixed in the stirred tank. Then
valves 2, 3, and 4 were opened (see Fig. 1), and after that pumps were started to begin
the loading of the column.

The volumetric phase fraction was determined by phase trapping. This method
consists in the rapid closing of the inlet and outlet valves of the column. This allows
for an instantaneous and direct measure of the gas phase fraction inside the column. In
operation, once the column reaches a steady value of pressure drop, the volume of gas
phase is determined between the inlet and outlet valves of the column. This method
has been used in vertical and horizontal pipes for oil production and transportation
(Hagedorn and Brown 1965; Beggs and Brill 1973; Griffith et al. 1975) and also
in the study of cold models in bubble column and slurry bubble column reactors
(Tai-Ming et al. 1987; Wenge et al. 1995; Jena et al. 2008).

The experimental measurements were done when the stabilization time was
reached, defined as the time when the differential pressure, between the fluidized
zone, achieved an almost constant value. The estimated stabilization time was
12–16 h, approximately. Once the system has stabilized, the sampling procedure
consists in closing the inlet valve just before the lower cone, and simultaneously
opening the by-pass valve number 2. After that, it is necessary to keep the column
for at least 12 h, until the phases have separated inside it. Finally, the volumes are
measured directly through observation.

In addition, during the tests with air/oil/coke particles the gas density effect on
the gas volumetric fraction was tested. After each test, the gas phase was switched
to CO2 during 30 min. This time was considered enough to get gas stabilization in
this case.

3 Results and Analysis

The gas-liquid-solid phase distribution was determined in a slurry bubble column
by means of cold modelling, following the experimental procedure described above.
The temperature was kept at 25±2 ◦ C at atmospheric pressure. Figure 2 shows that
the gas volume fraction increases with the gas flow. This agrees with the results
reported by Akita and Yoshida (1973); Shah et al. (1982); Pino et al. (1990a,b,
1992); Hoefsloot and Krishna (1993); Wenge et al. (1995) and Jena et al. (2008).
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Fig. 2 Average gas volume fraction as a function of superficial gas velocity. The experimental
results are compared with other experiments in the literature

The accumulated gas volume holds an average value between 0.17 and 0.30 v/v for
all superficial gas velocities and solid phases tested.

Figure 2 also shows comparisons between two and three-phase studies reported
by Pino et al. (1990a, 1992) and these experiments. The former authors used a
bubble column of 100 mm internal diameter without gas sparger. The gas superficial
velocity was varied in the range between 2 and 10 cm/s. In continuous mode operation,
the average slurry superficial velocity was 0.5 cm/s. The solid concentration was
126 kg/m3 with a particle range size of 3–180 microns and density of 4,530 kg/m3.
In the air-oil system mode, the gas volumetric phase is higher than in the air-kerosene
system. This behaviour is due to the effect of the superficial liquid velocity, which
is higher in the air-kerosene test. However, this effect is rather small in the two
systems. On the other hand, the gas volumetric phase in the air-kerosene-solid system
is lower than in the air-oil-coke testing. This performance is due to the fact that
the solid concentration in the air-kerosene-solid system, is greater than in the air-
oil-coke test, which increases the occurrence of bubble coalescence, thus inducing
the formation of large bubbles with a high rise velocity and, consequently, a fast
disengagement of the column, which then allows the gas volumetric phase to decrease
(Kantarci et al. 2005; Behkish et al. 2007). Moreover, a lower average particle size
facilitates particle movement throughout the bubble column, thus increasing the area
of the solid-liquid contact. This also causes a decrease of the gas volumetric phase.

In Fig. 3, the effect of the gas density on the gas volumetric fraction is shown
as a function of the gas velocity for the air/oil/coke and the CO2/oil/coke systems.
The trend shows that the gas volume increases with the gas velocity a little more
(between 1 and 2 %) for the CO2 system than for the air system, suggesting a small
effect of the gas density between these two gases at the operation conditions tested.
However, in systems with a pressure higher than atmospheric, it was found that the gas
volumetric fraction increased and the number of fine bubbles formed with residence
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Fig. 4 Average liquid volume fraction as a function of the superficial gas velocity

time in the system was significantly higher. For columns with a pressure higher than
atmospheric, the gas density can be affected in a higher proportion (Krishna et al.
1991). A large gas-phase density increases the kinetic energy and momentum of the
bubbles, and this leads to an increase of the collision energy which then promotes
bubble rupture (Inga and Morsi 1999). These parameters could increase appreciably
the gas volumetric fraction.

According to the data plotted in Fig. 4, the average volume fraction of liquid
decreases from 0.79 to 0.68 v/v as the gas velocity increases from 3 to 10 cm/s. There
is a difference in the average of the liquid volume between 1 and 2 %, for the CO2
system when compared with the air system, for gas superficial velocities of 6, 8, and
10 cm/s. This effect is, however, smaller at lower gas velocities of 3 and 4 cm/s.
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Looking at Fig. 5, we may see that the solid volume also decreases as the superficial
gas velocity increases in a range between 0.03 and 0.02 v/v for carbon particles at
the gas superficial velocity tested. The low accumulation of coke inside the column,
for all gas superficial velocities tested here, indicates a high solid drag exerted by the
liquid. Moreover, due to the low solid concentration inside the column, the influence
on the average volume fractions of liquid is small. However, the solids might cause
an antifoaming effect, decreasing the gas volume and increasing the liquid volume
in the column (Guitian and Joseph 1997).

Figure 6 shows the error bars with three experimental points for the air/oil/coke
and the CO2/oil/coke tests. There can be seen a standard deviation of 0.5 % for the
air/oil/coke test and of 0.7 % for the CO2/oil/coke test. From the analysis of the
experimental data obtained the following correlation was developed for the three-
phase systems:
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Fig. 7 Parity between the experimental (this work) and predicted average gas volume fractions

εG = 1.115 × 10−1 ln (UsG) +
(

UsG + ρs

dp

)5.993×10−3

− 9.549 × 10−1.

This correlation takes into account particle properties, which appear to improve
the correlation between the experimental and predicted gas volume fractions. It has
an average error of 2 %, a standard deviation of 1 %, and a maximum error of 4 %,
which is lower than the values obtained from other correlations in the literature as, for
example, those reported by Hikita et al. (1980); Smith et al. (1984); Fan et al. (1999)
and Urseanu et al. (2003) for different systems. Hikita et al. (1980) correlation had
the lower average error (5 %), assuming for the gas volume fraction calculation that
the slurry properties were given by the liquid properties, because their correlation
applies only to two-phase systems (i.e., gas-liquid). As expected, from Fig. 7 we
may see that the parity for the correlation developed here is higher than for the other
correlations.

Finally, Fig. 8 shows a parity graph between the correlation obtained in this work
and the experimental data of Pino et al. (1992). This latter correlation has an average
error of 34.5 % in this case. This occurs because there are appreciable differences in
the solid particle characteristics, the concentration of particles, and the superficial
liquid velocity between both sets of data.

4 Conclusions

The gas, liquid, and solid phase distribution was estimated in a bubble column under
cold conditions. It was found that the gas density does not affect significantly the
volumetric fractions of gas and liquid. The low solid concentration obtained during
the experiments denotes a high drag exerted by the liquid and a small effect of the
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Fig. 8 Parity between experimental average gas volume fractions of Pino et al. (1992) and the
predicted ones

superficial gas velocity on solid concentration. On the other hand, the comparison
between two-phase and three-phase systems along with experimental data from the
literature indicates that in systems with a tendency to foaming, the solids, even in
small amounts, reduce the gas volume fraction. A new correlation for predicting the
gas volume fraction in three-phase systems was developed, which has shown good
agreement with experimental data that takes into account particle properties.
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Feasibility of Slug Flow Simulation Using
the Commercial Code CFX

Mauricio A. Labarca, Juan J. González and Carlos Araujo

Abstract We evaluate the feasibility of simulating multiphase slug flow regimes in
a horizontal pipe using Computational Fluid Dynamics (CFD) with a transient analy-
sis and a Shear Stress Transport (SST) turbulence model available in the commercial
code Ansys CFX, which is used as an improvement of the k −ω or k − ε models. An
Eulerian method is employed for solving the hydrodynamics of each fluid phase. To
generate the flow regime, a sinusoidal geometric distribution of the phases is estab-
lished in the computational domain, and a sinusoidal inlet time-dependent condition
is used as a disturbance. Seventeen cases were simulated at different flow regimes.
The results show that the slug pattern varies when the gas superficial velocity changes.
The use of velocities corresponding to patterns such as the annular regime generated
a phase distribution different from the slug flow even when using the same inlet
function, tending to the expected morphology indicated by the Mandhane diagram
in several cases. The effects of varying the amplitude of the sinusoidal-wave inlet
function on the model were also analyzed. We find that a minimum of amplitude is
required at the inlet to generate the slug flow pattern. An application of the model to
the approximate calculation of safety factors for a pipe section subject to slug flow
is given. In general, we find that it is feasible to simulate slug flow patterns with the
proposed methodology using a commercial code such as Ansys CFX.
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Nomenclature

r Volume fraction
(dimensionless)

ρ Density (Kg/m 3)
U Velocity (ft/s)
F Drag force per unit

volume (N m−3)
σ Stress (kpsi)
g Gravity (m/s2)
μ Viscosity (m2/s)
y Liquid level (m)
C Drag Coefficient

(dimensionless)
Subscripts
f Fatigue Safety Factor
sl Superficial
sg Superficial gas velocity
α Phase
y Yield Safety Factor
l Liquid
g Gas liquid velocity

1 Introduction

There are many obstacles regarding the simulation of multiphase flows. For instance,
it is well-known that energy, mass, and momentum transfer rates are sensitive to the
geometric distribution of the phases, known as the flow regimes. One of these regimes
is the slug flow pattern, which is of paramount importance in numerous industrial
processes such as the production of oil and gas, the geothermal production of steam,
the boiling and condensation processes, the handling and transport of cryogenic
fluids, and the emergency cooling of nuclear reactors.

The primary characteristic of slug flow is its inherent intermittence of the fluid
phases involved. For example, for a gas-liquid flow, an Eulerian observer looking
along the axis of a pipe will see the passage of a sequence of slugs of liquid containing
dispersed bubbles alternating with sections of separated flow within long bubbles.
The flow is unsteady, even when the flow rates of gas and liquid are kept constant
at the pipe inlet. The existence of slug flow can create severe problems for the
designer or operator. For instance, the high momentum of the liquid slugs can produce
considerable forces as they change direction through elbows and tees. In addition,
severe damage can also take place along large piping structures as the low frequencies
of slug flow can be in resonance with them. However, a number of practical benefits
can also result from operating in the slug flow pattern. For example, due to the high
liquid velocities, it is possible to move larger amounts of liquids in smaller lines than
would otherwise be possible in two-phase flow. Moreover, these high velocities cause
very high convective heat and mass transfers, resulting in very efficient transport
operations.
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Owing to its importance in the chemical and petroleum engineering industries,
several theoretical and experimental studies have been conducted to find out and
control slug flow parameters (e.g., Taitel and Dukler 1976; Nydal et al. 1992; Emerson
and Leonardo 2005; Gu and Gue 2008). However, on the computational side only a
few attempts have been made to simulate slug flow, most of which are related to the
study of rising Taylor bubbles (Baritto and Segura 2008). Other existing numerical
simulations are based on the so-called slug capturing technique in which the slug
flow regime is predicted as a mechanistic and automatic outcome of the growth of
hydrodynamic instabilities (Issa and Woodburn 1998; Issa and Kempf 2003). These
simulation models rely on the two-fluid model (Ishii 1975), which has also been
implemented in several industrial codes such as PLAC (Black et al. 1990) and OLGA
(Bendiksen et al. 1991). However, it has never been demonstrated conclusively that
the model can capture in a natural way the development of slug flow from the growth
of instabilities in stratified flow. On the other hand, Frank (2005) and Vallée et al.
(2007) have used an Eulerian model to simulate the slug flow regime in horizontal
channels, noting a dependence of the results on the inlet boundary conditions. In
this work, we rely on the two-phase fluid model implemented by Frank (2005) to
simulate slug flow in horizontal pipes with the commercial code Ansys CFX.

2 Governing Equations

The basis of a two-fluid model is the formulation of two sets of conservation equations
for the balance of mass, momentum, and energy for each of the phases. As was
pointed out by Frank (2005), slug flow may include gas entrainment in the liquid
phase (bubbles) and so a realistic treatment of this type of flow requires the numerical
solution of these sets of partial differential equations.

The present study is based on the transport equations for an isothermal flow. Hence
the equations that are solved for the conservation of mass and momentum for the gas
and liquid phases, written in Eulerian form, are:

∂

∂t
(rαρα) + ∇ · (rαραUα) = 0, (1)

∂

∂t
(rαραUα) + ∇ · (rαραUαUα) = −rα∇ρα + rαραg+

∇ · (rαματ (∇Uα + (∇Uα)τ )) + Fα, (2)

where the subscript α refers to the gas (g) and liquid (l) phases such that rl + rg = 1.
It is implicit in Eqs. (1) and (2) that there is no mass transfer between the liquid and
gas phases. The term Fα in Eq. (2) stands for the frictional forces per unit volume
between each phase and the walls of the pipe. The turbulent viscosity is calculated
with the Shear Stress Transport model, which represents an improvement over the
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traditional k − ω approach since it has a better prediction of flow separation under
adverse pressure gradients, and it has been used in other simulations of multiphase
flow (Al Issa et al. 2007). The only interfacial force present is the drag force, which
is calculated using a drag coefficient CD = 0.44.

3 Boundary Conditions and Models

The boundary geometry considered here is a horizontal pipe of total length L = 8 m
and circular cross-section of diameter D = 54 mm, split by a symmetry plane. The
resulting mesh has 153,298 tetrahedral and prismatic elements, with four inflation
layers in the circular wall. This mesh was the result of a sensitivity analysis. To do
so we have used a single-phase transient model with a water inlet velocity of 1 m/s
and 140 time steps. Successive runs were performed using a finer mesh each time,
until the pressure drop variation was below 1 %.

A total number of 17 transient cases were chosen with different superficial ve-
locities for the air and water, each of them corresponding to different flow regimes
in the Mandhane flow diagram. The superficial velocities are used to calculate an
inlet mixture velocity Um for each case. The level of liquid at the inlet and the liquid
volume fraction were initialized using the following function:

yL = y0 + ALsin

(
2π

Umt

pL

)
. (3)

where y0 = 0, the amplitude AL = 0.25 D, and pL = 0.25 L. The wavelength and
amplitude were as determined by Lex (2003). A time-independent form of this func-
tion that depends only on the geometry was used for initialization. The walls of the
pipe were set to be hydraulically smooth with no-slip conditions for both phases.
Outlet boundary conditions at the exit of the pipe were specified. In all cases, the
velocity fields were initialized with inlet values in the whole domain area. For all
time steps with 70 coefficient loops, a maximum error of 0.001 RMS is guaranteed
for the numerical solutions of Eqs. (1) and (2). Such an error is sufficiently small to
achieve a quantitative accurate understanding of the flow field and variables. For all
runs, the time step size was set to 0.005 s, implying about 1,600 steps per run.

4 Results for Slug and Annular Flow

The results for slug flow are shown in Figs. 1 and 2, where the volume fraction
and pressure gradients are depicted. The free surface is represented as an iso-surface
where r = 0.5. The volume fraction gradients show the expected shape for the chosen
velocity in the Mandhane diagram. Slug flow appears after 1.5 s and lasts for all the
evolution up to 7 s. When the superficial velocity Usg is decreased, the gradients
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Fig. 1 Volume fraction gradients of slug flow at 1.5 s, with Usl = 5 ft/s and Usg = 12 ft/s

Fig. 2 Pressure gradients of slug flow at 4 s, top Usl = 5 ft/s and Usg= 12 ft/s, bottom Usl = Usg=
3.28 ft/s
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Fig. 3 Water fraction gradients for annular flow at 6 s, Usl = 1 ft/s, Usg = 300 ft/s

for slug flow are affected, producing pressure fluctuations due to the limitations
imposed by the boundary conditions used. All velocity pairs (Usl , Usg) for slug
behaviour come from experimental limits in the Mandhane diagram; the pairs out of
these limits did not exhibit slug flow.

As expected, the pressure gradient increases just before the slug (Fig. 2). A similar
result was also obtained by Frank (2005).

Figure 3 shows the results of a model simulation for annular flow. Since in this
case a run with the SST model diverged, the turbulence viscosity was calculated
using the k − ε model. The liquid volume fraction (r ) gradient evolved fully into the
annular pattern in the middle of the domain. Further tests were employed to predict
the boundary between slug and annular flow by increasing the superficial gas velocity
Usg .

5 Sensitivity of the Results to the Inlet Wave Function

In order to check the sensitivity of the model to the periodic inlet boundary condi-
tion, a case was run with half of the original amplitude chosen by Lex (2003). The
superficial velocities were the same as in a previous case run (i.e., Um = 2 ft/s), and
only the amplitude was varied. The results show that there is a minimum amplitude
necessary for the inlet function to generate the slug flow as in the previous cases.
Figure 4 displays how, after 1.5 s, the reduced amplitude can prevent the formation
of a complete slug as compared to the case where the normal amplitude is employed.
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Fig. 4 Top slug flow, reduced amplitude. Bottom Slug flow, normal amplitude. Both at 1.5 s and
with Um = 2 ft/s

6 An Application Example

One useful application of the present simulations of slug flow is just to analyze the
impact of the implicit pressure increases that are generated. Using a commercial
code, it is possible to generate plots with a wall force as a function of time and this
information can be used to calculate safety factors. To illustrate this, a simulation
of an elbow subject to slug flow was run for two different cases. Assuming the
wall stress to be a pure shear stress, in the framework of Gerber’s fatigue theories,
AISI 4340 properties, and a thickness of 2 mm, it is possible to calculate static and
dynamic safety factors, as shown in Table 1. Figure 5 shows the geometry employed
for the pipe plus elbow model.
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Table 1 Safety factors for an elbow subject to slug flow

Case Usl Usg Direction σmin σmax ny n f

C-A 3.28 11 X 1.17 1.27 111.5 112.9
C-A 3.28 11 Y 0.190 0.239 559.2 508.3
C-B 3 60 X 1.17 2.41 48.46 102.5
C-B 3 60 Y 0.19 1.00 104.8 55.70

Fig. 5 Top Pipe and elbow geometry. Bottom Elbow geometry and mesh

The columns in Table 1, starting from the second, list the superficial liquid and
gas velocities in units of ft/s, the direction in a Cartesian coordinate frame in which
the safety factors were calculated (note that the flow is towards the z-axis), the
minimum and maximum stresses exerted on the pipe walls, the yield safety factor,
and the fatigue safety factor, respectively. Although the assumptions used here are
ill-advised for a complete structural analysis, these data clearly show how a slight
increase in the superficial liquid velocity can affect the stresses and the safety factors
regardless of the gas superficial velocities.
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7 Conclusion

In this chapter, we have shown preliminary results of slug flow simulations along a
pipe, using a two-fluid model approach. The results of the simulations show that it
is possible to obtain realistically slug flow patterns by using the commercial code
Ansys CFX, with a periodic inlet function and the SST model for the calculation of
the turbulent viscosity. For a sequence of runs with increasing superficial velocity,
we have also possibly identified the boundary between slug and annular flow. Finally,
the model was applied to determining structural safety factors in pipeline systems.
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Heavy Oil Transportation as a Solid-Liquid
Dispersion

Adriana Brito, H. Salazar, Ramón Cabello, Jorge Trujillo,
L. Mendoza and L. Alvarez

Abstract Traditionally, heavy oil pipelines are designed to handle liquids with ef-
fective viscosity below 0.5 Pa s at the pump outlet, in order to minimize the frictional
pressure gradient and obtain a pipeline size and economically optimum pumping
requirements. Asphaltenes and resins are the components of crude oil which have
the highest molecular weights and are, also, the more polar ones. It has been deter-
mined that the characteristics of the asphaltenes play an important role in the high
viscosity of heavy oils of the Orinoco Oil Belt. This chapter presents an experimental
investigation of the behaviour of a potential transport method for heavy oils based on
precipitation and conditioning of asphaltenes, followed by an ulterior reincorpora-
tion into the de-asphalted oil to obtain a solid-liquid dispersion (slurry) with a lower
effective viscosity than the one of the original crude oil. The study comprises two
steps: an analysis under static conditions to identify the rheological behaviour of the
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slurry for different solid contents, from 0 to 12 % (weight basis), and a fluid dynamic
study to characterize the effectiveness of the solid–liquid dispersion method in a lam-
inar flow regimen in a 1 inch horizontal pipeline, for mixture velocities between 0.2
and 2.3 m/s, corresponding to Reynolds Number values <1,400. A maximum effec-
tive viscosity of 0.15 Pa s @ 20 ◦C was measured 24 h after conducting the dynamic
test, which implies a significant reduction compared to a typical viscosity range of
100–1,000 Pa s @20 ◦C for an original crude oil of similar API density and SARA
composition. As expected, dispersion viscosity increases with time as asphaltenes
are progressively reabsorbed into the de-asphalted oil as a colloidal suspension. The
investigated transport method can be implemented together with a low pressure–low
temperature de-asphalting process to improve transport properties of the heavy oils
of Orinoco Oil Belt.

1 Introduction

Heavy oil production and transportation are particularly difficult processes due to the
high viscosities of the heavy oil and the complexity of the multiphase flow involved.
Most heavy oil transport methods are focused on reducing the liquid—wall shear
stress. To achieve this, some methods as core annular flow and oil in water emulsions
induce the water phase to be in contact with the wall, as water viscosity is several
orders of magnitude lower than heavy oil viscosity. Other methods as, for example,
partial or total upgrading and slurry transportation focus on reducing the viscosity
of heavy oil itself, by removing or modifying the nature of the crude compounds,
which are the main cause of the high viscosity.

Venezuela has 296,500 million barrels of heavy and extra heavy oil certified re-
serves, located in the Orinoco Oil Belt. It is expected that several of the new joint
ventures established to exploit the heavy and extra heavy oil from the Orinoco Oil
Belt include as a transportation method an integration of dilution and upgrading of
the oil in order to convert extra heavy crude oil of approximately 8◦ API into syn-
thetic crude of 42◦ API. This upgraded oil will be mixed with an original virgin
heavy oil to obtain a final crude oil of 22◦ API to be transported to the Punta Araya
terminal for export (Petróleos de Venezuela 2011; Brito and Trujillo 2011). The main
strategy to be developed for the Orinoco Oil Belt is a combination of dilution and
upgrading of the extra heavy oil. However, in order to make feasible all the develop-
ments, it is necessary to explore other alternatives for heavy oil transportation. This
chapter presents a study of a potential transportation method based on transforming
the heavy oil into a solid–liquid suspension with lower effective viscosity than the
original crude oil. A simple alternative to the heavy oil transportation method was
developed by Argillier et al. (2006). They presented a solid-liquid dispersion (slurry),
where the asphaltenes are precipitated by n-alkanes as n-heptanes and reincorporated
to the oil to obtain a slurry or suspension of non-colloidal particles with relatively
low viscosity compared to the original extra heavy oil (Martínez-Palou et al. 2011).
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Pump

Tank

Fig. 1 Experimental test loop diagram

One of the main characteristics of heavy oil is its large content of asphaltenes that
contribute to its high viscosity. For instance, Sanière et al. (2004) found that the slurry
exhibits approximately 75 % less viscosity than the original crude oil. However, they
observed the slurry during 146 days and observed that with time the suspension
returns progressively to a colloidal stage. This transformation is quite slow and
gives rise to a correlated increase of viscosity (at 20 ◦C) that can be accelerated at
higher temperatures (40 ◦C). They also report that there is a critical concentration for
asphaltenes (around 12 %): under this critical concentration the asphaltenes behave
like colloidal particles dispersed in oil as a semi-dilute domain, while above this value
the particles of asphaltenes are overlapped and the viscosity increases dramatically.

2 Experimental Test

Experiments were carried out in an Ø0.025 m test loop facility at PDVSA INTEVEP.
Figure 1 show the experimental facility diagram, the total length of the loop is 6 m of
carbon steel pipeline and is composed of two sections: the first one is a 3.5 m length
section for flow development; the second one is the test section, which is 2.5 m
long and equipped with transmitters for measurements of pressure, temperature,
and differential pressure. Differential pressure transducers are used to measure the
pressure drop between pressure taps. Downstream to the test section, the dispersion
returns to the tank in which the slurry is continuously agitated. The slurry is pumped
using a gear pump with a variable speed control to regulate the flow rate, the maximum
dispersion flow rate is approximately 3.6 m3/hr and it is measured by deviating the
flow to a small tank with a level transmitter.

The slurry is prepared with de-asphalted oil (also known as maltenes) as the liquid
phase and the asphaltic residue as the solid phase, with both phases being obtained
from a proprietary de-asphalting process at relatively low pressure and temperature.
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The solid phase, composed mainly of asphaltenes and resins, is prepared and sieved
with a special procedure in which the particle size is kept up to 500µm, then the
solids are incorporated in the liquid under a mechanical stirring for 20 min. Dis-
persion properties are analyzed for each solid concentration and mixture velocities
between 0.2–2.3 m/s at three stages, i.e., before starting the dynamic test (initial
stage), just after running the dynamic test (middle stage), and 24 h after finalizing it.
The dispersion morphology is analyzed using optical microscopy. The viscosity of
the dispersion is assessed using a viscometre Anton Paar model MCR 301 according
to the ASTM D 7,483 standard test method. Finally, the dispersion density is quan-
tified using a densitometre Anton Paar DMA 4,500 according to the ASTM D 4,052
standard test method.

3 Experimental Results

Figures 2 and 3 show that the precipitated asphaltenes become progressively colloidal
with time due to the viscosity and opacity of the samples, increasing both with time
and solid concentration in agreement with the findings of Sanière et al. (2004).
This evolution is probably due to the fact that the thermodynamic equilibrium state
promotes the colloidal state rather than the precipitated one.

Similarly to the results obtained by Sanière et al. (2004), the slurry sample remains
Newtonian and does not exhibit yield strength, which is quite unusual for slurry
products. During the dynamic tests, it was observed that the viscosity and density
of the fluid increase with the solid concentration, as expected, and decrease as the
flow rate is increased, as is shown in Figs. 4 and 5. This last phenomenon is believed
to be due to the significant viscous dissipation of energy inside the pump and pipes,
which promotes an increase of the temperature.

As mentioned above, the temperature rises in the system because of the increasing
viscous dissipation accompanying the higher flow rates. For a given concentration,
the higher viscosities correspond to the lower flow rates and accordingly, the lower
viscosities correspond to the higher flow rates (Fig. 5). As expected, the pressure
drop in the pipeline increases with mixture velocity and solid concentration in the
slurry (see Fig. 6).

The dispersion viscosity was measured at 20 and 26 ◦C. When comparing the
results obtained during the initial, middle, and final stages, small differences in the
viscosity are found for the solid concentrations, which are below 12 %. However, for
a 12 % solid concentration, the viscosity differences with time are clearly noticeable.
This could be explained by a re-dissolution of asphaltenes into the maltenes, thus
returning to their colloidal state. The 12 % threshold seems to coincide with the find-
ings of Sanière et al. (2004) for the critical asphaltene concentration in the Orinoco
Belt heavy oils.
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Fig. 2 Evolution with time of the morphology of the slurry sample
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Fig. 6 Pressure drop in the horizontal pipeline as a function of the mixture velocity and solid
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4 Conclusions

• The morphology and viscosity of the slurry are time-dependent. The solid as-
phaltenes obtained from a proprietary de-asphalting process are reincorporated
as a solid into the maltenes and tend to return to a colloidal state, increasing the
viscosity of the slurry with time.

• The viscosity of the slurry is at least three orders of magnitude lower than the
typical viscosity of the heavy oil of the Orinoco Oil Belt.

• This transportation method could be implemented downstream of a de-asphalting
process, in order to obtain the components needed to prepare the dispersion.

• Additional residue processing is necessary depending on the de-asphalting method
used for obtaining the residue as a solid phase, which must be easy to handle
and sieve in order to be reincorporated into the de-asphalted oil to prepare the
dispersion.

• This transportation method could be used not only for the transport of heavy oils.
It could be applied to transport other solid residues of hydrocarbon processes as
is the case of coke, either in water or in synthetic oil.

Acknowledgments The authors thank the support of PDVSA Intevep.

References

Argillier J, Hénaut I, Gateau P (2006) Method of transporting heavy crude oils in dispersions. US
Patent Application 20,060,118,467

Brito A, Trujillo J (2011) Considering multiphase flow issues for selection of heavy oil transportation
methods in Venezuela. WHOC11-107-2011



396 A. Brito et al.

Martínez-Palou R, Mosqueira M, Zapata-Rendón B, Mar-Juárez E, Bernal-Huicochea C, Clavel-
López J, Aburto J (2011) Transportation of heavy and extra-heavy crude oil by pipeline: a review.
J Pet Sci Eng 75:274–282

Petróleos de Venezuela (2011) http://www.pdvsa.com/index.php?tpl=interface.sp/design/
readsearch.tpl.html&newsid_obj_id=8975&newsid_temas=0. Accessed 15 Feb 2011

Sanière A, Hénaut I, Argillier J (2004) Pipeline transportation of heavy oils, a strategic, economic
and technological challenge. Oil Gas Sci Technol Revue d’IFP 59(5):455–466

http://www.pdvsa.com/index.php?tpl=interface.sp/design/readsearch.tpl.html&newsid_obj_id=8975&newsid_temas=0
http://www.pdvsa.com/index.php?tpl=interface.sp/design/readsearch.tpl.html&newsid_obj_id=8975&newsid_temas=0


Comprehensive Evaluation of Gas-Liquid
Cyclonic Separation Technologies

Yessica Arellano, Adriana Brito, Jorge Trujillo and Ramón Cabello

Abstract PDVSA-Intevep has developed a portfolio of technologies for gas–liquid
phase separation based on centrifugal forces effects on fluids of different densities.
Research has been focused on both separation technologies cylindrical–conical cy-
clonic (CYCINT�) and multiple cylindrical cyclones (CIMCI�), contemplating
numerical modeling, construction, and extensive experimental tests conducted for
a wide range of inflow rates and multiphase mixture properties (Brito et al. 2001,
2003, 2009; González et al. 2002; Martínez 2002; Carrasco 2008; Matson and Brito
2008; Cáliz et al. 2009; Valdez et al. 2009; Martínez 2010). Cyclonic separators
are centrifugal technologies whose geometry construction promotes rotational flow
within them. Centrifugal forces generated inside the separators conduct the fluid to
follow a spiral trajectory with the heavier phase forced to flow nearby the separator
walls, whilst the lighter phase is directed to the centre of the equipment ascending
to the top of the device. This paper presents a comprehensive quantitative evaluation
methodology based on a thorough parametric matrix developed to screen the most
promising technologies based on experimental essays results. As a consequence, an
optimal allocation of resources will allow further development of the top ranked
technologies to conduct further field tests. The processing of experimental data from
laboratory tests conducted on cyclonic technologies comprises parameters of great
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interest for the purpose of this evaluation. Gas carry under, liquid carry over, pressure
loss, and generated G forces, in hand with liquid level control strategies, operational
envelope width, operability, and compact design are some of the parameters used for
the evaluation of technologies considered in this study. The evaluation of parameters
was conducted through group categorization followed by variables grading on a 0–8
scale by means of a binary comparison methodology. The evaluation of technologies
was conducted based on the results obtained during experimental tests and further
analysis. As a result, an unbiased technology ranking was obtained, in which the
multi-cylindrical technology (CIMCI�) provides an overall best performance with
emphasis in a superior gas separation efficiency and easier constructability, whilst the
cylindrical-conic cyclonic technology (CYCINT�), on the other hand, presented the
upmost liquid separation efficiency and wider operational envelope. Further efforts
will focus on continuous development of these two technologies to provide more
compact, efficient, and economical gas–liquid separation solutions.

1 Methodology

Technology evaluation was conducted through a multiple binary decision method that
reduces the subjectivity involved in decision making processes by providing binary
parametric evaluation through matrix construction.The methodology assigns weight
factors to the different parameters by means of a one-to-one comparison providing
a matrix from which the proposed alternatives can be selected based on the highest
scores obtained.

Experimental data processing from laboratory tests conducted on cyclonic tech-
nologies comprise the parameters shown in Fig. 1.

Further parametric evaluation was conducted through a two stages process: first
a group categorization, and then variable grading, following the multiple binary
decision methodology.

