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Preface

Fluid dynamics is a highly developed branch of science that has been the subject of
continuous and expanding research activity both theoretically and experimentally
for more than a century and a half. In particular, the relatively recent development
of fluid dynamics has been strongly influenced by its numerous applications in a
plethora of research fields as well as industrial and technological processes. Current
research in physics, biology, engineering, medicine, and environmental sciences
rely more and more on the use of the principles of fluid mechanics. While
improvements to the nineteenth-century technologies were possible on the basis of
common sense, the new technologies require the knowledge of fluid flow behavior
under conditions that go beyond our everyday experience.

This book presents recent experimental and theoretical advances in fluid
dynamics applied to physics and engineering. It includes invited lectures given
during the International Enzo Levi Spring School held at Cinvestav-Abacus,
Estado de México, Mexico, May 15–16, 2013, and seminars presented at the XIX
National Congress of the Fluid Dynamics Division of the Mexican Physical
Society, held at the Mexican Institute of Water Technology, Jiutepec, Morelos,
Mexico, November 13–15, 2013.

The Spring School is organized every year in honor of Prof. Enzo Levi, a
well-known Mexican scientist, who dedicated his research to the study of fluids. He
was one of the founders of the Instituto de Ingeniería (Engineering Institute) of the
Universidad Nacional Autónoma de México (UNAM), and of the Instituto
Mexicano de Tecnología del Agua (Mexican Institute for Water Technology) of the
National Water Commission. He was the mentor of several generations of Mexican
Engineers.

The 2013 Enzo Levi School was held at Cinvestav-Abacus, a recently created
Centre for Applied Mathematics and High Performance Computing (HPC) that
from early 2015 will host one of the largest supercomputers in Latin America,
where scientists and engineers in Mexico and other countries will be able to develop
projects on Computational Fluid Dynamics requiring very large HPC facilities.
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During the Cinvestav-Abacus two-day school, lectures were given by well-
known national and international scientists. The meeting was attended by about 50
researchers and about a hundred graduate and undergraduate students.

A wide variety of topics were presented that included asymptotic methods in
fluids, convection, computational methods applied to biological systems, interfacial
fluid dynamics, colloidal dispersions, and fluid flow in fractured porous media.
Among the lectures we want to mention a very interesting description of Bubble
dynamics with biomedical applications and Using computers to study fluid dynamics
by Timothy Colonius of the Mechanical and Civil Engineering Department
of the California Institute of Technology, two lectures on the Fluid mechanics of
bio-inspired swimming and flying and Some problems on the physics of insect-
inspired flapping wings by Ramiro Godoy Diana of the École Supérieure de
Physique et de Chimie Industrielles (ESPCI), Paris, France, and Claudio Pastorino
of the Departamento de Física, Centro Atómico Constituyentes, CAN-CONICET,
Buenos Aires, Argentina, with the two lectures Polymer brushes exposed to liquid
flow: cyclic dynamics, collective behavior and coarse-grained and DPD model to
simulate soft matter systems in equilibrium and under flow. Other interesting lectures
were Smoothed Particle Hydrodynamics for free-surface flows: Implementation
(CPU and GPU) and DualSPHysics code and applications by Anxo Barreiro,
Universidad de Vigo, Spain, Numerical simulation of multiphase flow by Leonardo
Di G. Sigalotti of the Universidad Autónoma Metropolitana-Azcapotzalco
(UAM-A), Mexico and the Instituto Venezolano de Investigaciones Científicas
(IVIC), Caracas, Venezuela, Modeling the dependence of interfacial tension with
temperature and ionic strength in mixtures of solvents, organic and water by dis-
sipative particle dynamics by Estela Mayoral-Villa, ININ, Mexico, and Surface
waves in the vicinity of a singularity by Gerardo Ruíz Chavarría, FCUNAM,
Mexico. Several of these lectures were included in Part I of the book.

The Annual Fluid Dynamics Congress has a different format compared to its
previous episodes. In 2013, it lasted three days and was composed of six plenary
lectures and many short oral presentations of students and researchers.

In Part I we also included the plenary lectures given during the congress by
national and international well-known invited speakers and some of the most
interesting short oral contributions. Among the plenary lectures we can mention the
following: Flow coherence: Distinguishing cause from effect by F.J. Beron Vera
of the University of Miami, Florida, USA, Flows from bins: New Results by
Abraham Medina of ESIME-IPN, Mexico, Numerical modeling of the extratropical
storm Delta over Canary Islands: Importance of high resolution, by José
M. Baldasano of the Barcelona Supercomputing Center, Barcelona, Spain,
Compositional Flow in Fractured Porous Media: Mathematical Background and
Basic Physics, by Leonardo Di G. Sigalotti of the UAM-A, Mexico and IVIC,
Venezuela, Some aspects of the turbulence role in oceanic currents by Angel Ruiz
Ángulo, UNAM, Mexico, and finally Alya Red CCM: HPC-based cardiac com-
putational modeling by Mariano Vázquez of the Barcelona Supercomputing Center,
Barcelona, Spain.
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The other short presentations are organized by topics: Multiphase flow and
Granular Media (Part II), Convection and Diffusion (Part III), Vortex, Oceanog-
raphy and Meteorology (Part IV), and General Fluid Dynamics and Applications
(Part V).

In Part II, Multiphase Flow and Granular Media, we have focused on petroleum-
related applications, where we can find interesting contributions on the tracer
transport and natural and forced convection with applications to oil recovery, mixed
convection around a heated horizontal cylinder and viscous dissipation, charac-
terization of a bubble curtain for PIV measurements, numerical simulations of
gas-stirred ladle with applications to metallurgy, and a study of fluid flow through
polymeric complex structures using multiscale simulations.

Convection and Diffusion can be found in Part III, with interesting contributions
on conjugate convection in an open cavity, and heat transfer in biological tissues.
We can also find two applications on fracture-porous media systems in oxygen
transport and combustion, and an interesting study of solidification in the presence
of natural convection in a Hele-Shaw cell and of thermal convection in a cylindrical
enclosure with a wavy sidewall.

In Part IV, Vortex, Oceanography and Meteorology, we can find three contri-
butions on numerical simulations of the flow past a pair of magnetic obstacles,
steady and unsteady vortex flow generated by electromagnetic forcing, as well as
numerical simulations of the span-wise vortex in a periodic forced flow, of erosion
and deposition of particles in a periodic forced flow and of singularities in surfaces
waves.

Finally, in Part V, General Fluid Dynamics and Applications, we find several
contributions of fluid dynamics applied to various fields such as biopolymers
processes, friction stir welding, dynamical behavior of a drop on a vertically
oscillating surface, and critical phenomena of a drop through a stratified fluid.

The book is aimed at fourth year undergraduate and graduate students, and at
scientists in the field of physics, engineering, and chemistry who have interest in
fluid dynamics from the experimental and theoretical points of view. The material
includes recent advances in experimental and theoretical fluid dynamics and is
adequate for both teaching and research. The invited lectures are introductory and
avoid the use of complicated mathematics. The other selected contributions are also
adequate for fourth-year undergraduate and graduate students.

The editors are grateful to the institutions that made possible the realization
of the International Enzo Levi Spring School 2013 and the XIX National Congress
of the Fluid Dynamics Division of the Mexican Physical Society, especially the
Consejo Nacional de Ciencia y Tecnología (CONACYT), the Sociedad Mexicana
de Física, the Universidad Autónoma Metropolitana-Azcapotzalco (UAM-A), the
Instituto Mexicano de Tecnología del Agua, Jiutepec, Morelos, the Universidad
Autónoma de México (UNAM), the ESIME of the Instituto Politécnico Nacional
(IPN), Cinvestav-Abacus, and the Instituto Nacional de Investigaciones Nucleares
(ININ).
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We acknowledge the help of the Editing Committee: Carlos A. Vargas, Salvador
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Compositional Flow in Fractured
Porous Media: Mathematical Background
and Basic Physics

Leonardo Di G. Sigalotti, Eloy Sira, Leonardo Trujillo and Jaime Klapp

Abstract This chapter presents an overview of the equations describing the flow
of multiphase and multicomponent fluids through fractured and unfractured porous
media using the framework of continuum mixture theory. The model equations and
constraint relationships are described by steps of increasing level of complexity. We
first describe the governing equations for multiphase flow in both undeformable and
deformable porousmedia. Thismodel is extended to include the transport of chemical
species by first describing the flow of a multicomponent, single-phase fluid and then
of a compositional (multiphase and multicomponent) fluid in a porous medium.
Finally, the equations governing the flow of compositional fluids in fractured porous
media are described. The proposedmethodology is suitable formodelling any type of
fracturedmedia, including dual-, triple-, andmultiple-continuum conceptual models.
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4 L. Di G. Sigalotti et al.

1 Introduction

Multiphase and multicomponent fluid flow in fractured rocks occurs in a variety of
subsurface flows and transport processes, including contaminant subsurface migra-
tion, saltwater intrusion in coastal aquifers, geothermal hydrotransport, subsurface
sequestration of CO2, and oil production and recovery from underground reservoirs,
just to mention but a few. In particular, the transport of compositionally complex
fluids in fractured porous media has been the subject of extensive research over the
past three decades because of its practical interest in petroleum reservoir engineer-
ing. Whereas the occurrence of naturally fractured reservoirs over the world is well
acknowledged, more than 20% of the world’s oil reserves are estimated to reside in
naturally fractured formations (Firoozabadi 2000).

In contrast to crystalline rocks in which any void space is due to fractures, void
space in fractured porous media is predominantly formed by pores, which manifest
themselves as microscopic perforations of the fracture matrix interface that alter in-
plane flow when fracture aperture is less than or equal to the grain size (Mätthai and
Belayneh 2004). Although above a certain aperture and length, fracturesmay become
preferential flow pathways that dominate fluid transport throughout the reservoir
(Phillips 1991), their actual impact on the transport is in general difficult to predict
because multiple fractures may exhibit self-similar and fractal properties in a wide
range of scales, with different orientations and intersecting each other. The problem
of compositional (i.e., multiphase and multicomponent) flow in fractured porous
rocks becomes even more complex owing to the strong nonlinear couplings among
viscous, gravitational, and capillary forces in the reservoirwhichmanifest themselves
differently in the fracture and rock matrix domains.

The physics of multiphase flows in porous media seems to be reasonably well
established and it has been mostly developed in the framework of continuum mix-
ture theory (Allen 1985; Bear 1988; Adler andBrenner 1988;Miller et al. 1998; Chen
et al. 2006), where a multiphase mixture is treated as a set of overlapping continua
called constituents. In porous media a multiphase fluid mixture consists of several
phases if on the scale of typical pore apertures they are separated by sharp inter-
faces. If, on the other hand, the fluid mixture consists of several chemical species,
or components, in which their spatial segregation is only observable at intermolec-
ular length scales, we call it a multicomponent mixture. In underground petroleum
reservoirs, we deal in general with multiphase flows in which each phase comprises
several chemical species and so we refer to them as multiphase and multicompo-
nent flows, or simply, as compositional flows. In recent years, research efforts have
gone mostly into modelling compositional flow in fractured porous media in order
to optimize the recovery of hydrocarbons. The partial differential equations govern-
ing this type of flows were presented already in 1960 by Barenblatt et al. (1960),
and since then they have undergone little modifications. However, their solution still
remains a challenge owing to the nonlinear couplings among the variables, the scale-
varying heterogeneity of the fractured porous medium, and the large variations in
key material properties. At present, there is no a general satisfactory methodology
for quantitatively describing flow and reactive transport in multiscale media.
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The key issue for simulating flow in fracture rocks, however, is how to handle
fracture-matrix interaction under different conditions. For instance, undermultiphase
and nonisothermal conditions, a critical aspect involves the interaction of mass and
thermal energy at fracture-matrix interfaces. In general, most mathematical mod-
els rely on continuum approaches and involve developing conceptual models. They
incorporate the geometrical information of the fracture-matrix system, define mass
and energy conservation equations for the fracture-matrix domains, and solve a num-
ber of discrete nonlinear algebraic and constitutive equations, which express relations
and constraints of physical processes, variables, and parameters as functions of pri-
mary unknowns. Conceptual models employed to represent fractured porous media
include: the discrete fracture and matrix models (DFM) (Lichtner 1988; Steefel and
Lichtner 1998a, b; Stothoff and Or 2000), the effective-continuum method (ECM)
(Wu 2000), the dual-continuummethods, including double- andmulti-porosity, dual-
permeability models, and the more general Multiple Interacting Continuum (MINC)
approach (Barenblatt et al. 1960; Barenblatt and Zheltov 1960; Warren and Root
1963; Pruess and Narasimhan 1985; Wu and Pruess 1988; Bai et al. 1993). A dual
porosity model of multidimensional, compositional flow in naturally fractured reser-
voirs as derived by the mathematical theory of homogenization was presented by
Chen (2007). The dual-continuum model, such as the double-porosity and the dual-
permeability concept, has been the most widely used approach for modelling fluid
flow, heat transfer, and chemical transport through fractured reservoirs because of its
computational efficiency and its ability to match many types of field-observed data.
A unified scheme based on the dual-continuum method has been recently reported
by Wu and Qin (2009), which can be used with different fracture-matrix concep-
tual models. The mathematical formulation of dual-continuum models as used in
industrial simulators and the-state-of-the-art modelling of the physical mechanisms
driving flows and interactions/exchanges within and between fractures and matrix
media have been described in two separate papers by Lemonnier and Bourbiaux
(2010a, b).

Fluid motion in a petroleum reservoir is governed by the laws of conservation of
mass, momentum, and energy. These physical laws are often represented mathemat-
ically on the macroscopic level by a set of partial differential or integral equations,
referred to as the governing equations. As long as compressible or multiphase flow
or heat transfer is involved, these equations are inherently nonlinear. A mathematical
model for describing the flow and transport processes in fractured porous media con-
sists of these equations, together with appropriate constitutive relations and a set of
boundary and/or initial conditions. In this paper we intend to develop such amodel by
steps of increasing level of complexity. We first describe in Sect. 2 the equations gov-
erning the simultaneous flow of two or more fluid phases within a porous medium. In
Sect. 3 we write down the equations used to model the transport of multicomponents
in a fluid phase in a porous medium. This model is extended in Sect. 4 to describe
compositional flow in a general fashion, where each phasemay involvemany compo-
nents andmass transfer between the phases is an important effect. Chemical flooding,
i.e., the injection of chemical components in production wells is an important tech-
nique employed in enhanced oil recovery to reduce the fluid mobility and increase
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the sweep efficiency of a reservoir. In view of its practical importance in petroleum
engineering, Sect. 5 extends the equations of Sect. 4 to describe chemical flooding
compositional flows in a porousmedium. The equations formodelling compositional
flow in a fractured porous medium are introduced in Sect. 6. The proposed method-
ology is suitable for modelling any type of fractured reservoirs, including double-,
triple-, and other multiple-continuum conceptual models.

2 Multiphase Flow in Porous Media

In fluid mechanics, multiphase flow is treated as a generalization of the modelling
of a two-phase immiscible flow, where the two fluids are not chemically related and
coexist in contact separated by well-defined interfaces at the microscopic scale. In
reservoir simulations, we are typically interested in the simultaneous flow of two or
more fluid phases coexisting within the porous solid matrix. In principle, the physics
of such flows can be described using the framework of continuum mixture theory
for the development of the governing equations, in which the various phases are
considered as distinct fluids with individual thermodynamic and transport proper-
ties and with different flow velocities. The transport phenomena are mathematically
described by the basic principles of conservation for each phase separately and by
appropriate kinematic and dynamic conditions at the interfaces.Whereas the detailed
structure of these interfaces and the fluid volumes bounded by them are in general
inaccessible to macroscopic observation, their geometry influences the dynamics of
the multiphase mixture. To cover this difficulty, mixture theory makes use of the
volume fraction φα of phase α, which is defined as a scalar function of position x
and time t such that 0 ≤ φα ≤ 1. Therefore, for any volume V in the mixture, the
integral ∫

V
φα(x, t)dx, (1)

gives the instantaneous fraction of volume V that is occupied by the fluid phase
α. Another quantity which is important in the description of multiphase flow is the
phase saturation Sα , defined as the fraction of void space of a porous medium that
is filled by phase α,

Sα = φα

φ
, (2)

where φ denotes the skeletal porosity of the solid matrix, which is the sum of the
fluid volume fractions in a saturated porous medium. In other words, it is the total
fraction of void space in the material that can be occupied by the fluid phases.
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2.1 Undeformable Porous Media

Consider first a porous medium that is statistically homogeneous and undeformable,
and assume that the system has four phases: a solid phase (R) and three fluid phases,
namely water (W ), gas (G), and oil (O). The water phase wets the porous medium
more than the oil phase, and so it is called the wetting phase. In general, water is
the wetting fluid relative to oil and gas, while oil is the wetting fluid relative to gas.
Each phase has its own intrinsic mass density ρα , velocity vα , and volume fraction
φα , with the latter obeying the constraint

∑
α

φα = 1. (3)

The mass conservation equation for phase α can be written as

∂ (φαρα)

∂t
+ ∇ · (ραvα) = Iα, (4)

where Iα is an interfacial mass transfer rate from all other phases to phase α. In
the absence of any external mass source or sink, the reaction rates must satisfy the
constraint ∑

α

Iα = 0 (5)

in order to ensure mass conservation in the overall mixture. In addition, the fact
that all fluid phases jointly fill the void space in the solid matrix implies the further
relation ∑

α

Sα = 1, or SW + SO + SG = 1. (6)

Using relations (2) and (3) and noting that φ + φR = 1, Eq. (4) can be expressed in
terms of the saturation and porosity as

∂ (φSαρα)

∂t
+ ∇ · (ραvα) = Iα, (7)

for the fluid phases, and

∂ [(1 − φ) ρR]

∂t
+ ∇ · (ρRvR) = IR, (8)

for the solid (rock) phase. If the rock phase is chemically inert, IR = 0. In addition,
if the solid medium is immobile then vR = 0 and Eq. (8) reduces to ρR = const.
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The momentum conservation equation for any phase α obeys the form

∂ (ραvα)

∂t
+ ∇ ·

(
ραvαvα

φα

)
= −∇ pα + ∇ · Tα + φαραFα + Mα, (9)

where pα is the mechanical pressure in fluid α, Tα is the viscous stress tensor, Fα

is a body force, and Mα is the rate of momentum exchange from all other phases to
phase α. The term∇ ·T represents the viscous transfer per unit volume from the pore
walls to the pore spaces. In most reservoir applications, the flow in porous media is
characterized by low Reynolds numbers (Re < 1), i.e., the viscous forces dominate
over the inertial ones causing the fluids to move slowly. Under these conditions the
inertial terms on the left-hand side of Eq. (9) can be neglected. In addition, taking
the average of the right-hand side of Eq. (9) over the volume of fluid phase α within
a representative elementary volume and assuming that gravity is the only body force
acting on fluid α (i.e., φαFα = g∇z, where g is the magnitude of the gravitational
acceleration and z is a reference depth), it can be demonstrated that the momentum
balance reduces to the well-known Darcy’s law (Bear 1988)

vα = −Kα · (∇ pα − ραg∇z) , (10)

where the tensor

Kα = k
krα

μα

, (11)

is the mobility of fluid phase α. In this expression k is the absolute permeability
tensor of the porous medium, which measures its ability to transmit the fluid, krα is
the relative permeability of phase α, which describes the effects of the other fluid
phases in obstructing the flow of fluid α, and μα is the dynamic viscosity of phase
α. In any particular rock-fluid system, the mobility Kα accounts for much of the
predictive power of Darcy’s law. In general, constitutive relations for Kα are largely
phenomenological and an expression of common use inmany applications is just that
given by Eq. (11), where the mobility is proportional to the product of the absolute
and relative permeabilities. If the medium is isotropic, the absolute permeability is
diagonal, i.e., k = kI, where I is the identity tensor. Otherwise, we say that the
porous medium is anisotropic.

Equation (10) can be modified into a momentum conservation for the multiphase
mixture. To do so we first define the kinematic viscosity of phase α as να = μα/ρα

and introduce the following definitions

ν =
(∑

α

krα

να

)−1

, (12)

λα = krα

να

ν, (13)
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where ν is the kinematic viscosity of the mixture and λα is the mobility of each
phase in the multiphase mixture, which is commonly referred to as the fractional
flow function. It must obey the constraint

∑
α

λα = 1. (14)

Using the definitions (12)–(14) into Eq. (10) and summing up over all phases, we
obtain the momentum conservation equation of the multiphase mixture

ρv =
∑
α

ραvα = −k
ν

· (∇ p − γρρg∇z
)

(15)

where
∇ p =

∑
α

λα∇ pα, (16)

and

γρ =
∑

α λαρα

φ
∑

α Sαρα

, (17)

are, respectively, the mixture gradient pressure and the density correction factor
(Starikovic̆ius 2003). The definition of the mixture pressure according to Eq. (16)
is somewhat non-conventional. For instance, it is satisfied only for homogeneous
cases,while for heterogeneous,multidimensional,multiphase systems it is not always
possible to define such function.

In multiphase flow the function krα indicates the tendency of phase α to wet the
porous medium. In practical applications, the relative permeabilities are assumed to
be known functions of the phase saturations, which must be empirically determined
(Morel-Seytoux 1969). The simplest correlations used for the relative permeabilities
are power functions of the phase saturations, which for a gas-liquid system are

krl = sn
l , krg = (1 − sl)

n, (18)

where sl is a normalized liquid saturation defined by

sl = Sl − Slr

Slm − Slr
, (19)

with Slr being the residual or irreducible liquid saturation and Slm the maximum
achievable liquid saturation, which in many cases is less than unity. At the irre-
ducible saturation, the liquid becomes immobile since no interpore connections of
liquid exist. Identical forms to Eq. (18) with n = 3 are widely used in petroleum and
nuclear safety engineering, porous heat pipes (Wyllie 1962). However, this picture
of relative permeabilities is quite simplistic. In nature relative permeabilities often
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exhibit significant hysteresis, and the verification of an appropriate model in the
presence of multiphase fluids (with three or more phases) (Stone 1973) or compo-
sitional effects (Bardon and Longeron 1980; Amaefule and Handy 1982) are still
not clear. According to Eq. (10), each fluid phase has its own pressure at any point
in the reservoir. At the microscopic scale, the effects of interfacial tension and pore
geometry on the curvatures of fluid-fluid interfaces lead to capillary effects, which
at the macroscopic scale can be quantified in terms of the capillary pressure, defined
as the difference between the pressures of two adjacent phases α and β in a porous
medium

pcαβ = pα − pβ. (20)

In simplemodels, the capillary pressure is also assumed to be a function of saturation.
However, in general it is a function of the pore geometry, the physical properties of
the fluids, and the phase saturations (Parker 1989), i.e.,

pcαβ = f (φ, σαβ, S1, S2, . . . , SP ), (21)

where σαβ is the interfacial tension at theα-β interface andwhere it has been assumed
the presence of P phases. In actual flows the capillary pressure is generally multi-
valued, exhibits hysteretic behaviour (Hoa et al. 1977), and depends on fluid compo-
sition (Coats 1980). If P phases coexist, then P − 1 independent capillary pressure
functions will appear in the system.

The most restrictive hypothesis concerning Eq. (10) is the one that considers the
flow laminar and the fluid movement as dominated by viscous forces. It is therefore
valid when the velocities of the fluids are small. As the flow rate increases, deviations
from Darcy’s law occur due to inertia, turbulence, and other high-velocity effects
(Chen et al. 2006; Mei and Auriault 1991). Although Darcy’s law is valid for Re< 1,
its upper limit of validity can be extended to Re = 10 (Bear 1988), approximately at
the border between the linear and nonlinear laminar flow regimes. For Re > 100, in
the turbulent regime, a correction to Darcy’s law can be described by the quadratic
relation (Forchheimer 1901)

(μαI + βαρα|vα|Kα) · vα = −Kα · (∇ pα − ραg∇z) , (22)

whereβα is a factor including the inertial or turbulence effects and |vα | is themodulus
of the velocity of phase α. This relation is commonly known as Forchheimer’s law
and incorporates laminar, inertial, and turbulence effects (Chen et al. 2006; Amiri
and Vafai 1994). A formal derivation of the Forchheimer’s equation from volume-
averaging themicroscopicmomentum balance equation is given byWhitaker (1996).
However, much more fundamental research on multiphase flow in porous media is
needed to rigorously include these non-Darcian effects into the model.

If the flow is nonisothermal, we must add a balance equation for the energy,
which introduces the temperature as an additional dependent variable to the system.
In a reservoir, the average temperature of the solid matrix and the fluids in a porous
mediummay not be the same and so heat conductionmay occur between the solid and
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the fluids. Furthermore, heat conduction may also occur between the coexisting fluid
phases. For simplicity in the exposition, we may invoke local thermal equilibrium in
the fluid and assume that the temperature is the same in all fluid phases. In addition,
some variables such as porosity, density, and viscosity may depend on temperature.
We start by defining the internal energy of the composite system, consisting of the
flowing multiphase mixture and the solid matrix, as

φρU = φ
∑
α

ρα SαUα + (1 − φ)ρRCRT, (23)

where Uα , CR , and T are the specific internal energy of phase α, the heat capacity of
the rock, and the common temperature, respectively. The overall density is given by

φρ = φ
∑
α

ρα Sα + (1 − φ)ρR . (24)

From the statement of the first law of thermodynamics in a differential volume
occupied by phase α, we can derive the internal energy balance equation of phase
α as

∂(φρα SαUα)

∂t
+ ∇ · (ρα Hαvα) = ∇ · (

φSαkT,α∇T
) − εrσSB T 4 + Qα, (25)

where Hα is the specific enthalpy of phase α given by

Hα = Uα + pα

ρα

, (26)

kT,α is the thermal conductivity of phase α, εr is a radiation emissivity factor, σSB is
the Stefan-Boltzmann constant, and Qα is the interphase heat transfer rate associated
with phase α. Here,

Q =
∑
α

Qα, (27)

where Q includes all external volumetric heat sources and sinks. Noting that Uα =
CαT , whereCα is the heat capacity of fluid phase α, and using the mass conservation
equation (4) and the enthalpy definition (26), Eq. (25) can be rewritten in terms of
the temperature T as follows

φρα SαCα

∂T

∂t
+ ραCαvα · ∇T + Cα IαT = −∇ · (pαvα)

+ ∇ · (
φSαkT,α∇T

) − εrσSB T 4 + Qα. (28)

Sometimes it is useful to define the diffusive mass flux of phase α within the multi-
phase mixture as

Jα = ραvα − λαρv, (29)
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with the constraint ∑
α

Jα = 0, (30)

which can be used to decompose the phase velocity in Eq. (28). Summing up Eq. (28)
for all fluid phases and solid matrix and using the constraint (27) along with Eq. (29),
we finally obtain

[φρC + (1 − φ)ρRCR]
∂T

∂t
+ γCρCv · ∇T +

(∑
α

Cα Iα + CR IR

)
T

= −∇ · (pαvα) + ∇ · (
kT,eff∇T

) −
(∑

α

CαJα

)
· ∇T

− εrσSB T 4 + Q, (31)

for the energy balance equation of the multiphase mixture, where ρC is the heat
capacity of the multiphase fluid mixture defined as

ρC =
∑
α

ρα SαCα, (32)

kT,eff is an estimation of the effective thermal conductivity of the composite system
given by

kT,eff = (1 − φ)kT,R + φ
∑
α

SαkT,α, (33)

and γC is the correction factor for energy advection defined as

γC = ρ
∑

α λαCα∑
α ρα SαCα

. (34)

To complete the mathematical description of multiphase flow and heat transfer in
non-deformable porous media, the above equations need to be supplemented with a
number of constitutive equations. As expressed by relations (18) and (21), the relative
permeabilities, capillary pressures, and thermal conductivity in most applications are
assumed to be functions of the fluid saturations, while the phase density and dynamic
viscosity are treated as functions of the pressure and temperature (Wu and Qin 2009).
Equations (7), (10), and (31) provide 2P + 1 differential equations, while there are
3P + 1 independent variables: Sα , vα , pα , and T . The additional P relations to
determine a solution of the system are provided by the constraint (6) and the P − 1
independent capillary pressure functions.
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2.2 Deformable Porous Media

If the porous medium is deformable, additional equations are needed for a closed
system. Here we shall assume that the porous medium is heterogeneous and com-
posed of elastic material. A mesoscopic model of deformation of a porous elastic
solid is provided by the theory of elasticity modified to account for micro-structural
disorder. In this way, the heterogeneity of the solid matrix can be characterized by
the spatial variations of the local elastic constants. The mechanics of deformation
of heterogeneous media is largely based on studies of wave propagation (Karal and
Keller 1964; Frisch 1968; Weaver 1990; Ryzhik et al. 1996; Larose 2006), and it is
in this context that we shall derive the general formalism to be implemented here.

The analysis of deformation of a heterogeneous solid body can be handled mathe-
matically by introducing the concept of a continuummedium. In this idealization, we
assume that the properties of the medium averaged over a mesoscopic scale are con-
tinuous functions of position and time. However, the presence of heterogeneities at
the microscopic scale, implying preferred force paths within the medium, have been
used as an empirical argument against an isotropic continuum description of inhomo-
geneous materials. Nonetheless, recent findings on the stress distribution response
to local and global perturbations have shed some light on the validity of a continuum
theory (Ellenbroek et al. 2009).

For multiphase flow through a deformable porous medium, a new dependent vari-
able, say wR(x, t), must be introduced for the displacement field of the solid matrix.
Furthermore, we shall assume that the deformations are small. While this assump-
tion limits the range of applicability of the theory, it is physically reasonable for
poroelastic materials under strong static compression like underground soil rocks.
We note that for infinitesimal deformations both the displacements and their gradi-
ents are much smaller than unity. With this provision and using index notation, the
components of the strain tensor of the solid can be defined up to linear order as

εi j = 1

2

(
∂wR,i

∂x j
+ ∂wR, j

∂xi

)
, (35)

where εi j = ε j i , wR = {wR,i } = (wR,1, wR,2, wR,3) = (wR,x , wR,y, wR,z), and
x = {xi } = (x1, x2, x3) = (x, y, z) in Cartesian coordinates. Strain and stress are
linked by a stress-strain or constitutive relationship. The most general relationship
between the stress and strain tensors can be written as

Σi j = Ci jklεkl , (36)

where Ci jkl is a fourth-rank stiffness tensor having 81 components and Σi j = Σ j i .
Because of the symmetry of the stress and strain tensors, Ci jkl has only 21 inde-
pendent components, which are necessary to specify the stress-strain relationship
for the most general form of the elastic solid. If the properties of such a solid vary
with direction, the material is termed anisotropic. In contrast, the properties of an
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isotropic solid are the same in all directions. Although anisotropy is important in
some regions of the Earth’s interior, isotropy has proven to be a reasonable first-
order approximation for most parts. Therefore, if we assume isotropy, Ci jkl will be
invariant with respect to rotation and the number of independent parameters reduces
to two parameters only so that

Ci jkl = λ̂εkkδi j + 2μ̂εi j , (37)

where δi j is the Kronecker delta, and λ̂ and μ̂ are called the Lamé parameters of
the material, which characterize the rigidity of the solid. These two parameters com-
pletely describe the linear stress-strain relation within an isotropic solid. μ̂ is termed
the shear modulus and is ameasure of the resistance of thematerial to shearing, while
the other parameter, λ̂, does not have a simple physical explanation. In the case of
pure shear, the elastic constant that comes into play is μ̂ = G, while for isotropic
compression the strain tensor is proportional to the identity tensor. The elastic con-
stant relating the pressure to the decrease of volume is K = λ̂ + 2μ̂, where K is
called the compressibility modulus.

Mathematically, a heterogeneous material is represented by a random medium
M , i.e., a family of mediaM (ω) whose members differ slightly from the homoge-
neous (reference) medium M0, where ω is a point in the sample space Ω (space of
events). In probability theoryΩ consists of all possible outcomesω of an experiment
or observation. To close the statistical description we must provide the mathemati-
cal model with a probability distribution over the members M (ω). However, most
heterogeneous materials are nonequilibrium, quenched disordered media and so we
have no access to a true statistical ensemble. Thus, theory and experiment can only
be connected through some kind of ergodicity. The equivalence between theoretical
and observational averaging in heterogeneous media is an open problem and will not
be addressed here. Therefore, our description of a heterogeneous system as a random
medium is based on a heuristic model for the local spatial variations.

Rigorous methods are mostly limited to the study of simple models. In particu-
lar, we model the heterogeneous medium by introducing spatial fluctuations of the
material density and Lamé coefficients, i.e.,

ρR(x) = ρR,0 + ερR,1(x),

λ̂(x) = λ̂0 + ελ1(x), (38)

μ̂(x) = μ̂0 + εμ1(x),

where

ρR,0 = 〈ρR(x)〉,
λ̂0 = 〈λ̂(x)〉 = K − 2

3
G,

μ̂0 = 〈μ̂(x)〉 = G,
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are constant values representing an equivalent averaged effective medium. The
average expectation values with respect to the corresponding probability distribu-
tion are denoted by 〈·〉. Here ε is a measure of the departure of the medium from
homogeneity. The fluctuations in relations (38) are assumed to be independent and
identically distributed functions with zero mean values

〈ρR,1(x)〉 = 〈λ̂1(x)〉 = 〈μ̂1(x)〉 = 0. (39)

In addition, we assume that the fluctuations are homogeneous and isotropic with
respect to x. Thus, there would be nine autocorrelation functions defined as

RρR,1ρR,1(x|x′) = 〈ρR,1(x)ρR,1(x′)〉, R
ρR,1λ̂1

(x|x′) = 〈ρR,1(x)λ̂1(x′)〉,
RρR,1μ̂1(x|x′) = 〈ρR,1(x)μ̂1(x′)〉;
R

λ̂1ρR,1
(x|x′) = 〈λ̂1(x)ρR,1(x′)〉, R

λ̂1λ̂1
(x|x′) = 〈λ̂1(x)λ̂1(x′)〉,

R
λ̂1μ̂1

(x|x′) = 〈λ̂1(x)μ̂1(x′)〉;
Rμ̂1ρR,1(x|x′) = 〈μ̂1(x)ρR,1(x′)〉, R

μ̂1λ̂1
(x|x′) = 〈μ̂1(x)λ̂1(x′)〉,

Rμ̂1μ̂1(x|x′) = 〈μ̂1(x)μ̂1(x′)〉;

which are a measure of the spatial scale. For simplicity we shall assume that the
covariances are given by Gaussian random processes such that

Rab(x|x′) = 2Cη(|x − x′|), (40)

where a and b stands for ρR , λ̂, and μ̂.
We note that from the thickness of geological porosity logs (Hewett 1986), it is

reasonable to expect a fractal character in the distribution of the micro-mechanical
properties of deformable porous media. Therefore, the concepts regarding frac-
tal geometry can be also applied for modelling the heterogeneity of oil reservoirs
(Srivastava and Sen 2009). For instance, general forms for the self-affine fractal dis-
tributions of the bulk density, elastic moduli, and wave velocities of heterogeneous
materials can be modelled using the statistics of either a fractional Gaussian noise
(fGn) or a fractional Brownian motion (fBm) (Sahimi and Tajer 2005). For example,
for a fBm, η in expression (40) is expressed as:

η(x, ω) = η0 + 1

Γ (H + 1/2)

[∫ 0

−∞
d B(s, ω)

[
(x − s)H−1/2 − (−s)H−1/2

]

+
∫ x

0
d B(s, ω)(x − s)H−1/2

]
, (41)

for x > 0, where η0 = η(0, ω), H is the Hurt exponent, B(x, ω) is the Bachelier-
Wiener-Lévy process, andΓ is the gamma function. For H > 1/2 (<1/2) the spatial
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correlation is positive (negative), while for H = 1/2 the correlation is random and
follows a Brownian motion.

For the heterogeneous porous medium described above, the equation of motion
for the elastic displacement wR(x, t) can be written in vector notation as follows

ρR(x)
∂2

∂t2
wR(x, t) =

[
λ̂(x) + 2μ̂(x)

]
∇ [∇ · wR(x, t)]

− μ̂(x)∇ × ∇ × wR(x, t) + ∇λ̂(x)∇ · wR(x, t)

+ [∇μ̂(x)
] × [∇ × wR(x, t)] + 2

[∇μ̂(x) · ∇]
wR(x, t)

+ F(x, t), (42)

where F is an external force per unit volume. If we assume mechanical equilibrium,
the governing equation for the total stress in the bulk material can be obtained from
Eq. (42) by setting

ρR(x)
∂2

∂t2
wR(x, t) = 0. (43)

The effects of the hydrostatic compression exerted by the fluid on the solid matrix
enter in Eq. (42) through the body force term as

F = φpI, (44)

where p denotes the mean pore pressure exerted by the fluid phases on the solid
grains, defined by

p =
∑
α

Sα pα. (45)

If the system is in thermodynamical equilibrium, the fluid is at rest and p is constant
throughout the body. We note that Eq. (42) with the body force as given by relation
(44) is equivalent to the concept of the modified effective stress employed in the
mechanics of partially saturated porous media to take into account the compressibil-
ity of the solid matrix. According to experimental observations, it is this modified
effective stress that governs the major deformation of the solid skeleton (Khoei and
Mohammadnejad 2011).

If we define the displacement vector of the fluid phase α as wα , the displacement
vector of the fluid phase relative to the solid is w′

α = wα − wR and the variation in
the fluid phase content ξα can be defined as

ξα = −∇ · [φ (wα − wR)] = −∇ · (φw′
α

)
, (46)

where ξα is the variation of the volume of fluid phase α per unit pore volume. It is the
difference between the strain of the pore space and the strain of the volume of fluid
α in the pore space and it is therefore a dimensionless quantity. In order to complete
the description of multiphase flow in a deformable, heterogeneous porous medium,
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Darcy’s law (10) must be generalized according to

v′
α = vα − vR = −Kα · (∇ pα − ραg∇z) , (47)

where vR = ẇR = ∂wR/∂t , vα = ẇα = ∂wα/∂t , and v′
α is the relative velocity

of fluid phase α with respect to the solid phase. In the presence of a deformable
medium, the mass balance equation for the fluid phases is given by Eq. (7) with vα

replaced by v′
α + vR , while the mass balance equation for the solid phase is given

by Eq. (8). Similarly, the energy balance equation is identical to Eq. (31) with the
following changes:

v → v′ = 1

ρ

∑
α

ραv′
α, (48)

vα → v′
α + vR, (49)

Jα → J′
α = ραv′

α − λαρv′. (50)

3 Multicomponent Flow in a Single Fluid Phase

In this section, we consider the transport of multicomponents (i.e., multispecies) in
a fluid phase that occupies the entire void space in a porous medium. We identify
each component in the fluid in terms of its volumetric concentration function (or
volumetric mass fraction) c = c(x, t), such that ck denotes the concentration of the
kth species. The sum of the concentrations of all species residing in the fluid must
obey the constraint

n∑
k=1

ck = 1, (51)

where n is the total number of species in the fluid. Each species has its own intrinsic
mass density ρk , measured as the mass of component k per unit volume of the
fluid, and velocity vk . Using these basic quantities, we may introduce the following
definitions:

ρ =
n∑

k=1

ρk, (52)

as the overall density of the fluid and

v = 1

ρ

n∑
k=1

ρkvk, uk = vk − v, (53)
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as the barycentric fluid velocity and the diffusion velocity of species k in the fluid
for which

n∑
k=1

uk = 0. (54)

In single-phase flow through a porous medium, the diffusive flux of a component
with respect to the barycentric fluid velocity is called hydrodynamic dispersion.
Each component k has its own mass and momentum conservation equations, which
by analogy with Eqs. (4) and (10) are given by

∂ (φρk)

∂t
+ ∇ · (ρkvk) = Ik, (55)

and

v = − k
μ

· (∇ p − ρg∇z) , (56)

where φ and k are the porosity and absolute permeability of the porous medium.
Since the species velocities are typically inaccessible to measurement, it is more
convenient to rewrite Eq. (55) as

∂ (φckρ)

∂t
+ ∇ · (ρckv) = −∇ · dk + Ik, (57)

where we have used the relations: ρk = ckρ and vk = uk + v. In the above equation
dk = ρckuk is the dispersive mass flux of species k, which we assume to obey Fick’s
law, i.e.,

dk = −D · ∇ck, (58)

where D is the diffusion-dispersion tensor given by (Peaceman 1966)

D = φρζmI + ρ|v|
[
ζlE(v) + ζt E⊥(v)

]
. (59)

The coefficient ζm is the molecular diffusivity (in units of volume rate per unit
length), while ζl and ζt (having units of length) are the longitudinal and transversal

dispersivities, respectively, |v| is the Euclidean norm of v, i.e., |v| =
√

v2x + v2y + v2z ,

I is the identity tensor, and the tensor E(v) is the orthogonal projection along the
velocity

E(v) = 1

|v|2 v · vt , (60)

where the superscript t means transposition and E⊥(v) = I −E(v). Summing up the
contributions of all species in Eq. (58), we obtain the further constraint
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n∑
k=1

dk = 0. (61)

A common approach in oil reservoir simulations is to assume that hydrodynamic
dispersion is a small enough effect that the diffusion-dispersion fluxes in the com-
ponent mass balance equations are negligible (Allen 1985).

In Eq. (57) the term Ik is a source/sink term for the kth component. It can result
from injection and/or production of a particular component by external means. How-
ever, it can also stem from various other processes within the fluid, such as chemical
reactions among species, radioactive decay, biodegradation, and growth due to bac-
terial activities, that may cause the mass fraction of the components to increase or
decrease. In particular, for a reactive flow the term Ik can be expressed as

Ik = qk − lkck, (62)

where qk and lk are the chemical production and loss rates, respectively, of the kth
species.

By analogy with Eq. (25), we can write the internal energy equation of component
k as

∂(φρckUk)

∂t
+∇ ·(ρckUkvk)+∇ ·(pkvk) = ∇ ·(φkT,k∇T

)−εrσSB T 4+ Qk, (63)

where kT,k is the heat conductivity associated with species k and Qk is a heat source
or sink term for the kth component. We assume thermodynamic equilibrium among
all fluid components k so that Tk = T . Using relations (53), introducing the following
definitions:

U =
n∑

k=1

ckUk, (64)

p =
n∑

k=1

pk, (65)

Hk = Uk + pk

ρck
, (66)

kT =
n∑

k=1

kT,k, (67)

for the total specific energy, the total pressure, the specific enthalpy of species k,
and the total heat conductivity, respectively, summing up Eqs. (57) and (63) over
all components, and combining the resulting equations, we obtain the temperature
equation for the multicomponent fluid
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φρC
∂T

∂t
+ρCv ·∇T = −∇·

(
n∑

k=1

Hkdk

)
−∇·(pv)+∇·(φkT ∇T )−εrσSB T 4+Q,

(68)
where C is the multicomponent fluid heat capacity, defined as

C = 1

ρ

n∑
k=1

ρkCk . (69)

The first term on the right-hand side of Eq. (68) describes the heat generated due to
diffusion of one species into another, while the last one accounts for the heat gen-
erated by chemical reactions and the kinetic energy generated when one component
chemically changes into another. For the composite system consisting of the multi-
component fluid and the solid porous matrix, Eq. (68) is still applicable by making

φρC → φρC + (1 − φ)ρRCR, (70)

and

φkT → (1 − φ)kT,R + φ

n∑
k=1

kT,k . (71)

To complete the description of the multicomponent flow system, Eqs. (57) and (68)
are complemented by the mass balance equation for the single-phase fluid, namely

∂(φρ)

∂t
+ ∇ · (ρv) = 0, (72)

in the absence of external sources or sinks. If Darcy’s velocity (56) is replaced
into Eqs. (57), (68), and (72), we have a coupled set of n + 2 equations for the n
concentrations ck , the temperature T , and the pressure p, where the density and
dynamic viscosity are known functions of p, T , and ck :

ρ = ρ(p, T, c1, c2, . . . , cn), (73)

μ = μ(p, T, c1, c2, . . . , cn), (74)

while the heat conductivity is a function of temperature and chemical concentration.

4 Compositional Flow in a Porous Medium

In this section, we consider multiphase and multicomponent flow, i.e., compositional
flow, in a porous medium. In this type of flows there may be several coexisting
fluid phases in which a finite number of chemical species may reside. As before,
the subscript α is chosen for the fluid phases, R for the solid phase, and k, with
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k = 1, 2, 3, . . . , n, for the species (or components). Therefore, each pair (k, α) is a
constituent. We assume thermal equilibrium among the species in a given phase and
among all phases so that Tkα = T .

We start by stating that each constituent (k, α) has its own intrinsic mass density
ρkα , measured as the mass of component k per unit volume of phase α, and its own
velocity vkα . By analogy with Eq. (4) we can write the mass balance equation for
each constituent (k, α) as

∂ (φαρkα)

∂t
+ ∇ · (ρkαvkα) = Ikα, (75)

where Ikα represents the sources and sinks of component k in phase α. In the absence
of injection and production of this component by external means, the exchange terms
Ikα must obey the restriction

n∑
k=1

∑
α 
=R

Ikα = 0. (76)

Using relation (2) together with the definitions

ρα =
n∑

k=1

ρkα, (77)

ckα = ρkα

ρα

, (78)

ck = 1

ρ

∑
α 
=R

Sαραckα, (79)

vα = 1

ρα

n∑
k=1

ρkαvkα, (80)

ukα = vkα − vα, (81)

dkα = ραckαukα, (82)

where ρα is the intrinsic mass density of phase α, ckα is the concentration of species
k in phase α, ck is the total volumetric concentration of species k in the mixture, vα

is the barycentric velocity of phase α, ukα is the diffusion velocity of species k in
phase α, and dkα is the diffusive flux of constituent (k,α), the mass balance equation
(75) can be rewritten in the more convenient form

∂ (φSαραckα)

∂t
+ ∇ · (ραckαvα) = −∇ · dkα + Ikα. (83)

The effective diffusive fluxdkα can bewritten in Fickian formby simply extending
Eq. (58) to multiphase flows, i.e.,

dkα = −Dkα · ∇ckα, (84)
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where the diffusion-dispersion tensor Dkα is defined as

Dkα(vα) = φαραζkαI + ρα|vα|
[
ζlαE(vα) + ζtαE⊥(vα)

]
, (85)

where now ζkα is the molecular diffusivity of component k in phase α, ζlα and ζtα

are, respectively, the longitudinal and transversal dispersivities of phase α, and |vα|
is, as before, the Euclidean norm of the phase velocity. The orthogonal projections
along the phase velocity are as given by relation (60) with v → vα .

Summing Eq. (83) over all phases, using relations (29) and (84), and the correction
factor for species advection

γkc = ρ
∑

α λαckα∑
α ρα Sαcα

, (86)

where we have made use of relation (79), we obtain the species mass conservation
equation for the multiphase mixture

∂ (φρck)

∂t
+ ∇ · (γkcρvck) = ∇ ·

(∑
α

Dkα · ∇ckα

)
− ∇ ·

(∑
α

ckαJα

)
. (87)

In passing from Eq. (83) to (87), we have assumed that

∑
α

Ikα = 0, (88)

since the production of component k in phase α must be accompanied by destruction
of this component in other phases. However, if there is an external generation of
components due to chemical or biological reactions the sum of Ikα over all phases
does not vanish and so this term should appear in Eq. (87). Moreover, since vα and
v are needed in Eqs. (85) and (87), the momentum conservation equation is given by
Darcy’s law in the form given by Eqs. (10) and (15).

When heat transfer is important, we must write a further equation for the specific
internal energy. In analogy with Eqs. (25) and (63), the energy balance equation for
each constituent (k, α) will read as follows

∂(φαρkαUkα)

∂t
+ ∇ · (ρkαUkαvkα) + ∇ · (pkαvkα) = ∇ · (

φkT,kα∇T
) − εσSB T 4

+ Qkα. (89)

Using relations (2), (29), (78), (81), and (82) into the above equation and combining
the result with the mass balance equation (83), we obtain the energy equation in
terms of the common temperature
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φSαραckαCkα

∂T

∂t
+ ckαCkα (λαρv + Jα) · ∇T + Ckα (Ikα − ∇ · dkα) T

= −∇ · (
pkαvα + Hkαdkα − φkT,kα∇T

) − εσSB T 4 + Qkα,

(90)

where we have used the definitions

Ukα = CkαT, (91)

Hkα = Ukα + pkα

ρkα

, (92)

for the specific internal energy and enthalpy of constituent (k,α). Summing up over
all species, making use of the definitions

Uα =
n∑

k=1

ckαUkα, (93)

Cα =
n∑

k=1

ckαCkα, (94)

pα =
n∑

k=1

pkα, (95)

for the specific internal energy, heat capacity, and pressure of phase α, together with
relation (34) for the correction factor for energy advection, and then summing up
over all phases, we obtain the temperature equation for the compositional flow

φρC
∂T

∂t
+

(
γCρCv +

∑
α

CαJα

)
· ∇T

= −∇ ·
(∑

α

pαvα −
n∑

k=1

∑
α

HkαDkα · ∇ckα − φkT ∇T

)

− T
n∑

k=1

∑
α

Ckα [Ikα + ∇ · (Dkα)] − εσSB T 4 + Q. (96)

Using relations (70) and (71) into Eq. (96) we recover the form of the temperature
equation for the composite system (i.e., the solid and the fluid phases). For a reactive
solid phase, a term of the form

− T
n∑

k=1

Ck R Ik R (97)

must be added on the right-hand side of Eq. (96).
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To formally close this system of equations, we need some supplementary con-
straints. One class of supplementary constraints consists of thermodynamic relation-
ships for the phase densities, saturations, and concentrations as functions of the phase
pressure and fluid mixture composition (Allen 1985), which can be written as

ckα = ckα (ρα, c1, c2, . . . , cn) , (98)

ρα = ρα (pα, T, c1α, c2α, . . . , cnα) , (99)

Sα = Sα (pα, c1, c2, . . . , cn) . (100)

The actual form of these constraints may imply simultaneous sets of nonlinear alge-
braic equations giving the phase densities, concentrations, and saturations implicitly.
In particular, this occurs when we use fugacity functions for the components in the
fluid phases in conjunctionwith an equation of state to solve for local thermodynamic
equilibria. In compositional flows, mass transfer between adjacent fluid phases is
characterized by the variation of mass distribution of each species in these phases.
In general, the coexisting fluid phases are assumed to be in equilibrium, which is
a reasonable physical condition because the interchange of mass between adjacent
phases occurs much faster than the fluid flow in the porous medium. Therefore, the
distribution of component k into two adjacent phases, say α and β, is subject to the
condition of stable thermodynamic equilibrium, which results from minimizing the
Gibbs free energy of the compositional system. This condition can be expressed by
demanding that the fugacities of component k in the two phases be equal:

Fkα(pα, T, c1α, c2α, . . . , cnα) = Fkβ(pβ, T, c1β, c2β, . . . , cnβ). (101)

The other class of supplementary relations includes constitutive relations for the
capillary pressures and relative permeabilities as functions of the phase saturations.
Equation (87), Darcy’s law for the phase velocities vα , and Eq. (96) provide n+ P +1
differential equations for n + (n + 3)P + 1 independent variables for Sα , pα , vα , ck ,
ckα , and T . The (n + 2)P remaining relations needed to solve the problem are given
by the saturation constraint (6), the (P −1) capillary pressures (21), the n constraints
(79), the n(P − 1) equal-fugacity constraints (101), and the P constraints

n∑
k=1

ckα = 1, (102)

for the mass fraction balance.

5 Chemical Flooding Compositional Flow in Porous Media

In the previous sectionwe have described the equations governing the flow of compo-
sitional fluids in a porous medium in the absence of sources and/or sinks of chemical
components by external means. It is a common practice in the oil industry to use
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chemical flooding as a method to improve the recovery rates of oil fields and to get
the oil trapped in the pores of rocks. In secondary oil recovery water is injected to
move out the oil (water flooding). The injection of surfactants (surfactant flooding) to
reduce the interfacial tension between the oil and the aqueous phases, thus allowing
the recovery of oil trapped in small pores, has also been suggested (Lake 1996). As
before, this type of compositional flow can be modelled using a mass balance equa-
tion for each component, Darcy’s law for the phase velocities, and an energy balance
equation. Under the assumption of thermal equilibrium among the components and
fluid phases, this latter equation can be written in terms of the common temperature.
In contrast to the exposition of previous section, an overall mass conservation or
continuity equation for the pressure of the acqueous phase must be added, where the
effects of the slight compressibility of the solid and coexisting fluid phases can be
incorporated.

The mass conservation equation of component k can be expressed in terms of the
total concentration of this component in the multiphase fluid per unit pore volume.
This equation is similar in form to Eq. (87)

∂ (φρck)

∂t
+∇ ·(γkcρvck) = ∇ ·

(∑
α

Dkα · ∇ckα

)
−∇ ·

(∑
α

ckαJα

)
+Ik, (103)

except that now

Ik =
∑
α

Ikα = φ
∑
α

Sαrkα + (1 − φ)rk R + Lk, (104)

where rkα and rk R are the chemical reaction rates of component k in the fluid phase
α and rock phase, respectively, and Lk is the injection/production rate of the same
component per unit volume, and

ck =
(
1 −

m∑
i=1

ĉi

)∑
α

Sαckα + ĉk, (105)

where ck is the overall concentration of component k, including the adsorbed phases,
m is the number of volume-occupying components, ĉk is the adsorbed concentration,
and the term between parentheses represents the reduction of the pore volume due
to adsorption effects. In order to ensure mass conservation, the following constraints
must hold for each phase

m∑
k=1

rkα =
m∑

k=1

rk R = 0,
m∑

k=1

Dkα · ∇ckα = 0, (106)

where the summations are taken over the total number of adsorbed components.
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The phase velocity is given by the extended Darcy’s law (10) for multiphase flow
and the temperature equation has the same form of Eq. (96) with Ikα replaced by
Ikα . In the calculation of chemical flooding, a pressure equation for the acqueous
phase, say A, will be needed to account for the effects of adsorption. This equation
can be derived from Eq. (57) by replacing Ik byIk and summing up over all volume-
occupying components. Noting from Eq. (105) that

m∑
k=1

ck = 1, (107)

and using the constraints (61) and (106), and making ρ → ρA and v → vA, we
obtain the mass balance equation

∂ (φρA)

∂t
+ ∇ · (ρAvA) =

m∑
k=1

Lk . (108)

The compressibility of the flooding phase and rock requires introducing the following
definitions:

CA = 1

ρA

∂ρk A

∂pA
, (109)

at a fixed temperature, for the acqueous phase, and

CR = 1

φ

dφ

dpA
, (110)

for the rock. Assuming that the fluid and rock compressibilities are constant over a
certain range of pressures, the above equations can be readily integrated to give

ρA ≈ ρ0 + ρ0CA (pA − p0) , (111)

φ ≈ φ0 + φ0CR (pA − p0) , (112)

where we have used Taylor series expansions to approximate the exact solutions of
Eqs. (109) and (110). Here ρ0 and φ0 are the density and porosity at the reference
pressure p0 of the acqueous phase. Expanding the time derivative in Eq. (108), using
relations (106) and (107), and replacing ρAvA by Darcy’s law written in the form

ρAvA = −λk · ∇ pA −
∑
α

λαk · (∇ pcαA − ραg∇z) , (113)

where λα is the phase mobility defined as

λα = krα

μα

n∑
k=1

ρkckα, (114)
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and pcαA is the capillary pressure function

pcαA = pα − pA, (115)

which is used to evaluate all other phase pressures, we obtain the pressure equation

φC
∂pA

∂t
− ∇ · (λk · ∇ pA) = ∇ ·

[∑
α

λαk · (∇ pcαA − ραg∇z)

]
+

m∑
k=1

Lk, (116)

where C is the total compressibility defined as

C = φ0

φ

m∑
k=1

ρk0ck (Ck A + CR) . (117)

We note that relation (111) is actually a sum over all volume-occupying compo-
nents, with

ρACA =
m∑

k=1

ρk ACk A. (118)

This problem involves P(n + 3) + n + m + 1 independent variables: ck , ĉk , ckα , vα ,
pα , Sα , and T , while Eqs. (103) and (116), Darcy’s law for the phase velocity, and the
energy balance provide n + P +2 differencial equations. The other (n +2)P +m −1
relations are provided by the constraints (6), (79), (101), (107), (115), (118), and

m∑
k=1

ckα = 1, ĉk = ĉk (c1, c2, . . . , ck) , (119)

for the phase concentration and adsorption constraints.

6 Compositional Flow in Fractured Porous Media

A fractured porous medium has throughout its extent a system of interconnected
fractures dividing the medium into a number of essentially disjoint blocks of porous
rocks, called the matrix blocks. The fractured medium has two main length scales of
interest: the microscopic scale of the fracture thickness (∼10−4 m) and the macro-
scopic scale of the average distance between fracture planes, which is the size of
the matrix blocks (from ∼0.1 to ∼1m). Since the entire medium is about 103–104

m across, the flow can be numerically simulated only in some average sense. The
analysis of fluid flow through fractures in rocks is a process that is relevant in many
areas of the geosciences, ranging from ground-water hydrology to oil production. For
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instance, in most petroleum reservoirs and some tight sands, natural fractures play a
critical role in controlling fluid flow and hence production in recovery processes.

There are major differences between recovery performance of fractured and non-
fractured oil reservoirs. The high contrast of capillarity between the solid matrix and
the fractures is themain cause of these differences. For instance, high rate wells in the
early life of the field is one main characteristic of fractured reservoirs due to the high
effective single-phase permeability of the combined matrix-fracture porous media
(Firoozabadi 2000). Depending on their matrix/fissure permeabilities and matrix
block sizes, fractured reservoirs can be produced using several recovery processes,
which include primary recovery, gas drive, waterflood, miscible or immiscible gas-
flood, and enhanced oil recoverymethods, such as gas injection combined with water
injection, chemical, and thermal methods (Manrique et al. 2007).

In view of its important applications in the oil industry, several conceptual models
have been developed for describing fluid flow in fractured porous media. Basically,
each method can be distinguished on the basis of the storage and flow capabili-
ties of the porous medium and fracture. The storage characteristics are associated
with porosity, while the flow characteristics are associated with permeability. Out
of the several existing conceptual models, the double-porosity/dual-permeability
concept has been the most widely used approach for modelling fluid flow, heat
transfer, and chemical transport through fractured reservoirs (Lemonnier and Bour-
biaux 2010a, b). In addition, multiple-interacting continua and multi-porosity/multi-
permeability conceptual models have been also developed (Sahimi 1995). Further
distinctions among the models can be drawn on the basis of the spatial and tem-
poral scales of integration, or averaging, of the flow regime. For instance, scales
of concern in fracture flow include: (a) the very near field, where flow occurs in a
single fracture and porous medium exchange is possible; (b) the near field, where
flow occurs in a fracture porous medium and each fracture is described in detail; (c)
the far field, where flow occurs in two overlapping continua with mass exchanged
through coupling parameters; and (d) the very far field, where fracture flow occurs,
on average, in an equivalent porous medium (Bear and Berkowitz 1987). However,
state-of-the-art reservoir simulation packages employed in the oil industry often do
not take into account the complex random geometry of real fractured systems that
can vary from one grid-block to another, and sometimes even within a single grid-
block. The are two reasons for this: first, there exists no technology as yet to image
the micro-fractures in-situ, and second, most of the existing software does not use
micro-scale flow equations to calculate the change of flow variables.

6.1 Dual-Continuum Model

In particular, dual-continuum models are based on an idealized flow medium con-
sisting of a primary porosity created by deposition and lithification and a secondary
porosity created by fracturing, jointing, or dissolution. The basis of these models is
the observation that unfractured rocks account for much of the porosity (storage) of
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the medium, but little of the permeability (flow). In contrast, fractures may have neg-
ligible storage, but high permeability. So, the porous medium and the fractures are
envisioned as two separate but overlapping continua and fluid mass transfer between
these two continua occurs at the fracture-porous medium interface (Barenblatt et al.
1960; Barenblatt and Zheltov 1960; Warren and Root 1963; Lemonnier and Bour-
biaux 2010a).