2 Cyclonic Technologies

CYCINT� cyclonic separation device is a vertical cylinder attached to a conical sec-
tion. Its working principle is based on centrifugal forces that induce vortex formation,
generated when the fluid enters the inlet nozzle, inducing a significant angular mo-
mentum that will not allow the heavier phase to turn as rapidly as the lighter phase,
and then separating the liquid from the gas. Figures 2 and 3 present versions of the
CYCINT� and CYCINT ER�, respectively.

The main difference between both devices is the inlet and gas regions geometry.
CYCINT� inlet geometry emulates a 90◦ bend that allows the tangential entrance
of the fluid to the conic section. The CYCINT ER�, on the other hand, incorporates
a straight inlet in addition to a vortex finder at the top of the cylinder.
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Fig. 1 Selected parameters for technology evaluation

CIMCI� separator is a device conformed by multiple cylinders; the inlet config-
uration is variable and depends on the type of flow: straight-through or reverse flow.
Centrifugal forces generated within the separator force the fluid to flow following a
spiral trajectory diminishing phase re-entrainment. Figures 4 and 5 show versions of
the CIMCI� and CIMCI UP� whose main geometric difference is the inlet position
located either in the middle section or the bottom of the cylinders for the CIMCI�
and CIMCI UP�, respectively.

The paths of the fluid phases are different for both multiple cylindrical separators:
within the CIMCI� the liquid attaches to the walls and descends to the bottom,
meanwhile the gas near the walls follows a descending trajectory but as it migrates
from the walls to the core zone, it reverses its flow direction following and ascending
trajectory in the centre (reverse flow type), whilst in the CIMCI UP� the heavier
phase is forced to ascend through the cylinder and leave the device through the
annular space between the cylinder body and the vortex finder, meanwhile the gas
also follows an ascending trajectory but leaves the device through the vortex finder
(straight through type).
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Fig. 2 CYCINT�

3 Technology Evaluation

3.1 Experimental Results

Table 1 summarizes experimental test results conducted on the four cyclonic pro-
totypes with two different two-phase mixtures (water-air and oil-air) at different
inlet flow rates. The experimental measurements have focused on determining actual
device operational envelope, gas carry under, liquid carry over, total pressure drop,
tangential velocities, centrifugal forces, and predominating flow patterns. The exper-
imental test results are shown in Table 1. Elements shaded in gray and blue represent
the best and worst figures respectively for the given parameter.

3.2 General Matrix Weighting

Experimental data processing comprises not only direct measurements from labo-
ratory tests but also parameters of great interest for the purpose of this evaluation.
Following this, gas carry under (GCU), expressed as gas void fraction (GVF) in
the liquid stream, liquid carry over (LCO) in the gas stream, pressure drop in the
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Fig. 3 CYCINT ER�

separator, and generated centrifugal force, expressed as G forces, were considered
for the technologies evaluation in hand with liquid level control, operational envelope
width, operability, and compact design.

The evaluation of parameters was conducted through group categorization fol-
lowed by variables grading on a 0–8 scale by means of a binary comparison method-
ology (we refer to Appendix A for details). On the other hand, technology evaluation
was conducted based on the results obtained during experimental tests and further
analysis, resulting in the technology weighting matrix shown in Table 2.

Based on the unbiased technology ranking obtained, a percentage distribution
graph was constructed to better illustrate the technology ranking (see Fig. 6). Eval-
uation results show that the multi–cylindrical technology (CIMCI�) provides an
overall best performance with emphasis in a superior gas separation efficiency and
easier constructability, whilst the cylindrical–conical technology (CYCINT�), on
the other hand, presented the upmost liquid separation efficiency and wider opera-
tional envelope.
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Fig. 4 CIMCI�

4 Analysis of the Parameters and Geometry Relations

A separation device classification was conducted based on the most representative
geometric characteristics by region (inlet, gas, and liquid regions). From the analysis
conducted here it was possible to identify the parameters whose magnitude was
greatly influenced by the main geometric characteristics.

According to the results of the different experimental tests conducted with each cy-
clonic technology, it was observed a clear correlation between the devices geometry
and their performance. Regarding the inlet area, there is a close relationship between
the geometry of the devices and their performance when inlet operational conditions
change; promotion of stratified flow in the inlet has been proven to contribute to the
vortex formation and subsequent enhanced separation efficiency. Laboratory expe-
riences also indicate that the use of a straight inlet for the CYCINT ER� combined
with a vortex finder device results in a 40 % increase in gas handling capacity and
lower gas carry under figures.

Similarly, the geometry of the gas region is closely related to the amount of liquid
entrainment into the gas stream. After installing a vortex finder at the top of the
cylindrical section of the CYCINT�, its latter version (CYCINT ER�) presented a
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Fig. 5 CIMCI UP�

decrease in liquid carry over and better overall performance. Vortex finder installa-
tion, however, constricts the gas flowing area, promoting higher pressure drops.

5 Conclusions

The main conclusions can be summarized as follows:

• Multi-cylindrical technology (CIMCI�) provides an overall best performance.
• Multi-cylindrical technologies (CIMCI� and CIMCI UP�) provide superior gas

separation efficiency than cylindrical–conical technologies.
• Multi-cylindrical technologies present significant advantages regarding adaptabil-

ity, constructability, and compact design.
• Cylindrical—conical cyclonic technologies (CYCINT� and CYCINT ER�)

present the best liquid separation efficiency and wider operational envelope.
• There is a clear correlation between the geometry of the devices and their perfor-

mance.
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Table 1 Experimental test results

MODEL CYCINT� CYCINT ER� CIMCI� CIMCI� CIMCI
UP�

Feeding Inclined Inclined Horizontal Horizontal Horizontal
Inlet Tangential Straight Tangential

middle
zone

Tangential
middle
zone

Tangential
lower
zone

Fluids Water-Air Water-Air Oil-Air Water-Air Oil-Air Water-Air
Qg = 70 Qg = 26

Operational
envelope

Qg = 70 Ql = 706 Ql = 1500 Qg = 50 Qg<50 Q = 50

Ql = 1000 Qg = 50 Qg = 50 Ql = 800 Ql = 800 Ql<700
Ql = 1200 Ql = 91

Gas void
fraction

<10 % @
Ql<1000

10 % @
Ql<1000

16 % @
Qg = 70
Ql = 1500

<5 % 10 %
Qg = 50
Ql = 800

<5 %

Liquid
carry over

Qg = 50.9
Ql = 1000

Qg>50 Qg>50
Ql = 500

Qg = 50
Ql = 1000

Qg = 50,9 Qg = 50
Ql = 500
>5@
Ql = 700

Pressure
drop

2 psi 4 psi 2 psi <5 psi <5 psi <5@
Ql = 500

Tangential
velocity /

2–24 ft/s 2–24 ft/s 2.6–84 ft/s 8–37 ft/s 2.6–
7.5 ft/s

7–130 G

G Force 0.9–10.5 G 0.9–
10.5 G

1.1–
49.9 G

5–22 G 1.1–3.2 G

Flow
pattern

Stratified Stratified Wavy
stratified

Wavy
strati-
fied/slug

Wavy
strati-
fied/slug

Qg: MSCFD
Ql: BPD

Table 2 Technology weighting results

Parameter Weight CYCINT� CYCINT ER� CIMCI� CIMCI UP�

A GVF 16.7 0.0 2.8 8.3 5.6
B LCO 22.2 4.4 13.3 4.4 0.0
C Pressure drop 11.1 5.6 3.7 1.9 0.0
D Level control 19.4 0.0 3.2 9.7 6.5
E Operational envelope 13.9 4.6 6.9 2.3 0.0
F Constructability 5.6 0.0 0.9 2.8 1.9
G Operability 0.0 0.0 0.0 0.0 0.0
H Compact design 2.8 0.5 0.5 0.9 0.9

Score 100 16 31 35 18
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Fig. 6 Technology evaluation results

Table A.1 Parameters’ comparison matrix (MBDM)

A B C D

A – 0 1 1
B 1 – 1 0
C 0 0 – 1
D 0 1 0 –

Appendix A: Multiple Binary Decision Method

The binary comparison methodology employed for the technology evaluation is the
Multiple Binary Decision Method (MBDM). The MBD method is used to assign
weighting factors to different parameters comprised in an evaluation matrix and
selecting, amongst different alternatives, the one that best qualifies according to the
scores obtained. The procedure is detailed below and explained through a generic
example:

(1) Selection of the more relevant parameters to be considered. These parameters
should be precisely defined in order to quantitatively assess the alternatives under
evaluation.

(2) Each selected parameter is assigned a weight resulting from a one-to-one com-
parison. This comparison determines which one of the evaluated parameters is
the most important, by assigning it the value of ‘1’ and the least important re-
sulting with a ‘0’ weight; following this procedure each parameter is compared
to the remaining parameters. An illustration of the matrix obtained is shown in
Table A.1.
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Table A.2 Parameters’ comparison matrix with weights (MBDM)

A B C D SW Weight (%)

A – 0 1 1 2 33.3
B 1 – 1 0 2 33.3
C 0 0 – 1 1 16.6
D 0 1 0 – 1 16.6

ST = 6

Table A.3 Alternatives’ comparison matrix for parameter A (MBDM)

I II III SW Weight (%)

I – 0 1 1 33.3
II 1 – 1 2 66.7
III 0 0 – 0 0.0

ST = 3

Table A.4 Alternatives’ comparison matrix for parameter B (MBDM)

I II III SW Weight (%)

I – 0 1 1 33.3
II 1 – 1 2 66.7
III 0 0 – 0 0.0

ST = 3

(3) Once the one-to-one comparison is completed and the indicative ‘ones’ and
‘zeros’ are obtained, the parameter weighting factors are computed by applying
the following equation:

weight = SW

ST
× 100, (A.1)

where SW represents the weight of each parameter and ST is the total sum of the
parameters’ scores.
Table A.2 is complemented to illustrate the weighting distribution.

(4) Once the parameter weighting factors are obtained, the alternatives are evaluated.
For the purpose of this illustration, three alternatives are proposed (I, II, and III).
To obtain the most favourable alternative, all alternatives are compared to one
another in reference to an alternate defined parameter. This way, alternatives
I and II are compared to each other for parameter A, the alternative with the
best performance gets a ‘1’; later alternatives II and III are compared and so
on. Applying the weighting equation, the procedure is repeated, obtaining the
alternatives’ scores by parameter. Tables A.3, A.4, A.5 and A.6 illustrate the
procedure.
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Table A.5 Alternatives’ comparison matrix for parameter C (MBDM)

I II III SW Weight (%)

I – 1 1 2 66.7
II 0 – 0 0 0.0
III 0 1 – 1 33.3

ST = 3

Table A.6 Alternatives’ comparison matrix for parameter D (MBDM)

I II III SW Weight (%)

I – 1 1 2 66.7
II 0 – 0 0 0.0
III 0 1 – 1 33.3

ST = 3

Table A.7 Technology comparison general matrix (MBDM)

Weight (%) ALT. I (%) ALT. II (%) ALT. III (%)

Parameter A 33.3 (33.3 × 33.3) = 11.1 (66.7 × 33.3) = 22.2 (0 × 33.3) = 0
Parameter B 33.3 (33.3 × 33.3) = 11.1 (66.7 × 33.3) = 22.2 (0 × 33.3) = 0
Parameter C 16.6 (66.7 × 16.6) = 11.1 (0 × 16.6) = 0 (33.3 × 16.6) = 5.5
Parameter D 16.6 (66.7 × 16.6) = 11.1 (0 × 16.6) = 0 (33.3 × 16.6) = 5.5
Score 100.0 44.4 44.4 11.0

Following the previously described steps the alternative’s partial score by para-
meter is obtained.

(5) Scores obtained in Tables A.3, A.4, A.5 and A.6 are then weighted by the spe-
cific weight computed for each parameter within the Parameters’ Comparison
Matrix (Table A.2). To exemplify this, take alternative II’s weight for parame-
ter A (66.7 %), parameter A weights 33.3 % according to Table A.2, thereafter
alternative II score within the general matrix is computed as follows:

66.7 × 33.3

100
= 22.2 points. (A.2)

Scores obtained from Eq. (A.2) are later tabulated and added together to obtain
the general score for every alternative. The alternative with the highest score
will be the preferred one. Table A.7 illustrates the general matrix of technology
selection.
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Geometric Design Optimization of a Prototype
Axial Gas-Liquid Cyclonic Separator

Luis D. Peréz Guerra, Jorge Trujillo and William Blanco

Abstract Oil and gas industry faces new challenges these days: new off-shore fields
are located in harsher environments, at longer distances from shore, in deeper wa-
ters, demanding more compact and efficient process facilities, to optimize investment
costs and then, to guarantee the economic feasibility of these new projects. On the
other hand, brown fields with decaying production experience significant changing
process conditions which usually impose constrains in existing facilities. The bottle-
necking of these facilities requires process improvements to increase their capacity
and efficiency, minimizing at the same time any production deferment which could
translates into unwanted higher operational costs. Usually, in both cases there are
severe space limitations to deploy solutions, demanding these solutions to become
more and more compact. PDVSA-Intevep has identified the need for a compact, high
efficiency, and high capacity separation technology to address potential gas scrub-
bing problems in both green and brown fields, and started the development of an
axial gas liquid cyclone as an answer to these needs. The separator consists of a
flow conditioning section, a swirl generator section, and a segregating section with a
discharge for gas and liquid phases in the outlet. An extensive planning, design, con-
struction, and further experimental validation process of a prototype was conducted
in the multiphase flow loop facilities of PDVSA-Intevep to demonstrate the axial
cyclone concept. As a result of the experimental validation, several aspects of geo-
metrical design were identified to be susceptible to improvements in order to achieve
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target separation efficiency. The geometric variables identified and addressed in or-
der to improve the performance of this equipment are: incorporating a pre-separation
chamber to remove segregated flow incoming to the device, a static mixer to homog-
enize the gas liquid mixture incoming to the swirl generator, improvement of swirl
generator configuration for constructability purposes, improvement of the liquid an-
nular outlet, gas recycle, and outlet gas flow conditioner configurations. The new
design is the result of a comprehensive process of revisiting and evaluating the state-
of-the-art of axial separation technologies, incorporating lessons learned during the
concept demonstration tests and mechanistic modelling of the prototype. Design
was conducted considering the operating envelope of the multiphase flow loop of
PDVSA-Intevep, to carry out an experimental performance assessment of the incor-
porated improvements.

1 Introduction

A very important issue in the oil and gas industry is to assure the production of
hydrocarbons from reservoir to surface facilities through the entire life of the field.
This ambitious goal is partially fulfilled by identifying any potential or existing
bottlenecks, their root causes and then developing solutions to those issues, usually
by improving process efficiency and installed capacity.

The Venezuelan hydrocarbon development plan for 2012–2018, associated with
the natural gas business, was conceived considering the impact of the global economic
crisis on the expectations of the economic growth as well as the projection of the
supply and demand of hydrocarbons. The largest Venezuelan gas reserves are located
in off-shore reservoirs in the Eastern and Western Caribbean Sea in the northern
region of the country, and will be developed through the Deltana Platform, the Rafael
Urdaneta, and the Mariscal Sucre projects, which are planned to drive the increase on
national gas production to 11,839 MMPCSD by 2018, (Fig. 1) satisfying the domestic
market and exporting to strategic markets, thereby driving the development of the
country and ensuring absolute sovereignty over the gas resources (PDVSA 2011).

Intevep, PDVSA subsidiary responsible for generating technology solutions with
a focus on the exploration, production, and refining of hydrocarbons in the country,
has set as its project portfolio the development of compact and efficient gas-liquid
separation technologies. Axial Cyclonic Scrubbers, offering a solution due to its
high separation efficiency and small footprint required for installation, are ideal
for developments on offshore platforms, where the available space is usually very
limited. The successful design of an enhanced prototype will advance to the second
phase of the research and development plan, which includes capturing lessons learned
from previous experimental stage, incorporating them into the design, construction,
and experimental evaluation of the new improved prototype.
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Rafael Urdaneta 
Campo Perla 
Reservas: 8,9 MMMPC
300 MMPCED en el 2013 
800 MMPCED en el 2016 
1.200 MMPCED en el 2019 
11 y 32 MBD condensado 50º API

Mariscal Sucre
Dragón, Patao, Mejillones y Río Caribe
1.200 MMPCD de gas y 18 MBD de  
condensado
15.718 millones $ (2008-2017)

Plataforma Deltana 
9.441 Km.2
Unificación de yacimientos con Trinidad y 
Tobago (Bloque 1, 2 y 3)
Bloque 4 no requiere unificación 
1.800 millones $

7.125 MMPCSD (2011)

11.839 MMPCSD (2018)

Fig. 1 Gas reservoirs in the Eastern and Western Venezuelan Caribbean Sea
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Liquid
Outlet

Swirl Generator

Fig. 2 Type of cyclone separator. Left Reverse flow cyclone. Right Axial flow cyclone

2 Background

According to Rawlins (2003), the concept of compact separation is commonly ap-
plied in the separation unit processes that do not strongly depend on the sedimenta-
tion caused by gravitational forces present in these devices. Due to the improvement
obtained in the performance of the process by saving space and weight of this equip-
ment, the compact separation promises to revolutionize the design of the facilities.

The use of cyclone separators in the oil and gas industry is a relatively recent
phenomenon. However, they have been used successfully for some time in other
industrial applications, offering advantages over conventional gravity separators. Its
use in the oil industry is now of great interest to many companies and research centres
around the world in order to face the great challenge of the extraction and processing
of oil and gas.
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Table 1 Comparison of reverse flow cyclone and axial flow cyclone

Advantages Disadvantages

• Less susceptible to re-entrainment, for fewer
changes in direction

• Necessity of careful design of the outlet sec-
tion, since the gas and liquid separation is car-
ried out very close

• Low turbulence • Need to perform a secondary cleaning of the
purge gas stream (recycling)

• Improved performance for high flows • Erosion in the swirl-generating element (sta-
tor) when solids are present in the gas

• Low pressure drop with the same collection
efficiency
• More compact with the same collection effi-
ciency
• Ideal for grouping in multiple cyclone
arrangements (no danger of poor distribution)

There is abundance of published references in the literature regarding the design
and operation of reverse flow cyclones, yet the amount of work associated with
axial flow cyclones is significantly lower. Hoffman and Stein (2002) present the
most comprehensive information compilation regarding the principles of design and
operation for gas cyclones and swirl tubes and the comparison between reverse flow
cyclone and axial flow cyclone.

Several papers describe axial flow applications, thus increasing their popularity
(Swanborn 1988; Verlaan 1991; Dickson 1998; Austrheim 2006; Trujillo and Ulloa
2007).

Intevep began the development of an Axial Cyclonic Scrubbers in 2007 thanks
to the work of Ulloa and Trujillo (2007), who identified trends and technological
advances on the different types of axial cyclonic scrubbers, identifying main design
parameters and operating conditions for inline axial cyclonic scrubbers developed
and installed worldwide (see Fig. 3).

On the other hand, Ruiz et al. (2009) refined the conceptual design proposed
by Demey and Trujillo (2008) and built the first prototype of an axial cyclonic
scrubber. Additionally, they evaluated and identified the operational envelope through
an extensive experimental campaign in the Norte 6 multiphase flow loop of PDVSA-
Intevep, and identified the key geometric parameters to assess: departure angle of
the blades, stator-vortex finder distance, and the annular opening formed between
the vortex finder and the inner diameter of the separator (see Fig. 4).

Delgado (2010) conducted an extensive experimental campaign to assess the best
geometric configuration in order to maximize the separation efficiency of the axial
cyclonic scrubber prototype proposed by Ruiz et al. (2009) and concluded that the
most appropriate geometrical configuration for the prototype—having the highest
pressure drop—corresponded to a departure angle of the blades of 75◦, with a per-
formance separation between 83 and 93 %, for gas flow rates of 120–190 MCFSD,
respectively. The increase in the departure angle of the blades from 45 to 75◦, results
in a marked improvement in the separation efficiency (see Fig. 5) at the expense of
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State of Art
Ulloa and Trujillo 
(2007)
Identify trends and 
technological 
advances on axial 
cyclonic separator

Demey and Trujillo (2008)
First conceptual design

Ruiz et al.t (2009) 
Improve the first 
conceptual desing 

Delgado and Trujillo (2010)
1st Prototype Construction
1st Prototype Experimental Evaluation
(Determine Efficiency And Operational 
Window)

Perez et al. (2011) 
Second Conceptual Design
(improvements incorporated)

Perez et al. (2012) 
Construction of the 2nd 
Prototype

Fig. 3 Development stages technology in PDVSA-Intevep

Wet gas 
Inlet Dry gas Outlet 

Liquid Outlet

Fig. 4 First prototype designed by Intevep

a higher pressure drop. However, the pressure drop through the device is relatively
low (Fig. 6).

Figures 5 and 6 show how Delgado (2010) determined by experimental evalua-
tions, the best geometrical configuration based in the separation efficiency of the
first axial cyclone scrubber prototype scale proposed by Ruiz et al. (2009). They
concluded that the most appropriate geometry for the prototype, despite having
the higher pressure drop, corresponded to a departure angle of 75◦ blades, cre-
ating a performance separation between 83 and 93 %, for a range of gas flow
between 120 and 190 MPCSD, respectively. Increasing the departure angle of
the vanes from 45 to 75◦, results in a notable improvement in the separation
efficiency.
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Fig. 5 Separation efficiency for the first prototype

Fig. 6 Pressure drop for the first prototype

3 Description

3.1 Desing Variables

The most important geometric variables considered in the optimization of a proto-
type axial gas-liquid cyclonic separator are based on previous work by renowned
researchers. In particular, Swanborn (1988), Verlaan (1991), and Austrheim et al.
(2007) in their experimental and numerical evaluations achieved a high collection
efficiencies with the proposed geometries (greater than 95 %). In addition, detailed
geometric information on the design of the swirl generator stator can also be found
in the literature.

The parameters considered for an improved design of the axial cyclonic scrubber
prototype are illustrated in Fig. 7.

The change in any of the above mentioned variables can significantly affect the
overall device performance. The impact will be discussed in more detail below.
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Fig. 7 Key design parameters

3.2 Equipment Description

The equipment is conformed of a pre-separation chamber to disengage the larger
liquid droplets by gravitational separation, as well to separate any stratified liquid
entering the device. A static mixer is then responsible for ensuring a homogeneous
entry of the mixture to the swirl generating element (stator). The stator, whose de-
sign is based on a series of stationary helical guide vanes, creates a rotational flow,
producing the necessary centrifugal force to facilitate the phase segregation caused
by phase density differences, i.e., the heavier phase (dispersed phase liquid droplets)
will form a thin annular film to be sent to an accumulation chamber through four
longitudinal slots located in the cyclone walls, and an axial opening located at the
outlet, which is a concentric cylinder of smaller diameter called vortex finder; mean-
while the lighter phase (continuous gas phase) will form a swirling core of smaller
diameter inside the cyclone and will leave it through the vortex finder to a flow con-
ditioner element, aimed at converting the angular momentum into linear momentum,
thereby recovering pressure energy and improving mobility of the gas at the outlet.
Furthermore, the liquid separated in the pre-separation chamber will be sent to the
liquid outlet line. Another feature of this equipment is the use of a pipe for recycling
the gas flow, which improves the efficiency (see Fig. 8).
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Fig. 8 Sketch of the new geometrical configuration of axial cyclonic scrubber prototype

4 Characterization of the Axial Cyclone Separator

4.1 Static Mixer

Thakur et al. (2003), in their review of static mixers for the process industry, indicate
that one of the general parameters for choosing a static mixer is the pressure drop,
which many manufacturers and researchers reported as a ratio between the pressure
drop through the pipe with static mixer to the pressure drop through the empty (no
static mixer) pipe:

Z = fmixer

fempty
= ζPmixer

ζPempty
,

where Z is the pressure drop radius, ζPmixer is the pressure drop with the mixer (in
units of psi), and ζPempty is the pressure drop without mixer (in psi).

Figure 9 shows how the pressure drop ratio Z increases as the Reynolds number
increases. The Kenics static mixer has a lower Z factor, and based on the experience
and results obtained by Regner et al. (2006), the Kenics design was used as a model
to sizing the static mixer required in the prototype (see Fig. 10).

4.2 Swirl Generator (Stator)

Hoffman and Stein (2002) suggest the most important aspects to consider in the
design of the stators or veins swirl generators. They assert that it is the entry and exit
angles and the thickness of the blades, which will define the area available to the
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Fig. 9 Influence of the Reynolds number and aspect ratio on the Z factor for the Lightnin and the
Kenics KM mixer

Fig. 10 Static mixer

flow (throat area) and therefore the swirl velocity required to reach the required G
force to achieve phase separation. In the conventional tangential inlet cyclones, the
velocity of the vortex near the wall is determined by the velocity and the construction
coefficient of the inlet duct, while in the axial cyclones, this component is determined
by the exit velocity through the available area of the stator (throat area) in conjunction
with the exit angle of the blades. The equations that are used to calculate the throat
area and tangential velocity, given the stator geometry, are:

Dmid = √
Dov Div,

Ath = Nv

(
∂ Dmid

Nv

− t

sin (Ω)

) (
Dov − Div

2

)
sin(Ω),

Vth = 106 · Qm

Ath
,

Vo = Vth cos (Ω) ,

where Dmid, Dov , and Div are the mean, outer, and internal diameter of the throat
(in mm), respectively, Nv is the number of blades, Ω is the departure angle, t is the
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Fig. 11 Influence of the stator blade angle on the separation efficiency axial cyclone (experiment
with an air/water body of diameter 3 cm)

Fig. 12 Swirl generator (stator)

thickness of the blade (in mm), Vth is the axial velocity of the throat (in m/s), Qm

is the flow rate of the mixture (in m3/s), Ath is the flow area of the throat (in mm3),
and V0 is the tangential velocity (in m/s).

The geometry of the blades affects the separation efficiency and the pressure drop
of the axial cyclone separator (see Fig. 11). An increase in the angle between the
blades and the axial direction produces increased tangential velocity and therefore
the centrifugal force increases, improving phase separation. However, there is a limit
in increasing this angle, since as the output angle increases, also increases the pressure
drop of the device because the cross section available for the flow decreases, so that
large angles formed between the blades and the axial, produce high pressure drops
(see Fig. 12).

The efficiency of the cyclonic separation depends considerably on the G force
generated by the centrifugal acceleration imposed on the fluid due to the high cen-
trifugal accelerations, which cause the breaking of the foam bubbles in the mixture,
allowing for the liquid droplets to coalesce in the wall of the cyclone and be extracted
from the gaseous phase of the fluid, thereby generating separation (Chin et al. 2002).
The G forces generated can be determined by the following relation:
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Fig. 13 Flow conditioner

G = 2 · (vt )
2

g · D
,

where D is the diameter of the cyclone,vt is the tangential velocity, and g is the gravity.
Many researchers report recommended G-force ranges, and the most commonly
used are:

• Between 300–500 G (Swanborn et al. 1995) reverse flow
• Between 5000–6000 (Swanborn et al. 1995) axial flow
• Between 56–100 G (Gomez et al. 1999)
• Between 50–1000 G (Frankiewicz et al. 2001)
• Between 50–100 G (Barbuceanu and Scott 2001)
• Between 100–150 G (Chin et al. 2002)
• Between 10–5000 G (Rawlins 2003)

4.3 Flow Conditioner

The flow conditioner used in the prototype design is shown in Fig. 13 and was based
primarily on the recommendations outlined in the GPSA Engineering Data Book
(GPSA 1998). Dimensions of cylindrical fins that conform the flow conditioner are
determined by the following equations:

Sin
(
15◦) = r

R − r
,

Dealt = Dea f

(
Sin

(
∂
12

)
1 + Sin

(
∂
12

)
)

,

Dialt = Dealt − 2talt,

where R is the outer radius of the flow conditioner (in mm), r is the outer radius of
the cylindrical fin (in mm), Dealt is the external diameter of each cylindrical fin (in
mm), Dea f is the external diameter of the flow conditioner (in mm), Dialt is the inner
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diameter of the cross section of each cylindrical fin (in mm), and talt is the thickness
of each cylindrical fin (in mm).

5 Conclusions

The more relevant conclusions of this work can be summarized in the following
points:

• Compact separation technologies do not depend heavily on the sedimentation
caused by the gravitational force. Instead, the main separation principle is the
inertia, based on the change of flow direction, to induce centrifugal forces on the
fluids.

• Separation compact technologies promise to revolutionize the off-shore facilities
due to significant space and weight savings, while improving process performance.

• The efficiency of a cyclone separator is associated with two important variables,
which are usually categorized primarily by the separation efficiency related to the
amount of liquid collected in terms of the amount of liquid fed to the equipment
and secondly by the drop pressure through the device.

• The Kenics KM design with L /D = 1.028 was used as a model for the static mixer
geometry required in the prototype because it has shown better results compared
to the model Lightnin Series 45.

• The geometries designed for the three stators helical swirl generators were based
mainly on the design proposed by Verlaan (1991) and validated by Austrheim et al.
(2007).

• The cyclone geometry and the inlet flow rates define the G forces generated and
the flow pattern at the inlet.

• The flow conditioner used in the design was based primarily on the recommenda-
tions in the GPSA standard for fabrication of these devices.

• The proposed design considers the incorporation of a gas recirculation line from
the top of the liquid collection chamber to the section between the output of the
vortex finder and the flow conditioner.

• The lack of mathematical models for defining the geometric dimensions of axial
cyclonic scrubbers constrains designers to the use of extrapolated design crite-
ria from other cyclonic devices and of semi-empirical equations and geometric
relationships resulting from experimental and computational evaluations.

• With the development of this technology PDVSA will help ensure a reliable pro-
duction of hydrocarbons from reservoir to surface facilities, increasing the separa-
tion efficiency, the installed capacity of surface facilities, and reducing the required
footprint and therefore, the capital and operational expenditures.
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6 Further Work

In order to continue with the development of this axial cyclonic scrubber technology,
significant resources have been allocated to two ongoing main activities:

• Evaluation of the current design in the multiphase flow loop facilities of PDVSA-
Intevep to experimentally verify and validate the selected geometrical configura-
tion of the prototype.

• Use of Computational Fluid Dynamics simulations to reduce the costs and time
spent on the experimental research for the development of the final design before
conducting further tests with “real” fluids in the PDVSA-Intevep industrial scale
experimental facilities.
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Effect of Hydrotreating Reaction Conditions
on Viscosity, API Gravity and Specific Gravity
of Maya Crude Oil

Yanet Villasana, Sergio Ramírez, Jorge Ancheyta and Joaquín L. Brito

Abstract The hydrotreatment of Maya crude oil was carried out in a Parr batch
reactor, using alumina-supported catalysts based on NiMo and CoMo sulfides, car-
bides, and nitrides, which were sulfided ex situ with a mixture of H2/CS2, prior to
reaction. Hydrotreating reactions were carried out under the following conditions:
temperature: 320 ◦C, pressure: 70–80 kg/cm2, time: 4 h, stirring: 500 rpm, and cata-
lyst mass: 2 g. The products of reaction were analyzed by simulated distillation, and
the physical properties of the hydrotreated crude were obtained, such as the specific
weight and viscosity, at different temperatures, and these values were used to deter-
mine specific gravity (SG) and API. In this contribution, we illustrate changes in the
physical properties of Maya crude oil before and after hydrotreatment reaction with
variations on residue conversion when different hydrotreatment catalysts were used.

1 Introduction

In order to satisfy the world demand of petroleum derivatives, and also meet the
stringent environmental regulations and product quality standards, many studies have
been directed to improve the quality of heavy crude oils motivated by the decreasing
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availability of conventional crudes as a consequence of the increase of global popu-
lation. Heavy crude oils are more difficult to recover from the sub-surface reservoir
than light oils. In addition, this type of feedstocks have a much higher viscosity (and
lower API gravity) than conventional petroleum, and primary recovery of these pe-
troleum types usually requires thermal stimulation of the reservoir, which strongly
affects trade price. The generic term heavy oil is often applied to a crude oil that has
less than 20◦ API (Speight 1999), and this type of feed can be described as a colloidal
solution consisting of three fractions: oils, resins, and asphaltenes, in which micelles
are present. Micelles are aggregates of resins and asphaltenes held together by weak
physical interactions, the latter being in the core and the former in the periphery as a
dispersing agent (Ancheyta et al. 2005). This behaviour is caused by the high com-
plexity, high molecular weight, and highly aromatic nature of asphaltenes molecules,
characterized by a large aromatic sheet, which could pile up on each other to form
a large unit cell in the absence of resins (during hydroconversion). This fact could
lead to instability problems by coagulation and precipitation during transportation
and processing (Dickie and Yen 1967; Tynan and Yen 1969; Rana et al. 2007).