Before writing down the governing equations of compositional flow in naturally
fractured reservoirs in the framework of the dual-porosity/dual-permeability concept,
we must introduce the following definitions. First, we define the matrix porosity φm

and the fracture porosity φ f as the pore volume of the matrix blocks and fractures,
respectively, divided by unit volume of both media. Second, we must distinguish
between quantities in the matrix and fractures. For instance, cm,kα , Sm,α , ρm,α , and
vm,α denote the concentration of component k, saturation, density, and velocity of
phase α in the matrix blocks, while c f,kα , S f,α , ρ f,α , and v f,α are the same variables
in the fracture system. Now, using Eq. (83), the mass balance equation for each
component k, including water, in the matrix blocks, after summing over all phases,
is expressed as

∂

∂t

(
φm

∑
α

Sm,αρm,αcm,kα

)
+ ∇ ·

(∑
α

ρm,αcm,kαvm,α + dm,kα

)

=
∑
α

Im,kα − Fm f,kα, (120)

while in the fracture system, the same equation will read as follows

∂

∂t

(
φ f

∑
α

S f,αρ f,αc f,kα

)
+ ∇ ·

(∑
α

ρ f,αc f,kαv f,α + d f,kα

)

=
∑
α

I f,kα + Fm f,kα, (121)

where the volumetric source/sink terms Im,kα and I f,kα are as defined by relation
(104) and Fm f,kα is the matrix-fracture mass flow rate of component k in phase α

per unit bulk volume of the reservoir. The molecular diffusion and dispersion flux
of component k in phase α in medium M, i.e., dM,kα , where M= f, m, can be
written in Fickian form using relation (84), with the diffusion-dispersion tensor in
eachmedium having the same form of relation (85). As in Eq. (104), the termsIM,kα

contain the chemical reaction rates of component k in the fluid phases and rock phase
and the injection/production rate of the same component per unit volume, which can
be written as

LM,kα = ρM,αcM,kαQM,α, (122)
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whereQM,α denotes the volumetric injection/production rate of phase α in medium
M= f, m per unit volume of the reservoir. This rate is positive in production and
negative in injection.

The phase velocity in both media vM,α is expressed using Darcy’s law (10) with
the mobility tensor of phase α as defined by relation (11). However, we note that
the absolute permeability of the medium k is the equivalent permeability of the flow
continuum under consideration, that is, the permeability of the medium that is scaled
up to the simulated flow scale. For instance, in the dual-continuummodel of (Warren
and Root 1963), the permeability of the fracture large-scale continuum is obtained
by homogenizing the transport equations on the fracture network, assuming imper-
vious boundaries. On the other hand, if heat transfer is important, we need to add
two additional equations for the specific internal energy UM,kα in each medium.
These equations have the same form of Eq. (89), except that now the term QM,kα is
a source/sink or fracture-matrix interaction term for energy. If we assume thermal
equilibrium between the fluids and the media, these two equations can be combined
into a single equation for the common temperature T . To close the system, addi-
tional equations must be added to the flow equations. These are the two saturation
constraints ∑

α

SM,α = 1, (123)

the 2P composition constraints

n∑
k=1

cM,kα = 1, (124)

the 2P − 2 capillary pressure relationships

pM,cαβ = pM,cα − pM,cβ, (125)

and the 2n(P − 1) equilibrium conditions of the form given by relation (101) for
M= m, f .

Thematrix-fracture transport fluxFm f,kα in Eqs. (120) and (121) can be expressed
either by the direct application of Darcy’s law between matrix and fractures with the
explicit input of matrix block dimensions or the input of a shape factor that takes
into account the size and shape of the matrix blocks. For instance, considering a
single-phase, quasi-steady-state flow, Warren and Root (1963) expressed Fm f as

Fm f = −Λkm
ρ

μ

(
p f − pm

)
, (126)

where km is the matrix permeability (assumed to be isotropic), p f and pm the
fracture and matrix pressures, ρ the fluid density, μ the fluid viscosity, and Λ

the shape factor. This factor is a constant matrix-fracture exchange factor that
depends only on the geometry and characteristic size of the matrix blocks assuming a
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steady-state matrix-fracture transfer. Its dimension is the inverse of a squared length.
For instance, assuming a cubic block of size a, Warren and Root (1963) derived the
following expression for the shape factor

Λ = 4N (N + 2)

a2 , (127)

where N is the number of flow dimensions.
In most modern simulators the expression for Fm f,kα is based on a simplified

representation of the dual-medium fractured system, where fracture and matrix grids
are identical and superposed. Each cell is a discretized element of volume including
both fracture and matrix blocks and contains a number of identical matrix blocks,
which are assumed to be parallelepipeds of volume abc. Therefore, an expression
for the matrix-fracture transfer flux per unit volume of matrix rock is

Fm f,kα = 1

abc

6∑
i=1

fi,kα, (128)

where the fi,kα represent the mass flux of component k in phase α through each of
the six faces of the block. This term is usually split up into two contributions due
to convection-diffusion and diffusion-dispersion effects (Sarda et al. 1997). Since
the matrix-fracture flow rate is governed by the matrix permeability, the absolute
permeability used for the calculation of these flow rates is given by km,i , the matrix
permeability in the face direction i , which allows for permeability anisotropy through
different values of km,i in each direction. An expression for the fluxes fi,kα is given
by Sabathier et al. (1998), where for the anisotropic case thematrix-fracture coupling
transmissibility between a cell of the matrix grid and the corresponding one of the
fracture grid is defined as

Λkm,i = 4

(
km,x

a2 + km,y

b2
+ km,z

c2

)
. (129)

If deformation of the matrix-fracture system is important, the body force term in
Eq. (42) for the solid displacements is of the form

F = (
φm pm + φ f p f

)
I, (130)

where pm and p f are, as in Eq. (126), the mean pressure exerted by the fluid on the
pore matrix and pore fractures, respectively. A description of deformation-dependent
flow models of various porosities and permeabilities relevant to the characterization
of naturally fractured reservoirs is given by Bai et al. (1993).
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6.2 Triple-Continuum Model

The dual-continuum models are suitable for the simulation of a fractured reservoir
with low-permeability matrix blocks. However, for severely fractured reservoirs
where a dominant fracture system intercepts a less pervasive and nested fracture net-
work, which in turn is set within a porous matrix, dual-porosity/dual-permeability
modelsmay not be appropriate. An immediate extension of the dual-porosity concep-
tualization is to triple porosity. For a triple-porosity/dual-permeability system,matrix
pores are interwovenwith non-percolating fissures and they interact with open cracks
through fluid exchange among different phases. While these models are suitable for
severely fractured reservoirs with moderate permeability, in reservoirs with high per-
meability an extension of the model to a triple-porosity/triple-permeability concept
would be required. One important difference is that the triple-permeability model
allows each fluid phase α to carry its own permeability.

Another example of fractured reservoirs where the extension to a triple-continuum
model is important concerns the existence of vugs (i.e., empty holes or cavities) in
naturally fractured reservoirs. Typical fractured vuggy reservoirs consist of a large
and well connected fractured, lower-permeable rock matrix with a large number of
cavities, or vugs, of irregular shapes and sizes ranging from millimetres to metres
in diameter. Many of the small-sized cavities appear to be isolated from fractures.
Therefore, conceptual models for vugs include: (a) vugs that may be indirectly con-
nected to fractures through small fractures ormicrofractures; (b) vugs that are isolated
from fractures or separated from fractures by the rock matrix; and (c) the case where
some vugs are connected to fractures and some others are isolated. Triple-porosity
models for flow in vuggy matrix-fracture systems have been presented by Liu et al.
(2003), Kang et al. (2006) and Wu et al. (2007).

Irregular and stochastic distributions of small ( f ) and large fractures (F) can also
be handled using a triple-continuummodel. For example, experimental observations
show that in typical fractured rocks there may be many more small fractures than
large ones (Liu et al. 2000). Therefore, in a triple-continuum model the fracture-
matrix system can be conceptualized as consisting of a single porous rock matrix and
two types of fractures: large globally connected fractures and small fractures that are
locally connected to the large fractures and the rockmatrix. As before, compositional
fluid flow and heat-transfer processes can be described using a continuum approach
for the two types of fractures and the matrix. We have now three transport equations
describingmass conservation for each component k in the multiphase mixture within
each of the three continua, which can be written by analogywith Eqs. (120) and (121)
as follows:

∂

∂t

(
φm

∑
α

Sm,αρm,αcm,kα

)
+ ∇ ·

(∑
α

ρm,αcm,kαvm,α + dm,kα

)

=
∑
α

Im,kα − Fm f,kα − Fm F,kα, (131)
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∂

∂t

(
φF

∑
α

SF,αρF,αcF,kα

)
+ ∇ ·

(∑
α

ρF,αcF,kαvF,α + dF,kα

)

=
∑
α

IF,kα + Fm F,kα + F f F,kα, (132)

∂

∂t

(
φ f

∑
α

S f,αρ f,αc f,kα

)
+ ∇ ·

(∑
α

ρ f,αc f,kαv f,α + d f,kα

)

=
∑
α

I f,kα + Fm f,kα − F f F,kα, (133)

where φm , φF , and φ f are the porosities of the matrix blocks, the large fractures, and
the small fractures, respectively. Under the assumption of quasi steady-state flow,
the mass transfer flux terms can be defined according to Eq. (126) as

Fm F = −ΛFmkm
ρ

μ
(pF − pm) , (134)

Fm f = −Λ f mkm
ρ

μ

(
p f − pm

)
, (135)

F f F = −Λ f F k f
ρ

μ

(
pF − p f

)
, (136)

for large fracture-matrix, small fracture-matrix, and large fracture/small fracture
interactions. Following Warren and Root (1963), ΛFm = Λ f m = Λ, while for
the f -F interaction, the shape factor for one-dimensional small fractures is defined
by (Wu et al. 2004)

Λ f F = A f F

d f F
, (137)

where A f F is the total large-fracture and small-fracture connection area per unit vol-
ume of rock and d f F is the characteristic distance between large and small fractures.
Again the phase velocity in eachmedium vM,α , forM= m, F, f , is given by Darcy’s
law (10). An energy conservation equation for each medium is also required if the
effects of heat transfer are important. However, these equations can be combined into
a single equation for the temperature if thermal equilibrium is assumed for the entire
system. This gives a total of 3(n+ P)+1 differential equations. The system is closed
by adding to the flow equtions 3 saturation constraints, 3P concentration constraints,
3P − 3 capillary pressure relationships, and 3n(P − 1) equilibrium conditions as
given by relations (123), (124), (125), and (101), respectively. As a final remark, for
deformation-dependent flows, the body force in Eq. (42) will have the form

F = (
φm pm + φF pF + φ f p f

)
I, (138)

where pm , pF , and p f are the pressures exerted by the fluid on the pores of the
three media. The extension of the present triple-continuum model to a unified
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multiporosity/multipermeability model can be done using the formulation proposed
by Bai et al. (1993), which permits the generalization of porosity- or permeability-
oriented models to any degree. Such models are suitable for the characterization of
a large variety of formation types.
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Turbulent Thermal Convection

Enrico Fonda and Katepalli R. Sreenivasan

Abstract Turbulent thermal convection is a phenomenon of crucial importance in
understanding the heat transport and dynamics of several natural and engineering
flows. Real world systems such as the Earth’s atmosphere—its oceans as well as
the interior—and the interior of stars such as the Sun, are all affected to various
degrees by thermal convection. The simplified physical model used to understand
this ubiquitous heat transport mechanism is the Rayleigh-Bénard convection, which
is a fluid flow driven by a temperature difference between the top and bottom plates of
an experimental cell with adiabatic sidewalls. Despite the long history of the subject
and the recent progress in theoretical, numerical and experimental domains, many
questions remain unresolved. We report some recent results and discuss a few open
issues.

1 Introduction

The density of fluids in general decreases with increasing temperature. A temperature
difference can then drive a flow via buoyancy force. This ubiquitous phenomenon,
called convection, has a history that goes back to the 18th century with the work of
Hadley, Lomonosov, Thompson and others, but is still the subject of active research
(e.g., Ahlers et al. 2009a; Lohse and Xia 2010; Chillà and Schumacher 2012; Xia
2013). The possibility that convection greatly enhances heat transport compared to
thermal conduction makes it basic for heat transfer engineering—for example, ovens,
nuclear reactors, ventilation systems, crystallization processes and casting. In natural
phenomena, motion due to non-uniform heating is perhaps the most widespread kind
of fluid motion in the universe.
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On the Earth’s surface, convection plays a fundamental role in weather and
climate, driving the oceans (Marshall and Schott 1999) as well as the atmosphere
(Hartmann et al. 2001). In the Earth’s interior, convection plays a role both in the
outer core (Cardin and Olson 1994) and in the mantle (Schubert et al. 2001). The
convective liquid metal flows in the core are thought to be responsible of the Earth’s
magnetic field through a dynamo mechanism (Buffett 2000). The convective mantle
motion is related to the phenomenon of plate tectonics (Tackley 2000); even when
planets do not show plate tectonics, as in the case of Venus or Mars, mantle con-
vection is important because of its role in transporting heat from the planet interior
to the surface. In giant planets, which have a hot interior, convection occurs when
conduction and radiation are not sufficient to transport all the heat (Guillot 2005).

In the Sun, the nuclear energy generated at the core is transported by the convective
motion in the outer 30 % of the radius. This motion shows cellular structures on
different scales, distinguished usually as granular (2,000 km), mesoscale (5,000–
10,000 km), supergranular (3 × 104 km) and giant (1–2 ×105 km) cells (Nordlund
et al. 2009). Cellular structures driven by convective motions are also evident in the
atmosphere (see Fig. 1).

Many basic questions relating to these diverse systems are similar. How do we
predict the heat transfer due to the convective motion? Conversely, what flow structure
is needed to transport a given amount of thermal energy? How important are the
macroscopic large scale structures? What is their dynamics? What are the properties
of the small scale turbulence? How does the small scale motion relate to large scales?
And so forth.

Fig. 1 Cellular convective structures in natural phenomena. a Sun’s granular structure where each
cell is on the order of 1,000 km. Image from Swedish 1-m Solar Telescope (SST)—Royal Swedish
Academy of Sciences—Oddbjorn Engvold, Jun Elin Wiik, Luc Rouppe van der Voort. b Closed
cells structures in a layer of marine stratocumulus over the southeastern Pacific Ocean. Each cell is
on the order of 5 km. Image by NASA/GSFC/LaRC/JPL, MISR Team
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Even though all convective flows share similarities, they are also different from
each other in detail, and include additional physical processes such as rotation, strat-
ification, salinity, pressure gradients, gravity gradients, phase changes, and magnetic
fields. These effects complicate what is already one of the most challenging problems
in nature, namely turbulence. It is thus useful, indeed essential, to study an ideal-
ized form of thermal convection in order to gain basic physical understanding. This
idealized flow is the Rayleigh-Bénard convection (RBC).

2 Rayleigh-Bénard Convection

In Rayleigh-Bénard convection the flow is confined to a cylindrical container of
height H and diameter D; Γ = D/L is called the aspect ratio. The sidewalls are
adiabatic and the bottom and top walls are conducting. The fluid motion is driven
by the temperature difference between the bottom hot plate and the cold top plate
(see Fig. 2).

The dual-name assigned to the flow acknowledges the work of Henri Bénard
and Lord Rayleigh. Bénard’s contribution started with his Ph.D. thesis from 1901,
in which he observed the famous hexagonal cells (see Fig. 3) on a thin layer of
spermaceti (whale oil) placed on a heated metallic plate. For lack of theoretical
insight, these seminal observations were received with some reserve by the thesis
committee presided by the (future) 1908 Nobel laureate, Gabriel Lippman, who
stated “...though Bénard’s main thesis was very peculiar, it did not bring significant
elements to our knowledge. ... the thesis should not to be considered as the best of
what Bénard could produce” (Wesfreid 2006).

One who did not miss the theoretical insight was Lord Rayleigh, who first solved
the linearized stability problem in 1916. Under the Boussinesq approximation, which
assumes that the fluid properties are constant except in the buoyancy term, the equa-
tions that describe the system are relatively simple. For these equations the only

Tb

Tt

D

H

Fig. 2 The image on the left shows a diagram of a Rayleigh-Bénard convection cell. The shadow-
graph images from Xi et al. (2004) show the structure of the thermal plumes and the mean wind
into which they organize
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Fig. 3 The images show the hexagonal convective cells similar to those observed by Bénard in his
experiments. Bénard was informed that the cells, now known to be due to the temperature depen-
dence of surface tension, resembled the pattern of the solar granulation photographed by Janssen.
Images from Van Dyke (1982): left photograph by Koschmieder (1974) and right photograph by
Velarde et al. (1982). The sketch of the hexagonal flow structure in a Rayleigh-Bénard cell is inspired
by Getling (1991)

dimensionless numbers necessary for dynamic similarity, given the geometry, are
the Rayleigh number Ra, and the Prandtl number Pr . Here,

Ra = αgΔT H3

νκ
, Pr = ν

κ
,

where α is the isobaric thermal expansion coefficient, g is the acceleration of gravity,
ν is the kinematic viscosity, κ is the thermal diffusivity, and ΔT is the temperature
difference between the top and bottom plate. Rayleigh found that the fluid starts to
move when the dimensionless temperature difference, expressed by Ra, exceeds the
critical value. For a detailed treatment of the linearized stability problem, see the
classic text by Chandrasekhar (1961); for a general introduction, see Tritton (1988).

The RBC flow just beyond the onset of convection has been used as a paradigm
for studying flow instabilities, chaotic systems and pattern formation (e.g., Busse
1978; Cross and Hohenberg 1993; Bodenschatz et al. 2000).

When the convective flow is strong enough, and the Rayleigh number is on the
order of 105, the flow is characterized by thermal plumes, mushroom-shaped features
of hot (cold) fluid detaching from the bottom (top) thermal boundary layer (e.g.
Zocchi et al. 1990). At higher Rayleigh numbers, the plumes organize into a large
scale motion linked synergistically with the turbulent flow (Qiu and Tong 2001; Xi
et al. 2004). At very large Rayleigh numbers, the mean wind may itself be destroyed
(Niemela et al. 2001; Sreenivasan et al. 2002).

The Rayleigh number, which can be interpreted as the ratio of buoyancy to viscous
and thermal dissipation, is of the order Ra ∼ 1018 − 1022 in the atmosphere (Pr ∼
0.7), Ra ∼ 1020 in the ocean (Pr ∼ 7), Ra ∼ 1020 − 1024 in the Sun (Pr ∼
10−7 − 10−3), and Ra � 1020 for most astrophysical phenomena (see Sreenivasan
and Donnelly 2001). These values indicate the upper end of the Rayleigh number in
which we are interested.
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3 High Ra and Ultimate Regime

Studying flows at Ra comparable to those of natural phenomena is challenging:
numerical simulations and experiments cannot yet reach the parameter limits, and
extrapolating the behavior from the dynamics at lower Ra is not always an option, in
particular because different theories suggest different scenarios. Hence, answering
even the apparently simple question of how much thermal energy is carried by the flow
for a stipulated temperature difference is very hard when the temperature difference is
large. This question can be formalized by looking for the dependence of the Nusselt
number, the dimensionless heat transfer coefficient, on the Rayleigh number. The
Nusselt number is defined as Nu = h H/k, where h is the measured heat transfer
coefficient and k is the thermal conductivity of the fluid.

Several scaling theories have been proposed over the years. The oldest is the
marginal stability theory by Malkus (1954), in which Nu ∼ Ra1/3. Written out
in detail, this means that the heat transport is independent of the container height.
The experiment with cryogenic helium in Chicago from the late 80s (Castaing et al.
1989) led to theories where the scaling exponent was 2/7. Additional and more
precise experiments and simulations have made it clear that none of these theories
could explain all the observations (though there have been suggestions in favor of the
1/3 power, see Urban et al. (2014)). A phenomenological theory that tries to account
for the observed results is that of Grossmann and Lohse (2000). In this theory, there
are two coupled equations for the Nusselt number and the flow Reynolds number,
with six free parameters fitted to experimental and numerical data (for the updated
prefactors based on the latest experiments and simulations, see Stevens et al. (2013)).
The theory divides the Pr − Ra parameters space into several regions in which either
the bulk or the boundary layer dominates the dissipation rates (see Fig. 4).

Fig. 4 Rayleigh-Bénard
convection phase diagram in
the Ra − Pr space for
Γ = 1/2 where the different
regimes are from the
Grossmann-Lohse theory.
There is a dearth of data
from experiments and
simulation for the so-called
ultimate regime (I V ′

l ), in
which the kinetic boundary
layer is assumed to be
“completely” turbulent. The
figure is adapted from
Stevens et al. (2013) 10
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The regime that is still very puzzling is the asymptotic regime for high Ra, denoted
in Fig. 4 by I V ′

l , corresponding to “completely” turbulent boundary layers, dubbed
also as the ultimate or Kraichnan regime. Indeed, Kraichnan (1962) predicted that,
when the Rayleigh number exceeds some large value (for which he provided prelim-
inary estimates), the boundary layer becomes “completely” turbulent, leading to an
enhancement of heat transport; in this regime, he predicted that the Nusselt number
scales as Nu ∼ Ra1/2/(log Ra)3/2.

A regime in which Nu ∼ Ra1/2 has been attained in configurations with no top
and bottom boundaries, in simulations by Lohse and Toschi (2003) and in experi-
ments in a vertical open-ended channel by Cholemari and Arakeri (2009) and Gibert
et al. (2006). However, the experimental confirmation of the ultimate regime in the
presence of boundary layers on solid boundaries, as one has in the classical RBC,
is still awaited. For contradictory points of view on the ultimate regime, one may
consult Chavanne et al. (1997), Niemela and Sreenivasan (2003, 2010), Roche et al.
(2010), He et al. (2012a), Ahlers et al. (2012) and Urban et al. (2014), and references
therein. One hopes that this issue will soon be resolved satisfactorily.

4 Large Aspect Ratio and Large Scales

Most experiments at high Ra are performed so far for Γ = 0(1). However, most
natural phenomena are not constrained laterally in this way, with Γ on the order
10−102. Unfortunately, little is known for high-Ra turbulent convection in contain-
ers of large aspect ratio, and, in general, also for different geometries. Theories do
not account for the aspect ratio explicitly; and while geometry effects were discussed
briefly in Grossmann and Lohse (2003), only qualitative predictions are known for
Γ larger than unity. Historically, convection theories have been guided by empirical
results, hence the lack of data prevented a proper theoretical formulation of geomet-
rical effects. Just recently data for Γ significantly different from order unity at high
Ra are starting to appear both at moderately large aspect ratios (Γ ∼ 10)—see Hogg
and Ahlers (2013), du Puits et al. (2013)—and small aspect ratios, Γ ∼ 1/10—see
Huang et al. (2013). We should call attention to experiments by Niemela and Sreeni-
vasan (2006) for Γ = 4, covering Rayleigh numbers up to 1015, the highest to-date.
Several experiments studied the convection in large aspect ratio, Γ ∼ 100, using
pressurized gas, and using a shadowgraph visualization technique. However, almost
all the studies were done near the onset of convection (see, for example, de Bruyn
et al. (1996), Bodenschatz et al. (2000)). The reason that the high Ra-high Γ para-
meter space is largely unexplored is that it is very challenging: while keeping all
other quantities constant, we find that Ra ∝ Γ −3.

From available data, it would seem that the dependence of the Nusselt number
Nu on the aspect ratio Γ is rather weak. Indeed, there is a strong indication that
the mean wind may become weaker with increasing Rayleigh numbers (Sreenivasan
et al. 2002). No major change in the Nusselt number scaling was observed in the
process. This points to the likelihood that the mean wind may not play a particularly
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fundamental role in determining the heat transport. Further, the flow structure and
the mean wind are affected by the geometry of the system. Yet, the mean wind is
interesting in its own right. This large-scale mean flow was first observed experimen-
tally by Krishnamurti and Howard (1981) and, in experiments with helium, by Sano
et al. (1989) up to 1012 and by Niemela et al. (2001) up to 1013. The importance of
the aspect ratio for the mean wind was evident already in the experiments of Niemela
and Sreenivasan Niemela and Sreenivasan (2003, 2006, 2010) for aspect ratios 1/2,
1 and 4, all other aspects remaining the same. Other experiments have examined dif-
ferent aspects of the mean wind. Several studies characterized the dynamics of these
large scale motions (Ciliberto et al. 1996; Qiu and Tong 2001; Xi et al. 2004; Brown
and Ahlers 2007; Funfschilling et al. 2008) in cells of aspect ratio Γ � 1 and mod-
erate Ra. One important observation is that, once in a while, the mean wind reverses
direction. Such dramatic phenomenon has fascinating analogies. Statistics of the
wind reversal in convection experiments show the same statistical signature as solar
flare activity, which is driven by Sun’s outer layer convective motion (Sreenivasan
et al. 2002), and the abrupt changes in mean flow direction in large-scale atmospheric
winds (van Doorn et al. 2000). Another important analogy is the reversal of Earth’s
magnetic field which, despite the data from past reversals obtained from geological
footprints, lacks full understanding with predictive power (even for a short time).

As for Nusselt number scaling, meager amount of data is available for the case
of high aspect ratio and high Ra. For Γ � 10 and moderate Rayleigh numbers,
simulations show the presence of cellular coherent structures (Cattaneo et al. 2001;
Hartlep et al. 2003; Parodi et al. 2004; Shishkina and Wagner 2005; von Hardenberg
et al. 2008). In particular, recent direct numerical simulations up to Ra = 108

(Bailon-Cuba et al. 2010) detected polygonal structures that resemble those observed
right above the onset of convection. Experimentally it would be a challenging task
to visualize these structures at high Ra. See Fig. 5.

The work of Niemela and Sreenivasan (2006) for Γ = 4 suggests the presence of a
single coherent mean wind over the whole container, consistent with the observations
of Krishnamurti and Howard (1981) at much lower Rayleigh numbers. However, at
very high Ra the former authors reported the absence of the wind, a result confirmed

Fig. 5 Images from Bailon-Cuba et al. (2010) showing the polygonal structures of the time-averaged
streamlines of the direct numerical simulations in a Rayleigh-Bénard cell with Γ = 8 for Ra =
6,000, 107, and 108, respectively
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subsequently by du Puits et al. (2007). The absence of wind could be either a con-
sequence of a completely random motion, or due to the formation of more complex
structures. Resolving this kind of questions experimentally requires the visualization
of the global flow structure. To our knowledge, the highest Rayleigh number in a
large aspect ratio experiment is ∼109 for Γ = 9 in the air experiments by du Puits
et al. (2013). If we consider only the experiments that visualized the global flow
structures, the maximum Rayleigh number is Ra = 2 × 107 in the Γ = 11 cell by
Hogg and Ahlers (2013). More experiments at large aspect ratios and large Ra are
therefore needed, in particular with capabilities for visualizing the flow structures
(see Fig. 6).
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Fig. 6 The plot shows the maximum Rayleigh numbers achieved by some selected experiments
and simulations for different values of the aspect ratio. Open symbols denote conditions for possible
visualization
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Understanding the dynamics of these flow structures, besides being of interest to
the RBC community, is also of interest for the Solar Physics community. Indeed,
with the exception of solar granulation, the cellular structures of the Sun are still not
completely understood (Rieutord and Rincon 2010). It is worth noting that despite the
traditional view that separates the scales into discrete features with different names,
there is some evidence for a continuous spectrum of motion (Nordlund et al. 2009).

The appearance of discrete wavelengths or the presence of a continuous spectrum
in RBC at high Ra and high Γ is still unexplained. As already mentioned, simu-
lations at moderately high Ra show the presence of coherent structures but there
are no data available at very high Ra. The appearance of regular structures from
the random turbulence motion is a fascinating phenomenon that seems to go against
the classical notion of turbulence, and can be seen more broadly in the context of
self-organization of a system far from equilibrium (Nicolis and Prigogine 1977). In
hydrodynamic turbulence such regular structures have been observed in the Taylor-
Couette flow (Lathrop et al. 1992), the von Kármán flow (La Porta et al. 2001) and
the pipe flow (Hof et al. 2004). In general, there is a renewed interest in the role of
coherent structures in turbulent flows (Ouellette 2012), also thanks to the new tools
for detecting Lagrangian coherent structures (Haller 2015). It will be interesting to
see the role that RBC will play in this context in the years to come.

5 Conclusions

Turbulent convection has been studied more extensively in recent years, and much
more sophisticated data have become available in both experiment and simulation.
Unprecedented ranges of parameters have been explored. However, many of the old
questions are still open—for example, the basic heat transport law for asymptotically
large Ra. We discussed some of the open problems for the simplest case of Rayleigh-
Bénard convection. Variations that include rotation, phase change and magnetic fields
have also gained a lot of attention recently but are not included in this review for
brevity.

One feature of experiments in the last two decades is the effort in achieving
higher and higher Rayleigh numbers by building larger and larger facilities, and using
different test fluids. The experiments that used cryogenic helium and pressurized
SF6 are currently the record holders for the highest Rayleigh number achieved in
controlled laboratory experiments. An alternative to helium and its increasing price,
or to large storage and compressing facilities of SF6, could be the use of cryogenic
nitrogen (Fonda et al. 2012), which we believe could be the fluid of choice for a
landmark facility with the goal of reaching Ra ∼ 1020.
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Dissipative Particle Dynamics: A Method
to Simulate Soft Matter Systems
in Equilibrium and Under Flow
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Abstract We provide examples and a concise review of the method of Dissipative
Particle Dynamics (DPD), as a simulation tool to study soft matter systems and sim-
ple liquids in equilibrium and under flow. DPD was initially thought as a simulation
method, which in combination with soft potentials, could simulate “fluid particles”
with suitable hydrodynamic correlations. Then DPD evolved to a generic “thermo-
stat” to simulate systems in equilibrium and under flow, with arbitrary interaction
potential among particles. We describe the application of the method with soft poten-
tials and other coarse-grain models usually used in polymeric and other soft matter
systems. We explain the advantages, common problems and limitations of DPD,
in comparison with other thermostats widely used in simulations. The implementa-
tion of the DPD forces in a working Molecular Dynamics (MD) code is explained,
which is a very convenient property of DPD. We present various examples of use,
according to our research interests and experiences, and tricks of trade in different
situations. The use of DPD in equilibrium simulations in the canonical ensemble,
the grand canonical ensemble at constant chemical potential, and stationary Couette
and Poiseuille flows is explained. It is also described in detail the use of different
interaction models for molecules: soft and hard potentials, electrostatic interactions
and bonding interactions to represent polymers. We end this contribution with our
personal views and concluding remarks.
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1 Introduction

Dissipative Particle Dynamics (DPD) is already a well established simulation method
to study particle systems (Frenkel and Smit 2002). In the seminal work by Hooger-
brugge and Koelman (1992) the motivation of developing DPD was to study the
hydrodynamic behavior with a particle based method and an integration scheme
very similar to that of Molecular Dynamics (MD). While hydrodynamic conditions
could be studied theoretically with MD, in practice, performing a simulation with the
typical time step of MD, for a large number of particles, so that the Reynolds number
of a fluid can be varied considerably, would be prohibitively expensive in computer
time, even with current computer systems (Murtola et al. 2009). Additionally, most
of the thermostats, which would allow for an isothermal simulation in presence of
flow, will perturbe the hydrodynamic correlation between particles (Hünenberger
2005). DPD tackled these two drawbacks to allow particle-based simulations in a
scheme very similar to MD (Frenkel and Smit 2002; Allen and Tildesley 1987).

As was originally deviced by Hoogerbrugge and Koelman (1992), Español and
Warren (1995), and Groot and Warren (1997), DPD allows for a higher time step
than usual MD simulations. This was achieved by defining the so-called “soft poten-
tials” as the interaction model between particles in the original DPD scheme. These
quadratic potentials, have linear and small derivatives (repulsive forces), as compared
to a typical interaction potential of MD simulation, such as the Lennard-Jones poten-
tial. The equations of motion of these “fluid particles” interacting with soft potentials
can be integrated with a time step with a factor of 10–100 times higher than that used
for the Lennard-Jones potential. This speed-up allows for the simulation of larger
systems, and therefore higher Reynolds numbers. The other important contribution
of DPD to the simulation of hydrodynamic phenomena is the use of a thermostat that
conserves locally linear and angular momentum, which is one of the assumptions of
the hydrodynamic continuum formulation of the equations of motion. Either locally
or globally, most of the widely used thermostats in MD, such as the Andersen, Nosé-
Hoover (Frenkel and Smit 2002) or the Langevin (Hünenberger 2005) thermostats,
violate Galilean invariance and momentum conservation, giving rise to screening of
hydrodynamic correlations (Soddemann et al. 2003; Dünweg 2006).

The DPD method solves this by establishing a thermostatic process similar to
Brownian Dynamics, in which a dissipative and a viscous force are applied over the
particles of the fluid. The difference is, however, that in the DPD method these forces
are applied in a pair-wise form, and in the direction of the line that connects a pair of
particles (see Fig. 1). In this way, the total “external force” on the particles is zero,
resulting in local momentum conservation. Additional details will be given in Sect. 2.
We can mention other two appealing features of DPD. It can be implemented from
a straight-forward modification of a working MD program, from which efficient
parallelization strategies have been deviced (Plimpton 1995; Brown et al. 2012).
Additionally, it has a great versatility to study complex fluids or other soft matter
systems in the hydrodynamics context by adding interactions among particles, for
example, harmonic or other spring-like interactions (bonded), to describe polymers,
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colloids or amphiphilic molecules (Allen and Tildesley 1987; Frenkel and Smit 2002).
Liquid mixtures can be also studied by changing the potential among different kind
of particles.

While the original DPD method was thought as a complete simulation procedure,
including the soft potentials and the pair-wise thermostat, it was soon realized that
they do not need to be used together (Soddemann et al. 2003; Pastorino et al. 2007).
One could use a DPD thermostat with any interaction model (potentials) among
particles or molecules, and not only with soft potentials. This option of using “hard
potentials”, such as Lennard-Jones or any other common potential in MD simula-
tions comes, of course, at the price of reducing the time step in the simulations,
which is one of the original advantages of DPD. However, the correct description
of hydrodynamics can be a highly desirable feature in many physical situations of
interest.

DPD has been used for soft matter systems in many contexts and physical situ-
ations (Murtola et al. 2009; Binder et al. 2011; Moeendarbary et al. 2010). In this
work we review the use of the DPD method with soft and hard potentials for complex
fluids and polymeric systems. In Sect. 2, we review the DPD method as a variation
of standard MD and Brownian Dynamics simulations. In Sect. 3, we provide details
of the use of soft and hard potentials to simulate soft matter systems such as poly-
meric systems. In this section we also provide various examples of equilibrium DPD
simulations with soft potentials. We devote Sect. 4 to give examples of the use of
DPD in soft matter systems under flow in order to study the behavior and coupling
of these soft matter systems under non-equilibrium conditions. We also show some
difficulties concerning temperature conservation in strongly out-of-equilibrium sim-
ulations and how to deal with them in Sect. 5. We provide the final comments and
conclusions in Sect. 6.

2 Details of the Dissipative Particle Dynamics Method

2.1 Basic Molecular Dynamics Simulation

The DPD simulation scheme can be thought as an extension of the typical MD
algorithm (Allen and Tildesley 1987; Frenkel and Smit 2002). The basic idea in MD
is integrating numerically the classical equations of motion for a set of N particles.
The Newton equation for each particle i is

−∂V (r)
∂ri

≡ fi = mi r̈i , (1)

where mi is the mass of the particle, fi is the total force on particle i due to other
particles of the system and any external field applied. In a simple bulk simulation,
the evolution is done in a box of a certain volume with periodic boundary conditions,
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to warrant that all particles will always be in the simulation box. From a physical
point of view, this bulk simulation should avoid any surface effect (Frenkel and Smit
2002).

Assuming ergodicity, a time average over the integrated numerical trajectory of
the N -particle system of any quantity depending on the dynamical variables positions
{ri } and velocities {vi } is equivalent to an ensemble average

〈A〉ens ≡ 1

τ

∫ τ

0
A({ri (t), vi (t)})dt,

where A stands for any physical quantity as a function of the dynamics variables of
the system. From the point of view of the statistical mechanics, the simple integrating
of the Newton equations corresponds to a micro-canonical ensemble in which the
number of particles N , the volume of the system V and the total internal energy of
the system E are held constant.

2.2 Simulating at Constant Temperature: The Langevin
Thermostat

The microcanonical ensemble, while useful theoretically is not usually used in exper-
iments in which exchange of heat, particles and or volume is usually the case. A typ-
ical ensemble in experiments, which is widely used in simulations, is the canonical
ensemble, in which the constant thermodynamic variables are the number of particles
N , the volume V and the temperature T . Keeping the temperature constant means, of
course, fluctuations of the energy of the system due to a heat exchange with a “ther-
mal bath”. To simulate the system at constant temperature, some additional terms
must be added to the original dynamical equations (1). In the last thirty years, sig-
nificant effort has been done to extend the Newton equations of a classical system to
obtain constant temperature. The different thermostats can be classified conceptually
as those which provide constant temperature by stochastic relaxation (i.e. Langevin
thermostat or Brownian dynamics simulations), stochastic coupling (Andersen ther-
mostat), extended Langrangian schemes (i.e. Nosé-Hoover thermostat), temper-
ature constraining (Woodcock and Hoover-Evans thermostats) and weak coupling
(Berendsen thermostat) (Hünenberger 2005). All these schemes have advantages and
drawbacks and find areas of application according to the systems, physical conditions
and phenomena to be addressed. We will not review this, and suggest the excellent
review by Hünenberger (2005) and the classical textbooks on MD simulations by
Frenkel and Smit (2002), Allen and Tildesley (1987), and Rapaport (2004). We will
give some details of the Langevin thermostat, also termed Brownian Dynamics, as a
first step, to describe then the DPD thermostat. In this scheme instead of integrating
the Newton equation of motion, we integrate a Langevin equation that describes the
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dynamics of each particle of the simulation. The integration scheme and most of the
MD program implementation remains exactly the same, except that two force terms
are added to the conservative forces already present in the MD simulations. The first
order equations of motion for the particle i are

ṙi = pi

mi
,

ṗi = Fc
i + Fi

D + Fi
R ,

where ri and pi are the positions and momenta of the particles. Fc stands for all the
conservative forces of the system, with arbitrary molecular complexity. These are
called the molecular interaction model. The Langevin thermostat adds a dissipative
and a stochastic force to the conservative forces of the system. It can be rationalized
by thinking that a particle is coupled to an implicit fluid, which acts as a thermal
bath (Pastorino et al. 2006, 2007). The dissipative force on particle i is given by
Fi

D = −γ vi , where γ is a friction coefficient fixed in the simulation, and vi is the
velocity of the particle. The random force, FR

i , is chosen such that it has zero mean
value and its variance satisfies

〈FR
iμ(t)FR

jν(t
′)〉 = σ 2

i δi jδμνδ(t − t ′) , (2)

where σi is the noise strength. The relation σ 2
i = kB T γ /mi , couples the friction

γ and the noise strength σi in a particular way such that the fluctuation-dissipation
theorem is satisfied and the system is simulated in the canonical ensemble (NVT).
An elegant derivation of this can be obtained from a Fokker-Planck equation for
this system (Dünweg 2006). This way of thermostating, also known as Stochastic
Dynamics, allows particle simulations at constant temperature. However, this algo-
rithm violates Galilean invariance because it damps the absolute velocities of the
particles, thus assuming as “special” the laboratory frame. The Langevin thermostat,
while allowing the simulation of correct thermodynamic conditions, it is of little use
for hydrodynamic phenomena. Taking a simple liquid, it was shown by Dünweg and
Kremer (1993) and Dünweg (2006) that this unphysical behavior can be thought as
a screening length for the hydrodynamic correlations

ξ =
[

η

ργ/m

]1/2

,

where η is the viscosity of the fluid, ρ the number density, γ the friction constant
and m the mass of each particle (Dünweg and Kremer 1993). The propagation of
momentum is screened and dampened, as compared to the correct hydrodynamics
behavior.
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2.3 The Dissipative Particle Dynamics Thermostat

The Dissipative Particle Dynamics thermostat improves the Langevin thermostat and
solves the screening problem. In this way, it allows one to simulate hydrodynamics
phenomena at the mesoscale in equilibrium and in presence of flows. It is very
similar to the Langevin thermostat, described in the previous section. Dissipative
and stochastic forces are applied, but to pairs of particles. The thermostat is also
Galilean invariant because it damps relative velocities and not the absolute velocity
of a single particle. The stochastic forces are applied also to pairs of interacting
particles in opposite direction, such that Newton’s third law is satisfied. In this way
the total “thermostating” (external and non-conservative) force to a pair of particles is
zero and the momentum is conserved locally. The new expressions for the dissipative
and random forces are

Fi
D =

∑
j ( �=i)

FD
i j ; FD

i j = −γωD(ri j )(r̂i j · vi j )r̂i j ,

Fi
R =

∑
j ( �=i)

FR
i j ; FR

i j = σRωR(ri j )θi j r̂i j , (3)

where ri j ≡ ri − r j = ri j r̂i j and vi j ≡ vi − v j are the relative positions and
velocities, respectively. γ is the friction constant and σR the noise strength. Friction
and noise obey the relation σ 2

R = 2kB T γ , exactly in the same of way as the Langevin
thermostat does. ωD(ri j ) and ωR(ri j ) are weight functions that have to satisfy the
relation

[ωR]2 = ωD. (4)

in order to fulfill the fluctuation-dissipation theorem (Español and Warren 1995;
Español 1995). θi j stands for a random variable with zero mean and second moment

〈θi j (t)θkl(t
′
)〉 = (δikδ jl + δilδ jk)δ(t − t

′
). (5)

The standard weight functions found in the literature are:

[ωR]2 = ωD =
{

(1 − r/rc)
2, r < rc,

0, r ≥ rc
(6)

where rc is the cut-off radius for a given molecular model. It is emphasized that Eq. (6)
is just the typical choice when the DPD thermostat is employed in conjunction with
“soft” potentials. Any choice satisfying the first equality in Eq. (6) would be a suitable
option for the weight functions. In Fig. 1, we present a sketch with the direction of the
dissipative and stochastic forces of the DPD thermostat on a pair of fluid particles.
The equations of motion including the DPD thermostat are often integrated using
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Fig. 1 Sketch of the
dissipative and stochastic
forces applied in a pair of
fluid particles in the DPD
thermostat. The forces are
applied in the direction
connecting both particles in
such a way that all added
“thermostating” forces
vanish

F
R

F
R

F
D

F
D

the velocity Verlet algorithm (Murtola et al. 2009; Frenkel and Smit 2002; Allen and
Tildesley 1987).

3 Interaction Models: Soft and Hard Potentials

3.1 DPD with Soft Potentials

From the very inception of the DPD method by Hoogerbrugge and Koelman (1992),
the spatial dependence of the conservative force (FC

i j ) was chosen to be a short range,
linearly decaying function:

FC
i j = ai j

(
1 − ri j

Rc

)
êij, (7)

where ri j = ri − r j is the relative position vector and êi j is the unit vector in
the direction of ri j , with ri being the position of particle i . The constant ai j is
the strength of the conservative force between particles i and j and Rc is a cutoff
distance. This force becomes zero for ri j > Rc. It should be remarked that this choice
of the distance-dependent force is not arbitrary, as it has been shown to arise from
properly averaged, microscopic interactions, such as the Lennard-Jones potential
(Forrest and Suter 1995). As for the interaction constant, ai j , Groot and Warren
(1997) have provided a guide to calculate it using the Flory-Huggins model for like-
unlike particles, and the isothermal compressibility of water for like-like interactions.
The standard procedure to choose the conservative force parameter for particles of
the same type, aii , is given by
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Fig. 2 Dependence of the
interfacial tension γ ∗
between two immiscible
model fluids as a function of
the size of the simulation
box. Note that the difference
between the values of the
interfacial tension for the
smallest and biggest boxes
amounts to about 1 %. The
axes are drawn in reduced
DPD units. Adapted from
Velázquez et al. (2006)

aii =
[
κ−1 N−1

m

2αρ

]
kB T, (8)

where Nm is the coarse-graining degree (number of water molecules grouped in a
DPD particle), α = 0.101 is a numerical constant, ρ is the DPD number density
and κ is the dimensionless compressibility of the system. It is defined as κ−1 =
1/(ρ0kB T κT ), where ρ0 is the number density of molecules and κT = (∂p/∂ρ0)T

is the usual isothermal compressibility. When one chooses a coarse-graining degree
equal to 3, water molecules in a DPD particle and the water compressibility under
standard conditions, κ−1 	 16, the DPD force parameter takes the value aii = 78.3.
The parameter for different types of particles, ai j , is calculated from the Flory-
Huggins coefficient χi j using the following relation:

ai j = aii + 3.27χi j . (9)

Theχi j value can be obtained from the solubility parameters. The remaining forces
of the model, namely the dissipative force and the random force, are exactly as defined
in Eq. (3). Because all the conservative forces are repulsive, the equation of state of
DPD is positive definite and it does not have a van der Waals loop (Groot and Warren
1997). Therefore, it cannot predict liquid-vapor phase transitions. However, this
limitation can be overcome by introducing a local density dependent attractive term
into the conservative force (see Eq. 7), which is useful for predicting surface tension
(Pagonabarraga and Frenkel 2001). Among the advantages of the soft potentials used
in DPD is the fact that finite size effects are minimal when the appropriate ensemble
is used because the potentials are also short ranged (Velázquez et al. 2006). This
allows one to perform accurate simulations using relatively small, computationally
inexpensive systems, as shown in Fig. 2.
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3.2 Selected Examples of Soft Matter Systems in Equilibrium

We provide in this section examples of DPD with soft potentials for equilibrium sim-
ulations. When beads are joined through a harmonic potential polymer chains can
easily be simulated, as well as other types of molecules such as surfactants, rheology
modifiers and others (Groot and Warren 1997). The influence of the characteristics of
the harmonic force forming surfactant molecules on the interfacial tension between
two immiscible liquids has been studied thoroughly (Gama Goicochea et al. 2007)
and it was shown that the predictions follow closely the experimental trends. Most
applications of DPD have been carried out at constant temperature although there
are plenty of situations of importance for modern research where the influence of
temperature is not sufficiently well understood. One of such cases is the dependence
on temperature of the interfacial tension between liquids. Very recently, an exten-
sion of the DPD model that incorporates the variability of the temperature has been
proposed by Mayoral and Gama Goicochea 2013. It is based on the addition of the
temperature dependence of the solubility parameters for the pure components in a
mixture, which leads to temperature dependent interaction parameters, (see Eqs. 8
and 9). Applying the temperature dependent form of DPD to the interfacial tension
between organic solvents and water led to predictions that are in excellent agreement
with experimental results (Mayoral and Gama Goicochea 2013). Another important
extension of the DPD model is the incorporation of electrostatic interactions through
the method of the Ewald sums. Using distributions of charge instead of point charges
to avoid the formation of artificial ionic pairs, the behavior of poly-electrolytes in
solution under the influence of varying ionic strength has been predicted and com-
pared with similar studies carried out with certain proteins (Alarcón et al. 2013b).
In particular, it has been shown that strongly charged poly-electrolytes in aqueous
solution experience a contraction followed by a re-expansion as a function of the
tetravalent salt content, as shown in Fig. 3.

Fig. 3 The squared radius of
gyration Rg of a
poly-electrolyte made up of
32 equally charged
monomers, in aqueous
solution with varying ionic
strength Cs . The latter is
made up of tetravalent ions
of Na neutralized with Cl
ions. The axes are drawn in
reduced DPD units. Adapted
from Alarcón et al. (2013b)
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Fig. 4 The scaling exponent
of the radius of gyration as a
function of the
polymerization degree under
a varying concentration of
Na and Cl ions. The y-axis is
dimensionless while the
x-axis is shown in reduced
DPD units. Adapted from
Alarcón et al. (2013b)

The contraction-re-expansion behavior quantified through the radius of gyration
Rg of a model poly-electrolyte shown in Fig. 3 is the result of a complex interplay
between the electrostatic interaction and the excluded volume effect brought about
by the softness of the DPD interaction potential. Moreover, it is by no means an
artifact of the DPD model, as it has been obtained using other interaction potentials
and has also been observed in experiments with proteins in aqueous solution (Hsiao
and Luijten 2006). In fact, using this electrostatic version of DPD it has been possible
to predict the scaling exponent of the radius of gyration, defined by the well-known
relation Rg ∼ N ν where N is the polymerization degree and ν is the scaling exponent
(Alarcón et al. 2013b). It is known that it depends on the quality of the solvent in which
the polymer is immersed, and on the dimension of the system. For neutral polymers
in a good solvent it has been shown for some time that ν = 0.588. However, for
poly-electrolytes much less is known. To begin with, it is not even firmly established
if a scaling relation is obeyed and much less what the value of the scaling exponent
should be. Nevertheless, several groups have shown that poly-electrolytes do show
scaling characteristics in their radius of gyration, but their scaling exponent is usually
larger that its counterpart for neutral polymers.

Figure 4 shows the values of the scaling exponent of the radius of gyration for
model linear poly-electrolytes of different polymerization degrees as a function of
the ionic strength. Although the results in Fig. 4 were obtained for simulations in
which all the interaction parameters between the poly-electrolyte and solvent were
kept the same, the values of the scaling exponent are well above the value of 0.588
for neutral polymer in good solvent. These conditions correspond, in the neutral
case, to the so-called theta solvent. Therefore, the results shown in Fig. 4 demon-
strate that the quality of the solvent can be strongly modified by the electrostatic
interactions.
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3.3 DPD with Hard Potentials

As it concerns the use of DPD with hard potentials, we mention a widely used polymer
coarse-grained model, developed by Grest and Kremer (1986) and Kremer and Grest
(1990). It has been applied to a variety of thermodynamic conditions and physical
systems as glasses, polymer melts and solutions, and polymer brushes (Grest 1999;
Baschnagel and Varnik 2005; Dünweg and Kremer 1993; Binder and Milchev 2012;
Kroger 2004). The bonded interaction along the same polymer is modeled by a finite
extensible non-linear elastic (FENE) potential:

UFENE =
⎧⎨
⎩

− 1
2 k R2

0 ln

[
1 −

(
r
R0

)2
]

r ≤ R0

∞ r > R0

, (10)

where the maximum allowed bond length is R0 = 1.5σ , the spring constant
is k = 30ε/σ 2, and r = |ri − r j | denotes the distance between neighboring
monomers. Excluded volume interactions at short distances and van-der-Waals
attractions between beads are described by a truncated and shifted Lennard-Jones
(LJ) potential:

U (r) = ULJ(r) − ULJ(rc), (11)

with

ULJ(r) = 4ε

[(σ

r

)12 −
(σ

r

)6
]

, (12)

where the LJ parameters, ε = 1 and σ = 1, define the units of energy and length,
respectively. The temperature is therefore given in units of ε/kB , with kB the Boltz-
mann constant. ULJ(rc) is the LJ potential evaluated at the cut-off radius. There
are typically two values taken as a cut-off distance: (i) the minimum of the L J
potential rc = 21/6σ 	 1.12σ and (ii) twice the minimum of the LJ potential:

rc = 2 × 2
1
6 σ 	 2.24σ , which allows for poor solvent conditions. In the first case,

the interactions between monomers of different chains are purely repulsive. From the
point of view of polymer solutions, this means good solvent conditions because the
polymer bead is close to the solvent, giving rise to an effective repulsion among poly-
mer beads. In the second case, longer ranged attractions are included (full Lennard-
Jones potential), giving rise to liquid-vapor phase separation and droplet formation
for adequate thermodynamic conditions (Müller and MacDowell 2001; MacDowell
et al. 2000; Servantie and Müller 2008).
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4 Selected Examples of DPD in Flow Simulations

4.1 Polymer Brushes with Soft Potentials

There are a number of applications in soft matter systems that require of surfaces
covered by polymers to improve factors such as colloidal stability, reduction of
interfacial tension for wetting purposes, or improvement of lubrication. The most
common procedure to accomplish this is by grafting polymer chains of varying
length to surfaces, changing the grafting density also. Within the context of com-
puter simulations, when one is dealing with systems that model colloidal dispersions
or surfaces with grafted polymers, to ensure that the confined system is in chemi-
cal, mechanical and thermal equilibrium with the non-confined fluid it is necessary
to use the so-called Grand Canonical ensemble, which is well-known in statistical
mechanics. It requires that the chemical potential, the volume of the system and the
temperature be fixed during the simulation. To do so, one needs to perform Monte
Carlo simulations, which are relatively demanding from the computational point of
view because the number of particles in the simulation box is fluctuating and, as the
concentration is increased, the probability of introducing new particles into the sys-
tem becomes exceedingly small. However, for moderate densities it has been shown
to be a very useful tool. Within the context of DPD there are now some works that
have explored the properties of fluids confined by surfaces covered with polymers,
using the Monte Carlo method in the Grand Canonical ensemble (MCGC). A com-
mon approximation consists of substituting the colloidal particles by planar surfaces,
given the disparity of sizes between them and the solvent molecules. Also, planar
surfaces are useful to model pores or mimic experimental arrangements such as that
of the atomic force microscope or the surface force apparatus (Israelachvili 2011).
These planar walls have been implemented in DPD through two methods: either by
fixing in space some layers of DPD particles, placed at the ends of the simulation box
(Goujon et al. 2004), or by introducing an effective wall potential that acts on parti-
cles close to the ends of the simulation box (Gama Goicochea 2007). Several models
for the wall potential have been proposed; the first one being a linearly decaying
force, in the spirit of the other DPD forces, namely (Gama Goicochea 2007):

Fi (z) = aw,i

(
1 − z

zc

)
ẑ. (13)

Equation (13) represents the force that acts on the i th-particle in the ẑ direc-
tion (perpendicular to the plane where the surfaces are placed), aw,i is the inter-
action strength of such force, and zc is a cutoff distance, beyond which the force
becomes identically zero. For obvious reasons, this model is usually called the “DPD
wall” force. Recently, a self-consistent surface force was obtained for DPD particles
(Gama Goicochea and Alarcón 2011). It considers an infinite planar wall made up of
regularly spaced, identical DPD particles that interact with other particles on the wall
and with particles in the fluid through the usual DPD conservative force (see Eq. 7
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and Fig. 5). By integrating the contribution to the total wall force from each parti-
cle on the surface it is possible to obtain an exact expression for the effective DPD
surface force, which is given by the following polynomial (Gama Goicochea and
Alarcón 2011):

Fi (z) = aw,i

[
1 − 6

(
z

zc

)
2 + 8

(
z

zc

)3

− 3

(
z

zc

)4
]

ẑ, (14)

where the symbols have the same meaning as in Eq. (13), except that the strength of
the interaction is given in this case by the relation:

aw,i = π

12
ρw R3

c ai j . (15)

In Eq. (15) ρw is the density of the wall, Rc is the usual cutoff radius, and ai j is
the conservative force strength between the particle i in the fluid and j on the wall.

The surface force in Eq. (14) is appealing for several reasons: it is exact, it is soft
and short—ranged as the other DPD forces, and its strength is defined through the
interaction strength of the conservative force as expressed in Eq. (15). Using this
effective surface force, GCMC simulations have been performed to calculate the full
solvation force that the walls exert on a simple monomeric DPD fluid. This solvation
force, which is equal to the change in the free energy of the system between two
compression states, per unit area, is surprisingly of relatively long range, as shown in
Fig. 6, even though the surface—fluid particle force is of short range. This phenom-

Fig. 5 Model to derive an effective DPD surface force (left). The resulting force is a polynomial
(see Eq. 14) which is also of short range, as are the other forces that make up the DPD model (right).
Adapted from Gama Goicochea and Alarcón (2011)
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Fig. 6 The exact DPD wall-fluid force (Eq. 14) is shown in blue, while the full, many-body solvation
force obtained from simulations with the wall force is shown in red squares. Both scales on the
y-axis are shown in reduced DPD units, as is also the x-axis. To convert the latter into physical
distances it is necessary to multiply z∗ by 6.46Å. Adapted from Gama Goicochea and Alarcón
(2011)

enon is the result of the collective many—body interactions that carry information
about the boundary conditions of the fluid in the direction of the confinement (Fig. 6).

By attaching polymer chains to these effective surfaces it is possible to calcu-
late the force between colloidal particles covered with polymer brushes and com-
pare it with other models, like the well-known Alexander-de Gennes (AdG) model
(Alexander 1977; de Gennes 1980), which is based on scaling arguments and assumes
that the density profile of the monomers that make up the polymer brushes is a step
function. This is known to be inaccurate. It also assumes that the polymer chains
do not interact with one another, and that they are immersed in a solvent of good
quality (Alexander 1977; de Gennes 1980). The AdG force is then the result of short
range repulsion caused by the increased osmotic pressure when the polymer brushes
are brought into close contact, and elastic attraction created by the entanglement
of polymer chains on opposite brushes. In the left panel of Fig. 7, we present the
density profile of the polymer brushes at a given separation between the walls, which
shows the beads attached to each surface and the structuring in the density profile
of the brushes, which is a consequence of having relatively short chains (N = 5 for
the case shown in this figure). Notice how this profile is far from resembling a step
function. Yet, as shown in the right panel of Fig. 7, the AdG model reproduces fairly
well the trend in the full solvation force obtained with GCMC DPD simulations,
although the latter are more accurate because the interactions between all particles
are accounted for.

The disjoining pressure of a simple monomeric fluid confined by effective linearly
decaying wall forces, as the one shown in Eq. (13), has been calculated by means
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Fig. 7 Density profile for polymer chains with degree of polymerization N = 5 (left). The inset
shows an image from the actual simulations. Full solvation force obtained from GCMC DPD
simulations of polymer brushes (right). The line represents the AdG model. Axes are shown in
reduced units. Adapted from Gama Goicochea and Alarcón (2011)

of GCMC-DPD simulations. This is a quantityof importance when studying the
properties of confined fluids because it is a measure of the stability of complex
fluids under confinement and fixed chemical potential (Gama Goicochea 2007). It
is defined as the difference between the pressure tensor component in the direction
perpendicular to the confinement (PN ) and the pressure of the bulk (unconfined)
fluid, PB . In Fig. 7, we see the disjoining pressure (Π ) as a function of the distance
between the walls (Lz), for a monomeric fluid confined by linearly decaying surface
forces. There appear intercalated maxima with minima whose interpretation is as
follows. The maxima in Π represent thermodynamic states with maximal force
between colloidal particles (per unit area) represented by the walls, mediated by
the corpuscular nature of the solvent. These maxima are the consequence of an
ordered array of the solvent molecules into layers, whose order gets increasingly lost
as the separation between the surfaces grows, as should be expected. These states
correspond to conditions of optimal stability for the colloidal dispersion. The minima
seen in Fig. 8 represent states where there is an attractive (negative) force between
the surfaces, therefore they are thermodynamically unstable and would lead to the
agglomeration of colloidal particles. It is remarkable that an attractive force can
emerge from a model (DPD) where all particle interactions are repulsive, including
the wall force. It occurs because of the confinement condition and the corpuscular
nature of the solvent, which forces the particles to form orderly layers when the force
is at a maximum (see points labeled a, c and e in Fig. 8) and be disordered when the
force is minimal (as in states labeled b and d in Fig. 8).

The behavior shown in Fig. 8 reproduces very well the trends found in experiments
and with other calculation methods (Israelachvili 2011), and lends credence to the
usefulness of DPD as a precise predicting tool, not only for polymers in solution,
but also for confined complex fluids. It is advantageous to perform simulations like
these before embarking in laborious, time consuming and expensive experiments,
such as those required to determine adsorption isotherms. In the design of new
colloidal dispersions for the paint industry, for example, or for the improvement and
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Fig. 8 The disjoining pressure Π of a simple fluid made up of monomers obtained from
GCMC–DPD simulations of the fluid confined by linearly decaying wall forces, as a function
of the distance separating the surfaces. The inset shows a schematic diagram of the system model
and how it is calculated. The top part of the figure illustrates how the maxima and minima are due
to the arrangement of the fluid’s molecules. The axes are shown in reduced units. Adapted from
Gama Goicochea (2007)

optimization of known formulations, it is usually required to determine the amount
of material (polymers, surfactants) that needs to get adsorbed on the surfaces of
the colloidal particles. This is traditionally determined from adsorption isotherms,
which can take several weeks to measure and interpret. By contrast, the adaptability
of computer simulations allows one to calculate adsorption isotherms in a relatively
short time, having full control of the thermodynamic variables. For these purposes it
is crucial to perform the calculations at constant chemical potential (and at constant
volume and temperature). Because of the mesoscopic reach of the DPD model and its
success in predicting the behavior of polymers in solution and also confined fluids,
it becomes a well suited tool for the study of adsorption of polymers on colloidal
particles.

Figure 9 shows adsorption isotherms obtained with GCMC-DPD simulations for
two cases. In one case, where the surfaces were implemented as Lennard-Jones (9-3)
forces to represent alumina surfaces (Al2 O3) that are known to have hydrophilic
character (Esumi et al. 2001). In the other case, the walls were modeled as soft
DPD walls (see Eq. 13). In order to represent the hydrophobic nature of silica (SiO2)
surfaces. The fluid confined by these walls is composed of solvent monomers and a
varying number of PEG molecules, which are modeled as linear chains with N = 7
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Fig. 9 Adsorption isotherms obtained with GCMC–DPD simulations of fluids confined by a
Lennard-Jones (9–3) surface model (left), and a linearly decaying, DPD wall force (right). The
fluid is made up of the monomeric solvent and a varying number of linear polymer chains (N = 7)
to represent PEG molecules. Red circles represent the simulation results while the blue squares
are the experimental data as taken from Esumi et al. (2001). The axes are normalized with their
maximum value so that both scales range from 0 to 1. The lines are only guides for the eye. Adapted
from Gama Goicochea (2007)

beads each, joined by harmonic springs. This polymerization degree corresponds to
a molecular weight Mw = 400 for PEG (Gama Goicochea 2007). The predicted
adsorption isotherms are compared with the experimental counterparts (Esumi et al.
2001) in Fig. 9. Notice how the DPD methodology correctly reproduces the trends if
not the actual values of the isotherms; not only that, it is possible to model different
surfaces characteristics by a judicious choice of the wall force model or interaction
parameters. Up to this point all the results reported for confined fluids were carried
out for neutral systems. However, poly-electrolytes which are charged polymers
are ubiquitous in nature and in modern day applications (Holmberg 2003). Many
colloids acquire electric charges on their surface when immersed in a polar solvent,
like water, and are rich in showing complex phenomena when they are subject to
varying ionic strength and pH, as poly-electrolytes are as well. From the point of
view of fundamental research, the long range nature of the Coulomb interaction gives
rise to behavior that is qualitatively different from neutral systems, which needs to
be thoroughly investigated to reach a satisfactory understanding of soft condensed
matter systems. Because of these needs it became necessary to adapt the DPD model
so that it could handle long range interactions such as the electrostatic one, for
confined systems. The natural route was to adapt the Ewald sums method for cases
when there is reduced symmetry, as in the confined fluids we have discussed (Alarcón
et al. 2013a).

Alarcón and co-workers (2013a) calculated the first adsorption isotherms of poly-
electrolytes using the GCMC–DPD algorithm adapted with Ewald sums for confined
systems as a function of pH. They studied the adsorption of weakly charged, linear
cationic and anionic poly-electrolytes at various values of pH on negatively charged
and neutral colloidal surfaces. The adsorption isotherms they obtained for cationic
poly-electrolytes adsorbed on neutral surfaces modeled by the exact, self-consistent
DPD wall force (see Eq. 14) are shown in the left panel of Fig. 10. For the model poly-
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Fig. 10 Fully charged linear cationic poly-electrolyte on neutral surfaces with N = 7 beads. Only
every other bead is charged. The left panel shows the adsorption isotherms obtained at three different
pH values. The symbols represent the results of the simulations while the solid lines are the best
fits to the Langmuir adsorption isotherm model. In the right panel of this figure we show the full
force between colloidal surfaces mediated by the poly-electrolytes and the solvent, for the same pH
values as in the left panel. Notice that when the pH is increased so is the surface force, in contrast
with the adsorption isotherm trend. The axes in the left figure are shown in reduced DPD units while
those on the right have been appropriately dimensionalized. Adapted from Alarcón et al. (2013a)

electrolyte used in those simulations the adsorption increases as the pH is reduced,
which was attributed to the competition between the poly-electrolytes and their coun-
terions for the adsorption sites on the colloids surfaces, because the adsorption of
the counterions grows when that of the poly-electrolytes is reduced. This is precisely
the trend found in experiments performed on comparable situations (Drechsler et al.
2010). The right panel in Fig. 10 shows the full surface force that neutral colloidal
particles, modeled by the exact DPD wall force, exert on each other by means of
the cationic poly-electrolytes at different pH values (Alarcón et al. 2013a). This is
the first calculation of its kind, not only within the context of DPD simulations. The
trend found in the surface force is entirely different from that found in the adsorption
isotherms (left panel in the same figure) even though the calculations were performed
on the same systems. In other words, when the pH of the cationic poly-electrolyte is
increased, it translates into a larger surface force between colloidal particles. What
this means is that if one is looking for optimal stability of colloidal dispersions it
may be advantageous to add less poly-electrolytes as dispersants, at a basic pH,
because the competition of electrostatic interactions between poly-electrolytes and
counterions, and the excluded volume interactions with the solvent are enough to
increase the many-body surface force so that the colloidal dispersion turns out to be
optimally stable, as the right panel of Fig. 10 shows. The results shown in the right
panel of Fig. 10 fully reproduce the experiments carried out on poly-electrolytes and
characterized using atomic force microscopy at different pH (Drechsler et al. 2010),
among others.

Lastly, we comment on some very recent DPD simulations that model complex
fluids under stationary flow using soft DPD potentials. The reason for simulations
of this type stems from the need to understand phenomena seen in applications such
as drug–carrying liposomes in the pharmacological industry, in the processes of
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Fig. 11 A system configuration extracted directly from non-equilibrium computer simulations
using soft DPD interactions of polymer brushes grafted on soft DPD surfaces. The blue particles
are the grafted beads which move at constant speed v0 in the direction indicated by the arrows.
Those beads drag the rest of the beads forming the polymer chains (in yellow) to produce flow of the
solvent particles (in red). The green line indicates the velocity gradient as is expected in stationary
Couette flow. Adapted from Gama Goicochea et al. (2014)

enhanced oil recovery, for the design of improved rheology modifiers in the paint
industry, as well as lubricants, to mention a few. The idea behind non equilibrium,
stationary flow simulations for applications like those mentioned above is as follows:
two parallel plates are placed a certain distance apart, say in the z–direction; then
a constant force is applied to the top plate and an equal in magnitude but opposite
in direction force is applied to the bottom plate. This creates a velocity gradient (or
shear rate) which is responsible for creating a steady flow known as Couette flow. We
shall have more to say about the details of this type of flow in the next section, but
for now we focus on the use of soft DPD potentials in non-equilibrium simulations.
Although many works have been published that use computer simulations to study
Couette flow, most of them have been carried out using microscopic models, which
are accurate but are very time-consuming, even more than equilibrium simulations.
Recently, a study of the rheological properties of polymer brushes under theta solvent
conditions using only soft DPD interactions has been published (Gama Goicochea
et al. 2014). The system consists of two parallel plates on the xy-plane, modeled as
soft DPD wall forces separated by a fixed distance D, where a number of polymer
chains were grafted at one of their ends and at grafting densities large enough to
form polymer brushes. A constant velocity v0 is applied to the grafted ends of the
polymer chains on the top and bottom plates, in opposite directions, so that stationary
flow is produced by the collisions of the chains with themselves and with the solvent
particles. This gives rise to a mean constant force Fx in each plate, in the stationary
regime. The grafted beads on the surfaces move with a constant velocity (v0) but
there is a velocity gradient of constant shear rate γ̇ along the direction separating the
plates. Figure 11 shows a configuration of this system, extracted directly from the
simulations.
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Fig. 12 (Left) Viscosity of the grafted beads of polymer chains forming brushes of three different
polymerization degrees, as a function of the applied shear rate. In order to use dimensionless units
on both axes, the y-axis was normalized with the limiting value of the viscosity at zero shear rate η0.
The x-axis was normalized with the value of the shear rate when the behavior of the applied force
changes from linear to sub-linear, so defining the Weissenberg number We. The line is the predicted
scaling law. (Right) The friction coefficient is normalized by its value at the transition from linear
to sublinear regimes, as a function of We. The friction coefficient for all brushes modeled obeys the
scaling law μ/μ∗ ∼ W e0.69. See text for details. Adapted from Gama Goicochea et al. (2014).

One can calculate rheology properties such as the viscosity η for fluids under flow,
as the one shown in Fig. 11, using the following relation (Macosko 1994; Pastorino
et al. 2006):

η = 〈Fx (γ̇ )〉/A

γ̇
. (16)

In Eq. (16) Fx is the magnitude of the constant force in the x-direction, applied
to the planar surfaces of area A and γ̇ is the shear rate. The brackets represent an
average over the entire simulation time (Gama Goicochea et al. 2014; Pastorino et al.
2006). By changing the applied force one can vary the shear rate and then measure
the dynamic response of the fluid through the viscosity using Eq. (16). Newtonian
fluids are characterized by viscosities that are independent of the shear rate, but most
fluids of interests for modern applications, as well as the fluid simulated and shown
in Fig. 11, are of the non-Newtonian type, namely they have viscosities that are shear
rate dependent (Macosko 1994). Another rheological property of interest for polymer
brushes is the friction coefficient between the brushes and the fluid, which is given
by the following expression:

μ = 〈Fx (γ̇ )〉
〈Fz(γ̇ )〉 , (17)

where 〈Fx (γ̇ )〉 and 〈Fz(γ̇ )〉 represent the mean forces that the grafted beads expe-
rience along the direction of the flow (x̂) and perpendicularly to it (ẑ), respectively.
The brackets symbolize time averages over all the particles in the simulation box.
Clearly, μ is a dimensionless number. Figure 12 shows the predictions for the vis-
cosity and the friction coefficient obtained from DPD simulations of Couette flow
for linear polymer brushes of varying polymerization degree under theta solvent
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conditions, using Eqs. (16) and (17), respectively (Gama Goicochea et al. 2014). In
particular, the viscosity (left panel in Fig. 12) shows what is usually known as “shear
thinning”, i.e., the viscosity is reduced as the shear rate is increased. As we way
see from the figure, the viscosity for brushes of different polymerization degrees N ,
obeys a universal law for large values of the shear rate. In fact, a scaling law can be
extracted, yielding η ∼ γ̇ −0.31 independently of the value of N . On the other hand,
the friction coefficient (right panel in Fig. 12) increases with the shear rate but obeys
also a scaling law, which is found to be μ ∼ γ̇ 0.69. These scaling exponents are
in excellent agreement with those predicted using different arguments (Galuschko
et al. 2010) and they are found to be related according to those predictions (Gama
Goicochea et al. 2014).

We conclude this section by recalling that there are numerous examples where the
application of the soft DPD potentials have yielded novel and accurate predictions
which make this model one of the leading current tools to understand phenomena
in soft matter systems. Here we have reviewed only some of the recent ones, mostly
taken from our own work and expertise.

4.2 Hard Coarse-Grained Potentials

In this section, we provide examples of simulations of flows with the coarse-grained
Kremer-Grest model for polymers. The two simplest hydrodynamic flows can be
easily set within the MD with DPD thermostat simulations. These two flows are
very important to characterize the behavior in operational conditions of microfluidic
devices. The small size of the channels that confine the fluid implies a laminar regime,
which departs from the turbulent hydrodynamic regime.

Fig. 13 Density profile of
the brush ( full line) and the
melt (dashed-dotted line) for
ρg = 0.77σ−2. The inset
shows a configuration of the
simulated system, aligned
with the density profile such
that the brush-melt interface
coincides. Adapted from
Pastorino et al. (2009)
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Fig. 14 Velocity profile for
the linear Couette flow
simulations for different wall
velocities (shear rate). The
velocity is scaled with the
dynamic scale of a polymer
melt of the same density as
the brush Dw D/R2

e , where
Dw is the channel width, D
the diffusion coefficient of
the equivalent polymer melt
and Re its end-to-end
distance. The open squares
show the density profile of
the same system. It should be
noted that it is highly
independent of the flow
conditions. Adapted from
Pastorino et al. (2009)
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In these examples, the Couette (linear) flow is established by moving the walls
of the polymer-coated channel at constant and opposite velocity. This builds up, at
stationary regime, a linear velocity profile in the channel with 0 velocity exactly at
the center of the channel.

A typical simulation is shown in the inset of Fig. 13. The Figure shows a density
profile with the two species in the system: a polymeric liquid of ten-bead chains
(gray) which is confined between two layers of end-grafted polymers, a polymer
brush (red). The densities show the brush-liquid interfaces clearly defined. The liquid
is not able to enter in the brush layer, even when all the interactions are attractive, due
to entropic effects (Pastorino et al. 2007, 2009). This corresponds to the well-known
case of autophobicity (Pastorino et al. 2006). The brush thickness depends on the
grafting density (number of chains per unit area grafted at the wall). This system can
be studied in equilibrium and also under flow.

The velocity profiles obtained as a result of moving the wall at constant and oppo-
site velocity are shown in Fig. 14. The linear velocity profiles are clearly observed
for two different grafting densities in the brush (upper and lower panels). The density
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Fig. 15 Symmetrized velocity profile for Poiseuille-flow simulations for different grafting densi-
ties. The body force acting in each bead is fx = 0.008ε/σ . The x̂-axis is given in units of a measure
of the polymer size, the end-to-end radius for these liquid density and temperature is Re = 3.66σ .
The channel width is D = 40σ with the center of the channel in 20σ (z/Re = 5.46). There the
velocity profile reaches the maximum. Adapted from Pastorino et al. (2009)

profile is also shown with open circles. Close to the brush-liquid interface, inside
the brush layer, deviations from the dominant linear profiles are observed. This has
a physical meaning, since the interface properties are not expected to be the same
as that of the bulk liquid, in the center of the channel. The mixture of liquid and
grafted chains (which do not flow in the wall reference frame) can be understood as
an effective liquid of different viscosity, in this zone. It is important to emphasize
the difference of this simulation scheme as compared to the one in conventional
computational fluid dynamics. In MD with DPD, neither the viscosity of the fluid,
nor the boundary conditions (i.e. slip length or slip velocity) are imposed to the
system. These two quantities can be measured in the simulations for given flow,
thermodynamic conditions and molecular interaction models. Figure 15 shows the
Poiseuille-like velocity profile for the same system. It is obtained by applying a con-
stant body force for each particle. This can be understood as a gravity force acting
on each particle, or a pressure difference. Only the velocity profile of the polymeric
liquid is shown. The brush has a vanishing mean velocity since the molecules are
grafted to the hard substrate. The velocity profiles are progressively narrower upon
increasing grafting density due to the increased thickness of the brush layer. This
smaller effective width of the channel reduces also the flow rate at constant body force
(or pressure gradient). The mean viscosity of the polymeric liquid can be extracted
from the simulations by just fitting the analytic velocity profile obtained from the
integration of the Navier-Stokes equation:

v(z) = ρ fx

2η
(z − z0)(Dw − z0 − z), (18)



74 C. Pastorino and A. Gama Goicochea

where ρ is the number density of the fluid at bulk, fx = 0.008ε/σ is the external
body force applied on each bead to produce the flow, Dw is the channel width and
z0 indicates the position at which the velocity profile extrapolates to 0 velocity. The
viscosity η is the only parameter in Eq. (18) that is not measured directly from the
simulation. It can be obtained from the fit of the profile with Eq. (18).

These examples illustrate the use of DPD with hard potentials, in which the struc-
tural properties of the liquid, flow properties (slip length and slip velocity, velocity
profile) and rheological properties (viscosity, regions of non-newtonian behavior) of
these soft matter systems can be obtained from the simulations using the two simplest
hydrodynamic flows, i.e. Couette (linear) and Poiseuille (quadratic) flows. Velocity
fields, together with density profiles can be studied globally (Pastorino et al. 2006,
2009; Müller et al. 2009; Léonforte et al. 2011), locally (for example inside a droplet)
(Servantie and Müller 2008; Tretyakov et al. 2013; Tretyakov and Müller 2013) or
for a given type of molecule (Pastorino and Müller 2014).

5 The Conservation of Temperature in Flow Simulations

Under conditions of high flow, the DPD thermostat can have problems to maintain a
constant temperature across the fluid (Pastorino et al. 2007). A particular complicated
case takes place for good solvent conditions in polymeric or other soft matter system.
An important difference between Langevin and DPD thermostat is that Langevin
forces act on every particle, independently of the cut-off radius of the potential or
the density of the system. DPD, however, acts on pairs of interacting particles, those
that are within the cut-off radius. For systems with short cut-off radii as it is the case
of the Kremer-Grest model for polymers in good solvent conditions, the number of
thermostated pairs per time step can be pretty low, reducing the ability of the DPD
thermostat to extract a given amount of heat per unit time in the system. This behavior
is illustrated in Fig. 16 for Poiseuille-flow simulations. Figure 16b shows the velocity
profile across the channel for different external forces. There is a quadratic behavior,
but some deformation is observed, as compared to Fig. 15. The reason for that can
be noticed in Fig. 16a, which shows the temperature profile across the channel.These
are extracted from the mean quadratic velocity in the directions without flow (ŷ
and ẑ). The equipartition theorem implies 1

2 m〈v2
y〉 = 1

2 kB T , from which a local
temperature can be extracted. For higher forces, starting in fx = 0.014ε/σ , the
temperature is not conserved and heating of the liquid occurs in the regions of higher
shear rate. There, the heat production per unit time is higher than the maximum
removed by the thermostat and the temperature cannot be maintained at the defined
value kB T = 1.68ε.

In these situations various strategies can be adopted to maintain the constant
temperature. The simplest choice would be increasing the friction constant of the
thermostat. This can be perfectly done if the short-time dynamics of the molecules is
not of interest. This means also increasing the amplitude σR of the stochastic force
(see Eq. 3). Another alternative is to change the weight functions in the forces of the
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Fig. 16 Panel a
Temperature and velocity
profiles for different external
forces for a polymeric liquid
of 10-bead chains confined
in a brush coated channel.
Panel b velocity profiles of
the Poiseuille flow
simulations for the same
cases of the Panel b. For a
high body force the
temperature is not conserved
across the channel, reaching
the maximum deviation in
the regions of highest shear
rate (local velocity gradient).
Adapted from Pastorino et al.
(2007)
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thermostat. As it was emphasized, they only have to fulfill the requirement of Eq.
(4) to warrant the fluctuation-dissipation theorem. Figure 17 illustrates this option.
It shows the temperature profile across the channel with exactly the same flow con-
ditions for different weight functions. The usual choice (Eq. 6) has the worst perfor-
mance with the higher deviation from the desired temperature kB T = 1.68ε. The
usual choice of weight functions fails to keep a constant temperature across the chan-

nel (dark full line), while the constant weight functions
[
ωD

]2 = ωR = Θ(Rc − r)

gives much better temperature conservation. The defined temperature is shown with a
dashed line. Constant weight functions fulfill temperature conservation at the desired
temperature. The last option that we comment here to improve temperature conser-
vation is increasing the number of thermostated pairs of particles by extending the
cut-off for the DPD forces. In this case, the cut-off of the conservative forces contin-
ues to be of short range, for example Rc =6

√
2σ (good solvent for the Kremer-Grest

model). But the cut-off for DPD forces is twice as long: R(DPD)
c = 2 ×6

√
2σ . This

option was successfully employed by Pastorino and Müller (2014).
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Fig. 17 Temperature profile for different DPD weight functions in a Couette-flow simulation. The
walls are moved at vw = 3σ/τ and the channel width is Dw = 30σ , with a shear rate of γ̇ = 0.3τ−1.
The usual choice of weight function fails to keep a constant temperature across the channel (dark

full line). Constant weight functions
[
ωR

]2 = ωD = Θ(Rc − r) are able to give a temperature
profile at the defined temperature (dashed line). Θ is the Heaviside function and Rc the cut-off of
the forces. Adapted from Pastorino et al. (2007)

This problem of temperature conservation shows up for hard potentials at very
short cut-off radius and strong flow conditions. This by no means limits the use of
DPD, taking into account the solutions we propose in this section.

6 Concluding Remarks

In this contribution we have reviewed the Dissipative Particle Dynamics method,
as a useful simulation technique to study soft matter systems in equilibrium and
under flow. We emphasize the role of DPD as a thermostat that takes into account
correctly the hydrodynamic correlations in the system, unlike many thermostats used
in molecular dynamics. This is a desired property to study stationary flows at the
mesoscopic level with coarse-grained models of the molecular degrees of freedom.
We give examples of the use of the DPD thermostat with soft potentials and hard
potentials for polymeric liquids, polymer brushes and simple liquids. In equilibrium
simulations with soft potentials, we also illustrate the use of DPD with Coulomb
interactions to model poly-electrolytes, confinement and constant chemical potential
simulations in the Grand-Canonical Ensemble (μVT).

We show that DPD is suitable for generating simple flows like Couette and
Poiseuille flows and having access to the main velocity of density fields, charac-
teristic of hydrodynamic theories but also to the boundary conditions and dynamics
coefficients such as diffusion coefficients or viscosity. The latter are not imposed to
the system, but obtained from the simulation itself, for given molecular model and
flow conditions. In the studied cases the goal is simulating the system at constant
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temperature, though DPD can be modified to perform energy-conserving simula-
tions and explore heat conduction (Español 1997; Avalos and Mackie 1997). For
some particular cases of very short-range potentials and strong flow conditions, the
ability of DPD to keep the temperature at the fixed value must be verified. We report
also some examples in which temperature is not conserved and the workarounds to
follow when this is the case.

We have shown that DPD is a powerful and efficient tool to simulate soft matter
systems under flow, keeping the dynamics of the individual molecules. This can be
exploited in fields where surface-to-volume ratio of the confined liquid or polymeric
compound is not negligible and the effects of the interface are important for the whole
properties of the system. This would be the case in microfluidic devices, oil-recovery
problems in porous media or biological interfaces and vascular systems.
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Flow Coherence: Distinguishing
Cause from Effect

F.J. Beron Vera

Abstract The geodesic transport theory unveils the especial fluid trajectory sets,
referred to as Lagrangian Coherent Structures (LCS), that cause a flow to organize
into ordered patterns. This is illustrated through the analysis of an oceanic flowdataset
and contrasted with the tendency of a widely used flow diagnostic to carry coherence
imprints as an effect of the influence of LCS on neighboring fluid trajectories.

1 Introduction

Flowcoherence ismanifested by the appearance of ordered patterns in the distribution
of any transported scalar. The fundamental cause of flow coherence is attributed to the
existence of especial sets of fluid trajectories that dictate the evolution of neighboring
ones. In two-space dimensions, time slices of these especial fluid trajectory sets form
material lines which are widely referred to as Lagrangian Coherent Structures (LCS),
a terminology introduced by Haller and Yuan (2000); cf. Haller (2015) for a recent
review.

Since the introduction of the LCS notion, a considerable effort has been devoted to
devising techniques capable of diagnosing flow coherence from time-aperiodic flows
defined over finite-time intervals that is not obvious from the inspection of velocity
snapshots. One such flow diagnostic is the Finite-Time Lyapunov Exponent (FTLE),
which characterizes the amount of stretching about fluid trajectories in an objective
(i.e., frame-independent)manner. Constructed fromfluid trajectories, the FTLE tends
to carry flow coherence imprints as an effect of the underlying LCS, which have been
heuristically associated with locally extremizing FTLE curves. For a recent review
on the wide range of FTLE applications, cf. Peacock and Dabiri (2010). Similar
tendency to carry flow coherence imprints has been noted with other flow diagnostics
constructed from fluid trajectories. These include objective flow diagnostics, such
as relative dispersion (Provenzale 1999), Finite-Size Lyapunov Exponents (FSLE)
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(Joseph and Legras 2002), and probabilistic coherence measures (Froyland et al.
2010), andnonobjectiveflowdiagnostics, such as correlationdimension (Rypina et al.
2011), trajectory arclength (Mancho et al. 2013), and operator-theoretical measures
of coherence (Mezić 2013).

In contrast with the above flow diagnostics, the recent geodesic transport theory
specifically targets LCS asmaterial lines (Haller and Beron-Vera 2012, 2013; Beron-
Vera et al. 2013; Farazmand et al. 2014). More specifically, the geodesic transport
theory seeks LCS as minimal or stationary solutions to variational principles where
the relevant functionals represent appropriate integral objective measures of flow
deformation. The resulting LCS are exactly material curves that satisfy explicit ordi-
nary differential equations, describing all possible deformation forms. Here we are
concernedwith LCS of hyperbolic type, particularlywith those that have the property
of attracting nearby fluid trajectories. These are finite-time-aperiodic generalizations
of classic unstable manifolds of saddle fixed points in the steady flow case.

The purpose of this note is twofold. First, we seek to illustrate the ability of the
geodesic transport theory to reveal the fundamental cause of coherence in an oceanic
flowdataset, namely, the so-called LCS. Second, using the same oceanic flowdataset,
we seek to show that while the FTLE—the most widely used flow diagnostic—can
carry flow coherence imprints as an effect of the underlying LCS, it is not successful
in revealing them.

Section2 presents a few dynamical systems notions that are needed to pose the
geodesic transport theory,which is briefly described in Sect. 3. The geodesic transport
theory is applied to oceanic flow data in Sect. 4 and its results are compared with
those from applying an FTLE analysis on the same data. Concluding remarks are
made in Sect. 5. Finally, an appendix is reserved for a brief description of the oceanic
flow dataset and numerical details.

2 Mathematical Setup

Let v(x, t) be an incompressible two-dimensional velocity field, where position x
ranges on some open domain of the plane and time t is defined on a finite interval
[t−, t+]. Fluid particles evolve according to

ẋ = v(x, t). (1)

An objective measure of material deformation is the right Cauchy–Green strain
tensor,

Ct0,t (x0) := DFt0,t (x0)
�DFt0,t (x0), (2)

where D stands for differentiation with respect to x0 and

Ft0,t (x0) := x(t; x0, t0) (3)
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is the flow map that associates times t0 and t with the positions of fluid particles.
(Dependencies on t0 and t will herein be omitted for notational simplicity.) For any
smooth v(x, t), F(x0) represents a diffeomorphism, which ensures invertibility of
DF(x0) and thus positive definiteness of C(x0). Furthermore, incompressibility of
v(x, t) implies det C(x0) = 1. Consequently, eigenvalues and normalized eigenvec-
tors of C(x0) satisfy:

0 < λ1(x0) < λ2(x0) ≡ 1

λ1(x0)
, ξ1(x0) ⊥ ξ2(x0). (4)

Normal repulsion to a material line γ0 at time t0 with unit normal n0 is measured
by the local normal growth of n0 (Haller 2011):

ρ(x0, n) := 1√〈n0, C(x0)−1n0〉
, (5)

where 〈 · , · 〉 is the Euclidean inner product. Note that ρ(x0, ξ2(x0)) ≡ √
λ2(x0) > 1

and ρ(x0, ξ1(x0)) ≡ √
λ1(x0) < 1. Accordingly, a material line everywhere tan-

gent to ξ1(x0) [resp., ξ2(x0)] is referred to as a squeezeline (resp., stretchline).
Squeezelines obtained from backward (resp., forward) time integration and stretch-
lines obtained from forward (resp., backward) time integration attract (resp., repel)
nearby fluid trajectories. These material lines satisfy the following duality property
(Farazmand and Haller 2013): squeezelines (resp., stretchlines) at t0 = t+ obtained
from forward integration out to t = t− map to backward stretchlines (resp., squeeze-
lines) at t0 = t− obtained from backward integration out to t = t+.

Finally, material shear across γ0 is measured by the local tangential growth of n
(Haller and Beron-Vera 2012):

σ(x0, n0) := 〈n0, C(x0)
−1Ωn0〉ρ(x0, n0), Ω :=

(
0 −1
1 0

)
. (6)

Geometrical representations of the normal repulsion and Lagrangian shear are given
in Fig. 1.

x0
x t

γ 0

γ t

n0

e0

et

n t

DF t,t0(x0) n0

σ t0,t

F t0,t

ρt0,t

Fig. 1 A material curve γ0 at time t0 is advected by the flow Ft0,t to a curve γt at time t . At time
t0, normal repulsion, ρt0,t (x0, n0), and Lagrangian shear, σt0,t (x0, n0), over the interval [t0, t] are
normal and tangential projections onto γt of the linearly advected normal to γ0, DFt0,t (x0)
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3 Geodesic Transport Theory

The geodesic transport theory seeks LCS as minimal (Haller and Beron-Vera 2012)
or stationary (Haller and Beron-Vera 2013; Farazmand et al. 2014) curves of func-
tionals representing appropriate integral objective deformation field measures. Here
we are concerned with LCS of hyperbolic type that follow as stationary curves of
the integrated material shear functional.

More specifically, for a material line [s−, s+] � s 	→ r(s) ∈ γ0, the relevant
functional is given by:

Sσ[r ] :=
∫ s+

s−
σ

(
r,Ω

r ′

|r ′|
)

ds, (7)

where |·| is the Euclidean norm.Motivated by behavior of classic hyperbolic invariant
manifolds, alongwhichmaterial shear is suppressed, Farazmand et al. (2014) propose
to seek hyperbolic LCS as exceptional material lines within strips of material lines,
which, connecting the same endpoints, have integrated material shears that vary by
an order of magnitude less than what the widths of the strips permit. This means
that the material lines of interest must be stationary curves ofSσ[r ]. Exploiting the
symmetry of σ(r,Ωr ′/|r ′|) under s translations, Farazmand et al. (2014) show that
stationary curves of Sσ[r ] coincide with stationary curves of

Sd [r ] :=
∫ s+

s−
d(r ′, r ′)(r) ds ≡ 0, (8)

where

d( · , · )(x0) := 〈 · , D(x0) · 〉, D(x0) := 1
2 (C(x0)Ω − ΩC(x0)) . (9)

Stationary curves of Sd [r ] are known as geodesics. (More specifically, these geo-
desics are said to be null because d(r ′, r ′)(r), representing a Lorentzian metric,
vanishes.) As Farazmand et al. (2014) further demonstrate, such geodesics must
coincide with squeezelines or stretchlines, i.e., integral curves of

r ′ = ξ1(r) or r ′ = ξ2(r), (10)

connecting points where C(x0) = Id. The resulting material lines are the sought
LCS, which, as we illustrate below through an explicit example, are responsible for
causing the flow to organize into ordered patterns.

4 Application to an Oceanic Flow Dataset

The flow dataset considered in the application reported here is produced by ocean
velocities inferred using satellite altimetric measurements of sea surface elevation
in the Gulf of Mexico. This assumes a geostrophic balance between the Coriolis
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and pressure gradient forces with the latter entirely due to differences in sea surface
elevation. Specifically,

v(x, t) = g

f
∇⊥η(x, t), (11)

where η(x, t) is the sea surface elevation; f is the Coriolis parameter (twice the local
vertical component of the Earth’s angular velocity); and g denotes gravity. Oceanic
flow data of this type are commonly used to monitor mesoscale variability, i.e., with
length and time scales of the order of tens of kilometers and weeks, respectively. For
a recent application in the Gulf of Mexico, cf. Olascoaga et al. (2013).

We begin by illustrating in Fig. 2 the role of LCS geodesically extracted from
the altimetric velocity data in revealing the cause of coherence in the resulting flow.
This figure specifically shows snapshots of the evolution of three fluid patches (blue)
along with those of the corresponding centerpiece LCS (red). Such attracting LCS
snapshots are images under the flow map of stretchlines on t0 = 12 September 2012
computed in forward time out to t = 22 September 2012. More specifically, out
of the entire stretchline foliation, the most stretching stretchline, i.e., that one with
the largest average

√
λ2(r), through each patch is considered. Note that each patch

stretches and folds, acquiring a shape dictated by its centerpiece LCS.
We now turn to the FTLE analysis of the altimetric velocity data. The FTLE is

defined by

Λ(x0) := 1

|t − t0| log
√

λ2(x0). (12)

The FTLE, more precisely the backward FTLE, has a well-documented tendency
to carry ordered flow pattern imprints (cf. Peacock and Dabiri 2010, for a recent
survey). This is illustrated in left panel of Fig. 3, which shows the patches on t0 =
22 September 2012 overlaid on a field of FTLE computed in backward time out to
t = 12 September 2012. Normalized by its maximum value attained in the domain,
the FTLE ranges from 0 (white) to 1 (black). Note the similarity between the shapes
acquired by the patches and those evident in the FTLE distribution, particularly as
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Fig. 2 Selected snapshots of the evolution of fluid patches (blue) and corresponding centerpiece
LCS (red), all computed based on satellite altimetry flow data in a selected region of the Gulf
of Mexico (inset). Centerpiece LCS correspond to images under the flow map of most stretching
stretchlines obtained from forward integration
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Fig. 3 (left) Fluid patches (blue) overlaid on backward FTLE normalized by the largest value in
the domain (from white to black in a gray scale, the FTLE changes from 0 to 1). (right) Backward
FTLE with attracting LCS obtained as squeezelines computed in backward time (red)

suggested by ridges (locally maximizing curves) of the FTLE field (thin regions of
darkest gray tones in the figure). While FTLE ridges cannot be expected to coincide
with squeezelines or stretchlines (Haller 2011), they tend to run close to each other, at
least over some segments. This is illustrated in the right panel of Fig. 3, which shows
the same backward FTLE field shown in the left panel with selected attracting LCS
obtained as squeezelines on t0 = 22 September 2012 computed in backward time out
to t = 12 September 2012. These squeezelines are launched on t0 = 22 September
2012 at locations lying on selected FTLE ridges. Note that, while departures are
evident, FTLE ridges run close to LCS over some segments.

The tendency of the FTLE to carry flow coherence imprints should not be taken
as implying that this flow diagnostic is capable of revealing the fundamental cause of
flow coherence. This is illustrated in Fig. 4, which shows patches and corresponding
centerpiece LCS overlaid on backward FTLE computed at each t0 shown using
|t − t0| = 10 days. Note that these LCS are not well represented by nearby FTLE
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Fig. 4 Selected snapshots of the evolution of fluid patches (blue) and centerpiece LCS (red), all
overlaid on backward FTLE on the corresponding date
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ridges, particularly at initial times. Indeed, at initial times patch centerline LCS and
nearby FTLE ridges run transversal, almost orthogonal, to each other. At later times,
FTLE ridges run closer to the LCS, but this is not a consequence of the LCS being
attracted by the FTLE ridges. Rather, it is a consequence of the LCS organizing the
flow into ordered patterns, which place their imprints in any scalar that is transported
by the flow or flow diagnostic that is constructed from fluid trajectories, such as the
FTLE. For instance, the reason for the peculiar pattern shapes in the FTLE field
on t0 = 22 September 2012 is attributed to attracting LCS over t0 = 12 September
2012 through t = 22 September 2012. Because of the duality between backward
squeezelines and forward stretchlines, these LCS are given by images under the flow
map of stretchlines on t0 = 12 September 2012 computed in forward time out to
t = 22 September 2012 or, equivalently, squeezelines on t0 = 22 September 2012
computed in backward time out to t = 12 September 2012.

5 Final Remarks

The geodesic transport theory seeks to reveal the fundamental cause of coherence
in flow datasets, manifested by the emergence of ordered patterns in the distribution
of any transported scalar. The fundamental cause of flow coherence is found in
the existence of special material lines, known as LCS, which control the evolution
of neighboring fluid trajectories. In this note we have illustrated the ability of the
geodesic transport theory to reveal LCS by analyzing an oceanic flow dataset. Using
the same dataset, we showed that while the FTLE, by far the most popular flow
diagnostic, tends to carry flow coherence imprints, it is not successful in revealing
the LCS that dictate the evolution of the fluid transported. We emphasized that the
ability of the FTLE to carry flow coherence imprints is a direct effect of being
constructed from fluid trajectories, whose evolution is tied to LCS. Similar tendency
to carry flow coherence imprints by other flow diagnostics constructed from fluid
trajectories is expected for the same reason.

Acknowledgments The altimeter dataset is distributed by AVISO (http://www.aviso.oceanobs.
com). Work supported by a BP/The Gulf of Mexico Research Initiative grant; NSF grant
CMG0825547; and NASA grant NX10AE99G.

A Altimetry Data and Numerical Details

The sea surface elevation field, η(x, t), consists of background and perturbation com-
ponents. The background η(x, t) component is steady, given by a mean dynamic
topography constructed from satellite altimetry data, in-situ measurements, and a
geoid model (Rio and Hernandez 2004). The perturbation η(x, t) component is tran-
sient, given by altimetric sea surface elevation anomaly measurements provided
weekly on a 0.25◦-resolution longitude–latitude grid. This perturbation component

http://www.aviso.oceanobs.com
http://www.aviso.oceanobs.com
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is referenced to a seven-year (1993–1999) mean, obtained from the combined
processing of data collected by altimeters on the constellation of available satellites
(Le Traon et al. 1998).

To obtain the flow map, F(x0), we integrated Eq. (1) with the altimetric veloc-
ity field (11) for initial positions, x0, on a regular 0.5-km-width grid covering the
domain of interest. This was done using a stepsize-adapting fourth-order Runge–
Kutta method with interpolations obtained using a cubic scheme. The derivative of
the flowmap, DF(x0), was computed using finite differences on an auxiliary 0.1-km-
width grid of four points neighboring each point in the above grid. Explicit formulas
were used for the eigenvalues and eigenvectors of the Cauchy–Green strain tensor,
C(x0). Finally, to obtain squeezelines (resp., stretchlines), we integrated, using a
stepsize-adapting fourth-order Runge–Kutta method and cubic interpolation,

r ′ = sign〈r ′(s − Δ), ξi (r)〉 ξi (r), i = 1 [resp., i = 2]. (A.1)

The factor multiplying ξi (r) removes orientational discontinuities in ξi (r) arising
from the lack of global orientation of an eigenvector field (Haller and Beron-Vera
2012).
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Parametrisation in Dissipative Particle
Dynamics: Applications in Complex Fluids

Estela Mayoral-Villa and Eduardo Nahmad-Achar

Abstract A brief overview of mesoscopic modelling for neutral and electrostatically
charged complex fluids via Dissipative Particle Dynamics (DPD) is presented, with
emphasis on the appropriate parametrisation and how to calculate the relevant para-
meters for given realistic systems. DPD is a technique that consists of carrying out a
coarse-graining of the microscopic degrees of freedom and it is highly dependent on
parameters describing the different kinds of force fields and the parametrisation. For
this reason, we present here a revision of DPD parametrisation together with applica-
tions and comparisons with experimental results. The dependence on concentration
and temperature of the interaction parameters for electrostatic and non-electrostatic
systems is also considered, as well as some applications in complex fluids.

1 Introduction

In a colloidal dispersion, the stability is governed by the balance between Van der
Waals attractive forces and electrostatic repulsive forces, together with steric mech-
anisms. Being able to model their interplay is of utmost importance to predict the
conditions for colloidal stability, which in turn is of major interest in basic research
and for industrial applications.

Complex fluids are composed typically at least of one or more solvents, polymeric
or non-polymeric surfactants, and crystalline substrates onto which these surfac-
tants adsorb. Neutral polymer adsorption has been extensively studied using mean-
field approximations and assuming an adsorbed polymer configuration of loops and
tails (de Gennes 1979, 1981, 1982; Méndez et al. 1998). Different mechanisms of
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adsorption affecting the global stability of a colloidal dispersion, including surface-
modifying polymer chains versus end-grafted polymer chains, have been studied by
Gama Goicochea et al. (2009). Attempts to measure the forces themselves that act in
a confined complex fluid in thermodynamic equilibrium with its surroundings have
been made using atomic force microscopy (cf., e.g., McNamee et al. (2004)), while
it has been argued (Derjaguin and Churaev 1986) that it is more appropriate to use
the concept of disjoining pressure, which is the difference between the force (per
colloidal particle unit area) normal to the conning surfaces and the fluids bulk pres-
sure. This disjoining pressure allows for a direct determination of the free energy of
interaction, hence its importance.

Polyelectrolyte solutions have very different properties from those observed in
solutions of uncharged polymers, and their behaviour is less well known (de Gennes
1976; Odijk 1979; Dobrynin et al. 1995). In particular, it is not evident that the
scaling of some quantities presents a similar behaviour as that of electrically neutral
solutions, or that they present the same or similar scaling exponents. Calculating
Langmuir isotherms for polyacrylate dispersants adsorbed on metallic oxides, and
their scaling properties as a function of the number of monomeric dispersant units
obtained via Dissipative Particle Dynamics (DPD) simulations, it has been shown
(Mayoral and Nahmad-Achar 2014; Gonzalez-Melchor et al. 2006) that the critical
exponent for the renormalized isotherms agree perfectly well with the scaling theory
of Gennes et al. (1976) even though polyelectrolytes have been considered.

Due to the long-range Coulombic repulsion produced by the presence of small
mobile counterions in the bulk, the properties of these systems cannot in general be
obtained analytically. The most usual systems are even more complex, encompass-
ing various surfactants of different chemical nature and molecular weight (acting as
dispersants, wetting agents, rheology modifiers, etc.), pigments, “inert” extenders,
and so on. In all these cases there are various different lengths and dynamic scales,
every species interacts with all others at a molecular level, in a way which depends
on temperature and concentration. Furthermore, there is a competitive adsorption
amongst all surfactants present. Ideally, one should have a basic understanding of
all interactions, but the main problem is that all colloidal systems are thermody-
namically unstable. Empirical methods have been used as well as few and greatly
approximated analytic models, and a more recent and promising method is that of
molecular dynamics simulations. Its basic methodology consists of taking advantage
of the fast computing facilities that are nowadays available, to integrate Newton’s
equations of motion for a large number N of particle (molecules, atoms, or whatever
the problem in turn calls for). Thus, one sets initial positions ri (t) and momenta pi (t)
for each particle i at time t , and uses the force field felt by each one of them

F(r) = −∇V (r) = m
d2r

dt2 , (1)

to find its new position and momentum at time t + δt iteratively. The approximation
being made is to consider the potential V (r) to be constant during the time step
δt which, if taken very small, can make the error negligible. Typical choices for the
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force field are the electrostatic interaction V (r) = k q q ′/r and a Lennard-Jones type
potential V (r) = 4ε

[
(σ/r)12 − (σ/r)6

]
, where the adjustable parameters (ε, σ, k)

must be obtained by other means (first principles or experimentation). Relevant quan-
tities of the system are computed as time-averages over a macroscopic time interval

A = lim
t→∞

1

t

∫ t0+t

t0
A

[
r1(t

′), r2(t
′), . . . , rN (t ′); p1(t

′), p2(t
′), . . . , pN (t ′)

]
dt ′ .

(2)
The pieces of information that one can obtain through these simulations are mainly

structural and thermodynamic properties: (i) the density profile ρ(r), which in partic-
ular may be used to characterise when two phases (e.g., liquid and vapour) coexist;
(ii) the radial distribution function g(r) given by

〈ρ〉 =
∫

ρ(r)g(r) dr, (3)

which measures the average number of particles in each coordination shell with
respect to a given centre (and usually obtained through X-ray or neutron scattering
experiments); (iii) the interfacial tension

γ∗ = Lz

[
Pzz − 1

2

(
Pxx + Pyy

)]
, (4)

obtained from the pressure tensor components Pi j within a box of length Lz ; (iv) the
radius of gyration of a polymer chain, given by

Rg = a f N ν, (5)

where a f
3 is proportional to the Flory volume, N is the monomer length of the

chain, and ν is the appropriate scaling exponent; (v) phase diagrams; (vi) adsorp-
tion isotherms; (vii) disjoining pressures; etc. Figure 1 shows descriptively this
methodology.

t t+ t

t
N~104

F (r) = −∇V (r) = m
d2r

dt2

A = lim
t→∞

1
t

t0+t

t0

A(r1(t ), r2(t ), . . . rN (t ), p1(t ), p2(t ), . . . pN (t ))dt

Fig. 1 Descriptive methodology of a molecular dynamics simulation. Taken from Gama Goicochea,
private communication (see text for details)
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By its nature, microscopic molecular dynamics simulations require a great deal
of computational resources, the reason being that the integration of the equations of
motion require very small time steps when the interaction potential changes signifi-
cantly over small distances. An alternative that has proven to be very successful is to
do mesoscopic modelling via DPD (Hoogerbrugge and Koelman 1992), consisting
of carrying out a coarse-graining of the microscopic degrees of freedom. It is highly
dependent on parameters describing the different kinds of force fields, whose para-
metrisation as appears in the literature is not always clear. For this reason, we present
here a revision of DPD parametrisation together with applications and comparison
with experimental results.

In Sect. 2 we give a brief description of the DPD modelling, including electrostatic
DPD. Section 3 deals with the appropriate parametrisation and how to calculate the
relevant parameters for given realistic systems. The dependence on concentration
and temperature of the interaction parameters is also considered. Section 4 presents
some interesting applications, and we close with some conclusions.

2 Electrostatic Dissipative Particle
Dynamics: A Brief Overview

A good alternative to overcome the difficulties presented by molecular dynamics
simulations is to do a coarse-graining of the microscopic degrees of freedom. When
done carefully, results can be obtained which approximate very well those obtained
through lengthy experimentation (cf. e.g., (Gonzalez-Melchor et al. 2006; Gama
Goicochea et al. 2009; Mayoral and Nahmad-Achar 2012; Mayoral et al. 2011)
and references therein). DPD as was originally introduced by Hoogerbrugge and
Koelman (1992), consists of grouping several molecules, or parts of molecules, into
soft mesoscopic “particles”. As with molecular dynamics simulations, one integrates
the equations of motion to obtain the particle’s positions and velocities, but here one
distinguishes only between 3 contributions to the total force: conservative, dissipative
and random.

Conservative forces account for local hydrostatic pressure and are of the form

Fc
i j =

{
ai jω

c(ri j )êi j , (ri j < rc),

0, (ri j ≥ rc).
(6)

Here, ai j is a parameter which represents the maximum repulsion between particles
i and j , ri j = ri − r j , ri j = | ri j |, and êi j = ri j/ri j where ri denotes the position of
particle i , and the weight function is given by ωc(ri j ) = (1 − ri j/rc).

This force, depicted in Fig. 2, derives from a soft interaction potential and there is
no hard-core divergence as in the case of the Lennard-Jones potential, which makes
more efficient the scheme of integration since it allows for a large time step. In
the case of macromolecules, such as polymers, the particles (which can consist of
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Fig. 2 Form of the
conservative force in the
DPD methodology

r

FC

rc

a FC
ij = aijωC(rij)êij

representative monomers or sets of monomers) are joined by springs with a spring
constant k, so we have an extra conservative force of the form f i j = −k ri j whenever
particle i is connected to particle j .

Dissipative forces account for the local viscosity of the medium, and are of
the form

FD
i j = −γ ωD(ri j )

[
êi j · vi j

]
êi j , (7)

where vi j = vi −v j is the relative velocity, γ the dissipation constant, and ωD(ri j ) =
(1 − ri j/rc)

2 a dimensionless weight function.
Finally, the random (thermal) force disperses heat produced by the dissipative

force and invests it into Brownian motion in order to keep the temperature T locally
constant. It is of the form

FR
i j = −σ ωR(ri j ) ξi j êi j , (8)

with ξi j = θi j (1/
√

δt ), where δt is the integration time-step and θi j is a random
Gaussian number with zero mean and unit variance. A dimensionless weight function
ωR(ri j ) = (1 − ri j/rc) also appears.

Not all three forces are independent. The fact that the random force compensates
the energy dissipated in order to keep T constant means that it acts as a regulating
thermostat. The relation between the dissipative and random forces is

γ = σ2

2 kB T
, ωD(ri j ) =

[
ωR(ri j )

]2
, (9)

where kB is Boltzmann’s constant. This expression is a consequence of the fulfillment
of the fluctuation-dissipation theorem (Español and Warren 1995).

When dealing with electrically charged species, such as polyelectrolytes, a prob-
lem with the DPD methodology, arising from the fact that the interactions are soft, is
the formation of ionic clusters which do not correspond to the real system. Electric
charges are usually treated as point charges whose potential diverges at their position
in space. In Groot (2003) and Gonzalez-Melchor et al. (2006) this problem is solved
by considering charge distributions over the DPD-particles. Suppose that we have a
system consisting of N particles, each one with a point charge qi and a position ri in
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a volume V = Lx L y Lz . Charges interact according to Coulomb’s law and the total
electrostatic energy for the periodic system is given by

U (r N ) = 1

4πε0εr

⎡
⎣∑

i

∑
j>i

∑
nx

∑
ny

∑
nz

qi q j

|ri j + (nx Lx , ny L y, nz Lz)|

⎤
⎦ , (10)

where n = (nx , ny, nz), nx , ny, and nz are non-negative integer numbers, and
ε0 and εr are the dielectric constants of vacuum and water at room temperature,
respectively. According to Ewald’s approach it is convenient to separate this long-
range electrostatic interaction into real and reciprocal space, getting a short-ranged
sum which may be written as

U (r N ) = 1

4πε0εr

[ ∑
i

∑
j>i

qi q j
erfc(αεr)

r

+2π

V

∞∑
k �=0

Q(k) S(k) S(−k) − αε√
π

N∑
i=1

qi
2
]
, (11)

with

Q(k) = e−k2/4α2
ε

k2 , S(k) =
N∑

i=1

qi ei k·ri j , k = 2π

L
(mx , my, mz).

Here, αε is the parameter that controls the contribution of the real space, k is the
magnitude of the reciprocal vector k, mx , my, mz are integer numbers, and erfc(αεr)

is the complementary error function (cf. Mayoral and Nahmad-Achar 2012). Equa-
tion (11) is a good approach to 1/r including the full long-range characteristic of
electrostatic interactions.

In the DPD approach the conservative force Fc is mathematically well defined
at r = 0, making possible the overlap between particles, but the electrostatic con-
tribution diverges at r = 0, giving rise to non-natural ionic pairs. A solution of
this problem was proposed by Groot (2003) by using charge distributions on DPD
particles such as a Slater-type charge density distribution expressed as:

ρ(r) = q

πλ3 e−2r/λ, (12)

where λ is the decay length of the charge. For this distribution, well-known approx-
imated expressions for the force are available. The reduced interaction potential
between two charged distributions separated by a distance r∗ from center to center
is given by:

4πu∗(r∗)
Γ

= Zi Z j

r∗ [1 − (1 + β∗r∗)e−2β∗r∗ ], (13)
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where Zi is the valence of ion i , e is the electron charge, Γ = e2/(κB T ε0εr Rc),
and β∗ = Rc/λ; Rc = (ρ∗Nm Vm/NA)1/3, NA is the number of Avogadro, Nm is the
number of real water molecules inside of a DPD particle, ρ∗ is the reduced density
of DPD particles and Vm is the molar volume of water. The magnitude of reduced
force between two charge distributions is

4πF∗e
i j

Γ
= Zi Z j

r∗2 {1 − e−2β∗r∗ [(1 + 2β∗r∗(1 + β∗r∗)]}. (14)

The Coulombic term appearing in the equations can be obtained in a simulation
using the standard Ewald scheme. The charge distribution is included by removing
the divergency of the Coulomb interactions at r∗ = 0. The energy and the force
between two charged distributions are finite quantities in the limit r∗ → 0 and are
given by:

lim
r→0

4πu∗(r)

Γ
= Zi Z jβ

∗, (15)

and

lim
r∗→0

4πF∗e
i j

Γ
= 0, (16)

respectively.
The various parameters introduced, viz. ai j , σ, γ, θi j , contain all the information

of the particular system being considered. It is therefore crucial to be able to establish
these parameters faithfully in order to make the DPD methodology to work.

3 Parametrisation for Realistic Systems

By far the most important parameter is the one defining the conservative force, ai j ,
because it contains all the physicochemical information for each component in the
system. In contrast, the noise and dissipative parameters correspond to the tempera-
ture and fluid viscosity, respectively. In a mono-component system the conservative
force parameter for equal species aAA ≡ a relates to the inverse isothermal com-
pressibility (Groot and Warren 1997)

κ−1 = 1

n kB T κT
= 1

kB T (∂ p/∂n)T
, (17)

where n is the number density of molecules and κT = (∂ p/∂n)T is the usual isother-
mal compressibility. The pressure p in the system may be obtained using the virial
theorem such that p = ρ kB T + α a ρ2, where ρ is the density and α = 0.101 for
ρ > 2. We then have κ−1 = 1+2α a ρ/kB T  1+0.2a ρ/kB T . If Nm is the number
of molecules contained in a DPD particle, then a = kB T (κ−1 Nm − 1)/2α ρD P D ,
where ρD P D is the DPD number density for the system and is usually set to
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ρD P D = 3 (three water molecules per mesoscopic particle in an aqueous solution, for
example). For the mono-component system the virial free energy density fv is given
by fv/kB T = ρ ln ρ − ρ + 2α a ρ2/kB T .

When a mixture of 2 components A and B is considered, the virial pressure is
given by (Maiti and McGrother 2003)

p = α kB T ρ2

rc
3

[
aAA φ2 + 2 aAB φ(1 − φ) + aB B(1 − φ)2

]
, (18)

where φ is the volume fraction of component A and (1 − φ) that of component B.
The virial free energy density for this system is

fv/ρ kB T = φ

NA
ln φ+ (1 − φ)

NB
ln(1−φ)+α(2 aAB − aAA − aB B)ρ

kB T
φ(1−φ)+cte,

(19)
with ρ = ρA + ρB and aAB = aB A.

The relationship between ai j and the physicochemical characteristics of a real
system may be obtained through the Flory-Huggins (FH) theory, based on occupa-
tions of a lattice where we have exclusively and uniquely a polymer segment or a
solvent molecule per lattice site. In the mean-field approximation this exacting single
occupancy is relaxed to a site occupancy probability, which gives a mean-field free
energy of mixing constituted by a combinatorial entropy and a mean-field energy of
mixing ΔFMF

MIX = ΔSMF
MIX + ΔHMF

MIX. The free energy per unit volume for a mixture
of two polymers A and B could then be written as

ΔFMF
MIX

N kB T
= φ

NA
ln φ + (1 − φ)

NB
ln(1 − φ) + χ(φ)(1 − φ), (20)

with NA and NB the number of monomers of species A and B, respectively, and
N = NA + NB . The first two terms on the right hand side contain the information of
the energy of the pure components and correspond to the entropic contributionΔSMF

MIX.
The third one involves the excess energy produced by the mixture (ΔHMF

MIX). The χ-
parameter tells us how alike the two phases are, and is known as the Flory-Huggins
interaction parameter. In the mean-field theory this parameter is written in terms of
the nearest-neighbor interaction energies εi j as χ12 = z(ε11+ε22−ε12)/2kB T , where
z is the lattice coordination number. It is a phenomenological parameter, and correc-
tions considering an ionisation equilibrium between counterions and electrolyte are
needed in the presence of long-range forces. But one can also estimate this quantity
by using the Hildebrand-Scatchard regular solution theory (Hildebrand and Wood
1933; Scatchard 1931; Hildebrand and Scott 1950), in which the entropy of mixing
is given by an ideal expression, but the enthalpy of mixing is non-zero and is the
next simplest approximation to the ideal solution. In this approach one can appropri-
ately consider the Coulombic contribution in the enthalpy of mixing via the activity
coefficients in electrolyte solutions (vide infra).
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Whereas the FH mean-field theory considers χ12 as proportional to T −1 but
independent of the solute concentration ζ, comparisons with experiments show that
the phenomenological χ12 contains both energetic and entropic contributions; i.e.,
χ12 = χ12(T, ζ). A correct parametrisation in our electrostatic DPD system must
therefore take into account the dependence of the repulsive parameters for the sol-
vated ions ai j with the salt concentration ζ. The way to understand this is as follows:
when we perform a coarse graining, the volume of a DPD particle does not usually
encompass a full molecule or polymer; thus, for instance, although for dodecane
our DPD particle contains only a butane fragment, we do not construct dodecane
from the union of butane particles, and the interaction between the DPD dodecane
particles and water does not correspond to the χ parameter of butane with water; the
χ parameter employed to estimate the DPD repulsive parameter ai j should be that
of the full dodecane molecule because its behaviour is that of the global joined units
which affect the electronic distribution throughout. In this case, the “monomeric”
units, which constitute the dodecane “polymeric” molecule, interact through short-
range (covalent bond) forces. When considering a solvated electrolyte, e.g., Na

+ or
Cl− ions, their concentration is given precisely by the amount of solvated ionic par-
ticles present, which corresponds effectively to the amount of “monomeric” solvated
ionic units. These are in effect the individual DPD units, which in this case are not
covalently joined but are subject to long-range electrostatic forces. The presence and
quantity of “monomeric” solvated ions affect the global properties of the network
and their corresponding χ parameter should take into account the whole electrolytic
entity, and thus a correct parametrisation of the DPD system forces a dependence of
the conservative force parameters ai j on the concentration ζ, through χ(T, ζ).

3.1 Concentration Dependence of the DPD
Interaction Parameters

For an electrolyte solution in water, e + w, the chemical potential μw/e for each
component (w/e) may be obtained by differentiating the free energy per unit volume
of the mixture e + w with respect to the number of molecules Nw/e of the component.
Thus,

μw

kB T
= ln φ + χ(1 − φ)2,

μe

kB T
= ln(1 − φ) + χφ2, (21)

where φ and 1−φ are the volumetric fractions for the w (solvent) and e (electrolyte)
components, respectively. The activity coefficient for the electrolyte αe is defined as

ln(αe) = μe − μθ
e

R T
, (22)

where μθ
e denotes an arbitrarily chosen zero for the component e and is called the

standard chemical potential of e. The χ-parameter for the solvent and the electrolyte
can be obtained from αe:
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χ = ln(αe) − ln(1 − φ)

φ2 , (23)

and its explicit concentration-dependence comes out by writing αe = (x)x (y)y

(α0
em)z , where x and y are the stoichiometric coefficients of the cation and the

anion, and z = x + y. α0
e denotes the mean activity coefficient of the electrolyte, and

m its molarity. Equation (23) allows one to obtain the Flory-Huggins concentration-
dependent parameter if the activity coefficient is known. The scaling of χ with the
quantity of ions present has been studied by Mayoral and Nahmad-Achar (2012).
The behaviour of this quantity as a function of the concentration ζ follows a power
law χ ∼ ζτ with characteristic scaling exponent τ depending on the kind of salt.

Comparing Eqs. (19) and (20), Groot and Warren (1997) proposed that the repul-
sive parameters aAB in the DPD simulation can be obtained using the χ-Flory-
Huggins parameter as

χAB = α (2 aAB − aAA − aBB) ρ

kB T
, (24)

and using Eqs. (24) and (23) the repulsive DPD parameter ai j depending on the
concentration may be obtained as

ai j = aii + 3.27 χi j , (25)

with, as before,

aii = kB T (κ−1 Nm − 1)

2 α ρD P D
. (26)

Thus, for 3 water molecules per particle (Nm = 3) and a compressibility of κ−1 ≈ 16
for water at 300 ◦K and 1 atm, we have aww = 78.3.