Moreover, it is worth mentioning that API gravity is related to its specific
gravity (the ratio of the density of the crude oil to the density of water un-
der specific conditions). In addition, viscosity appears to be the most important
physical property of heavy feeds, due to transportation and handling implications
(Ancheyta et al. 2005). A common way to improve the quality of heavy feedstocks
is through hydroprocessing (Shuetze and Hoffman 1984; Dickenson et al. 1997;
Ancheyta et al. 2005) using hydrogen and a proper active catalyst. The term hy-
droprocessing is broad, and includes hydrocracking, hydrotreating (HT), and hy-
drorefining. All these reasons have motivated the study of the effect of HT reaction
with different catalysts on the physical properties of Maya crude oil such as specific
gravity, viscosity, and API gravity. Although the Maya crude oil that has been used
as feed in this investigation has 23◦API, which is considered to be a medium crude
oil, the results obtained here represent an interesting approach to the correlation be-
tween the variations of these physical properties and the residue conversion and gas
products yield, and therefore give an idea of the behaviour of heavier feeds during
hydroprocessing.

2 Experimental Procedure

For the HT reaction of Maya crude oil, we have used alumina-supported catalysts
based on NiMo and CoMo sulfides, carbides, and nitrides (metal loading 15wt. %,
0.33 of atomic ratio = (X/(X+Mo)), with X= Co or Ni), which were synthesized for
FeW (Villasana et al. 2013a) and NiMo (Villasana et al. 2013b) carbides and nitrides.
It is worth mentioning that prior to hydrotreatment reaction, each catalyst, including
commercial catalysts Cat-3, were presulfided ex situ with a mixture of H2/CS2 in
order to activate the catalytic phases on the surface (300◦C/3h). Simultaneously,
200 g of Maya crude oil was set on a Parr batch reactor vessel (model 4842 of
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1.0 L of capability). After pre-treatment, the activated catalyst was transferred into a
catalyst basket and then introduced into the vessel to avoid catalyst mass loss during
reaction. Hydrotreating reactions were carried out under the following conditions:
temperature: 320◦C, pressure: 70–80 kg/cm2, time: 4 h, stirring: 500 rpm, and catalyst
mass: 2 g. The products of the reaction were recovered and separated from the catalyst
after reaction, and then analyzed by simulated distillation in an Agilent HP 7890A
chromatograph, Model G3340A following the ASTM D7169-11 method (ASTM
2011). The physical properties of the hydrotreated crude obtained, such as the specific
weight and viscosity (kinematic and dynamic), at different temperatures (15, 20, and
37.8 ◦C), were set using a Parr viscometer model SVM3000. Specific weight values
at 20 ◦C were used to determine the SG related to the specific weight of water at 4 ◦C
(0.999840 g/cm3). Moreover, specific weight values at 15 ◦C were used to determine
the SG values related to the specific weight of water at this temperature (0.999012
g/cm3) in order to estimate the API gravity at 15 ◦C (60 ◦F) as follows:

AP I Gravi t y at 60◦F =
(

141.5

SG

)
− 131.5. (1)

3 Results and Discussion

Table 1 shows the yield of gas and liquid products, where we may see the cracking
effect of NiMo and CoMo catalysts on the hydrocarbon molecules present in Maya
crude oil, indicated by the high yield of gas products, which is even superior to that
obtained for commercial catalysts when sulfide catalysts were used, while NiMo and
CoMo carbides and nitrides revealed almost the same behaviour as Cat-3. Remark-
ably, the catalysts with high levels of residue conversion showed the highest values of
yield in gas products (see Table 1). These results are related to the cracking reactions
during the HT process, as mentioned earlier, or could be due to the dealkylation of
aromatic or polyaromatic rings, associated to asphaltene or resin molecules, as was re-
ported previously for similar feedstocks (Acevedo et al. 2004; Villasana et al. 2011).

Noteworthy, the differences between the results obtained by different catalysts
are not the target of this contribution, but it could be said that each catalyst follows
different reaction pathways which lead to different product yields, which strongly
affect the physical properties of the obtained hydrotreated crude. The details of the
NiMo catalysts were reported by Villasana et al. (2013b).

Figure 1 illustrates the SG values, revealing a decrease in all cases with respect to
the Maya crude oil, except for the reaction using NiMoC as catalyst in which case this
value reached a maximum. The lowest values in this property were exhibited by the
products obtained during the reaction in the presence of sulfide catalysts of NiMo and
CoMo (NiMoS and CoMoS). In addition, the values obtained for the API gravity are
shown in Fig. 2, which revealed that this property increased when we used NiMo and
CoMo sulfides as catalysts, as confirmed by the SG results at 20 ◦C/4 ◦C. In contrast,
those reactions in which both the carbide and nitride catalysts and the commercial
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Table 1 Yield of gas and liquid products and residue conversion after HT reaction with different
catalysts compared to commercial catalyst “Cat-3”

Catalyst Yield in gas
products
(wt. %)

Yield in
liquid products
(wt. %)

Residue
conversion
538+(%)

Cat-3 1.50 87.49 11
CoMoS 3.50 76.11 41
CoMoC 1.00 89.70 8
CoMoN 2.00 91.41 10
NiMoS 2.49 82.25 36
NiMoC 2.00 90.91 8
NiMoN 1.49 91.29 12
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Fig. 1 Specific Gravity (@20/4 ◦C) of Maya crude oil before and after the HT reactions with
different catalysts

catalyst were used, a decrease in this property was observed in this order: NiMoN
> CoMoN > Cat-3 > CoMoC > NiMoC. The specific and the API gravity could
be correlated to the high conversion achieved with the sulfide catalysts in which the
yield of gas products is higher.

Figures 3 and 4 show the kinematic and dynamic viscosities at different tem-
peratures for the Maya crude oil before and after the HT reactions. As expected,
they decrease with increasing temperature with respect to the values obtained for
the Maya crude oil. It is important to notice that both values have relevance due to
transportation implications because the dynamic viscosity is the resistance of the
oil to flow, for example, through a pipeline, while the kinematic viscosity is related
to the density of the fluid. According to the commonly accepted rule, the viscosity
should be lower than 120 cSt at 20 ◦C, whereas in the southern hemisphere a greater
viscosity can be tolerated. This is the reason why refiners must ensure an adequate
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pumpability and reduce transportation difficulties, by maintaining a sufficiently low
viscosity during processing and refining of crude oil. Notably, at room temperature,
heavy crude oils are in a semi-solid form, which leads to problems on their handling
and processing. Thus, by increasing the temperature, the viscosity decreases because
of a gradual change in the colloidal structure of semi-solids caused by an increased
mobility of micelles in the oil fraction. Consequently, in order to minimize costs in
refineries, the reheating of heavy feeds is accomplished by integrating distillation
units to the catalytic reactors, thus ensuring that distillation residues with sufficiently
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Fig. 4 Dynamic viscosity of Maya crude oil before and after the HT reactions with different
catalysts at several temperatures

low viscosity are fed directly to a reactor for hydroprocessing. Usually, this process
is carried out on site with the aim to achieve sufficient pumpability for pipelining
(Jacquin et al. 1983; Peries et al. 1988).

On the other hand, Fig. 3 shows that the catalysts, corresponding to NiMo and
CoMo sulfides, reach values of the kinematic viscosity below 120cSt at 20◦C, fol-
lowed by NiMoN with approximately 200cSt and CoMoN around 300cSt. Similarly,
Fig. 4 shows that low values of the dynamic viscosity were achieved during hy-
drotreating with NiMo and CoMo sulfides, followed by their corresponding nitrides.

Additionally, the catalysts that showed high viscosities also had low values of
API gravity. However, it is known that there is no correlation between viscosity and
specific gravity. Thus, feeds varying widely in viscosity may have similar specific
gravity, which is not surprising because different factors are involved in determining
the values of viscosity and specific gravity, as reported by Ancheyta et al. (2005). This
assertion could also be extended to API gravity since this value is determined from
the specific gravity. In this regard, we notice that those catalysts with high values
of conversion, which are NiMo and CoMo sulfides, also shows the lowest values of
viscosity (dynamic and kinematic) and high API and specific gravity values.

4 Conclusions

After the hydrotreatment reaction of Maya crude oil, we have observed changes in
the physical properties with variations of the residue conversion when different hy-
drotreatment catalysts are used. The simulated distillation revealed that catalysts with
high levels of residue conversion showed the highest values of yield in gas products,
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which are related to cracking of molecules or dealkylation of aromatic or polyaro-
matic rings, associated to asphaltene or resin molecules. The specific gravity seems
to decrease in all cases with respect to the Maya crude oil, except for the reaction
using NiMoC as catalyst. The API gravity increased when NiMo and CoMo sulfide
catalysts were used. In contrast, the rest of the catalysts, including the commercial
one, exhibited a decrease in this property, with the behaviour of commercial catalysts
being comparable to that of NiMo and CoMo nitrides. These results were correlated
to the high conversion achieved during hydrotreating reaction with different cata-
lysts. As expected, the kinematic and dynamic viscosities decrease with increasing
temperature with respect to the value obtained for the Maya crude oil. Finally, it is
notable that those catalysts that showed low viscosities also had high values of the
API gravity.
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Mechanistic Model for Eccentric Annular
Gas-Liquid Flow in Horizontal Pipelines

Adriana Brito, Nelson MacQuhae, Francisco García, Nelson Fernández
and José Colmenares

Abstract A mechanistic model for the prediction of pressure drop in horizontal
pipelines is presented for annular flow. A new empirical correlation for the liquid/wall
interfacial friction is proposed, where the effects of the annular flow eccentricity,
due to the difference between the fluid density and viscosity, are accounted for. The
model is compared to three different correlation models and five mechanistic models
in current use. Its accuracy has been validated against experimental data for annular
gas-liquid flow in horizontal pipelines, taken from different sources. A number of
240 experiments were carried out with superficial liquid velocities between 0.003 and
5.96 m/s, superficial gas velocities between 9 and 69.6 m/s, liquid viscosities between
1 and 1200 cP, and pipeline diameters between 0.0261 and 0.0953 m. We find that
the mechanistic model proposed here reduces the absolute error of the pressure drop
prediction by approximately 20 % compared to other mechanistic models.

1 Introduction

The drop of pressure in gas-liquid segregated flow patterns is perhaps the most
difficult parameter to predict, while annular flow is one of the most common two-
phase flow patterns that arise in practice. The most widely used mechanistic models
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for predicting pressure drops in pipelines are those reported by Xiao et al. (1990),
Ouyang et al. (1998), Gómez et al. (1999), and Holden (2002). However, the accuracy
of these predictive models against the experimental data is over 45 %.

In annular flow patterns, the relevant parameters for the prediction of the pressure
drop are the film distribution, the droplet entrainment in which small drops of one
phase remain trapped in the other phase, and the fluid-wall friction factor. Therefore,
the aim of this study is to develop a mechanistic model that takes into account all
these parameters and reduces the uncertainty in the pressure gradient prediction.

The improved accuracy of the model has been validated against gas-liquid annular
flow data from Beggs (1972), Mukherjee (1979), and Andritsos (1986), as well as
from experimental data provided by different companies related to the database of
the Stanford University and from Petróleos de Venezuela S. A. (PDVSA) for the case
of air and heavy oil.

2 Annular Flow Models in Pipelines

In horizontal pipelines, where the film distribution is around the pipe wall and the
gas is characterized by its continuity along the core of the pipe, the annular flow
tends to be eccentric. The level of eccentricity depends on the density and viscosity
of the fluid, as well as on the flow rates of liquid and gas. The liquid film is thinner
in the upper than in the lower part of the pipe and the liquid phase moves in a wavy
manner close to the gas-liquid interface so that droplets are entrained in the gas core.

In models of gas-liquid eccentric annular flow, a Newtonian two-fluid approach
is usually employed, where the liquid film is the liquid phase and the gas-droplet
mixture is considered to be the gas phase. We assume that the flow is stationary,
incompressible, isothermal, and one-directional. Moreover, we consider the simple
case in which there is no mass transfer between the phases and assume that the
pressure gradients in the gas and liquid film are the same.

If we start from the continuity equation:

ζ∂ f

ζt
+ ◦ · (

∂ f ∇v
) = 0, (1)

where ∂ f is the mass density and v is the fluid velocity vector, the continuity equation
for steady-state flow written in a generalized orthogonal coordinate system reduces
to

1

h1h2h3

[
ζ

ζz
(h1h2vz)

]
= 0, (2)

where h1, h2, and h3 are the components of the metric tensor of the orthogonal
coordinate system defined as
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h2
1 =

(
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ζ∂

)2 +
(

ζy
ζ∂

)2 +
(

ζz
ζ∂

)2
,

h2
2 =

(
ζx
ζΩ

)2 +
(
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ζΩ

)2 +
(

ζz
ζΩ

)2
,

h2
3 =

(
ζx
ζz

)2 +
(

ζy
ζz

)2 +
(

ζz
ζz

)2
,

(3)

where (x, y, z) are the three Cartesian-coordinate axes, and ∂ = ∂(x, y), Ω =
Ω(x, y) are some orthogonal coordinates to be specified later below. In Eq. (2), vz is
the velocity component in the axial (z-axis) direction. In addition, for one-directional
flow along the z-axis, the momentum equation becomes

0 = −
(

ζ P

ζz

)
+ ∂ f g + 1

h1h2h3

[
ζ

ζ∂

(
h2h3φ∂z

)]
, (4)

where P is the pressure, g is the acceleration of gravity, and φ∂z is the shear stress
in the axial direction. We write the momentum equation in dimensionless form by
introducing the following dimensionless parameters:

∂̃ = 2

D
∂̄ ; P̃ = D

2voμ
P ; Ṽ = vi

vo
; φ̃∂z = D

2voμ
φ∂z ; z̃ = 2

D
z (5)

where∂̄ is the inner radius derived from the hydraulic diameter of the gas phase, vi is
the velocity at the gas-liquid interface, vo is the characteristic velocity of the system,
μ is the viscosity, and D is the pipe diameter. In the momentum equation for the
liquid phase, the parameters vo and μ are the superficial velocity and the viscosity
of the liquid, while in the momentum equation for the gas phase they correspond to
the superficial velocity and viscosity of the gas.

For the liquid phase, we use an orthogonal coordinate system, i.e., (∂̃(x, y),
Ω(x, y)), based on the coordinate system proposed by González (1998). This coor-
dinate system arises from a bilinear transformation in non-dimensional form, where
the fluid domain is the space confined between the inner diameter (formed by the
gas phase), which is less than one, and the outer diameter, which is equal to one.

The eccentric annular flow is mainly affected by the floatation effect of the gas
phase and the viscosity of the liquid. In order to represent mathematically this effect
it is necessary to use the modified bilinear transformation (see Fig. 1):

w = z∼ − ai

az∼ − i
, (6)

where a is the transformation pole. Following the procedure given by González
(1998), we rotate the bilinear coordinate system and transform to rectangular Carte-
sian coordinates (x,y) such that (x(∂̃, Ω), y(∂̃, Ω)), where
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x = ∂̃ sin Ω
(
1−a2

)
a2∂̃2−2a∂̃ cos Ω+1

,

y = a
(
∂̃2+1

)−∂̃ cos Ω
(
1+a2

)
a2∂̃2−2a∂̃ cos Ω+1

.

(7)

Here∂̃ is the dimensionless hydraulic inner radius of the gas phase and Ω is the angle
formed by the radial lines from the centre of the circumference (0 < Ψ < 2ρ ; see
Fig. 1).

For the proposed coordinate system the scale factors h1,h2, and h3 for the liquid
phase are given by

h1 =
(
1 − a2

)
(
a2∂̃2 − 2a∂̃ cos Ω + 1

) ; h2 = ∂̃
(
1 − a2

)
(
a2∂̃2 − 2a∂̃ cos Ω + 1

) ; h3 = 1. (8)

Substituting the scale factors (8) into the dimensionless form of Eq. (4), we obtain
for the momentum equation of the liquid phase

0 = −
(

ζ P̃

ζ z̃

)
L

− ReSL

4FrSL
sin θ +

(
a2∂̃2 − 2a∂̃ cos(Ω) + 1

)2

(
1 − a2

)2
∂̃[

ζ

ζ∂̃

( (
1 − a2

)
∂̃(

a2∂̃2 − 2a∂̃ cos(Ω) + 1
) φ̃∂z

)]
, (9)

where ReSL is the Reynolds number of the liquid phase, FrSL is the liquid Froude
number, and φ̃∂z is the dimensionless shear stress in the axial direction, ie.,

ReSL = ∂LvSL D

μL
; FrSL = v2

SL

gD
; φ̃∂z = D

2vSLμL
φ∂z . (10)
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Here vSL is the velocity of the liquid phase, while ∂L and μL are the density and
viscosity of the liquid. In order to determine the pressure gradient in the pipe, we
integrate Eq. (9) to obtain:

(
R2

i − 1
) (

1 − a4 R2
i

)
(a Ri − 1)2 (a Ri + 1)2

(
ζ P̃

ζ z̃
+ ReSL

4FrSL
sin θ

)
L

=
[

2φzw − 2Ri
(
1 − R2

i

)
(
1 − a2 R2

i

) φ̃i L

]
,

(11)
where Ri , φ̃zw, and φ̃i L , are, respectively, the dimensionless hydraulic radius of the
gas phase in the annular core, the shear stress at the pipe wall for the liquid, and the
interfacial shear stress given by

Ri = (e − R1) − a

a (e − R1) − 1
; φ̃zw = D

2vSLμL
φzw; φ̃i L = D

2vSLμL
φi . (12)

For the gas phase, we write the momentum equation in cylindrical coordinates and
assume that the gas phase is flowing in a perfect cylinder, where its diameter is
given by the hydraulic diameter of the gas core in the annular flow pattern. After
substitution of the scale factors h1 = 1, h2 = ∂, and h3 = 1 into Eq. (4), it is possible
to obtain the momentum equation for the gas phase in dimensionless form

(
ζ P̃

ζ z̃
+ ReSG

4FrSG
sin θ

)
G

= − 2

Ri
φ̃iG , (13)

where ReSG , FrSG , and φ̃iG are, respectively, the Reynolds and Froude numbers of
the gas phase and the dimensionless interfacial shear stress, defined as

ReSG = ∂C vSG D

μG
; FrSG = v2

SG

gD
; φ̃iG = D

2vSGμG
φi , (14)

where now vSG is the velocity of the gas phase and ∂G and μG refer to the density
and viscosity of the gas. The gas core density in the annular flow, ∂c, is a no-slip
density because the core is considered a homogeneous mixture of gas and entrained
liquid droplets flowing at the same velocity (Ansari et al. 1994), that is

∂c = ∂L HLc + ∂G(1 − HLc). (15)

The no-slip holdup in the gas core, HLc, is given by

HLc = vSL Fe

vSG + vSL Fe
, (16)

where Fe is the fraction of the total liquid entrained in the gas core and given by
(Oliemans et al. 1986)
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Fe

1 − Fe
= 10σ0∂

σ1
L ∂

σ2
G μ

σ3
L μ

σ4
G κσ5 Dσ6 V σ7

L S V σ8
GSgσ9 . (17)

In this relation, the exponents σ are numbers corresponding to fitted parameters.
On eliminating the pressure gradient from Eqs. (11) and (13), it is possible to

obtain the combined momentum equation

φi
SL

A

(
1

Ri
+ Ri

(
1 − a2

)
(
1 − a2 R2

i

)β

)
− φwL

SL

A
β + g sin θ (∂G − ∂L) = 0, (18)

where A is the cross-sectional area of the pipe, SL is its perimeter, and β is a geometric
factor that takes into account the effects of the annular flow eccentricity

β = (a Ri − 1)2 (a Ri + 1)2(
1 − R2

i

) (
1 − a4 R2

i

) . (19)

Moreover, the shear stress at the pipe wall for the liquid, φwL , is defined by

φwL = 1

2
fwL∂Lv2

L , (20)

where fwL is the wall-liquid friction factor, which obeys the experimentally obtained
correlation for annular flow

fwL = 0.0063 + 53.4662Re−1
M . (21)

In the above relation, ReM is the Reynolds number proposed by García et al. (2003):

ReM = ∂LvM D

μL
. (22)

Furthermore, the interfacial shear stress, φi , is given by

φi = 1

2
fi∂c (vG − vL)2 , (23)

where the gas-liquid interfacial friction factor, fi , is given by Whalley and Hewitt
(1978) correlation. They determine the interfacial friction factor by considering an
interface roughness (k = C ± ψh f ), using Colebrook (1939) equation

1≥
fi

= −4 log

[
k/D

3.7
+ 1.255

ReSG
≥

fi

]
, (24)

where ψh f is the apparent roughness or wave height and the factor C is the density
ratio C →= 0.3 (∂L/∂G)0.33.
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Table 1 PDVSA-Intevep experimental data

Source Points Fluids μL (cP) vSL (m/s) vSG (m/s) D (m) ε/D

Exp-A (2001) 5 Air-kerosene 1 0.11-1.6 28.2-45.7 0.0508 0
Exp-B (2000) 14 Air-oil 500 0.01-0.3 10.1-38.2 0.0508 0
Exp-C (2001) 7 Air-oil 1200 0.85-0.9 7.2-24.4 0.0508 0

Table 2 Stanford University data

Source Points Fluids μL (cP) vSL (m/s) vSG (m/s) D (m) ε/D

Govier and Omer (1962) 5 Air-water 1 0.01-0.1 6.3-16.6 0.0261 0
Ansari et al. (1994) 3 Air-oil 80 0.02-0.3 6.1-13.2 0.0266 1.7E-3
Companiesa 36 Air-oil 15 0.04-0.5 18.7-69.6 0.0502 3.0E-5

17 Air-HL 1-25 0.02-2.2 8.0-24.1 0.0381 1.2E-3
12 3-22 0.03-0.6 23.1-59.5 0.0909 1.7E-5
4 19 0.11-0.6 40.5-63.4 0.0232 6.5E-5
8 19 0.10-1.0 34.9-57.1 0.0237 6.5E-5
73 Air-water 1 0.01-0.5 16.9-61.3 0.0455 0

a Data sets are identified as: SU24, SU25, SU28, SU29, SU184, SU187, SU199

Table 3 Tulsa University data

Source Points μL (cP) vSL (m/s) vSG (m/s) D (m) ε/D

Andritsos (1986) 36 1-70 0.001-0.56 12.15-30.09 0.0252 0
3 80 0.004-0.02 14.04-24.65 0.0953 0

Beggs (1972) 5 1 0.02-0.56 15.96-24.97 0.0254 0
3 1 0.02-0.11 14.85-15.12 0.0381 0

Mukherjee (1979) 9 1 0.03-0.56 11.40-24.06 0.0381 0

3 Experimental Data

The experimental data for the gas-liquid annular flow is made of 240 experimental
points of a database containing information from the Stanford Multiphase Flow
Database (SMFD), the Tulsa University Fluid Flow Project (TUFFP), and PDVSA-
Intevep experiments. The range of operation conditions and fluid properties of each
database are summarized in Tables 1, 2, and 3.

In each table, the last colum lists the absolute roughness, ε, in terms of the pipe
diameter. The statistical parameters employed in this study are listed in Table 4.
They are given by: the average percentage error (E1) and the average error (E5),
which are related to the agreement between predicted and measured data; the average
absolute percent error (E2) and average absolute error (E6), which are two of the
most important statistical parameters because the negative and positive values do
not cancel out; the standard percent deviation (E3) and standard deviation (E7),
which are related to the scatter of the errors with respect to the average error of
the experimental data; and the mean root square percent error (E4) and the root
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Table 4 Statistical parameters

Statistical parameter Definition Unit

E1
1
N

N∑
I=1

(
ψPcal −ψPm

ψPm

)
∼ 100 %

E2
1
N

N∑
I=1

∣∣∣(ψPcal −ψPm
ψPm

)∣∣∣ ∼ 100 %

E3

√
1

N−1

N∑
I=1

((
ψPcal −ψPm

ψPm

)
− E1

)2 ∼ 100 %

E4

√
1

N−1

N∑
I=1

((
ψPcal −ψPm

ψPm

))2 ∼ 100 %

E5
1
N

N∑
I=1

(ψPcal − ψPm) Pa/m

E6
1
N

N∑
I=1

|(ψPcal − ψPm)| Pa/m

E7

√
1

N−1

N∑
I=1

((ψPcal − ψPm) − E5)
2 Pa/m

E8

√
1

N−1

N∑
I=1

((ψPcal − ψPm))2 Pa/m

mean square error (E8), which indicate how close the model prediction is to the
experimental data.

4 Results and Discussion

In order to develop a model that takes into account the eccentricity of the annular
flow in pipelines, we have carried out a series of experiments in PDVSA-Intevep
with an air-oil flow of 400 cP in horizontal pipes. We found that for a constant liquid
rate, when the gas rate increases, the eccentricity of the annular flow decreases and
eventually tends to zero, as shown in Fig. 2, where the eccentricity is plotted as a
function of the gas superficial velocity.

We observe that the eccentricity has no relevant effects on the pressure gradient
because when we force the model to predict the pressure gradient with an eccentricity
equal to zero, the difference obtained is about ±1 %. Figure 3 compares the predicted
values of the pressure gradient for annular flow with the experimental data listed in
Tables 1, 2 and 3 for a gas-liquid system. The average absolute error is 30.5% with
an estimated standard deviation of 28.9 %. As we may see, the average absolute error
of 60 %, corresponding to the experimental database (147 points), has a deviation
less than 30 % over a wide range of fluid properties and pipe diameters.

We also compare the performance of the our model with that of other mechanistic
models (MM) as proposed by Xiao et al. (1990), Ouyang et al. (1998), Gómez et al.
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Fig. 3 Comparison of the predicted pressure gradients with existing experimental data

(1999), and Holden (2002) and the correlation models (CM) of Dukler et al. (1964),
Beggs and Brill (1973), and García et al. (2003) for the same experimental data of
Tables 1, 2 and 3.

The accuracy of the different mechanistic and correlation models is listed in
Table 5 and is expressed in terms of the statistical parameters displayed in Table 4.
All these models were compared against the experimental data of Tables 1, 2 and 3.
We may see that for most existing models in current use the absolute error E2 is more
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Table 5 Comparison of the accuracy of pressure gradient prediction against the experimental data
for different mechanistic and correlation models

E1 E2 E3 E4 E5 E6 E7 E8

(%) (%) (%) (%) (Pa/m) (Pa/m) (Pa/m) (Pa/m)

Garcia CM −11,8 29,4 31,7 33,8 −127,3 690,6 1444,4 1450,0
Brito MM −10,3 30,5 40,8 42,1 −354,2 862,0 1780,9 1815,9
Dukler CM −27,6 31,8 26,6 38,4 −803,3 878,2 1527,8 1726,8
Holden MM 28,4 47,9 118,0 121,4 667,9 1048 5883,6 5921,5
Ouyang MM −52,8 53,9 25,8 58,7 −1007 1120 1788,9 2053,8
Xiao MM 62,0 92,6 183,7 193,9 33,7 1137 1960,1 1960,4
Beggs and Brill CM 128,9 141,1 554,9 569,8 9578 10108 73313 73939
Gomez MM 164,8 178,9 2023 2030 416,7 1076 4458 4478

than 50 % in the prediction of the pressure gradients for annular flow in pipelines.
In contrast, the overall performance of our mechanistic model (Brito MM) yields an
absolute error of 30.5 % and so it has a superior accuracy compared to all quoted
mechanistic models. We note, however, that the correlation models of Dukler et al.
(1964) and García et al. (2003) also produced deviations of about 30 %, similar to
our model.

5 Conclusions

A new mechanistic model for the prediction of gas-liquid annular flow in horizon-
tal pipelines has been presented. The accuracy of the model has been assessed by
comparing its performance with that of seven different models for a set of 240 exper-
imental points. The main conclusions can be summarized as follows:

• The eccentricity has no important effects on the prediction of the pressure gradients
in annular flow patterns, with a difference less than 1 % when concentric and
eccentric patterns are considered.

• The limiting case of the model proposed is when the eccentricity is equal to zero
(concentric flow).

The present model reduces the absolute error in the prediction of pressure gra-
dients in pipelines by 17 % compared to Holden (2002) mechanistic model, which
is considered to be the mechanistic model with better performance. The overall per-
formance of the model is around a 30 % absolute error, similar to the performance
obtained with correlation models by Dukler et al. (1964) and García et al. (2003).
These results clearly indicate that more studies are indeed required to improve the
accuracy of prediction of the physical parameters relevant to annular flow in pipelines.
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Scaling Properties in the Adsorption of Ionic
Polymeric Surfactants on Generic
Nanoparticles of Metallic Oxides
by Mesoscopic Simulation

Estela Mayoral and Eduardo Nahmad-Achar

Abstract We study the scaling of adsorption isotherms of polyacrylic dispersants on
generic surfaces of metallic oxides XnOm as a function of the number of monomeric
units, using Electrostatic Dissipative Particle Dynamics simulations. The simulations
show how the scaling properties in these systems emerge and how the isotherms re-
scale to a universal curve, reproducing reported experimental results. The critical
exponent for these systems is also obtained, in perfect agreement with the scaling
theory of de Gennes. Some important applications are mentioned.

1 Introduction

Polyelectrolyte solutions have properties quite different from those observed in so-
lutions of uncharged polymers, and their behaviour is less well known (de Gennes
1976; Odijk 1979; Dobrynin et al. 1995). In particular, the scaling of some quanti-
ties could present a different behaviour and so atypical scaling exponents could be
found. In most cases, the statistical properties of these interesting systems cannot be
obtained analytically because of the long-range Coulombic repulsion produced by
the presence of small mobile counterions in the bulk, which interact both with the
charge in the polymer and with one another. The use of simulation methodologies
have shown, however, to be a promising tool in the study of very complex systems
(Fermeglia and Pricl 2007).
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In our case of study, the presence of big charged molecules (such as polymers)
and small ones (like counterions and solvents) involving different length and time
scales, makes an electrostatic mesoscopic approach a good alternative. One of these
mesoscopic approaches is Dissipative Particle Dynamics (DPD), which is a Langevin
dynamics approximation where the fluid is represented by virtual interacting particles
through three forces: conservative, random, and dissipative. The conservative force
includes repulsive and electrostatic interactions, and determines the equilibrium state
of the system, whereas the dissipative and random forces act as a thermostat and allow
transport properties, preserving the thermodynamic equilibrium. The electrostatic
interactions in DPD simulations were first incorporated by Groot (2003), who solved
the electrostatic field locally on a lattice. An alternative way to solve the electrostatic
problem in DPD was developed later on by González-Melchor et al. (2006), where the
calculation of the electrostatic interactions employs the standard Ewald sum method
and, in order to prevent the artificial ionic pair formation, charge distributions are
included on the DPD particles.

In this work, we study using electrostatic mesoscopic dissipative particle dynamics
simulations, the adsorption of dispersants onto pigments and show the resulting
density profiles, the adsorption isotherms, and their scaling properties.

2 Mesoscopic Approach

One of the main problems in many industrial and academic areas is that the systems
of interest are often constituted by many particles of different length scales, inter-
acting in different time scales. In order to simplify the study of these systems, in
the early 1990 s Hoogerbrugge and Koelman (1992) introduced a mesoscopic sim-
ulation technique. This is known as Dissipative Particle Dynamics (DPD) and is
a coarse-graining approach, which consists of representing complex molecules as
soft spherical beads interacting through a simple pair-wise potential, and thermally
equilibrated through hydrodynamics (Groot and Warren 1997). In this formalism,
the beads obey Newton’s equations of motion

dri

dt
= vi,

dvi

dt
= f i, (1)

where ri and vi are the position and the velocity of the ith particle, respectively, and
the force f i is given by three components:

f i =
∑

j

(
f C

ij + f D
ij + f R

ij

)
, (2)

corresponding to the conservative, dissipative, and random contributions, respec-
tively. The sum runs over all neighbouring particles within a certain distance Rc.
The conservative force f C derives from a soft interaction potential and there is no
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hard-core divergence as in the case of a Lennard-Jones potential, thus providing a
more efficient scheme of integration; it has the form

f C
ij = aij ω

C(rij)
rij

|rij| . (3)

When we need to introduce a more complex molecule, such as a polymer, we use
beads joined by springs, so we also have an extra spring force given by f S

ij = k rij if
i is connected to j. The dissipative f D and random f R standard DPD forces are given
by

f D
ij = −γ ωD(rij)

(rij · vij) rij

|rij|2 , (4)

and

f R
ij = −σ ωR(rij)

θij

δ
1/2
t

rij

|rij| . (5)

Here, δt is the time step, vij = vi − vj is the relative particle velocity, θij is a random
Gaussian number with zero mean and unit variance, γ and σ are the dissipation and
noise strengths, respectively, while ωC(rij), ωD(rij), and ωR(rij) are dimensionless
weight functions. Not all these quantities are independent: some of them are related
through the fluctuation-dissipation theorem (Español and Warren 1995) by γ =
σ2/2κBT and ωD(rij) = [ωR(rij)]1/2, with κB being the Boltzmann constant and T
the temperature.