3.2 Temperature Dependence of the DPD
Interaction Parameters

When the heat of mixing is given by the Hildebrand-Scatchard regular solution
theory (Hildebrand and Wood 1933; Scatchard 1931; Hildebrand and Scott 1950;
Barton 1975), the χi j -parameter can be obtained using the solubility parame-
ters δi (T ), δ j (T ) for the pure components in the mixture, which are themselves
temperature-dependent. We have

χi j (T ) = vi j

R T

[
δi (T ) − δ j (T )

]2
, (27)
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where vi j is the partial molar volume. While this approximation is valid for non-polar
components, it has been used in polar systems with reasonable success (Blanks and
Prausnitz 1964; Mayoral and Gama-Goicochea 2013). From Eqs. (25) and (27) we
have

ai j (T ) = aii (T ) + 3.27
vi j

R T

[
δi (T ) − δ j (T )

]2
. (28)

The determination of solubility parameters is a difficult and laborious undertaking,
but correlations with other physical properties of the substance in question help. For
example, writing

δ2 = δ2
d + δ2

p + δ2
h, (29)

where δ2
d denotes the dispersion component of the total solubility parameter, δ2

p

its polar component, and δ2
h its contribution from hydrogen bonding. The dispersion

component δd may be very well approximated by using the total solubility parameter
of a homomorphic molecule, i.e., a non-polar molecule most closely resembling the
molecule in question both in size and structure (n-butane is homomorphic to n-butyl
alcohol, for example). This is because the solubility parameter of the homomorphic
molecule is due entirely to dispersion forces. One still needs to determine either δp or
δh (the other one is obtained by subtraction from the total solubility parameter δ using
Eq. (29), when known), and this is done through trial and error experimentation on
numerous solvents and polymers and by comparing similar and dissimilar structures
according to functional groups and molecular weights.

The total solubility parameter may be calculated from the cohesive energy Ecoh

or, equivalently, from the enthalpy of vaporisation Hvap

δA =
√

ΔEcoh

V 0
A

=
√

ΔHvap − RT

V 0
A

, (30)

by using atomistic dynamic simulations. To do this, periodic cells of amorphous fluid
structures may be constructed using regular available software such as the Amorphous
Cell program of Materials Studio. The dimension of the box is specified (e.g., 25 Å
on each side). Interatomic force-field interactions are set as initial conditions, and
the system is evolved according to Eq. (1).

The solubility parameter of a mixture of liquids is determined by calculating the
volume-wise contributions of the solubility parameters of the individual components
of the mixture, i.e., the parameter for each liquid is multiplied by the fraction that
the liquid occupies in the blend, and the results for each component added together.
In these multicomponent systems the χ-parameters are calculated by pairs. If, for
instance, we have a 3-component mixture of water w (or other solvent), electrolyte
e, and an organic compound o, we have

χew = vew

R T
[δe(T ) − δw(T )]2 , (31)
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χwo = vwo

R T
[δw(T ) − δo(T )]2 , (32)

χeo = veo

R T
[δe(T ) − δo(T )]2 , (33)

and, in fact, taking the square root of any two of these equations (say, the first two),
adding them together, and assuming vew = vwo = veo ≡ vm , we can have a very
good estimate for the third one

[√
χew + √

χew
]2 = vm

R T
[δe(T ) − δo(T )]2 ≡ χeo. (34)

Although we have assumed heretofore that DPD particles mix randomly, and that
the particles of a given type are indistinguishable, this model predicts very well the
major trends in the behaviour of real polymer solutions and is used to predict new
behaviour in polymers in current research of (Gama Goicochea et al. 2009; Mayoral
and Nahmad-Achar 2014; Gonzalez-Melchor et al. 2006; Mayoral and Nahmad-
Achar 2012).

4 Applications

4.1 Interfacial Tension

Interfacial tension arises from the contact between immiscible fluids. It is a measure
of the cohesive (excess) energy present, arising from the imbalance of forces between
molecules at the interface. This excess energy is called surface free energy and is a
measurement of the energy required to increase the surface area of the interface by
one unit. Equivalently, it may be quantified as a force/length measurement: the force
which tends to minimise the surface area. Interfacial tension plays an important role
in the formation of colloids or emulsions: as each phase tries to maintain as small
an interface as possible, they do not easily mix. Similarly, it is important for the
dispersion of insoluble particles in a liquid medium, the penetration of molecules
through membranes, adsorption, and stability.

The measure or determination of the interfacial tension then allows us to study
the hydrodynamics and morphology of multiphase systems, and this in turn is a most
important aspect of the understanding of natural processes and of product design.

The conservative force allows us to calculate the average kinetic energy Ek via
the virial theorem

2 〈Ek〉 = −
N∑

i=1

〈Fi
C · ri 〉, (35)
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where Fi
C is the total conservative force on DPD particle i : Fi

C = ∑N
j=1 Fji

C with

Fji
C the force applied by particle j on particle i ; and from 〈Ek〉 we may calculate

the fluid pressure tensor

Pαβ = 1

V

(
N∑

i=1

mi viβ viα +
N∑

i=1

Fiβ αi

)
. (36)

Here, mi is the mass of particle i (which we set equal to 1 in DPD-units) and viα is
the α-component of the velocity of particle i in the volume V . Similarly, Fiβ is the
β-component of the force Fi on particle i , αi is the α-coordinate of particle i , etc.
Equation (4) may then be used to calculate directly the interfacial tension γ at the
volume boundary, with γ = (kB T/rc) γ∗.

γ depends on temperature. From the mechanical work needed to increase a surface
area, dW = γ d A, we have

γ =
(

∂G

∂ A

)
T,P,n

, (37)

with G the Gibbs free-energy and A the surface area. Given that all spontaneous
thermodynamic processes follow ΔG < 0, it is easy to understand why the liquid
tries to minimise its surface area. From its definition, G = H − T S with H the
enthalpy and S the entropy of the system. Thus

(
∂γ

∂T

)
A,P

= − S

A
(38)

so that the normal behaviour of γ is to decrease with temperature.
Results concerning the study of the interfacial tension between immiscible mix-

tures such as benzene/water and ciclohexane/water at different temperatures, using
the parametrisation mentioned above and performing DPD simulations, can be found
in Mayoral and Gama-Goicochea (2013). Results taken from this reference are shown
in Fig. 3, where the interfacial tension obtained by DPD simulations are compared
with experimental data. The excellent agreement confirms that the parametrisation
via the use of solubility parameters at different temperatures to obtain the repulsive
DPD parameters ai j as functions of T is appropriate for introducing the effect of
temperature in DPD simulations.

Additionally, the interfacial tension between two species will change when an
electrolyte is added at different concentrations, since the cohesive forces between
neighbouring molecules will be altered. Its behaviour with concentration will depend
strongly on the type of electrolyte. Figure 4 (top) shows the behaviour of the interfa-
cial tension γ∗ between n-dodecane and water with sodium chloride NaCl added,
obtained by DPD electrostatic simulations. In this figure [NaCl] M denotes the num-
ber of DPD ions added as molar concentration. The increase with salt concentration
is expected, and the same behaviour is observed when several other inorganic salts
are added (Mayoral and Nahmad-Achar 2012). The opposite behaviour is observed,
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(a)

(b)

Fig. 3 Interfacial tension for Benzene/Water and Ciclohexane/Water mixtures at different temper-
atures using DPD simulations. Taken from Mayoral and Gama-Goicochea (2013)

however, when hydrochloric acid (HCl) is added to the same solvent mixture, as
shown in Fig. 4 (bottom). This shows that not only the ionic charge is important in
a DPD simulation but also the kind of ionic species in the mixture. This informa-
tion must be incorporated in the simulation using the ai j parameter because each
species has a different activity coefficient and the chemical potential is modified in
a different way.
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Fig. 4 Experimentally measured interfacial tension is shown with white triangles and DPD sim-
ulations results are shown in black triangles for n-dodecane–water with n[NaCl] (top) and HCl
(bottom) added. Results taken from Mayoral and Nahmad-Achar (2012)
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4.2 Adsorption Isotherms

The adsorption of polymers onto different surfaces has been the subject of many
theoretical and experimental studies. Specifically, the adsorption of polyelectrolytes
is a topic of extensive concern because of its practical applications. Many surfactants
and additives are polyelectrolytes, and they must be adsorbed with great selectiv-
ity on different surfaces in order to have a good performance. This phenomenon is
observed in different fields such as water purification where the adsorption of poly-
electrolytes could produce flocculation. Other critical examples are emulsifiers in the
food and pharmaceutical industries, as well as complex polyelectrolytes for medical
science applications, among others. In order to have a good understanding of this
phenomenon, more precise information about the conformation of polyelectrolytes
adsorbed on a surface and living in the surrounding medium is important. Few the-
oretical studies have been developed to describe polyelectrolyte adsorption, while
experimental studies are laborious. For this reason, numerical simulations seem to
be a good alternative. DPD simulations can reproduce the behaviour of this kind of
systems but some considerations must be taken.

By construction, the DPD dynamics keep the number of particles N , the cavity
volume V , and the temperature T constant. For adsorption isotherms one needs the
chemical potential

μi =
(

∂U

∂Ni

)
S,V,N j �=i

, (39)

fixed; i.e., one needs to work in a Grand Canonical Ensemble (μ, V, T ). This may
be achieved by using a hybrid DPD–Metropolis Criterion (DPD/MC) (Alarcón et al.
2013). In this, after the usual DPD dynamics, one performs a certain number of cycles
of particle exchange with the virtual bulk that will return the chemical potential to
its initial value μ(t0), and calculates the final energy of the system: if equal to or
lower than the initial energy, the exchange cycle is accepted; if higher than the initial
energy it is rejected and a new exchange cycle is performed. This is followed by
another iteration of DPD dynamics together with particle exchange cycle, and so
on. By generating separate simulations for different polymer concentrations in this
manner, one may calculate the density profile ρ(z) in a box of length Lz , and from
it the adsorption Γ as

Γ =
∫ Lz

0
[ρ(z) − ρbulk] dz. (40)

Adsorption isotherms have been calculated performing DPD simulations in this
manner (Alarcón et al. 2013) and checked to coincide with experimental determi-
nations (Mayoral et al. 2011; Huldén and Sjöblom 1990; Esumi et al. 2001). As
an example, Fig. 5 displays the results for the simulation of the adsorption of poly-
acrylic acid (PAA) on explicit TiO2 surfaces. PAA was mapped considering each
DPD bead as one monomeric unit (−CH2 − COOH). The repulsive ai j parame-
ters were obtained according to Sect. 3. The number of independent adsorbed versus
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Fig. 5 Adsorption isotherm for PAA on TiO2 via electrostatic DPD simulation. Taken from Mayoral
et al. (2011)

non-adsorbed DPD beads is presented. If we assume that only one layer is adsorbed
on the surface and all adsorption positions are equivalent, we can extract the max-
imum concentration at equilibrium and the adsorption-desorption constant, which
is given by the Langmuir isotherm. We consider that the ability of one monomeric
unit to be adsorbed onto one site of the surface is independent of the occupied sites
next to it. The expression for this kind of adsorption model is given by the Langmuir
isotherm expressed by

1

Γ
=

(
1

ΓM
+ 1

ΓM K C

)
, (41)

where K = Ka/Kd and C is the concentration in the bulk, Γ is the adsorbed quantity
and ΓM is the maximum adsorbed quantity. A linear fit for this isotherm is shown in
Fig. 5, where it can be seen that 1/ΓM = 0.8829, ΓM = 1.13257 and K = 6.4476.
Taking into account a surface area for T i O2 of 30.22 m2/g, it results in ΓM = 7.987
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(mg PAA/mg TiO2). This value agrees well with the experimental data of ΓM = 6.96
(mg PAA/mg TiO2) reported by Huldén and Sjöblom (1990) and Mayoral et al.
(2011).

4.3 Disjoining Pressure

Colloid stability strongly depends on the disjoining pressure. For a confined fluid,
the pressure component perpendicular to the confining walls PN is different from the
unconfined bulk pressure Pbulk . This differential pressure relative to the bulk, which
is a function of the separation Lz between the parallel walls is called “disjoining
pressure”. For a wall perpendicular to the z-direction

Π(Lz) = Pzz(Lz) − Pbulk . (42)

While Pbulk is obtained from the average of the diagonal components of the pres-
sure tensor (cf. Eq. 36), the pressure normal to the wall is calculated from the zz-
component, averaged over the length Lz of the simulation box in the direction per-
pendicular to the walls. The disjoining pressure is a measure of the force, per unit
area, needed to bring 2 particles (or a particle and a substrate) together, thus provid-
ing a criterion for stability. It has been calculated (Gama Goicochea et al. 2009) for
different types of surfactants (those that graft at one end onto a substrate, and those
that can adsorb onto the substrate along their full length thus acting as surface modi-
fiers) and for different substrates. The results show that the greater stability attained
is not a consequence of the greater molecular weight of the dispersant species itself,
as it is so often misinterpreted, but rather of the greater molecule mobility. That is,
the entropic gain due to monomers with more mobility capable to sample the con-
figurational space more than polymers (at the same monomer concentration) is the
leading mechanism responsible for the higher values of disjoining pressure. This is
shown in Fig. 6 for a surface-modifying polymer. In this figure we observe the typical
oscillations in Π present in confined fluids (Israelachvili 1992). While the maxima in
Π correspond to more stable thermodynamic configurations, the minima represent
regions of instability. In this case, molecules with a molecular weight Mw = 400
were considered, corresponding to 7 DPD-particles joined by springs. Having 20
such molecules amounts to having 140 monomeric units, a concentration that can
also be achieved by considering 10 polymeric molecules of Mw = 800 of the same
chemical type.

Polyethylene glycol (PEG) of Mw = 400 and Mw = 800 were used for the results
of Fig. 6, with a DPD-particle volume of 90 Å3 which can accommodate 3 water
molecules. The repulsive wall interaction parameter was chosen as aw−monomer = 60,
when the particle interacting with the wall was a monomer of the polymer molecule,
and as aw−sol = 120 for solvent molecules (see Gama Goicochea et al. (2009) for
details). For particles of the same species aii = 78.0 and for particles of different
species ai j = 79.3. This parameters reproduce the isothermal compressibility of
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Fig. 6 Disjoining pressure isotherms for 20 molecules of short-chain Mw = 400, versus 10 mole-
cules of long-chain Mw = 800 surfactant molecules of the PEG-type. Taken from Gama Goicochea
et al. (2009)

water at room temperature, and promotes polymer adsorption onto the substrate over
solvent adsorption. For the spring constant in the polymer DPD-particles k = 100
has been chosen with an equilibrium distance of req = 0.7. The temperature was
kept constant at T = 300 K.

It could be observed that shorter polymers are better as dispersants when compared
with longer ones at the same monomer concentration. If we multiply the dimension-
less Π∗ depicted in the figure by kB T/rc

3 (cf. Eq. 18), the disjoining pressure for
short polymers can be up to 4.5 × 105 Pa larger than that for the longer chains at cer-
tain wall separations. Stability via surface modification is then much better attained
through the use of monomeric species than through polymer chains. The same behav-
iour is found for grafted polymers (cf. Gama Goicochea et al. (2009) for details).

4.4 Radius of Gyration

The radius of gyration is a measure of the size of an object of arbitrary shape. For a
polymer chain in solution, however, this is not a very useful definition as it can take
many different configurations. One may calculate a root mean square end-to-end
distance RRMS of the chain as

RRMS
2 = 〈 (rN − r0)

2 〉, (43)
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where we have denoted by ri , (i = 0, 1, . . . , N ) the positions of the chain joints
(i.e., the two ends of the i-th bond are ri−1 and ri ). A more useful quantity, however,
is the radius of gyration Rg of the chain, given by

Rg
2 =

〈
1

N + 1

N∑
i=0

(ri − rC M )2

〉
, (44)

where rC M = 1
N+1

∑N
i=0 ri is the centre of mass of the chain. Loosely speaking,

the chain occupies the space of a sphere of radius Rg , i.e., it intuitively gives a sense
of the size of the polymer coil. Note that m Rg

2 (with m the mass of the polymer
molecule) is the moment of inertia of the molecule about its centre of mass, and so
we can write the equation above as

Rg
2 = 1

2

〈
1

(N + 1)2

N∑
i, j=0

(ri − r j )
2

〉
, (45)

which is useful since it allows us to calculate the radius of gyration of the molecule
by using the mean square distance between monomers without calculating rC M .
Note also that we have used averages in all the equations above; this is because the
possible chain conformations are numerous and constantly change in time, thus we
understand the radius of gyration as a mean over time of all the polymer molecules,
which by ergodicity principles we calculate as an ensemble average.

The radius of gyration can be easily determined experimentally through light scat-
tering or other alternative methods (neutron scattering, etc.), allowing one to check a
theoretical model against reality, and this is what makes it an interesting quantity of
study. It has been extensively studied for neutral polymeric species but, as the pres-
ence of charges completely changes the possible configurations of the molecules in
solution, it is interesting to study the behaviour of Rg in a polyelectrolyte.

One interesting problem is the pH-dependent conformational change of some
biopolyelectrolites because it affects directly the mechanism of action in differ-
ent situations. An example of this is the poly(amidoamine) (PAA) which is used
as endosomolytic biopolymer for intracellular delivery of proteins and genes. Bio-
responsive behaviour of these kinds of compounds is related to with the structure
and conformation in the medium, which could be estimated by the radius of gyra-
tion. This is modified by pH and ionic strength effects. Experimental studies of
small-angle neutron scattering (SANS) have been published in order to illustrate the
pH-dependence and conformational change of PAA ISA 23 (Griffiths et al. 2004).
Linear poly(amidoamine) polymers (PAAs) have amido- and tertiary amino-groups
along the main polymer, which gives rise to an interesting pH-dependent conforma-
tional change and thus offers a perfect prospect for devising polymers that present
membrane activity at low pH. The neutral structure of this biopolymer is shown in
Fig. 7a.
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Fig. 7 Neutral and ionised
structures of bio-polymer
PAA ISA 23. a Neutral. b pH
< pKa1. c pKa1 < pH <

pKa2. d pKa2 < pH < pKa3

(a)

(b)

(c)

(d)

The molecular weight of ISA23 is 16,500 g/mol and it has three pK a’s: pK a1 =
2.1, pK a2 = 7.5 and pK a3 = 3.3. For this reason, the molecule could be in three
different ionisation forms as illustrated in Fig. 7b–d.

Electrostatic DPD simulations have been performed (Mayoral and Nahmad-Achar
to be published) in order to study the radius of gyration of this molecule and com-
pare with experimental data reported. The mapping used is shown in Fig. 8. It was
established by taking into account the molar volume of each segment or monomeric
unit, and considering the volume of each DPD bead as 3Vw, where Vw = 30 Å3 is
the molar volume of one water molecule.

ISA23 could be considered as a weak poly-acid and the pH could be modelled
considering its ionisation degree over the polymeric structure. Partial charges are
introduced over the molecule considering that the B-DPD bead (see Fig. 8) could
be neutral or have a charge of 1− depending on the pH in the solution. The C-DPD
beads could be neutral or have a positive charge of 1+ or 2+ depending also on the
pH of the medium according to the acid-base equilibrium given by



112 E. Mayoral-Villa and E. Nahmad-Achar

Fig. 8 Mapping of PAA ISA
23 for DPD simulations

pH =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

log
[

θ
1−θ

]
+ pK a1, pH < pK a1,

log
[

θ
1−θ

]
+ pK a2, pK a1 < pH < pK a2,

log
[

1
1−θ

]
+ pK a3, pK a2 < pH < pK a3,

(46)

where θ is the ratio between the number N− of protonated-deprotonated monomeric
units and the total number N of monomeric units, and pK ai is the acid-base equi-
librium constant. The variation of pH at constant ionic strength makes available the
control of the partial charge over the macromolecule. The DPD parameters ai j are
calculated as described in Sect. 3 using the solubility parameters obtained by mole-
cular simulation. Ionic strength was fixed to 0.1M and the pH was varied according
to Eq. (46).

Performing electrostatic DPD simulations at different pH’s, the mean radius of
gyration was calculated for 25 blocks of 10,000 steps. The size of the system was
Lx = L y = Lz = 8.5. Also, γ = 1.6 and σ = 3. PAA ISA 23 was represented by
48 DPD beads joined by springs with k = 2. The results as a function of pH and θ
are shown in Fig. 9.

According to these simulations, the PAA ISA 23 radius of gyration increases to
a maximum when the pH decreases. At high pH, and therefore high ionic strengths
(because of the counter-ions present in the system), the polymer is negatively charged
and adopts a rather compact structure. The conformation is displayed in Fig. 10,
showing how the negative counter-ions (violet beads in the figure) are distributed
near the extreme of the polymer where the amide group is located and the internal
structure is extended at low pH (θ = 1.8333). At high pH ( θ = −0.75) the positive
counter-ions (orange DPD beads in the figure) are around the carboxyl extreme.

Experimental data reported by Griffiths et al. (2004) shows a very similar but more
complex equilibrium in the system: with decreasing pH, the PAA ISA 23 radius of
gyration increases to a maximum around pH = 3, after which value a decreasing Rg is
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Fig. 9 Top Rg versus pH for PAA ISA 23. Bottom Rg versus θ for PAA ISA 23

observed when the pH is increased. At high pH the polymer is negatively charged and
presents a pretty compact structure presumably. At low pH, the coil again collapses,
and the authors suggest that this is almost certainly due to the effects of the high
ionic strength; this latter behaviour is not observed in Fig. 9 probably because the
ionic strength was fixed at 1 M .
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Fig. 10 Conformation of PAA ISA 23 as a function of θ

5 Scaling

Scaling and universality are two amazing properties that collectively have gener-
ated the modern theory of critical behaviour appearing in different areas of modern
physics, such as condensed matter, field theory, plasma physics, complex systems,
dynamical systems, and hydrodynamics (Kadanoff 2000; Cardy 1997). The univer-
sality quality means that many different systems present the same critical behaviour,
while scaling is concerned with the fact that in a neighbourhood of a critical point the
system is scale invariant. Preserving this symmetry in the system makes it possible to
relate physical phenomena which take place at very different length scales. As a con-
sequence, the correct description of systems near their critical points can be described
by power laws and this kind of behaviour might be analysed by dimensional con-
siderations known as scaling laws. Even though the Renormalization Group (RG)
approach is a good alternative to obtain in an accurate way the critical exponents
(Albert 1982; Le Guillou and Zinn-Justin 1980), in many instances the use of this
approach in complex systems is quite difficult. On the other hand, numerical simu-
lations allow one to describe in a simpler and more attractive way different complex
systems, but the possibility to use numerical simulations near the critical points of a
system is still a topic under discussion. Coarse graining is another common concept
when we study systems which present scale invariance and, when different scales
are involved. The coarse grained simulations have shown to be a very good alterna-
tive. DPD (Hoogerbrugge and Koelman 1992) is one such a coarse graining method



Parametrisation in Dissipative Particle Dynamics: Applications in Complex Fluids 115

and, if correct parametrisations are used, it can reproduce in great detail the scaling
properties of different kinds of real systems.

As an example, the scaling exponent observed for the dependence of the interfacial
tension γ with temperature T , for several liquid-liquid systems, is given by:

γ(T ) = γo

(
1 − T

Tc

)μ

, (47)

where γ0 is a system-dependent constant, Tc is the critical temperature at which
the interface becomes unstable, and μ is a critical exponent which has been found
experimentally some years ago to be close to 11/9 (Guggenheim 1945). According
to the hyper-scaling relationship of Widom (1965); Fisk and Widom (1969), we have
μ = ν(d − 1) where ν is the scaling exponent for the radius of gyration given in
Eq. (5) and d is the dimensionality of the system. More recently, by renormalization
group calculations (Albert 1982; Le Guillou and Zinn-Justin 1980; Moldover 1985),
more accurate results give μ = 1.26 and ν = 0.63, which for d = 3 satisfy the hyper-
scaling law. These results have been reproduced by DPD simulations for different
systems (Mayoral and Nahmad-Achar 2013; Mayoral and Gama Goicochea 2014)
and are presented in Fig. 11 for a dodecane/water mixture.

Another interesting example is the scaling of γmax (maximum adsorption) with the
number N of chain units. The number of chains of size N per unit area, Γmax , needed
to satisfactorily cover some given amount of material, say 1 mol, can be obtained
by performing DPD simulations for the adsorption of polymers with different length

T

T ( K )

(d
yn

/c
m

)

( T )

T

Fig. 11 Scaling exponent observed for the dependence of the interfacial tension γ with temperature
T for dodecane/water
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Fig. 12 Scaling of γmax (maximum adsorption) with N for polyacrylic acid on TiO2 surfaces.
Taken from Mayoral and Nahmad-Achar (2014)

N and fitting each simulation to a Langmuir isotherm. When Γmax versus N is
plotted, the behaviour shown in Fig. 12 is obtained and the scaling function is Γmax ∝
N−0.79 ∼ N−4/5. This result is in perfect agreement with the scaling theory in
the weak adsorption regime (de Gennes 1976), which indicates that at maximum
saturation

γp = Γmax N ∼ N 1/5, (48)

where γp is the number of monomers adsorbed in the flat plateau of the isotherm.
This implies Γmax ∼ N−4/5 = N−0.8 as obtained above.

Finally, another important example could be found in Gama Goicochea et al.
(2014), where scaling laws for the viscosity (η) and the friction coefficient (μ) were
obtained by non-equilibrium DPD simulations.

6 Conclusions

The appropriate parametrisation for the relevant parameters in Dissipative Particle
Dynamics (DPD) simulations were presented. A clear methodology has been devel-
oped in the last few years to obtain the interaction parameters in great detail for realis-
tic systems, making possible the study of their dependence on concentration and tem-
perature. This work has proven to give predictions in accordance with experimental
results. Explicit examples of interfacial tension, adsorption isotherms, disjoining
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pressure and radii of gyration are presented. Scaling properties present in different
phenomena may also be reproduced in a precise manner using this methodology.
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Smoothed Particle Hydrodynamics
for Free-Surface Flows

A. Barreiro, J.M. Domínguez, A.J.C. Crespo, O. García-Feal
and M. Gómez Gesteira

Abstract A solver for free-surface flows (DualSPHysics) based on the Smoothed
Particle Hydrodynamics (SPH) model is presented. The classical SPH formulation
is described along with the governing equations, filters and corrections, boundary
conditions and time stepping schemes. The reliability of the DualSPHysics model
is discussed by comparing the numerical results with the experimental data for a
benchmark test case. The applicability of the code is shown with some examples
where wave propagation and wave-structure interaction are simulated.

1 Introduction

Smoothed Particle Hydrodynamics (SPH) is a mesh-free Lagrangian numerical
method developed in the 1970s to solve astrophysical problems (Gingold and
Monaghan 1977). Lately this method started to be widely applied in the field of
fluid mechanics (Monaghan and Kos 1999; Monaghan et al. 1999) due to the sim-
plicity of the Lagrangian numerical models to describe the fluid as a set of points (or
particles) that interact with each other according to the conservation laws (Gómez-
Gesteira et al. 2010).

SPHysics is a project that sums the effort of researchers at different universities,
i.e., the University of Vigo (Spain), the University of Manchester (U.K.), and the
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Johns Hopkins University (U.S.A.). This project is based on the development of an
open-source tool that represents accurately the behaviour of a fluid (Gómez-Gesteira
et al. 2012a, b). SPHysics has beenmainly applied to the study of coastal processes in
2D (Gómez-Gesteira et al. 2005; Dalrymple and Rogers 2006; Narayanaswamy et al.
2010; Rogers et al. 2010) and in 3D (Gómez-Gesteira and Dalrymple 2004; Crespo
et al. 2008). The first version in FORTRANwas released in 2007,whichwas followed
by new releases, including a multicore version implemented with Message Passing
Interface (MPI). Despite this improvement, the number of particles that the model
was able to handle at a reasonable computational time was not high; this means that
the applicability of the model was compromised by the size of the domain of study.
This issue lead to the development of a new code keeping the same open-source phi-
losophy. DualSPHysics is a new implementation that takes advantage of the compu-
tational power of hundreds of cores of the NVIDIA graphic processing units (GPUs).

The DualSPHysics code has been developed by researchers from the University
of Vigo (Spain) and University of Manchester (U.K). The model is implemented in
C++ language withMPI and CUDA programming platforms to carry out simulations
on the CPUs and GPUs, respectively. The new CPU code presents some advantages,
such as a more optimised use of the memory. The object-oriented programming par-
adigm provides means to develop a code that is easy to understand, maintain and
modify. Furthermore, additional approaches are implemented, for example particles
are reordered to provide faster access tomemory, symmetry is considered in the force
computation to reduce the number of particle interactions and the best approach to
create the neighbour list is implemented (Domínguez et al. 2011). The CUDA library
manages the parallel execution of threads on the GPUs. The best approaches were
considered to be implemented as an extension of the C++ code, so that the most
appropriate optimizations to parallelise particle interactions on GPU were imple-
mented (Domínguez et al. 2013a, b). The first rigorous validations were presented
by Crespo et al. (2011).

Due to the aforementioned facts, DualSPHysics is especially well suited to sim-
ulate complex engineering problems involving violent collisions between water and
coastal structures. Different problems have been analysed with the code such as the
computation of forces exerted by large waves on the urban furniture of a promenade
(Barreiro et al. 2013) or the study of the run-up in an existing armour block sea
breakwater (Altomare et al. 2014). The software is available to free download at
www.dual.sphysics.org.

The different formulations implemented in DualSPHysics will be presented in the
subsequent sections. A benchmark case to show the capabilities of the code to repro-
duce the dam-break behaviour and its interaction with coastal structures is described.

2 Theory

The principles of the SPH theory are here described. For a wider and deeper descrip-
tion of the SPH method, the reader is addressed to Monaghan (1982, 1992, 2005),
Benz (1990), Liu (2003) and Gómez-Gesteira et al. (2010, 2012a).

www.dual.sphysics.org
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2.1 SPH Interpolant

Themain principle of the SPHmethod is that any given function A(r) can be approx-
imated by the integral interpolant:

A(r) =
∫

A(r ′)W (r − r ′, h)d r ′ (1)

where h is the smoothing length and W (r − r ′, h) is the weighting function known
as the kernel. Applying a Lagrangian approximation to the previous integral leads to
a discrete notation of the interpolation at a given point:

A(r) =
∑

b
mb

Ab

ρb
W (r − rb, h), (2)

with the summation index (b) runningover all the particleswithin the regiondelimited
by the compact support of the kernel function.mb and ρb are themass and the density
of the particle b, respectively, Vb = mb/ρb represents the volume of a particle, rb its
position vector, and W (ra − rb, h) is the weighting function or the kernel referred
to particles a and b.

2.2 The Smoothing Kernel

The choice of the kernel is crucial for the performance of the SPH method. The
weighting functionmust satisfy the following conditions: positivity, compact support,
and normalization. Another property to be satisfied is that the selected function
must be monotonically decreasing with the distance from particle a. The kernels are
expressed as functions of the non-dimensional quantity q = r/h, where r is the
distance between particles a and b. The parameter h controls the size of the area
around particle a where the contribution of a given particle b cannot be neglected.

The different kernels that the user can choose in DualSPHysics are:

(a) Cubic-Spline:

W (r, h) = αD

⎧⎪⎪⎨
⎪⎪⎩

1 − 3
2q2 + 3

4q3 0 ≤ q ≤ 1,
1
4 (2 − q)3 1 < q ≤ 2,

0 q > 2

(3)

(b) Wendland (Wendland 1995):

W (r, h) = αD

(
1 − q

2

)4
(2q + 1) 0 ≤ q ≤ 2. (4)

The αD values for the different kernel functions are shown in Table1.
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Table 1 Different values of
αD for 2D and 3D

Kernel 2D 3D

Cubic-spline 10/(7πh2) 1/(πh3)

Wendland 7/(4πh2) 21/(16πh3)

2.3 Momentum Equation

The equation of momentum conservation in a continuum field is

dv

dt
= − 1

ρ
∇ P + ggg + Γ , (5)

where Γ refers to the dissipative terms and ggg is the gravitational acceleration (0, 0,
−9.81) m · s−2. There are several ways to solve the dissipative terms, but the artificial
viscosity proposed by Monaghan (1992) has been the most widely used due to its
simplicity.

In discrete notation and adding the artificial viscosity, the previous equation can
be rewritten as follows:

dva

dt
= −

∑
b
mb

(
Pb

ρ2
b

+ Pa

ρ2
a

+ Πab

)
∇a Wab + ggg (6)

where Pk represents the pressure of particle k (with k = a or b). The artificial
viscosity term depends on the relative position and motion of the computed particles

Πab =
{−αcabμab

ρab
vab · rab < 0

0 vab · rab > 0,
(7)

where rab = ra−rb, vab = va−rb,μab = hvab ·rab/(r2ab+η2), cab = 0.5(Ca+Cb)

is the mean value of the speed of sound, η2 = 0.01h2, and α is a free parameter that
should be tuned according to the configuration of the problem.

2.4 Continuity Equation

Themass of each particle is constant, so that changes in the fluid density are computed
by solving the conservation of mass or continuity equation in SPH form:

dρa

dt
=

∑
b
mbvab · ∇a Wab. (8)

2.5 Equation of State

Following the work of Monaghan (1994), the fluid is treated as weakly compressible
and an equation of state is used to determine the pressure as a function of density.
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The compressibility reduces the speed of sound making the time step requirement
more reasonable. Another limitation on weak compressibility is to restrict the sound
speed to be at least ten times faster than the maximum fluid velocity, thereby keeping
density variations to within less than 1%.

Following Batchelor (1974) and Monaghan et al. (1999), the expression that
relates pressure and density is written as:

P = B

[(
ρ

ρ0

)γ

− 1

]
, (9)

where the parameter B is related to the compressibility of the fluid; ρ0 = 1000.0
kg/m3 is a reference density, taken as the density of the fluid at the surface, and γ

is the polytropic constant that usually ranges from 1 to 7. The latter value has been
adopted in DualSPHysics.

2.6 Moving the Particles

Particles are moved using the XSPH variant (Monaghan 1989):

dra

dt
= va + ε

∑
b

mb

ρab
vba Wab, (10)

where ρab = 1
2 (ρa + ρb) and ε is a constant, whose value ranges from zero to unity.

Here ε = 0.5 is commonly used.
This method is a correction for the velocity of particle a. This velocity is recalcu-

lated taking into account the velocity of the particle and the average velocity of all
particles that interact with particle a. Only the closest neighbours will be included,
due to the compact support of the kernel. This correction allows particles to be more
organized and, for high fluid velocities, helps to avoid particle penetration through
the boundaries.

2.7 Time Stepping

The physical magnitudes (velocity, density, position and density) change every time
step due to the forces calculated during particle interactions. The time integration
scheme to compute the new values of these quantities at the next time step in SPH
should be at least of second order to obtain accurate enough results.

Consider the equations of momentum (6), density (8), and position (10) written
in the following form:

dva

dt
= Fa, (11)

dρa

dt
= Da (12)
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dra
dt

= va (13)

These equations are time-integrated in DualSPHysics using one of the two following
schemes.

2.7.1 Verlet Scheme

This algorithm was proposed by Verlet (1967) and has two sets of equations. The
first one which is used in most of the iterations reads as follows

rn+1
a = rn

a + 	tvn
a + 0.5	t2Fn

a,

vn+1
a = vn−1

a + 2	tFn
a, (14)

ρn+1
a = ρn−1

a + 2	t Dn
a ,

and the second one is used every certain number of steps, normally once after 50 steps

rn+1
a = rn

a + 	tvn
a + 0.5	t2Fn

a,

vn+1
a = vn

a + 	tFn
a, (15)

ρn+1
a = ρn

a + 	t Dn
a .

This prevents time integration divergence since the equations are no longer coupled
when considering only (14).

2.7.2 Symplectic Scheme

Symplectic time integration algorithms are time reversible in the absence of friction
or viscous effects (Leimkuhler et al. 1996). This method preserves geometric fea-
tures like energy time-reversal symmetry, leading to improved resolution of long term
solution behaviour. In this case, the scheme used is an explicit Symplectic scheme
of the form

ρ
n+ 1

2
a = ρn

a + 	t

2

dρn
a

dt
, (16)

r
n+ 1

2
a = rn

a + 	t

2

drn
a

dt
.

In a second time step (d(ωaρava)n+ 1
2 )/dt gives the velocity and the position of the

particles at the end of each time step:

(ωaρava)n+1 = (ωaρav)n+ 1
2 + 	t

2

d(ωaρava)n+ 1
2

dt
, (17)

rn+1
a = r

n+ 1
2

a + 	t

2
vn+1

a .
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At the end of the time step dρn+1
a /dt is calculated using the updated values of vn+1

a
and rn+1

a (Monaghan 2005).

2.8 Variable Time Step

The time step depends on the flow properties. For example, the time step decreases
when the fluid collides with fixed boundaries since the forces increase. In general, the
time step depends on the force per unit mass and the Courant condition. A variable
time step Δt is calculated according to (Monaghan and Kos 1999):

	t = C · min(	tF ,	tCV ),

	tF = mina

(√
h/ fa

)
, (18)

	tCV = mina
h

cs + maxb

∣∣∣ hvabxab
r2ab

∣∣∣
,

here	tF is based on the force per unit mass | fa | , and	tCV depends on the Courant
condition and the viscosity of the system. C is a constant that can vary between 0.1
and 0.3.

2.9 Boundary Conditions

The boundary conditions implemented in DualSPHysics are the Dynamic Boundary
Conditions (DBCs). The boundary particles (BPs) must satisfy the same equations as
the fluid particles (FPs), but they are not free tomove in any direction. Themovement
of these particles is equal to zero or externally imposed such as a flap or a piston in
a wave maker or any other kind of moving object (gates, elevators, etc.).

The behaviour of these boundary particles can be summarized as follows. The
FPs are free to move and interact with each other but when a FP approaches a
boundary and the distance between a FP and the BPs becomes smaller than 2h, the
BPs increase their density, leading to a pressure increase through the equation of state
(9). This process modifies the force exerted on the FP due to the pressure term on
the momentum Eq. (6). For a more detailed description of the boundaries the reader
is referred to the work of Crespo et al. (2007).

2.9.1 Periodic Boundary Conditions

Periodic boundary conditions are also implemented in DualSPHysics. In this case,
the particles near an open lateral boundary interact with the particles on the other
side of the domain since the area of influence of a particle extends beyond the lateral
boundary.
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2.9.2 Floating Objects

Assuming that an object has a rigid inner structure, the force on each BP (boundary
particle) is computed by summing the contribution of each FP (fluid particle) in the
area of influence. The force per unit mass on a given boundary particle k may be
expressed as

f k =
∑

a∈F Ps

f ka (19)

where f ka is the force per unit mass exerted by FP a on BP k. Taking into consider-
ation the principle of equal and opposite action and reaction, the force exerted by a
FP on each BP is given by

mk f ka = −ma f ak (20)

which allows estimating the force exerted on the moving body.
For themotion of themovingbody, the following equations of rigid bodydynamics

are used:

M
dV
dt

=
∑

k∈B Ps

mk f k, (21a)

I
dΩ

dt
=

∑
k∈B Ps

mk(rk − R0) × f k, (21b)

where M is the mass of the body, I is the moment of inertia, V is the velocity of the
object, Ω is the rotational velocity and R0 is the position of the centre of mass.

Each boundary particle has a velocity given by

uk = V + Ω × (rk − R0). (22)

The BPs within the rigid body are then advanced in time by integrating Eq. (22).

3 Validation Case

The reliability of DualSPHysics is investigated with a standard free-surface bench-
mark test for SPH flows, reproducing the SPHERIC Benchmark Test Case #2 (http://
wiki.manchester.ac.uk/spheric/index.php/Test2).

The experiment described in Kleefsman et al. (2005) consists of a dam break flow
impacting an obstacle. This experiment is considered a valuable benchmark for the
SPH free-surface flow community.

The initial setup of the experiment is depicted in Fig. 1. The tank is 3.22m long,
1m wide and 1m tall. The volume of water is 1.228m long, 1m wide and 0.55m
tall and it is initially confined at one end of the tank with a retaining wall that is

http://wiki.manchester.ac.uk/spheric/index.php/Test2
http://wiki.manchester.ac.uk/spheric/index.php/Test2
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Fig. 1 Experimental setup with water height and pressure gauge position

released instantaneously. There is also an obstacle whose dimensions are shown in
Fig. 1. When the water is released, the fluid floods the dry bed of the tank and hits
the obstacle. Six seconds of physical time were numerically simulated.

The parameters and key features of the simulation are shown in Table2.
The experiment provides water heights and pressure measurements at different

locations. Three vertical height probes (H1, H2, and H3 in Fig. 1) were used to
determine the water height during the experiment. Pressures exerted on the obstacle
initially facing towards the water were also sampled to detect the water impacts (P1,
P2 in Fig. 1).

Figure2 shows different instants of the simulation with DualSPHysics of the dam
break flow impacting the obstacle. The initial dam release can be observed in the
first frame (time = 0.32 s). The second instant (time = 0.40 s) shows the dam break
just before the collision with the obstacle. After the impact, the fluid is split in two
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Table 2 Parameters of the
validation case

Parameter Value

Kernel function Wendland

Time-step algorithm Symplectic

Viscosity treatment Artificial with α = 0.05

XSPH ε = 0.5

Interparticle distance 0.008m

Total number of particles 1,151,717

Physical time 6s

Computation time 2.7h

Execution device GTX TITAN Black

Fig. 2 Different instants of the DualSPHysics simulation for the test case

parts. Most of the fluid surrounds the obstacle and a jet is created (time = 0.56, 0.64,
0.56 s). The last frame (time = 2.0 s) shows the splash due to the reflected wave
generated after hitting the left wall of the container.

Numerical depth probes were computed to compare with the experimental mea-
surements. The procedure to numerically compute the wave elevation was previ-
ously used by Gómez-Gesteira and Dalrymple (2004) and it is based upon the fact
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Fig. 3 Experimental and numerical water heights measured at the three probes

that there is an abrupt change in mass at the free surface. Hence, Fig. 3 summarises
the experimental and numerical water heights calculated at the three probes located
before the obstacle (H1, H2 and H3). The blue line corresponds to the experimental
water height data and the red line corresponds to the numerical wave heights. The
water column collapse is observed during the first 2 s. This dam break is clearly
shown by the probe at H3, where the water level decreases during this period and
by the other probes where the water arrives sequentially (first at H2 and then at H1).
After 1.75 s the reflected water wave moves to the right after hitting the left wall. The
reflected wave hits the right wall and a second incoming wave hits the obstacle for
a second time on the right side (a second maximum in the water level is detected by
H3 at 3.8 s, later by H2 at 4.6 s and by H1 at 4.8 s). The SPH results reproduce very
well the dam evolution observed in the experiment.
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Fig. 4 Experimental and numerical pressures measured at the two gauges

Pressure was also measured experimentally. Different pressure sensors (Fig. 1)
were used to collect the experimental pressure on the obstacle. The pressure on the
front side of the obstacle (P1 and P2) was computed by DualSPHysics to analyse the
validity of themodel to predict the forces exerted by the fluid on the structure. Numer-
ical pressures were computed at the positions where the experimental sensors were
located. The comparison between experimental and numerical pressures is shown
in Fig. 4. A close agreement between both signals can be observed. The maximum
experimental and numerical peaks, which correspond to the main water impact on
the obstacle, coincide in time. The presence of a secondary peak at approximately
5 s is also detected by the numerical simulation, although there is a slightly delay
with respect to the experimental one.

4 DualSPHysics Capabilities

In the following section some examples of the capabilities of the DualSPHysics code
are shown, where different functionalities implemented in the code are employed.
DualSPHysics is therefore proven to simulate wave propagation and wave-structure
interaction impact waves on a large and a complex structure.
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4.1 Wave Propagation

DualPSHysics is suitable to study the wave propagation in the vicinity of the coast
where the real bathymetry and topography of the shoreline is given. In this first case,
large waves approach the shore and impact with a steep coast. On the other hand,
any 3D external model with the complex geometry of a protection structure or a
promenade can be included in the simulation since these geometries can be easily
converted into fixed boundary SPH particles to interact with.

The SPH parameters corresponding to this simulation are shown in Table3. This
simulationwas executed in 32TeslaM2090 (hosted atMinotauro cluster at Barcelona
Supercomputing Center, BSC). The multi-GPU parallelisation allows the simulation
of very large domains in a reasonable time or to run cases that will not fit in a unique
GPU card due to the memory usage.

Different instants of the simulation using DualSPHysics are illustrated in Fig. 5.

4.2 Wave Interaction with a Fixed Complex Structure

In the second case, the importance of the numerical resolution is highlighted.
This application consists of the interaction of a large wave with a fixed oil rig
using realistic dimensions. The domain size is 172 × 116 × 55m and the struc-
ture includes items with a spatial scale on the order of a few centimetres. Hence, a
huge number of particles is required to represent the objects of small size in the oil
platform.

As in the previous case, the simulation was performed using 64 GPUs at the BSC
facilities and 1 billion particles were simulated (one of the largest simulations with
a meshfree model in the field of fluid dynamics). All parameters are summarised in
Table4, and Fig. 6 shows different instants of the simulation with DualSPHysics.

Table 3 Parameters of the
wave propagation case

Parameter Value

Kernel function Wendland

Time-step algorithm Symplectic

Viscosity treatment Artificial viscosity with α = 0.1

Interparticle distance 0.1m

Total number of particles 265 million particles

Physical time 50s

Computation time 246.3h

Execution device 32 × Tesla M2090
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Fig. 5 Wave propagation
case at different times: 5.3,
21.4, 36.4 and 55.2 s
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Table 4 Simulation
parameters of the wave
interaction with a fixed
complex structure

Parameter Value

Kernel function Wendland

Time-step algorithm Symplectic

Viscosity treatment Artificial viscosity with α = 0.3

Interparticle distance 0.06m

Total number of particles 109 particles

Physical time 12s

Computation time 79.1h

Execution device 64 × Tesla M2090

Fig. 6 Instants 2.4 s (left) and 3.52 s (right) of the wave interaction with a fixed and complex
structure. Bottom panels show zoomed area

Table 5 Parameters of the
wave interaction with a
floating object

Parameter Value

Kernel function Wendland

Time-step algorithm Symplectic

Viscosity treatment Artificial viscosity with α = 0.2

Interparticle distance 0.03m

Total number of particles 6 million

Physical time 10s

Computation time 41h

Execution device GTX Titan
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Fig. 7 Four instants (3, 7, 13 and 15s) of the wave interaction with a floating object
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4.3 Wave Interaction with a Floating Object

In this last case, the theory described in Sect. 2.9.1 (periodic boundary conditions) and
2.9.2 (floating objects) is applied for the interaction of waves with a floating object
(a boat in this case). Table5 contains the SPH parameters used in this simulation.

The physics of a fluid-driven object (the boat) is simulated in this case. In this
simulation waves propagate pushing the boat that is located close to a dock (Fig. 7),
wherewave propagation, reflection and breaking play an important role. Themoment
of inertia, the centre of mass and the total weight of the object are considered to
provide a realistic movement of the boat.

5 Conclusions

The DualSPHysics code has been developed to study complex free-surface flows
requiring high computational resources.

A complete description of the SPH formalism implemented in DualSPHysics is
presented. This work addresses a review of the governing equations such as the
momentum and continuity equations, density filters, velocity corrections, time step-
ping schemes and boundary conditions.

The code is validated with the experimental data of a dam break impacting an
obstacle. The experiment is a benchmark for the free-surface flow SPH community
(http://wiki.manchester.ac.uk/spheric/index.php/Test2) and provideswater elevation
and pressure data sampled at different locations. The simulations show a close agree-
ment between the numerical and experimental results both for free-surface elevations
and pressures.

Three examples have been shown to illustrate some of the capabilities of the
DualSPHysics code to simulate wave propagation, wave interaction with coastal
structures and the movement of floating objects.
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Numerical Modelling of the Extratropical
Storm Delta Over Canary Islands:
Importance of High Resolution

O. Jorba, C. Marrero, E. Cuevas and J.M. Baldasano

Abstract The tropical storm “Delta” was formed on November 23, 2005 in a sea
zone of the subtropical Atlantic south of the Azores. After days with an erratic move-
ment, the day 27 the storm reinforced their intensity and accelerated its movement
towards the Northeast in the direction of the Canary Islands. On 28 and 29, it made
a transition to extratropical storm, affecting the Canary Islands with very strong
sustained winds with maximum streak of 152km/h at the airport of La Palma and
close to 250km/h in the Izaña observatory (2,360m altitude), which caused signifi-
cant property damage. The aim of this numerical modelling is to reproduce the local
effects of Delta storm with high spatial resolution. TheWRF-ARWmodel is applied
from 9 to 3km of horizontal resolution using ECMWF forecasts as IBC. The simula-
tion reproduces the main features that contributed to the high wind speeds observed.
Variations in the vertical static stability, vertical wind shear and intense synoptic
winds from the southwest part of Delta with a warm core at 850hPa were the main
features that have contributed to the development and amplification of intense gravi-
tational waves, while the large-scale flow interacted with the complex topography of
the islands. Nonhydrostatic and hydrostatic experiments were designed taking into
account the settings and domain factors. The results associated with changes relative
to a controlled simulation showed that the boundary layer, the horizontal resolution,
and the nonhydrostatic option have the greatest impact.
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1 Introduction

The Canary Islands are located in the middle-east of the Atlantic Ocean in front of
the southern coast of Morocco, between 27–30◦N latitude and 19–13◦W longitude
(see Fig. 1). The complex topography of Canary Islands and the interaction with
the large-scale flow associated with extratropical storm Delta on November 28–29,
2005 contributed to the development of the extreme winds observed. The flow was
characterized by a warm core around 850hPa (Beven 2006; Martín et al. 2006;
NHC 2006). It represented unusual meteorological phenomena for that region. The
highest wind speeds were recorded in meteorological stations located downwind
of steep mountain barriers in the western islands. This fact indicates that the strong
winds might be related to downslope windstorms (e.g., Lilly and Zipser 1972; Peltier
and Clark 1979; Durran 1986) induced by the intense synoptic flow affecting the
archipelago. This work analyzes the development of strong downslope winds that
were observed in the Canary Islands during the influence of Delta storm.

Several authors have analyzed the sensitivity of numerical weather prediction
models under extratropical storm situations, taking into account the impact of the
observing system and the initial conditions (Zou et al. 1998; Zhu and Thorpe 2006;
Froude et al. 2007) and themodel uncertainties such as numerical scheme, horizontal
and vertical resolution and physical parameterizations (Orlanski et al. 1991; Prater
and Evans 2002; Forbes and Clark 2003; Jung et al. 2006). They have found a clear
dependence on the predictability of extratropical cyclones with the initial conditions
and model configuration.

Fig. 1 Location of Canary Islands
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The aim of the present work is to reproduce this weather phenomenon using the
WRF-ARWNWPmodel and analyze the sensitivity to the horizontal high-resolution
mesoscale meteorological modelling and the nonhydrostatic option.

2 Methods

TheWeather Research and Forecasting (WRF)Model v2.1.2 (Michalakes et al. 2005)
was used to simulate the wind field over the Canary Islands under the Delta meteoro-
logical situation. WRF was configured with the ARW dynamics solver (Skamarock
et al. 2005) to integrate the primitive equations. The physical parameterizations used
were: single-moment 3-class scheme for the microphysics processes, Kain-Fritsch
scheme for cumulus parameterization, the Rapid Update Cycle model Land-Surface
scheme with 6 sub-soil layers (Smirnova et al. 1997, 2000), the Yonsei University
PBL scheme (Noh et al. 2003), the long-wave radiative processes are parameterized
with the Rapid Radiative Transfer Model following Mlawer et al. (1997) and the
short-wave radiative scheme based on Dudhia (1989).

Three domains were defined using two-way nesting technique interaction. The
domains were centered over the Canary Islands with 300 × 230, 340 × 226 and
337 × 292 grid points for the outer to inner domains, respectively. The location of
the meshes is shown in Fig. 2. The horizontal resolutions were 9, 3, 1km with 40
sigmavertical levels, 11 characterizing the boundary layer. Themodel topwasfixed at
50hPa.Analysis of theEuropeanCenter forMediumWeather Forecasts (ECMWF) at
00:00 UTC November 28 was used as the initial condition. The boundary conditions
were provided by the ECMWF forecasts at 3h intervals from 03:00 UTC November
28 to 00:00 UTCNovember 30. The ECMWF data used a spatial resolution of 25km
derived from the T799 model forecasts.

Fig. 2 Definition of the
three nested model domains
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The boundary conditions (BC) are known to provide a basic limitation to the
predictability of local area models (Warner et al. 1997). Several errors produced on
BC are mainly propagated into the domain at advective speeds by the mean flow,
so in order to minimize these effects in our interest area, the mother domain has
been dimensioned by considering HYSPLIT (Draxler and Rolph 2003) backward
trajectories results (not shown) with the destination centred in the Canary Islands
(28◦N 16◦W) at several levels in the 48h model simulation run.

3 Numerical Solution and Results

The numerical simulations for November 28 (Fig. 3a, b) show a mature cyclone
with a warm front extending from the centre of the low north-westward following
the cyclone shape as shown by absolute vorticity. The structure of the extratropical

Fig. 3 a, b Simulated 850hPa potential temperature, winds and absolute vorticity for November
28–29 2005 from 9km domain; c, d 10m wind field from 1km domain
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storm reaching Canary Islands was analog with the third phase of the Shapiro-Keyser
conceptual model (Shapiro and Keyser 1990) for cyclone evolution, with a frontal
T-bone and bent-back warm front (Martín et al. 2006). The bent-back front encloses
a pool of warmer air at 850hPa, and contributes to reinforcing the winds in the
southwest region of the cyclone.

Figure3c and d shows the results of the model at 1km resolution. The surface
wind speeds before 12:00UTCofNovember 28 remain below50km/h over thewhole
Canary Islands with well-defined wake areas. The wind speed starts to reinforce at
12:00 UTC November 28, while the Delta storm approaches the archipelago with a
counterclockwise veering of the synoptic flow to south-western direction. The north-
western region of the domain presents the most intense flows, where the maximum
wind speed is produced on the lee-side of La Palma, with the wind reaching a speed
of 72km/h. The development of trapped-lee waves starts at 14:00 UTC in the lee-
side of La Palma. The vertical structure of the flow is reflected at surface level with
regularly spaced regions of intense wind speed above 72km/h. The synoptic veering
of the flow towards south-westerly directions coincides with the flow intensification.
The intense westerly warm core of the Delta storm affects the Canary Islands from
20:00 UTC November 28 to 02:00 UTC 29 November. This period is characterized
by the development of local strong winds lee-ward of La Palma and Tenerife islands.
The maximum surface wind speed is reached at 23:00 UTC November 28 over the
lee-side of La Palma, with an intensity of 144km/h at 10magl (Above ground level).
In the southeast coast of Tenerife an intense core flow of high wind speeds develops,
affecting the sea and part of the coast at 137km/h at 10magl.

A vertical cross section is performed in order to understand the physical mecha-
nisms that lead to the intense wind flows observed and simulated at surface levels for
La Palma and Tenerife islands (Fig. 4). At 12:00 UTC the main flow affecting Tener-
ife presents a marked westerly direction and important vertical wind shear, and an
elevated inversion is present around 780hPa which delimits two different statically
stable layers. Under these conditions an internal gravity wave develops aloft Tenerife
island as it is shown in the cross section. The wind speed at the lee of the moun-
tain intensifies and the downslope flow enhances. The maximum velocities of the
downslope jet flow are of the order of 130km/h at 100magl. The surface wind speed
remains lower than 115km/h. At 24:00 UTC the windstorm has extended downslope
and its jet core presents a maximum wind speed of 162km/h at 100magl.

Figure4 shows the cross section along La Palma and Tenerife islands at different
horizontal resolutions (9, 3 and 1km). The cross section along La Palma shows how
the trapped-lee waves do not develop in the simulation at 9km. The simulation results
at 3 and 1km present good performance in developing the trapped-lee waves. As was
noted by Durran (1986), the trapped-lee is not taken into account by the hydrosta-
tic hypothesis, and these fine-scale features will not be captured by the hydrostatic
models. The simulation results at 9km point out the impact of the orography repre-
sentation in the non-hydrostatic model used; the increase of the horizontal resolution
provides a better representation of the orography that lead to the development of the
fine-scale features.
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Fig. 4 Vertical cross section of potential temperature andwind field at La Palma (top) at 18:00UTC
November 28, 2005 and Tenerife (bottom) at 00:00 UTC November 29, 2005 at 9km resolution
(left), 3km resolution (middle), and 1km resolution (right). The cross sections are depicted in
bottom-left of Fig. 3, La Palma: AA’, and Tenerife: BB (color map: wind speed (m/s); vector map:
wind field; contour map: potential temperature (K))

The increase of the horizontal resolution brings high winds to the bottom of the
mountain, in agreement with Durran (1986) who attributes this behaviour to the
finite amplitude effects (increase of mountain height), and more in agreement with
the often observed strongest winds near the base of a mountain. In summary, if the
horizontal resolution is decreased, the mountain wave activity lessens, even though
the mountain-top winds present no major differences. As noted by other authors
(e.g., Doyle and Shapiro 2000; Zhang et al. 2005) the horizontal resolution of the
mesoscale models need to be higher than 9–10 km to develop the details of the wave.
In La Palma cross section, it is also noticeable the effect of Tenerife island in the
flow, provoking a plume of low wind speed at low levels downwind of La Palma.

Finally, the 10m hourly wind speeds modelled were compared against meteoro-
logical observations available in the area (Fig. 5). Due to power loss of the automatic
meteorological stations related to the damage of the energy supply provoked by the
intense Delta wind field, the meteorological stations stopped measuring after 22:00
UTC of November 28 and no information is available after then. The model results
show a good agreement with the observations in places where the major wind speeds
were registered. The stations of La Palma-E145 and Tenerife Sur-E276 reachedmax-
imum wind speeds of 90–108 km/h at 10magl that are accurately reproduced by the
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Fig. 5 10mwind speed comparison of model results versus meteorological observations. Location
of surface stations is depicted in the bottom-left panel of Fig. 3 (Black line 15min mean surface
measurements; blue circle 9km domain; green triangle 3km domain; red square 1km domain)

model results. The model results show a regular increase of the wind speed at 10m
from 18 to 108km/h in La Palma-E145 station for the period of study. The Santa
Cruz de Tenerife-E044 station shows a sudden increase in the wind field, suggesting
the presence of mountain wave activity aloft those impacts at surface levels with the
development of a downslopewind event (as it has been shownwith themodel results).
The results show how in the Santa Cruz de Tenerife-E044 station the high-resolution
simulations (3 and 1km) reproduce the sudden increase in wind speed reasonably
well, improving the 9km simulation. But it is also where the simulation results show
the largest deviations. This is due to the topographic component of the location of
the station, at the sea level, and conditioned by the situation bay surrounded by
mountains with an important altitude difference.

The use of modelling allows another important and significant finding. We eval-
uated that the effect of this storm is enhanced due to the existence of a complex
topography with high altitudes (the Teide volcano has a height of 3,718 m). Figure6
shows the results of the different patterns for the three spatial resolutions with and
without topography.Thedynamicpattern is totally different; and it highlights the need
to work at high spatial resolutions. This is especially evident on the Tenerife Island.
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Fig. 6 Patterns at three different resolutions with (left) and without (right) topography

4 Conclusions

An unusual synoptic situation affected the Canary Islands from November 28 to
November 30, 2005 provoking the Delta extratropical storm. The high-resolution
simulation using the WRF model has outlined the main features that contribute to
the high wind speeds observed in the archipelago of Canary Islands. The presence of
the warm core at 850hPa, near the top of higher mountain peaks and the variations
in vertical static stability and important vertical wind shear were the main char-
acteristics that contributed to the development and amplification of intense gravity
waves leeward of the major mountain barriers of the western islands of the Canary
archipelago that leads to the development of downslope windstorms.

The comparisons with surface observations indicate that the mesoscale model
provides a reasonably good performance of the local effects produced in the com-
plex islands orography. The model results may contribute to reinforce the idea that
downslope windstorms associated with mountain wave activity developed when the
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Delta storm affected the Canary Islands. This was a result of interactions between
large-scale airflow (Delta storm) and the complex local topography of the islands.