The methodology used in our mesoscopic simulations and, specifically, the elec-
trostatic DPD methodology, is briefly described in the following subsection.

2.1 Mesoscopic Simulation: Electrostatic Dissipative Particle
Dynamics

We consider in our study an ionic polymeric dispersant, for example polyacrylic acid
(PAA) or a salt derived from it, in water and in the presence of substrate particles
which we assume to be metallic oxides, such as TiO2, Al2O3, CeO2, etc. We map
the polymer chain into beads which we call DPD beads as shown by the label A—in
Fig. 1. Each DPD bead has a volume vDPD = 90 Å3 and radius rDPD = 2.78 Å,
which correspond to the volume of three water molecules. We can represent a PAA
chain by NDPD beads of carboxylate monomeric units joined by springs with some
spring constant k. In this case NDPD = vmonN/vDPD, where vmon is the volume of a
carboxylate monomeric unit and N is the number of monomeric units in the chain.

As was mentioned in the Introduction, here we replace the point charge at the
centre of the DPD particle by a charge distribution throughout the particle. This is
in order to avoid the formation of artificial clusters from oppositely charged ions.
Groot (2003) solved the problem by calculating the electrostatic field on a grid.
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Fig. 1 Mesoscopic
identification for a
polyelectrolyte such as the
sodium salt of PAA

The algorithm is known as the particle-particle-particle mesh (PPPM) algorithm. In
González-Melchor et al. (2006), we solved this problem by combining the standard
method with charge distributions on particles, adapting the standard Ewald method
to DPD particles. In the present work, we use the latter method because the Ewald
sum technique is the most employed route to calculate electrostatic interactions in
microscopic molecular simulations. We take, as in González-Melchor et al. (2006)

ωC(r) = ωR(r) = ωD(r)1/2 = ω(r), (6)

with

ω(r) =
{

1 − r/Rc : r ◦ Rc,

0 : r > Rc,
(7)

where Rc is the cut-off distance, here assumed to be 6.46 Å (the simulation char-
acteristic length). We also take σ = 3 kg m s−3/2. We represent the PAAN− with N
DPD beads, each one having vmon = 90 Å3 and bonded by a spring with k = 100.
The Na+ ions were simulated by one DPD bead each with charge 1+, and three
water molecules per neutral DPD particle. These values reproduce the isothermic
compressibility of water in standard conditions. All other quantities, including k, are
dimensionless quantities given in reduced units. This is accomplished as follows:
since we keep T = const in our simulations, we may take κBT = 1 as the unit
of energy; the distance r is measured in units of Rc, i.e., r∇ = r/Rc; the force has
therefore no units as [E]/[r∇] = [1], and neither does k; the density is given as the
number of molecules per unit volume and has no units, and the mass does not ever
enter into the model. Since the force is dimensionless so is the time. The integration
time step is taken to be Δt∇ = 0.02 and the total average density is ρ∇ = 3 (i.e., three
water molecules per DPD particle; one may also see that it has the unit of mass as
being defined by the mass of a DPD particle with three water molecules).
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Fig. 2 Density profiles for [PAA] = 32 (left) and 8 (right)

3 Results and Discussion

3.1 Results for Adsorption Isotherms

The DPD electrostatic simulations were performed using our mesoscopic model
as described in the last section, in order to obtain the adsorption isotherms for
[PAAN−][Na+]N on generic surfaces of metallic oxides XnOm at a basic pH. The
length of the PAA-DPD molecule was varied as N = 2, 4, 8, 16, and 32 DPD particle
units. The repulsive constants aij in the DPD model were set to aW−PAA− = 100,
aW−Na+ = 100, aW−H2O = 100, aH2O−PAA− = 82, aH2O−Na+ = 25, and
aPAA−−Na+ = 25. These values can be obtained from solubility parameters, and
a more refined calculation can be made by using activity coefficients (cf. Mayoral
and Nahmad-Achar 2012).

The resulting density profiles ρ(z), describing the spatial organization of the
molecules as a function of one of the spatial coordinates, are shown in Fig. 2
for two different concentrations of the polyelectrolyte, namely [PAA] = 32 and
[PAA] = 8. They show that larger molecules tend to adsorb at the edges of the box
(which represent the metallic substrate), and remain less in the aqueous medium (in
between the box walls), where smaller molecules can be found.

To obtain the adsorption isotherms we calculate the amount of polyelectrolyte Γ

carried by the particle, by integrating the density profile according to

Γ =
∫ Lz

0
[ρ(z) − ρbulk] dz, (8)

where Lz is the width of the first adsorbed layer and ρbulk the bulk density. Figure 3
shows the number Γmol of PAA-molecules adsorbed on a TiO2 surface vs. the number
Γ b

mol of non-adsorbed molecules, by considering a single adsorbed layer. As expected,
the saturation on the surface is reached earlier for larger molecules.

However, we may easily renormalize these curves by plotting the number of
independently adsorbed DPD beads ΓDPD vs. non-adsorbed DPD beads Γ b

DPD, using
N Γmol = ΓDPD. The behaviour will then be that of a universal isotherm conformed
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Fig. 3 Adsorption isotherms for PAA on a TiO2 surface for different N

Fig. 4 Universal adsorption isotherm for PAA on a TiO2 surface, renormalized

by the contribution of all sizes, as shown in Fig. 4. Assuming that only one layer
is adsorbed on the surface (the self similar region) and that all adsorption positions
are equivalent, we can extract the maximum concentration at equilibrium and the
adsorption-desorption constant for each isotherm, which is given by the Langmuir
isotherm. The dynamic equilibrium is given by A+N ∼ AN with velocity constants
Ka for the adsorption and Kd for the desorption. The expression for this kind of
adsorption model, in the case of neutral species, is given by the Langmuir isotherm
expressed by

1

Γ
= 1

ΓM
+ 1

ΓM K C
, (9)

where K = Ka/Kd and C is the concentration in the bulk (Γ b). Γ is the adsorbed
quantity and ΓM is the maximum adsorbed quantity. The linear fit for this isotherm
is shown in Fig. 5, and is given by 1/ΓM = 0.0094 and 1/(ΓM K) = 0.5432, from
which ΓM = 106.38 PAADPD and K = 0.0173.
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Fig. 5 Langmuir fit for the adsorption isotherms of PAA on TiO2

Table 1 Scaling for Γmax as
a function of N

ln N ln Γmax

0.6931 3.3077
1.3863 2.8134
2.0794 2.4581
2.7726 1.5626
3.4657 1.1907

3.2 Scaling for Γmax

In the light of these results, it is interesting to study the behaviour of Γmax with N .
We can do this, once more, via DPD electrostatic simulations. Γmax is obtained by
fitting each isotherm in Fig. 3 with the Langmuir model, which we have shown to
be adequate (vide supra). Table 1 shows the results for the fit in each case. When we
plot Γmax versus N we obtain the behaviour shown in Fig. 6 and the scaling function
is Γmax ≥ N−0.79 → N−4/5. This result is in perfect agreement with de Gennes et al.
(1976).

The scaling theory in the weak adsorption regime indicates that in the flat plateau,
i.e., at maximum saturation

γp ∼ N1/5, (10)

where γp is the number of monomers adsorbed in the flat plateau, γp = Γmax N .
Equation (10) then implies Γmax ∼ N−4/5 = N−0.8, which agrees very well with our
result. It is interesting that the renormalized behaviour adjusts itself to the scaling
model in the weak adsorption regime, even though we are dealing here with charged
molecules.
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Fig. 6 Scaling of Γmax with N

4 A Simple Application to Colloid Stability

Since PAA and its salt derivatives tend to be very hydrophilic, the adsorbed segments
will see the substrate as a flat surface when in a good solvent. If R is the effec-
tive radius of the substrate particle and Rg = af Nν is the radius of gyration of the
polymer chain, with af

3 proportional to the Flory volume, the flat surface regime is
given, according to the loops and tails model, by R > af N3/5 (Aubouy et al. 1993;
Aubouy and Raphaël 1998). Lately, and in order to improve the performance proper-
ties of coatings, CeO2 and Al2O3 nanoparticles have been used in their formulations
(Mayoral et al. 2012). For these we have RCeO2 → 10 nm and RAl2O3 → 20 nm which
would give, for PAA and its salt derivatives, N < 400 (Mw < 40,000 gr/mol) for
CeO2 and N < 1,250 (Mw < 125,000 gr/mol) for Al2O3. This accommodates even
the higher molecular weight dispersants, so that a flat substrate approximation is
appropriate in our mesoscopic approach.

Let us consider a small particle of diameter d1 = 2r1 and area a1, and a larger
particle with diameter d2 = 2r2 > d1 and area a2 > a1, to be stabilized in an aqueous
medium. We know from the previous section that the number of monomers adsorbed
in the flat plateau is γp = Γmax N , with these quantities scaling as γp ∼ N1/5 and
Γmax ∼ N−4/5.

Γmax is the number of chains of size N per unit area needed in order to cover
satisfactorily some amount, say 1 mol, of material. If we want to cover a surface of
area a1, then c = a1Γmax,1 chains are needed. Now suppose that the weight of one
monomeric unit is 1 unit of mass, then a1Γmax,1[chains] = a1Γmax,1N1 = a1γp,1 and
for the same amount of material but with area a2, we will require a2Γmax,2[chains] =
a2γp,2. If κ is the amount of mass needed to cover the surface of particles of diameter
2r1 divided by the mass of dispersant necessary to cover the surface of particles of
diameter 2r2, then
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κ = a1γp,1/a2γp,2 = (a1N1/5
1 )/(a2N1/5

2 ), (11)

or
κ = (r2/r1) (N1/N2)

1/5. (12)

We can make use of this expression to analyze two interesting cases:
Case 1. If we want to use the same amount of dispersant, taking dispersants

with different lengths N1 and N2 and having the same chemistry, κ = 1 and 1 =
(r1/r2) (N1/N2)

1/5, that is N1 = (r1/r2)
5N2. We would then need a dispersant with a

very small degree of polymerization compared with N2 for r1 << r2. In this case the
smallest and the best dispersant will be N1 = 1 (monomeric dispersant), in agreement
with the results of Goicochea et al. (2009). If, on the other hand, (r1/r2)

5 << 1, a
change in the chemistry of the dispersant would be a better option.

Case 2. In the limit of a flat approximation, we can consider N = (R/af )
5/3 and

have κ = (r2/r1) [(r1/r2)
5/3]1/5 = (r2/r1)

2/3. For Al2O3 nanoparticles as compared
to ordinary TiO2 particles used in coatings, for example, we have RTiO2 → 125 nm
and RAl2O3 → 20 nm, and so κ = (125/20)2/3 = 3.3993. Comparing this result to an
estimation based on purely geometric arguments (Mayoral et al. 2012), where 6.25
times the dispersant amount was needed for Al2O3-nanoparticles, we observe that
by choosing a dispersant with an adequate length N we would need a much smaller
quantity.

5 Conclusions

Langmuir isotherms were calculated for polyacrylate dispersants adsorbed on metal-
lic oxides, while their scaling properties as a function of the number of monomeric
dispersant units were obtained via DPD-simulations. The critical exponent for the
renormalized isotherms was obtained, and this agrees perfectly well with the scaling
theory of de Gennes et al. (1976), even though polyelectrolytes are being considered.

The results presented here suggest a methodology for estimating the amount of
dispersant necessary in different scenarios and for a better choice of the appropriate
dispersants. The particular case of the stabilization of metallic nanoparticles is inter-
esting, as their inclusion in many formulations to improve performance properties
is presently a major area of research. Problems arise because the dimensions of the
nanoparticles and polymeric dispersants are similar, and because of the large total
surface area to be covered. However, excessive amounts of any surfactant will cause
the property degradation of the material, and new especially designed surfactants cir-
cumvent the need for large quantities. Here it was shown that our simulation results
improve upon the experimental values obtained by Mayoral et al. (2012).
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Effect of Mixtures of Polysorbate 80 and Low
Molecular Weight Alcohols on Density
and ◦API Gravity of Treated Venezuelan
Extra Heavy Oil

Efrén D. J. Andrades, Ledys Y. Sánchez, Hilda C. Grassi, Erick A. Pacheco,
Silvia E. Andrades-Grassi and Gerardo E. Medina-Ramírez

Abstract Formulations of extra heavy oil with biocompatible polyethoxilated com-
pounds have not received much attention. We investigate the behaviour of biocom-
patible mixtures in the treatment of Venezuelan extra heavy oil, using the non-ionic
surfactant Polysorbate 80 (Tween 80) and low molecular weight linear n-alcohols
with even and odd number of carbon atoms, in order to predict the best fit in the
ethoxide—alcohol interaction. Venezuelan extra heavy oil was recovered from mix-
tures that contained water, NaCl, polysorbate 80, and n-alcohols ranging from 1 to
8 carbon atoms. The density, ◦API gravity (American Petroleum Institute gravity),
and other properties were measured and compared for the even and odd numbered
n-alcohols. We found a significant difference in density and ◦API gravity values in
the treated and recovered extra heavy oil, for n-alcohols with even and odd number
of carbons, in the presence of polysorbate 80. This finding suggests that the ether
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within the ethoxide-repeating units of polysorbate 80 is the hydrogen bond acceptor
of the n-alcohol donor. However, this interaction is favoured for the even number
alcohols that interact in an “in-frame” manner with the ethoxide. We propose the
formation of a micellar nanoparticle that promotes the improvement of Venezuelan
extra heavy oil.

1 Introduction

The use of biocompatible molecules in the treatment of extra heavy oil, bitumens,
asphalts, and other hydrocarbons, has been limited mainly due to the relatively high
operative costs, the difficulty to recover separately the biocompatible molecules and
the hydrocarbon after treatment, and the time required for the procedure, especially
if indigenous microorganisms or designed microorganisms are expected to partic-
ipate. Furthermore, knowledge of the potential roles of chemicals and biosurfac-
tants in accelerating hydrocarbon accession to microorganisms is still very limited
(Van Hamme et al. 2003; Tunio et al. 2011; Al-Sulaimani et al. 2011). Toxic poly-
ethoxilated derivatives have been used for the improvement, transportation, and stor-
age, and even for the design of new and lower cost fuels, such as Orimulsion�
(Rivas 1999).

Due to these limitations, toxic polyethoxilated molecules, such as those of
Orimulsion�, have been more widely used instead of their biocompatible coun-
terparts. Thus, formulations of extra heavy oil with biocompatible polyethoxilated
compounds have not received much attention. These molecules, which are composed
of ethoxide-repeating units with ether bonds between them, have several oxygen
atoms which may be potential H-bond acceptors. Ethers are less polar than alcohols
and they participate in hydrogen bonds as H-bond acceptors, but cannot act as donors,
unlike their parent alcohols (March 1992).

The presence of two lone pairs of electrons on the oxygen atoms makes hydrogen
bonding with water (or with alcohols) possible. On the other hand, alcohols can be
hydrogen bond donors (H donor) or H-bond acceptors (lone pair), forming hydrogen
bonds with themselves and with other hydrogen bond donor/acceptors. Studies on
H-bonding in alcohols show that the H-bond strength with primary and secondary
alcohols as donors should serve as a tool for the characterization of these important
interactions in chemical and biochemical systems (Gawlita et al. 2000). In view of
these possible molecular interactions among alcohols and ethoxide moieties, and
based on a formulation previously proposed by Grassi (2001), we investigate the
behaviour of biocompatible mixtures in the treatment of Venezuelan extra heavy oil,
using the non-ionic surfactant Polysorbate 80 (Tween 80) and low molecular weight
linear n-alcohols with even and odd number of carbon atoms, in order to find the
best fit in the ethoxide—alcohol interaction. Several properties of the treated extra
heavy oil, such as density and ◦API gravity, were studied in order to understand
this idea.



Effect of Mixtures of Polysorbate 80 and Low Molecular Weight Alcohols 455

Fig. 1 Density (in units of g/mL) of the recovered heavy crude oil after treatment, as a function of
the number of carbon atoms in the n-alcohol

2 Materials and Methods

10 mL of extra heavy oil from Morichal, Estado Monagas, Venezuela, with 9◦API
gravity and density 1.01 g/mL were mixed with 5 mL of distilled water containing
17,800 ppm NaCl and left at 61◦C for 24 h. 100 µL of polysorbate 80 (Tween 80
pharmaceutical grade) and 10 µL of the test alcohol (analytical grade) were added
(optimal formulation 10:5:0.1:0.01 oil:brine-water:non-ionic surfactant:alcohol). In
some experiments, Tween 80 was substituted by I200 (from Orimulsion�), which
was kindly supplied by the UBIP Project. This was mixed at 200 rpm at 61◦C for
90 min and then left at room temperature without mixing, allowing for the separation
of the respective aqueous phases from the recovered oil phases. Density (in units of
mg/mL) was measured by weighing several times a fixed volume of the recovered
oil phase. The other parameters were measured as a control and will be reported
elsewhere. The significance of the values obtained with alcohols with even and odd
number of carbon atoms was calculated by the Student’s t-test.

3 Results and Discussion

Figure 1 and Table 2 show the density of the crude oil recovered after treatment with
Polysorbate 80 (Tween 80) and the density of each of the linear n-alcohols containing
from one to eight saturated carbons. Alcohols with an even number of Carbon atoms
(i.e., 2, 4, 6, and 8) yield lower density values than odd alcohols (i.e., 1, 3, 5, and 7).
Applying the Student’s t-test on the results of density for both groups of data (crude
oil recovered from mixtures of even and odd alcohols), the null hypothesis, stating
that the means of the densities of the two groups are equal, is rejected. Therefore,
the alternative hypothesis indicating that the means of the densities of even alcohols
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is proven to be statistically different and lower than that obtained with the odd
alcohols, is accepted, as shown in Table 1. In the same test, for other parameters
such as viscosity, conductivity, drop weight, oil retained, and water retained, the null
hypothesis is accepted indicating that there is no significant difference in the results
obtained with even and odd alcohols (see Table 1).

From this data, the ◦API gravity of the recovered oil was calculated and tabulated
(see Table 2). As expected, linear n-alcohols with an even number of carbon atoms
yield values that are higher than 50 ◦API gravity, while odd alcohols yield values
that are lower than 50 ◦API gravity. A possible explanation for the oscillation is that
the polysorbate 80 (Tween 80) may be allowing for the formation of hydrogen bonds
with the ether being the acceptor and the alcohol being the donor. This interaction
would be better for all the even alcohols and would be impaired for odd alcohols.

Aizawa (2009) reported the formation of a micellar nanoparticle in aqueous so-
lutions with polysorbate 80 and 1,4-dioxane. It is possible to hypothesize a similar
interaction between polysorbate, even alcohols, and some of the components of the
extra heavy oil. Isopropanol (2-propanol) is an odd short alcohol with the hydroxyl
group in an even and symmetric position (second carbon in any direction), and it
yields a ◦API gravity value of the recovered oil, higher than 50, as expected from
an even alcohol (see Table 2). On the other hand, although sec-butanol, iso-butanol,
and tert-butanol have an even number of carbon atoms, the position of the hydroxyl
group resembles an odd alcohol, and they yield ◦API gravity values of the recovered
oil lower than 50, as expected from odd alcohols (see Table 2). The same results are
obtained with 2-hexanol which yields a ◦API gravity value of the recovered oil that
is close to the value of n-pentanol and far from the value of n-hexanol (see Table 2).

In order to evaluate whether the presence of the polyethoxides is the only condition
necessary for the improvement of extra heavy oil, other known formulations were
assayed. The use of I200 (containing nonyl phenol ethoxylated used in Orimulsion�)
with ethanol yields a ◦API gravity value of the recovered oil much lower than 50
(see Table 2). This may be due to the presence of the aromatic phenol group. In
order to test this, an aromatic alcohol was assayed with either Tween 80 or I200.
The recovered oil yields ◦API gravity values of 22 for Tween 80 and 83 for I200
(Table 2).

These results indicate that the presence of the aromatic groups (one from benzyl
alcohol and one from nonyl phenol ethoxylated) may provide an additional interaction
that is not achieved with linear n-alcohols or with polysorbate 80, suggesting two
different types of interaction: on one hand, polysorbate 80 with linear n-alcohols
and, on the other hand, aromatic groups from nonyl phenol ethoxylated and benzyl
alcohol. Therefore, for the treatment and improvement of extra heavy oil, we propose
that the present results should be considered so as to take advantage of the interaction
of the polyethoxilated molecule with the appropriate alcohol.

The proposed interaction for the treatment of extra heavy oil must have special
requirements for the surfactant molecule, for the alcohol, and for the hydrocarbon and
is different from other formulations previously used with extra heavy oil. We propose
the interaction of surfactant-alcohol in the extra heavy oil through binding that occurs
mainly by an “in-frame” hydrogen-bonding interaction between the oxyethylene and
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Table 2 Density and ◦API gravity of heavy crude oil after treatment and recovery from mixtures

n-ALCOHOL N◦ of Polyethoxilated Density Calculated
carbon atoms molecule g/mL ◦API gravity

Methanol 1 Tween 80 0.95 17
Ethanol 2 Tween 80 0.77 52
n-propanol 3 Tween 80 0.84 37
n-butanol 4 Tween 80 0.74 60
n-pentanol 5 Tween 80 0.82 41
n-hexanol 6 Tween 80 0.61 100
n-heptanol 7 Tween 80 0.89 27
n-octanol 8 Tween 80 0.78 50

Iso-Propanol 3 Tween 80 0.78 50
Sec-butanol 4 Tween 80 0.89 27
Iso-butanol 4 Tween 80 0.94 19
Tert-butanol 4 Tween 80 0.91 24
2-hexanol 6 Tween 80 0.82 41
Benzyl alcohol 7 Tween 80 0.92 22

Ethanol 2 I200 0.96 16
Benzyl alcohol 7 I200 0.66 83

the hydroxyl group of the even alcohol. Interactions have been proposed for Tween
80 and the carboxylic groups of poly (acrylic acid) in water, which are usually weak
except for the association of the carboxylic acid with ethoxylated surfactants. In
these systems, hydrogen bonding between the carboxylic groups and the oxygen of
the ethyleneoxide chain contributes to the aggregation of both molecules (Barreiro-
Iglesias et al. 2003).

Aizawa (2009) has also reported the formation of core–shell cylindrical micelles,
core–shell discus micelles, and core–shell elliptic discus micelles in aqueous mix-
tures of polysorbate 80 with 0–20 %, 30–40 %, and 50 % of 1,4-dioxane, respectively.
Since 1,4-dioxane may be considered as two fused ethoxides in a ring, these results
are in good agreement with our findings for even alcohols. Hydrogen bonding of the
hydroxyl of ethanol, propanol, and butanol with a dipalmitoylphosphatidylcholine
lipid bilayer has been studied using molecular dynamics simulations. According
to this study, butanol behaves in a different manner from ethanol and propanol in
response to an increase of the alcohol concentration: as the ethanol and propanol
concentrations increase, the fluidity increases, whereas the opposite trend is seen for
butanol, where an increase in concentration results in a drop of the fluidity. Further-
more, ethanol also decreases in density (Dickey and Faller 2007).
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4 Conclusions

In this chapter, we have examined how n-alcohol length influences the behaviour
of the interaction of polysorbate 80 (Tween 80) with extra heavy oil. Density and
◦API gravity were examined in the oil recovered after treatment and separation of
the aqueous phase. We find that there is a significant difference in density and ◦API
gravity values in the treated and recovered extra heavy oil, for alcohols with even
and odd number of carbons, in the presence of polysorbate 80. The fluctuation in
density between odd and even numbered alcohols suggests that the latter are allowing
for the formation of hydrogen bonds that fit in an “in-frame” interaction with the
ethoxides of polysorbate 80. We propose that a micellar nanoparticle similar to the
one proposed by Aizawa (2009) may be forming by the interaction of the even n-
alcohols, polysorbate 80, and extra heavy crude oil, improving the density and the
◦API gravity of the recovered oil.
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On the Construction of a Continuous
Theory for Granular Flows

Juan C. Petit, Juan F. Marín and Leonardo Trujillo

Abstract We present a brief introduction of the coarse graining technique, which
we shall use to construct a continuous matter field for discrete particulate systems. In
particular, we address the problem of the micro to macro transition in the theoretical
framework of granular hydrodynamics. The equations for momentum conservation,
elastic stress tensor, and elastic energy are obtained introducing a harmonic inter-
action between the particles. These equations are compared with previous work,
where the microscopic discrete nature of granular matter has not been considered.
The microscopic description of a granular system leads to a matrix for the definition
of the elastic moduli, which depends on position and coarse graining resolution. This
provides some insight into the mathematical description of the origin of force chains
in granular packings.

1 Introduction

A granular material is composed of a huge collection of particles, whose sizes are
larger than about one micron and so their thermal energy is negligible compared to
their mechanical potential energy. Due to their sizes, the particles can only interact by
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contact forces and so they collide inelastically. As it has been observed experimentally
(Eshuis et al. 2007), this kind of systems may exhibit different behaviours: solid-,
liquid-, and gas-like (Jaeger et al. 1996). However, at the present time there is no a
theory for granular materials capable to describe these solid and fluid states within a
unified framework.

In a first insight a theory of granular matter must be based on a continuous descrip-
tion. In the literature, a lot of work has been devoted to the construction of continuous
mathematical descriptions for discrete systems (Irving and Kirkwood 1950; Murdoch
and Bedeaux 1994; Babic 1997; Rudd and Broughton 1998; Glasser and Goldhirsch
2001), which have been applied to molecular and granular systems. It is well-known
that slowly varying spatial and temporal disturbances of a mechanical system can be
described in terms of its local thermodynamical variables. A notorious example of
such a description is given by ordinary fluid mechanics, in which the slowly varying
non-equilibrium behaviour of a fluid is described in terms of five partial differential
equations, one for each conservation law (i.e., the mass, the three components of
momentum, and the energy).

The hydrodynamic approach has been successfully employed to account for many
mechanical systems, such as liquid crystals and superfluids. Recently, a continuum
hydrodynamic theory for granular solids was introduced by Jiang and Liu (2009)
(referred to as Granular Solid Hydrodynamics). This theory includes expressions
for the energy current and the entropy production. The underlying notion in gran-
ular solid hydrodynamics is: granular media are elastic when at rest, but turn tran-
siently elastic when the grains are agitated. The microscopic forces are taken into
account through the definition of some coefficients, which stand for the contact
forces. However, the rigorous passage from the microscopic to the macroscopic
(continuum) mechanical description of matter fields, as was introduced by Jiang
and Liu (2009), is still missing. For example, dense granular flows exhibit a large
number of force chains which lacks a mathematical representation. On the other
hand, experimental evidence and numerical calculations show that the macroscopic
quasi-static response of granular matter is consistent with an elastic description
(Geng et al. 2001; Reydellet and Clément 2001; Serero et al. 2001; Goldenberg and
Goldhirsch 2002). In some cases, the classical theory of elasticity has been applied
to describe heterogeneous systems, including granular materials (Nedderman 1992).
However, some criticisms on this approach have been raised by Goldhirsch and Gold-
enberg (2002), who suggested that at small scales the continuous elasticity theory is
no longer applicable and that it is necessary to introduce a grain scale to describe the
elasticity properties of a material based on microscopic entities. A theory of elasticity
for static granular systems based on a coarse-grained microscopic description was
reported in Zhang et al. (2010), which is consistent with the continuous theory of
elasticity.

The aim of this work is to sketch the transition from the micro to the macro
representation of a continuous matter field, and obtain the balance equations using the
coarse-graining method. To compare with previous work, we introduce a harmonic
interaction between the particles that allows for the definition of the elastic stress
tensor and the elastic free energy for the particular case of linear elasticity. The chapter
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is presented as follows: in Sect. 2 we discuss on the non-existence of a transition from
the discrete (micro) to the continuous (macro) description in the context of granular
hydrodynamics. In Sect. 3 we introduce the microscopic description using the coarse-
graining method, and in Sect. 4 we summarize the conclusions.

2 Missed Justification for the Micro to Macro Transition
in Granular Hydrodynamics

In Jiang and Liu (2009), a microscopic description for the elastic free energy was
introduced through the dependence of the elastic moduli (defined in terms of some
exponents) on compressional and shear deformations. The value of the exponents
depends on the type of contact between the grains. For instance, the free elastic
energy is given by (Jiang and Liu 2003):

fel = 1

2
Kbζ

2
nn + Kaζ0

klζ
0
kl , (1)

where
Ka = K̃a∂a, Kb = K̃b∂

b. (2)

Here, Kb and Ka are the elastic constants, ζnn is the trace of the strain tensor, ζ0
kl is

its traceless part, ∂ = −ζnn , and K̃b and K̃a are constants that satisfy the conditions
K̃b > 0 and K̃a > 0 for ∂ ◦ 0 and K̃b = K̃a = 0 for ∂ < 0. This latter condition
holds when the particles loose contact with one another. For a Hertz contact model,
the exponents are a = b = 1/2, which result in K = K̃

∇
∂. From the elastic free

energy one can calculate the elastic stress tensor:

Ωi j = −Kbζnnφi j − Kaζ0
i j + φ−1

(
1

2
bKbζ

2
nn + aKaζ0

klζ
0
kl

)
φi j . (3)

Replacing the expressions for Kb and Ka given by Eq. (2) into Eq. (1), the elastic
free energy in terms of the exponents a and b takes the form

fel = 1

2
K̃b∂

bζ2
nn + K̃a∂aζ0

klζ
0
kl . (4)

We see that relations (3) and (4) are non-linear in the deformation and that linear
elasticity is readily recovered as long as a = b = 0. The construction of the elastic
stress tensor and the elastic free energy allows us to define a conserved energy density,
Ψ(s, sg, ρ, gi , ζi j ), where its differential variation is given by

dΨ = T ds + T̄gdsg + (μ0 − v2/2)dρ − Ωi j dζi j + vi dgi . (5)
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Here, s and T are the entropy and temperature of the system, sg is the granular
entropy and T̄g is related to the granular temperature, ρ is the density, gi is the
momentum density, θi is the velocity, and μ0 is the chemical potential (see Jiang and
Liu 2009).

The energy density, mass density, momentum density, entropy, and granular
entropy conservation laws along with the dynamics for the stress tensor are given by
the following differential equations:

σΨ

σt
+ ∼i Qi = 0,

σρ

σt
+ ∼i (ρvi ) = 0,

σgi

σt
+ ∼iκi j = 0, (6)

σs

σt
+ ∼i fi = R

T
,

σsg

σt
+ ∼i Fi = Rg

T̄g
, (7)

σui j

σt
− vi j − Xi j = −

[
(uik∼ jvk + ∼i y j/2) + (u jk∼ivk + ∼ j yi/2)

]
. (8)

The derivation of these equations lacks of any microscopic justification for the
micro (discrete) to the macro (continuous) description of the system. Let us remark
that the microscopic interaction between the particles has been introduced by Jiang
and Liu (2009) through the dependence of the elastic constants on the exponents a
and b in Eq. (2).

3 Coarse-Grained Microscopic Description

In this section, we show that it is possible to derive the equations of hydrodynamics
for granular media through a statistical average over a system with many grains. In
this way, continuous and smooth matter fields can be obtained. To do so we first
define a kernel function, also called smoothing kernel or interpolant kernel, which
depends on the finite spatial and/or temporal resolution. In order to introduce the
coarse-graining procedure, lets us start with the following definition for the mass
density

ρ(r, t) =
∫

dt ≥β(t − t ≥, ψ )

N∑
j=1

m jε(r − r j (t
≥), h), (9)

where we have taken temporal and spatial averages by means of the kernel functions
β(t − t ≥, ψ ) and ε(r−r j (t ≥), h). Here ψ is the temporal resolution and h is the spatial
resolution. If we take the temporal derivative of Eq. (9) we obtain the equation

σρ

σt
+ σpχ

σrχ

= 0, (10)
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which corresponds to the mass conservation law. Greek indices are used to denote
the coordinate components for the vector and tensor fields. The spatial derivative of
ε(r − r j (t ≥), h) commutes with all variables that describe the degrees of freedom
of the particles, while the temporal derivative of the kernels are σβ/σt = 0 and
σε/σt = −v jχ(t)σε/σrχ . Similarly, for the momentum density pχ we have the
following spatially and temporally averaged expression

pχ(r, t) =
∫

dt ≥β(t − t ≥, ψ )

N∑
j=1

m jv jχ(t ≥)ε(r − r j (t
≥), h). (11)

Now, differentiating Eq. (11) with respect to time and invoking the Leibniz’s rule for
differentiation under the integral sign, we obtain

σpχ

σt
= − σ

σrΛ

(
1

2

∫
dt ≥β(t − t ≥, ψ )

N∑
i, j=1,i →= j

fi jχri jΛ

∫ 1

0
dsε(r − r j (t

≥) + sri j (t
≥), h)

+
∫

dt ≥β(t − t ≥, ψ )

N∑
j=1

m j v jχ(t ≥)v jΛ(t ≥)ε(r − r j (t
≥))

)
, (12)

where fi jχ is the force between particles i and j . The fluctuation velocity of particle
j is defined as v≥

jΛ(r, t) := v jΛ(t) − VΛ(r, t), where VΛ(r, t) is the field velocity
given by VΛ(r, t) = pΛ(r, t)/ρ(r, t). Replacing the fluctuation velocity in Eq. (12),
grouping terms, and considering the condition

∑N
j=1 m jv

≥
jχ(t)ε(r − r j (t) = 0, we

obtain the momentum conservation law:

σpχ

σt
+ σ

σrΛ

(
ρVχVΛ + σχΛ

)
= 0. (13)

Here, the stress tensor σχΛ is defined by

σχΛ := −1

2

∫
dt ≥β(t − t ≥, ψ )

N∑
i, j=1,i →= j

fi jχri jΛ

∫ 1

0
dsε(r − r j (t

≥) + sri j (t
≥), h)

−
∫

dt ≥β(t − t ≥, ψ )

N∑
j=1

m jv
≥
jχ(t ≥)v≥

jΛ(t ≥)ε(r − r j (t
≥)), (14)

where the first term on the right-hand side is the contact stress and the second is the
kinematic stress.

As an example, let us now consider the case of a harmonic interaction between
the particles, that is

fi j = −γi j (r̂o
i j · ui j )r̂o

i j , (15)
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where γi j is the elastic constant related to the interaction between particles i and
j . The displacement from the equilibrium is given by ui j = (

∣∣ri j
∣∣ − li j )r̂o

i j , where
li j is the equilibrium separation distance between particle i and j , and r̂o

i j is a unit
vector. The superscript o stands for the unstressed reference configuration. Replacing
Eq. (15) into Eq. (14), the linear stress tensor takes the form

σχΛ = 1

2

∫
dt ≥β(t − t ≥, ψ )

N∑
i, j=1,i →= j

γi j r̂
o
i jμui jμr̂ o

i jχri jΛ

∫ 1

0
dsε(r − r j (t

≥) + sri j (t
≥), h)

−
∫

dt ≥β(t − t ≥, ψ )

N∑
j=1

m j v
≥
jχ(t ≥)v≥

jΛ(t ≥)ε(r − r j (t
≥)), (16)

Since the system is linear, the same method used by Goldhirsch and Goldenberg
(2002) can be applied to estimate the displacement difference between particles i and
j . Such a method uses the principle of the Green’s function, i.e., a source gives rise
to a perturbation in space. Therefore, the displacement ui jμ can be approximated as

ui jμ ≈ Li jμJθ

σuθ

σrξ

(rJξ − rξ ), (17)

where Li jμJθ is related to the Green’s function through Li jμJθ := GiμJθ − G jμJθ .
Replacing Eq. (17) into Eq. (16) we finally obtain that

σχΛ ≈
[

1

2

∫
dt ≥β(t − t ≥, ψ )

N∑
i, j=1,i →= j

γi j r̂
o
i jμLi jμJθ(r0

Jξ − rξ )r̂ o
i jχri jΛ

∫ 1

0
dsεi j

]
ζθξ

−
∫

dt ≥β(t − t ≥, ψ )

N∑
j=1

m j v
≥
jχ(t ≥)v≥

jΛ(t ≥)ε(r − r j (t
≥)), (18)

where we have used εi j = ε(r − r j (t ≥) + sri j (t ≥), h) and defined the strain tensor
ζθξ as

ζθξ := 1

2

(
σuθ

σrξ

+ σuξ

σrθ

)
= 1

2ρ2

N∑
i, j=1,i →= j

mi m jε j

[
σεi

σrξ

ui jθ + σεi

σrθ

ui jξ

]
, (19)

where εi = ε(r−ri (t ≥), h), which is calculated from the microscopic displacements
of particles i and j . The first term on the right-hand side of Eq. (18) is just the elastic
stress tensor ΩχΛ , that is

ΩχΛ :=
[

1

2

∫
dt ≥β(t − t ≥, ψ )

N∑
i, j=1,i →= j

γi j r̂
o
i jμLi jμJθ(r0

Jξ − rξ )r̂ o
i jχri jΛ

∫ 1

0
dsεi j

]
ζθξ .

(20)
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The terms between the brackets in the above expression are the elastic moduli, which
as we may see depend on the position and the scale resolution of the coarse-graining
function. We may further write the above expression as ΩχΛ = KχΛθξ ζθξ , where
KχΛθξ is defined by

KχΛθξ := 1

2

∫
dt ≥β(t − t ≥, ψ )

N∑
i, j=1,i →= j

γi j r̂
o
i jμLi jμJθ(r

0
Jξ − rξ )r̂ o

i jχri jΛ

∫ 1

0
dsεi j ,

(21)
which is a fourth-rank tensor with 81 elements. This tensor can be reduced to 21
elements by the symmetries of the stress and strain tensors. Moreover, the elastic
stress tensor can be decomposed into two terms as

ΩχΛ = −γbζnnφχΛ − 2γaζχΛ, (22)

where γb and γa are, respectively, the compressional and shear elastic moduli defined
by the relations

γb = Kχχχχ = 1

2

∫
dt ≥β(t − t ≥, ψ )

N∑
i, j=1,i →= j

γi j r̂
o
i jμLi jμJχ(r0

Jχ − rχ)r̂ o
i jχri jχ

∫ 1

0
dsεi j ,

(23)

γa = KχΛχΛ = 1

2

∫
dt ≥β(t − t ≥, ψ )

N∑
i, j=1,i →= j

γi j r̂
o
i jμLi jμJχ(r0

JΛ − rΛ)r̂ o
i jχri jΛ

∫ 1

0
dsεi j ,

(24)
with χ →= Λ.

From Eq. (22) we can calculate the elastic energy through the Maxwell relation
ΩχΛ = −σ Eel/σζχΛ :

Eel = 1

2
γbζ

2
nn + γaζ0

χΛζ0
χΛ, (25)

where ζnn is the trace of the strain tensor and ζ0
χΛ is its traceless part. Equations (22)

and (25) are similar in form to Eq. (3) and (4) for the case of linear elasticity in
the continuum granular hydrodynamics theory (i,e., a = b = 0). The energy
density containing the microscopic information of the system can be written as
Ψ(s, sg, ρ, gχ, ζχΛ) = Ψ1(s, sg, ρ, gi ) − ΩχΛζχΛ . As we have shown here, ΩχΛ and
ζχΛ can be constructed from the microscopic interactions between the particles. We
further note that the conserved energy density includes the microscopic information
whenever Ψ1 depends on the local thermodynamic variables.
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4 Conclusions

In this chapter, we have presented a brief introduction to the Granular Solid Hydrody-
namics, as derived by Jiang and Liu (2009), and outlined the coarse-graining method
to describe granular solids. We showed that the elastic energy and the elastic stress
tensor are congruent in both formulations. The analogies were established using a
harmonic interaction at the scale of the granular particles. The results presented in this
article pave the way towards a formal derivation of continuous matter fields for partic-
ulate discrete systems, such as granular materials. Further work is required to include
more realistic microscopic models for the interaction forces between grains. A first
step in this direction could be to include the force model formulations employed
in molecular dynamics simulations of granular materials, e.g., the Hertz’s contact
model. This will allow for a general analysis of the continuous matter field equations
introduced by Jiang and Liu (2003, 2009) along with the emergent bulk properties
implicit in the exponents a and b.
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Abstract We introduce a mathematical formalism towards the construction of a
continuum-field theory for particulate fluids and solids. We briefly outline a research
program aimed at unifying the fundamentals of the coarse-graining theory and the
numerical method of Smoothed Particle Hydrodynamics (SPH). We show that the
coarse-graining functions must satisfy well defined mathematical properties that
comply with those of the SPH kernel integral representation of continuous fields.
Given the appropriate dynamics for the macroscopic response, the present formalism
is able to describe both the solid and fluid-like behaviour of granular materials.
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1 Introduction

Continuum mechanics in its simplest form has been the paragon of field theory to
describe the response of solid bodies and fluids. The mathematical robustness of con-
tinuum theories rests on the field of partial differential equations (PDEs), which is
one of the main and mature cores of mathematical physics. These mathematical mod-
els rationalize, explain, and predict very well the macroscopic behaviour of isotropic
and homogeneous solid bodies. However, there is still no general continuum model
for the description of discrete microscopic, mesoscopic, and nanoscale systems. For
example, granular materials are composed of large collections of small grains and
exhibit many interesting collective phenomena emerging from the many-body clas-
sical dynamics of their constituents (Jaeger et al. 1996). This kind of materials can
exhibit solid-like as well as fluid-like behaviours. Nevertheless, a complete theoret-
ical description of granular materials as well as particulate amorphous and hetero-
geneous solids is still missing (Jaeger et al. 1996; Kadanoff 1999; de Gennes 1999;
Goldhirsch 2003). An analytical framework is required to bridge the gap between the
experimental and theoretical studies in this area, and develop numerical algorithms
for new and more efficient simulation techniques.

The study of continuum concepts and field values related to local (scale-dependent)
space-time averages began in 1946 with the celebrated statistical mechanical theory
of transport processes by Kirkwood (1946) and Irving and Kirkwood (1950). They
assumed that any ensemble average of space-time averages could be equated with
a space-time average of an ensemble average computed at given scales of length
and time. This approach represents an alternative to the Gibbs measure (Murdoch
and Bedeaux 1994; Babic 1997) (associated with the Boltzmann distribution and the
notion of canonical ensemble in equilibrium statistical thermodynamics, connecting
measurable macroscopic properties of materials to the properties of their constituent
particles and the interactions between them).1 Another interesting development was
reported by Glasser and Goldhirsch (2001), who based on the ideas worked out in
Kirkwood (1946); Irving and Kirkwood (1950) and Murdoch and Bedeaux (1994),
constructed a field theory for granular fluids.

The purpose of this paper is to present a further step towards the construction
of a macroscopic continuous-field mathematical description of granular materials
that fulfils the condition of reproducing microscopic properties in a macroscopic
representation of physical quantities. We address the problem of the estimation of
coarse-graining functions and show that they must satisfy well-defined mathematical
conditions for the requirement of compact support of the smoothing function.

1 For granular systems this approach seems doomed from the outset: because energy is lost through
internal friction, and gained by a non-thermal source such as tapping or shearing, the dynamical
equations do not leave the canonical or any other known ensemble invariant.
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2 Starting Definitions and Postulates of the Theory

2.1 Domains and Observables

Consider a physical system whose properties may vary in time and space. Denoting
by R

3 the three-dimensional coordinate space (and by r its elements), we shall then
simply denote by R

4 the four-dimensional space-time vector field whose elements
R have three spatial coordinates and a time-coordinate t :

R = (r, t) ◦ R
4. (1)

This space is the stage on which our theory is developed, so herein we will refer to
such a space as the physical domain:

Definition 1 (Physical domain). The physical domain ζ of any problem is the set
of all points in R

4.

In a discrete solid, for instance, the physical domain consists of all points occupied
by the grains of the solid as well as the empty spaces (pores) inside the material.

Following Murdoch and Bedeaux (1994), we introduce the next definition:

Definition 2 (Material system). A material system M ∇ ζ is an instant-by-instant
identifiable set of fundamental discrete entities.

In other words, a material system is a set of fundamental disjoint sets in space
that belongs to the geometrical locus of the material to be described (atoms, ions,
molecules, pores, etc). In our problem of granular materials, such discrete entities are
modelled as interacting particles (grains), indexed by {i}. Since a granular material
is a large system of grains with macroscopic sizes (> 1 μm), we have for such
materials that M ∼ ζ . In the case of a continuous solid or fluid, there will be a
unique identifiable discrete entity, for which we have M = ζ .

Definition 3 (Observable). An observable is any real square-integrable function
defined over the entire physical domain or a subset of it:2

f : D ∇ ζ ≥ R,

f ◦ L2[D]. (2)

Definition 4 (Microscopic field). Any function ∂ is a microscopic field if it is an
observable defined only in the material system, i. e.:

2 Remark 1 In general, an n-rank tensor function G : D ≥ R
4 →[n]

R
4 (where →[n] denotes

the n-rank tensor product) is not an observable. Nevertheless, each component of the tensor is an
observable. Typical examples are the components of the stress tensor (ΩφΨ , where Greek indices
denote Cartesian coordinates), or the components of the velocity field (vφ).
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∂ : M ≥ R,

∂ ◦ L2[M ]. (M∇ζ) (3)

Definition 5 (Macroscopic field). Any function ∂̃ is a macroscopic field if it is an
observable defined over the entire physical domain, i. e.:

∂̃ : ζ ≥ R,

∂ ◦ L2[ζ]. (4)

We may characterize a granular material with the set of fundamental microscopic
fields:

{
mi ; ρi ; rφi (t)

}
, which denote the mass, the density, and the φ-component of

the centre-of-mass position of the i th grain at time t , respectively. Obviously, in such
a fundamental set, there are as many components of the centre-of-mass positions as
spatial dimensions of the physical domain (which, for the sake of generality, we have
taken as three-dimensional).

2.2 Principles

Consider the problem of building a macroscopic field ∂̃ : ζ ≥ R from a micro-
scopic one ∂(ri , t) (with i = 1, 2, . . . , N ; where N is the total number of grains).
This has to be done in such a way that the microscopic information of the material
is accurately represented in the macroscopic field. This problem can be formally
stated as:

L ∂̃(r, t) = ∂(r, t), (5)

where L : L2[ζ] ≥ L2[M ] is some operator that when applied to a macroscopic
field, returns the microscopic field. Thus, the sources of the macroscopic field ∂̃(R)

are the values of the microscopic field ∂(R) evaluated in each grain.

Postulate 1 (Linearity) The problem (5) satisfies the superposition principle.

The above postulate allows us to write the output of Eq. (5) (the macroscopic field)
as a linear functional of the input (the microscopic field), i. e.:

∂̃(R) =
∫
M

θ(R, R′)∂(R′)dR′, (6)

where θ must belong to L2[ζ].
Postulate 2 (Space-time translation invariance) The problem (5) is space-time
translation invariant.

So, if the input (the microscopic field) is shifted along some displacement vector
D = (σr,σt) in M , the output (macroscopic field) is also shifted in the same
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manner: if ∂̃(R) corresponds to ∂(R), then ∂̃(R + D) corresponds to ∂(R + D).
This can only be possible if the function κ in Eq. (6) depends on the difference R−R′
of its arguments: κ(R, R′) = κ(R − R′). Then, Eq. (6) turns into the convolution
product:

∂̃(R) =
∫
M

κ(R − R′)∂(R′)dR′ = (κ × ∂)(R). (7)

Setting κ(R) = κ(r, t) ⊥ β(r)F(t), where F(t) and β(r) are the temporal and
spatial parts of κ, respectively, Eq. (7) becomes:

∂̃(r, t) =
∫
T

dt ′F(t − t ′)
∫
Ms

dr′β(r − r′)∂(r′, t), (8)

where T ∼ ζ is the time subspace of M and Ms ∇ R
3 is the spatial subspace of

M :
Ms = {r ◦ R

3 : (r, t) ◦ M },

T = {t ◦ R : (r, t) ◦ M }.
(Ms → T = M ) (9)

We see that the solution of problem (5) is given by Eq. (8), where β : V ≥ R and
F : T ≥ R are the spatial and temporal parts of the Green’s function κ associated
to the operator L , respectively, with V and T being the spaces of all possible
displacements in the Euclidean spaces R

3 and R, respectively. We see that β has
dimensions of the inverse of volume and F of the inverse of time. For a granular
material, Ms is a disconnected subset of R3, and so the integral over Ms in Eq. (8)
is, in fact, a discrete sum. Since the infinitesimal volume elements of size dr′ in
Eq. (8) lies in Ms , such a sum must be taken over the small volumes σVi of each
disconnected set (i.e. over the volume of each particle). Setting σVi = mi/ρi , Eq. (8)
can be written as:

∂̃(r, t) =
∫
T

dt ′F(t − t ′)
N∑

i=1

mi

ρi
∂(ri , t)β(r − ri ). (10)

For static granular systems (granular packings in which the grains remain static
but the fields could still vary in time), we have that F(t − t ′) = ψ(t − t ′) and Eq. (10)
becomes the weighted average sum:

∂̃(r, t) =
N∑

i=1

mi

ρi
∂(ri , t)β(r − ri ). (11)

Postulates 1 and 2 has led us to a formulation via weighted-average sums of the
same kind as those introduced heuristically by Irving and Kirkwood (1950); Murdoch
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and Bedeaux (1994); Babic (1997) and Glasser and Goldhirsch (2001), referring to
the Green’s function κ either as the coarse-graining function, the probability density
function, or simply as the weighting function. The continuous representation of fields
like the density, velocity, and stress tensor field components obtained using Eq. (11)
are, indeed, identical to those obtained by Murdoch and Kowalski (1992); Babic
(1997) and Glasser and Goldhirsch (2001). For instance, for the mass density we
have from Eq. (10) that:

ρ̃(r, t) =
∫
T

dt ′F(t − t ′)
N∑

i=1

miβ(r − ri ), (12)

which is the well-known coarse-grained mass density formula (Babic 1997; Glasser
and Goldhirsch 2001).

3 Properties of the Spatial Green’s Function

The solution of problem (5) is then given by Eq. (8). The next step is to find the
Green’s function. Since we do not know in advance the exact form of the operator
L , we require an alternative method to the conventional one using delta-type sources
for calculating the Green’s function. This is exactly the same kind of mathematical
problem that was solved by Lucy (1977) and Gingold and Monaghan (1977) when
they developed the method of Smoothed Particle Hydrodynamics (SPH) for the dis-
cretization of PDEs. Here, we postulate that one can use the method employed for
constructing SPH smoothing functions to calculate the spatial Green’s function.

A kernel interpolant, as in Eq. (8), with F(t − t ′) = ψ(t − t ′) is also used in SPH
(called smoothed or integral representation) and the domain of the PDE is discretized
using a particle generator, leading to a sum over particles of masses mi and densities
ρi identical to Eq. (11). This defines a Lagrangian mesh-free, semi-discrete version
of the PDE (Monaghan 1992; Liu and Liu 2003, 2010; Li and Liu 2007). For the
integral macroscopic representation ∂̃ in Eq. (8) to be consistent with the microscopic
field ∂ , the kernel β must satisfy some well established mathematical conditions.
In establishing such properties, one needs to consider some additional information
about the macroscopic behaviour of the system (this is due to the lack of information
about the exact form of the operator L ). For granular flows, we require the system to
satisfy macroscopically the equations of granular hydrodynamics derived in Glasser
and Goldhirsch (2001). Assuming that the macroscopic behaviour of the system is
described by a second-order PDE (as is the case for granular hydrodynamics), Liu
et al. (2003) demonstrated that the integral representation will have a consistency of
order n if the kernel β fulfils the following conditions:
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⎧⎨
⎩

β(r − r′)
∣∣
εS(r) = 0,

β′(r − r′)
∣∣
εS(r) = 0,

Mi = ψi0 i = 0, 1, 2, . . . , n ,

(13)

where:

Mi ⊥
∫
S(r)

(
r − r′)i

β
(
r − r′) dr′, (14)

is the i th momentum of the kernel, andS(r) is a support domain of the point r, a subset
ofMs outside of which the kernel’s value is zero. The first and second of Eqs. (13) are
referred to as the compactness condition for the kernel and its first derivative. Without
such conditions, much more conditions would be needed over β to guarantee consis-
tency between the discrete and the continuous description, as was shown explicitly
in Liu et al. (2003) and Liu and Liu (2006). The domain of the spatial Green’s func-
tion is no longer the space of all possible displacements in Euclidean space (as was
stated in Sect. 2.2), but rather the space of those displacements such that the argument
of β lies within the support domain S(r). When this support domain is spherically
symmetric, its radius is called the smoothing length or spatial resolution in the SPH
literature. We note that by considering this compactness property of the Green’s
function in the sum (11), only those particles that are within the support domain of
the point r makes a contribution to the value of the macroscopic field. We also note
that the kernel’s momentum equation for i = 0 imposes a normalization condition
over β, while for i = 1 it establishes a parity condition. Note that all these proper-
ties were imposed heuristically over the spatial coarse-graining function by Glasser
and Goldhirsch (2001), while here we have given a formal justification of them.

4 Conclusions

In this paper, we have given, by means of physical and mathematical arguments, a
formal justification of the description of discrete complex systems using weighted
average sums. This leads to a unification of the various formulations that have been
separately treated so far, namely the weighted average sums introduced by Irving
and Kirkwood (1950), the coarse-graining representation by Glasser and Goldhirsch
(2001), and the SPH integral representation by Lucy (1977) and Gingold and Mon-
aghan (1977). With this formulation we can guarantee that the macroscopic fields
are consistent with the microscopic properties of the material, satisfying the equa-
tions of granular hydrodynamics in its macroscopic description up to a certain order
n in its Taylor’s series expansion around any point in the material system M . The
method developed by Liu et al. (2003) and Liu and Liu (2006) becomes one for the
estimation of the spatial Green’s function of the unknown operator L . Using this
method for the calculation of such kernels, we can assure that (8) interpolates the
microscopic (discrete) field ∂ . We propose that, given the appropriate macroscopic
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dynamics, this representation can be used to successfully model both the liquid and
the solid phase of a granular material. This is tightly connected to the fact that the
SPH method is able to model the dynamics of fluids and elastic solids the same way
(Gray et al. 2001).
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Numerical SPH Calculations of Fluid Flow
Through Saturated and Non-saturated
Porous Media

Estela Mayoral, Mario A. Rodríguez-Meza, Eduardo de la Cruz-Sánchez,
Jaime Klapp, Francisco Solórzano-Araujo, César Ruiz-Ferrel and
Leonardo Di G. Sigalotti

Abstract The fluid flow through saturated and non-saturated homogeneous porous
media is studied numerically using a modified version of a Smoothed Particle Hydro-
dynamics (SPH) code. The modifications implemented in the original SPH code to
model the incompressible flow at low Reynolds numbers through a porous medium
are described. The performance of the model is demonstrated for three-dimensional
flow through idealized porous media consisting of regular square and hexagonal
arrays of solid spheres. For each of these configurations we consider a set of flow
calculations through saturated and non-saturated porous matrices differing in the
magnitude of the z-component of the hydraulic gradient. For the saturated case, the
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Darcy’s law is recovered and the hydraulic conductivity is calculated for both geome-
tries. The numerical results are consistent with previous two-dimensional simulations
in that the square case has a lower hydraulic conductivity than the hexagonal case.
Finally, for the non-saturated case the relaxation time is calculated for different body
forces. In this case, the system never reaches steady-state conditions.

1 Introduction

The flow of complex fluids and the dispersion of solids in multiphase fluids through
porous media play a fundamental role in the current environment: in oil industry
applications, in the pollution of soils and aquifers by industrial products, in the
designing of remediation techniques for sites with mixed contamination, etc. In par-
ticular, fluids contaminated with hazardous particles and their mobility through a
porous medium (soil) have important environmental implications due to the risk of
ground water contamination. Specifically, radioactive contamination of the environ-
ment, including soils and water, is a relevant problem that has occurred in many parts
of the world as a by-product of nuclear activities such as defense-related operations,
power production, research, medical and industrial applications, among others. In
order to evaluate and elaborate adequate strategies for controlling and remediating
sites with this kind of contamination, the transport of solid and dissolved particles
in multiphase fluids and their flow through porous media need be understood. With
this aim, more realistic and accurate numerical models must be developed.

In order to reproduce real situations, these numerical models must not only include
information concerning the geological structure as, for example, the complex struc-
ture of the solid matrix, consisting of different stratus with different geometries, the
presence of fractures, and mobile or unstable boundaries originated due to dynam-
ical changes caused by geochemical and biochemical processes, but also physico-
chemical information (i.e., chemical reactions, adsorption–desorption processes, and
changes in the thermodynamic characteristics of the medium).

In general, flow through saturated media has been modelled using Darcy’s law
given by v = −ki, where v is the velocity of the fluid, k is the hydraulic conductivity,
and i is the hydraulic gradient, which is related to the body force F and the grav-
itational acceleration g by i = F/g (Zhu et al. 1999). However, this macroscopic
approach does not consider the characteristics of the medium at the pore scale. In
typical numerical models, the structure of the porous medium is mimicked by a
distribution of solid particles and to reproduce the fundamental physics the models
must involve changes in the flow and transport processes. Although Darcy’s law is
statistically equivalent to the Navier-Stokes equations, it does not include this kind
of information. For this reason, it is demanding to propose a more detailed approxi-
mation to model the flow through porous media.

As a first step to model the flow at the pore scale, we need to represent in detail
the geometry of the solid matrix. Recent efforts to study pore-scale flow phenomena
in porous media have been made using the method of Smoothed Particle Hydrody-
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namics (SPH) (Tartakovsky and Meakin 2006; Tartakovsky et al. 2007; Tartakovsky
2010), where at these scales the flow is assumed to be incompressible and at low
Reynolds numbers. One advantage of SPH is that it is a mesh-free, Lagrangian method
for solving the equations of fluid dynamics in which additional physics and irregular
and/or mobile solid boundaries can easily be included. High spatial resolution seems
to be an unavoidable requirement for any numerical method trying to solve the flow
at the scale of the smallest pores. For example, the use of the new computational tech-
nologies available today, such as the GPU processors, allow for much higher spatial
resolution at a much lower computational cost, making SPH to be a promising tool
for simulating flow through porous media with sufficient detail. The method does
not only allow for calculation of the fluid velocity and pressure distribution, but also
for fluid particle path lines and discharge velocities (Gesteira et al. 2010), the former
being related to a well-known and still unresolved problem called hydrodynamic
dispersion in heterogeneous porous media (Allen 1985).

2 The SPH Method

As was outlined above, SPH is a gridless, Lagrangian method for solving the equa-
tions governing the motion of fluids. It essentially consists of two approximations:
the integral and the particle approximation (Monaghan 1982, 1992, 2005; Benz 1990;
Liu and Liu 2003).

In integral form any function A : R3 ◦ R can be written as A(x) = ∫
A(x∇)δ(x−

x∇)d3x∇, where δ(x−x∇) is the Dirac delta function. In SPH, we approximate this exact
integral to second-order by replacing the Dirac delta function by a kernel function
W so that

A(x) =
∫

V
A(x∇)W (x − x∇)d3x∇ + O(h2), (1)

where W is an interpolating function of compact support, defined inside a sphere of
radius h, obeying the normalization condition:

∫
V (h)

W d3x∇ = 1, where V (h) is the
spherical volume of influence of the kernel.

The particle approximation consists of replacing the continuous fluid by a set of
particles, each having its own volume of influence ΔV . In this way, the above integral
can be approximated by a sum over all neighbouring particles so that

A(x) ∼
∫

V
A(x∇)W (x − x∇)d3x∇ ∼

N∑
j=1

A(x j )W (x − x j )ΔVj , (2)

where the subscript j identifies all N particles inside the volume V centred at the
field position x.

For numerical work, the summation on the right-hand side of Eq. (2) can be rewrit-
ten as
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A(x) =
∑

j

m j

ρ j
A j W (|x − x j |, h), (3)

where m j and ρ j are, respectively, the mass and density of particle j and A j = A(x j )

is the field value of A evaluated at the position of particle j . Here ΔVj ◦ m j/ρ j ,
i.e., the inverse of the number density of particle j is assumed to be equal to the
volume of fluid associated with it. In the following, we will write for simplicity
Wi j = W (|xi − x j |, h), where the subscript i now refers to the position of particle
i , where the field must be evaluated.

The kernel function is a monotonically decreasing function of the distance between
pairs of particles and behaves as a delta function as the smoothing length, h, tends to
zero. We refer the interested reader to Benz (1990), Monaghan (1992) and Liu and
Liu (2003) for a detailed discussion on the kernel functions. Most existing numerical
codes consider four possible kernel functions (Gesteira et al. 2010): the Gaussian
kernel (Monaghan 1992), the cubic spline kernel, and the higher-order quartic and
quintic spline kernels (Gesteira et al. 2010). In this work, we use the cubic spline
kernel given by

W (r, h) = αD

⎧
⎨

1 − 3
2 q2 + 3

4 q3 ; 0 ≥ q < 1
1
4 (2 − q)3 ; 1 ≥ q < 2

0 ; q → 2,

(4)

where αD = 10/(7πh2) in two-dimensions (2D) and αD = 1/(πh3) in three-
dimensions (3D). We note that the tensile correction is automatically activated when
using kernel functions with first derivatives that tend to zero with decreasing inter-
particle spacing (Monaghan 2000).

Using Eq. (3), the density field at the position of particle i can be written in SPH
notation as

ρi =
∑

j

m j Wi j , (5)

where, as we mentioned above, the sum includes only the nearest neighbours to
particle i . SPH expansions for the gradient and divergence of the fluid velocity
vector, v(x), are also required for the discretization of the Navier-Stokes equations.
In particular, we adopt the commonly used expressions

∇v(x) =
∑

j

m j

ρ j
v j∇W (|x − x j |, h), (6)

for the gradient and

∇ · v(x) =
∑

j

m j

ρ j
v j · ∇W (|x − x j |, h). (7)
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for the divergence of v(x).
In the present formulation, we evolve the continuity equation rather than using

the standard summation (5) for the density, which in discretized SPH form reads
(Monaghan 1992):

dρi

dt
=

∑
j

m j vi j · ∇i Wi j , (8)

where d/dt is the total derivative and vi j = vi −v j , with vi and v j being the velocity
vectors of particles i and j , respectively. This form is better suited when dealing with
fluids in the presence of solid boundaries. Moreover, instead of using Darcy’s law,
we solve the momentum conservation equation

dv
dt

= − 1

ρ
∇ P + g + Θ, (9)

where P is the pressure, g is the Earth gravitational acceleration, i.e., g = (0, 0, −9.81)

m/s2, and Θ accounts for the diffusion terms. Three different options for diffusion
can be used: (1) an artificial viscosity, (2) a laminar viscosity, or (3) the full viscosity,
i.e., laminar viscosity plus sub-particle scale turbulence. Here we use the artificial
viscosity proposed by Monaghan (1992) and refer the reader to Gesteira et al. (2010)
for a more detailed account on the choice of the diffusion term. In SPH notation,
Eq. (9) can be written as

dvi

dt
= −

∑
j

m j

⎩
Pj

ρ2
j

+ Pi

ρ2
i

+ Πi j

)
∇i Wi j + g, (10)

where the fluid acceleration due to the pressure gradients has been approximated
using the standard symmetrized SPH representation

(
− 1

ρ
∇ P

)
i
= −

∑
j

m j

⎩
Pj

ρ2
j

+ Pi

ρ2
i

)
∇i Wi j , (11)

which leads to exact conservation of linear and angular momentum. The artificial
viscous term, Πi j , in Eq. (10) is given by Monaghan (1992)

Πi j =
{

−αci j μi j
ρi j

; vi j · xi j < 0,

0 ; vi j · xi j > 0,
(12)

where μi j = hvi j · xi j/(x2
i j + η2), xi j = xi − x j , ci j = (ci + c j )/2 is the average

sound speed between particles i and j , ρi j = (ρi + ρ j )/2, and α is a free parameter
typically of order unity. The parameter η2 ∼ 0.01 is added in the denominator of the
definition of μi j to prevent numerical singularities. Implicit in the form of Eq. (12)
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is that the viscosity is zero for particles moving away from each other and positive
for particles approaching each other. This form of the artificial viscosity is Galilean
invariant and so it allows SPH to perform well for slowly moving shocks. In addition,
it vanishes under solid-body rotation, conserves total linear and angular momentum,
and guarantees that the entropy change due to dissipation is positive definite.