The development and evolution of the Delta storm was a challenge for forecasters
and numerical weather predictionmodels (e.g., ECMWF,HIRLAM),which underes-
timated the speed and impact of the stormduring its evolution near theCanary Islands.
In this sense, high-resolutionmodelling clearly contributes to understand the physical
processes that lead to the observed strong wind speeds and gusts. The analysis of the
simulation results shows that most of the modifications of the model parameters had
a moderate to strong impact in the 10mmaximum wind speed solution. The greatest
positive variations were associated with modifications of the Boundary-Layer and
Surface-Layer parameterization, and especially the increase in horizontal resolution.

The results clearly show the importance of working with high spatial horizontal
resolution and the need to use a nonhydrostatic mesoscale meteorological model to
simulate more correctly this type of meteorological phenomenon in domains with
complex or very complex topography.
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Four-Winged Flapping Flyer
in Forward Flight

R. Godoy-Diana, P. Jain, M. Centeno, A. Weinreb and B. Thiria

Abstract We study experimentally a four-winged flapping flyer with chord-wise
flexible wings in a self-propelled setup. For a given physical configuration of the
flyer (i.e. fixed distance between the forewing and hindwing pairs and fixed wing
flexibility), we explore the kinematic parameter space constituted by the flapping
frequency and the forewing-hindwing phase lag. Cruising speed and consumed elec-
tric power measurements are performed for each point in the ( f, ϕ) parameter space
and allow us to discuss the problem of performance and efficiency in four-winged
flapping flight.We show that different phase-lags are needed for the system to be opti-
mised for fastest flight or lowest energy consumption. A conjecture of the underlying
mechanism is proposed in terms of the coupled dynamics of the forewing-hindwing
phase lag and the deformation kinematics of the flexible wings.

1 Introduction

Flapping flyers display an extremely rich variety of maneuvers because of the mul-
tiple kinematic parameters that rule the unsteady production of aerodynamic forces.
From a biological point of view, the case of four-winged flyers capable of out-
of-phase motion between forewings and hindwings such as dragonflies is particu-
larly interesting. In the words of Azuma et al. (1985): “Dragonflies can hover, fly
at high speed and maneuver skillfully in the air in order to defend their territory,
feed on live prey and mate in tandem formation”. Their body and wing kinematics
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have been studied extensively (Alexander 1984, 1986; Azuma and Watanabe 1988;
Rüppell 1989; Wakeling and Ellington 1997a, b) and flow visualizations in tethered-
and free-flight configurations have demonstrated the crucial role of unsteady
mechanisms such as the formation of leading-edge vortices in the production of lift
(Thomas et al. 2004). Forewing-hindwing phase-lag has been shown in hovering con-
figurations to be determinant for flight performance (Maybury and Lehmann 2004):
optimal efficiencies have been found for out-of-phase beating whereas in-phase mo-
tion of forewings and hindwings has been shown to produce stronger force (Wang
and Russell 2007; Usherwood and Lehmann 2008). The physical mechanisms be-
hind these differences in performancehavenonetheless not yet been completely eluci-
dated, and open questions remain in particularwhen considering the role ofwing elas-
ticity. Wing deformation is important because it can passively modify the effective
angle of attack of a flapping wing, thus determining its force production dynamics.

In the present paper we address this problem experimentally using a four-winged
self-propelled model mounted on a “merry-go-round”. The setup is a modified ver-
sion of the one used by Thiria and Godoy-Diana (2010) and Ramananarivo et al.
(2011), where the thrust force produced by the wings makes the flyer turn around a
central axis. A constant cruising speed is achieved for a given wingbeat frequency
when the thrust generated is balanced by the net aerodynamic drag on the flyer.
These previous works have shown that passive mechanisms associated to wing flexi-
bility govern the flying performance of a flapping wing flyer with chord-wise flexible
wings. These determine, for instance, that the elastic nature of the wings can lead
not only to a substantial reduction of the consumed power, but also to an increment
of the propulsive force. Here we introduce a new parameter using a model with two
pairs of wings. In addition to the flapping frequency and wing flexibility, the thrust
production is now also determined by the phase lag ϕ between the forewings and the
hindwings.

2 Experimental Setup

Figure1 shows a sketch of the experimental setup. As in Thiria and Godoy-Diana
(2010), the stroke plane is parallel to the shaft linking the flyer to the central bearing
of the wheel. In addition to the four-winged instead of two-winged flyer, the setup
also differs from Thiria and Godoy-Diana (2010) in that a counterweight has been
added using an opposite radial shaft to balance the system. The fluctuating lift force
is thus directed radially and absorbed by the shaft. The two wings are driven by a
single direct-current motor with a set of gears that allows to fix the phase difference
between the forewings and the hindwings. All wings beat thus at the same frequency
which was varied between 15 and 30Hz. We have reduced the parameter space
in the experiments reported here by fixing the physical characteristics of the flyer.
Namely, the distance between the wings d, the stroke amplitude θ0 and the chord-
wise flexural rigidity of the wings. Of course, it should be noted that these parameters
in the present tandem wing configuration, in particular the wing spacing d, should in
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Fig. 1 Top sketch of the experimental setup. Bottom photos of the flapping flyer with forewing-
hindwing phase lags 0 (left) and π (right). Each wing has a semi-circular shape so that c = 30mm
and L = 60mm. The distance between thewings d = 1mm, so that the trailing edge of the forewing
and the leading edge of the hindwing almost touch when the wings are aligned without bending;
the stroke amplitude max(θfw) = max(θhw) = θ0 = 37◦. Wings are made of 0.05mm thick Mylar
that gives a flexural rigidity B = 3.3 × 10−5 Nm The leading edge is thicker (1mm) and made of
fiberglass so that it can be considered rigid and the deformation exclusively chord-wise

general be analysed simultaneously with the forewing-hindwing phase lag (Maybury
and Lehmann 2004; Rival et al. 2011). The motion of the wings is described using
the angles of the forewing and hindwing leading edges to the xz-plane, θfw and θhw,
respectively (see Fig. 1), as

θfw = θ0 sin(2π f t) and θhw = θ0 sin(2π f t − ϕ), (1)

where f is the flapping frequency and the phase lag ϕ is varied between 0 and 2π .
For 0 < ϕ < π the forewing is leading, whereas for π < ϕ < 2π it is the hindwing
that leads. The Reynolds number Re = Uc/ν based on the cruising speed and the
chord length was in the range of 1,000–4,000.

The measured quantities are the cruising flight speed U and the consumed power
Pi . In the study of the two winged flyer of Thiria and Godoy-Diana (2010) and
Ramananarivo et al. (2011) an additional independent setup was used to measure the
thrust force F by holding the flyer in a stationary position. The product of the force
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and cruising speed measurements was then an estimate of the aerodynamic power
Pa = FU. One of the disadvantages of that procedure was that the twomeasurements
did not correspond to the same flight configuration: while U corresponds to self-
propelled cruising flight, F measured at a fixed station corresponds to a “hovering”
flight configuration. Herewe avoid that problem by using an estimate of aerodynamic
power obtained only from the velocitymeasurements, as explained in the next section.

3 Results

(i) Flying performance. The aerodynamic interactions are thus ruled by ϕ and their
effect can be directly measured in the performance parameters of the experiment:
the cruising speed U and the consumed power Pi . In order to get a clear picture of
the effect of each parameter we first show in Fig. 2 two data series corresponding to
different flapping frequencies, where U and Pi are plotted as functions of ϕ. It can
be seen that the phasing between the wings produces a net effect in performance, the
fastest cruising flight velocities corresponding to a range around in-phase flapping
(ϕ = 0), but the picture becomes richerwhen looking at the consumed power. Indeed,
the latter has two peaks around ϕ ≈ 0 and π . The previous series lie in a regime
where increasing the flapping frequency shifts the curves to higher flying speeds
and higher consumed power. The observed trend is readily explained using the non-
dimensional expressions p = Pi c/Bω f and u = U/A0ω f defined byRamananarivo
et al. (2011), where A0 is the amplitude of oscillation of the leading edge at mid span
given by A0 = (L/2) sin θ0 and ω f = 2π f . The insets in Fig. 2 show the behaviour
of the dimensionless quantities.

The increase of speed with increasing flapping frequency is not indefinite how-
ever, an effect shown in Fig. 3, where U is plotted in coloured contours in a (ϕ, f )-

Fig. 2 Cruising speed and consumed power as a function of the forewing-hindwing phase lag for
two different flapping frequencies
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Fig. 3 Cruising speed, consumed power and efficiency (see text) as a function of the forewing-
hindwing phase lag and the flapping frequency. Only the first half of the phase-lag ϕ range, where
the forewing is leading, was examined here

space for ϕ ∈ [0, π ] and scanning the full range of flapping frequencies available
experimentally. For all phase lags, a clear maximum of the attained cruising speed
occurs always around 24Hz. We will discuss in the following that this optimal fre-
quency is related to the elastic properties of the wings. The second plot in Fig. 3
shows the consumed power Pi in the same parameter space. Here the main obser-
vation is that, while not surprisingly consumed power increases monotonically with
increasing flapping frequency, the effect of the phase lag on energy expenditure,
shown previously in Fig. 2, is clearly present regardless the flapping frequency. Be-
cause of this effect, the ranges of frequency explored changed for different phase
lags, giving, for instance, a maximum frequency for ϕ = 0 of around 30Hz, while at
ϕ ∈ [π/2, 3π/4] the frequency could reach 35Hz. We use those two measurements
to define the following expression of efficiency, considering that the aerodynamic
thrust power is proportional toU 3 (velocity times thrust force, the latter being∼U 2):

η =
1
2ρSU 3

Pi
(2)

where S is the effective wing surface. Other definitions of efficiency using purely
dynamical parameters (Kang et al. 2011) should give equivalent results to expression
(2) chosen here in terms of the measured consumed power Pi . It can be seen that the
optimum in terms of efficiency is shifted toward larger phase lags (around ϕ ≈ π/2)
than the optimum in terms of maximum cruising speed.

(ii) Wing kinematics. In addition to the performancemeasurements, thewingmotion
was recorded using high-speed video in a fixed frame. That is, with the mechanical
insect not mounted on the merry-go-round but on a fixed base. Figures4 and 5 show
typical time series for ϕ = 0 and 1.3π , respectively. A dark screen was used to mask
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Fig. 4 Sequence showing the kinematics of the flapping wings at f = 23Hz and ϕ = 0

Fig. 5 Sequence showing the kinematics of the flapping wings at f = 23Hz and ϕ = 1.3π
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FWLE

FWtip

FWTE

HWLE

HWtip

HWTE

FWLE

FWTE

HWLE

HWTE

Fig. 6 Tracking the wing motion. Example of in-phase flapping at f = 23Hz. Black circles are
the points tracked on each wing for the leading and trailing edges (FWLE and FWTE, correspond
to the forewing, while HWLE and HWTE correspond to the hindwing). The open circles are the
positions of the win tips tracked

the right side wings and have a clearer view of the kinematics. The main feature
that can be seen in these time series of snapshots is the large deformation of the
wings during the flapping cycle. Indeed, the wings bend over a length scale that is
of the same order of magnitude than the chord length. In addition to the kinematics
of the compliant wings, which can be followed for each wing independently, Figs. 4
and 5 hint on the complex interaction that arises from the combination of the bend-
ing dynamics and the imposed forewing-hindwing phase lag. We will analyse this
interaction in the following by tracking the motion of different points on each wing.

Figure6 presents the tracking in time of the (x, y) positions of the leading and
trailing edges of each wing at the point of maximum chord length (black circles,
FWLE and FWTE denoting forewing leading and trailing edge, respectively, while
HWLE and HWTE correspond to the equivalent points on the hindwing). Addi-
tionally, the tip of each wing is also tracked (empty circles). The latter is useful to
minimize the measurement error in the leading edge amplitude of motion since it
has a larger swept amplitude and the relative error is thus smaller. The time-series
of the positions of these points are shown in Fig. 7a, b for two different values of
ϕ. The main observation here is the trailing-edge-leading-edge phase lag γ for each
wing, which has been reported in Ramananarivo et al. (2011) to be a crucial element
of the propulsive performance of flexible flapping wings. The measured value of γ

for several forewing-hindwing phase lags is shown in Fig. 7c. A slight decrease is
observed for γ when ϕ decreases from 2π to 1.3π , i.e., when the systems go from
in-phase flapping to a configuration with the hindwings leading by approximately a
third of a period, but the effect is very weak.
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(a)

(c)

(b)

Fig. 7 Time series of the y-position of the leading and trailing edges of both wings for f = 23Hz
and a ϕ = 0 and b 1.3π . The leading-edge-trailing-edge phase lag γ is shown schematically. In
the ϕ = 0 case, γ1 = γ2 ≡ γ . The y-axis is rendered dimensionless using A, the peak-to-peak
amplitude swept by the leading edge at mid-chord. c Trailing-edge-leading-edge phase lag γ for
different forewing-hindwing phase lags. The two different markers correspond to the forewing γ1
(�) and hindwing γ2 (�)

4 Discussion

Before discussing the effect of the forewing-hindwing phase lag we start with a
comment on the role of the flapping frequency. The existence of an optimal flapping
frequency for the present setup (as is evident in Fig. 3) is related to the effect of
wing compliance on the propulsive performance of the flapping wings, a question
that has been widely discussed in the literature (Shyy et al. 2010; Spagnolie et al.
2010;Masoud andAlexeev 2010; Thiria andGodoy-Diana 2010;Ramananarivo et al.
2011; Kang et al. 2011). For flexible wings flapping in air, where the mass ratio of
the wing with respect to the surrounding fluid is high, the main bending motor is the
wing inertia (Daniel and Combes 2002; Thiria and Godoy-Diana 2010). Increasing
the flapping frequency leads to an increased deformation of the wing, which is useful
in terms of propulsive performance up to a certain point where the effective lifting
surface is diminished and thrust production drops (Ramananarivo et al. 2011). An
interesting point is that the optimal frequency fopt that can be estimated by inspection
of Fig. 3 is different depending on whether one considers maximum cruising speed
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( fopt ∼ 24Hz) or maximum efficiency ( fopt ∼ 21Hz). This can be explained by the
fact that the consumed power, which enters the quotient defining efficiency Eq. (2) in
the denominator, increases monotonically with increasing frequency. This will thus
shift the location of the peak in the efficiency that corresponds to the aerodynamic
power peak.

In order to focus on the effect of the forewing-hindwing phase lag, a fixed fre-
quency can be chosen. In Fig. 2, for each of the two frequencies represented, the same
trends are observed in the cruising speed and the consumed power and, as shown
in the insets, the frequency dependence is well explained using the “elasto-inertial”
dimensionless variables u and p defined above. Now, with respect to the phase lag
ϕ, two main points appear clearly: on the one hand, the fastest flying performance
is found around in-phase flapping (i.e. ϕ = 0), while around anti-phase flapping
(ϕ = π ) this cruising speed is the lowest. We may note that the curve is not sym-
metric with respect to ϕ = 0, since it diminishes only slightly (one could consider a
plateau) between ϕ = 0 and π/2, whereas it drops more rapidly when the hindwing
leads (i.e., when going from ϕ = 0 = 2π towards ϕ = 3π/2). The consumed power
curve on the contrary has twomaxima (around ϕ = 0 and π ) and twominima around
(ϕ = π/2 and 3π/2). In-phase and anti-phase flapping being the most expensive can
be explained by a simple inertial argument since during these configurations the mo-
tor has to accommodate the acceleration/deceleration of both pairs of wings at the
same time, contrary to the intermediate phase lags ϕ = π/2 and 3π/2, where the
deceleration of one pair of wings occurs while the other pair is accelerating, hence
redistributing the load on the motor.

The shape of the cruising speed and consumed power curves determines the lo-
cation of the maximum observed in the efficiency contours in Fig. 3 being around
ϕ = π/2. A secondary maximum can be expected around ϕ = 3π/2 (a zone of
the parameter space that was not fully explored in the present experiments). We can
now compare the optimum phase-lags that lead to peaks of cruising speed and of
efficiency and comment on their physical origin: while the maximum cruising speed
is observed for phase-lags between zero and π/4, the optimum phase-lags in terms of
efficiency are around π/2. The former are ruled solely by the aerodynamics, where
the performance of different kinematic patterns will have to be analysed considering,
for instance, the interaction between hindwing and the vortex structures shed by the
forewing. A wake capture process of this sort has been proposed by Kolomenskiy
et al. (2013) as a possible explanation for the large propulsive force found at 0.75π
in their 2D numerical simulations.1 Concerning the optimum phase lag in terms of
efficiency requires, on the other hand, considering the power consumption, which is
not only correlated to the aerodynamics, but has a large contribution determined by
solid inertia, as we have mentioned in reference to the power plot in Fig. 2b.

The effect of the modulation of ϕ in terms of aerodynamics, as mentioned previ-
ously, will be intrinsically related to the roles of the distance d between the two wing
pairs and the deformation kinematics. In this paper, we have fixed d and considered

1 Note that in Kolomenskiy et al. (2013) the phase lag is defined with a negative sign with respect
to ϕ as used here so that 0.75π here corresponds to their 1.25π .
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a single flexibility in order to explore the possible roles of the wing deformation in
the propulsive performance. Considering our previous studies on the effect of flex-
ibility with a two wing flyer (Thiria and Godoy-Diana 2010; Ramananarivo et al.
2011), where the trailing-edge-leading-edge phase lag γ was shown to be a crucial
parameter to determine performance, we attempted here to monitor modifications in
γ as a function of ϕ (see the analysis of wing kinematics in Figs. 6 and 7). We picked
a range of ϕ (decreasing from 2π to 1.3π ) where a clear deterioration of the flying
performance is observed in Fig. 2 as the hindwing starts leading the forewing. The
observations on the trailing-edge-leading-edge phase lag γ are, however, not conclu-
sive. A slight decrease of γ is indeed observed, while ϕ goes from 2π to 1.3π , which
at these frequencies could explain a diminishing thrust performance, but the effect
is too weak and the present results do not permit to give a thorough and quantitative
confirmation of the effect if it exists.

5 Conclusions

We have shown that a four-winged flapping flyer in a cruising regime does present
different optimal forewing-hindwing phase lags depending on whether one would
want to tune the system for maximum cruising speed or minimum energy expendi-
ture. These results are in accordance with previous studies in hovering configurations
(Wang and Russell 2007; Usherwood and Lehmann 2008), hinting that the mech-
anisms described here should be robust elements to consider in any aerodynamic
model: on the one hand, wing inertia is a major player in the power expenditure,
while, on the other hand, the thrust production is ruled by the aerodynamics around
the flexible wings.

A full flow field reconstruction around the wings is certainly desirable to compare
different points in the parameter space with different performances and clearly iden-
tify the aerodynamic mechanisms at play. Experimentally this can be challenging,
and numerical simulations such as a 3D version of the fluid-structure simulations of
Kolomenskiy et al. (2013) can be an interesting option to define robust aerodynamic
models.

Other issue that remains not fully understood is the effect of the forewing-
hindwing separation d as a parameter independent of the forewing-hindwing phase
lag which will have a different role depending on whether the system is hovering or
cruising. This point will be of particular importance when going beyond the “steady”
regimes of hovering or cruising and into the study of transient regimes. These bring
indeed a vast set of open questions related to the unsteadiness—like for instance the
multi-body dynamics of manoeuvring—and where the wings are to be analysed as
part of a full system accelerating, performing sharp turns (Bergou et al. 2010) or
taking off (Bimbard et al. 2013).
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Flows from Bins: New Results

D.A. Serrano, A. Medina, G. Ruíz Chavarría and F. Sanchez Silva

Abstract Gravity granular flows of cohesionless materials emerging from bottom
exits and from lateral exit holes, both in vertical bins, and from face walls in tilted
bins were modeled and measured. The models are based on continuum mechanics,
whereas friction and gravity are the main involved forces. Measurements of the
granular mass flow rates were obtained from temporal measurements of weights
by using force sensors. In vertical and tilted bins the face wall thicknesses were
considered in the governing correlations. Measurements are in good agreement with
the theoretical predictions.

1 Introduction

This article considers the granular counterpart of the Torricelli’s theorem. Torricelli’s
theorem is a theorem in fluid dynamics relating the speed of fluid flowing, under
the action of gravity, out of an opening to the height of fluid above the opening.
Torricelli’s law states that the speed of efflux, v, of a fluid through a sharp-edged
hole at the bottom of a tank filled to a depth, h, is the same as the speed that a body
(in this case a drop of water) would acquire if falling freely from a height h, i.e.,
v = √

2gh , where g is the acceleration due to gravity (Fig. 1).
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Fig. 1 Frontispiece to
“Lezioni accademiche
d’Evangelista Torricelli ...”,
published in 1715 (http://
www.photolib.noaa.gov/
htmls/libr0366.htm)

This last expression comes from equating the kinetic energy gained by an element
of massm, mv2/2, with the potential energy lost,mgh, and solving for v. The lawwas
discovered (though not in this form) by the Italian scientist Evangelista Torricelli, in
1641. It was later shown to be a particular case of Bernoulli’s principle.

Torricelli was Galileo’s assistant and companion during the last two years of the
elder scientist’s life, and he succeeded Galileo in the post of grand ducal mathemati-
cian. In hisOpera Geometrica, published at the expense of Grand-Duke Ferdinand II,
Torricelli elucidated and diffused the difficult geometry of Cavalieri, thereby gaining
himself widespread recognition throughout Europe. The first part, compiled around
1641, studies figures arising through rotation of a regular polygon inscribed in or cir-
cumscribed about a circle around one of its axes of symmetry. In the second section,
De moto gravium, Torricelli continued Galileo’s study of the parabolic motion of
projectiles (Torricelli 1641). The treatise includes several significant contributions
to mechanics, the calculus and ballistics. It also refers to the movement of water
in a paragraph so important that Ernst Mach proclaimed Torricelli the founder of
hydrodynamics.

Torricelli’s law can be demonstrated in the spouting can experiment, which is
designed to show that in a liquid with an open surface, pressure increases with depth.
It consists of a tube with three separate holes and an open surface. The three holes are
blocked, then the tube is filled with water. When it is full, the holes are unblocked.
The jets become more powerful, the fluid exit’s velocity is greater the further down
the tube they are (Fig. 2a). Instead, in a bin filled with dry sand and having staggered
holes of diameter D, the sand exit’s velocity is the same and thus the shapes of the
sand jets are similar between them (Fig. 2b).

In a container of vertical walls the pressure due to dry sand changes very slowly
with height when the level of filling, respect to the bottom, overcomes a critical value,
λ (Janssen 1895). This is the first hint that the sand jets must be very different respect

http://www.photolib.noaa.gov/htmls/libr0366.htm
http://www.photolib.noaa.gov/htmls/libr0366.htm
http://www.photolib.noaa.gov/htmls/libr0366.htm
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Fig. 2 Spouting can jets: a liquid and b non cohesive dry sand

to the liquid jets, another hint is that the wall thickness, w, affects a lot the intensity
and shape of sand jets. In both cases the competition among the friction force and
the gravity force will affect the pressure and the jet properties. This work is devoted
to clarify the origin of these facts.

In order to reach our goal, the plan of the paper is as follows: in Sect. 2 we give
a historical outline of the dry friction phenomenon, in a general context, and how
it has been included in the theoretical treatments of confined granular material. In
Sect. 3, we give a short review of the experimental studies of the gravity flows and
mass flow rates when the orifices are made in lateral walls. We also describe some
experiments where the influence of D, w and d, the grain diameter, are so important
that they control the flow. In Sect. 4, we study tilted bins and we propose, on the
basis of our experimental results, a correlation that embraces both changes in D and
w and the tilt angle of the bins, β. In Sect. 5 we discuss some new results based on
a modification to the Janssen law for the pressure in a bin and finally, in Sect. 6, we
give the main conclusions of this work.

2 Dry Friction: A Historical Review

The late Egyptians were already occupied with the problem of friction. From histor-
ical traditions we know already that they wetted the sand on which they transported
their stones. Today, we know that this reduces the friction coefficient.

Themacroscopic friction laws, that we know, have been discovered during the last
centuries, mainly by Leonardo da Vinci (1452–1519), Guillaume Amontons (1663–
1705), Leonhard Euler (1707–1783) and Charles Augustin Coulomb (1736–1806).

Leonardo da Vinci (Fig. 3) postulated in the Codex Atlanticus (da Vinci 1480)
that friction is proportional to load and independent of the area of the item being
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Fig. 3 Left hand side Leonardo’s self-portrait. Right hand side sketches from da Vinci’s notebook,
ca. 1480 demonstrating some of his notable friction experiments (www.nano-world.org)

moved. Leonardo’s experimental setup for macroscopic friction measurements was
rather simple. He measured the angle of an inclined plane, where a body, put on the
plane, started to slide and the weight needed to make a block on a table to move.
With this method, he was only able to measure static friction and most probably he
wasn’t aware of the difference between static and kinetic friction. Leonardo found the
following two laws of friction, in which we essentially recover friction laws 1 and 2:

Law 1. The friction made by the same weight will be of equal resistance at the
beginning of its movement although the contact may be of different breadths and
lengths.

Law 2. Friction produces twice the amount of effort if the weight be doubled.
Amontons (1699), a French physicist (Fig. 4), two centuries after Leonardo’s

discoveries, made experiments on a horizontal surface and measured the friction

Fig. 4 Left hand side Guillaume Amontons. Right hand side Amontons’ experiment on multiplied
friction with overlapped horizontal plates (Amontons 1699)

www.nano-world.org
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Fig. 5 Left hand side Leonhard Euler. Right hand side Euler’s model of friction: a pair of hilly
surfaces in a saw tooth pattern, which interlock perfectly. For one body to slide over the other, an
oblique motion is required to surmount the asperities and a force F is needed. Figure taken from
Euler (1748)

force with a spring. He found that friction is proportional to the normal force and
independent on the area of contact. He called the proportional factor friction constant;
erroneously, he believed in the existence of a universal friction coefficient. While
Leonardo tested static friction, Amontons dealt with kinetic friction.

It was found by Leonhard Euler by 1748 (Fig. 5) that one has to distinguish
between static and kinetic friction (Euler 1748). He studied theoretically the mecha-
nism of the sliding motion of a block on an inclined plane. He adopted the model of
rigid interlocking asperities as the cause of frictional resistance. He concluded that
static friction is always larger than kinetic friction. With these assumptions he was
able to describe analytically the motion of a block on an inclined plane.

In 1773, the third classic friction law came into being with Charles-Agustin
Coulomb’s research, which posited the theory that friction is independent of sliding
speeds. Coulomb (Fig. 6) did the first attempts to develop some theories pertaining
to design of foundations and other constructions. Coulomb formulated the theory of
Earth pressure (Coulomb 1773). In this theory, Coulomb also introduced the concepts
of frictional resistance and cohesive resistance for solid bodies, which he assumed
to be applicable to granular bodies, including soils, which was intuitively used by
Leonardo da Vinci three centuries before.

The macroscopic law of Leonardo appears to be a true paradox. Intuitively one
would expect the friction force to be proportional to the area of contact. The paradox
was resolved by Bowden and Tabor (1950), who gave a physical explanation for
the laws of friction. They determined that the true area of contact is a very small
percentage of the apparent contact area. The true contact area is formed by the
asperities. As the normal force increases, more asperities come into contact and
the average area of each asperity contact grows. The frictional force was shown to
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Fig. 6 Left hand side Charles-Agustin Coulomb. Right hand side Coulomb’s publication by 1773

depend on the true contact area—a much more intuitively satisfying argument than
what theAmontons-Coulomb law allows. Bowden andTabor argued thatwithin these
asperities all of the dynamics of friction take place.

Despite the substantial advance of the inclusion of friction into granular material
problems, the physics of friction processes still remains insufficiently clear because
there still remain a lot of unsolved questions in problems such as wear and heating of
materials in friction, the distribution of normal and tangential stresses in the contact
region, plastic deformations, and the physical nature of frictional forces (molecular
adhesion, hysteresis losses, losses in the case of surface layer failure, etc.) (See, for
instance, Zhuravlev 2013).

3 The Mass Flow Rate Problem

The silo discharge through a bottom circular outlet, the granular analogous of the
Torricelli’s theorem, is one of the oldest andmostwidely studied problems in granular
flow owing to the simple setup and geometry of the system (Brown and Richards
1970; Beverloo et al. 1961; Franklin and Johanson 1955; Hagen 1852; Wieghardt
1975). It has been extensively investigated both experimentally and computationally.
Today, many granular, gravity flow theories use silo discharge as a benchmark for
validation (Brown and Richards 1970). Conversely, the study of the mass flow rate
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from orifices on side walls has been largely neglected and, to our knowledge, only a
few works have been published (Bagrintsev and Koshkovskii 1977; Davies and Foye
1991; Davies and Desai 2008; Franklin and Johanson 1950; Sheldon and Durian
2010; Medina et al. 2013, 2014), perhaps due to the asymmetric flow profile which
occurs close to the vertical wall. Despite it, the practical use of lateral outlets is also
very frequent, for instance, in household silos.

In their seminal papers on the flow of granular solids through circular orifices at
the bottom of silos, (Hagen 1852, see Fig. 7) and more than a century later, Beverloo
et al. (1961) reported that the most suitable correlation to predict the mass flow
rates, m′

0, from bottom exits in open-top bins, silos and hoppers is the so called
Hagen-Beverloo correlation, which has the form

m′
0 = cρg1/2(D − kd)5/2, (1)

where c is the dimensionless discharge coefficient,ρ is the bulk density of the granular
material, g is the acceleration of gravity, k is a dimensionless constant with typical
values k ∼1 − 2 (Brown and Richards 1970; Beverloo et al. 1961; Wieghart 1975)
and d is the mean grain diameter.

Equation (1) expresses that the mass flow rate, when grains are big, is reduced due
to the effect of excluded volume. Conversely, when D � d the term (D − kd) → D
and thus the mass flow rate increases and does not involves the grain diameter.

On the other hand, despite the enormous utility of the granular flow on the side
walls only a few studies have been conducted to test the validity of the Hagen-
Beverloo correlation in such a configuration (Bagrintsev and Koshkovskii 1977;
Davies and Foye 1991;Davies andDesai 2008; Franklin and Johanson 1950; Sheldon
and Durian 2010).

Recently, in a couple of works (Medina et al. 2013, 2014), we derived a formula
for themass flow rate through orifices on sidewalls,m′, that embraces the dependence
on the orifice diameter D and the wall thickness w for granular solids in the limit

Fig. 7 G.H.L. Hagen (http://en.wikipedia.org/wiki/Gotthilf_Hagen)

http://en.wikipedia.org/wiki/Gotthilf_Hagen
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where D � d. In this case, we performed experiments with sand and granulated
sugar and we found that the mass flow rate m′ obeys the relation

m′ = cρg1/2D5/2[arctan(D/w) − θr ] = cρg1/2D5/2[α − θr ], (2)

where now c is an effective dimensionless discharge coefficient for side wall flow,
θr is the angle of repose of the granular material and α = arctan(D/w) has been
termed the angle of wall (Medina et al. 2013, 2014). Equation (2) implies that the
wall thickness of the bin has an important influence on this gravity flow. Moreover,
the frictional nature of the granular material is introduced through the angle of repose
itself: in lateral outflows the flow will occurs if the orifice allows the existence of an
angle of wall larger than the angle of repose (see Fig. 8).

By virtue of these facts it is clear that the wall thickness can be used to control
the discharge rate and the granular flow can be eventually arrested if w exceeds a
critical value which depends also on the angle of repose of the granular material.
From Eq. (2) it is straightforward to estimate the critical value, wc, for which the
outflow will be arrested, i.e., there is no flow at all when m′ = 0 or if α = θr . Thus,
the critical value of w for the arrest, is

wc = D/tanθr . (3)

Experiments made with sand and granulated sugar (granular solids) confirm this
result (Medina et al. 2013, 2014).

3.1 Mass Flow Rate for Large Grains Through Side Walls

Here we report experiments for non-cohesive granular materials made of grains with
large diameters. Specifically, in the experiments we used mustard grains and tapioca
pearls. Mustard has the following properties: mean diameter d = 1.85mm, bulk
density ρ = 0.72 gr/cm3 and angle of repose θr = 22◦. Tapioca pearls have mean

Fig. 8 Schematic view of the bin and holes in the side wall when granular material crosses it.
In a the wall thickness, w, is small, consequently, α > θr and the granular material will pass the
orifice. In b the wall thickness produces the condition α < θr , whence there is no flow
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Fig. 9 a Scheme of a bin
with staggered holes of
different size D; b Top view
of the bin showing the four
different thicknesses of the
face walls

diameter d = 2.2mm, bulk density ρ = 0.57 gr/cm3 and angle of repose θr = 27◦.
Experiments were done in a temperature controlled room (25± 1 ◦C and 45± 10%
R.H.), upon a transparent, acrylic box, 10 × 10cm inner cross-section and 50cm
height.

As it is sketched in Fig. 9, in the acrylic-made bin circular orifices of diameters
D = 2, 2.5 and 3cm were drilled. The wall thicknesses were w = 0.3, 0.4, 0.6 and
0.9cm.

In Fig. 10 we show the corresponding particle size distributions which were deter-
mined by using amicroscope software (Steindorff digital microscope) which allowed
to find the surface area of each particle and its surface diameter. This method yields
the average (median) particle sizes whichwere d = 1.85mm formustard and 2.2mm
for tapioca pearls.

Insets in each plot correspond to pictures of the respective granular materials.
In agreement with the experimental procedure established elsewhere (Medina

et al. 2013, 2014) we need to measure the mass flow rate for exit holes at the bottom,

Fig. 10 Micrographs of the particle shapes of samples of mustard (left-hand side) and tapioca
(right-hand side) used in our experiments
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Fig. 11 Plot of the experimental mass flow rates through holes on side walls, m′, as a function
of ρg1/2(D − kd)5/2[α − θr ]. The linear fit given by Eq. (4) yields c = 0.13 for mustard and (a)
c = 0.15 for tapioca (b). Error bars are of 4%

m′
0. This procedure allows us to find that m′

0 ∼ ρg1/2(D − kd)5/2 for both types of
grains. Moreover, we have found that k = 1.5 for mustard and k = 1 for tapioca.

Plots of the mass flow rates measured for holes on the side walls, m′, as a function
of ρg1/2(D − kd)5/2, [arctan(D/w) − θr ] show that the experimental data for both
granular materials were well fitted by straight lines (see Fig. 11). So, the best relation
that fits the experimental data has the form

m′ = cρg1/2(D − kd)5/2[arctan(D/w) − θr ], (4)

where the dimensionless discharge coefficient c has the value c = 0.13 for mustard
and c = 0.15 for tapioca.

From these results, we can establish that Eq. (4) is a generalized Hagen-Beverloo
law for the mass flow rate of holes on the side walls. Incidentally, by employing the
several values of D used in the experiments with mustard and tapioca and using their
respective angles of repose, we have verified that relation (4) predicts very accurately
the thicknesses of the walls for which the outflow will be arrested.

4 Tilted Bins

4.1 The Problem

Here we report a series of experiments of the discharge for tilted bins. Bins with
orifices in a side face of a rectangular acrylic-box were gradually inclined from the
horizontal position up to the position where the granular flow is arrested in order to
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quantify the dependenceof themassflow rate onβ, the angle of tilt. Toour knowledge,
investigations of this character are very scarce. Franklin and Johanson (1950) studied
systematically the effect of the inclination on the flow rate by taking into account the
horizontal and vertical cases and two other intermediate angles. Later, Sheldon and
Durian Sheldon and Durian (2010) reported similar studies where the Franklin and
Johanson’s correlation was maintained. Here, we consider the fact that the bin walls
have a finite thickness, and as a consequence this will bias the determination of the
mass flow rate at a given angle β.

In summary, we will contrast through experiments the new findings for the flow
rate in tilted bins with those recently published by other authors (Sheldon and
Durian 2010; Liu 2014). A general correlation valid for the angles of inclination
will not be reached, but, instead solid arguments related to the flow occurrence will
be featured.

4.2 The Franklin and Johanson Formula

Near 60years ago, Franklin and Johanson (1950) established, by using a logical
reasoning, that the mass flow rate from an inclined, circular orifice at an angle θ with
the horizontal, is given by the relation

m′
θ = m′

0

(
cos θr + cos θ

cos θr + 1

)
, (5)

where θ is measured counterclockwise, θr is the angle of repose and m′ is the flow
rate through a horizontal orifice, which essentially is given by the Hagen’s law

m′
0 = aρg1/2D5/2, (6)

where a is the discharge coefficient.
From Eq. (5) it is clear that if θ = 0, m′

θ = m′
0, meanwhile if θ = π − θr

then m′
θ = 0. When θ = π / 2 Eq. (6) suggests that the flow rate for the vertical

case is directly obtained from the flow rate in the horizontal case by simply using
the multiplying factor cosθr/(cosθr + 1). As mentioned above, this result is not
correct because in the vertical case the wall thickness determines the existence of the
flow, even for the ideal case where the wall thickness is zero (sharp-edge hole). As
was mentioned previously, in our formula we have that α = π/2 and consequently,
m′ = m′

0(π/2 − θr ) which fit the experimental data very well. Thus, a correct
correlation for the flow rate among the horizontal and the vertical cases must include
information about the wall thickness.

In order to derive a correct formula valid for a wide range of tilt angles we have
performed a set of experiments that also involve changes in D, w and θr . We describe
such experiments in the next section (Fig. 12).



170 D.A. Serrano et al.

Fig. 12 Picture of sand jets
emerging from a tilted bin

4.3 Experiments

In this work, the simultaneous effects of D, w, β and θr on the mass flow rate are
examined. As in our previous studies (Medina et al. 2013, 2014) here we employ
well characterized dry and non cohesive materials like sand beach (composed of
irregular grains of mean diameter d = 0.03cm, bulk density ρ = 1.5± 0.01 gr/cm3

and angle of repose θr = 33◦ ± 0.5◦ = 0.57 ± 0.008 rad) and granulated sugar
(mean diameter d = 0.073cm, bulk density ρ = 0.84 ± 0.01g/cm3 and angle of
repose θr = 33.5◦ ± 0.5◦ = 0.58± 0.008 rad). These materials are made to emerge
from circular orifices of diameters D = 0.9, 1 and 2cm made on the side faces of
an acrylic-made box having walls with w = 0.3 and 0.9cm. The experiments were
carried out in a temperature controlled laboratory (25 ± 1 ◦C and 45 ± 10% R.H.).

Experiments were performed using a transparent box, 10 × 10cm2 inner cross-
section and 50cm height. Four different face-wall-thicknesses were used: w = 0.3,
0.4, 0.6 and 0.9cm. A schematic of the experimental setup is given in Fig. 13 where

Fig. 13 Scheme of the
experimental setup
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Fig. 14 Plot of the measured mass flow rates in tilted bins, m′
βexpt , as a function of the tilt angle,

β, through circular orifices. In a we use sand and orifices of diameter D = 1cm and face walls
of thicknesses w = 0.3cm and w = 0.9cm to notice the effect of w. In b granulated sugar were
employed and in this case we used holes of diameter D = 2cm. Lines connecting the data were
draw for visual facility, error bars are of 4%

the bin is tilted up to the desired angle β with the vertical (measured clockwise),
the granular jet emerging perpendicular to the face wall is gather into a reservoir
fixed to a digital force sensor. Details of the measurement procedure of the discharge
rates with a force sensor model Pasco CI-6537 are given elsewhere (Medina et al.
2014). In the current experiments we found that the wall friction coefficient among
granulated sugar and acrylic was μw = 0.70± 0.01, while among sand beach and
acrylic it was μw = 0.80± 0.01.

At a first stage, the mass flow rates for a given angle β were measured for face
walls having wall thicknesses with values w = 0.3 and 0.9cm. For each face wall
several circular orifices were drilled. In Fig. 14 we show the experimental values of
m′

βexpt , as a function of β, for both materials which show a sine-like behavior. It
is important to comment that the flows of sand and sugar were arrested at different
critical inclination angles,β∗, for sand:β∗ = −0.26 rad if D = 1cmandw = 0.9cm,
while β∗ = −0.76 rad if D = 1cm and w = 0.3cm. For sugar β∗ = −0.57 rad if
D = 2cm and w = 0.9cm and β∗ = −0.83 if D = 2cm and w = 0.3cm. Another
important physical fact in this figure is that for the same orifice size but large tilt
angles β the flow rate is stronger in the orifices of larger thickness!

4.4 The Formulation of a Correlation

The search of a general correlation that embraces the dependence of the flow rate
m′

β on D, w and β deserves a careful analysis. At a first glance it is easy to con-
clude that if the vertical wall is considerably thick, there will be no efflux of granular
material through the orifices. Thus, the influence of the wall thickness, w, must be
present wherever the granular flow occurs. Here we introduce a correlation that is
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valid for a wide range of values of β, including the cases β = 0 (vertical orifices)
and β = β∗ (the critical negative inclination when the flow is arrested). More-
over, it must be valid for the vertical case and it will be a sine-like function to take
into account the experimental behavior given in the previous section. Therefore, we
propose that

m′
β = cṁ0 (β + α − θr )

sin (β + α − θr )

sin (α − θr )
, (7)

which yields

m′
β = 0, if β = −(α − θr ), (8)

when the flow is arrested, and

m′
β=0 = cm′

0 (α − θr ) , if β = 0, (9)

which is a general correlation valid for the vertical cases (Medina et al. 2013, 2014).
In order to show that Eq. (7) gives a correct correlation for circular orifices, we

display in Fig. 14 the experimental flow rates, m′
βexpt , versus the theoretically pre-

dicted, m′
βT , given by Eq. (7). From Fig. 14 we see that straight lines fit very well the

experimental data obtained when the bin is gradually tilted.
In our experiments with sand we found that the value of c was c = 0.070± 0.002

if D = 0.9cm and w = 0.9cm, i.e., with a wall angle α = 0.57 rad; if D = 1cm
and w = 0.9cm, then α = 0.83 rad and we have that c = 0.083 ± 0.002. For sugar
c = 0.066± 0.002 if D = 0.9cm and w = 0.9cm; if D = 1cm and w = 0.9cm we
have that c = 0.083±0.002 and finally, c = 0.127±0.002 if D = 2cm, w = 0.9cm
and α = 1.15.

Actually, we found that m′
β as given by Eq. (7) reaches a maximum value and then

decreases. So, this theoretical formula is not valid in a region close to β → π/2. To
estimate such a value, we compute dm′

β/dβ. It yields that

β + α − θr = − tan [β + α − θr ] . (10)

Consequently, to get the maximum value βm we need to solve the transcendental
equation x = −tanx , where x = βm + α − θr . Whence the general solution of
Eq. (10) is

βm = 2.028 − (α − θr ), (11)

where the value 2.028 is correct up to a numerical precision of 10−13. Thus, for
each couple of values (α, β) we get a value of βm , where the maximum occurs. This
criterion was used to build the plots in Fig. 15. Finally, we note that this formula is
worst if α is large. Incidentally, we have plotted in Fig. 16 m′

βT , given by Eq. (7), as
a function of β in order to show that this later plot is similar to the plots in Fig. 14.
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Fig. 15 Plots of the experimental mass flow rates: a for sand beach and b for granulated sugar

Fig. 16 Plot of Eq. (2) by using data from our experiments

5 Pressures in a Silo

As it was mentioned before, pressures in quiescent liquids (White 1994) and in non-
cohesive granular materials at rest (Janssen 1895) are quite different among them.
Consider a vertical cylindrical container filled with a granular material. The vertical
pressure on a horizontal plane at a certain depth below the surface of the material
does not increase linearly with depth, as it would be for a normal liquid. Instead, the
Janssen’s model predicts that this pressure tends to a constant value independently
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of depth. The origin of this behavior is in the static friction between the grains and
the walls of the container. Due to this friction, the container walls can support part
of the weight of the material.

The validity and possible shortcomings of the simple theory underlying the orig-
inal Janssen model have been extensively tested experimentally and numerically.
Janssen himself carried out experiments to measure the pressure on the base of a silo,
and apparently found good agreement with his theoretical results. However, careful
laboratory observations have revealed serious difficulties in the measurements of this
vertical pressure, with the results depending on the method of filling and even on the
jamming of the displacement of the piston employed tomeasure the pressure. Precise
and reproducible pressure profiles have been measured in some carefully designed
experiments, and molecular dynamics simulations which rely on the notion that
the grains have settled to a final state (Landry et al. 2003) have reproduced these
measurements. A comparison shows that the predictions of Janssen model are rea-
sonably good for most of the granular material but degrade in a region around the
top of the column where the pressure varies nearly linearly with vertical distance.
This discrepancy has led to modifications of Janssen’s model. Among these, a two-
parameter modification, which suppresses friction with the wall in an upper slice of
the column, improves the agreement with the experimental and numerical vertical
pressure profiles in that region.

Here we explore the main changes between the pressure distributions and traction
forces due to the use of Janssen’smodel and themodified Janssen’smodel. In a recent
work we have shown that the measurements of the traction force that the granular
material exerts on the wall overcomes the difficulties often encountered in the direct
measurements of the vertical pressure on a piston, which are due to jamming of the
piston displacement induced by the compression force. Measurements of the traction
force give further evidence of the existence of a region not predicted by the original
Janssen model.

5.1 Calculation of the Pressure and Traction Force in the Silo

Consider a cylindrical vertical tube of radius r0 filled with a dry granular material to
a certain height H. Take a horizontal section of the tube at a depth z in the granular
material. According to Janssen’s model, the force exerted per unit area of this section
by the material above it on the material below is a vertical pressure pz(z). This
pressure is not equal to the horizontal pressure pr (z) of the material on the wall of
the tube at the same depth, but the two pressures are linearly related by Janssen (1895)

pr (z) = K pz(z), (12)

where K, called the Janssen parameter, is a dimensionless constant that characterizes
the conversion of vertical stress into horizontal stress within the granulate.
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The horizontal pressure acting on the wall of the tube causes a vertical friction
stress τ between the wall and the granular material. A simple balance of the vertical
forces acting on a slab of the granular material gives

πr20
dpz

dz
= πr20ρg − 2πr0τ, (13)

where ρ is the bulk density of the granular material, assumed to be independent of z.
In the original Janssen’s model, the vertical friction stress is assumed to be given by
Coulomb’s law, τ = μw pr , with a constant static wall friction coefficient μw. The
solution of Eq. (13) with the condition pz(0) = 0 is then

pz(z) = PJ (z), (14)

with

PJ (z) = ρgλ
[
1 − exp

(
− z

λ

)]
and λ = r0

2μw K
. (15)

Equation (15) shows that the vertical pressure increases linearly with z, as pz(z) ≈
ρgz , for z/λ 
 1 and tends to the limiting value λρg for z/λ � 1. The length λ is
the characteristic size of the region where the pressure undergoes this transition. In
laboratory columns λ ≈ 0.1m, and so the wall of the container supports most of the
weight of the grains when H �1m.

As it was modified above, the two-parameter model suppresses friction with the
wall in a slice at the top of the column by making τ = 0 for z < a and τ = μw pr

for z > a, where a, the thickness of the frictionless slice, is the second parameter of
the model. The solution of Eq. (13) is then

pz(z) =
{

ρgz for z < a

ρga + (
1 − a

λ

)
PJ (z − a) for z > a.

(16)

The vertical shear stress τ(z) causes an additional deformation of the wall of a
tube filled with granular material. The maximum vertical force acting on the wall of
a tube filled to a height H is

T (H) = 2πr0 ∫H
0 τ(z)dz = TJ (H), (17)

with

TJ (H) = πr20ρg

{
H − λ

[
1 − exp

(
− H

λ

)]}
. (18)

The experimental test of the previous equations will be left for future work.
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6 Conclusions

In this work we have studied experimentally the problem of the mass flow rate of
granular material through circular orifices on vertical side walls of bins as a small
step toward understanding grains flowability. We have shown that friction (the angle
of repose) plays an essential role in all these cases through the existence of a limit
of flowability. In a first case, we have studied, simultaneously, the dependence of m′
on the diameter of the orifice, the grain’s diameter and the wall thickness by using,
well characterized, round grains of mustard and tapioca. Experiments show that the
excluded volume effect occurs for big grains through the term (D − kdg)

5/2. Thus
the estimation of the mass flow rate for holes on side walls satisfies, very accurately,
the formula m′ = cρg1/2(D − kd)5/2[arctan(D/w) − θr ], where in our experiments
the dimensionless discharge coefficient has the value c ∼ 0.1, when the cgs units
are used. Thus, we believe that Eq. (4) is a general formula valid in a wide range of
practical configurations.

In a second case we have studied experimentally the problem of the mass flow
rate of granular material through circular orifices in tilted bins. Our new correla-
tion Eq. (7) takes into account the wall thickness which other models consider as
obvious (Franklin and Johanson 1955; Sheldon and Durian 2010; Liu 2014). Con-
sequently, we have proposed a new correlation that predicts the value for which the
flow is arrested β∗ = −(α − θr ), and it reduces to Eq. (9) when β = 0. Moreover,
the current model is correct up to a value close to π/2. The theory fits pretty well
the experimental data for a wide range of cases. Finally, we hope the new predic-
tions of our modified Janssen model of pressures and traction can be experimentally
corroborated soon.
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Some Aspects of Turbulence Role
in Oceanic Currents

A. Ruiz Angulo

Abstract This manuscript is intended to review some of the methods used to
estimate oneof themost useful parameters inOceanModeling: the diapycnal diffusiv-
ity. Specifically it focus on simultaneous measurements carried out at two different
locations in the deep ocean. The techniques reviewed here to estimate diapycnal
mixing in the ocean interior are: tracer-release experiments, microstructure direct
measurements and fine-structure estimates based on LADCP/CTD data. There are
only few data sets in the world that have simultaneous measurements of the three
techniques mentioned above. The importance of the lack of spatial and temporal
estimates of the turbulent mixing parameters and the implication of those parameters
on modeling the Global Circulation are also reviewed.

1 Introduction

The Global Ocean Circulation is a vastly studied topic and yet several aspects remain
uncovered. The big picture of the General Ocean Circulation is captured by the
relatively recent concept of Thermohaline Circulation or Conveyor Belt (Gordon
1986; Broecker 1987b; Rahmstorf 2003). From this point of view, the main oceanic
currents follow large scale trajectories; however, those main streams derivate into a
very large number of smaller circulation trajectories. Some of those small deviations
from the big picture are completely unpredictable. Thus, despite the fact that the large
picture of the Ocean Circulation can be captured on a closed and relatively stable
system, to complete the picture it is necessary to include the small scales along with
their turbulent nature.

The resolution of the General Circulation Models (GCM) does not, until now,
resolve turbulent mixing (Baumert and Peters 2009); therefore, the governing equa-
tions used by the models need to parametrize the turbulence. This manuscript mainly
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focuses on the vertical turbulent diffusivity parameter, which is often related with
the diapycnal mixing. In the ocean the vertical stratification is much larger than
the horizontal stratification. The diapycnal mixing is a mechanical process, which
allows water parcels to cross an isopycnal surface (surface of same density) and
mix with adjacent water masses. This parameter can be estimated either using direct
measurements or by an estimation technique known as “fine-structure parametriza-
tion”. Additionally, a third method, tracer release experiments, allows to estimate
both horizontal and vertical diffusivities. In the following sections those techniques
will be briefly described and compared in two simultaneous experiments that have
been carried out with the participation of the author.

The first twomethods provide only snapshots at single points (stations), which are
not completely representative neither for the spatial nor for the temporal variability.
This issue jeopardizes the observations as very long term time series covering large
areas in the interior of the ocean are required and this is rather impossible. There-
fore, there are big efforts on developing proper parametrizations of the small scale
variables, which could be measured in situ, to be integrated into the GCM’s. The
third method, tracer release experiment, provides temporally and spatially integrated
effects of turbulence, but the method is constrained to be within few density levels
from the injection point, which does not represent the entire water column.

This manuscript points out the importance of the topography of the seafloor
(e.g. sea mounts, submarine canyons, ridges, etc.), which in certain cases consti-
tute “hotspots” for high values of diapycnal mixing. In order to close the global
overturning circulation, numerically, there is a deficit of diapycnal mixing (missing
mixing). Thus, to properly model the general circulation it is necessary to have larger
datasets of those turbulent coefficients to be integrated into themodels. Observational
evidence suggests that the diapycnal mixing spans a range of average diapycnal dif-
fusivity values from 0.1cm2 s−1 on the open-ocean with smooth abyssal plains to
10cm2 s−1 for the rough topography (Polzin et al. 1997; Thurnherr et al. 2005). The
importance of proper diapycnal mixing parametrizations is not only global, which
has evidently great importance on Climate modeling; regionally, modeling the dis-
persion of contaminants such as oil spills requires the access of those parameters for
proper implementations.

1.1 Ocean General Circulation

The main concept of the Ocean Circulation was first published in the late 80’s by
Gordon (1986) and Broecker (1987b). Remarkably both authors came up to similar
conclusions based on very different methods. The first sketches of this patterns are
shown in Fig. 1. Although the thermohaline circulation, THC, has been modified
from its first sketches, the main concept has not changed much. The THC is driven
by density differences, the water density of the ocean is a function of temperature (T),
salinity (S) and pressure (p) ρ = ρ(S, T, p). The result is explained from the intense
upper currents in the Atlantic “... when these waters reach the vicinity of Iceland,
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Fig. 1 The Ocean General Circulation as first depicted by Gordon (1986) (a) and Broecker (1987b)
(b). Both figures show where the deep and cold water sink and the regions where those upwell

they are cooled by the cold winter air that streams off Canada and Greenland. These
waters, which arrive at 12–13 ◦C, are cooled to 2–4 ◦C. The Atlantic is a particularly
salty ocean, so this cooling increases the density of the surface waters to the point
where they can sink all the way to the bottom. The majority of this water flows
southward, and much of it rounds Africa, joining the Southern Ocean’s circumpolar
current” (Broecker 1991).

Based on those early studies, the big picture of the circulation was driven by
the cooling at high latitudes. Recent studies have shown that the Southern Ocean
is more relevant for the closure of the Meridional Circulation (Marshall and Speer
2012). Nevertheless, the small scale mixing is an important quantity that needs to be
properly parametrized to be included in the General Circulation Models, as it has a
huge impact on the Climate (Broecker 1987a; Rahmstorf 2003).

1.2 Turbulence in the Ocean

In general, turbulence is a concept which is rather hard to define. In this manuscript
turbulence intensity is defined as the rate at which energy is being transferred from
large scale features to smaller scales. From the classical fluid dynamics point of
view, most of the processes in the ocean are turbulent (large Reynolds numbers).
The turbulent parameters that are covered in this text are an effective diffusivity
which includes the parametrization of turbulence and is used on the GCM’s. There
are several assumptions which will not be covered but one of the most important
is that the diapycnal mixing is the same for density, temperature and salinity, i.e.,
Kρ = KT = KS . The turbulent intensity is high enough to neglect the differential
diffusivity (Ruiz-Angulo 2007). The turbulent diffusivity, K , in the interior of the
ocean is of the order of ∼10−5 m2/s. This quantity is inferred from the dissipation
rate of turbulent kinetic energy, ε, following the Osborn relationship (Osborn 1980):
K = Γ ε

N2 , where Γ is the mixing efficiency and N 2 is the Brunt-Väisälä frequency,
defined as:
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N 2 = − g

ρ0

∂ρ

∂z
, (1)

where g is the acceleration due to gravity, ρ0 is a reference density and ∂ρ
∂z is the

vertical density gradient. In order to break a stable stratification or mix water masses,
it is required to input some energy into the system. In the absence of statically unstable
patches in thewater column, the energy comes from thevertical shear of the horizontal
velocity components as a shear instability mechanism as a source of turbulence. The
total vertical shear is defined as:

S =
[(

∂U

∂z

)2

+
(

∂V

∂z

)2
]1/2

. (2)

The ratio of them is known as Richardson number, Ri = N 2

S2 , which is the

ratio of the oscillation characteristic time of a water parcel and the vertical shear
characteristic time. These two terms are constantly competing in the interior of the
ocean; Ri defines the onset of instability,which locally leads tomixing. Theoretically,
it could be shown that Ri < 0.25 is the necessary condition for the vertical shear
characteristic time to overcome the Brunt-Väisälä oscillation characteristic time so
that turbulent mixing is expected to occur. This onset could be reached by different
ways. One of the mechanisms that has been proposed in later years is produced
by the interaction of Internal Gravity Waves, which are ubiquitous in the oceans
interior. The interaction between hydrodynamic processes (barotropic tides) and the
ocean floor topographic features such as sea mounts, ridges, submarine canyons,
etc., enhance turbulent mixing (Toole et al. 1997; Kunze et al. 2006). Internal wave
driven by mixing is the basis of the parametrizations that will be discussed in this
paper. In particular, “fine-structure parametrization” method is based on wave-wave
interactions.

2 In-Situ Measurements

The diapycnal mixing estimates are obtained based on several measurements. This
manuscript briefly explains “fine-structure”, “microstructure” and tracer release ex-
periments. All of them have shown that there is evidence of high mixing rates over
rough topography (Ledwell et al. 2000;Kunze et al. 2006). The two regions presented
in this manuscript are unique in the sense that they have experienced almost simul-
taneously all three methods. Figure2 shows the regions where the measurements
were taken.

The temporal and spatial scales for both projects are quite different. However,
they were some of the first experiments used to compare and validate the existing
techniques to estimate diapycnal mixing rates. The next section will discuss the
different methods and the results of them will be addressed in the discussion.
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(a) (b)

Fig. 2 Detailed maps of the survey regions for the two different projects: a LADDER, Larval
dispersal on the deep east Pacific rise and b DIMES, Diapycnal and Isopycnal mixing experiment
in the southern ocean

2.1 Fine-Structure Parameterization

The particular “fine-structure parametrization” described in thismanuscript is used to
estimate the vertical diffusivity parameters based on hydrographic profiles
(temperature, salinity and pressure) and velocity profiles (zonal and meridional
velocities). These variables are some of the most vastly measured quantities in
the ocean using LADCP/CTD casts (Lowered Acoustic Doppler Current Pro-
filer/Conductivity Depth Temperature). From those profiles, the internal wave field

shear, VZ , (Eq. 2) and strain, ξz = N2−N̄2

N̄2
, can be estimated. This internal wave field

undergoes non-linear interactions and departs from a wave field of reference com-
monly called “Garrett-Munk spectrum”. Themore it departs from this semi-empirical
background spectrum the more/less turbulent mixing results. The scalings of turbu-
lence in the ocean interior resulting fromwave-wave interactions have been validated
since 1989 (Gregg 1989). Those methods have been improved from the shear-based
parametrization (Gregg 1989), to the strain-based parametrization with a prescribed
shear/strain variance ratio (Polzin et al. 1995), and finally the combination of both:
shear-and-strain-based parametrization (Gregg et al. 2003).

These “fine-structure” approaches have been used to estimate diffusivities as part
of a very large ongoing project, CLIVAR (Climate Variability and Predictability),
which among many other measurements performs LADCP/CTD measurements on
routinely basis. Kunze et al. (2006) performed one of the most exhaustive estimates
of diapycnal mixing using the databases from that particular experiment. He kindly
provided the code used in Kunze et al. (2006) and after validating it, it was possible to
observe for the LADDER project large values of dissipation near the seamount chain.

2.2 Microstructure Direct Measurements

The microstructure measurements are performed with an autonomous device, which
contains several probes with high resolution: shear probes (∂u/∂z and ∂v/∂z),
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temperature, conductivity, accelerometers and pressure. The probes on the instru-
ments need to be in contact with unperturbed water, trying to be the least intrusive to
the shear layers in the water column. To achieve these conditions the instruments are
deployed and left in free-fall until they reach a terminal velocity. As they approach
the pre-programed depth, they release the weights that make them sink and the in-
strument comes back to the surface. To analyze the data it is required to make several
corrections to compensate the tilting and the rotation during the descent. From the
shear measurements it is possible to estimate dissipation from the total shear. The
buoyancy frequency is estimated from the measurements of temperature, conductiv-
ity (salinity) and pressure using the equation of state of seawater. This data sets are
direct measurements, for shear, the dissipation and diffusivity variables are obtained
from typical relations using the typical mixing efficiency values.