The time rate of change of the specific internal energy, e, is determined by the
thermal energy equation, which is derived from the first law of thermodynamics:
de = −Pd(1/ρ) + T ds, where T is the temperature and ds is the change of spe-
cific entropy, which includes all non-adiabatic effects. The symmetrized standard
representation (Monaghan 1994)

dei

dt
= 1

2

∑
j

m j

⎩
Pj

ρ2
j

+ Pi

ρ2
i

+ Πi j

)
vi j · ∇i Wi j , (13)

is employed to evolve the thermal energy of particle i . This form is consistent with
Eq. (10). Moreover, the position of particle i is determined by means of the equation
(Monaghan 1989):

dri

dt
= vi + ε

∑
j

m j

ρi j
vi j Wi j , (14)

where ε = 0.5. This expression guarantees that each SPH particle moves with a
velocity that is close to the average fluid velocity in its neighborhood. Finally, the
above SPH equations are solved by specifying an equation of state for the pressure.
Here we treat the fluid as weakly compressible and adjust the compressibility to slow
down the speed of sound and maintain reasonable values of the time step, which is
here determined using the Courant condition. The compressibility is limited by the
fact that the sound speed should be about ten times faster than the maximum fluid
velocity in order to keep variations of the density to within less than one percent.
In order to do so we use the following equation of state (Monaghan and Kos 1999;
Batchelor 2000):

P = B

[(
ρ

ρ0

)γ

− 1

]
, (15)

where γ = 7 and B = c2
0ρ0/γ , with ρ0 = 1,000 kg/m3 being the reference density

and c0 = c(ρ0)
⊥

(∂ P/∂ρ)|ρ0 the sound speed at the reference density. A more
detailed account of the SPH method and its numerical implementation can be found
in Liu and Liu (2003) and Gesteira et al. (2010).



Numerical SPH Calculations of Fluid Flow Through Saturated 487

Fig. 1 Initial configuration for the saturated and non-saturated square (first two panels) and hexag-
onal arrays (last two panels) of particles. The fluid is shown in yellow

3 Simulation Models

We study the flow of a fluid through saturated and non-saturated homogeneous porous
media. To do so we first consider a column of fluid with density ρ0, which is intro-
duced at the top of a regular 3D monolayer consisting of either a square or an
hexagonal lattice of solid spherical particles as shown in Fig. 1. The solid spherical
particles are assumed to remain static during the simulation. This configuration is
then employed to represent the structure of our porous media.

For all simulations the porosity is given by θ = Vv/VT = 0.8, where Vv =
VT − ns4πr3

0/3 is the void volume and VT = lx lylz is the total volume of the lattice
representing the porous medium. This relationship fixes the radius r0 of the spheres
as a function of the lx , ly , and lz lattice dimensions and the number of spheres ns .
For the square lattice we take ns = 70, lx = 8.08, ly = 1, and lz = 11.6, while for
the hexagonal array we take ns = 78, lx = 8.08, ly = 1, and lz = 12.3. In order
to facilitate comparisons with other simulations we employ dimensionless units by
means of the following transformations: ρ0 = {ρ0}kg/m3 = 1, r0 = {r0} m = 1,
and c0 = {c0}m/s = 1, where ρ0 is the fluid density, r0 is the radius of the spheres,
and c0 is the speed of sound. Here {A} represents the numerical value of quantity
A. Thus, the physical units of mass, length, and time are recovered by making kg
= 1/{r0}3{ρ0}, m = 1/{r0}, and s = {c0}/{r0}.

We analyze two different cases. In the first case, we consider a saturated medium
in which the fluid particles are distributed uniformly between the solid particles in
the lattice, while in the second case a non-saturated medium is defined where no
fluid particles are placed between the spherical particles (see Fig. 1).

For the saturated models we use n f = 1,019,013 fluid particles for the square
lattice and n f = 919,217 for the hexagonal lattice, with a total number of n p =
1,447,675 and n p = 1,354,295 particles, respectively, while in the non-saturated
models n f = 663,520 fluid particles are used for the square array and n f = 563,295
for the hexagonal lattice, with a total number of n p = 1,092,182 and n p = 998,758,
respectively. In each case, the system is confined by four lateral solid walls: two
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Fig. 2 Amplified views of the saturated square system at three different times: t = 0 (left) and
during the evolution (middle and right). The fluid is shown in yellow and the spherical solid particles
are shown in red

coinciding with the xz-plane and two with the yz-plane. At the bottom of the porous
medium (coinciding with the xy-plane), the liquid is allowed to flow freely (outlet
boundary conditions). Fluid motion is started by applying a body force F = gi in
the z-direction, where i is the hydraulic gradient and g = 9.8 m/s2 is the gravita-
tional acceleration. This force is maintained constant during a simulation. A modified
version of the Dual-SPHysics code (Gesteira et al. 2010) was employed and the simu-
lations were carried out on GPU processors. Details of the evolution for the saturated
model in a square lattice is shown in the amplified images of Fig. 2. Initially (left
panel), the fluid particles are uniformly distributed in a regular grid and as the system
evolves they become disordered (middle and right panels).

4 Results

4.1 Saturated Case

A set of calculation models were carried out for a saturated medium for both the
square and hexagonal lattices by varying the magnitude of the body force F in the z-
direction. This was accomplished by varying the magnitude of the hydraulic gradient
i in the z-direction, with iz = 0.01, 0.006, 0.005, 0.0025, and 0.00125 for the square
lattice and iz = 0.04, 0.02, 0.01, 0.005, and 0.0025 for the hexagonal array. For
each run we calculate the discharge velocity vz in an arbitrary point close to the
centre of the porous medium. The discharge velocity field at three different times
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Fig. 3 Discharge velocity field at different times during the evolution of a saturated medium with
a square array of solid spheres: t = 500 (left), t = 2,000 (middle), and t = 3,400 (right). Times
and velocities are given in dimensionless units

Fig. 4 Discharge velocity field at different times during the evolution of a saturated medium with
an hexagonal array of solid spheres: t = 500 (left), t = 2,000 (middle), and t = 3,400 (right).
Times and velocities are given in dimensionless units

during the evolution is shown in Figs. 3 and 4 for the square and hexagonal systems,
respectively.

The evolution of the discharge velocities vz at an arbitrary point in the porous
matrix is plotted in Fig. 5 for all saturated models. We see that an approximate steady
state is reached at different times depending on the magnitude of i. For both types
of arrays, as the magnitude of iz is decreased, the system takes longer to achieve
a steady-state regime. In addition, Fig. 6 depicts the x- and z-components of the
discharge velocity as a function of time for a saturated matrix composed of a square
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(a)

(b)

Fig. 5 Dimensionless discharge velocity as a function of time at an arbitrary point inside the porous
matrix for varying magnitude of iz . Top: square array; bottom: hexagonal array. The straight lines
mark the mean steady-state velocities for each run

lattice of solid spheres for iz = 0.005. The mean steady-state values of the velocity
components are shown by the horizontal dashed lines. We see that both components
reach a steady-state regime approximately at the same time as shown by the inset
boxes in the first and third plots. The mean value of the steady-state velocity in the
z-direction is larger than the corresponding value in the x-direction. This is expected
because the main flow occurs along the z-axis where it is induced by gravity.

The mean steady-state velocity component in the z-direction, vpz , increases lin-
early with the hydraulic z-gradient, iz , as shown in Fig. 7. While this is true for both
arrays of solid particles, the linear behaviour implies that the Darcy’s law is well
reproduced by the calculations. From the slopes of the linear variation, we may then
calculate the hydraulic conductivity kz . We find that kz = 0.13621 for the square
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Fig. 6 Discharge velocity in the x- and z-direction for a saturated porous matrix represented by
a square lattice of spherical solid particles when iz = 0.005. The inset boxes in the first and third
plots enclose the temporal region where the velocity components become steady state. The second
and fourth plots are amplifications of the inset boxes in the first and third plots, respectively. In all
boxes the straight lines mark the mean steady-state velocity components vpx and vpz . All quantities
are dimensionless
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Fig. 7 Linear dependence of the z-component of the mean discharge velocity in steady state on
the hydraulic z-gradient showing Darcy’s law. The hydraulic conductivity obtained for the square
array is kz = 0.13621 and for the hexagonal array is kz = 0.16539 in dimensionless units

array, while kz = 0.16539 for the hexagonal case. As expected, the value of the
hydraulic conductivity for the square geometry is smaller than for the hexagonal
array. These values can be compared to previous 2D SPH simulations reported by
Zhu et al. (1999). In order to do so we must convert our dimensionless results to
dimensional form. Since for our models {ρ0} = 1,000, {r0} = 0.399, and {c0} = 10,
we have that kz = 0.01362 m/s for the square case and kz = 0.016539 m/s for the
hexagonal case, which are comparable to the values reported by Zhu et al. (1999).

4.2 Non-Saturated Case

Similar calculation models were also carried out for the non-saturated case by varying
the magnitude of iz . The discharge velocity field at three different times during the
evolution is shown in Figs. 8 and 9 for the square and hexagonal arrays, respectively.
In contrast to the saturated case, no steady-state regime is observed for the flow
velocity in the non-saturated media. As opposed to the square array, the hexagonal
geometry produces more obstruction to the flow of fluid at similar conditions.

The discharge velocity vz in the centre of the porous matrix is plotted in Fig. 10
as a function of time for the hexagonal array and varying magnitude of the hydraulic
gradient. As the magnitude of iz is increased higher values of vz are achieved at the
beginning of the simulation. Owing to the obstructing effects of the porous matrix, the
flow velocity decreases with time and relaxes to a value close to zero. The relaxation
time for the transient is shown in Fig. 11 for all model calculations, where the natural
logarithm of vz is plotted as a function of time. We see that ln vz varies almost linearly
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Fig. 8 Discharge velocity field at t = 1,000 (left), t = 1,500 (middle), and t = 2,000 (right) for
the non-saturated square array. Times and velocities are given in dimensionless units

Fig. 9 Discharge velocity field at t = 1,000 (left), t = 1,500 (middle), and t = 2,000 (right) for
the non-saturated hexagonal array. Times and velocities are given in dimensionless units

with time during relaxation. The relaxation time, τ , can then be obtained from the
slope of this linear behaviour. As shown in Fig. 11, the magnitude of the relaxation
time achieves a minimum for iz = 0.01 and increases for higher and lower values of
the hydraulic gradient.
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Fig. 10 Discharge velocity as a function of time for a non-saturated hexagonal array and varying
values of the hydraulic gradient iz

Fig. 11 Natural logarithm of vzp as a function of time t for a non-saturated hexagonal array. The
plots depict the approximate temporal interval when the system is relaxing for each value of iz .
The relaxation times are given in dimensionless units as calculated from the slopes of the linear
dependences

5 Conclusions

In this chapter, we have presented exploratory three-dimensional (3D) simulations of
fluid flow through saturated and non-saturated homogeneous porous media, using an
improved Smoothed Particle Hydrodynamics (SPH) algorithm that has been imple-
mented in the Dual-SPHysics code (Gesteira et al. 2010). The simulations were
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carried out on GPU processors at high resolution, allowing for a large number of
SPH particles (≤106) at a low computational cost.

Two different initial configurations were tested, where the structure of the porous
media was simulated using a regular 3D monolayer of solid spheres arranged in
either a square or an hexagonal lattice. We find that for both geometries the fluid flow
through a saturated homogeneous porous medium shows discharge velocities that are
proportional to the hydraulic gradient, reproducing the Darcy’s law under small body
forces. Results for the derived hydraulic conductivity were shown to compare well
with previous two-dimensional (2D) simulations of flow through periodic porous
media (Zhu et al. 1999). In all saturated models, an approximate steady-state regime
is achieved by the flow. In general, the system takes longer to achieve a steady-state
flow when the magnitude of the hydraulic gradient is decreased. In contrast, the flow
in non-saturated porous media never achieves a steady-state regime. In this case, the
flow is more efficiently obstructed in an hexagonal array than in a square lattice.
For an hexagonal lattice, the flow relaxes to values of the velocity close to zero with
relaxation times τ ≤ 10−4 in dimensionless units. More detailed simulations of these
complex systems are under way for two-phase flows with different lattice arrays and
geometries in order to reproduce the flow dynamics in more realistic porous media.
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Propagation of Longitudinal Waves
in Super-Radially Expanding Solar Plumes

Leonardo Di G. Sigalotti, Jordan A. Guerra and Hailleen Varela

Abstract Recent observations indicate that coronal plumes are the preferred channels
for the propagation of slow magnetosonic waves from the Sun’s poles to the corona.
This problem is of relevance in solar physics because polar plumes are well observed
exactly at the heights of the solar wind acceleration. In this chapter, we study the
effects of the basal geometric spreading of polar plumes on the propagation of slow-
mode waves up to r = 5R◦ by means of a non-linear analysis of the equations
of hydrodynamics. We find that super-radial expansion at the base of the flux tube
induces a strong dilution of the wave energy flux close to the solar surface, imply-
ing a steep decrease of the wave amplitude from the very beginning. Slow waves
with periods of 7–25 min diffuse out at heights between ∇1.6 and 2.4R◦ owing to
dissipation. This result is in good agreement with recent observations.

1 Introduction

Coronal plumes are ray-like density enhancements that project outwards from the
Sun’s north and south poles. These structures, which are associated with the open
magnetic field lines in polar coronal holes, can be seen at the Sun’s limb during total
solar eclipses and in visible and ultraviolet emission lines (formed at temperatures
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around 106 K) with the aid of space-borne telescopes and spectrometers. Plumes orig-
inate in photospheric unipolar magnetic flux concentrations (DeForest et al. 1997),
and from SOHO observations they appear to expand super-radially in their lowest
20–30 Mm (where 1Mm = 106 m), and more slowly above that, with linear expan-
sion ratios in the plane of the sky of about 1 at 1.05R◦, 3 at 5–6R◦, and 6 at
15R◦ (DeForest et al. 1997), where R◦ is the Sun’s radius. Here, all radial distances
and heights are measured with respect to the Sun’s centre (r = 0), unless stated
otherwise. Observations during four eclipse periods have shown an average plume
width of 31 Mm at 1.05R◦ as a result of super-radial expansion below these altitudes
(Hiei and Takahashi 2000), suggesting that plume models based solely on a radial
expansion are inconsistent with observations of polar coronal holes.

For coronal wave studies, polar plumes are interesting because they are well
observed exactly at the heights of the wind acceleration, i.e., below ∼5 R◦, where
the acceleration can be connected with the deposition of momentum carried by low-
frequency waves propagating outwards. Estimation of the total mass outflow indicates
that about half of the fast solar wind at 1.1R◦ arises from plumes (Gabriel et al.
2003). In addition, they are natural fast magnetosonic wave guides. Moreover, since
the Alfvén and the slow magnetosonic waves (i.e., longitudinal flux tube waves) are
confined to the magnetic field, polar plumes act also as Alfvén and slow wave guides.
Therefore, the study of magnetohydrodynamic (MHD) wave activity in coronal polar
plumes is an important branch of solar coronal physics. On the other hand, their
simple geometry permits the use of simpler theoretical models.

Alfvén waves are a very promising mechanism for transporting the energy from
the solar surface into the corona, where they are partially reflected back down towards
the Sun and dissipated by turbulent processes (Matthaeus et al. 1999; Cranmer et al.
2007; Cranmer 2009; Banerjee et al. 2009). The detection of waves in the outer solar
atmosphere is made possible by analyzing the effects that these waves have on the
plasma. For instance, compressional slow waves are detected as oscillations in line
radiance, due to changes in plasma density, and also in the line-of-sight velocities,
due to plasma motions, while transverse (Alfvén) waves give rise to only line-of-sight
effects when they propagate over the plane of the sky. In the limit of incompressible
Alfvén waves, they give no radiance signature and result in broadening of the spectral
lines.

Polar plumes represent one structure in which longitudinal (slow compressional)
waves propagate in solar winds. Such waves have been identified with periods of
7–25 min in the height range from 1.01 to 2.2R◦ (DeForest and Gurman 1998;
Ofman et al. 1999; Banerjee et al. 2000; Morgan et al. 2004) and the energy carried
by them was estimated to be between 0.02 and 0.30 times the total energy required to
heat and accelerate the fast solar wind (Ofman et al. 1999). Recent EIS/Hinode and
SUMER/SOHO observations detected propagating quasi-periodic disturbances in
plume and interplume regions of 15–20 min, suggesting that in the interplume region
the waves are likely to be either Alfvénic or fast magnetosonic, while in plumes they
are slow-mode waves not observable far off-limb because of wave dissipation (Gupta
et al. 2010). Similar plume oscillations with periods of 10–30 min and propagation
speeds of 100–170 km s−1 were also reported with AIA/SDO (Prasad et al. 2011).
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A recent review on the morphology and dynamics of plumes and inter-plume regions
is given by Wilhelm et al. (2011).

A theory of longitudinal flux tube waves in polar plumes was developed by Ofman
et al. (1999, 2000), Cuntz and Suess (2001, 2004), and Nakariakov (2005). In radially
divergent plume models, the relative amplitude of the slow-mode waves was shown
to increase with height up to ∼1.2R◦, while at greater altitudes it decreases owing
to viscous damping until complete dissipation at heights less than about 1.9R◦
(Ofman et al. 1999). Models invoking a super-radial expansion suggest that non-
linear steepening of the outwardly propagating slow waves may well lead to shock
formation at low coronal heights, i.e., within 1.3R◦ (Cuntz and Suess 2001) and that
the influence of the solar wind flows may offset the dilution of the wave energy by
the increase of the plume spreading with height (Cuntz and Suess 2004). While these
models assume that the waves are generated at a height of 1.01R◦ above the solar
surface, we investigate in the weak non-linear limit the effects of plume spreading
on the dynamics of outwardly propagating slow-mode waves that are generated at
the solar surface, i.e., at 1R◦.

2 Plume Geometry and Model

The cross-sectional area, A(r), of a spreading flux tube can be parameterized as

A(r) = A(R◦)

(
r

R◦

)2

f (r), (1)

where the coordinate r is measured with respect to the centre of the Sun, R◦ ∇
6.96 × 1010 cm is the Sun’s radius, A(R◦) f (R◦) is the area of the plume at its base,
and f (r) is the expansion factor. Following Suess et al. (1998), the expansion factor
is given by the product of two separate parts, i.e., f (r) = fl(r) fg(r), where fl(r) is
the local spreading below 35 Mm (i.e., below a height of ∇0.05R◦ from the Sun’s
surface) and fg(r) is the global spreading, which varies much slower than fl(r)

below 35 Mm and is determined by the coronal hole geometry at larger distances
(Wang et al. 1998). Here we use the following analytic expressions for fl(r) and
fg(r) (Cuntz and Suess 2001):

fl(r) = 1 + 13.31

[
1 − exp
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1 − r/R◦

0.011

)]
, (2)

fg(r) = a0 + a1
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R◦
+ a2

(
r

R◦

)2

+ a3

(
r

R◦

)3

+ a4

(
r

R◦

)4

, (3)

with a0 = 0.24974, a1 = 0.76714, a2 = −0.085164, a3 = 0.0093196, and a4 =
−0.0004403. These numbers are for a typical plume base field strength of 20 times
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the interplume field and a large coronal hole. From conservation of the magnetic flux
density, the field strength can be written as

B(r) = B0

(
R◦
r

)2 f (R◦)

f (r)
, (4)

where B0 is the field strength at the base of the plume and f (R◦) = 1. Note that
when f (r) = 1 the field is radially divergent and we recover spherical geometry.

The plasma-β in solar plumes has values ≥1 at least up to ∼5R◦ and so the
slow magnetosonic waves behave similarly to pure sound waves. In this way, the
dynamics of slow-mode waves travelling along a flux tube of magnetic field strength
given by Eq. (4) can be described by the standard equations of hydrodynamics. We
assume that the plume is a static, isothermal, spherically stratified medium with an
equilibrum density given by

ρ0 = ρb exp

[
− R◦

H

(
1 − R◦

r

)]
, (5)

where ρb = 5 × 10−16 g cm−3 is the density at the base of the plume and
H = 2kB T R2◦/(G M◦m H ) is the scale height. Here T is the temperature, kB is
the Boltzmann’s constant, G is the gravitational constant, M◦ is the Sun’s mass, and
m H is the mass of hydrogen. In addition, if we assume that the density perturbation is
much smaller than ρ0 and retain non-linear terms up to second order, the propagation
of spherically-symmetric slow-mode waves in the density (ρ) and radial velocity (v)
along a flux tube of expanding cross-section is given by the quasi one-dimensional
flow equations

∂ρ

∂t
+ 1

Ar2

∂

∂r

(
r2ρ0 Aν

)
= N1, (6)

ρ0
∂ν

∂t
+ c2

s
∂ρ

∂r
− ρg = N2, (7)

where

N1 = − 1
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)
, (8)

N2 = ∂(ρν)
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∂
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(ν

r

)
,

(9)
contain quadratic and dissipative terms, cs ∇ 1.28 × 104→T (K ) cm s−1 is the
isothermal sound speed, g = −G M◦/r2 is the gravitational acceleration, and
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η = η0T 5/2 = 0.72

(
m pk5

B

π

)1/2
T 5/2

e4 ln λ
, (10)

is the compressive viscosity coefficient (Braginskii 1965), where m p is the proton
mass, e is the electron charge, and ln λ ∇ 23 is the Coulomb logarithm.

3 Results and Discussion

Equations (6) and (7) can be combined into a single wave equation for the density
perturbation, which can be solved in the WKB approximation by assuming that
the wavelength λ ≥ H and λ ≥ R◦ and by introducing the small parameter
ε = λ/H ≥ 1. If, on the other hand, η ≥ csρbλ, the dissipative terms will be of the
same order of ε. Now, transforming to the co-moving reference frame ξ = r − cst
and R = εr , the resulting wave equation in dimensionless form will read as

∂ρ̃

∂ r̃
+

(
1

r̃
+ 1

2H̃ r̃2
+ 1

2A

d A

dr̃

)
ρ̃ + ρ̃

ρ̃0

∂ρ̃

∂ξ̃
− η̄

ρ̃0

(
∂2ρ̃

∂ξ̃2
+ 1

A

d A

dr̃

∂ρ̃

∂ξ̃

)
= 0, (11)

where we have introduced the dimensionless variables r̃ = r/R◦, ξ̃ = ξ/R◦,
H̃ = H/R◦, ρ̃ = ρ/ρb, ρ̃0 = ρ0/ρb, and η̄ = 2η/(3ρbcs R◦).

When the non-linear and dissipative terms (third and fourth terms) on the left-
hand side of Eq. (11) are neglected, this equation can be easily integrated to give the
linear solution

ρ̃(r̃) = ρ̃(1)
1

r̃

√
f (1)

f (r̃)
exp

[
− 1

2H̃

(
1 − 1

r̃

)]
, (12)

where ρ̃(1) is the normalized perturbed density at the plume base. In this simple
case, the wave amplitude changes with distance from the Sun owing to stratification
and expansion of the flux tube in the direction perpendicular to the flow. If only the
non-linear term is neglected, Eq. (11) can still be solved analytically for harmonic
waves of the form ρ̃(r̃ , ξ̃ ) = ρ̄(r̃) exp(i k̄ξ̃ ), where k̄ = k R◦ is a dimensionless
wavenumber. However, for non-linear waves of arbitrary initial shape there is no
analytical solution and Eq. (11) must be solved numerically.

The variation of the relative wave amplitude with height for typical coronal con-
ditions is depicted in Fig. 1. The curves on each panel correspond to linear solutions
of Eq. (11) when either the third and fourth terms on the left-hand side are dropped
(see Eq. (12) for η = 0, left panels) or only the third term is neglected (η �= 0,
right panels). The top panels describe the dependence of the relative amplitude on
height in plume models with spherical geometry, i.e., with f (r) = 1 so that the field
lines expand radially and the flux tube resembles a truncated cone at its base. In the
absence of dissipation (η = 0, top left panel), the relative amplitude grows with height
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Fig. 1 Relative wave amplitude, ρ̃(r̃)[ρ̃0(r̃)ρ̃(1)]−1, as a function of distance from the solar surface,
r̃ = r/R◦, for three different temperatures: 1.0 MK (solid lines), 1.2 MK (dotted lines), and 1.4 MK
(dot-dashed lines). The top panels correspond to plume models with spherical geometry ( f (r) = 1,
i.e., the field lines diverge radially) for η = 0 (left) and η �= 0 (right), while the bottom panels
correspond to plumes with a super-radial expansion ( f (r) = fl (r) fg(r)) for η = 0 (left) and η �= 0
(right). In all cases, the curves correspond to analytical solutions of Eq. (11) when the non-linear
term is dropped

from r = 1R◦, reaches a maximum, and then decays slowly at large distances due
to the expansion of the flux tube cross-section with radius. The position and strength
of the maximum depends on the coronal temperature. In cooler plumes, the ampli-
tude reaches larger values and the maximum occurs at larger radii. When viscous
damping is switched on (η ∇ 0.096–0.223 g cm−1 s−1 for T = 1.0–1.4 MK; top
right panel), the waves amplify again from r = 1R◦, reaching considerably lower
maximum amplitudes before decaying rapidly and dissipating completely. Waves of
shorter periods (P = 7 min) damp out completely at heights of ∼1.6R◦, while for
longer wave periods (P = 25 min) full dissipation occurs at ∼2.2R◦.

When the plume is allowed to expand super-radially from its base (bottom pan-
els of Fig. 1), the relative wave amplitude drops sharply with height from 1R◦ to
about 1.03–1.04R◦. Within this small range the amplitude decays to ∼30% of its
initial value. However, most of the steep decay is completed below ∇1.01R◦ inde-
pendently of the wave parameters and properties of the medium. At heights greater
than ∇1.05R◦, where the tube expansion changes from super-radial to quasi-radial,
the amplitudes grow and reach a maximum which never exceeds their initial val-
ues (bottom left panel). The sharp decay of the wave amplitude close to the solar
surface is a pure geometrical effect due to a very rapid dilution of the wave energy
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Fig. 2 Relative amplitude of non-linear waves as a function of height for different wave periods. In
all runs the initial amplitude is 0.16, the plasma temperature is 1.4 MK, and the normalized viscosity
is η̄ ∇ 2.8 × 10−4. This time the curves are obtained from numerical solution of Eq. (11) when the
non-linear (quadratic) term is included

flux driven by the super-radial expansion of the flux tube at its base. In a viscous
atmosphere (bottom right panel), the amplitude hardly grows after its sharp decrease
owing to dissipation and complete damping occurs at heights of ∼1.8R◦. This result
agrees with recent EIS/Hinode and SUMER/SOHO observations, which indicate
that slow-mode waves in plumes become diffuse relatively close to the Sun, and not
observable far off-limb, owing to dissipation, while in the inter-plume region Alfvén
and fast-mode waves propagate farther in the corona with high acceleration (Gupta
et al. 2010).

The relative amplitude of non-linear waves against height is depicted in Fig. 2
for different periods in the observed range. An initial amplitude of ρ̃(1)/ρ̃0 = 0.16
and a coronal temperature of 1.4 MK were chosen for all runs. Similarly to the linear
case, the relative amplitude drops sharply from r̃ = 1 to r̃ ∇ 1.03 independently of
the period. A similar plot for varying initial amplitudes has shown little dependence
of the relative amplitude on the initial value. We see that waves with periods ⊥10 min
never grow at heights greater than r̃ ∇ 1.03 and diffuse out completely at heights
less than 1.8R◦. For longer periods, the wave amplitudes hardly grow and reach
a maximum between 1.2 and 1.3R◦, undergoing complete dissipation at distances
not greater than ∼2.4R◦. Cuntz and Suess (2001) found numerically that slow-mode
waves in spreading plumes may well undergo non-linear steepening and lead to shock
formation at ∼1.3R◦. However, in their models the waves were all generated at a
height of 1.01R◦, thus skipping the altitude range where a sharp reduction of the
wave amplitude is predicted by our model.
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4 Conclusions

We have proposed a simple model to investigate the effects of plume spreading on the
dynamics of outwardly propagating slow magnetosonic waves, including the effects
of stratification, compressive viscosity, and expansion of the flux tube cross-section.
We find that the amplitude of the waves is strongly affected by the super-radial
expansion at the base of plumes. Our model predicts a steep decay of the relative wave
amplitude close to the solar surface in the height range between 1R◦ and ∇1.03R◦.
However, most of the sharp decrease is seen to occur below 1.01R◦ independently
of the wave parameters and properties of the medium. Complete damping of the
slow-mode waves always occurs at heights from ∼1.6 to 2.4R◦, which is in good
agreement with recent observations.

Our models predict maximum amplitudes of the radial velocity perturbation of
∇3–10 km s−1, which are too low compared to the estimated value of ∼40 km s−1

required to produce sufficient energy flux (∼105 ergs cm−2 s−1) to heat the corona.
As a next step, we plan to include the effects of heat conduction and Parker’s wind
flow to assess the dependence of the wave amplitudes on the wave-generation height
and the level of viscous dissipation.
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Comparing Accretion Centres Between
Rotating and Turbulent Cloud Cores

Guillermo Arreaga-García and Jaime Klapp

Abstract In this chapter we use the method of Smoothed Particle Hydrodynamics
(SPH) to study the number and properties of accretion centres formed when a mole-
cular gas cloud collapses, starting with initial conditions corresponding either to a
turbulent or a rigidly rotating sphere. To do so we use a modified version of the
SPH code GADGET-2, which is capable to detect when a gas particle becomes an
accretion centre, inheriting the mass and momentum of all its closest neighbours. For
both types of models (turbulent and uniformly rotating), we also study the effects of
considering two different initial mass distributions: a uniform-density and a centrally
condensed Plummer profile. We find that the turbulent models are more propense
to fragment into a larger number of protostellar objects than the purely rotating
clouds. However, in both types of models the average protostellar mass increases
with increasing size of the kinetic energy content of the cloud.

1 Introduction

The L1544 dense core in Taurus is one that has been well-observed. In particular,
Tafalla et al. (2004) have presented a multi-line and continuum study of L1544.
According to these observations the core appears to have extended inward motions,
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thereby suggesting that it may be collapsing towards the formation of one or two
low-mass stars.

Multiple fragmentation during the gravitational collapse of molecular cloud
clumps and cores has been described by means of three-dimensional numerical sim-
ulations by Goodwin et al. (2004), who considered a turbulent model for L1544. In
this model, fragmentation begins after a central gas clump is formed (the primary
clump) and accretes mass from the surrounding gas envelope very rapidly and non-
isotropically. The bulk of the rotating gas evolves towards a flattened configuration
around the primary, which then develops two spiral arms (the circumstellar accre-
tion region, hereafter CAR). When a CAR has accreted sufficient material, it can
detach from the rotating central clump. The CAR becomes unstable and eventually
fragments to produce multiple secondary objects.

In Arreaga-García et al. (2009), we have studied the effects of varying the exten-
sion of the cloud envelope on the collapse of an initially rotating sphere, and found
that for fragmentation of the core to occur a sufficient amount of initial rotation would
actually be necessary.

In order to compare the gravoturbulent models of Goodwin et al. (2004) with
the initially uniformly-rotating of Arreaga-García et al. (2009), we have proposed
a new set of collapse models, which may be either turbulent or uniformly rotating
with initial conditions chosen to make that the central core resembles the dense core
L1544. Furthermore, non-adiabatic effects during core contraction are here simulated
using a barotropic equation of state as the one proposed by Boss et al. (2000). The
chapter is organized as follows. In Sect. 2 we describe the initial conditions and
model parameters for both the uniformly-rotating and the turbulent cores, while the
numerical method is briefly outlined in Sect. 3. Section 4 presents the results and
Sect. 5 contains the conclusions.

2 The Models

All models start with a gas sphere of radius R0 = 3.0 × 1017 cm (◦ 0.097 pc) and
central density ζc = 3.0 × 10−18 g cm−3. A central condensation is modelled using
a Plummer radial density profile, with the parameters ζc, Rc, and ∂ entering in the
definition of the Plummer’s profile and having the same values as in Whithworth
and Ward-Thompson (2001). The inner radius that controls the extension of the flat
part of the radial distribution is Rc = 8.06 × 1016 cm (◦ 0.026 pc) so that the total
mass contained by the gas sphere is MT = 5.24M∇. The transition from isothermal
to adiabatic collapse is simulated using the barotropic equation of state (Boss et al.
2000):

p = c2
0 ζ

[
1 +

(
ζ

ζcri t

)Ω−1
]

, (1)
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Fig. 1 Initial velocity distributions for the rotating (left) and turbulent (right) models

where Ω ∼ 5/3, c0 is the isothermal sound speed, and ζcri t = 5.0 × 10−14 g cm−3

is the critical density at which the gas switches from being approximately isothermal
to being adiabatic.

Table 1 lists the main parameters and results for all models. The entries in the
second column identify the models, where the labels (RU, RC) and (TU, TC) cor-
respond to initial uniform rotation with a uniform density or a central condensation
and to turbulent cores with a uniform density or a central condensation, respectively.
The models can be parameterized by the ratios of their thermal and kinetic energy
to the gravitational energy

φ ∼ Etherm|Egrav| ,
Ψ ∼ Ekin|Egrav| ,

(2)

respectively, as listed in the third and fourth columns of Table 1. This values are
used to specify the isothermal sound speed c0 and the initial particle velocities for
the models. Starting from the fifth column, the table lists for each model the number
Nac of accretion centres that formed, the accretion centre average mass Mav/M∇,
the total accreted mass Mac/M∇, the evolution time tmax , and the maximum peak
density ζmax .

2.1 Initial Conditions

For all models we have used N = 1,000,000 SPH particles to represent the initial
cloud configuration. A cubic rectangular mesh is employed as the simulation volume,
which is then partitioned into small elements (cells), each of volume ρx ρy ρz. At
the centre of each cell we place a particle—say, the i th particle—having a mass
determined by its location according to the density profile being considered, that is:
mi = ζ(xi , yi , zi ) ≥ ρx ρy ρz with i = 1, . . . , N . Next, each particle is randomly
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displaced from its location at the cell centre by a distance of the order ρx/4.0. We
note that the SPH particles do not necessarily have the same mass.

For the rotating models, the initial velocity of particle i is given by

vi = θ0 × ri = (−θ0, yi ,θ0 xi , 0), (3)

where θ0 is the magnitude of the angular velocity.
As was done in most previous work (Bodenheimer et al. 2000; Arreaga-García et

al. 2007, 2008; Arreaga-Garcia et al. 2012), where the main focus was to study the
formation of binary protostellar cores, we perturb the mass of particle i according to

mi → mi [1 + a cos (m σi )] , (4)

where the perturbation amplitude is set to a = 0.1 and the mode is fixed to m = 2. In
the left panel of Fig. 1, we display the particle velocity distributions for all rotating
models.

2.2 The Turbulent Velocity Spectrum

For the turbulent models we define a second mesh Nx , Ny, Nz , where the size of
each element is κx = R0/Nx , κy = R0/Ny , and κz = R0/Nz . In Fourier space
the partition is therefore κKx = 1.0/ (Nx × κx), κKy = 1.0/

(
Ny × κy

)
, and

κKz = 1.0/ (Nz × κz). Each Fourier mode has the components Kx = iKx κKx ,
Ky = iKy κKy , and Kz = iKz κKz , where the indices iKx , iKy , and iKz take values
on the intervals [−Nx/2, Nx/2], [−Ny/2, Ny/2] and [−Nz/2, Nz/2], respectively.

The magnitude of the wavenumber is K =
(

K 2
x + K 2

y + K 2
z

)1/2
, with Kmin = 0

and Kmax = √
3 Nx/(2 R0). Note that the Fourier wave can equally be described by

a wave length β = 2 ψ/K so that

K ◦ 1

R0
, β ◦ R0. (5)

Following Dobbs et al. (2005), the component x of the particle velocity is

vx = ε
Kmax−Kmax

∣∣∣K (−n−2)/2
∣∣∣ [

Kz CKy sin
(

K · r + χKy

)
− Ky CKz sin

(
K · r + χKz

)]
,

(6)

where the spectral index n was fixed to n = −1 and thus we have v2 ◦ K −3. The vec-
tor C, whose components are denoted by

(
CKx , CKy , CKz

)
, take values on a Rayleigh

distribution. In addition, the wave phase vector χ, given by
(
χKx , χKy , χKz

)
, take

random values on the interval [0, 2 ψ ]. The components of C are calculated using the
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expression
C = Λ × √−2.0 × log (1.0 − u), where u is a random number in the interval (0, 1)

and Λ is a fixed parameter set to Λ = 1.0. The y and z components of the particle
velocity are calculated using expressions analogous to Eq. (6). We further note that
the particle velocity scales with the gas sphere size as

v ◦ R
3
2
0 . (7)

The particle velocity distributions for the turbulent models are depicted in the right
panel of Fig. 1.

3 The Computational Method

Let us now describe the modifications implemented into the GADGET-2 code for
the detection of accretion centres. Any gas particle with a density higher than some
specified value, say ζs , is a candidate to become an accretion centre. We first mon-
itor and identify all candidate particles having densities higher than ζs . The spatial
separation between candidate particles is next calculated: if there is one candidate at
separation distances greater than 10racc from all other detected candidates, then this
particle is chosen as an accretion centre. We define racc as the neighbour spherical
radius of an accretion centre, given by racc = 1.5(hmin). In this way, the accretion
centre will encompass all SPH particles that are within the sphere of radius racc. The
mass and momentum of all these SPH particles will automatically be added to the
accretion centre. In GADGET-2, once a particle is identified as an accretion centre
its type is changed from 0 to −1 and thereafter it will no longer be advanced in time.

In order to determine the appropriate value of ζs we have performed a set of test
model simulations for an initially uniform-density, uniformly rotating cloud model.
We see that when we choose a small value for ζs , i.e., ζs = 5.0 × 10−16 g cm3,
then too many accretion centres are formed early in the collapse, as shown in the
left panel of Fig. 2. After several test models, we found that the best value is ζs =
5.0 × 10−12 g cm3, which produced an evolution similar to an identical model with
no sink particles. This can be clearly seen by comparing the middle (with sinks)
and right (without sinks) panels of Fig. 2, where the final inner structure of the
core is shown for the two calculations at the same final time. Thus, all models were
calculated using the parallel code GADGET-2 modified by our sink implementation
with a threshold value of ζs = 5.0 × 10−12 g cm3 for sink generation.

A full description of the code is given in Springel (2005) and so here we shall
only mention some relevant aspects of it. In GADGET-2, each particle is allowed to
have (i) its own smoothing length hi and (ii) its own gravitational softening length
εi , whose value is adjusted such that at each time step εi hi is of order unity. How-
ever, other SPH implementations use empirical formulas for εi in order to minimize
errors in the calculation of the gravitational force (Gabbasov et al. 2006). In contrast,
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Fig. 2 Column-density distribution for three test model calculations used to choice the best
value of ζs . All models started from initial uniform density and uniform velocity profiles. The
left panel corresponds to ζs = 5.0 × 10−16 g cm−3 at 1.287 t f f , where t f f is the initial
core free-fall time, the middle panel depict the central core regions at 1.35 t f f for ζs = 5.0
×10−12 g cm−3. The right panel has been evovled with the Gadget 2 without sinks technique

GADGET-2 fixes the value of εi at each time-step by simply using the minimum value
of the smoothing length for all particles, that is, εi = hmin where hmin = min(hi ) for
i = 1, 2...N . Furthermore, GADGET-2 uses a Monaghan-Balsara form for the arti-
ficial viscosity to maintain hydrodynamical stability (Monaghan et al. 1983; Balsara
1995). For the simulations of this chapter the Courant factor was set to 0.1 and the
strength of the artificial viscosity is regulated by setting φγ = 0.75 and Ψγ = 0.5φγ

(see Eq. (14) of Springel (2005)).

4 Results

We have prepared carefully the initial conditions for the gas particles in order to have
a cloud under gravitational collapse. For the turbulent models, we set a bounded value
of Ψ around 2 because beyond this value, the cloud get dispersed without collapsing.
For the rotating case, however, it is well-known that for values of Ψ higher than about
0.3, the cloud is rotationally disrupted and does not collapse. Figure 3 depicts the
evolution of the maximum density for all models.

4.1 Models with Initial Uniform Rotation

All the rotating models experience inside-out collapse independently of the initial
density distribution. That is, the central cloud regions collapse first, while most of
the gas in the envelope is left behind because of its lower rates of infall. This leads
to the formation of a central dense clump within which an accretion centre forms
(see Fig. 5). In the subsequent evolution, well-defined spiral arms develop around the
central protostar, which then condense upon themselves allowing for fragmentation
into secondary accretion centres. Fragmentation of the spiral arms occurs because
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Fig. 3 Time evolution of the peak density for the uniformly-rotating (left) and the turbulent (right)
models

they become unstable against growing spiral modes, as we may see in Fig. 5 for
model RC1. It is interesting to mention that these secondary accretion centres follow
the gas trend of the spiral arms.

4.2 Turbulent Core Models

Just in the initial stages of collapse, the turbulent gas undergoes collisions which take
place simultaneously throughout the entire cloud. As a result, the gas compresses
simultaneously in many places, giving rise to a swarm of interconnected pockets of
gas, as we may see in the top left panel of Fig. 6 for model TU3. The artificial viscosity
transforms the kinetic energy into heat, and this heat should be later radiated away
in a very short timescale. Therefore, we can assume that the shock and the cloud
remain isothermal at this stage.

This stage of the collapse is characterized by a smooth increase of the peak
density, as we may see from Fig. 3 (right panel), followed by an equally smooth
expansion where the peak density decreases. The magnitude of this expansion is
seen to depend on the kinetic energy content (Ψ) of the cloud. Note that while Fig. 3
refer to the maximum density, several other density peaks may well be evolving this
way simultaneously throughout the cloud during this phase.

It is only after this expansion that the inner cloud regions truly begin to collapse,
as evidenced by the rapid rise of the central density (see Fig. 3). In contrast to
other turbulent collapse simulations, where turbulence is continuously replenished
to prevent global collapse (Dubinski et al. 1995; Offner et al. 2008), here we have
decided to include gas turbulence only at the initial time and to leave the cloud to
collapse freely in order to provide a more systematic comparison between the purely
rotating and the turbulent clouds.

As a result of the global cloud collapse, a central dense filamentary region soon
forms, which then evolves towards much higher central densities, forming a central
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Fig. 5 Iso-density plots showing the cloud evolution for model RC1
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Fig. 6 Iso-density plots showing the cloud evolution for model TU3

protostar (the primary) surrounded by several other accretion centres (secondary pro-
tostars), as shown in the remaining panels of Fig. 6 for model TU3. In these models,
however, the secondary protostars are formed through filament fragmentation rather
than disk fragmentation. Average and integral properties for these accretion centres
are reported in Table 1. The collapse of the initially centrally condensed model TC3
is displayed in Fig. 7. This time, global collapse produces a central bar-like region
of high density, which condenses at its centre forming a primary protostar. As the
collapse of the central regions proceeds other secondary protostars form around the
primary through what resembles to be disk rather than filament fragmentation in
contrast with the initially uniform-density clouds.

5 Conclusions

In this chapter, we have presented a set of calculations for the gravitational collapse
of a core model whose initial structure has been chosen to fit the observational
properties of the prestellar core L1544. Two sets of cloud models were considered:
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Fig. 7 Iso-density plots for the evolution of model TC3, showing the central core regions

initially uniformly-rotating and turbulent clouds with either initial uniform-density
or central condensations.

As expected, the turbulent models fragmented into more protostellar objects,
which were also slightly less massive, than the purely rotating clouds. The amount
of initial kinetic energy, either in the form of turbulent energy or rotational energy,
seems to be an important factor to determine the number of protostars formed. The
efficiency of star formation appears to be higher in the uniform-density clouds than
in the centrally condensed ones regardless of whether the cloud is turbulent or purely
rotating. Also, in both types of models the average protostellar mass increases with
increasing the kinetic energy content of the cloud.

Finally, the version of the GADGET-2 code employed in the simulations of
this chapter represents a first-step version towards a full implementation of the
sink-particle technique (Bate et al. 1995; Federrath et al. 2010). However, we find that
for suitable values of the threshold density ζs this version of the code produces results
that converge to identical model calculations with no sink particles, thus providing
reliable fragmentation simulations.



520 G. Arreaga-García and J. Klapp

Acknowledgments We would like to thank ACARUS-UNISON for the use of their computing
facilities in the making of this chapter. This work was partially supported by the Consejo Nacional
de Ciencia y Tecnología of Mexico (CONACyT) under the project Abacus CONACYT-EDOMEX-
2011-C01-165873.

References

Arreaga-García G, Saucedo-Morales J, Carmona-Lemus J, Duarte-Pérez R (2008) Hydrodynamical
simulations of the non-ideal gravitational collapse of a molecular gas cloud. Revista Mexicana
de Astronomía y Astrofísica. 44:259–284

Arreaga-García G, Klapp-Escribano J, Gómez-Ramírez F (2009) The gravitational collapse of
Plummer protostellar clouds. Astron Astrophys 509:A96

Arreaga-Garcia G, Saucedo-Morales J (2012) Physical effects of gas envelopes with different exten-
sion on the collapse of a gas core. Revista Mexicana de Astronomía y Astrofísica 48:61–84

Arreaga-García G, Klapp J, Sigalotti L. Di G (2007) Gravitational collapse and fragmentation of
molecular cloud cores with GADGET-2. Astrophys J 666:290–308

Balsara DS (1995) von Neumann stability analysis of smooth particle hydrodynamics—suggestions
for optimal algorithms. J Comput Phys 121:357–372

Bate MR, Bonnell IA, Price NM (1995) Modelling accretion in protobinary systems. Mon Not R
Astron Soc 277:362–376

Bodenheimer P, Burkert A, Klein RI, Boss AP (2000) Multiple fragmentation of protostars. In:
Mannings VG, Boss AP, Russell SS (eds) Protostars and planets IV. University of Arizona Press,
Tucson, pp 675–701

Boss AP, Fisher RT, Klein RI, McKee CF (2000) The Jeans condition and collapsing molecular
cloud cores: filaments or binaries? Astrophys J 528:325–335

Dobbs CL, Bonnell IA, Clark PC (2005) Centrally condensed turbulent cores: massive stars or
fragmentation? Mon Not R Astron Soc 360:2–8

Dubinski J, Narayan R, Phillips TG (1995) Turbulence in molecular clouds. Astrophysical J
448:226–290

Federrath C, Banerjee R, Clark PC, Klessen RS (2010) Modeling collapse and accretion in turbulent
gas clouds: implementation and comparison of sink particles in AMR and SPH. Astrophysical J
713:269–290

Gabbasov RF, Rodríguez-Meza MA, Klapp J, Cervantes-Cota JL (2006) The influence of numerical
parameters on tidally triggered bar formation. Astron Astrophys 449:1043–1059

Goodwin SP, Whithworth AP, Ward-Thompson D (2004) Simulating star formation in molecular
cloud cores. I. The influence of low levels of turbulence on fragmentation and multiplicity. Astron
Astrophys 414:633–650

Monaghan JJ, Gingold RA (1983) Shock simulation by the particle method SPH. J Comput Phys
52:374–389

Offner SSR, Klein RI, McKee CF (2008) Driven and decaying turbulence simulations of low-mass
star formation: from clumps to cores to protostars. Astrophysical J 686:1174–1194

Springel V (2005) The cosmological simulation code GADGET-2. Mon Not R Astron Soc
364:1105–1134

Tafalla M, Myers PC, Caselli P, Walmsley CM (2004) On the internal structure of starless cores.
I. Physical conditions and the distribution of CO, CS, N2H+, and NH3 in L1498 and L1517B.
Astron Astrophys 416:191–212

Whithworth AP, Ward-Thompson D (2001) An empirical model for protostellar collapse. Astrophys
J 547:317–322



Statistical Methods for the Detection of Flows
in Active Galactic Nuclei Using X-Ray Spectral
Lines

Luis F. Pérez and José M. Ramírez

Abstract Using robust statistical methods, we are able to detect and identify
absorption lines in the X-ray spectra of quasars and active galactic nuclei taking
as reference the Seyfert 1 galaxy NGC 3783. The high resolution spectrum of this
object shows evidence of partially ionized gas outflowing from the centre of the
system at velocities of ◦ 625±35 km s−1. This velocity differs from a previously
reported value by ◦ 6 %. The understanding of these flows is important to draw a
general picture of the feedback observed between the analyzed objects and the host
galaxy.

1 Introduction

Active Galactic Nuclei (AGNs) are galaxies with a huge amount of energy
(∇10(42−48) erg s−1) released from very compact regions at the centre of the sys-
tem. Astronomers believe that this energy is radiated away by a flowing accretion
disk formed around a rotating, supermassive black hole (SMBH) with ∇10(6−10)M∼,
covering the whole electromagnetic spectrum from the radio to the X-ray and gamma
ray wavebands. AGNs are classified in blazars, quasars, Seyfert 1 and 2, according
to the unification model of AGN species (Osterbrock and Pogge 1985). This model
establishes that different observational classes of AGN are really the same object
seen from different orientation angles.

In this chapter, we present an analysis of the X-ray spectrum of the Seyfert 1
NGC 3783, taken with the spatial observatory Chandra. In the Seyfert galaxy NGC
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(a) (b)

Fig. 1 a Image of NGC 3783 taken with the Chandra X-ray observatory b Image of the same AGN
using the Hubble telescope

Fig. 2 X-ray spectrum of NGC 3783 in the range from 4.2 to 6.8 Å. The vertical lines mark the
rest-frame wavelengths of the identified ions. The solid line shows the statistical continuum plus
Gaussian model

3783, its 900 ks Chandra spectrum (Kaspi et al. 2002) allows for precise measure-
ments of the radial velocities and line widths. It is seen that the shift of the spectral
lines from Fe xxiii-Mg xii cover a range of velocities of ∇ 60–600 kms, while
the lowly ionized lines Si xiii-O vii cover velocities of ∇ 500–1,000 kms (see
Fig. 6 of Ramírez et al. (2005)). The average velocity of the warm/outflowing absorber
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Fig. 3 X-ray spectrum of NGC 3783 in the range from 6.75 to 9.1 Å. The vertical lines mark the
rest-frame wavelengths of the identified ions. The solid line shows the statistical continuum plus
Gaussian model

of NGC 3783 is around ∇500 km/s. The spectrum also reveals asymmetric line pro-
files (Kaspi et al. 2002), showing approximately 90 % of the lines with extended
blue wings. Such asymmetries were quantified by Ramírez et al. (2005). In terms
of ionization, most high ionization species are seen in the short-wavelength portion
of the spectrum ∇ 4–12 Å. Here, the resonant lines from Fe xxiii, Fe xxii, Fe xxi,
S xvi, S xv, Si xiv, and Mg xii cover ionization parameters ξ in the range from
∇630 to ∇ 150 ergs cm s−1. Figure 1 shows images of the galaxy as observed with
the Chandra and Hubble telescopes.

2 X-Ray Spectral Lines of NGC 3783

Using specialized softwares (XSPEC 12.7.1 and CIAO 4.4), we have reduced and
analyzed the data, consisting of six consecutive observations between 2000 and 2001,
and then merged them to obtain a single high-resolution spectrum of 88,958 ks of
exposure time. The work presented here is based on the MEG ± 1 (Medium Energy
Grating) arms of the HETGS (High Energy Transmission Grating Spectrometer) on
board Chandra. It results in 8,192 wavelength channels with 0.023 Å of instrumental
resolution in the range from ∇ 4.2 to 19.2 Å. It is interesting to see the several spectral
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Table 1 Line measurements

Ion Observed Error Doppler Error Relative Error
wavelength Error velocity velocity

(Rest λ* -Å- ) (Å) (Å) (kms−1) (kms−1) (kms−1) (kms−1)

SXVI 4.729 4.760 0.007 1,989 444 −928 461
SXV 5.039 5.080 0.004 2,458 238 −459 269
SiXIII 5.234 5.259 0.010 2,080 573 −837 586
SiXIII 5.681 5.721 0.015 2,048 792 −869 801
AlXIII 6.053 6.094 0.003 2,245 149 −672 194
SiXIV 6.182 6.228 0.003 2,265 145 −652 191
SiX 6.778 6.841 0.017 2,759 752 −158 762
SiX 6.864 6.909 0.019 1,939 830 −978 839
SiIX 6.939 6.984 0.011 1,924 475 −993 491
SiVIII 6.999 7.061 0.023 2,631 985 −286 993
MgXII 7.106 7.170 0.010 2,702 422 −215 440
MgXI 7.310 7.371 0.079 2,553 na −364 na
MgXI 7.473 7.511 0.022 2,481 883 −436 891
AlXII 7.757 7.826 0.023 2,639 889 −278 898
FeXXII 7.982 8.055 0.023 2,742 864 −175 873
FeXXIII 8.305 8.381 0.032 2,724 na −193 na
MgXII 8.421 8.484 0.006 2,250 214 −667 247
FeXXI 8.580 8.643 0.027 2,201 943 −716 952
FeXXI 8.720 8.810 0.022 3,068 756 151 767
FeXXII 8.982 9.058 0.027 2,510 901 −407 910
FeXX 9.080 9.151 0.040 2,336 1,321 −581 1,327
MgXI 9.169 9.245 0.017 2,479 556 −438 570
MgIX 9.378 9.451 0.628 2,323 na −594 na
FeXXI 9.483 9.553 0.009 2,201 285 −716 311
NeX 9.708 9.781 0.006 2,257 185 −660 223
NeX 10.239 10.321 0.030 2,391 878 −526 887
FeXVIII 10.365 10.441 0.026 2,188 752 −729 762
FeXVII 11.026 11.084 0.016 2,322 435 −595 452
NeIX 11.547 11.628 0.019 2,102 493 −815 509
FeXXII 11.780 11.861 0.051 2,058 1,298 −859 1,304
FeXXI 11.952 12.031 0.065 1,981 1,630 −936 1,635
FeXXI 11.973 12.074 0.032 2,510 801 −407 811
FeXXI 12.576 12.651 0.038 2,121 906 −796 914
FeXX 12.588 12.681 0.059 2,212 1,405 −705 1,411
FeXX 12.846 12.934 0.015 2,055 350 −862 372
FeXIX 12.946 13.035 0.020 2,054 463 −863 480
FeXVII 13.825 13.923 0.033 2,108 716 −809 726
FeXVIII 14.158 14.271 0.053 2,391 1,122 −526 1,129
FeXVIII 14.208 14.312 0.045 2,177 950 −740 958
FeXVIII 14.373 14.381 0.045 1,830 939 −1,087 947
FeXVIII 14.534 14.651 0.036 2,413 743 −504 753
OVIII 14.634 14.751 0.062 2,396 1,270 −521 1,276

(continued)
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Fig. 4 X-ray spectrum of NGC 3783 in the range from 9.1 to 12.0 Å. The vertical lines mark the
rest-frame wavelengths of the identified ions. The solid line shows the statistical continuum plus
Gaussian model

Table 1 (continued)

Ion Observed Error Doppler Error Relative Error
wavelength Error velocity velocity

(Rest λ* -Å- ) (Å) (Å) (kms−1) (kms−1) (kms−1) (kms−1)

OVIII 14.821 14.945 0.036 2,500 728 −417 739
FeXVII 15.014 15.121 0.037 2,138 739 −779 749
OVIII 15.176 15.295 0.030 2,336 593 −581 606
FeXVII 15.261 15.381 0.035 2,354 688 −563 699
OVIII 16.006 16.132 0.096 2,343 na −574 na
OVII 17.396 17.528 0.090 2,258 1,551 −659 1,556
OVII 17.768 17.862 0.089 2,248 1,502 −669 1,507
OVIII 18.969 19.102 0.055 2,093 869 −824 878

features produced by H- and He-like ions in this band. Figures 2, 3 and 4 show the
X-ray spectrum of NGC 3783 along with the theoretical global model we have used
to detect and measure the line centroids.

The quality of the fit and the extraction of the errors were quantitatively measured
using a χ2-statistics (which gives a measure of the quadratic deviation between the
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data and the model). Furthermore, a single absorbed power-law was used for the
global continuum and a Gaussian model for the characterization of the narrow-line
features.

3 Results

We have measured a total number of 78 transitions of Si, S, Al, Mg, Fe, Ne and
O. However, we were not able to identify about seven features associated to the
measured lines in our database, thus giving the method an efficiency of ∇ 91.76 %.

Once the line identification is completed, we compare the measured line centroids
to the rest-frame wavelengths to obtain the radial velocities of the outflows using
Doppler shift analysis. It is worth mentioning that for the velocity of the galaxy we
have used a corrected value of vgal = 2, 917 ± 2 km s−1.

The results are summarized in Table 1, which lists all ions identified, the measured
wavelengths, and the Doppler and relative velocities observed in the flow. The errors
in the wavelengths and velocities are also given.

4 Conclusions

We have detected and identified absorption lines in the X-ray spectrum of the Seyfert
1 NGC 3783 galaxy in the range from ∇ 4.2 to 19.2 Å, with the purpose of measuring
the average velocity of the partially ionized gas outflowing from its centre.

We find an average outflow velocity of −625 ± 35 km s−1, which is of the same
order of the value measured by Kaspi et al. (2002), with a difference of only 6 %.
These flows have their likely origin in the accretion disk surrounding a supermassive
black hole in the centre of the galaxy along with violent supernova explosions taking
place in sites of star formation, and/or in strong magnetic forces that accelerate the
flows to the observed velocities. Further work on other objects and more complex
models would be required to improve our understanding of these systems.

Acknowledgments Some of the measurements were made during the stay of one of us (J. M. R.)
at NASA Goddard Space Flight Center sponsored by the US National Science Foundation program.
J. M. R. is indebted to Dr. Timothy Kallman. The great effort made by all members of the Chandra
team is also kindly acknowledged.



Statistical Methods for the Detection of Flows in Active Galactic Nuclei 527

References

Kaspi S, Brandt WN, George IM, Netzer H, Crenshaw DM, et al. (2002) The ionized gas and nuclear
environment in NGC 3783. I. Time-averaged 900 kilosecond Chandra grating spectroscopy.
Astrophys J 574:643–662

Osterbrock DE, Pogge RW (1985) The spectra of narrow-line Seyfert 1 galaxies. Astrophys J
297:166–176

Ramírez JM, Bautista M, Kallman T (2005) Line asymmetry in the Seyfert galaxy NGC 3783.
Astrophys J 627:166–176



Reproducing the X-Ray Soft Step @ 0.9 keV
Observed in the Spectrum of Ark 564 Using
Reflection Models

José M. Ramírez and Snell Rojas

Abstract Using reliable atomic data, we attempt to reproduce the global 100 ks
X-ray spectrum of the narrow-line Seyfert 1 Galaxy Ark 564, observed with the Low
Energy Transmission Grating Spectrometer (LETGS) on board Chandra. In order to
do this, we use accretion disk and reflection flow models.

1 Introduction

Narrow-line Seyfert 1 galaxies (NLS1s) are a subclass of the “normal” Seyfert 1
galaxies, which exhibit in their optical spectra Hβ lines with full width at half max-
imum FWHM < 2000 km s−1and strong Fe II emission (Osterbrock and Pogge
1985; Boroson and Green 1992). X-ray observations of these objects reveal extreme
spectral and temporal properties, with Ark 564 being perhaps the more representative
and the most observed Seyfert of this category. NLS1s show a “soft X-ray excess
emission”, which has been the subject of an intense debate for at least two decades.
In particular, Pounds et al. (1995) proposed that this soft excess might be produced
by an optically thick emission from the accretion disk. However, the temperature of
this optically thick region (kT ∼ 0.1–0.15 keV) is to high to support a disk around
a supermassive black hole (SMBH).

On the other hand, the soft excess is well fitted with a blackbody, which has a
roughly constant temperature of ∼ 0.1–0.2 keV over a wide range of SBH masses
(Gierliński and Done 2004). However, if it is thermal, this temperature could be
explained by a slim disk in which the temperature is raised by photon trapping
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(Czerny et al. 2003; Gierliński and Done 2004; Crummy et al. 2006). A further
explanation for the soft X-ray step is related to the atomic physics and considers that
the detected X-ray emission could be dominated by reflection off the walls of ring-
like structures formed by clumping of cold and dense material owing to instabilities
of the accretion disk (Fabian et al. 2002).

2 Observation of Ark 564

After having properly extracted both the source and the background spectra from
each arm of the dispersed spectrum as received by the arrange HRC + LETG (i.e.,
High Resolution Camera plus Low Energy Transmission Grating on board Chandra),
we have merged them to increase the signal-to-noise ratio (S/N) of the final spectrum.
The analysis presented here is entirely based on this merged spectrum. The effective
areas (EA) for the dispersion orders 2–10 employed in the fitting procedures were
built up using the standard CIAO task mkgarf and fullgarf. For the first order
we used the corrected EA of Beuermann et al. (2006), while EA order 1–10 (positive
and negative orders) were added together for use with the corresponding merged
spectrum. A log of the observation is shown in Table 1.

Figure 1 shows the best-fit single power-law model to the data, where an emission
excess is clearly seen. We note that this is qualitatively similar to the soft excess
reported in Comastri et al. (2001); Vignali et al. (2004) and Papadakis et al. (2007).
In order to investigate the nature of this soft excess (or soft step), which is still
subject to debate (Done and Nayakshin 2007; Ramírez 2013), we also fit several
other components to describe the soft band. The extra components are: the single
blackbody model [TBabs*(zpowerlw + bb)] and the single accretion disk re-
flection model model [TBabs*(zpowerlw + xillver)] (García and Kallman
2010). All models account for the galactic absorption in the line-of-sight towards

Ark 564, of NH = 6.4 × 1020cm−2 , using the TBabs model included in xspec
(Wilms et al. 2000).

Table 1 We merge the dispersion orders +1 and −1 to increase the signal-to-noise (S/N)

Log of the LETGS observation of Ark 564

Telescope Chandra
Instrument HRC + LETG
Channel type PHA
Source exposure time 199 ks
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Fig. 1 Single absorbed power-law best-fit to the LETGS X-ray spectrum of Ark 564 (points with
error bars). With this model we are able to observe significant residuals around 0.9 keV and at high
energies (5–8 keV), which are believed to be an “excess” in emission

Fig. 2 The solid line is an absorbed power-law plus a black body model plotted over the LETGS
X-ray spectrum of Ark 564 (points with error bars). There is only a slight improvement over the
power-law. See the text for details
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3 Results

We have measured in quantitative terms the quality of the fit using χ2-statistics. This
gives a measure of the quadratic deviation between the data and the model. In the
case of the single power-law, we obtain χ2/dof = 1.89, where dof is the degree of
freedom, defined as the number of data channels minus the number of parameters
in the model. When a blackbody model is added to the absorbed power-law, in an
attempt to characterize the residual at soft energies (∼0.9 keV), the power-law fit
improves only slightly with χ2/dof = 1.87. The results are shown in Fig. 2.

Given that the temperature of the optically thick region (kT ∼ 0.1–0.15 keV)
is to high for supporting a disk around a SMBH, it is necessary to use a more
sophisticated model. Accretion disks around SMBHs reflect the emission from
the central region, re-processing high-energy photons, and producing emission
and absorption features. These features form complexes, which actually improve
the description of the data around 0.9 keV, with χ2/dof = 1.86. Tables 2 and 3
show a comparison between TBabs*zpowerlw, TBabs*(zpowerlw + bb),
and TBabs*(zpowerlw + xillver) with their respective parameter values.
Figure 3 shows the best-fit physical model, where the solid line was obtained using
the partially ionized accretion disk model TBabs*(zpowerlw + xillver).

Table 2 Parameter values of the model TBabs*zpowerlw

Model: TBabs*zpowerlw

Component Parameter Unit Value
TBabs nH 1022 0.064
powerlaw PhoIndex 2.886
powerlaw norm 0.012

Table 3 Parameter values of the models TBabs*(zpowerlw + bb) and TBabs*
(zpowerlw + xillver)

Model: TBabs*(zpowerlw + bb) TBabs*(zpowerlw + xillver)
Component Parameter Unit Value Component Parameter Unit Value

TBabs nH 1022 0.064 TBabs nH 1022 0.064
powerlaw PhoIndex 2.894 zpowerlw PhoIndex 2.861
powerlaw norm 0.0121 zpowerlw Redshift 0.024
bbody kT keV 0.137 zpowerlw norm 0.088
bbody norm 2.804×10−4

xillver log(xi) 1.931
xillver Fe/solar 1.000
xillver Redshift 0.024
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Fig. 3 The solid line is an absorbed TBabs*(zpowerlw + xillver) model (García and
Kallman 2010), plotted over the LETGS X-ray spectrum of Ark 564 (points with error bars). This
is the best-fit physical model. See the text for details

4 Conclusions

The main conclusions from this work are:

• We have studied in detail the global (0.1–10 keV) LETGS spectrum of Ark 564.
Reproducing this spectrum will certainly require more sophisticated and complex
models than just semi-empirical models, like the power-law plus blackbody model,
or put-by-hands absorption edges (Matsumoto et al. 2004; Ramírez et al. 2008;
Ramírez 2013).