2.3 Tracer-Release Experiment

This experiment consists of releasing a tracer patch at a given depth. The tracers need
to be inexistent in the environment they will be released. Thus, they tend to be gases
that will dissolve in water at those high pressures. After the tracer injection, it spreads
vertically and horizontally, depending on the spatial scales of the experiment, and
the tracer is sampled over time scales of months or years. For example, the LADDER
experiment had a relatively small spatial scale and the tracer was sampled for months
after the injection. On the contrary, the DIMES experiment is quite large and it has
taken over 5years to sample the tracer. Together with sampling the tracer there have
been a lot of other instruments and research teams, making of this experiment one of
the largest in the world. For a detailed description on the estimation of the turbulent
diffusivity from the tracer injection, we refer to the appendix in Watson et al. (2013).

3 Observations and Results

The oceanic expeditions presented in Fig. 2 highlighted the importance of rough
topography as “hotspots” for high levels of mixing. This high levels are crucial to
mix the deep waters. For the EPR case, the location of the sea mounts and the ridge
for the EPR determine the spatial patterns of the turbulence (Fig. 3), which are of
the order of ∼10−4 m2/s2 in between the seamounts and below the crests of the
ridge. That value is consistent with the tracer release experiment carried out a year
before the fine-structure/microstructure cruise (Jackson et al. 2010). However, it is
important to notice that K ∼ O(1/N 2), therefore the smaller is the stratification,
N 2, the larger are the values of K . However, if the stratification is high (high strain
values) the onset of instability, based on Richardson number and leading to turbulent
mixing, requires higher shear levels.
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(a)

(b)

Fig. 3 a Section of the EPR seamount showing the microstructure dissipation rates, and b a map
of the first 500m above the seafloor integrated dissipation rates

(a) (b)

Fig. 4 a The Drake passage on a exaggerated 3D view has a rather rough topography compared to
the west of Chile where DIMES US2 took place for most of the stations. b The tracer distribution
shows a rather different distribution on the early stations of the Drake passage

The spatial variation on the diffusivity values associated with the changes on
the ocean floor topography was also observed during the DIMES expedition US2.
As shown in Fig. 4, the sampled area to the west of the Drake passage has a rela-
tively smooth bathymetry. The corresponding diffusivity values derived from “fine-
structure”, microstructure and tracer release experiment were typical background
values. Near theDrake passage, the abrupt change in bathymetry (Fig. 4) is correlated
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to high mixing levels. The “fine-structure” estimates, the microstructure measure-
ments and the tracer released experiment method showed high levels of diapycnal
mixing (Ledwell et al. 2011; St. Laurent et al. 2012; Watson et al. 2013), i.e. about
one order of magnitude higher than the background values.

4 Summary

The importance of mapping the hotspots regions for diapycnal mixing is an ongoing
worldwide effort, which has shown evidence of regions with high turbulent diffusiv-
ity values. The DIMES experiment belongs to one of those efforts since encompass
The Circumpolar Current, which plays an important role in modulating the world
climate. The measurements presented in this paper show a relatively good agree-
ment among them; however many more experiments to validate the methods are
needed. Specifically on regions that are shear dominated, strain dominated or both.
The “fine-structure” method is one of the cheapest and there are by far many more
datasets spanning large areas of the ocean including sections that are visited con-
tinuously. For example, the currently ongoing project CLIVAR (Climate Variability
and Predictability), which among many other measurements performs LADCP/CTD
measurements on routinely basis. Kunze et al. (2006) performed one of the most ex-
haustive estimates of diapycnal mixing using some of those databases. The downside
of this method is the low effective vertical resolution usually given by the LADCP
∼50mm, in contrast with the microstructure profiler ∼1mm. The tracer experiment
provides a very accurate estimation with the downside that is only a small region
above and below the injection point. However, one of the beauties of this method is
the possibility of estimating the horizontal and vertical turbulent diffusivity. There
is until now a continuous effort on improving the methods. Additionally, there are
other methods that were not mentioned here, which complement enormously the
effort of mapping the world turbulent diapycnal mixing. The methods mentioned
above are usually good for the ocean interior leaving the coastal regions abandoned.
The mixing processes around coastal regions is very important regionally and also
needs a proper parametrization for the correct implementation of regional models.
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Abstract This paper describes Alya Red CCM, a cardiac computational modelling
tool for supercomputers. It is based on Alya, a parallel simulation code for mul-
tiphysics and multiscale problems, which can deal with all the complexity of bio-
logical systems simulations. The final goal is to simulate the pumping action of
the heart: the model includes the electrical propagation, the mechanical contrac-
tion and relaxation and the blood flow in the heart cavities and main vessels. All
sub-problems are treated as fully transient and solved in a staggered fashion. Elec-
trophysiology and mechanical deformation are solved on the same mesh, with
no interpolation. Fluid flow is simulated on a moving mesh using an Arbitrary
Lagrangian-Eulerian (ALE) strategy, being the mesh deformation computed through
an anisotropic Laplacian equation. The parallel strategy is based on an automatic
mesh partition using Metis and MPI tasks. When required and in order to take
profit of multicore clusters, an additional OpenMP parallelization layer is added.
The paper describes the tool and its different parts. Alya’s flexibility allows to eas-
ily program a large variety of physiological models for each of the sub-problems,
including the mutual coupling. This flexibility, added to the parallel efficiency
to solve multiphysics problems in complex geometries render Alya Red CCM a
well suited tool for cardiac biomedical research at either industrial or academic
environments.
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1 Introduction

Under Alya Red we group all the biomedical research projects whose central
simulation tool is (Alya System 2015), including some specifically developed soft-
ware. The resulting software is then targetted to biomedical research and based on
a general purpose simulation code for coupled multiphysics and programmed for
parallel computers. This strategy allows a great flexibility to cover the wide range of
problems found in biological systems, with all of them seen in the same way and as
any other engineering problem: systems of differential equations coupled together
(Fig. 1).

The final goal of its developers is to put in the hands of biomedical researchers a
multiphysics cardiac simulation tool based on High Performance Computing (HPC)
techniques, capable of efficiently running in thousands of cores. The simulation tool
should be as comprehensive as possible, recreating with the highest detail the heart
at organ level, focusing on the electro-mechanical behaviour as it pumps blood to
and from the system (Fig. 2).

The proposed tool targets the following aspects:

• Large geometries: data coming from high definition acquisition and processed
through clinical image treatment. High resolution at both geometrical and mate-
rial levels, producing high resolution meshes in both electrical and mechanical
problems.

Fig. 1 The cardiac computational model CCM general scheme
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Fig. 2 Organ systems versus levels of organizations. Extracted from Thomas et al. (2008)

• Complex physiological models: electrophysiological, material and coupling mod-
els of high complexity, with thousands of degrees of freedom per node.

• Multi-physics problems: electrical activity, mechanical deformation and blood
flow.

In this paper we focus in the electro-mechanical problem.

2 Alya, an HPC-Based Computational Mechanics Tool

2.1 General Description

Alya is an HPC-based simulation tool for coupled multi-physics problems (see for
instance (Houzeaux et al. 2008, 2011). On general terms, it is a numerical solver for
coupled systems of partial differential equations (PDE), discretized on unstructured
meshes. It has a large database of element types, including low and higher order,
up to Q3. Transient problems are solved with either explicit or implicit schemes,
with time integration schemes of different order. Except for METIS (Metis 2015)
and low level libraries (such asMPI),Alya has no dependency on third-party libraries,
being all solvers developed in-house. It is written in a modular way, with a kernel
that includes all the functionalities required to solve the physical problems including
parallelization and a set of modules, where each module represent a different PDE.

At the organ level, the cardiac computational model requires the solution of
the electrical component, which is a non-linear reaction-diffusion system; and the
mechanical component, which produces the deformation and a coupling model to
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link both problems together. In the next sections, we explain each model and how
they are coupled.

2.1.1 Electrophysiological Models

The activation potential propagation is modelled using an excitable media model,

∂φα

∂t
= ∂

∂xi

(
Dij

∂φα

∂x j

)
+ L(φα). (1)

which consists of a diffusion equation with anisotropic diffusion tensor Dij (Rubart
and Zipes 2001; Coghlan et al. 2006) and local non-linear terms. The anisotropy
comes from the fact that the cardiac tissue is made of muscular fibers with different
diffusion along or transversal to the fibers. The non-linear term L(φα) represents
the ionic current Iion cell model, ranging from simple phenomenological schemes
(FitzHugh 1961) up to more complex and physiologically meaningful models (Tuss-
cher et al. 2004). Then, the electrophysiology modelling equations are labelled with
Greek subindices for the activation potentials involved.We focus here in the so-called
monodomain models, where intra- and extra-cellular potentials are modelled with
one single equation, so α = 1. The electromechanical impulse, that is to say the
electrical activation which drives muscular contraction starts at the junctions of the
Purkinje network. In our model, synthetic networks are generated for each geometry
(Sebastian et al. 2012).

2.1.2 Mechanical Models

The myocardium is modelled as a compressible solid, with three-dimensional ele-
ments. The material model is hyper-elastic, with anisotropic behaviour ruled again
by the fiber structure. In this work, we use a transversally isotropic version of
a Holzapfel-Ogden material (Holzapfel and Ogden 2009), already presented by
Lafortune et al. (2012). We briefly describe it in this section.

In a total-Lagrangian formulation, the governing equations are written as:

ρo
∂2ui

∂t2
= ∂ PiJ

∂ X J
+ ρo Bi . (2)

The Cauchy stress σ = J−1 P FT , is defined through the Piola-Kirchoff PiJ , the

deformation gradient FiJ = ∂xi

∂ X J
and its Jacobian J . Stress is a combination of

active and passive parts:

σ = σ pas + σact (λ, [Ca2+]) f ⊗ f (3)
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Fig. 3 Purkinje network
terminations on the
ventricles endocardiac wall.
Extracted from Arís (2014)

The passive part is governed by a transverse isotropic exponential strain energy
functionW (b) that relates theCauchy stressσ to the rightCauchy-Green deformation
b. The passive stress is then

Jσ pas = (a eb(I1−3) − a)b + 2a f (I4 − 1)eb f (I4−1)2 f ⊗ f + K (J − 1)I . (4)

The strain invariant I1 represents the non-collagenous material while strain invariant
I4 represents the stiffness of the muscle fibers, and a, b, a f , b f are parameters to be
determined experimentally. K sets the compressibility, while vector f defines the
fiber direction (Fig. 3).

2.1.3 Electromechanical Coupling

The active part of the material model drives the electromechanical action. It depends
on the ionic concentration in the tissue. The electrical component is initiated where
the Purkinje system delivers the initial impulse and simulates the transmembrane
potential propagation.

Cardiacmechanical deformation is the result of the active tension generated by the
myocytes. The model includes passive and active properties of the myocardium. It
assumes that the active stress is produced only in the direction of the fiber and depends
on the calciumconcentration of the cardiac cell, as describedbyNiederer et al. (2006):

σact = γ
[Ca2+]n

[Ca2+]n + Cn
50

σmax (1 + β(λ f − 1)). (5)
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In this equation, Cn
50, σmax and λ f are model parameters. We have introduced a para-

meter 0 < γ < 1 to calibrate the amount of active stress and measure its sensitivity.

2.1.4 Blood Flow

In this model, blood is considered as incompressible and Newtonian. The time
discretization is a second order backward differentiation scheme. Linearization
is done using the Picard method. The space discretization is based on the finite
element method, combined with a variational multiscale method (VMS) described
by Houzeaux and Principe (2008). At each time and linearization iteration, the fol-
lowing system is solved:

[
Auu Aup

Apu App

] [
u
p

]
=

[
bu

bp

]
(6)

where u and p are velocity and pressure nodal unknowns. Avoiding the use of com-
plex preconditioners to account for the velocity-pressure coupling for the monolithic
system, an algebraic fractional scheme is used (see Houzeaux et al. 2011). Through
this scheme,we segregate velocity and pressure systems at the algebraic level, solving
the pressure Schur complement using an iterative method (herein the Orthomin(1)).
This strategy offers twomain advantages. Therefore, one shot of the method involves
the solution of the momentum equation and the solution of a symmetric system for
the pressure (Laplacian) representing the continuity equation. The momentum equa-
tions usually converge very well, even with a simple diagonal preconditioner. On
the contrary, the continuity equation is much stiffer, so it is solved with the Deflated
ConjugateGradient solver (DCG) (Löhner et al. 2011), togetherwith a linelet precon-
ditioner when anisotropic boundary layers (Soto et al. 2003) are present. Besides and
with respect to classical fractional step methods, no fractional errors are introduced
and the solution converges to the same as the monolithic one.

2.1.5 Arbitrary Lagrangian-Eulerian ALE Scheme
for the Fluid Mesh Deformation

Coupling between the blood flow and the ventricles is done by the Arbitrary
Lagrangian-Eulerian (ALE) method. While the blood transmits the force to the ven-
tricle, the ventricle transmits a deformation to the mesh where the moving blood is
simulated. This has a double effect. On one hand, as the Navier-Stokes equations
are solved on a moving mesh, they include a correction term taking into account the
relative velocity of the fluid and the mesh. On the other hand, the volume fluid mesh
must be smoothly deformed following the surface mesh solidary to the ventricle
wall (see Donea et al. (2004) for a comprehensive description of the ALE method).
There are several methods to perform the volumemesh deformation. In this paper we
follow the method proposed by Calderer andMasud (2010). This method has proven
as extremely robust and specially well-suited for a parallel multi-physics code like
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Alya, because mesh deformation is computed as an additional low-cost problem. The
method consists of solving a Laplacian equation:

∂

∂xi

(
Dij

∂ui

∂x j

)
= 0 in 
t (7)

ui = gi (x j , t) on ∂
m
t

ui = 0 on ∂
f

where 
t is the time changing domain, ∂
m
t is the moving boundary, ∂
 f is the fix

boundary and

Dij = (1 + 1 − Vmin/Vmax

Ve/Vmax
)δij (8)

is the diffusion parameter which is a function of the local Volume element. The effect
of this parameter is to progressively make stiffer the smaller elements, preserving
boundary layers and refined zones, thus allowing for large deformations in larger
elements.

2.1.6 Solution Scheme and Computational Aspects

A fully coupled problem comprises two material parts (tissue and blood) and four
coupled simulation problems (electrophysiology and mechanical deformation on
the tissue and mesh deformation and fluid mechanics on the blood). Two different
instances of Alya deals with each of the parts, running linked together in a staggered
fashion. At each time step, coupled problems can be solved either monolithically or
by blocks, grouping the unknowns. We use here a by-block structure, being elec-
trophysiology, mechanical, blood flow and mesh deformation separated problems
solved in a staggered and paired way.

On one hand, one instance of Alya solves the governing equations of both the
electrical and mechanical parts on a spatially discretized mesh of the heart volume
using the finite element method, being the same mesh used for both problems, thus
avoiding instabilities and interpolation errors. Given the always increasing resolution
and accuracy of anatomical information obtained from clinical imaging, Alya Red is
conceived fromdesign to dealwith large, high-definition unstructuredmeshes.On the
other hand, a second instance of Alya solves the Navier-Stokes and the mesh deform-
ing equations. In turn, each of the two coupledAlya instances run in parallel thanks to
an automaticmesh partition of the unstructuredmeshes usingMetis andMPI tasks. A
careful groupingof eachproblem’s respectiveMPI tasks allows an efficient communi-
cation thanks toMPI communicators. This strategy is reported by Cajas et al. (2014).

On the tissue part, both problems are solved explicitly using the same time step
allowing for a straight synchronization. The time step is the smallest one computed
for each of the two problems based on stability criteria. Solid mechanics time step
is related to the approximate sound speed propagation (Belytschko et al. 2000). For
the electrophysiology problem, we found that the most stringent criterion, no mat-
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ter what cell model is chosen, comes from the conductivity in Eq. (1), computed as
Δt = h2/2D, where D is the largest component of the Dij, which usually corre-
sponds to the fiber direction. After many numerical experiments we have found that
both time steps are approximately of the same order, being the solid mechanics time
step usually the smallest one.We have observed that due to the small time steps, there
is usually no need for subiterations. On the blood part, both fluid and mesh defor-
mation are solved implicitly, with no time restriction due to stability issues. Papers
describing the parallelization scheme are given by Vázquez et al. (2011), Lafortune
et al. (2012) and Houzeaux et al. (2009).

For the tissue problem, the scheme proposed here has some specific features
that have not been the standard in electromechanical cardiac coupling. Firstly, both
electrophysiology and mechanical problems are solved in the same mesh, avoiding
stability issues and interpolation errors but paying the price of a high computational
cost for the mechanical problem. As we program and solve all problems in the same
code, supported on the same mesh and with the same parallelization scheme, we
find our approach very natural. Providing the high parallel efficiency of the code,
it has proven both an efficient and accurate option. Consider also the increasingly
higher resolution obtained from the clinical images, which results in high fidelity
simulations. Secondly, the mechanical problem is dynamically solved so the tran-
sient effects are taken into account. Therefore, no quasi-static approximation is used.
Considering the fully coupled problem, references are scarce. For instance, Hosoi
et al. (2010) proposed an electro-mechanical-blood flowmodel. Themain differences
with our model is that they use a different electrical propagation model, a monolithic
approach for the fluid-structure interaction and an homogeneization procedure for
the tissue mechanical properties.

The two parts (tissue deformation and blood flow) of the fluid-structure interaction
(FSI) scheme run in an overlapping manner, concurring when forces and displace-
ments are interchanged for the wet surface. In turn, each part runs in parallel. To
assure good load-balance each Alya instance creates its partition taking into account
the relative weight of the four problems. Therefore, contrary to many other strategies
for FSI, both fluid and solid sides are equally parallelized.

The wet surface is shared between the two instances. The boundary conditions
are an important issue, with different aspects to be considered. Firstly, the nodes on
both sides need not be coincident. Both fluxes and unknowns can be interpolated in
a conservative way. However, to avoid the interpolation errors, we prefer coincident
surface meshes. Secondly, to avoid so-called added mass effect when fluid and solid
densities are similar, we use the method proposed by Wall et al. (2007), where an
Aitken scheme relax the wet surface motion on the fluid side. This relaxation scheme
is not always required, but it gives additional robustness.
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Fig. 4 Strong scalability for the coupled electro-mechanical problem as compared with the ideal
linear scalability. The vertical axis shows the speedup, the lower horizontal axis is the number
of cores and the upper horizontal axis is the elements-per-core average. Tests were carried out in
NCSA’s Blue Waters supercomputer. Reprinted from Vázquez et al. (2014)

3 Parallel Computational Aspects

3.1 Parallel Efficiency

In this paper we only present parallel efficiency results for the tissue part, i.e., the
electro-mechanical coupling. The fully coupled problem scalability is still being
assessed.

Strong scalability measures the Cardiac Computational Model (CCM) parallel
efficiency for the coupled electro-mechanical problem. Alya has shown high paral-
lel efficiency up to several thousands of cores for different physical problems, either
coupled or single-physics (Houzeaux et al. 2008, 2009, 2011; Puzyrev et al. 2013). In
Vázquez et al. (2014), the authors have performed a scalability test assessing Alya’s
parallel performance up to 100,000 cores in NCSA’s Blue Waters supercomputer.
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Among other coupled problems, a cardiac electro-mechanical simulation is run for a
high-resolution bi-ventricular geometry. Figure4 shows the geometry and the strong
scalability plot. The test is performed in the following way. A 6M tetrahedral mesh
is generated for the bi-ventricular geometry provided by Dr. A. Berruezo (Hospital
Clinic de Barcelona) in collaboration with R. Sebastian (UVEG) and O. Camara
(UPF). Following Houzeaux et al. (2013), the original mesh is progressively sub-
divided in smaller elements, creating a hierarchy of larger meshes. To perform the
scalability test, two meshes coming from the subdivision cycle, 427M and 3.4B
elements, are used. They are respectively labelled “DIV2” and “DIV3” in Fig. 4.
Scalability is measured upon the time needed to solve one time step.

The smaller mesh “DIV2” shows linear scalability up to 65K processors, being
normalized with the 1,024 cores run. At 65K “DIV2” has a mean of 6,500 tetrahedra
per core. At this end, communications’ time starts to be noticeable with respect to
computing time. However, scalability figures for the larger mesh “DIV3” are linear
up to the top: it is 8 times larger, with a mean of 52K elements per core at 65K cores.

It is worth mentioning that after several tests we have established a practical
rule of thumb for the wall clock time of coupled electro-mechanical problems. With
5,000–10,000 elements per core for a rabbit size heart with millions of elements, a
coupled problem for 1 s of real time runs in approximately 10–15min wall clock time
in BSC’s Marenostrum III if no special optimization option is used and compiling
the code with the Intel Fortran Compiler. Depending on the electrophysiology model
used (FHN or TT) this time could vary around 20–30%. We believe that after a
heavy code optimization and cleaning, these figures should go down to 1s of real
time solved in 1min of wall clock time.

4 Examples

Arís (2014) and Arís et al. (2014) have shown the potential of Alya Red CCM by
performing a sensitivity analysis for several conditions. The goal is to investigate the
effect of initial conditions in the resultant simulation, determining how a change in
an input will affect the output. In particular, we study the influence of the electrical
activation in the contraction of the tissue. The analysis is performed in a bi-ventricular
geometry, where 14 different activation protocols are tested. In addition, two different
fiber field orientations are interpolated in the geometry, and each activation protocol
is combinedwith each fiber field description. For each case, simulations are evaluated
by quantifying the variation of epicardial breakthrough, total activation time, ejection
fraction and time of maximal contraction. Considering the complexity of cardiac
models, the sensitivity analysis carried out by Arís (2014) and Arís et al. (2014)
emphasizes the possibility to optimise the cardiac activation protocols by using the
present method. The results presented show that the proposed CCM tool is capable
of capturing variations to small input parameter changes.

In this paper we briefly present some of the results.
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4.1 Electro-Mechanical Coupling in a Bi-Ventricular
Geometry

The CCM tool is used to simulate a pumping heart, focusing on the electro-
mechanical propagation through the tissue. It has been reported that the specific loca-
tion where the stimuli enters the myocardium, along with the anatomical variations,
determine the overall activation sequence of the heart and the epicardial breakthrough
of the electrical wave (Durrer et al. 1970). Obtaining an accurate representation of the
Purkinje system in the in-vivo heart is a huge challenge still unsolved, and the vari-
ability of the Purkinje fiber geometry across and within species is unknown. We aim
to understand the effect of modelling various initial stimuli protocols and its result-
ing electromechanical response. A Purkinje system modeller has been developed by
Sebastian et al. (2012) at the University of Valencia. Each initial stimuli protocol is
composed of a set of locations and times determined by the Purkinje tree structure and
its PMJs, where the electrical stimuli reach the right or left ventricular myocardium.

In Arís et al. (2014), a bi-ventricular geometry is employed to study the model’s
sensitivity to different settings of the heart structure. Fourteen initial activation pro-
tocols (Pk1, Pk2,…, Pk14) and two transmural fiber field interpolation models (ST1
and ST3) are tested. For each case the simulations are evaluated and analyzed to
assess whether the variation of the inputs has an impact on the pumping motion of
the muscle. Two different fiber fields are assessed, both coming from a rule-based
synthetic fiber distribution: linear and cubic Streeter models (ST1 and ST3). When
possible, a third one coming from experimental measurements (from Diffusion Ten-

Fig. 5 Rabbit ventricular
mesh containing 432,000
tetrahedra as generated from
magnetic resonance images
at the Oxford University. The
figure shows the surface
meshes
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Fig. 6 Comparison of
ejection fraction evolution
for three different Purkinje
models, with ST1
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sor Imaging, DTI) is also used and compared with the synthetic ones. The different
activation protocols (Pk1, Pk2,…, Pk14) are obtained by changing distributions of
the Purkinje end points, including cases of impaired hearts.

To perform the simulations, the rabbit ventricular geometry developed by Bishop
et al. (2010) the University of Oxford is used. The model represents the ventricles of
the heart and does not include valves, great vessels, pericardium and organs around
the heart. The geometry consists of 432,000 linear tetrahedra and 82,619 nodes with
a resolution of 0.05cm (see Fig. 5).

4.1.1 Results

The ejection fraction has been calculated for each combination of Purkinje sys-
tem and fiber field and by sweeping the parameter γ in Eq. (5), which controls the
active stress intensity. First, by fixing γ , the ejection fraction is measured for several
configurations. An example of the results obtained is shown in Fig. 6. It is observed
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Fig. 7 Results in ejection fraction for two different values of the coupling parameter γ

Table 1 Anterior view of the ventricles

1 2 3 4 5 6 7

8 9 10 11 12 13 14

Simulation of the electrical and mechanical components of the EM wave propagating at t = 45ms
for each activation protocol. ST1 fiber field interpolated in the geometry. Red coloured areas in the
first row correspond to the electrical component of the EM wave. In the second row, we present the
bi-ventricular deformation of the tissue. Reprinted from Arís et al. (2014)
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that the ejection fraction is not too sensitive to the kind of changes in the density and
distribution of the Purkinje system we have applied.

In Fig. 7, we compare the ejection fraction curves for two different values of the
parameter γ in Eq. (5). A remarkable fact is observed, that has been already noted
by Arís et al. (2014): thanks to the complex helicoidal structure of the fiber field,
large differences in γ produce small differences in the ejection rates. Varying this
value from 0.3 to 0.2 reduces the muscular active stress by 30%. However, the peak
ejection fraction is only 8% smaller.

The ejection fraction time evolution represents an integral parameter which shows
great robustness to the selected varying input parameters, at least in the ranges we
explore here. Another aspect we analyze concern the local variations. Although
the impact in the integral parameters could be small, it is important to see how
localized transient behaviour is affected. Table1 shows a qualitative analysis of the
wavefront at t = 45ms measured from the initial activation. At these early times,
the electromechanical wave has already reached the epicardium in all cases but the
total activation of the ventricles is not completed yet. In Table1, we can also observe
that different initial stimuli leads to different activation sequences of the heart. For
instance, the closest matching appears between the activation protocols which have
the same number of nodes in the activation of the right ventricle (RV), activation
protocols 5–12, 8–10 and 7–11. In the cases 10, 11 and 12, no sites are activated in
the left ventricle (LV), and so the activation is produced purely by transmission from
the RV and the contraction occurs later.

In Arís (2014) and Arís et al. (2014) we have analyzed in depth the influence
of the fiber architecture and synthetically created Purkinje systems. We studied the
propagation dynamics throughout the volume of the ventricles giving measures like
ejection fraction and rotation around the long axis.

These results show that Purkinje system variations must be very large to really
account for changes in the ventricles contractile action. On the other hand, the fiber
model has a much greater influence in contraction than the initial activation through
the Purkinje system. As a consequence, linear and cubic rule-based models predict
different displacements, especially in areas such as the base or the apex. Additionally,
thanks to the complex helicoidal fiber structure, heart contraction is very robust also
against changes in active stress intensity. Indeed, the heart is the perfect pump, created
after millions years of evolution.

4.2 Electro-Mechanical-Fluid Coupling in a Simplified
Ventricular Geomety

The next example shows the fully-coupled scenario. Here we present some prelimi-
nary results using simplified geometries (Fig. 8).

Figure9 shows a sequence of a bar of cardiac tissue submerged in blood as it
contracts under electromechanical activation. The bar is fixed on the right, where the
electrical activation starts. The fibers are oriented longitudinally to the bar. As the
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electrical activation propagates, the bar contracts dragging the blood around it. This
setup is very useful to calibrate the parameters of the material model.

Figure10 shows a mid section of an ellipsoid as its walls contracts under the
electromechanical action. The electrical impulse starts at the bottom of the ellip-
soid. The fiber model is created from a linear Streeter rule-based model. This first
preliminary test on the fully coupled scheme allows us to calibrate several material
and electromechanical coupling parameters of the model. In this example, pressure
in the outflow is fixed to the atmospheric one. Finally, it is worth to mention that
calibration of the active stress generation is under way, so muscle contraction is still
not realistic.

5 Conclusions and Future Lines

The final goal of the authors and collaborators is to put in the hands of biomedical
researchers amultiphysics cardiac simulation tool based onHPC-techniques, capable
of efficiently running in thousands of cores a fully-coupled electro-mechanical-fluid

Fig. 8 Comparison of
ejection fraction evolution
for three different Purkinje
models and the two different
Streeter’s rule-based fiber
orientation models ST1 and
ST2
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cardiac model. The motivation is to create a simulation scenario as comprehensive
as possible, recreating with the highest detail the heart, in line with both the dramatic
improvement of data acquisition techniques and the steep ramp of computational
power increase.

Tobe comprehensive enough, themodel should include electrical activation,mech-
anical deformation, bloodflow, perfusion, systemic contributions, cellmodels, etc., in
a well-defined geometry with the best anatomical information available. In this paper
we have presented results for two kinds of problems. First, the electro-mechanical
simulation and the model’s ability to measure the sensitivity of outputs to differ-
ent inputs are shown. Second, we introduce some simple examples of the coupled
electro-mechanical-fluid problem.Weadditionally show the scalability of the electro-
mechanical problem up to 100K cores of NCSA’s Blue Waters supercomputer.

Fig. 9 Motion sequence of a tissue bar under electromechanical contraction, showing the velocity
vectors of the blood as it moves around it
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Fig. 10 Motion sequence of an ellipsoid under electromechanical contraction, showing the velocity
vectors of the blood as it moves inside it (mid section)

The simulation platform is Alya. Electrical propagation and mechanical con-
traction is computed and solved in independent modules. The electro-mechanical
coupling is performed along the fiber field, which comes either from images or semi-
empirical models. Blood flow and mesh deformation are solved in a second instance
of Alya. Both instances communicates through MPI.

The HPC tool that has been presented is a powerful platform to test sensitivi-
ties of the cardiac modelling scenario. We have shown that the proposed compu-
tational model can be useful to test exhaustively the sensitivity to various activa-
tion sequences, even for computationally expensive problems, thanks to the use of
HPC programming techniques and resources. At this moment, the wall clock time is
between about two and three orders of magnitude longer than the physical time for
a rabbit size bi-ventricular geometry, with millions of elements and a resolution of
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less than 0.1mm for an EM simulation. Although, the so-called “real time” simula-
tions are not among our goals, the use of the HPC techniques will allow to simulate
complex problems for high definition geometries in human time scales.
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Singularities in Surface Waves

G. Ruíz Chavarría and T. Rodriguez Luna

Abstract In this paper we investigate the evolution of surface waves produced by
a parabolic wave maker. This system exhibits, among other, spatial focusing, wave
breaking, the presence of caustics and points of full destructive interference (dis-
locations). The first approximation to describe this system is the ray theory (also
known as geometrical optics). According to it, the wave amplitude becomes infinite
along a caustic. However this does not happen because geometrical optics is only an
approximation which does not take into account the wave behavior of the system.
Otherwise, in ray theory the wave breaking does not hold and interference occurs
only in regions delimited by caustics. A second step is the use of a diffraction integral.
For linear waves this task has been made by Pearcey (1946) (Pearcey, Philos Mag 37
(1946) 311–317) for electromagnetic waves. However the system under study is non
linear and some features have not counterpart in the linear theory. In the paper our
attention is focused on three types of singularities: caustics, wave breaking and dis-
locations. The study we made is both experimental and numerical. The experiments
were conducted with two different methods, namely, Schlieren synthetic for small
amplitudes and Fourier Transform Profilometry. With respect the numerical simula-
tions, the Navier-Stokes and continuity equations were solved in polar coordinates
in the shallow water approximation.

1 Introduction

Waves are ubiquitous in nature. The light and the sound are two examples of them,
but possibly the most classical picture is that of a wave on the surface of a liquid.
They carry energy but not mass and exhibits a myriads of phenomena like reflection,
refraction, interference and diffraction. The linear waves are by far the most stud-
ied due to the fact that its properties can be deduced analytically. Usually a wave
is represented as having a sinusoidal shape, with constant amplitude and a defined
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wavelength, however this is just an idealized image. Most of times the wave field
contains a continuum ofwavelengths, so its shape takes a complicated form and often
it evolves in time. This paper deals with waves on the surface of a liquid, which are
governed by the Navier-Stokes and continuity equations. They share some features
with linear waves, but some of its properties are the result of nonlinear interactions.
An example is the waveform, which is no more symmetric as in a sinusoidal wave.
On the other side, the amplitude of a surface wave cannot grow indefinitely, after a
threshold the wave breaks. The energy carried is rapidly dissipated into turbulence,
the formation of air bubbles anddrops, etc. (Babanin 2011). This phenomenon is com-
monly observed along the coasts, when the waves approach the shore. Under these
circumstances the wave amplitude grows essentially by a decrease in the sea depth,
until the slope of surface becomes infinite. This is the bathymetric breaking, which
has been studied extensively. In the open sea the wave breaking is also present, but
the mechanisms involved in its production are quite different. Let us consider a con-
tinuous wave field and the fact that surface waves are dispersive. Then, components
of different wavelengths moves with different phase velocity. The further evolution
could produce a rise in the wave amplitude and eventually to the development of
the breaking. Of course there are others mechanisms involved in the wave breaking,
among them, the interaction between the wind and the waves and the occurrence of
currents moving in opposite direction to the wave motion (Zemenzer 2009).

In the ocean there are three stages in thewave evolution (Babanin 2011). In the first
one thewindblows anddeforms thewater-air interface, so an initially small amplitude
wave is produced. During a time scale covering thousand of periods energy is injected
to thewave, allowing to a slow growth of its amplitude. In this step thewave evolution
can be described with a weak nonlinear theory. In the second stage, which covers
only few periods, the wave becomes highly asymmetric either in the horizontal and
vertical directions. The peaks become steeper and the troughs retract. At a certain
time the free surface becomes multivaluated and breaking develops just in a fraction
of a period. The breaking is the mechanism to dissipate energy, which is converted
in heat, turbulence, bubble production, etc. The case we study has a different driving
mechanism, namely the spatial focusing. The aim tomake experiments with this kind
of breaking is to study this phenomenon in laboratory, where waves cannot evolve
over thousand of wavelengths, but in which underlying nonlinear interactions are
still present. In addition the study of the wave field under spatial focusing reveals
the existence of other singularities apart breaking, like caustics and dislocations, and
phenomena as interference and diffraction.

As stated before a nonlinear wave is asymmetric. In order to quantify this asym-
metry two quantities are introduced, the skewness and the asymmetry, defined as
(Babanin 2011):

S = a1
a2

− 1, (1)

As = b1
b2

− 1, (2)
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where a1 is the amplitude of the peak, a2 is the amplitude of the trough, b1 is the
distance from the peak to the next point of zero amplitude, and b2 is the distance from
the peak to the previous point of zero amplitude. For a linear wave both quantities
vanish. In a nonlinear wave the first one is positive while the second one is negative.

Most of analytical results about surface waves have been obtained when the am-
plitude is small and consequently non linear terms are neglected in the governing
equations. In addition, another hypothesis are made, namely, the velocity field is
assumed irrotational and viscosity is neglected. Under all these assumptions, it is
possible to derive a dispersion relation, which in the general case is given by the
following equation (Elmore and Heald 1969):

ω2 =
(

gk + σk3

ρ

)
tanh(k H), (3)

where k is the wavenumber, σ the surface tension coefficient, ρ the fluid density and
H is the liquid depth. In the limit of deep waters (λ � H ) the term tanh(k H) ≈ 1.
Then, waves are dispersive, that is, the phase velocity c = ω/k is dependent on the
wavenumber k. The opposite limit is the shallow water case (λ � H ) for which the
phase velocity is c = √

gH , irrespective the wavelength.
In Fig. 1 the phase velocity for waves in the deep water approximation is plotted

as a function of the wavelength λ. The wavelength lies in the range 1–200cm. In the
figure it is clear that waves are dispersive and that phase velocity attains a minimal

value for λ = 2π
√

σ
ρg = 1.70 cm. It is important to note that the dependence of

phase velocity on wavelength in deep waters is a key feature for the time focusing.
This paper is organized as follow. Section2 is devoted to describe the wave field

produced by a parabolic wave maker, the ray theory, the theories of Airy and Pearcey
and the singularities in this wave field (caustics and dislocations). In Sect. 3 we
describe the optical methods to study surface waves and the experimental setup. In

Fig. 1 Phase velocity (c) of
surface wave versus
wavelength (λ) in the deep
water approximation
(λ � H ). The phase velocity
depends upon the
wavelength. In experiments
and numerical simulations,
the wavelength lies in the
range 1 < λ < 10cm
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Sect. 4 the numericalmethod, valid in shallowwater approximation, is presented. The
main results are presented in Sect. 5, in particular, the emergence of wave breaking,
the behavior of the waves around caustics, the existence of dislocations and the
recovery of a linear behavior far from the caustics. Finally in Sect. 6 the conclusion
are drawn.

2 Spatial Focusing, Caustics and Dislocations

In order to give a picture of the spatial focusing let us consider that surface waves
are produced by a parabolic wave maker. The equation of a parabola is:

y0 = ax20 . (4)

The first approximation in the study of this wave field is the use of geometrical optics,
that is, it is assumed that rays start in the parabola and move perpendicular to it. The
wave fronts—as shown in Fig. 2—are obtained by a knowledge of normal vector at
each point of the parabola. As it can be seen, in the vicinity of the parabola the size of
wavefronts decrease as the wave progresses, that implies a growth in the amplitude
because energy must be conserved (the viscosity has been neglected). Locally the
rays form a beam converging in the center of curvature of the parabola. For a point
(x0, y0) lying in the parabola, the curvature is:

κ = 2a(
1 + 4a2x20

)3/2 . (5)
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Fig. 2 Wave fronts produced by a parabolic wave maker. The black lines are caustics, which
intersect in a point (Huygens cusp). The caustics can be considered as the locuswhere thewavefronts
are folded and also as the curves where wave amplitude become infinite according to ray theory.
Focusing is evident if we consider that size of wave fronts reduces before the Huygens cusp
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The radius of curvature is the inverse of κ (ρc = 1/κ). The method of stationary
phase allows us to obtain an expression for thewave amplitude in terms of the distance
traveled (d) by the ray and ρ (Paris and Kaminsky 2001):

A = A0

√
ρc

ρc − d
, (6)

where A0 is the initial amplitude. The last equation predicts that amplitude diverge
for d = ρc. The curve (or the surface in 3D waves) where optical geometry predicts
the divergence of wave amplitude is known as a caustic. In reality this does not
happen because ray theory is only an approximation in which the wave properties
are not considered. However, along a caustic we have a bright region (we use the
terminology of optics). In our system, we deal with a pair of caustics intersecting in a
point. This point is known as Huygens cusp and around it maximal wave amplitudes
take place. The equation of the caustics is:

x = ±4

3

√
a

3

(
y − 1

2a

) 3
2

. (7)

It is interesting to remark that other characteristics can be invoked for the definition
of a caustic. Note that along the caustic the wave fronts folds. This means that caustic
is the line (surface) separating illuminated from shaded regions. In this sense, a
caustic is the envelope of a ray family. An alternative definition of caustic follows
from Fig. 3, in which some rays originating in wave maker have been drawn. The
caustic separates region I, where only an individual ray reaches each point, from
region II, where three rays reach each point.

Fig. 3 Rays originating in
the parabolic wavemaker. In
region I only a ray passes
through a point, while in
region II three rays reach
each point. The curve
separating both regions is
again the caustics
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In region II occur some wave phenomena, noticeably, the interference. The pres-
ence of three rays give rise to the appearance of points where fully destructive in-
terference happens. This points are called dislocations because of its similarity with
dislocations in a crystal lattice. This kind of object is a true singularity, where the
phase becomes undefined. It is important to stress that dislocations appear not only
in the illuminated region, but a line of dislocations occur in the dark zone because
of the diffraction.

As we have stated before, the geometrical optics fails to predict the behavior in
the vicinity of a caustic. The divergence has been overcome for the first time with
the formulation of a theory by Airy in 1838. In order to describe the wave field near
a caustic Airy introduced a function called in his honor, which have some important
properties related to the existence and the absence of rays in both sides of a caustic.
This function is the solution of the differential equation:

d2w

dz2
= zw. (8)

The Airy function has a oscillating behavior for z < 0 and for z > 0 the function
decays exponentially. It is important tomention that this theory is intended for simple
caustic, that is, if only two rays reach each point in the illuminated region. The wave
field produced by a parabolic wave maker differs from those studied by Airy because
in the illuminated region, the wave is the result of the interference of three rays.
The behavior of a linear wave in this configuration has been obtained by Pearcey
(1946). The work of Pearcey is based in the use of a diffraction integral, which is an
approximate solution of the wave equation. This integral is:

h(x, y) =
∫ +∞

−∞
dx0

cos(θ(x0))

exp(ikd(x0, x, y))√
d(x0, x, y)

, (9)

where θ(x0) is the angle between the tangent of parabola at point x0 and the x axis.
This quantity usually is small, implying that cos(θ(x0)) ≈ 1. Because interest is
focused in the behavior around the Huygens cusp (its coordinates are

(
0, 1

2a

)
we

perform a Taylor expansion of d(x0, x, y) to first order around this position. The
final results is known as the Pearcey integral:

h(x, y) = k

i2π

exp(ik R)√
R

(
2R

ka2

)1/4 ∫ +∞

−∞
exp

(
i
[
t4 + Ut2 + V t

])
dt, (10)

where R = 1
2a , U = 2

( k
2R

)1/2
(R − y) and V = − 2√

a

( k
2R

)3/4
x . If the wave maker

has a finite size and wavelength is not small when compared with R, the integral
must be carried over a finite domain.
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3 Optical Methods to Study Surface Waves

In the last decade two optical methods have been developed to detect the deformation
of the free surface in liquids. Both exploit the emergence of high definition digital
cameras. The first one, known as synthetic Schlieren (Moisy et al. 2009), is based
in the refraction of light and the second one, named Fourier transform profilometry
(Cobelli et al. 2009; Maurel et al. 2009), is based in the reflection of light. In the two
cases a full reconstruction of the free surface topography is realized, but they differ in
the range ofwave amplitudes they canmeasure. The underlying principle of synthetic
Schlieren is the same used to detect density fluctuations inside a transparent fluid, that
is, the change in the light trajectory due to variations in the refraction index. Consider
a ray that starts at the bottom of a liquid layer and moves to the liquid-air interface.
The trajectory followed by the ray satisfies the Snell law. If the surface is deformed,
incidence angle is modified and consequently refraction angle is also modified. For
the implementation of this method a set of dots randomly distributed is put at the
bottom of the fluid. In a first step a snapshot of the dots pattern is recorded when free
surface is flat, this is called the reference image. In a second step, an image is taken
when the wave progresses. Due to the modification of the incidence angle, related to
the deformation of the liquid-air interface, an apparent displacement of dots appear
when we compare first and second images. If we assume that deformations are small
(compared with wavelength) and if we remain in the paraxial approximation, the
apparent displacement δr is proportional to the gradient of the free surface, namely
(Moisy et al. 2009):

∇h = − δr

h∗ , (11)

where 1
h∗ = 1

αH − 1
L , H is the depth layer, L is the distance to the camera to the

bottom ow liquid layer and α is the related to the ratio of the refractive indices, that
is α = 1 − n′

n . The determination of δr is performed with a PIV software. To this
end the digital image is divided in small cells, where a cross correlation is made
between actual image and the reference one. The reconstruction of the topography
of free surface is made through the integration of the gradient field. The number of
equations is twice the number of unknowns, so the system is overdetermined. For
this reason, solution is made with a technique of least square. This method works
well for small deformations. This fact limits the use of the method for cases where
non linearity are still weak, however it allows the investigation of phenomena like
diffraction or the appearance of dislocations in the dark side of caustics. A method
better suited for the study of non linear waves is the Fourier transform profilometry
(PTF). This procedure is based on light reflection. If we are interested in the study of
waves in a fluid, the liquid must remain opaque to produce diffuse reflection. In order
to implement it a pattern of fringes is projected on the liquid surface with the aid of
a high definition video projector. The size of images is 1,920× 1,080 pixels, it has
depth of 12 bits per color and its intensity is 2,000 lumens. Images of the fluid surface
are recorded with a digital camera using a raw format to avoid lost of information
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due to preprocessing. We have used a Fujifilm digital camera Finepix HS50 EXR,
with a maximal resolution of 4,608× 3,456 pixels, capable of recording images with
16 bits per color, which are after converted to a readable format. As in the synthetic
Schlieren method, PFT require a comparison of digital images. In a first step, we take
a snapshot of the fringe patternwhen liquid surface is at rest. The second step consists
in taking an image of the fringe pattern when the wave is present. Information of h
is contained in the phase difference between two images. There are several possible
configurations to arrange the camera and the video projector. In our experiments,
axis of the camera and video projector are parallel. The relation between h and the
phase difference Δφ is (Cobelli et al. 2009; Maurel et al. 2009):

h = ΔφL

Δφ − 2π
p D

, (12)

where L is the distance of camera to liquid surface, D is the distance between lenses
of camera and video projector and p is the wavelength of the fringe pattern. In an
ideal case only two images are required to reconstruct the waveform. In reality we
need to subtract undesirable factors, then corrections must be incorporated. Let us
project on the liquid surface an image in which all pixels have the same intensity
level. When this pattern is recorded with the digital camera, intensity is not constant.
This is due, among other things, to the fact that when light reaches the liquid surface
three phenomena take place, that is, reflection, transmission and absorption. The
amount of energy carried by the reflected light is dependent on the incidence angle.
In order to remove this source of undesirable effects we need also to record this kind
of images and include them in the process for determining phase difference.

3.1 Experimental Setup

Experiments were carried out in a basin made in plexiglass whose dimensions are
120cm× 50cm× 15cm.Waves were produced with a parabolic wave maker whose
parameter a is 2 (see Eq.4) and has 42cm wide. The wave maker is connected to a
mechanical vibrator which produces a sinusoidal motion of frequencies lying in the
range 4–10Hz, corresponding towavelengths between 2.4 and 10cm. Thewater level
is set to 10cm for both synthetic Schlieren and FTP experiments. The deep water
approximation is well fulfilled because in all cases tanh(k H) > 0.999. Images for
synthetic Schlierenmethod cover an area of 20 cm×11.2cm, theywere recordedwith
a full HD digital camera. In each realization a film of 50 frames/s was taken during
50s. Each film includes frames for both unperturbed and wavy surfaces. Individual
images are extracted from the film through the use of the free software ffmpeg.
Digital processing was performed with DPIVsoft software (Meunier and Leweke
2003), which allows to obtain the free surface gradient. Finally the reconstruction
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of the surface topography h(x, y) is made by a finite difference approximation for
spatial derivatives of the surface gradient.

With respect the implementation of Fourier Transform Profilometry an opaque
liquid surface is required. This is achieved by adding a concentrated white dye to
the water. The fringe pattern projected on the free surface covers an area of 28cm
× 50cm, which is sufficient to investigate wave field before and after the Huygens
cusp. On the other hand, the distance from projector to liquid surface is L = 1.14m,
the distance D is 0.30cm and wavelength of fringe pattern was p = 0.003 m (3mm).
In order to avoid the appearance of undesirable bright spot the image produced by
the videoprojector was shifted with no deformation (a feature available in newer
equipment) and additionally two crossed polarizers have been put on the lenses of
camera and videoprojector. As stated before, we use a digital camera capable of
recording in raw format. A further conversion of images to a standard format (tif
images of 16 bits per color) was made and finally processing was made with routines
written in matlab.

4 Numerical Method

The surface waves are governed by the Navier-Stokes and continuity equations. In
recent decades many researches of surface waves were made through numerical
codes, however there are some difficulties in its use, for instance, the domain of
integration changes in time. In this work we present numerical results for surface
waves in the shallow water approximation, that is, when liquid depth is much lower
than the wavelength λ (H � λ). The choice of this approximation was made on the
basis that the system remains 2D but at the same time non linearity is retained. The
equations to solve are:

∂u

∂t
+ u

∂u

∂r
+ v

r

∂u

∂θ
− v2

r
= −g

∂h

∂r
, (13)

∂v

∂t
+ u

∂v

∂r
+ v

r

∂v

∂θ
− uv

r
= −g

r

∂h

∂θ
, (14)

∂h

∂t
+ 1

r

(
∂(rhu)

∂r
+ ∂(hv)

∂θ

)
= − H

r

(
∂(ru)

∂r
+ ∂v

∂θ

)
, (15)

where u and v are the horizontal components of the velocity field, h is the free surface
deformation andH is the depth of the liquid layer. In the deduction of these equations,
the viscosity was neglected and the continuity equation and the kinematical condition
have been used. The numerical method used for solving Eqs. (13)–(15) involves a
centered second order finite differences for radial coordinate, a backward second
order finite difference for time and a spectral code for θ coordinate. The numerical
code cannot predict the wave breaking because this process implies that variable h
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Fig. 4 Spatial domain used
in the numerical solution. It
is a annular ring
(r1 < r < r2). The wave
maker is outside this domain,
it intersects the outer
boundary in two points. The
boundary conditions are set
assuming that the wave front
evolves according to the
stationary phase method
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becomemultivaluated.However it is possible to study the focusing and the emergence
of nonlinearities appearing during the growth of waves. It is important to remark that
when non linear terms are dropped from Eqs. (13)–(15) we recover the equations
of a linear wave. The numerical solution is performed in a annular domain, for
r1 < r < r2. The wave maker is outside this domain, it intersects the outer boundary
in two points (see Fig. 4). We consider that initially the fluid is at rest, that is, surface
is not deformed. For imposing the boundary conditions we approximate the values
of surface deformation assuming that the wave evolve from wave maker to the outer
boundary according to the stationary phase method. The numerical solution was
carried out using a mesh of 400 points in radial direction and 256 modes in the
angular variable θ . Otherwise the time step is set to δt = 0.01.

Numerical simulationwasmadeunder twoconditions. In thefirst one the nonlinear
terms are dropped, then solution correspond to a linear wave. In the second case
nonlinear terms are retained. In both cases maximal amplitude is attained in the
vicinity of Huygens cusp, along the symmetry axis. Otherwise, due to finite size
of the wave maker we observe that interference in the region delimited by caustics
occurs only in a section near the cusp.

5 Experimental and Numerical Results

As stated in Sect. 3 surface waves were produced with a parabolic wave maker. In
order to characterize the initial wave front we recall that the equation of a parabola
is y0 = ax20 . In our experiments and in numerical simulations the value of parameter
a is 2; thus the position of the Huygens cusp is R = 1

2a = 0.25m away from the
parabola vertex.Most of results presented here correspond to waves with a frequency
f = 7Hz or equivalently λ = 3.82cm. Experiments and numerical simulations
were conducted to study three types of singularities: wave breaking, caustics and
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dislocations. Attention is paid to the growth of wave amplitude in the vicinity of the
Huygens cusp, because in this region these singularities occur. On one side a non
linear wave cannot rise indefinitely, at certain time the wave breaking begins. On the
other side diffraction is capable to produce dislocations on the dark side of caustics.
Some comments will be addressed to the decay of wave field far from the Huygens
cusp and the recovery of the linear behavior far from caustics. In most of experiments
the topography of the free surface is recovered with the method of Fourier Transform
Profilometry. The images recorded by the digital camera cover only a fraction of the
fringe pattern, but in any case we consider regions around the Huygens cusp. On the
other side, experiments with synthetic Schlieren method were conducted covering
an area of 20cm × 11.2cm. Images were taken at 4 different positions in the range
10 < y < 50. The area covered in a position of the camera overlap with the next
one, so we have a complete set of data in a region of 20cm× 40cm. In some cases
it is best the use of synthetic Schlieren method. For instance, in a previous work this
method has been successfully used to prove that for small amplitude waves (Ruiz-
Chavarria et al. 2014) (h < 10−4 m) the nonlinearities are already relevant. Another
case were synthetic Schlieren method is suitable deals with the study of divergent
waves because amplitude decreases as they progress. This happens in our system
after passing the cusp.

Figure5 shows the wave field as measured by the FTP method for a driving
frequency of 7Hz in the area delimited by −11 < x < 11cm and 7 < y < 32cm.
As in all figures in this paper, wave progresses from right to left. The Huygens cusp
is located inside this region. Otherwise, the focusing becomes evident by two facts:
(a) the size of wave front decreases from right to left and (b) the wave amplitude
(represented by colors) grows when approaching the cusp. At the left border of figure

Fig. 5 Wave field of a
monochromatic wave of
f = 7Hz produced by a
parabolic wave maker. Wave
progresses from right to left.
In the figure the maximal
amplitude occurs after
passing the cusp
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Fig. 6 Monochromatic wave of f = 7Hz produced by a parabolic wave maker along the symmetry
axis. Wave progresses from right to left. The asymmetry of the wave reveals that nonlinearities are
important

there is a change of sign of the wavefront curvature, so waves become divergent.
Consequently the further evolution leads to a decrease of the wave amplitude.

Taking into account that the maximal value of surface deformations occurs along
x = 0, in Fig. 6 we show the curve h versus y along the symmetry axis. The maximal
amplitude occurs at y = 27 cm, after passing the cusp, in agreement with results by
Pearcey. A key feature of Fig. 6 is the asymmetry of the wave. This is a signature
of a nonlinear behavior. For y > 27cm the wave amplitude decreases because wave
becomes divergent. In order to follow evolution of such divergent waves we have
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Fig. 7 Wave field of a monochromatic wave of f= 10Hz produced by a parabolic wave maker. The
topography of the free surface was obtained with the synthetic Schlieren method. Wave progresses
from right to left. At y= 40 the values of skewness and asymmetry are respectively 0.06 and−0.02.
At y = 34cm these quantities take the following values As = 0.16 and S = −0.04
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Fig. 8 Wave field in which breaking is developing. The wave frequency is 7Hz. The amplitude
increases monotonically before y = 15cm. After this point the wave becomes divergent. During
the wave breaking a fraction of the energy is dissipated

measured the free surface topography for y > 30cm with the synthetic Shlieren
method. The result presented in Fig. 7, corresponds to a wave of frequency f =
10Hz (λ = 2.4cm). An important feature is that, as wave progresses the amplitude
decreases and nonlinear behavior weakens. In fact, skewness and asymmetry have
the following values at y = 40cm: As = 0.06 and S = −0.02, whereas the same
quantities take the values As = 0.16 and S = −0.04 at y = 34cm. This is a proof
that far from the caustics the wave is well described by the linear theory.

In order to produce wave breaking, a higher amplitude is required. In Fig. 8 we
show a snapshot of the wave field in which breaking develops. We remark two
facts: (a) the nonlinear interactions lead to a greater ratio of maximal to initial am-
plitudes (the amplitude at the wave maker) when compared with results shown in
Figs. 5, 6 and 7 and (b) the position of maximal wave amplitude is y = 15 cm, some
wavelength before the Huygens cusp.The shape of the wave fronts is clearly mod-
ified by the breaking. First at all the wave appears as divergent for y > 15 cm. In
addition, just before y = 15 cm the growth of wave develops rapidly over a distance
comparable to a wavelength. In Fig. 9 the wave along the symmetry axis (x = 0) is
shown. Before y = 15cm the amplitude grows monotonically but after this point the
wave exhibits important modifications. For instance the peaks located at y = 26cm
and y = 30 split in two local maxima. Finally it is important to say that the decrease
of the amplitude during the breaking reveals that energy is dissipated.

Now we present some results of the numerical simulations. All the wave maker
characteristics are retained and the driving frequency is again 7Hz. In Fig. 10 we
show snapshots of both linear (Fig. 10a) and nonlinear waves (Fig. 10b). For a linear
wave the initial amplitude is irrelevant (only the ratio of the actual to initial amplitude
is important), but the same does not apply for a nonlinear wave. In the simulations,
initial amplitude is 2% of the liquid depth. The overall trend of wave fronts is
qualitatively the same in both cases. In Figs. 10a, b interference holds either inside
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Fig. 9 Monochromatic wave
of frequency f = 7Hz along
the symmetry axis. Before
y = 15cm the wave
amplitude grows
monotonically, but after this
position there are important
modification in wave, for
instance around the peaks
located approximately at
y = 26cm and y = 30cm we
found two local maxima
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Fig. 10 Wave field of a
monochromatic wave of f =
7Hz produced by a parabolic
wave maker. a Linear wave
and b nonlinear wave with
an initial amplitude of 2% of
the liquid depth. Wave
progresses from right to left.
In the figure the maximal
amplitude occurs after
passing the cusp. Maximal
amplitude for non linear
wave is greater with respect
the linear wave

and outside the caustics. In the same manner, after passing the Huygens cusp, the
amplitude decreases because wave becomes divergent. However some differences
must be highlighted. A first thing to emphasize is that the peaks around the cusp
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Fig. 11 Wave of frequency 7Hz along the symmetry axis produced by a parabolic wave maker.
Maximal amplitude attained by non linear wave is greater than those of the linear wave. In addition,
peaks and troughs are clearly asymmetric. In the figure the maximal amplitude occurs after passing
the cusp. a Linear wave. b Nonlinear wave

becomes narrower for the non linear wave if compared with the linear one. This is a
proof that peaks became steeper as already seen in experiments.

A better way to see the focusing and the nonlinear behavior is to plot a wave
along the symmetry axis. This is made in Fig. 11 for waves considered in Fig. 10.
The first thing to remark that the linear wave is symmetric everywhere. Concerning
the nonlinear wave, as already stated, we have amaximal amplitude higher than those
attained in the linear case. In addition, the asymmetries between peaks and troughs
are very clear. We are still far from wave breaking but nonlinear effects are already
present. Instead of showing a particularwave profile, away to see the overall behavior
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Fig. 12 Wave envelope calculated in different cases: (i) Linear wave (black line), (ii) nonlinear
wave with initial amplitude 0.02H (red and blue lines), (iii) Pearcey integral for a finite wave
maker (green line), (iv) Pearcey integral for an infinite wave maker (magenta line) and (v) envelope
obtained with the stationary phase method (brown line). In the nonlinear case, positive and negative
branches are clearly different
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is to plot the wave envelope along the symmetry axis. In Fig. 12, we plot envelopes
in the following cases: (i) linear wave, (ii) non linear wave with initial amplitude
0.02H., (iii) Pearcey prediction for a finite size wave maker, (iv) Pearcey prediction
for an infinite wave maker, (v) envelope predicted by the stationary phase method.
In all cases amplitudes are normalized with initial amplitude (h0). It is important to
point out that interference in the region inside the caustics leads to oscillations of the
envelope. These oscillation are predicted by the Pearcey results. However, in a wave
field produced by a finite wave maker these oscillations are less important because
the zone where three rays reach a point is only a fraction of the area limited by the
caustics. Far from the cusp, and according to ray theory, only a ray reaches each
point. In this figure the asymmetries related with nonlinearities are evident. First, the
negative branch of linear wave envelope is exactly the reflection of the positive one
(black lines). The same does not apply for the non linear wave and only far from the
cusp both branches becomes symmetric.

Caustics are fictitious singularities appearing in the ray theory. On the other side,
dislocations are a kind of singularity which remains beyond the geometrical optics.
They are points of full destructive interference and can be recognized by two facts:
the wave amplitude is always zero and the phase is undetermined. According to the
last feature, in a dislocation the contours of constant phase cross. The Fig. 13 shows
both a diagram of the wave amplitude and curves of constant phase, calculated with
the Pearcey integral. The ray theory predicts that dislocations occurs only inside
the caustics, but due to diffraction two dislocations outside the caustics appear. The
numerical solution of wave equation (linear and nonlinear) predicts also the existence
of dislocations outside the caustics as we can see in Fig. 14, where wave amplitude
as a function of (x, y) is shown. Dislocations are located in the blue regions of each

Fig. 13 Graph of wave amplitude and curves of constant phase obtained from the Pearcey integral,
assuming a finite wave maker. The phase is undetermined in the points of full destructive inter-
ference. Then the curves of constant phase cross in such points. These singularities are known as
dislocations
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Fig. 14 Graph of the wave amplitude obtained from numerical simulation. a Linear case and
b non linear case. Two dislocations appear outside the caustics both in linear and in nonlinear
waves. They are located inside the blue region of each figure

figure, they are symmetrically situated around x = 0. The dislocations are located
at (−2.3, 28.9) and at (2.3, 28.9) for the linear wave. For the nonlinear wave the
dislocations are located at (−3, 29.5) and at (3, 29.5).

6 Conclusions

In this paper we have performed an experimental and numerical study of the wave
field having three types of singularities: caustics, wave breaking and dislocations.
The first one is a fictitious singularity appearing in the ray theory. It disappears when
wave properties are taken into account, but its position reveals bright regions. The
second kind of singularity (wave breaking) is produced by non linear interactions. In
our experiments the breaking is produced through spatial focusing over a distance of
somewavelengths. The wave breakingmodify the shape of wave fronts and produces
a dissipation of the energy. Finally, the third kind of singularities are the dislocations,
which are defined as points of complete destructive interference. The singularity deals
with the fact that in a dislocation phase is undefined. The experiments and numerical
simulations were conducted to enhance the nonlinear effects. This research is in
the first stage. A more complete research of singularities requires, among others, a
detailed study of conditions of wave breaking, the determination of the amount of
energy dissipated and the study of dislocations both inside and outside the caustics.
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Isotherms of Natural and Forced Convection
Around a Heated Horizontal Cylinder
Embedded in a Porous Medium

M. Sánchez, A. Torres, F. Aragón, I. Carvajal and A. Medina

Abstract This work presents an experimental analysis of free and forced convection
due to a heated cylinder in a fluid-saturated porous medium. The resulting features of
the temperature distribution under the action of a continuous and uniform air stream
were investigated through the use of four different configurations: first, by inducing
an air stream from below the heated cylinder; second, by placing an air stream on
the left-hand side of the heat source; third by an air stream acting from the top of the
heat source, and fourth by varying the injection angle. The consequences on the free
and forced convection when all phenomena reach the steady state were analyzed by
using an infrared camera. Close agreement is found through the conformed plumes
with the theoretical solutions proposed by Kurdyumov and Liñán (2001).
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1 Introduction

This work is based on the theoretical work developed by Kurdyumov and Liñán
(2001) who studied the effects of the forced convection acting on a heated horizontal
cylinder that is buried in a fluid-saturated porousmedium. Problems that involve both
free and forced convection due to a heat source, q, in a porous medium have been
studied theoretically by several authors (Wesseling 1974; Bejan 1978; Poulikakos
1984; Pop and Ingham 2001).

On the other hand, to our knowledge, there are few experimental studies aimed
to reproduce and observe the development of the laminar thermal plumes due to the
action of free and forced convection. In this work we use thermography techniques
(Astarita and Carlomagno 2013) to experimentally study several configurations; an
infrared camera allows us to see the isotherms due to the convection process along
a transverse face of the porous medium. Detailed properties of the buoyant plumes
will be discussed after the theoretical elucidation of the problem and the description
of the experimental setup.

2 Theoretical Model

Consider an horizontal long and infinitesimal heated cylinder embedded in an
unbounded and fluid-saturated porous medium with permeability K and porosity
φ. The heated cylinder yields a constant heat flow of intensity q to the homogeneous
unconfined porous medium, and a laminar air stream of velocity V∞ can be induced,
pointing towards the heat source, as it can be seen in Fig. 1.

Fig. 1 Schematic transversal view of an horizontal heated cylinder embedded in a fluid saturated
porous medium. The temperature far from the cylinder is T∞. A uniform stream comes to the
cylinder at velocity V∞
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If there is no laminar stream, then a free convection occurs. On the contrary, a
forced convective regime is established in the porous medium by the action of the
continuous injection of air stream. The stream orientation is modified in the zones
close to the punctual heated source. Consequently, the temperature distribution will
be changed resulting in a new plume configuration. The model studied by Kurdyu-
mov and Liñán (2001) predicts the behavior of the two-dimensional velocity field of
an air stream around the heated source, as well as its relationship with the tempera-
ture gradients that conform the buoyant plumes under the action of free and forced
convection.

In the first stage of this work, the pure free convection case is reproduced experi-
mentally, analyzed and compared to the theoretical solutions obtained byKurdyumov
and Liñán (2001), and in a second part the effects of the forced convection are stud-
ied, and the buoyant plumes are obtained by varying the direction of the induced
streams.

3 Experimental Setup

Despite the fact that the theory was made for an infinite medium, in the present
experiments we have used a cardboard box (parallelepiped) of 0.28m height, 0.20m
length and 0.1m depth, which was filled with Ottawa sand (ASTM C778), building
a non consolidated homogeneous porous matrix. At the middle of the box a cylin-
drical resistance of 0.00959m diameter was embedded. To supply a continuous air
rate, a compressor 1.2MPa was used together with flow aligners to induce a uniform
air stream. In order to sense the resistance temperature a type T thermocouple was
placed at the rear end of it and was connected to a WEST (6100+) process indi-
cator for the temperature control. For all the tests, the resistance reaches 353.15K.

Fig. 2 Scheme of the experimental array
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To capture accurately the development of the buoyant plumes, an infrared camera
FLIR (ThermaCAMSC660) was employed. The infrared camera works at a range of
temperatures from 233.15 to 1773.15K and records images of size 640× 480 pixels
(VGA quality). In the experiments the infrared camera was placed approximately at
a distance of 1 m, pointing towards the center of the frontal side of the sand box.
All experimental measurements were made at a room temperature of 295.15K and
at atmospheric pressure. The experimental setup is show in the sketch of Fig. 2.

4 Isotherms Around the Source

The experiments presented here were designed to be allow direct comparison with
the theoretical work of Kurdyumov and Liñán (2001) and are divided in two parts,
where the first one is devoted to show the effects of the natural convection around a
buried heat cylinder in an air-saturated porous medium, while in the second part, the
experiments show the effects of the forced convection, as a result of the change in
position of the air stream that acts on the air saturated porous medium.

The Rayleigh number (Ra) and the Nusselt number (Nu) are defined as follows:
Ra = Kρf βg(Tw − T∞)a/αμf and Nu = q/2πλ(Tw − T∞), and all parameters
used in the experiments are listed in Table1. A characteristic length and a non-
dimensional formula for the temperature were defined by Kurdyumov and Liñán
(2001) as: lh = αμf λ/Kρf gβq and θ = (T − T∞)/(Tw − T∞), respectively. All
experiments were carried out at a Rayleigh number Ra ∼ 3.41× 10−2 and a Nusselt
Number Nu ∼ 0.1590.

Table 1 General parameters
used in the experiments

Property Value

Permeability (K) 6.0E-11 m2

Fluid density (Air at 293.15◦ K) (ρf ) 1.2kg/m3

Fluid viscosity (Air at 293.15◦ K) (μf ) 1.71E-05Pa·s
Gravity acceleration (g) 9.81m/s2

Temperature of the heated cylinder (Tw) 353.15K

Room temperature (T∞) 295.15K

Radius of the heated cylinder (a) 0.004795m

Coefficient of expansion of Air at 293K (β) 0.003388K−1

Sand effective thermal diffusivity (α) 2.45E-08m2/s

Effective conductivity (λ) 0.039W/mK
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5 Isotherms Under Free Convection

At this stage of the experiments, the effects of the free convection are shown. It is
important to say that close to the heated cylinder the conduction dominates and the
resulting plumes get a concentrically circular shape, but if we turn away of the heated
cylinder, the convection begins to dominate the phenomenon and the plumes begin to
deform acquiring an ovoidal shape in its upper part. Figure3 shows the evolution
of the plumes due the free convection. The time between successive images in the
sequence is 5min. Figure4 shows the dependence of the dimensionless temperature θ

Fig. 3 Sequence of infrared snapshots showing the evolution of the plumes under pure free con-
vection until a stationary state is reached. The time between consecutive snapshots is 	t = 5min

Fig. 4 Dependence of the numerically obtained dimensionless temperature θ distribution (continu-
ous line) as a function of the dimensionless distance z (length takenwith reference to the vertical axis
passing through the heat source), as compared with distribution obtained experimentally (dashed
line) for the free convection case. The experimental curve was build up from the isotherms of
snapshot 6 in Fig. 3
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on the dimensionless vertical coordinate z. The distribution obtained experimentally
(dashed line) is compared with the numerically obtained solution of Kurdyumov and
Liñán (2001) (solid line). The experimental curve corresponds to the case depicted
in the snapshot 6 of Fig. 3.

Fig. 5 a Infrared image showing the plume shape due to forced convection induced from the upper
part of the saturated porous medium. b Plot showing the temperature distribution as a function of
the distance (length taken with reference to the vertical z-axis passing through the heat source)

Fig. 6 a Infrared picture showing the plume formed due to forced convection induced from the
lower part of the saturated porousmedium. b Plot showing the temperature distribution as a function
of the distance (length taken with reference to the vertical z-axis passing through at the heat source)
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5.1 Isotherms for a Horizontal Line Source of Heat Under
a Uniform Stream

The second part of the experiment consists of obtaining the isotherms by inducing
a continuous stream of air at different configurations. It is important to say that the
constant stream of air was injected at three different pressures (49kPa, 73.5kPa,
98kPa) and the increase of the injection pressure is seen to delay the time for which
the buoyant plumes reach the steady state. The final form of the buoyant plume was
not modified as time elapses. In Fig. 5 the final shape of the plume, as a result of the
induced free stream of air in the upper part of the porous medium can be seen. It
is clear that under this new condition the convection dominates over the conduction
even in the zones close to the source of heat. The plumes for this cases take elliptic
shapes which are more strongly change toward the direction of the induced stream.

In a further experiment, the air stream was injected at the lower part of the
porous medium. The resulting plume can be seen in Fig. 6. It is evident that the final

Fig. 7 Infrared images of the isotherms around the heated cylinder due to forced convection induced
from different air injection angles (measured with respect to the vertical axis): a 30◦, b 45◦, c 60◦,
d 70◦
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Fig. 8 Plot showing the
resulting temperature
distributions for different
angles of injection as a
function of length (length
taken with reference to the
vertical z-axis passing
through at the heat source)

deformation attained in this later case was larger than that observed in Fig. 5. This
may be due to the induced air stream going to the same direction as the buoyant
forces.

In the last part of the experiments different plumes were obtained by inducing the
air stream at different angles, as referred to the positive vertical z-axis and measured
clockwise, and by placing the origin at the center of the heat source. The steady
configuration adopted by the plumes is shown in Fig. 7. The shape of these plumes is
strongly influencedby thedirectionof the induced stream. InFig. 8, the corresponding
values of temperature for each of these later caseswere plotted as a function of length.

6 Conclusions

The resulting buoyant plumes or isotherms around a heated source, due to free
and forced convection acting on a heated cylinder buried in an air-saturated porous
medium, have been experimentally studied by using infrared thermography. Infrared
thermography allowed to observe the overall evolution of the buoyant plumes, since
the phenomenon was governed by conduction from zones close to the heated source
to zones where the convection effects dominate. As we have seen by comparing the
effect of a continuous stream with the pure convection case, the shapes adopted by
the buoyant plumes, are were strongly affected by the action of the continuous air
flow. We do not find any important correlation with the rate of air injected. The final
shape of the plumes indicates that the stream lines of the flow change their trajectory
in zones nearby the heat source. Finally, the actual study agrees with the main the-
oretical predictions, of Kurdyumov and Liñán (2001), for the isotherms during free
and forced convection. Incidentally, this kind of studies can be useful, for instance,
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in problems related to the oil industry, specifically in the Steam Assisted Gravity
Drainage (SAGD) process where it is important to redirect the oil flow towards a
recovery well through a saturated porous medium. We believe that this process can
be improved by manipulating the temperature gradients in the oil reservoir through
a suitable collocation of the heat sources.
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ditional support given to this project. M. Sánchez and A. Medina thank partial support of Instituto
Politécnico Nacional, through the SIP Project No. 20141404. Finally, we acknowledge Profes-
sor Amable Liñán from E.T.S. Ingenieros Aeronáuticos, Universidad Politécnica de Madrid, who
suggested us this experimental study.

References

Astarita T, Carlomagno GM (2013) Infrared thermography for thermo-fluid. Springer, Berlin
Bejan A (1978) Natural convection in an infinite porous medium with a concentrated heat source.
J Fluid Mech 89:97–107

Kurdyumov VN, Liñán A (2001) Free and forced convection around line sources of heat and heated
cylinders in porous media. J Fluid Mech 427:389–409

Pop I, Ingham DB (2001) Convective heat transfer: mathematical and computational modeling of
viscous fluids and porous media. Elsevier, Oxford

Poulikakos DA (1984) On buoyancy induced heat and mass transfer from a concentrated source in
an infinite porous medium. Int J Heat Mass Transf 28:621–629

Wesseling P (1974) An asymptotic solution for slightly buoyant plumes. J Fluid Mech 70:81–87



Parameter Estimation in a Model for Tracer
Transport in One-Dimensional Fractals

E.C. Herrera-Hernández and M. Coronado

Abstract The problemof parameter estimation in amodel for one-dimensional frac-
tals is analysed and solved. The model describes advection and dispersion of a tracer
pulse in a one-dimensional fractal continuum with uniform flow. It involves three
parameters: fractal dimension of length, connectivity index associated to dispersion
and dispersion coefficient. By using synthetic tracer breakthrough data the effect of
data noise level, amount of data points and number of fitting parameters on the results
have been analysed. It has been found that the developed estimation methodology is
in general robust to the standard data noise level, and to the amount of data points
between the typical cases of around 10 and 40. It has been also found that the curve
fitting procedure is consistently more sensitive to the fractal dimension of length than
to the other two parameters: the connectivity and the dispersion coefficient.

1 Introduction

Parameter estimation is a relevant stage in the dynamic characterization of aquifers,
oil fields and geothermal reservoirs. It is a process that looks for the determination of
reservoir properties like porosity, thickness of the production layer, fluids saturation,
dispersion coefficient, fault orientation, etc. It allows the understanding of the way
fluids move inside porous media, thus providing important elements in the design of
efficient oil recovering strategies inmature and partially depleted reservoirs (Illiassov
and Datta-Gupta 2002; Ramírez-Sabag et al. 2005; Coronado et al. 2011).
Of particular interest are models related to anomalous dispersion since they provide
new insights into the physics of the transport phenomenon. Anomalous behaviour in
heterogeneous systems is observed in field and laboratory scales (see for example,
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Bogatkov and Babadagli 2010 and Fourar and Radilla 2009). This behaviour is
characterized by an early tracer breakthrough and long-decaying tails. It has been
found that classical advection-dispersion equations donot properly describe the tracer
breakthrough behaviour at long times as other approaches do, particularly fractional
advection-dispersion models. Therefore, parameter estimation based on anomalous
transport models becomes very relevant (Suzuki et al. 2012; Chakraborty et al. 2009).
Among other approaches for studying anomalous transport, that do not have the
high computational costs involved in evaluating fractional time derivatives, are the
fractal continuum models (Herrera-Hernández et al. 2013). In this paper, we present
a methodology for parameter estimation for one of the models described in this
previously mentioned work. It is a one-dimensional advective-dispersive model in
which the space is a fractal continuum (Tarasov 2005) and dispersion follows a
power-law dependence with the length scale (Sahimi 1993).

The paper is planned as follows: In Sect. 2 themathematical model and its solution
are presented. The procedure for parameter estimation is described in Sect. 3. Further,
in Sect. 4 the generation of synthetic tracer breakthrough data is discussed, and in
Sect. 5 the robustness of the estimation method is examined. Finally, the results are
analysed in Sect. 6 and conclusions are given in Sect. 7.

2 The Model

2.1 The Fractal Continuum Model

The systemwe consider consist of an underground fractured porous formation where
uniform flow takes place. Fluid and tracer are injected in a plate (located at x = xw)
and extracted at another plate (at x = L) as illustrated in Fig. 1, where the planes
are perpendicular to the paper sheet. This reproduces common assumptions made in
Euclidean inter-well one-dimensional flow models (Bear 1972; Chaberneau 2000).
We consider a porous medium that is Euclidean in the y–z plane and fractal in x
direction. Here a Cartesian coordinate system with the x-axes perpendicular to the
plates is employed. The fractality is introduced as a fractal continuumand a geometric
mapping of the fractal space into the Euclidean space is proposed. The fractal element
of volume is written in terms of fractal and Euclidean elements as in Balankin 2012;
Hernandez-Coronado et al. 2012; Herrera-Hernández et al. 2013

dVα = d�αd S2, (1)

where d S2 is the Euclidean cross-section element and d�α is the fractal length ele-
ment, whose definition according to Ostoja-Starzewski (2009) is

d�α = c1(x; α, x0)dx, c1(x; α, x0) = φ

Γ (α)
|x − x0|α−1, (2)
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Fig. 1 Physical description
of the fractal system with
uniform fluid flow

where φ is the porosity (added here to the Ostaja-Starzewski model) and α is the
fractal dimension of length along the x-direction with 0 < α ≤ 1. It is worth to
mention that the fluid can flow in the x-direction even if α < 1 since we have a
3D system, where the basic flowing units (fracture planes) can connect outside the
x-line. If we consider stationary fluid injection and a fluid velocity pointing in the
x-direction, whose magnitude depends on x only, i.e. u = u(x)x̂ , the corresponding
fluid conservation equation is

1

c1
∇ · (φρu) = SF . (3)

The tracer is introduced in the injection plate and extracted in the extraction plate.
An expression for the velocity can be derived by integrating it over a volume that
contains the fluid source and a part of fractal continuum. It results that

ux (x) = ṀF

Acsφρ(x)
, (4)

where ṀF is the amount of fluid mass injected into the fractal porous medium per
unit of time, Acs is a cross section perpendicular to the x-direction in which the fluid
is injected, φ is the porosity and ρ(x) is the fluid density. Note that for constant fluid
density the velocity is constant.

2.2 The Tracer Advection-Dispersion Equation

The tracer pulse dynamics is obtained from the conservation equation

∂C

∂t
+ ∇ · J = ST . (5)

Here the tracer flux contains the advective part due to the process carrying fluid and
the dispersive part. This is J = UC − D∇C . According to percolation theory (Gefen
et al. 1983; Orbach 1986; Sahimi 1993), we introduce the dispersion coefficient as a
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power law of the length travelled, i.e.,

D(x) = DL

( x

L

)−θ

. (6)

In the above equation DL is the dispersion coefficient at the extraction length (x = L)
and θ is the connectivity index associated to the hydrodynamic dispersion.

There are several parameters involved in the model, specifically in Eqs. (4) and
(6) appear φ, Acs , DL and θ . The tracer flux for constant fluid density is given by

J (x, t) = ṀF

Acsφρ0
C(x, t) − DL Lθ x−θ ∂C(x, t)

∂x
, (7)

where the first term describes advection, and the second one depicts dispersion.
Accordingly, the tracer conservation equation for uniformflow is (Herrera-Hernández
et al. 2013)

∂C(x, t)

∂t
+ Γ (α)

xα−1

∂ J (x, t)

∂x
= ST . (8)

After substituting Eq. (7) into Eq. (8), using dimensionless variables, xD = x/L ,
CD = C/CMax and tD = t/Δt , and assuming that no source is present, we obtain

∂CD

∂tD
+ Γ (α)

Lα

ṀFΔt

Acsφρ0
x1−α

D
∂CD

∂xD
− Γ (α)

Lα−1

DLΔt

L2 x1−α
D

∂

∂xD

(
x−θ

D
∂CD

∂xD

)
= 0. (9)

Δt is an arbitrary reference time and CMax is a reference tracer concentration.
The mathematical model given by Eq. (9) contains various parameters that can be
grouped as

Uad = Γ (α)

Lα

ṀFΔt

Acsφρ0
, (10)

Dad = Γ (α)

Lα−1

DLΔt

L2 . (11)

Rewriting Eq. (9) in terms of these parameters, it becomes

∂CD

∂tD
+ Uad x1−α

D
∂CD

∂xD
− Dad x1−α

D
∂

∂xD

(
x−θ

D
∂CD

∂xD

)
= 0. (12)
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2.3 Boundary and Initial Conditions

2.3.1 Boundary Conditions

As mentioned in Sect. 2.1, the tracer and fluid are injected at x = xw (wellbore
radius) and extracted at x = L . Those points (plates) constitute the boundaries of
the system where particular conditions are imposed. At the injection plate (x = xw)
a zero-flux condition is imposed, this is

∂CD

∂xD

∣∣
xD= xw

L
= ṀF L

Acsρ0φD0

( xw

L

)θ

CD, (13)

and at the extraction plate (x = L) zero dispersive flux is set since beyond this point
no more porous medium is present (Danckwerts 1953)

∂CD

∂xD

∣∣
xD=1 = 0. (14)

2.3.2 Initial Condition

The initial condition establishes that no tracer is present inside the fractal medium,
except for a small truncated Gaussian pulse located between xDmin and xDmax and
centred at x∗

D in a zone close to the injection plate, this is

CD(xD, tD = 0) =

⎧⎪⎨
⎪⎩

B exp

[
−L2 (xD−x∗

D )2

2σ2

]
√
2πσ 2

if xDmin ≤ x ≤ xDmax

0 elsewhere,
(15)

where B is related to the amount of tracer injected to the system, σ is the initial width
of the pulse and xD is the dimensionless length as defined in Sect. 2.2.

2.4 Numerical Solution of the Advection-Dispersion Equation

We solve Eq. (12) numerically, and for this purpose we write it as

∂CD

∂tD
= f1(xD)

∂CD

∂xD
+ f2(xD)

∂2CD

∂x2D
, (16)

whose coefficients are
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f1(xD) = Uad x1−α
D − θ Dad x−α−θ

D (17)

f2(xD) = Dad x1−α−θ
D . (18)

Equation (16) is discretized by using a time-averaged finite-difference method
(Crank-Nicolson) for the time and backward and symmetric finite differences for
the first and second order spatial partial derivatives, respectively. This is

Cn+1
j − Cn

j

δtD
= f1 j

2δxD

(
Cn

j − Cn
j−1 + Cn+1

j − Cn+1
j−1

)
= (19)

f2 j

2(δxD)2

(
Cn

j−1 − 2Cn
j + Cn

j+1 + Cn+1
j−1 − 2Cn+1

j + Cn+1
j+1

)
,

which after grouping terms and doing some algebra is

(
γ j − β j

)
Cn+1

j−1 + (
1 − γ j + 2β j

)
Cn+1

j − β j C
n+1
j+1 = (20)(

β j − γ j
)

Cn
j−1 + (

1 + γ j − 2β j
)

Cn
j + β j C

n
j+1

where γ j = δtD f1 j
2δxD

and β j = δtD f2 j

2(δxD)2
.

The last equation allows matrix representation so that the solution to the direct
problem (Eq.16) can be expressed as

Cn+1 = A−1bCn, (21)

where A and b are tridiagonal spatial-dependent matrices.

3 Parameter Estimation Procedure

Themethodology for determining the fitting parameters has been derived by (a) defin-
ing adequate dimensionless variables and fitting parameters, (b) specifying proper
validity ranges for the parameter values, (c) providing an objective function and a
suitable optimization method, and (d) performing a robustness analysis of the whole
procedure. These issues will be described below. The use of synthetically generated
tracer breakthrough data is essential in the robustness analysis, since it provides
control on the procedure and allows the quantification of the fitting goodness.
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3.1 Fitting Parameters

As can be seen in Eq. (12), there are four fitting parameters: Uad , Dad , α, and θ .
However, as will be seen below, one of them, Uad , depends on the other parameters,
and thus only three parameters are actually present. The fitting parameters are:

• Fractal length dimension, α. It is the effective fractal dimension of length along
the flow direction. As shown in Eqs. (10) and (11), it affects both the tracer velocity
and its dispersion. The Euclidean limit is α = 1.

• Connectivity index, θ . It is a dynamical parameter related to the tracer dispersion
in the fractal structure. In the Euclidean limit, θ = 0, the dispersion coefficient
remains constant, whereas for θ > 0 it decreases with the travelled distance.

• Dimensionless dispersion coefficient, Dad . It is a dimensionless parameter asso-
ciated to the dispersion phenomenon in the fractal media at the inter-well scale.

• Dimensionless velocity, Uad . It is a dimensionless effective tracer velocity in the
fractal porous medium. This velocity can be expressed in terms of the other para-
meters by considering the time the tracer pulse requires to sweep (fill) the whole
fractal volume between x = xw and x = L . Further, if we choose the reference
time (Δt) as this total sweep time, it follows that

Uad = 1

α
. (22)

This relationship reduces the amount of fitting parameters to three: α, θ , and Dad .

3.2 The Inverse Problem

The objective function (OF) is written in terms of the synthetic data {CDi , tDi } and
the model prediction {C(tDi ; α, Dad , θ)} in the least square sense as

O F(α, Dad , θ) =
N∑

i=1

[
CDi − C(tDi ; α, Dad , θ)

]2
, (23)

where the parameters are constrained according to themodel formulation: 0 < α ≤ 1,
0 < Dad ≤ 0.1 and 0 ≤ θ ≤ 0.5. The last equation describes a hyper-surface in
the parameter space. The inverse problem consists in finding the optimal values of
the parameters that minimizes the OF (Eq. (23)) on the hyper-surface. In doing so, a
constrained optimization algorithm is needed.
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3.3 Optimization Algorithm

There exist diverse optimization algorithms that can be used to minimize functions
like Eq. (23). However, the particularities of our case, i.e., noisy data and solutions
that are found numerically, make gradient-free optimization algorithms more appro-
priate even though the gradient-based methods are more efficient. The reason is
that the numerical evaluation of the Jacobian and the Hessian matrices from noisy
data increases the uncertainty. The gradient-free algorithm used in the optimization
process is a modified Nelder-Mead method, which requires neither Jacobian nor
Hessian matrix evaluation and allows constraints in parameter values. This method
evaluates theOF at the vertices of a n-dimensional simplex (n =3 in thiswork and the
simplex is a tetrahedron) so that the search moves away from the poorest value and
the minimum is enclosed in a simplex which continuously changes in size. The final
simplex is reached when the OF or the parameters fulfill some prescribed stopping
criterion.

4 Synthetic Data Generation

To generate the synthetic data, (i) we first choose a set of model parameter values,
(ii) then we numerically solve the advection-dispersion equation for a given distance
to the production well and a selected set of tracer breakthrough times, and finally
(iii) we add uniformly distributed noise to the concentration values obtained. Two
levels of noise are taken into account: 5 and 10%with respect to the maximum tracer
concentration and three levels of the amount of data points: 10, 20 and 40. The time
data are sampled in a non-uniform way in order to construct the breakthrough curve
in a prescribed time range. The data will consist in a series of pair values: time and
concentration {ti , Ci}. In this specific case, the synthetic data were generated by
setting: α = 0.75, Dad = 0.0133 and θ = 0.05 and the following fixed parameters:
Δt = 10days, L = 400m and xw = 0.1m. Asmentioned above several sets of tracer
concentration versus time were constructed from the model. For each noise level (5
and 10%) three different amount of data points were generated (approximately 10,
20 and 40). The amount of points is not constant since negative concentration values
are eliminated. Therefore, we will work with six data sets. By using themwe analyse
the effect of the amount of data, the noise level and the amount of fitting parameters.
To measure the fitting quality, the percentage of relative error (PRE) and the OF
value are used.

In the optimization process a random search was used to get the starting
parameters. Ten trials per parameter are tossed so that 1,000 function evaluations
are performed. The parameter set with the lowest FO value is chosen. By this way,
the starting point will presumably be close to the global minimum of the OF.
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Fig. 2 Qualitative comparison between the synthetic data (blue points) and the model predictions
(dashed black line). From left to right, in each column, the amount of data varies from approximately
40, 20 to 10. The first and second rows correspond to 10 and 5% of noise, respectively. The
parameters are α = 0.75, Dad = 0.0133 and θ = 0.05

5 Robustness of the Method

As mentioned before, the robustness analysis of the developed methodology consid-
ers a sensitivity analysis of the effect of the (a) noise level, (b) amount of data, and
(c) amount of parameters on the fitting. For this purpose the six synthetic data set
generated are used.

5.1 Sensitivity to the Level of Data Noise

The results regarding the fitting sensitivity to data noise level are presented in Fig.2.
In this figure the fitted breakthrough curve and the original data are displayed. The
top three plots correspond to 10% noise and the three bottom plots to 5% noise.
The two vertical plots at the left correspond to approximately 40 data points, the
two vertical plots at the center to near 20 data points and the two plots at the right
to around 10 data points. The effect of the noise level can not be inferred from the
qualitative comparison in Fig. 2 and a look to the quantitative results in Tables1 and
2 is necessary. As shown in Table1 the OF increases if the amount of noise increases
(keeping the same amount of data points). On the other hand, the percentage of
relative error (PRE) does not follow the same behaviour; an increment in noise level
does not necessarily imply an increment in its value. Conversely, as can be observed
fromTable2, for 40 and 10 data, an increment in the noise level means an unexpected
reduction of the PRE value. The PRE value for each parameter reveals how far they
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Table 1 Comparison between original and estimated fractal parameters for different amount of
data and noise levels

40 Data 20 Data 10 Data

Parameter Original 5% 10% 5% 10% 5% 10%

α 0.75 0.744 0.743 0.746 0.775 0.749 0.789

θ 0.05 0.069 0.041 0.048 0.023 0.015 0.018

Dad 0.0133 0.0140 0.0166 0.0146 0.0090 0.0145 0.0125

O F 2.46 15.2 0.489 1.57 0.0643 0.314

Table 2 Percentage of relative error in the estimated fractal parameters for different amount of
data and levels of noise

40 Data 20 Data 10 Data

Parameter 5% 10% 5% 10% 5% 10%

α 0.80 0.93 0.53 3.33 0.13 5.20

θ 38.00 18.00 4.00 54.00 70.00 64.00

Dad 5.00 24.00 9.77 32.33 9.02 6.02

PRE 43.80 42.93 14.30 89.66 79.15 75.22

are from the original value. In this sense α and Dad are better estimated than θ . The
PRE values for α and Dad scarcely exceed the 5 and 30%, respectively, whereas
for θ this value achieves 60%. Estimation of α slightly depends on the level of
noise compared to the other parameters. From these results it is possible to infer the
sensitivity of the model to the parameters which is in the following order: α, Dad , θ .
The estimation depends on the level of noise.

5.2 Sensitivity to the Amount of Data

The effect of the amount of data on the fitting can be seen in Figs. 1 and 2 by fixing
the row and changing columns. The quantitative description is deployed in Tables1
and 2. FromTable1we see that a decrement in the amount of data implies a decrement
in the OF. This is a meaningless result since the OF is proportional to the amount of
data. The PRE values in Table2 do not have a well-defined trend, although it suggests
that the estimation is sensitive to the amount of data. As expected, the estimation of
Dad and θ in general improves with the amount of data.



Parameter Estimation in a Model for Tracer Transport in One-Dimensional Fractals 249

0.5 1 1.5 2
0

2

4

6

8

10

t
D

C
D

α  = 0.752

D
ad

  = 0.0119

FO = 11.7

0.5 1 1.5 2
0

1

2

3

4

t
D

C
D

α  = 0.721

D
ad

 = 0.0217

FO  = 2.62

0.5 1 1.5 2
0

1

2

3

4

5

t
D

C
D

α  = 0.786

D
ad

  = 0.0099

FO = 0.289

0.5 1 1.5 2 2.5
0

2

4

6

8

t
D

C
D

α  = 0.744

D
ad

 = 0.0151

FO = 2.65

0.5 1 1.5 2
0

1

2

3

4

5

6

t
D

C
D

α  = 0.754

D
ad

 = 0.0125

FO = 0.354

0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

t
D

C
D

α  = 0.751

D
ad

 = 0.0104

FO = 0.251

Fig. 3 Qualitative comparison between the synthetic data and the model predictions for the case
where α and Dad are the fitting parameters. Description is the same as in Fig. 2. The original
parameters are α = 0.75, Dad = 0.0133 and θ = 0.05

Table 3 Comparison between original and estimated fractal parameters for different amount of
data and noise levels

40 Data 20 Data 10 Data

Parameter Original 5% 10% 5% 10% 5% 10%

α 0.75 0.744 0.752 0.754 0.721 0.751 0.786

Dad 0.0133 0.0151 0.0119 0.0125 0.0217 0.0104 0.0099

O F 2.65 11.7 0.334 2.62 0.25 0.29

Here α and Dad are the fitting parameters

5.3 Sensitivity to the Amount of Fitting Parameters

To analyse the effect of the amount of fitting parameters on the results, two additional
cases are included: one where the fitting parameters are α and Dad , (see Fig. 3),
and the other where only α is considered as fitting parameter, (see Fig. 4). The fixed
parameters are set according to the original values. Regarding to the case where three
parameters were estimated, in the first case a general improvement in the estimation
ofα is observedwhereas the estimation of Dad worsened. This can be seen in Tables3
and 4.When only one fitting parameter is considered the PRE does not exceed the 5%
regardless the amount of data or the amount of noise. It is very similar to the values
obtained where two or three fitting parameters are considered. Therefore, estimation
strongly depends on the amount of fitting parameters, as expected. It improves as the
number of parameters is reduced, especially if the model is sensitive to the selected
fitting parameters.
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Fig. 4 Qualitative comparison between the synthetic data and the model predictions when only α

is the fitting parameter. Description is the same as in Fig. 2. The original parameters are α = 0.75,
Dad = 0.0133 and θ = 0.05

Table 4 Percentage of relative error in the estimated fractal parameters for different amount of
data and noise levels

40 Data 20 Data 10 Data

Parameter 5% 10% 5% 10% 5% 10%

α 0.80 0.27 0.53 3.87 0.13 4.80

Dad 13.53 10.53 6.02 63.16 21.81 25.56

PRE 14.33 10.80 6.55 89.66 21.94 30.36

Here α and Dad are the fitting parameters

6 Discussion of Results

The parameter estimation methodology developed for the fractal continuum model
works adequately. In the analysis the level of data noise, the amount of data points,
and other characteristics of the model such as the number of fitting parameters were
considered. The level of noise increases the level of uncertainty in the obtained
tracer transport parameter values. It holds in general that the higher the noise level,
the more complex the parameter estimation becomes. The percentage of relative
error (PRE) is a good estimator of the quality of fitting since the smallest values
matches the best estimation. This does not mean that all parameters have lower
values of PRE compared to others, but the total sum is smaller. Regarding the fitting
parameters, the level of noise affects the estimation of each parameter differently. The
estimation of α is slightly affected by the noise level because it is mainly associated
to the pulse position and its peak height. On the other hand, Dad and θ values
strongly depend on the noise level, since both are linked to tracer dispersion. As
can be observed in Figs. 2, 3 and 4, the noise level creates major uncertainty on
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dispersion than on tracer velocity. As expected, increasing the amount of data points
improves the parameters estimation as it is shown in the 40 data case (first column in
Figs. 2, 3 and 4). This improvement is directly related to the fact that larger amount
of information is provided. It is important to point out the relevance of the quality of
the information because if the data are not sampled properly, as it may happen even
in synthetic data, the results can be influenced or biased by external factors that are
inconsistent with the estimation methodology.

The number of fitting parameters has important effects on the parameter estima-
tion. This can be seen in the data fromFigs. 2, 3 and 4. Clearly, fitting three parameters
is more complicated than fitting only one and therefore the result improves signifi-
cantly. The estimation of α, Dad and θ at the same time shows that the last parameter
almost does not affect the transport model and it can be explained in function of
the involved phenomena. As mentioned before Dad and θ are related to the tracer
dispersion, but the first has a strong effect, as it depends on other physical properties
like fluid density, fractal length dimension, etc., whereas the second is an isolated
parameter relevant only at small values of length. If this parameter is fixed and the
others are fitting parameters, the estimation of α slightly improves but the estima-
tion of Dad significantly worsens, as shown in Table4. This is a consequence of
a rescaling process in the model sensitivity due to the presence of only two fitting
parameters. When only α is a fitting parameter, the estimation does not changes
significantly with respect to the previous case. This may suggest that one-parameter
optimizations provide robust results,regardless the noise or the amount of data.

7 Conclusions

Amethodology for parameter estimation in a given fractal model for tracer transport
is presented. The effect of the data noise level, the amount of data and the amount
of fitting parameters on the parameter estimation for tracer pulse injection has been
analysed.

Even though the parameter estimation is sensitive to the level of data noise, to
the amount of data, and to the amount of fitting parameters, in general the proposed
methodology is robust, particularly in estimating α and Dad . Estimation of each
parameter not only depends on such properties, but mainly on the model sensitivity
to the specific parameter. In this sense the model is more sensitive to α than to Dad

and θ . The estimation of θ has more uncertainty than it has with the other parameters.
Moreover the contribution to the percentage of relative error (PRE) of α is smaller
than that associated to Dad and θ . Finally, care must be taken in the following issues
when working with synthetic data and numerical solutions:

• Estimationdepends on the discretizationparameters used in the numerical solution.
• A sensitivity analysis must be performed before the parameter estimation.
• The results may change if data noise is generated using other distribution functions
different from the uniform one used here.
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• Synthetic data must be properly-sampled in order to avoid bias in the parameter
estimation.
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Mixed Convection in a Rectangular
Enclosure with Temperature-Dependent
Viscosity and Viscous Dissipation

A. Gómez López, B. Estela García Rojas, R.O. Vargas Aguilar
and L.A. Martínez-Suástegui

Abstract The problem of laminar opposing mixed convection inside a two-dimen-
sional rectangular enclosure with asymmetrical heating is studied numerically using
the vorticity-stream function formulation of the Navier-Stokes and energy equa-
tions. The model considers viscous dissipation and viscosity is assumed to vary with
temperature according to an exponential relation, while other fluid properties are
considered constant. Numerical experiments have been performed for fixed values
of the geometrical parameters, Reynolds number of Re = 20, Prandtl number of
Pr = 3,060, a range of Richardson numbers from 0 to 10, and Brinkman numbers
ranging between 0 to 40. Streamlines, temperature contours, maximum fluid tem-
perature and average Nusselt number at both walls are obtained. The results show
that combined viscous dissipation and variable fluid viscosity can be important in
the overall flow and heat transfer characteristics.

1 Introduction

Mixed convection studies in rectangular enclosures are important in many industrial
applications for the design of compact heat exchangers, solar collectors, cooling
of electronic equipment and other thermal devices. A comprehensive review of this
subject can be found inAung (1987). However,most efforts have focused on studying
the effect of combined forced and free convection for different channel geometries,
boundary and operating conditions based on the hypothesis that the effect of viscous
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dissipation in the fluid is negligible and assuming constant thermophysical proper-
ties (Hartnett and Kostic 1989; Peterson and Ortega 1990), while only relatively few
studies that assess the effect of variable properties and viscous dissipation are avail-
able. Barletta (1998) studied analytically the laminar mixed convection with viscous
dissipation in a vertical channel and showed that the latter enhances the buoyancy
forces. Barletta and Nield (2009) studied numerically the mixed convection in a lid-
driven square enclosure by taking into account the effects of viscous dissipation and
pressure work and showed that their effects are not negligible. Costa (2006) pointed
out that erroneous conclusions about flow and temperature fields and heat trans-
fer results are obtained in convection heat transfer problems if viscous dissipation
effects are neglected with respect to the First Law of Thermodynamics. Zamora and
Hernández (1997) studied numerically the influence of variable property effects on
natural convection flows in asymmetrically heated vertical channels and found that
variable property effects have a strong influence on the Nusselt number. Hernández
and Zamora (2005) assessed the effects of variable properties and non-uniform heat-
ing on natural convection flows in vertical channels and pointed out that variable
property effects are significant and cannot be neglected.

The above literature review reveals that there are relatively few studies that deal
with the investigation of temperature dependent viscosity effects and viscous dissipa-
tion duringmixed convection heat transfer. The aim of the present study is to perform
a numerical investigation for opposing laminar mixed convection in a rectangular
enclosure subjected to isothermal side walls that are kept at different temperatures,
while the top and bottom walls are assumed to be adiabatic. Emphasis on the effect
of the Richardson and Brinkman numbers on the overall flow and heat transfer is
presented.

2 Problem Formulation

A schematic diagram of the enclosure configuration studied is shown in Fig. 1. The
height and width of the enclosure are L and W, respectively, with W = 1.5 L.

The top and bottom walls are assumed to be adiabatic, while the left (hot) and
right (cold) walls have uniform surface temperatures TH and TC, respectively. The
flow enters through the upper left inlet with uniform velocity u0 and temperature
T0 = (TH + TC)/2. The density variations in the buoyancy term are treated according

Fig. 1 Schematic diagram
of the flow and heat transfer
problem
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to the Boussineq approximation for an incompressible viscous fluid. The viscous
dissipation in the energy equation is considered, and the widely used exponential
or Arrhenius type relation (Kakaç 1987) is employed to represent the temperature
dependence of the viscosityμ(T ) = μ0 exp[−B0(T −T c)], whereμ0 is the viscosity
and B0 is an empirical constant, both at the reference temperature T0. Using the
vorticity (Ω = ∂V/∂ X−∂U/∂Y) and stream function formulation (U = ∂ψ/∂Y, V =
−∂ψ /∂X), the flow is described by the following dimensionless equations:
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where V = (U, V) is the dimensionless velocity vector and θ is the dimensionless
temperature. In the above equations, all velocity components (U in the X direction
andV in theY direction) are scaledwith the inflowvelocity u0,U = u/u0 andV = v/u0;
the longitudinal and transverse coordinates are scaledwith the height of the enclosure
L, X = x/L and Y = y/L; the temperature is normalized as θ = (T − TC)/(TH − TC);
the pressure is scaled with ρu2

0, and the temperature dependent viscosity is scaled
with B = B0(TH − TC). The nondimensional parameters are the Reynolds number,
Re = u0L/ν, the Peclet number, Pe = u0L/α, the Richardson number, Ri = gβ
(TH−T0)L/u02, the Brinkman number, Br = μu2

0/k(TH − T0), and the dimensionless
viscosity μ/μ0 = exp(−Bθ ), where B = −ln(μ/μ0). Here, g is the acceleration due
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to gravity and β is the thermal expansion coefficient. Equations (1)–(3) have to be
solvedwith the following boundary conditions. Uniformflowat the channel entrance,
withψ varying from 0 to 1 and � = 0 for H ≤ Y ≤ L; no slip at the walls withψ = 0
at the left, bottom and right walls andψ = 1 at the top wall; and relaxed parallel flow
conditions at the outlet: ∂ψ/∂ X = ∂2ψ/∂ X∂Y = 0. Wall vorticities are evaluated
using Thom’s classical formula, ΩW = 2(ψW+1 −ψW)/�n2, where �n2 is the grid
space normal to the wall (Thom 1933). The boundary conditions for the temperature
are the following: fixed temperature, θ = 1, 0 at the left and right walls, respectively;
fixed fluid inlet temperature, θ = 0.5; adiabatic top and bottom walls, ∂θ/∂Y = 0;
the condition at the exit is the normally assumed relaxed condition ∂θ/∂ X = 0.
The local Nusselt numbers at the left and right isothermal walls are computed as
Nu(Y)= ±∂θ/∂ X |X=0,1.5. The space averaged Nusselt number is then computed by

integrating the local Nusselt number along each wall, Nu = (1/H)
∫ H
0 Nu(Y )dY .

3 Numerical Results and Model Validation

The equations were discretized using a second-order central difference formulation
for all the spatial derivatives and solved using the ADI scheme. The system of nonlin-
ear equations (1)–(3) along with their corresponding boundary conditions are solved
numerically using a uniform grid of 60× 60 that yielded independent results in terms
of the average Nusselt number and the maximum value of the stream function. A
nondimensional time step �τ = u0�t/L = 1× 10−3 has been used for all com-
putations for fixed Pr = 3,060. A tolerance value of 1× 10−7 was used to measure
the convergence of the dependent variables. The code has been validated by com-
paring the results of the simulations against those of Singh and Sharif (2003) for
mixed convective cooling of a rectangular cavity with inlet and exit opening. The
computed results for the average Nusselt number at the left wall for different values
of the Richardson number are shown in Table1. Clearly, good agreement between
the present predictions is found with a maximum discrepancy of 2.37%, justifying
the numerical method used in this study.

Table 1 Comparison of variation of the average Nusselt number at the left wall

Average Nusselt number at Re = 50 with Pr = 0.71

Ri 0.001 0.01 0.1 1 10

Singh and Sharif (2003) 9.2 9 8.8 10.5 13.98

Present work 9.1432 9.2136 8.6343 10.7212 13.7654
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4 Results

Figure2 shows the predicted overall Nusselt number at both walls for Re = 20,
Pr = 3,060 and B = 1 for several values of the Brinkman and Richardson numbers.

We note that due of the imposed boundary conditions, small values of the mean
Nusselt number are obtained at the left wall, while enhanced heat transfer occurs at
the right wall. In the absence of buoyancy (Ri = 0), the overall heat transfer at the left
wall reduces when the Brinkman number increases, while the opposite is observed
at the right wall. This behavior is explained by the increase of the energy generated
by viscous dissipation, which in turn yields a higher fluid temperature. A similar
trend is observed for all values of the buoyancy parameter at the left and right walls,
respectively.

For aRichardsonnumber ofRi=2 and for all the computedvalues of theBrinkman
number, heat transfer at the left wall is enhanced because of an increase in the size
of the recirculation zone that appears at the lower left corner of the enclosure. In
addition, a recirculation bubble at the lower right corner with twice the size of the
left vortex increases the temperature close to the right wall, while reducing its cor-
responding Nusselt number. This effect occurs because of the internal forcing that
the system undergoes due to viscous dissipation and variable viscosity effects. For a

Fig. 2 Overall Nusselt
number at the left and right
wall for Re = 20, Pr = 3,060
and B = 1 for several values
of the Br and Ri, respectively
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Richardson number of Ri = 6, as the induced kinetic energy raises, the shear induced
heating increases the temperature within the fluid. As a result, the overall Nusselt
number at the left and rightwalls decreases and increases, respectively. For aRichard-
son number of Ri = 10, the variable viscosity enhances the fluid velocity close to
the walls and widens the flow reversal regions, while the overall Nusselt numbers at
the left and right walls slightly increase and decrease, respectively. Figure3 shows
temperature contours with superimposed streamlines at various Ri and Br. The color
scales below each column map the temperature distributions. Clearly, for all the
Brinkman number values considered, the size of the recirculation zones—appearing
at the bottom corners of the enclosure—increase as the Richardson number values
step up. We note that for a given Richardson number, higher values of the nondi-
mensional temperature occur for increasing values of the Brinkman number, which
implies an increase in the shear-induced heating because of the presence of higher

Fig. 3 Temperature contours with superimposed streamlines for Re = 20, Pr = 3,060 and B = 1
for several values of Br and Ri. The images from top to bottom display the final flow solution for
Ri = 0, 2, 6 and 10, respectively
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forced kinetic energy. The images shown exemplify the importance of viscous heat-
ing effects and temperature dependent viscosity on the dimensionless velocity and
temperature profiles.

5 Conclusions

The problem of laminarmixed convection in a rectangular enclosure has been studied
numerically by taking into account the effect of viscous dissipation and temperature-
dependent viscosity. Uniform wall temperatures with asymmetric heating have been
considered. The problemdepends on several non-dimensional parameters, such as the
Reynolds number, the Prandtl number, the Richardson number (buoyancy parame-
ter), the Brinkman number, the temperature-dependent viscosity and the geometrical
parameters of the enclosure. It has been shown that the effect of viscous dissipation
can be important on the heat and fluid flow phenomena in fluids with high Prandtl
number, with regions within the enclosure reaching fluid temperatures above the hot
wall temperature.

Acknowledgments This work has been supported by the Consejo Nacional de la Ciencia y Tec-
nología (CONACyT), Grant No. 167474 and SIP-IPN 20131675.
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Characterization of a Bubble Curtain
for PIV Measurements

R.G. Ramírez de la Torre, D.C. Vargas-Ortega, M.S. Centeno-Sierra,
R. Méndez-Fragoso and C. Stern Forgach

Abstract In this contribution we present the characterization of a bubble curtain
produced with compressed air. The final goal is to implement a PIV system, with
bubbles as tracers, that will help to understand drag and propulsion of a swimmer
during a dolphin kick. The system will be used directly in a swimming pool. The
first trials were made in a controlled water channel.

1 Introduction

The use of scientific results to improve the performance and efficiency of athletes in
all sports is constantly increasing. In particular, swimming techniques have changed
over the years, not only the biomechanical gestures of the swimmers, but also the
design of the gear they use and the procedures to measure their performance. Its
direct consequence is the continuous reduction in time of the world records (FINA
2013, 2014).

This paper describes the development and validation of a non-intrusive method
to determine the velocity field around a swimmer. It provides a quantitative tool to
analyze the flow and gives information needed to modify swimming techniques and
improve performance.
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1.1 Theoretical Framework

The most common nondimensional parameter used to characterize fluid motion is
the Reynolds number, defined as,

Re = DV

ν
, (1)

whereD is a characteristic length, V is a characteristic velocity and ν is the kinematic
viscosity (Crowe et al. 2009).

Due to the viscosity of the fluid, when it comes in contact with any solid boundary,
the speed is diminished near the surface. This zone is known as boundary layer, and
is characterized by low velocity and high speed gradients. The latter are responsible
for generating vorticity −→ω which is defined mathematically as,

−→ω = ∇ × −→
V , (2)

where
−→
V represents the velocity field.

When the surface is curved, pressure gradients appear in the streamwise direction.
If the pressure gradient is adverse, flow reversal can occur and the boundary layer
separates creating a wake with well-defined vortical structures, as shown in Fig. 1.

As the flow velocity increases, the vortices formed due to flow reversal, start to
shed at a frequency proportional to the velocity. The pattern thus formed is known
as the von Kármán street and is shown in Fig. 2a. The effect of von Kármán’s street
on drag has been largely studied for different geometric forms, in particular behind
cylinders (2D) and spheres (3D). There are active and passive forms of manipulation
of the wake vortices that can diminish the drag, or even create propulsion. For exam-
ple, vortices are manipulated by animals, with the motion of their wings or fins, to
form a modified pattern as shown in Fig. 2b, (Triantafyllou et al. 2012). This pattern,
that increases propulsion, is known as the reversed von Kármán street.

Fig. 1 Velocity profile in the surface of a curved body immersed in a fluid. In the region where the
pressure gradient is adverse, flow reversal occurs and vortices are generated
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Fig. 2 On the left, a comparison of the wakes behind (a) a sphere (von Karman’s Street) and (b) a
fish (reversed von Kármán street). On the right, vortices left by a swimmer during a dolphin kick,
which affect the propulsion and efficiency of a swimmer

Swimmers use the kick and the arm stroke for propulsion, imitating animalmotion
(Biewener 2003). In particular, the dolphin kick generates vortex pairs similar to those
produced by fish as shown in Fig. 2 (Arellano et al. 2002).

2 Background

Studies on swimming have shown that in a competition, over 40% of the time the
swimmer is completely submerged (Costa et al. 2010). For this reason, it was decided
to implement a 2D PIV technique, commonly used for flow analysis. In this type of
analysis, tracer particles are required to follow the flow. In the laboratory, a laser
sheet of light is displayed, and the motion of the particles in that plane is recorded
with a high speed camera. It is very difficult to introduce tracers in a swimming pool,
because they are difficult to control and mostly, because they pollute the water. Thus,
it was decided to use bubbles as tracers.

To produce the bubbles a PVC tube with a row of holes, connected to a tank of
compressed air was built. The first tests were conducted in the Olympic Pool at the
main UNAM campus in order to check if the bubbles could follow the flow generated
by the passage of the swimmer.

Figure3 shows the experimental arrangement used and an image with the pre-
liminary results. A vortical structure is observed. From these preliminary results it
became clear that greater control over the size of the generated bubbles to obtain

Fig. 3 On the left the experimental setup used at the Olympic Pool is shown. The image on the
right shows the results obtained after analysis of PIV
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better resolution was needed. Also, because the motion of the bubbles is not strictly
vertical, a more detailed characterization of the curtain was required.

3 Methodology

A new device that allowed control of the size and number of the generated bubbles
was developed. Very small, equally sized holes were made on a tube using a laser
cutting machine. One end of the tube was sealed, and the other was connected to a
continuous supply of air. To create an almost uniformflow inside the bubble generator,
an inner tube was introduced as shown in Fig. 4.

The characterization of the bubble curtain was conducted in the wave flume at the
“Coast and Ports Laboratory” at the Engineering Institute of the UNAM, where the
environment is controlled. A video camera with a speed of 120 frames per second
was used. To ensure a constant flow of air, the pressure is monitored with a mercury
manometer connected between the air pump and the bubble generator as shown in
Fig. 5.

The study was divided into three stages. First, the behavior of bubbles generated
by one hole was analyzed. Bubbles have a spiral trajectory as they travel upwards.

Fig. 4 Diagram of the bubble generator

Fig. 5 Experimental setup to characterize the behavior of the bubbles
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Fig. 6 Scheme of the image and data processing with the Tracker Program and other software
developed in MATLAB

The amplitude of the spiral increases with altitude. It was necessary to determine the
velocity, the amplitude and the period of the spiral in order to determine a range of
pressures and a measuring area appropriate for the final experiment.

On the second stage, the behavior of the bubbles generated by three holes was
analyzed and compared to stage one. On the third stage, waves with different fre-
quencies were generated, and the whole curtain was used to recover the fluid particle
behavior in a wave.

The images were manipulated with software developed in MATLAB. A tracker
program was used to obtain the velocities from the images. In Fig. 6, a diagram of
the data processing sequence is shown.

4 Results and Discussion

4.1 Results for One Column of Bubbles

The upper left image in Fig. 7 shows the ascending velocities obtained for different
pressures and water depths. It is important to note that for manometric pressures
higher than 14.5cmHg the velocities tend to cluster in a range of two centimeters.
This measurement helps eliminate background noise in PIV.
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Fig. 7 Upper left Average upward speed of bubbles versus pressure. Upper right Particle density
image versus pressure. Bottom Bubble dispersion at a height of 11cm (‘Dinf’ on the graph) and a
height of 48cm (‘Dsup’ on the graph) as a function pressure

Two reference points are taken into account to analyze the amplitude of oscillation
of the rising bubbles, the first at 11cm and the second at 48cm from the bubble gen-
erator. The bottom image of Fig. 7 shows that for pressures greater than 14.5cmHg



Characterization of a Bubble Curtain for PIV Measurements 267

the values of the amplitude are very close and independent of the height. The same
thing happens with the velocity values.

The bubble density per unit area changes as the pressure is increased. In Fig. 7
(upper right) the average density of particles per image is shown. Data obtained for
pressures greater than 14.5cmHg are clustered, consistent with the Fig. 7 (upper left
and bottom).

The analysis of the graphs above determined that the optimal pressure must be
greater than 14.5cmHg regardless of height. In this area the speeds, densities and
dispersions stay in a similar range. The average displacement on the horizontal axis is
zero. Therefore, it is only relevant to note that there are periods of oscillation within
the range of 0.16–0.25 s for the bubbles. This oscillation will be taken into account
in the final analysis, and will not affect considerably the measurements.

4.2 Results for Three Bubbles

Measurements of the speeds of bubbles from three nearby holes are used to determine
whether the interactions between the bubbles affect their behavior. These measure-
ments were compared with those obtained for bubbles produced by one hole only.
The left side of Fig. 8 shows that the bubbles have speeds close to 25cm/s, which
means that the increase in the number of bubbles does not induce any change in its
upward velocity. The device was maintained at pressures higher than 14.5cmHg.

Fig. 8 Left speeds in the upward direction for three holes compared to one hole. Right upward
speeds of bubbles when waves were produced in the flume
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Fig. 9 Left bubble density against pressure for three holes, compared with the results of one hole.
Right oscillation frequency of the waves compared with the frequency of the bubbles

4.3 Results Obtained When Waves Were Introduced

The right side of Fig. 8 shows speeds of bubbles in the upward direction at a pressure
of 15.6cmHg, when controlled waves with different frequencies were introduced
in the flume. The speed remains close to 25cm/s, which indicates that the average
ascending velocity of the bubbles is maintained.

The air pressure is controlled and the flow is steady. The left panel of Fig. 9
shows that the particle density generated by each hole is retained even with all holes
uncovered.

The periods of the waves produced were compared with the periods measured
from the bubbles. The results are depicted in the right panel of Fig. 9. It can be seen
that the frequency of the bubbles matches the frequency of the waves.

5 Conclusions

The results show that bubbles are able to trace the flow behavior. Their horizontal
variation has a well defined period. The amplitude of oscillation increases as the
bubble rises. Measurements can be made in an area where both phenomena are
small and can be easily taken into account. The upward velocity of the bubbles was
not affected when waves with frequencies above 0.5Hz were created. However, for
waves of longer period the slower motion between peaks and valleys provide almost
a 10% difference.
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The study has provided an optimum operating range of the air pressure and of the
illuminated area. The next step is to introduce the device in the swimming pool, and
observe the flow around a swimmer.
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Numerical Simulation of a Gas-Stirred Ladle

H. Zambrano, A. Bencomo, L. Trujillo and L. Di G. Sigalotti

Abstract In this paper we present three-dimensional, numerical simulations of the
turbulent recirculatory flow in a gas-stirred vessel. The physical model consists of
air injected in a water cylindrical vessel, corresponding to a one-seventh scale model
of an industrial 35 tons steel-making ladle. Plume development and recirculation is
investigated for air blowing through an eccentric porous plug placed at the bottom
of the vessel. The experimentally observed plume behaviour and the mixing process
due to recirculatory water motion within the ladle is qualitatively well reproduced
by the numerical simulations. When the airflow rate is increased, the intensity of
agitation and turbulence increases, thereby enhancing the mixing in the ladle.
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1 Introduction

In the metallurgical industry the liquid steel is stirred to promote homogenization by
percolating argon gas through a single refractory stir plug arrangement in the bottom
of the ladle. For example, gas injection is used to enhance the speed of chemical reac-
tions, eliminate thermal and/or composition gradients, and remove inclusions among
other tasks (Bird et al. 1960). Submerged gas injection also plays an important role
in copper and aluminium refining processes. However, experimental observations of
the dynamics of liquid metal processing operations are very limited due to the high
temperatures, visual opacity, and large sizes of the processing units. Consequently,
most studies of the hydrodynamics of gas stirred ladles have been restricted to numer-
ical and experimental models of simple gas injection configurations, i.e., injection
of air into a cylindrical water vessel, where the vessel is some scaled model of an
industrial steel-making ladle.

The mathematical models describing fluid motion in gas-stirred ladle systems can
be classified into two main groups: (a) the quasi-single phase models based on the
continuum approach (Grevet et al. 1982; Sahai and Guthrie 1982; Woo et al. 1990;
Balaji and Mazumdar 1991; Sheng and Irons 1992; Goldschmit and Coppola Owen
2001; Taniguchi et al. 2002), where the combined gas-liquid fluid is treated as a
mixture and so the form of the mass and momentum conservation equations reduce
to those of a homogeneous fluid in terms of the mixture density and velocity, and
(b) the two-phase fluid models (Schwarz and Turner 1988; Xia et al. 1999, 2002;
Ramírez-Argáez 2007; De Felice et al. 2012), where there is a separate solution field
for each phase and inter-phase transfer terms are employed to simulate the interaction
between the two phases. In essence, the two-fluid models are based on the concept of
unequal phase velocities. However, they will show a tendency to equalize because of
the inter-phase interaction forces. For instance, the main interaction between phases
is provided by the drag forces, which act in the direction opposite to the relative
motion. Other forces may also influence the flow as the lift force, the virtual mass
force, and the turbulent dispersion force. While most early two-fluid scaled models
of gas-stirred ladles are two-dimensional models with axial symmetry, full three-
dimensional (3-D) calculations have also started to appear (Pan et al. 1997; Zhang
2000; Aoki et al. 2004; Olsen and Cloete 2009; Cloete et al. 2009), with some of
them reporting model calculations of full-scale gas-stirred ladles (Aoki et al. 2004;
Cloete et al. 2009).