• The best-global-fit in this work corresponded to the partially ionized accretion
disk model Tbabs*(zpowerlw + xillver) (García and Kallman 2010),
which uses a self-consistent photoionization model with reliable atomic data. This
fit includes a more comprehensive set of absorption and emission lines than it has
previously been tried for this kind of object.

• Future work must focus on the use of more complex models, which combined with
high-resolution/quality observations are expected to improve the statistics.

Acknowledgments The data used in this work were taken during the stay of one of us (J. M. R.) at
MPE sponsored by the Chandra GTO program. We are indebted to P. Predehl, V. Burwitz, and S.
Komossa for kindly supporting the proposal of this observation. The efforts made by all members
of the Chandra team are also kindly acknowledged.
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Dynamics of Relativistic, Dissipative and
Anisotropic Self-Gravitating Fluids

Orlenys Troconis

Abstract This chapter deals with the study of dissipative, locally anisotropic, and
spherically symmetric self-gravitating fluids. The analysis is based on a full causal
approach, where the dynamical equations are coupled to causal transport equations
for the heat flux, shear, and bulk viscosity in the context of the Müller-Israel-Stewart
theory by including the thermodynamic viscous/heat coupling coefficients.

1 Introduction

Since the seminal paper by Oppenheimer and Snyder (1939), most of the work
devoted to study the gravitational collapse from the relativistic point of view has dealt
with spherically symmetric fluid distributions, because this symmetry describes with
a good approximation many physical real situations.

Many existing models have considered the fluid to be locally isotropic. However,
small deviations from this condition may affect the system evolution, eventually
leading to an explosive collapse (Herrera 1996). Here we assume that the fluid is
locally anisotropic and dissipative due to the effects of viscosity (shear and bulk
viscosity) (Herrera and Santos 1997; Herrera et al. 2009). This latter assumption is
justified because the gravitational collapse is by itself a naturally dissipative process
(Herrera and Santos 2004), where the collapse of a massive star represents a good
example. However, it seems that the only plausible mechanism to carry away the bulk
of the binding energy of the collapsing star, leading to a neutron star or black hole, is
the neutrino emission (Kazanas and Schramm 1979). In fact, a characteristic feature
of the evolution of a massive star is the emission of massless particles (photons and/or
neutrinos).
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If the particles that transport energy have a mean free path much smaller than the
typical length of the object, then the diffusion approximation can be used to describe
the transport of energy. For instance, for a main sequence star like the sun, the mean
free path of photons at the centre is of the order of 2 cm, which is much smaller than the
sun’s radius, and hence radiation transfer is very well described by a diffusion process
(Kippenhann and Weigert 1990). On the other hand, observational data collected from
the supernova 1987A indicates that the regime of radiation transport prevailing during
the emission process is the diffusion approximation (Lattimer 1988). Conversely,
if the mean free path of particles is larger than the typical length of the object,
then the free streaming approximation may be used. In this work, we shall include
simultaneously both limiting cases.

The dynamical equations governing the relativistic collapse in the adiabatic and
streaming out approximation were developed by Misner and Sharp (1964) and
Misner (1965), respectively. An extension of these equations was presented by
Herrera and Santos (2004), who included the effects of dissipation in the form of
a radial heat flux, satisfying a causal transport equation. In their case, however,
the fluid was assumed to be shear-free and therefore viscous dissipation as well as
the thermodynamic viscous/heat coupling coefficients were not taken into account.
The importance of viscosity in the evolution of self-gravitating systems has been
outlined by Collins and Wainwright (1983) and references therein. In a more recent
work, Di Prisco et al. (2007) introduced the effects of shear viscosity. However,
in their model the transport equation corresponds to the standard Eckart theory of
relativistic irreversible thermodynamics (Eckart 1940; Landau and Lifshitz 1968),
which predicts that the disturbances propagate at infinite velocity. In addition, their
model also neglects the viscous/heat coupling coefficients.

The aim of this chapter is to present a dynamical description of the gravitational
collapse within the framework of the Misner approach, for a dissipative, spherically
symmetric, relativistic fluid, taking into account both limiting cases of the radiative
transport (i.e., diffusion and streaming out) as well as the shear and bulk viscosity
and including the thermodynamic viscous/heat coupling coefficients. In this way, the
transport equations will include all relevant dissipative variables from a causal point
of view.

2 Dynamics of the Viscous and Dissipative Gravitational Collapse

In this section we describe a viscous, dissipative, and self-gravitating fluid bounded
by a spherical surface Σ . The description is made from a causal point of view
by coupling the dynamical equations to the causal transport equations for the heat
flux, the shear, and bulk viscosity in the context of the Müller-Israel-Stewart theory
(Müller 1967; Israel 1976; Israel and Stewart 1976) and by including the viscous/heat
coupling coefficients.

We start by noting that the line element in co-moving coordinates inside Σ , can
be written as:
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ds2− = −A2dt2 + B2dr2 + (Cr)2(dθ2 + sin2 θdφ2), (1)

where A, B, and C are functions of the radius r and time t and are assumed to be
positive. The coordinates are identified as x0 = t , x1 = r , x2 = θ and x3 = φ.

The system consists of a fluid with energy density ρ, pressure P , radial heat flux
qα, radiation density ε, shear viscosity παβ , and bulk viscosity Π . Therefore, the
energy momentum tensor inside Σ has the form

T −
αβ = (ρ + P + Π) uαuβ + (P + Π)gαβ + qαuβ + qβuα + εlαlβ + παβ, (2)

where uα is the four-velocity of the fluid and lα is the radial null four-vector. These
satisfy the relations:

uαuα = −1, uαqα = 0, lαuα = −1, lαlα = 0,

πμνuν = 0,π[μν] = 0,πα
α = 0. (3)

Furthermore, since we have assumed comoving coordinates then

uα = A−1δα
0 , qα = q B−1δα

1 , lα = A−1δα
0 + B−1δα

1 , (4)

where q is a function of r and t . The shear viscosity components are:

π0α = 0 ,π1
1 = −2π2

2 = −2π3
3 , (5)

which can be written in compact form as

παβ = Ω(χαχβ − 1

3
hαβ), (6)

where Ω = 3
2π1

1, χα is a unit four-vector along the radial direction and hαβ is
the projector onto the hypersurface orthogonal to the four-velocity, satisfying the
relations

χαχα = 1, χαuα = 0, χα = B−1δα
1 , (7)

hαβ = gαβ + uαuβ . (8)

In the standard irreversible thermodynamics (Maartens 1996; Chan 2000), we
have that

παβ = −2ησαβ, Π = −ζΘ, (9)

where η and ζ denote the coefficient of shear and bulk viscosity, respectively, σαβ is
the shear tensor, and Θ is the expansion. However, the irreversible thermodynamics
is not a causal theory, because it predicts an infinite velocity for the propagation
of information. Since we are interested in a full causal picture of the dissipative
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variables, we shall then use the transport equations as derived in the context of the
Müller-Israel-Stewart theory.

3 Dynamical Equations

The non-trivial components of the Bianchi identities (T −αβ);β = 0 lead to

T −μν
;νuμ = − 1

A
(ρ̇ + ε̇) − 1

B

(
q ◦ + ε◦) − 2 (q + ε)

(ACr)◦

ABCr
+

− 2

A

Ċ

C

(
ρ + P + Π + ε − Ω

3

)
− 1

A

Ḃ

B

(
ρ + P + Π + 2ε + 2

3
Ω

)

= 0 (10)

and

T −μν
;νχμ = 1

A
(q̇ + ε̇) + 2

A

(BC).

BC
(q + ε)

+ 1

B

(
P ◦ + Π ◦ + ε◦ + 2

3
Ω ◦

)
+ 1

B

A◦

A

(
ρ + P + Π + 2ε + 2

3
Ω

)

+ 2

B

(Cr)◦

Cr
(ε + Ω) = 0. (11)

where the primes mean derivation with respect to r and the dots mean derivation
with respect to time.

In order to study the dynamical properties of the system, let us first introduce the
proper time derivative, DT , and the proper radial derivative, DR , given by

DT = 1

A

∂

∂t
, (12)

and

DR = 1

R◦
∂

∂r
, (13)

respectively, where R = Cr defines the proper radius of a spherical surface inside
Σ . We then calculate the velocity U of the collapsing fluid as the variation of the
proper radius with respect to the proper time, i.e.,

U = r DT C < 0 (in the case of collapse). (14)

Recalling that the mass function introduced by Misner and Sharp (1964) is
defined by
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m = (Cr)3

2
R23

23 = Cr

2

{(
rĊ

A

)2

−
[
(Cr)◦

B

]2

+ 1

}
, (15)

and using Eqs. (10) and (11) in combination with the definitions (12–14), we find,
after some calculations, the following equation (Herrera et al. 2009):

(
ρ + P + Π + 2ε + 2

3
Ω

)
DT U =

−
(

ρ + P + Π + 2ε + 2

3
Ω

) [
m

R2 + 4πR

(
P + Π + ε + 2

3
Ω

)]

− E2
[

DR

(
P + Π + ε + 2

3
Ω

)
+ 2

R
(ε + Ω)

]

− E

[
DT q + DT ε + 4 (q + ε)

U

R
+ 2 (q + ε)σ

]
. (16)

where the quantity E is

E ∇ (Cr)◦

B
=

[
1 + U 2 − 2m(t, r)

Cr

]1/2

. (17)

Equation (16) is the dynamical equation. It shows the equivalence principle
because the expression inside the round brackets on the left-hand side is identi-
cal to the one inside the first round brackets on the right-hand side, and it represents
the inertial (or passive gravitational) mass. The first term on the right-hand side of
the equation is the gravitational force. Note that the expression inside the square
brackets in the first term on the left side, which represents the active gravitational
mass, is affected by dissipation. Furthermore, inside the second square brackets there
are two different contributions. The first one is the gradient of the total effective pres-
sure (which includes the radiation pressure and the influence of the shear and bulk
viscosity). The second contribution comes from the local anisotropy in the pressure
induced by the radiation pressure and the shear viscosity. Finally, the last square
brackets contain different contributions due to dissipative processes. In particular,
the third contribution term is positive in the case of collapse (i.e., U < 0), showing
that the heat flux q > 0 and the radiation ε > 0 both reduce the rate of collapse. The
last term describes the coupling of the dissipative flux with the shear of the fluid.

4 Transport Equation

The main purpose of this work is to provide a full causal description of the viscous
dissipative gravitational collapse. This implies that all dissipative variables must sat-
isfy the corresponding transport equations derived from the causal thermodynamics,
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using the Müller-Israel-Stewart second-order phenomenological theory for dissipa-
tive fluids (Müller 1967; Israel 1976; Israel and Stewart 1976).

The general expression for the entropy four-current in the context of the Müller-
Israel-Stewart theory reads as follows

Sμ = Snuμ+ qμ

T
−(β0Π

2 +β1qνqν +β2πνκπνκ)
uμ

2T
+ α0Πqμ

T
+ α1π

μνqν

T
, (18)

where n is the particle number density, T is the temperature, βA(ρ, n) are thermo-
dynamic coefficients for different contributions to the entropy density, and αA(ρ, n)

are the thermodynamic viscous/heat coupling coefficients.
To derive the transport equation for each dissipative variable, we follow the stan-

dard procedure starting from the requirement that Sα
α ∼ 0 (Herrera et al. 2009). After

some calculations, we arrive at the transport equations:

τ0Π̇ = −
(
ζ + τ0

2
Π

)
AΘ + A

B
α0ζ

[
q ◦ + q

(
A◦

A
+ 2(rC)◦

rC

)]

− Π

[
ζT

2

(
τ0

ζT

).

+ A

]
, (19)

τ1q̇ = − A

B
κT ◦

(
1 + α0Π + 2

3
α1Ω

)

− T
A

B
κ

[
A◦

A
− α0Π

◦ − 2

3
α1

(
Ω ◦ +

(
A◦

A
+ 3

(rC)◦

rC

)
Ω

)]

− q

[
κT 2

2

( τ1

κT 2

). + τ1

2
AΘ + A

]
, (20)

and

τ2Ω̇ = −2ηAσ + 2ηα1
A

B

(
q ◦ − q

(rC)◦

rC

)
− Ω

[
ηT

(
τ2

2ηT

).

+ τ2

2
AΘ + A

]
.

(21)
where τ0, τ1, and τ2 are the relaxation times for the bulk viscosity, the heat flux, and
the shear viscosity, respectively, given by

τ0 = ζβ0, τ1 = κT β1, τ2 = 2ηβ2. (22)

Now coupling the transport equations to the dynamical Eq. (16), we find that
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(
ρ + P + Π + 2ε + 2

3
Ω

)
(1 − Λ)DT U = (1 − Λ)Fgrav + Fhyd

+ κE2

τ1

{
DR T

(
1 + α0Π + 2

3
α1Ω

)
− T

[
α0 DRΠ + 2

3
α1

(
DRΩ + 3

R
Ω

)]}

+ E

[
κT 2q

2τ1
DT

( τ1

κT 2

)
− DT ε

]
− E

[(
3q

2
+ 2ε

)
Θ − q

τ1
− 2(q + ε)

U

R

]
,

(23)

where Fgrav and Fhyd represent the gravitational force and the hydrodynamical force,
respectively, with

Fgrav = −
(

ρ + P + Π + 2ε + 2

3
Ω

)

×
[

m + 4π

(
P + Π + ε + 2

3
Ω

)
R3

]
1

R2 , (24)

Fhyd = −E2
[

DR

(
P + Π + ε + 2

3
Ω

)
+ 2(ε + Ω)

1

R

]
, (25)

and

Λ = κT

τ1

(
ρ + P + Π + 2ε + 2

3
Ω

)−1 (
1 − 2

3
α1Ω

)
. (26)

At this point, we can express Θ in terms of the dissipative variables using Eq. (19)
and inserting the result back into Eq. (23), to obtain

(
ρ + P + Π + 2ε + 2

3
Ω

)
(1 − Λ + Δ)DT U = (1 − Λ + Δ)Fgrav + Fhyd

+ κE2

τ1

{
DR T

(
1 + α0Π + 2

3
α1Ω

)
− T

[
α0 DRΠ + 2

3
α1

(
DRΩ + 3

R
Ω

)]}

− E2
(

ρ + P + Π + 2ε + 2

3
Ω

)
Δ

(
DRq

q
+ 2q

R

)

+ E

[
κT 2q

2τ1
DT

( τ1

κT 2

)
− DT ε

]
+ E

[
q

τ1
+ 2(q + ε)

U

R

]

+ E
Δ

α0ζq

(
ρ + P + Π + 2ε + 2

3
Ω

) {[
1 + ζT

2
DT

(
τ0

ζT

)]
Π + τ0 DT Π

}
,

(27)

where

Δ = α0ζq

(
ρ + P + Π + 2ε + 2

3
Ω

)−1 (
3q + 4ε

2ζ + τ0Π

)
. (28)
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Equation (27) allows us to describe the dynamics of gravitational collapse in terms
of all the dissipative variables, including the viscous/heat coupling coefficients for a
full causal approach.

5 Conclusions

In this chapter, we have studied the dynamics of relativistic, dissipative, and
anisotropic self-gravitating fluids under the assumption of spherical symmetry. The
analysis was based on a full causal approach, where the dynamical equations are
coupled to causal transport equations for the heat flux, shear, and bulk viscosity in
the context of the Müller-Israel-Stewart theory, including the thermodynamic vis-
cous/heat coupling coefficients.

We have derived the equation that governs the gravitational collapse of a spheri-
cally symmetric object by including all the dissipative variables. The equation shows
how the active gravitational mass is affected by dissipation, while local anisotropy in
the pressure is induced by the radiation pressure and the shear viscosity. In addition,
we find that the rate of collapse is reduced by radiation and the flux of heat and that
the viscous/heat coupling coefficients affect the inertial (or passive gravitational)
mass.
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Hydrodynamic Version of the Equation of
Motion of a Charged Complex Scalar Field

Mario A. Rodríguez-Meza and Tonatiuh Matos

Abstract In this chapter we derive the equation for a charged complex scalar field in
its hydrodynamic form. This is done by re-writing the Klein-Gordon (KG) equation
for the complex scalar field as a new Gross-Pitaevskii (GP)-like equation. In partic-
ular, we use as the potential of the scalar field the Mexican-hat potential, and assume
that the field is in a thermal bath with a one loop contribution. We interpret the new
GP equation as a finite temperature generalization of the GP equation for a charged
field. From its hydrodynamic form, we derive the corresponding thermodynamics
and obtain a generalized first law for a charged Bose-Einstein Condensate (BEC).

1 Introduction

Nowadays, several astronomical observations are giving evidence for the existence
of the so-called dark matter, which occupies approximately 26 % of the Universe;
the remaining part being occupied by another dark component, which is usually
associated to a fundamental constant. The standard cosmological model, which has
been developed for describing the Universe and its evolution, is based on assuming
that dark matter is a cold component with a dust-type equation of state and a cos-
mological constant (ζ) for the other dark component. This model is usually referred
to as the ζCDM model. However, despite the successes of the ζCDM cosmology
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at describing the large-scale structure of the Universe, the model remains far from
perfect. A detail of significant difference comes in the density profiles of dark matter
halos, which are predicted by the model to have central cusps, while observations of
late-type galaxies tend to favour a constant density core. Alternatively, a scalar field
has been proposed as a dark matter model (see Suárez et al. (2013) for a review).
In this model, the nature of dark matter is a fundamental real scalar field. In short,
the scalar field Lagrangian is comprised of two terms: a kinetic term and a potential
term. We then fix the form of the potential, and with the resultant equations we try
to explain some observed astronomical data as, for example, the rotation curves of
spiral galaxies. In particular, this scalar field model predicts that the galactic dark
halos are core-type. We refer the reader to Suárez et al. (2013) for more details as
well as for in-depth comparisons between observations and the ∂CDM model.

In this chapter, we extend the model by considering that the scalar field is a
complex field and by adding an electromagnetic term in the Lagrangian. This allows
us to derive a hydrodynamic version of the scalar field, where the potential exhibits
a symmetry breaking and a possible thermodynamics (see Matos and Suárez (2011)
for the real case). Symmetry breaking is normally associated to phase transitions in
other areas of physics, and therefore its importance.

The chapter is organized as follows. In Sect. 2 we present a general Lagrangian
for the complex scalar field, which includes a term with electromagnetic fields, and
show how the symmetry appears and is broken. In Sect. 3 we show how the Klein-
Gordon (KG) equation transforms into a generalized Gross-Pitaevskii (GP) equation,
while in Sects. 4–6 we derive the hydrodynamic version of the generalized GP equa-
tion, analyze its Newtonian limit, and derive the corresponding thermodynamics,
respectively. Finally, Sect. 7 summarizes the relevant conclusions.

2 Gauge Symmetry Breaking

The Lagrangian model having a local U (1) symmetry is

L = (∇μΩ + ieAμΩ
) (∇μΩ∗ − ieAμΩ∗) + V (|Ω|) − 1

4
Fμφ Fμφ, (1)

where V is the scalar field potential—a double-well interacting Mexican-hat poten-
tial for a complex scalar field (hereafter SF) Ω(x, t). The scalar field is in thermal
equilibrium with a reservoir at temperature T . The thermal interaction between the
scalar field and the thermal bath is computed up to one loop of correction, and is
given by Kolb and Turner (1990), Matos and Suárez (2011)

V (Ω) = −m2ΩΩ∗ + Ψ

2
(ΩΩ∗)2 + Ψ

4
T 2ΩΩ∗ − ρ2

90
T 4. (2)
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This result includes both quantum and thermal contributions. The parameter m is the
mass of the scalar field and Ψ gives the scalar field self-interaction, which is related
to a “pressure” obeying an equation of state of the form p ∝ θ. Here we use reduced
units so that � = 1, c = 1, and kB = 1. We can plot this potential as a function of the
complex SF (with m = 1 and Ψ = 1), and observe that for high enough values of the
temperature (say, T = 5) the form of the potential close to the minimum resembles
a paraboloid of revolution and that when the temperature is lowered the symmetry is
broken (around T = 2), the minimum at the centre of the complex SF plane vanishes,
and there appears the Mexican-hat behaviour (T = 1).

The dynamics of a SF is governed by the KG equation, which comes by computing
the extremum of the action corresponding to the Lagrangian in Eq. (1). This is the
equation of motion of a field composed of spinless particles

�2
EΩ + dV

dΩ∗ − 2m2σΩ = 0, (3)

where we have added a first-order, self-interaction potential σ to the SF, which we
will justify below. For a charged field, the D’Alambertian operator is given by

�2
E ≡ (∇μ + ieAμ

) (∇μ + ieAμ
)

, (4)

where Aμ = (A, σ) is the electromagnetic four potential. Notice that we can re-write
the D’Alambertian as

�2
E = (∇ + ie A) · ∇ − (

κ

κt
+ ieσ)

κ

κt
+ ie∇μ Aμ − e2 Aμ Aμ . (5)

In what follows, we will use the Lorentz gauge ∇μ Aμ = 0. Moreover, it is
convenient to consider the total potential VT by adding to the potential V the self-
interaction contribution and the term e2 Aμ Aμ = e2 A2 so that

VT (Ω) = −m2ΩΩ∗ + Ψ

4
T 2ΩΩ∗ − e2 A2ΩΩ∗

+Ψ

2
(ΩΩ∗)2 − ρ2

90
T 4 − 2m2σ ΩΩ∗ . (6)

Therefore, the KG equation can be written as

�2Ω + dVT

dΩ∗ = 0 , (7)

where now �2 = ∇μ∇μ. Thus, we can define an effective mass by

mef f =
√

m2 + e2 A2 , (8)
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where the electromagnetic potential term is the Proca mass.
The total potential in Eq. (6) has a minimum in Ω = 0 when the temperature

T > Tc. If T < Tc, the point Ω = 0 becomes a maximum and the potential in Eq. (2)
has a circular zone of minima with radius

Ωmin = 1

2

√
T 2

c − T 2 . (9)

The critical temperature where the minimum of the potential Ω = 0 becomes a
maximum and the symmetry is broken is given by

Tc = 2√
Ψ

√
m2

e f f + 2m2σ . (10)

We refer the reader to Castellanos and Matos (2012) for details on BEC and this
critical temperature.

3 The Generalized Gross-Pitaevskii Equation

For the SF we now perform the transformation

Ω = β e−imc2t/�

where we have returned to normal units, except for the temperature which is given
in energy units (kB = 1).

In terms of the function β and temperature T , the KG equation (3) reads

i�β̇ + �
2

2m
�2β + M

Ψ

2mc2 |β |2β − mc2σβ + ecσβ

+ ΨT 2

8mc2 β = 0, (11)

where β̇ = κβ/κt . Note that the complex conjugate equation can be described in
the same way.

Equation (11) is an exact equation for the field β (x, t), where σ defines the
external potential acting on the system and the terms containing Ψ represent the
interaction potential within the system. When T → 0 and in the non-relativistic limit,
�2 → ∇2 and Eq. (11) becomes the GP equation for the Bose-Einstein Condensates
(BEC). We also note that the static limit of Eq. (11) corresponds to the well-known
Ginzburg-Landau equation. Therefore, we shall consider Eq. (11) as a generalization
to the GP equation for the description of a complex charged SF in a thermal bath at
finite temperature (Castellanos and Matos 2012).
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4 The Hydrodynamic Version

In this section, we transform the generalized GP equation (11) into its analog hydro-
dynamical version. To do so the ensemble wave function β will be expressed in
terms of a modulus n and a phase S as

β = √
n ei S, (12)

where the phase S(x, t) is assumed to be a real function. As usual this phase will
define the velocity. We can interpret n(x, t) = θ/MT as the ratio of the number
density of particles in the condensed state, i.e., θ = mn0 = m N0/L3, (with N0
being the number of particles in condensed state) over the total mass of the particles
in the system, MT . Both S and n are functions of time and position. In passing, we
recall that the concept of symmetry breaking is often used as a sufficient condition
for BEC (Castellanos and Matos 2012).

We have that the SF can oscillate around the Ω = 0 minimum, while below
the critical temperature Tc, SF oscillates close to the “ring” minimum zone. We
see that for a real scalar field the oscillation occurs around the minimum values
Ω2

min = (T 2
c − T 2)/4, while the density oscillates around n = ψ2(T 2

c − T 2)/4 as
we may see from Eq. (9).

In order to derive the hydrodynamic equations, we perform the Madelung trans-
formation (12) in the generalized GP equation (11). After some algebraic steps, we
obtain the following equations:

ṅ + ∇ · (nv) − h

2me

κ j

κt
= 0 , (13a)

v̇ + (v · ∇)v − ce

m
(E + v × B) =

−c2∇σ + Ψ

m2c2ψ2 ∇n + h2

m2 ∇
(∇2√n√

n

)

+ h

2emc2n

κv j

κt
− �

2

m2 ∇
(

κ2
t
√

n√
n

)
+ Ψ

4m2 T ∇T, (13b)

where E and B = ∇ × A are the electric and the magnetic field vectors, respectively.
Here we have also made the following definitions for the fluxes

j = 2en(∇S + e

�
A), j = 2en(Ṡ + e

�
σ), jμ = (j, j), (14a)

and the velocity

v ≡ �

m
(∇S + eA) . (15)
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Notice that in Eq. (13b) h enters on the right-hand side through the term containing
the gradient of ∇2√n/

√
n. This term is usually called the “quantum pressure” and is a

direct consequence of the Heisenberg uncertainty principle. It reveals the importance
of quantum effects in interacting gases. Now, multiplying Eq. (13b) by n, we obtain
the form

nv̇ + n(v · ∇)v = nFE + nFσ − ∇ p + nFQ + ∇ε, (16)

where FE = e
m (E + v × B) is the electromagnetic force, Fσ = −∇σ is the force

associated to the external potential σ, p is interpreted as the pressure of the SF gas
that satisfies the equation of state p = wn2 (where w = −Ψ/4m2 is an interaction
parameter), ∇ p is the pressure gradient force, FQ = −∇UQ is the quantum force
associated to the quantum potential

UQ = − �
2

2m2

(∇2√n√
n

)
, (17)

and ∇ε is defined as

∇ε = �

2me
v̇ j + 1

4

Ψ

m2 nT ∇T

+ χ∇(ln n)̇ − �
2n

4m2 ∇
(

n̈

n

)
, (18)

where the coefficient χ is given by

χ = �
2

4m2

[
−∇ · (nv) + �

2me
j

]
,

and the term ∇(ln n)̇ can be written as

∇(ln n)̇ = −∇(∇ · v) − ∇[∇(ln n) · v] + 1

m
∇

[
1

n

κ j

κt

]
.

Equations (13) are effectively the hydrodynamical representation of Eq. (11) and they
are completely equivalent to it.

5 The Newtonian Limit

The system of equations (13) can be simplified if we neglect second-order time
derivatives as well as the products of time derivatives. In this limit we arrive to the
Newtonian system of equations
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ṅ + ∇ · (nv) = 0, (19a)

nv̇ + n(v · ∇)v = nFE + nFσ − ∇ p + nFQ + ∇ε. (19b)

Equations (19a) and (19b) are, respectively, the continuity and the momentum
equations of fluid mechanics. However, Eq. (19b) contains forces due to the external
potential, the pressure gradient, the viscous friction due to the interactions of the
condensate, and to the quantum nature of the equations. In particular, the quantity
∇(ln n)̇ plays a very important role. In this limit it reads

∇(ln n)̇ = −∇(∇ · v) − ∇[∇(ln n) · v],

so that

∇ε = 1

4

Ψ

m
nT ∇T − χ [∇(∇ · v) + ∇[∇(ln n) · v]], (20)

with

χ = − �
2

4m2 ∇ · (nv).

We interpret the term ∇ε as the viscous stress force. It contains terms involv-
ing the gradients of the temperature and the divergence of the velocity and density
(dissipative contributions). The measurement of the temperature dependence in this
thermodynamic quantity at the phase transitions might reveal important information
on the behaviour of the gas due to particle interactions.

6 The Thermodynamics

Here we derive the equations of thermodynamics from the hydrodynamic repre-
sentation. We start by deriving a conservation equation for a function Λ, using the
following relation (Matos and Suárez 2011):

(nΛ)̇ = nΛ̇ + Λṅ, (21)

where Λ can be either σ or UQ . If we next combine Eq. (21) with the continuity
equation

ṅ + ∇ · (nv) = 0 (22)

we obtain that
(nΛ)̇ + ∇ · (nΛv) = −nv · FΛ + nΛ̇.
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The treatment of ε using the above procedure is more difficult because in general
we do not know it explicitly.

In general, we know that for a non-relativistic system, its total energy density ε is
the sum of the kinetic, potential, and internal energy contributions. However, in this
case a fourth term, UQ , should be added due to the quantum potential so that

ε = ne = 1

2
nv2 + nσ + nu + nUQ + γE , (23)

where u is the internal energy of the system and

βE = e

m
(σ − v · A), (24)

is the electromagnetic energy potential, defined in terms of the vector potential A
and the electric potential σ.

Thus, from relation (23) we have that u must satisfy the equation

(nu)̇ + ∇ · Ju − ∇ · Jθ + nσ̇ = −p∇ · v, (25)

where Ju is the energy current (produced by an energy flux and a heat flux Jq ) given
by

Ju = nuv + Jq + JB − pv

where ∇ ·Jq = v ·(∇ε) and ∇ ·JB = v ·(njB). Here jB is given by the continuity-like
equation for the vector potential A

κA
κt

+ (v · ∇)A = −(A · ∇)v + m

e
jB . (26)

The above expression for the energy current is related to the velocity and temperature
gradient in the condensate. It shows explicitly the temperature dependence of the
thermodynamic equations. With these definitions at hand we can re-write Eq. (25) as

(nu)˙+ ∇ · (nuv + Jq + JB − pv − Jθ) + nσ̇ = −p∇ · v. (27)

To find the thermodynamical quantities of the system in equilibrium (by taking
p as a constant on a volume L), we restrict the system to the regime where the
auto-interacting potential is constant in time. With this provision Eq. (27) becomes

(nu)˙+ ∇ · (nuv + Jq + JB − pv − Jθ) = −p∇ · v , (28)

where the terms on the left-hand side represent the change in the internal energy of the
system, −p∇ ·v is the work done by the pressure, and ∇ ·v is related to changes in the
volume. The flux Jq contains terms related to the heat generated by the temperature
gradients ∇T and to dissipative (viscous) forces ∼ ∇(∇ · v). Finally, but not less
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important, we have the flux term Jθ , which owes its existence to the gradients of the
quantum potential defined by relation (17).

Integration of Eq. (28) over a closed volume V yields

d

dt

∫
nu dV +

∮
(Jq + JB + pv) · n dS −

∮
Jθ · n dS

= −p
d

dt

∫
dV,

where S is the surface enclosing the volume region and n is its unit normal vector. This
equation, which is a continuity-like equation for the internal energy, describes the
thermodynamics of the system in a way analogous to the first law of thermodynamics
(for the KG equation or a BEC), which reads

dU = d̂Q + d̂Q B + d̂AQ − pdV, (29)

where the internal energy is U = ∫
nu dV . Its change is due to a combination of

heat Q + Q B + AQ added to the system and work done on the system (pressure
dependent). In particular,

d̂AQ

dt
= �

2

4m2

∮
n(∇ ln n)̇ · ndS =

∮
nvθ · n dS,

is the quantum heat flux due to the quantum nature of the KG equation.
The first and third terms on the right-hand side of Eq. (29) make the crucial differ-

ence between a classical and a quantum first law of thermodynamics. Furthermore,
for the magnetic heat we have

d̂Q B

dt
=

∫
∇ · JB dV =

∫
v · (njB) dV

= m

e

∫
n

(
κA
κt

+ (v · ∇)A + (A · ∇)v
)

· v dV,

(30)

where the vector potential A fulfils the Maxwell equations, which in terms of the
fluxes (14) reads

Fμφ
,φ = − jφ, (31)

where Fμφ = κμ Aφ − κφ Aμ.
To complete the description we write the Maxwell equations in terms of the vector

and the electric potentials
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�A = − 1

ψ2 j, (32a)

�σ = − 1

ψ2 j, (32b)

where we have used the Lorentz gauge. Note that the fluxes contain information on
the fluid velocity and the electromagnetic field as well.

7 Conclusions

We have studied a U (1) symmetry breaking term and the temperature contribution
to the effective Mexican-hat potential of a system of weakly interacting bosons, and
derived the hydrodynamic version of the complex scalar field equation. In addition,
from the hydrodynamic form of the equations we have also derived the corresponding
thermodynamics for the Gross-Pitaevskii equation.
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