In this paper, we report further two-fluid model calculations of a gas-stirred
ladle in three-space dimensions to study the characteristics of fluid flow and the
influence of the wall on plume development. The numerical results are compared
with visualization experiments on water models in the literature to get an insight
into the plume behaviour and the mixing process. The physical model consists of
an off-centred, submerged air injection in water to simulate argon and molten steel
in a cylindrical vessel, corresponding to a 1:7 scale model of an industrial 35 tons
steel-making ladle. We solve the two-phase transport equations in Eulerian form
using the commercial code FLUENT 6.3. Turbulent effects are accounted for using a
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Re-Normalization-Group (RNG) k-ε model for the governing equations of
turbulence (Yakhot et al. 1992; Yakhot and Smith 1992).

2 Two-Phase Fluid Flow Model

The gas-stirred ladle is essentially a bubble-driven recirculation flow system. When
the air is released from the porous plug, the flow is governed by the inertial force of
the injected gas and large bubbles are formed at a small height from the nozzle exit
(primary or momentum region). As the gas loses its kinetic energy, the large bubbles
disintegrate into small ones (transition region) and owing to the density difference
between air and water, they will float to the top until reaching the water surface
(bubble region). When air bubbles float, they induce the water to flow and form a
recirculation region outside the plume-shaped, two-phase region. In the upper part of
the recirculation region the water flows towards the vessel walls. It then flows down
along them and finally gets the ladle bottom. Therefore, the system can be divided
into two zones: the plume zone, where air bubbles (dispersed phase) and water
(continuous phase) coexist, and the water zone, where recirculation takes place.

If we assume isothermal conditions, the equations governing this two-phase flow
in Eulerian form are: the mass conservation equation

∂ (φαρα)

∂t
+ ∇ · (φαραvα) = 0, (1)

and the momentum conservation equation

∂ (φαραvα)

∂t
+ ∇ · (φαραvαvα) = − φα∇ p + ∇ · Tα + φαραg

− ∇ · (φαρα〈δvαδvα〉) + Fα, (2)

for each phaseα, whereα = w and b for thewater and bubbly phase, respectively, and
where the phase pressures have been taken to be equal, i.e., pα = p. This assumption
is considered to be valid except in the case of expanding bubbles (Drew 1983). Each
phase has its own intrinsic mass density ρα , velocity vα , volume fraction φα , and
viscous stress tensor

Tα = φαμα

(
∇vα + ∇vTα

)
− 2

3
φαμα (∇ · vα) I, (3)

where μα is the dynamic viscosity of phase α, I is the identity tensor, and the super-
script T means transposition. In addition to Eqs. (1) and (2) we have the following
constraints ∑

α

φα = 1, ρ =
∑
α

φαρα, (4)

for the volume fractions and the density of the mixture.
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The third term on the right-hand side of Eq. (2) is the gravitational acceleration
force directed along the negative z-axis, while the fourth and fifth terms are the
Reynolds stress (accounting for turbulent effects, where δvα = vl,α − vα is the
fluctuating component of the velocity and vl,α is the local instant velocity of phase
α) and a force per unit volume due to phase interactions which cause the transfer of
momentum between relatively moving phases. Here this term is given by the sum
of three additional forces: the drag force, which represents the force on a bubble
due to its velocity relative to the water, the lift force, which accounts for the effects
of velocity gradients in the water flow field on the bubbles, and the virtual mass
force due to the inertia of the water mass on the accelerating bubbles. We assume a
steady-state drag on the bubbles so that there is no acceleration of the relative velocity
between the bubbles and the conveying fluid. This force is given by (Mazumdar and
Guthrie 1995; Crowe et al. 1998)

FD,w = −FD,b = −3

4

N∑
k=1

CDμw

D2
b,k

Rek
(
vw − vb,k

)
φb,k, (5)

where CD(= 0.44 for Re >1,000) is the drag coefficient, Db,k = 6mm is the mean
diameter of the spherical bubbles, Rek is the disperse phase relative Reynolds number

Rek = ρw Db,k

μw
|vw − vb,k |, (6)

and the sum is taken over the total number N of bubbles contained in a unit cell (or
control volume). The lift force is given by (Drew and Lahey 1987)

FL ,w = −FL ,b = −0.5φbρw (vw − vb) × (∇ × vw) , (7)

while the virtual mass effects of the bath on the bubble column are given by (Drew
and Lahey 1987)

FV,w = −FV,b = 0.5φbρw

(
dvw

dt
− dvb

dt

)
, (8)

where d/dt denotes the phase material time derivative. We note that these forces act
as sinks for the continuous (water) phase and as sources for the dispersed (bubbles)
phase.

Turbulence is modelled using the Re-Normalization Group (RNG) k-ε model
(Yakhot et al. 1992; Yakhot and Smith 1992). This method differs from the standard
k-ε model in that it accounts for smaller scales of turbulence by means of a renor-
malization of the Navier-Stokes equations, thereby allowing for turbulence at high
Reynolds numbers. The Reynolds stresses in Eq. (2) are defined using Boussinesq’s
assumption

− ρα〈δvαδvα〉 = μα,t

(
∇vα + ∇vTα

)
− 2

3
ραkαI, (9)
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where kα is the turbulent kinetic energy density for phase α and

μα,t = Cμαραk2α
εα

, (10)

is the coefficient of the turbulent eddy viscosity, where εα is the dissipation rate of
turbulence for phase α and Cμα is a parameter that depends on the phase volume
fraction. In the actual simulations the turbulent eddy viscosity in relation (9) is
replaced by an effective dynamic viscosity, which is a sum of the dynamic and eddy
viscosities, i.e., μα,eff = μα + μα,t . Note that for the dispersed phase α = b, k
in relation (9) and a sum is taken, as in expression (5), over all bubbles contained
in a unit cell. The transport equations for the turbulent kinetic energy kα and its
dissipation rate εα as well as the values of all constants, including Cμα , are taken as
those derived explicitly in the RNG procedure for a single phase (Yakhot and Smith
1992; Pope 2000).

The transport equations are solved using the FLUENT 6.3 code for a cylindrical
water vessel of diameter 27.5cm and height 40cm, with its axis of symmetry aligned
along the z-axis. An eccentric nozzle exit of 6cm diameter is placed at the bottom of
the vessel at one-third of its radius away from the wall, through which air is allowed
to flow at a constant velocity. At the beginning of the calculations, the water volume
fraction φw = 1, while the air volume fraction φb is set to zero. No-slip boundary
conditions for the fluid velocities apply along the wall of the vessel and the water
free surface is assumed to remain flat. However, air bubbles reaching the free surface
are allowed to flow out. To do so a sink term is added to Eq. (1) for the dispersed
phase for those control volumes at the free surface. A tetrahedral mesh covering the
full cylindrical domain was created with the help of the commercial softwareGambit
2.0 and trial calculations were conducted to determine convergence of the solutions.
True convergence is guaranteed using a tetrahedral mesh with 333,465 elements.

3 Results and Discussion

Most industrial gas-stirred ladles have their porous plugs located off-centre because
it is believed that this configuration produces a better stirring effect than when the
porous plug is placed at the centre. Therefore, we simulate the injection of air into a
water vessel when the plug position is one-third of the vessel radius away from the
wall for two different constant airflow rates (i.e., Q = 9.01× 10−6 and 1.03× 10−5

m3 s−1) in order to investigate the effects on the flow field. In the present model, the
bubbles are assumed to be spherical with a uniform size distribution and released
from the nozzle exit with constant frequency.

For Q = 9.01×10−6 m3 s−1 (≈0.009 l s−1), Fig. 1 shows the resulting stable flow
pattern. The central axis of the plume is evidenced by the nearly vertical red pathlines,
while the yellow ones closely coincide with its lateral borders. In the upper portion of
the ladle, just above the plume region, there is no recirculation and the flow pathlines
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Fig. 1 Pathline velocity curves describing the flow within the ladle for a volumetric airflow rate of
9.01 × 10−6 m3 s−1. The colour-scale bar and numbers on the left border indicate the magnitude
of the velocity in units of m s−1

reach the flat water surface almost perpendicularly. Strong recirculation in the water
phase is observed away from the vessel wall on one side of the plume, which occupies
most of the ladle volume as shown by the green and blue pathlines. In the upper parts
of the recirculation region, the water flows towards the walls with velocities that
are nearly half the maximum velocities at the plume centre. In the proximity of the
wall, the pathlines bend and the water flows down along the wall with progressively
decreasing velocities. A further bending of the pathlines is produced when the flow
reaches the bottom of the ladle, converging to the lower parts of the plume region.
A small dead volume is formed below the recirculation region at the bottom of the
ladle as indicated by the arrow in Fig. 1.

A striking aspect of the present calculations is the formation of an open eye in
close contact with the wall, as is shown in Fig. 1 just behind the plume where a
blue pathline is observed to follow a spiral-like trajectory in a clockwise sense. This
interesting feature has been observed in air-water experiments with two eccentric
porous plugs (Méndez et al. 2002). The open eye forms at a height where the plume
is closest to the wall (its upper part) because part of the kinetic energy that would be
transferred to the water is lost by viscous friction and so the flow velocities involved
there are close to zero.

The predicted air volume fraction is depicted in Fig. 2, where a systematic
attraction of the plume by the wall is seen towards its upper part. This behaviour
was observed in model experiments of eccentric air injection in a square-section
water channel for small and moderate flow rates and predicted by two-phase flow,
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Fig. 2 Contours of the dynamic gas pressure showing the plume structure for the same model of
Fig. 1. The colour-scale bar and numbers on the left border indicate the pressure values in units of
Pa

steady-state simulations (Domgin et al. 1999). Figure3 shows gas velocity contours
on a cut section of the plume through its axis. We see that the bubble rising velocity
is almost constant in most of the inner parts of the plume with an average value
of ≈1.2 m s−1. This value is in close agreement with the experimentally measured
value of about 1m s−1 for the flow velocity of molten metals in a ladle model at
centric gas blowing (Xie and Oeters 1992).

A view of the cross-sectional area of the plume is shown in Fig. 4 at three different
heights. Close to the nozzle exit, the plume exhibits a fairly circular cross-section,
which then contracts and deforms as the swarm of bubbles rises due to the density
difference with the water. This implies that the gas volume fraction is larger near
the bottom half of the reactor and then becomes smaller near the free surface due
to gas dispersion. Finally, Fig. 5 shows the distribution of the kinetic energy within
the entire system. The lowest values of the kinetic energy occur at the bottom of the
ladle, where the flow is inactive, and the largest values are concentrated in the upper
part of the plume and close to the free surface where most of the bubbly gas is being
dispersed.
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Fig. 3 Isocontour of the gas velocity in a section plane of the plume through its axis for the
same model of previous figures. The colour-scale bar and numbers on the left border indicate the
magnitude of the velocity in units of m s−1

Fig. 4 Contours of the gas velocity showing the cross-sectional structure of the plume at three
different heights for the same model of previous figures. The colour-scale bar and numbers on the
left border indicate the magnitude of the velocity in units of m s−1
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Fig. 5 Distribution of the kinetic energy in the entire ladle system for the same model of previous
figures. The colour-scale bar and numbers on the left border indicate the values of the kinetic energy
in units of g m2 s−2

4 Conclusions

In this paper, we have presented numerical simulations of two-phase flows in a scaled
air-water model of an industrial gas-stirred ladle using the FLUENT 6.3 code. We
find that the intensity of agitation and turbulence in the ladle increases by increasing
the gas flow rate at the nozzle exit. As expected, an eccentric gas blowing improves
the mixing as it enforces the reduction of inactive flow regions, or dead zones, just
below the recirculating liquid flow at the bottom of the ladle. In addition, changing
the diameter of the porous plug hardly affects the flow pattern as the rising of the
gas bubbles is dominated by inertial forces near the nozzle exit and by gravitational
forces at higher heights. The results are in excellent agreement with experimental
observations of eccentric gas injection models as well as observations and numerical
calculations of plume development and behaviour.

References

Aoki J, ThomasBG,Peter J, PeasleeKD(2004)Experimental and theoretical investigation ofmixing
in a bottom gas-stirred ladle. In: Proceedings of the association for iron and steel technology
(AISTech 2004), vol I, pp 1045–1056

Balaji D, Mazumdar D (1991) Numerical computation of flow phenomena in gas-stirred ladle
systems. Steel Res 62(1):16–23



280 H. Zambrano et al.

Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. Wiley, New York
Cloete SWP, Eksteen JJ, Bradshaw SM (2009) A mathematical modelling study of fluid flow and
mixing in full-scale gas-stirred ladles. Prog Comput Fluid Dyn 9(6/7):345–356

Crowe C, Sommerfeld M, Tsuji Y (1998) Multiphase flows with droplets and particles. CRC Press,
Boca Raton

De Felice V, Daoud ILA, Dussoubs B, Jardy A, Bellot J-P (2012) Numerical modelling of inclusion
behaviour in a gas-stirred ladle. ISIJ Int 52(7):1273–1280

Domgin JF, Gardin P, Brunet M (1999) Experimental and numerical investigation of gas stirred
ladles. In: Proceedings of the second international conference on CFD in the minerals and process
industries, CSIRO, Melbourne, 6–8 December 1999, pp 181–186

Drew DA (1983) Mathematical modelling of two-phase flow. Annu Rev Fluid Mech 15:261–291
Drew DA, Lahey RT (1987) The virtual mass and lift force on a sphere in rotating and straining
inviscid flow. Int J Multiph Flow 13(1):113–121

Goldschmit MB, Coppola Owen AH (2001) Numerical modelling of gas stirred ladles. Ironmak
Steelmak 28(4):337–341

Grevet JH, Szekely J, El-Kaddah N (1982) An experimental and theoretical study of gas bubble
driven circulation systems. Int J Heat Mass Transf 25(4):487–497

Mazumdar D, Guthrie RIL (1995) The physical and mathematical modelling of gas stirred ladle
systems. ISIJ Int 35(1):1–20

Méndez CG, Nigro N, Cardona A, Begnis SS, Chiapparoli WP (2002) Physical and numerical
modelling of a gas stirred ladle. In: Idelshon SR, Sonzogni VE, Cardona A (eds) Mecánica
computacional, vol XXI. Santa Fe-Paraná, Argentina, pp 2646–2654

Olsen JE, Cloete S (2009) Coupled DPM and VOFmodel for analyses of gas stirred ladles at higher
gas rates. In: Proceedings of the seventh international conference on CFD in the minerals and
process industries, CSIRO, Melbourne, 9–11 December 2009, pp 1–6

Pan S-M, Ho Y-H, Hwang W-S (1997) Three-dimensional fluid flow model of gas-stirred ladles. J
Mater Eng Perform 6(3):311–318

Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge
Ramírez-Argáez MA (2007) Numerical simulation of fluid flow and mixing in gas-stirred ladles.
Mater Manuf Process 23(1):59–68

Sahai Y, Guthrie RIL (1982) Hydrodynamics of gas stirredmelts: part I. Gas/liquid coupling.Metall
Trans B 13B:193–202

Schwarz MP, Turner WJ (1988) Applicability of the standard k-ε turbulence model to gas-stirred
baths. Appl Math Model 12(3):273–279

Sheng YY, Irons GA (1992) Measurement and modeling of turbulence in the gas/liquid two-phase
zone during gas injection. Metall Trans B 24B:695–705

Taniguchi S, Kawaguchi S, Kikuchi A (2002) Fluid flow and gas-liquidmass transfer in gas-injected
vessels. Appl Math Model 26(2):249–262

Woo JS, Szekely J, Castillejos AH, Brimacombe JK (1990) A study on the mathematical modelling
of turbulent recirculating flows in gas-stirred ladles. Metall Trans B 21B:269–277

Xia JL, Ahokainen T, Holappa L (1999) Modelling of flows in a ladle with gas stirred liquidWood’s
metal. In: Proceedings of the second international conference on CFD in the minerals and process
industries, CSIRO, Melbourne, 6–8 December 1999, pp 187–192

Xia JL, Ahokainen T, Holappa L (2002) Analysis of flows in a ladle with gas-stirred melt. Scand J
Metall 30(2):69–76

Xie Y, Oeters F (1992) Experimental studies on the flow velocity of molten metals in a ladle model
at centric gas blowing. Steel Res 63:93–104

Yakhot V, Orszag SA, Thangam S, Gatski TB, Spaziale CG (1992) Development of turbulence
models for shear flows by a double expansion technique. Phys Fluids A 4(7):1510–1520

Yakhot V, Smith LM (1992) The renormalization group, the ε-expansion, and derivation of turbu-
lence models. J Sci Comput 7:35–51

Zhang L (2000) Mathematical simulation of fluid flow in gas-stirred liquid systems. Model Simul
Mater Sci Eng 8:463–476



Folding of the Apolipoprotein
A1 Driven by the Salt Concentration
as a Possible Mechanism to Improve
Cholesterol Trapping

M.A. Balderas Altamirano, A. Gama Goicochea and E. Pérez

Abstract The folding of the cholesterol—trapping apolipoprotein A1 in aqueous
solution at increasing ionic strength—is studied using atomically detailed molecular
dynamics simulations. We calculate various structural properties to characterize the
conformation of the protein, such as the radius of gyration, the radial distribution
function and the end-to-end distance. Additionally we report information using tools
specifically tailored for the characterization of proteins, such as the mean smallest
distance matrix and the Ramachandran plot. We find that two qualitatively different
configurations of this protein are preferred: one where the protein is extended, and
one where it forms loops or closed structures. It is argued that the latter promote the
association of the protein with cholesterol and other fatty acids.

1 Introduction

The apolipoprotein A1 (APOA1) is the main component of high-density lipoproteins
and has an important role in lipid metabolism. APOA1 is found in the human blood
stream and promotes fatty acid efflux, including cholesterol, from tissues to the
liver for excretion. Its study is important because of its protective effect against
atherosclerosis (Breslow 1996) and its function as a cholesterol transport from white
blood cells within arterywalls (Glomset 1968). APOA1 contains a single polypeptide
chain of 243 amino acid residues (Brewer et al. 1978)with 11or 22 regularly repeating
residues in the sequence (McLachlan 1977). These multiple repeating units were
proposed to form amphipathic helices with distinct hydrophilic and hydrophobic
faces (Segrest et al. 1974). The fat transport is then expected to be modulated by
the hydrophilic and hydrophobic residues along APOA1, but also by physiological
conditions like pH and ionic strength in the blood or physiological fluid.
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Computer simulations have come to play an increasingly important role in the
understanding of protein folding, protein–protein interactions and the surface activ-
ity of proteins, to name but a few. Some of the advantages of atomistic simulations
are the complete control over the physicochemical variables of the problem and the
essentially exact solution of the equations of motion that govern the nature of the
system, not tomention the vivid representations of the spatial conformations ofmole-
cules and their evolution with time. In this work we focus mainly on predicting how
APOA1 folds as the salt content is increased, using atomistically detailed computer
simulations. In particular, we study the contraction followed by re-expansion of some
residues of APOA1 induced by the increasing concentration of monovalent salt ions.
This phenomenon has been found to occur in other polyelectrolytes in aqueous solu-
tion using a variety of methods (Hsiao and Luijten 2006; Feng et al. 2009; Alarcón
et al. 2013; Pollard et al. 2013; Frank and Marcel 2000). In this context, APOA1
is a much more complex system because there are positive, negative and neutral
sequences along its structure, as well as hydrophilic and hydrophobic residues. We
expect that the spatial conformation is a crucial factor in determining the ability of
APOA1 to capture cholesterol and other fatty acids, which is the functionality we
would like to optimize so that a mechanism can be proposed to help design drugs
and treatments that improve the quality of life.

2 Model and Methodology

We start by taking the fragment of APOA1 known as 1GW3 from the Protein Data
Bank (PDB,http://www.rcsb.org; Wang et al. 1997), which has 142–187 aminoacid
residues from the complete APOA1. It is computationally very demanding to
model the entire protein, while only a fraction of its residues is responsible for
the folding we are interested in. We take into account only a 20% of the orig-
inal protein. Therefore, we work only with the above mentioned fragment and
set up molecular dynamics simulations with it and varying NaCl concentrations,
ranging from 0.01M up to 2.0M. For the interatomic interactions we used the
Lennard–Jones model (Allen and Tildesley 1987), while for the electrostatic inter-
actions we used the so called Particle Mesh Ewald (PME) method (Darden et al.
1993). To conserve the bonds between the atoms that make up the protein we used
LINCS (Linear Constraint Solver, Hess et al. 1997). The force field parameters
for the protein were taken from OPLS (Optimized Potential for Liquid Simula-
tions) (Jorgensen and Tirado-Rives 1988), and the water model used was SPCE
(Berendsen et al. 1987). Then all interactions are solved using GROMACS 4.6.4
(Spoel et al. 2005), where the interactions are calculated at every time step using the
Verlet scheme (Pall and Hess 2013) with a grid scheme for GPU’s, which allow us to
perform large simulations. The cut off distance for the Lennard–Jones and electrosta-
tic interactions was equal to 1.0nm. A leapfrog algorithm (Snyman 2000) was used
for the calculation of the atoms positions and velocities. The energy minimization
was performed using the steepest descends method (Chaichian and Demichev 2001).

http://www.rcsb.org
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The simulations were carried out under the thermodynamic conditions known as the
canonical ensemble, where the number of particles, volume of the simulation box,
and temperature (NVT) are constant; the latter was fixed at 300K using the V-rescale
method (Buss et al. 2007). To bring the system to equilibrium we ran the simulations
for up to 200ps, after which we switched to the NPT ensemble (where the pressure
is held constant, in addition to the number of particles and the temperature) to fix
the pressure at 1 bar, using the Parrinello–Rahman method (Parrinello and Rahman
1981), again for 200ps. Once the pressure of the system is equilibrated under these
conditions, we ran the simulations for an additional 5ns for the equilibrium phase and
another 5ns for the production phase, during which we performed the calculation of
the properties of interest. The time step for the integration of the equation of motion
was equal to 2 fs. We worked on a cubic simulation box with lateral size equal to
10nm.

3 Results and Discussion

Since we are interested in determining howAPOA1 folds, we performed simulations
to calculate its radius of gyration (Rg) at each of the salt concentrations we modeled.
Rg is calculated from the center of mass of the molecule, as is done in polymer
science (Grosberg and Khokhlov 1994). Figure1 shows the values of Rg for every

Fig. 1 a Gyration radius of APOA1 as a function of NaCl concentrations. The error bars represent
the standard deviation of the data point averaged over 5ns. The snapshots shown at the top and
bottom of the data correspond to the open and close conformation of APOA1, respectively. The
arrows identify each conformation with its salt concentration. The line is only a guide for the eye.
b Typical APOA1 open (0.5M) and closed (0.6M) conformations.
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NaCl concentration; we have also included snapshots of the spatial configuration
of the protein at certain salt concentration where the folding changes intermittently
from loops (or “closed” conformations) to an extended (or “open”) conformation.
At the top part of Fig. 1 we include snapshots of the open conformations and in the
bottom part the close conformations. The arrows at the top of Fig. 1 indicate the 0.5,
0.9, 1.1, 1.4 and 1.8M concentrations, where the open conformations take place.

The arrows shown at the bottom of Fig. 1 represent the concentrations 0.6, 1.0,
1.7 and 2.0M, which correspond to close conformations. A behavior qualitatively
similar to this has been obtained by Alarcón and coworkers (Alarcón et al. 2013) on
biopolymers, by Hsiao (Hsiao and Luijten (2006)) for polyelectrolytes of multivalent
ions, and in experiments (Kozer et al. 2007; Dawson et al. 1997; Käs et al. 1996). The
formation of closed configurations is the result of the electrostatic charge inversion
mechanism (Nguyen et al. 2000), while the open configurations are attributed to elec-
trostatic repulsion between adjacent monomers (Wong and Pollack 2010). Trapping
of cholesterol and other fatty acids becomes favorable when closed configurations
are formed because these molecules are closer to APOA1, therefore the formation of
hydrogen bonds between them is promoted. Under these circumstances this protein
would have an increased functionality. To test the stability of the open and close
configurations seen in Fig. 1, we have monitored their evolution in time, which we
show in Fig. 2. The curves seen on the top of the figure correspond to open structures,
while those at the bottom correspond to closed conformations.

Fig. 2 Time evolution of the radius of gyration (Rg) of APOA1 at various NaCl concentrations, as
specified in the inset on the right border of the figure. The top curves correspond to the so-called
open structures; those at the bottom correspond to closed configurations
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Fig. 3 Histograms of the distance between one end and the other of APOA1, for various concentra-
tions of salt ions. Open conformations correspond to salt concentrations of 0.5, 0.9, 1.4 and 1.8M,
while the rest belongs to closed configurations

An inspection of Fig. 2 shows that most conformations are stable throughout the
production phase of the simulation, which indicates that they correspond to situations
of thermodynamic equilibrium of the system at those salt concentrations. Although
in some cases one observes an increase (as in, for example, the cyan and black curves)
or a decrease (red and purple curves) of Rg with time, the fluctuations are to no more
than a few percent change of the averaged Rg .

It should be stressed that both open and closed configurations have a distribution
of values of the radius of gyration rather than a single value. To prove this fact we
calculate the end-to-end distance distribution and depict it in Fig. 3. The end-to-end
distance is the distance from the first to the last residues in the protein. The curves
seen in Fig. 3 represent histograms of the distribution of end-to-end distances found at
various salt concentrations. The so-called open configurations have larger end-to-end
distances, as expected, corresponding to the concentrations 0.5M (black line), 0.9M
(green), 1.4M (yellow) and 1.8M (purple). The closed conformations have smaller
end-to-end distances, as given by the lines for 0.6M (red line in Fig. 3), 1.0M (blue),
1.7M (gray), and 2.0M (cyan). Most of this information was known at this point,
particularly from the analysis of Figs. 1 and 2. However, the added value of Fig. 3 is
that it provides a quantitative estimate of the average distance between the ends of
APOA1, where we find open (the largest being ∼5.3nm) and closed configurations
as well (the smallest being 1.6nm).

The structural characteristics of APOA1 are further analyzed through the so-
called “mean smallest distance matrix” (msdm), which is obtained from the averaged
distance between each residue and all other residues in the protein. In Fig. 4, the x
and y axes indicate the index that identifies each residue of the protein, and each data
point in Fig. 4 register the distance between each pair of residues. Such distance is
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Fig. 4 The mean smallest distance matrix for 0.5M (a) and 0.6M (b) concentrations of NaCl. The
axes represent the residues that conform APOA1. The maximum distance considered to be part of
the protein is 1.5nm

represented in a gray scale, with the maximum distance being 1.5nm; if a distance
between residues is larger than this value a black dot is added to this figure.

The principal diagonal line in Fig. 4 (white colored) represents a relative distance
equal to zero, because it is the distance of a residue with itself. Therefore, a protein
leaves a fingerprint of itself in a msdm graph. This is a useful tool to compare
between open and closed structures because it shows how the protein modifies its
conformations from open to closed as it evolves in time and which residues are
moving the most. In Fig. 4 we show two graphs, with the left corresponding to an
open APOA1 structure at a salt concentration equal to 0.5M, and the right for the
closed configuration at 0.6M. The left graph (Fig. 4a) shows the msdm between the
aminoacid residues that make up APOA1, where a diagonal line across the graph
means that there are similar distances between the residues, which corresponds to
the extended protein conformation (open). In Fig. 4b, one observes a qualitatively
different behavior from that found for the open conformation (left panel in Fig. 4). In
the center of the graph on the right of Fig. 4, there is a gray area representing relative
distances between residues that are smaller than 1.5nm, meaning that the structure
of the protein is of the closed conformation and it also identifies the residues that are
closer to each other because of this folding. We selected the residues 21–26 from the
right panel of Fig. 4 because they are in the zone where the closed conformation is
formed. These residues are H (Hystidine), L (Leucine), A (Alanine), P (Proline), Y
(Tyrosine) and S (Serine). The sequence of APOA1 studied here is therefore called
HLAPYS. In the upper right corner of the right panel in Fig. 4, we find another
zone where residues are closer than 1.5nm; these residues correspond to the end of
the protein.
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To determinewhich aminoacid residues are the responsible for the open and closed
conformations discussed previously, we obtained the Ramachandran plot (Mathews
et al. 2002), which maps out the conformations of the alpha carbon in a protein
(or visualize backbone dihedral angles ψ versus ϕ of aminoacid residues in protein
structure). In a Ramachandran plot we display the zone where the alpha carbon
conformations are stable through time and also the zones where there are alpha
helices and beta sheets. In Fig. 5, we show two graphs where the top (a) represents
the open conformation (at 0.5M of NaCl), and the bottom (b) corresponds to a closed
structure, at 0.6M. Black dots represent the configurations (over all the simulation
time) of all the aminoacids in APOA1, while the different colors belong to specific
aminoacid residues (HLAPYS) throughout the entire simulation time. In Fig. 5a, one
sees that theHLAPYSaminoacids are preferentially found in a relatively narrow zone
of angular values: this is the region of the alpha helix zone. By contrast, in Fig. 5b
we see that the HLAPYS residues move to the beta sheet area (top left quadrant in
each graph), although this does not mean that they are forming beta sheets, instead it

Fig. 5 Ramachandran plot
for a the open configuration
at 0.5M, and b for the closed
one at 0.6M of NaCl. The
axes represent the angles that
the α–C atom form with its
bonding neighbors. The
colors and symbols on the
right borders represent the H,
L, A, P, Y and S residues of
the APOA1. The different
data points for a given
residue represent its time
evolution
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Fig. 6 Averaged radial
distribution function of the P
residue with the both salt
ions, at different NaCl
concentrations a Open
conformation; b closed
conformation. The residue
index 24 in the sequence of
APOA1 is Proline (P)

just means that the aminoacids have values of their angles which are similar to those
found in the beta sheets. We can also see that the aminoacids having moving angles
with time are PYS, while the other ones are (H, L, A). Therefore, the Ramachandran
plot helps us identify specifically the residues that are responsible for the folding
of the protein driven by the addition of ions. Up to this point we have studied the
residues that drive APOA1 to form closed conformations.

Next, we must understand the influence of the salt ions and water. With that
purpose in mind we calculated the radial distribution function (rdf) of these residues
and their interactionwithwater and ions. The rdf is obtained from the relative distance
between a chosen particle in a fluid and all other particles that surround it; therefore
it quantifies how the local density in a fluid varies (Allen and Tildesley 1987). In
the case of water, we did not see any significant difference between the rdf’s of the
water—open configuration, and those between the water—closed conformation, and
so we do not show them here. Instead, we focused on calculating the rdf’s between
the ions and the residues. In Fig. 6 we show the rdf of the P—residue with the ions
(namely, with the sum of Na and Cl ions).
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In Fig. 6a we show the rdf of the P—residue and the ions (Na + Cl), at different
concentrations for the case of an open conformation of APOA1. One feature that
stands out is the relatively large number of ions in close proximity to the P residue
at 1.8M (blue line). Although P is a non-polar residue, it is highly movable, which
implies that the ions can easily surround it and cause it to have a solvation radius larger
than its own radius, which in turn would compel the neighboring residues to stay at
relatively larger distances from P. This fact, in turn, leads to an open configuration.
In Fig. 6b there is a uniform distribution of relative distances between the P—residue
and the salt ions at all concentrations; for example, at all salt concentrations in Fig. 6b
there is approximately the same probability to have ions and the P—residue a distance
r ∼ 0.7nm apart. The fact that all rdf’s in this case follow the same trend at small
relative distances means that these rdf’s correspond to configurations where there is
no more room available for the ions to get closer to P. This must be the case when
APOA1 is in a closed conformation, as in Fig. 6b.

4 Conclusions

Wehave shown in thiswork howatomistically detailedmolecular dynamics computer
simulations can help us understand the folding process in proteins under controlled
physicochemical conditions as, for example, the ionic strength. For this case study
we have chosen APOA1 because of its key role in producing the efflux of fatty acids
in the human blood stream. It was found that, under increasing salt concentration, the
protein undergoes alternatively folding and unfolding. The simulations suggest that
it is driven by the formation of solvation spheres around the most mobile aminoacids
in the APOA1 sequence, competing with the electrostatic interactions. The struc-
tural properties of the protein were characterized through powerful tools such as
the radius of gyration, the end-to-end distance, the mean-square distance matrix, the
Ramachandran plot, and the radial distribution function. In particular, we found that
the P, Y and S residues are moving the most when going from an open to a close
conformation. This work helps elucidate the effect of the charge in APOA1, where
the important sequence turns out to be HLAPYS. The role of the closed configura-
tions should not be underestimated either, for those are precisely the ones thought to
be responsible for the trapping of fatty acids such as cholesterol. Work is presently
under way to determine the association of APOA1 with cholesterol under varying
ionic strength, but it is mandatory to gain first a basic understanding of this protein’s
folding at increasing salt content before attempting the study its complexation with
other molecules.
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Graphical Analysis of Fluid Flow Through
Polymeric Complex Structures Using
Multi-scale Simulations

Estela Mayoral-Villa, Mario A. Rodríguez-Meza, Jaime Klapp,
Eduardo de la Cruz-Sánchez, César Ruiz-Ferrel
and Aaron Gómez-Villanueva

Abstract Efficient and detailed visualization of fluid flow simulations through
complex meso-porous structures are fundamental for many applications in different
areas such as medicine, biotechnology, oil recovery procedures, industry applica-
tions, environmental science and design of new intelligent and efficient meso-porous
materials. Here we present the visual results of polymeric fluid flow through differ-
ent complex porous media using multi-scale simulations performed over graphical
processors (GPU’s). A Lagrangian numerical model known as Smoothed Particle
Hydrodynamics (SPH) was used in order to simulate the flow through complex struc-
tures taken from real images or from other simulations which represents different
porousmedia. Performance of themodel and its visualizationwere analyzed for a reg-
ular and also for an irregular three-dimensional array of solid spheres that represents
a porous media with different polymeric fluids. The comprehensive examination of
different sections in the system help us to analyze in an improved way the dynam-
ical behavior of fluids through sophisticated structures. Micro-channels built via
mesoscopic Dissipative Particle Dynamics (DPD) simulations were also introduced
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with great detail and the flow through these micro-porous structures was analyzed
in order to understand microvascular turbulent fluid flow. Detailed visualization in
real time could be used not only to help in the study of different systems but also
to obtain amazing images that would be impossible to achieve by other techniques,
here we present some of this beautiful pictures.

1 Introduction

Today, scientific and information visualization is a fundamental research area with
applications in the industry, medicine, design of new materials an environmental
analysis. Advances in this area involve new branches of computer graphics and the
use and development of interfaces designed in such away to permit, in an efficient and
attractive way, the analysis of the results obtained in different numerical calculations.
The aim is to improve the presentation and facilitate the analysis in a perceptibleman-
ner. As a good example we can mention the medical imaging which offers a broad
field for scientific visualization, where it is important to enhance imaging results
graphically in real time. Also, programs capable to present interactive molecular
models with applications in biology, chemistry and physics are fundamental in the
new era of applied science. Simulations of fluid flow through porous, meso-porous
media and micro-channels also require extensive computational resources and visu-
alization in order to get good performance. The numerical simulation of this kind of
processes must be able to model in a satisfactory way sophisticated information, con-
cerning the porousmedium structure as, for example, complex structures in real solid
materials, existence of fractures, mobile interphases or unstable boundaries as found
in geo and biochemical processes. In this work, we present some pictures obtained
during the visual study of polymeric fluid flow simulations through different porous
media usingmulti-scale simulation via the Smoothed Particle Hydrodynamics (SPH)
and the Dissipative Particle Dynamics (DPD) methodologies.

2 Smoothed Particle Hydrodynamics and Dissipative
Particle Dynamics

2.1 Smoothed Particle Hydrodynamics

The numerical method that we employ to solve the hydrodynamic equations is the
Smoothed Particle Hydrodynamics (SPH) method, which is a Lagrangian method
used for solving the equations governing fluid motion. It is based on an interpo-
lation scheme (Monaghan 1982, 1992, 2005; Benz 1990; Liu and Liu 2003). A
fieldfunction A(r, t) is approximated by A(r, t) ≈ ∑N

i=1 A(ri , t)W (r − ri )ΔVi ,
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where the computational space is subdivided into a finite number of cells of volume
ΔV . These volume elements, which have thermodynamical and dynamical proper-
ties, are defined as “particles”. For numerical work, A(r, t) is approximated by the
interpolant summation over the field at particle positions:

A(r) =
∑

j

m j

ρ j
A j W (|r − r j |, h) , (1)

where m j , ρ j , and A j are the mass, density, and field function, respectively, at the
position of particle j . The quantity m j/ρ j is the inverse of the number density at
particle j and is effectively the fluid volume associated with particle j . The summa-
tion is over all particles within the region of compact support of the kernel function.
In the following we will write, for simplicity, Wi j instead of W (|ri − r j |, h).

The kernel function monotonically decreases with distance and behaves as a delta
function as the smoothing length, h, tends to zero. We refer the reader to Benz
(1990), Monaghan (1992) and Liu and Liu (2003) for a detailed discussion on the
kernel functions. Usually, numerical codes employ different kernel functions
(Gesteira et al. 2010). The Gaussian kernel is one of the most widely used (Mon-
aghan 1992). Other commonly used functions are the cubic, the quartic, and the
quintic polynomials (see Gesteira et al. (2010) for their mathematical expressions
and details). The tensile correction is automatically activated when using kernel
functions with first derivatives that go to zero with decreasing inter-particle spacing
(Monaghan 2000).

We now write down the SPH equations. The momentum conservation equation
for a continuum field is written in SPH form as

dvi

dt
= −

∑
j

m j

(
Pj

ρ2
j

+ Pi

ρ2
i

+ Πi j

)
∇i Wi j + g , (2)

where Pk and ρk denote the pressure and density evaluated at the position of particle
k, respectively. The viscosity term, Πi j , is given by

Πi j =
{

−αci j μi j
ρi j

; vi j · ri j < 0

0 ; vi j · ri j > 0
(3)

where μi j = hvi j · ri j/(r2i j + η2), ri j = ri − r j , vi j = vi − v j , with rk and vk being

the position and velocity of particle k, ci j = (ci + c j )/2, η2 = 0.01h2, and α is a
free parameter that can be changed according to the problem under consideration.

The particles’ positions are evolved using the equation (Monaghan 1989)

dri

dt
= vi + ε

∑
j

m j

ρi j
vi j Wi j , (4)
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where ε = 0.5 and ρi j = (ρi +ρ j )/2. Thus, each SPH particle moves with a velocity
that is close to the average velocity in its neighborhood.

Finally, we need an equation of state, relating P and ρ. The fluid in SPH is treated
as weakly compressible. The compressibility is adjusted to reduce the speed of sound
so that the time step takes reasonable values. In SPH aCourant condition based on the
speed of sound is used. The compressibility is limited by the fact that the sound speed
should be about ten times faster than the maximum fluid velocity in order to keep
variations of density to within less than one percent. Therefore, we use Monaghan
and Kos (1999) relationship which is given by

P = B

[(
ρ

ρ0

)γ

− 1

]
, (5)

where γ = 7 and B = c20ρ0/γ , with the reference density ρ0 = 1,000Kg/m3 and
the sound speed at this density c0 = c(ρ0)

√
(∂ P/∂ρ)|ρ0 .

For more details on the SPH method and its numerical implementation we refer
the reader to the papers by Liu and Liu (2003) and Gesteira et al. (2010).

2.2 Dissipative Particle Dynamics

Normally, complex fluids consist of different solvents and macromolecules such
as polymers, surfactants, ions, and solid structures interacting among one another.
All these molecules have very different sizes and many of the interesting phenom-
ena occur at different time scales. By their nature, microscopic molecular dynamic
simulations demand a great amount of computational resources and one option to
alleviate this problem is to use coarse graining simulations such as dissipative par-
ticle dynamics simulations (DPD) (Hoogerbrugge and Koelman 1992). The DPD
method as was originally introduced by Hoogerbrugge and Koelman (2010) con-
sists of grouping numerous molecules or fraction of molecules, in a representative
way into soft mesoscopic beads. In a similar way as in ordinary molecular dynam-
ics simulations, in DPD one has to integrate the equations of motion to get the
particles’ velocities and positions, but in this case three contributions to the total
force are present: conservative, dissipative and random. Not all these forces are
independent because the random force compensates the energy dissipated to keep
the temperature T constant, and so they act as a regulating thermostat. This fact
leads to the fluctuation-dissipation theorem which gives: γ = σ 2

2 kB T where kB is the
Boltzmann’s constant.

Dissipative forces account for the local viscosity of the medium, and are of the
form

FD
ij = −γ ωD(rij)

[
êij · vij

]
êij (6)
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where γ is the dissipation constant, vij = vi −vj is the relative velocity, and ωD(ri j )

is a dimensionless weight function. The random force disperses the heat originated
by the dissipative force and converts it into Brownian motion by keeping the local
temperature T constant. It is expressed as:

FR
ij = −σ ωR(rij) ξ ij êij (7)

with ξi j = θi j (1/
√

δt ), where θi j is a random Gaussian number with zero mean and
unit variance and δt is the integration time-step. As it has been pointed out before

these two forces are related as ωD(ri j ) = [
ωR(ri j )

]2
.

Finally, conservative forces account for local hydrostatic pressure and are of the
form

Fc
i j =

{
ai j ωc(ri j ) êi j , (ri j < rc)

0, (ri j ≥ rc).
(8)

In this equation, ai j is a very important parameter because it represents themaximum
repulsion between particles i and j and a good parametrization of this is essential to
obtain a realistic representation of our systems. In addition, rij = ri − rj, ri j = |rij|,
and êi j = rij/rij, where ri is the position of particle i and the weight function is
given by ωc(ri j ) = 1 − ri j/rc. If an adequate parametrization of the ai j value is
stabilized it is possible to obtain a very good representation of the structure of many
complex fluids.

3 Simulations and Visualization

In this section, we present some pictures obtained by the visual study of polymeric
and non-polymeric fluid flow simulations through different porous media using the
Smoothed Particle Hydrodynamics (SPH) and the Dissipative Particle Dynamics
(DPD) methodologies. A complete description of the pictures is given in their cor-
responding figure captions. (see Figs. 1, 2, 3, 4)
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Fig. 1 Analysis of permeability of polymeric complex structures using multi-scale simulations.
This study was developed for the adequate design of contention barriers made of polymeric porous
materials, which involves the calculation of structural parameters such as porosity and intrinsic
permeability. The calculations were done to analyze the fluid discharge velocities at different body
forces through the porous structure. These studies are relevant in different areas, not only in the
control of soil contamination and the design of effective remediation procedures, but also to improve
the analysis of enhanced oil recovery and the design of intelligent materials for energy storage
applications
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Fig. 2 Fluid flow through a regular structure as obtained using Smoothed Particle Hydrodynamic
simulations. This picture corresponds to validation test results for polymeric fluid flow in saturated
and non-saturated hexagonal regular porousmedia. For the saturated case theDarcy’s law is obtained
and the hydraulic conductivity k is calculated for all geometries. The examination and validation of
these parameters could help us to predict the dynamical behavior of fluids throughmore sophisticated
structures
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Fig. 3 Flow of polymeric
fluids with different
viscosities and densities. The
predicted performance of the
polymeric resin flow through
the unsaturated porous media
is qualitatively correct and
makes possible the analysis
of industrial processes, such
as mould filling in the resin
transfer moulding process,
drying processes,
oil-industry applications,
where polymers are injected
in order to enhance oil
recovery, and techniques to
control soil pollution by
industrial polymeric
products, among many
others. The SPH simulations
have shown to be very
efficient and present some
advantages over the
macroscopic scale models to
analyze this kind of systems
where mobile interfaces are
involved
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Fig. 4 Micro-channels built
via mesoscopic Dissipative
Particle Dynamics (DPD)
simulations. The flow
through these micro-porous
structures was analyzed in
order to understand
microvascular turbulent fluid
flow. Stable structures
involving adsorption of
polymeric components to
form brushes were obtained
by DPD dynamics
simulations at different
temperatures
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4 Conclusions

The use of simulation methods, such as DPD and SPH, at different scales makes the
study of fluid flow through complex meso-porous structures more effective. On the
other hand, computational techniques help us to build more reliable and adequate
interfaces for improving the visualization of this kind of geometries, thus facilitating
the structural analysis of complex systems.
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Mass Flow Rate of Granular Material
from an L-Valve Without Aeration

D.A. Serrano, G. Ruíz Chavarría, S. Álvarez and A. Medina

Abstract In this work we introduce a correlation to estimate the mass flow rate
from an L-valve, without aeration, but under gravity flow, of a non-cohesive granular
material. This criterion is based on the mass flow rate formula for vertical pipes and
the comparison among, the here termed L-valve angle, and the angle of repose of the
material. Experiments support this criterion.

1 Introduction

Solid flow control devices are necessary and important components in industrial
applications that handle solids transport. Non-mechanical devices (such as seal pots,
loop seals, J-valves, L-valves and V-valves) are used for solid flow control. Among
all the non-mechanical valves, an L-valve has been one of the most widely employed
types. Not only because it is suitable for operation at elevated temperatures and
pressures, but also because of its simple design and cost effectiveness with minimum
maintenance.
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Flow dynamics around the L-valve have been investigated and reported exten-
sively in previous studies (Chan et al. 2009; Chovichien et al. 2013; Knowlton
and Hirsan 1978; Woodcock and Mason 1987; Yazdanpanah et al. 2012). Different
models have been proposed to describe the hydrodynamic behaviors of the valve.

Almost all models are found to be derived from L-valve operations under ambient
environment, while actual practical applications involve high temperature and/or
high pressure conditions. Furthermore, validation of these models to describe L-
valve behaviours at elevated temperature or pressure has not been tested so far. The
limitationmight be caused by the difficulties in terms of solids andmaterials handling
at high temperature or pressure.

In Fig. 1 we depict an L-valve. It consists of an horizontal pipe joined to an upper
standpipe through an elbow,meanwhile the other edge of the horizontal pipe is joined
to a lower standpipe. The height of the standpipe is H whereas the height of the lower
one is not important. The slope of the dashed line defines the L-valve angle, α. Such
slope is defined as tan(α) ≡ tan(D/w), where D s the pipe’s diameter and w is
the distance among the adjacent, exterior face walls of pipes. Notice that if α > θr

(Fig. 1a) a gravity flow there occurs, whilst, if α ≤ θr (Fig. 1b) the gravity flow will
be arrested.

Currently, in many practical applications the granular column in the standpipe
will be mobilized through the application of aeration at a rate Q. Depending on
the intensity of the injected gas flow several types of solid flow can be developed
(Chan et al. 2009; Chovichien et al. 2013; Knowlton and Hirsan 1978; Yazdanpanah
et al. 2012, see Fig. 2). Despite it, the particles flow in the dense phase mode due to
the gravity force and this phase is very important to establish the pressure drops and
the relative solid–gas velocity across the solid bed.

The aim of this work is to quantify the intensity of the gravity flow in an L-valve,
when the geometrical parameters of the valve allow it.

Fig. 1 Depicts of the transversal sections (at the middle part) of an L-valve: a the L-valve angle,
α, overcomes the angle of repose of the granular material, θr and a granular gravity flow occurs.
The slope of the dashed line defines the L-valve angle, α, see text. b Here the angle of repose is
larger than α
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Fig. 2 Some flow regimes, during operation, in an L-valve. These regimes depend on the intensity
of aeration

2 Gravity Flow: A Simple Model

As can be seen in Fig. 1a the L-valve has itself an angle. If, it as was noticed by
Knowlton and Hirsan (1978) andWoodcock andMason (1987), that a gravity granu-
lar flow there occurs. It is illustrated in Fig. 3 where three snapshots permit conclude
that a granular column (picture on the left-hand side) cannot be maintained when the
angle of the valve is smaller than θr . In this case D = 1.90 cm, w = 1.25 cm and,
consequently, α = 56.65◦ = 0.98 rad and θr = 33◦ = 0.57 rad.

We have estimated, from data of the snapshots in Fig. 3, that the granular column
is reduced at a rate ν = 0.47 cm/s; See Fig. 4.

Conversely, if α ≤ θr a gravity flow does not occurs and the granular column
must be maintained. See Fig. 4.

In recent works on the estimation of the mass flow rate from circular holes in face
walls of bins with thick walls we have shown (Medina et al. 2013, 2014) that the
intensity of the flow must be proportional to (α − θr ). As both problems are very

Fig. 3 Snapshots of an
L-valve with α = 0.98 rad
and θr = 0.57 rad. This
valve does not maintain the
granular column
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Fig. 4 Plot of height as a
time function. We assumed
that the initial level of the
column is at z = 0 cm. From
these data we estimate that
the granular column it is
reduced at a mean velocity
ν = 0.47 cm/s

similar, we use the same criterion to estimate the mass flow rate in the L-valve, so
the mass flow rate m′

LV in an L-valve with gravity flow, must be

m′
LV = am′

sp(α − θr ) = a m′
sp

(
arctan

[
D

w

]
− θr

)
, (1)

where a is the discharge coefficient, m′
sp is the mass flow rate from a standpipe, only

due to the gravity action, which obeys the relation

m′
sp = cρbg

1/2D5/2. (2)

In Eq. (2), c is other discharge parameter (related only to the standpipe), ρb is
the bulk density and θr is the angle of repose of the granular material. The relation
(2) was regarded as valid by Kesava and Nott (2008) to estimate the flow rate from
vertical, circular pipes and it is known as the Hagen’s law (Medina et al. 2013).

In the next section we performed experiments to show that Eqs. (1) and (2) are
correct.

3 Experiments

Initially, we did experiments to measure m′
sp, the mass flow rate from vertical pipes,

in order to check if Eq. (2) is valid. We performed experiments by using beach
sand (composed of irregular grains of mean diameter d = 0.03 cm, bulk density
ρb = 1.5 ± 0.01 g/cm3 and angle of repose θr = 33◦ ± 0.5◦ = 0.57 ± 0.008 rad
(other properties of this material were reported elsewhere: Medina et al. 2014).
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Fig. 5 In the pipe on the left
hand side a granular column
in the standpipe does not is
maintained because α > θr ,
whilst in the pipe on the
right hand side α < θr (α =
0.49 rad and θr = 0.57 rad).

Fig. 6 Plot of the measured
mass flow rate of beach sand
from standpipes for several
diameters as a function of
ρbg

1/2D5/2. Error bars are
of 4%

In experimentsweused acrylic pipes 50cm lengths and inner diameters D = 0.49,
0.70, 1.10, 1.34 and 1.94 cm, respectively. The mass flow rates were measured by
using a force sensor model Pasco CI-6537 with a resolution of 0.03 N . Details of the
measurement procedure are given elsewhere (Medina et al. 2014) (Fig. 5).

In Fig. 6 we show the plot of m′
sp, the experimentally measured mass flow rate

from vertical pipes of several diameters, as a function of ρbg
1/2D5/2, and it yields

a linear fit for all filling heights. It means that the formula (2) is a good correlation
to describe the mass flow rate from pipes. The best fit produces a dimensionless
discharge parameter c = 2.97.

Finally, wemeasured themass flow rate fromL-valves, m′
LV, by using beach sand.

In Fig. 7 we plot m′
LV versus ρbg

1/2 D5/2(α − θr ) to prove if Eq. (1) is fulfilled. We
made two L-Valves that allowed the gravity flow: one was made with a pipe 1.94cm



308 D.A. Serrano et al.

Fig. 7 Plot of the mass flow
rate of beach sand emerging
from the lower standpipe
versus the theoretical
correlation
ρbg

1
2 D

5
2 (α − θr). This flow

comes from the upper
standpipe and crosses the
elbow zone

diameter and w = 1.2 cm. In this case the L-valve angle was α = 1.01 rad and the
term (α−θr ) = 0.44. In another case theL-valve had has D = 1.34mA,w = 1.2 cm.
Therefore α = 0.85 rad and thus (α − θr ) = 0.28. The linear fit in such a plot shows
that Eq. (1) is correct. In this case a = 0.0283.

In conclusion an L-Valve without aeration can be useful to reduce drastically the
mass flow rate, moreover, it maintains the mass flow rate constant as is deduced from
Figs. 4 and 7.

4 Conclusions

In this work we did experiments to estimate the granular mass flow rate from
L-valves. We found that the flow rate from an L-valve obeys Eq. (1) very well.
To our knowledge this type of studies are the first in the specialized literature for this
specific regime.
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Heat Transfer in Biological Tissues

M.E. Bravo, P. De Jesús Sánchez, R.O. Vargas Aguilar and A.E. Chávez

Abstract The heat transfer process in biological tissues is studied through the
Pennes bioheat equation, in dimensionless form, taking into account the temper-
ature gradient delay by the Maxwell-Cattaneo model. Stochastic perturbations from
the environment applied on the surface of the tissue and different external energy
sources are considered. Comparison of temperature distributions with constant bio-
logical parameters are presented, from the skin surface and through the tissue transfer
processes and to contribute to a better understanding on how nature works, it is essen-
tial to include biological, physical and biochemical.

1 Introduction

The complexity of themass, energy and amount ofmotion transfer processes that take
place in biological tissues has drawn the attention to the need for multidisciplinary
research, in which fundamental concepts of engineering and physics are integrated
with biological sciences. In order to develop mathematical models that adequately
represent biological factors into the actual phenomenological models that describe
different transfer processes found in living tissues. In addition, the analysis of the
transport mechanisms will serve to innovate and optimize diagnostic and therapeutic
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interventions. Given the importance of the issue, several authors have studied various
methods for describing the energy transfer process in tissues. However, the main
contribution was made in 1948 by Harry H. Pennes, who published a study on the
temperature distribution in the humanbodyPennes (1948). Thismodel uses one of the
most successful equations in continuum physics, the traditional Fourier’s law of heat
conduction to describe the energy flux. One of the main shortcomings of Fourier’s
law is that it leads to a parabolic equation for the temperature field. This means that
any initial disturbance is felt instantly throughout the entire medium. This behavior is
said to contradict the principle of causality. To correct this unrealistic feature, which
is known as the “paradox of the heat conduction”, various modifications of Fourier’s
law have been proposed over the years Jordan et al. (2008). Of these, the best known is
the Maxwell-Cattaneo model Joseph and Preziosi (1989, 1990), Chandrasekharaiah
(1998), Ostoja-Starzewski (2007).

This study uses a modified expression of the Pennes model and focuses on the
phenomena that occur when there is a perturbation in the environment that modifies
the surface temperature of the tissue. This happens when the tissue is exposed to a
stream of ambient air and to temperatures with stochastic values Fiala et al. (1999),
Deng andLiu (2002, 2004). The analysis focuses on the response of the tissuewhen it
is subjected to a temperature gradient due to the variation of the thermal environment.

2 Model Description

Energy transfer in biological systems was firstly described through the biological
energy equation developed by Pennes in 1948. His work involved theoretical and
experimental investigation of the temperature distribution in the forearm of a group
of people Pennes (1948). The derived mathematical model consists on an energy
balance in the tissue that incorporates the effects of metabolism and blood perfusion.
The biological heat transfer equation in expanded form (2D) is given by Eq. (1).

ρmCpm
∂T

∂t
= k

{
∂2T

∂x2
+ ∂2T

∂y2

}
+ wbρbCpb(Ta − T ) + Qm + Qr (1)

where x and y are spatial variables, t is the temporal variable, T the temperature of
the tissue, k thermal conductivity, C pm the specific heat of tissue, ρm the tissue’s
density, Qm the energy that generates within the tissue as a result of the metabolic
activity, ρb is the blood density, C pb the specific heat of blood, Wb the volumetric
flow of blood perfusion, Qr is an external heat source and Ta the temperature of the
blood in the arteries.

The definition of the system of study is based on a portion of epithelial tissue.
To ensure that the internal temperature remains constant and that the temperature
distributions in the tissue are symmetrical, the depth of the section should not be
greater than 3cm. Given the maximum temperature that a normal tissue can stand
before degrading, the highest temperature allowedwill be 42 ◦C. It will be considered
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Fig. 1 a Representation of the system of study and b heat transfer problem

that blood and tissue properties are not altered by time or position, and also, blood
perfusion will remain constant. It will be assumed a thermal equilibrium between
the arterial blood temperature and the interstitial tissue core, as it remains constant,
Ta = Tc. The surface temperature Ts will be determined by the transfer processes
within the tissue and the thermal exchange with the environment, as shown in Fig. 1.
For transient processes or very small scales, it will be necessary to take into account
the delay between the temperature gradient and the energy flux. Accordingly, the
classical Fourier equation is modified by the Maxwell-Cattaneo Joseph and Preziosi
(1989, 1990), Chandrasekharaiah (1998), Ostoja-Starzewski (2007) model given by:

q(x, t + λ) = q(x, t) + λ
∂q(x, t)

∂t
= −k∇T(x, t), (2)

where λ = α/C2 denotes the relaxation time of the tissue, α the thermal diffusivity,
C the thermal velocity of propagation in the medium, k is the thermal conductivity
and q is the heat flux. The relaxation time represents the time lag required to establish
steady heat conduction in a volume element once a temperature gradient has been
imposed across it Chandrasekharaiah (1998). The partial time derivative added by
Cattaneo in the constitutive relationship between the heat flux and the temperature
succeeded in resolving the main shortcoming of the Fourier model, rendering the
heat-conduction equation to a damped hyperbolic equation.

2.1 Dimensionless Equation

A dimensionless form of the heat transfer model (Eq. 1) can be obtained by using the
following dimensionless variables: θ = T

TC
for temperature; ξ = x

L and η = y
L for

position, which are bounded in a range from 0 to 1; and τ = α
L2 t for time, defined

as the Fourier number which compares the conduction energy with the storage in
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transient processes. The perfusion term can be written in a dimensionless form when
compared with a diffusive time as follows σ = (L2Wb)/α, just as φ = (L2Q)/(kTc)
is the diffusive flux of energy, and θa = Ta/Tc the dimensionless blood temperature.
A thermal Deborah number is defined to characterize the fluidity of materials under
specific flow conditions,DeT = αλ/L2; based on the premise that given enough time
even a solid-like material will flow. Flow characteristics are not inherent properties
of the material itself, but relative properties which depend on two fundamental dif-
ferent characteristic times. By substituting the above mentioned terms, the following
dimensionless differential equation for temperature distributions is obtained.

DeT
∂2θ

∂τ 2
+ ∂θ

∂τ
=

{
∂2θ

∂ε2
+ ∂2θ

θη2

}
+ σ [θa − θ ] = {∅m + ∅r } (3)

The proposed dimensionless solution for the Eq. (3) is given by

θ(ξ, η, τ ) = θ0(ξ, η) + θt(ξ, η, τ )e−στ (4)

where θ0(ξ, η) is the steady state temperature and θt(ξ, η, τ) the transient tempera-
ture. By using the Eq. (4) in Eq. (3), a differential equationwith relaxation is obtained:

Det
∂2θτ

∂τ 2
+ [1 − 2σDet ]∂θτ

∂τ
+ σ 2Det = ∂2θ

∂ε2
+ ∂2θτ

∂η2
+ ∅r eστ }, (5)

where θt = θ0(ε, η, τ) and ∅r = ∅r(ε, η, τ).
The corresponding dimensionless boundary conditions for τ > 0 are:

B.C.1 : η = 1;−dθt (ξ, 1, τ )

dη
= {φs + Bi0[θ f − θ0s ]}eστ , (5a)

B.C.2 : η = 0; θt(η, 0, τ ) = 0, (5b)

B.C.3 : ξ = 0; dθτ

dξ
= 0, (5c)

B.C.4 : ξ = 1; dθτ

dξ
= 0. (5d)

Where Bi0 is the Biot number in steady state, which compares the internal resis-
tance of the energy transfer with the resistance at the border, in this case, with the
surface of the tissue; θ0 is the steady state temperature, θτ the transient temperature,
θ0ε = θ0(ξ = 0) the surface temperature, and θf the dimensionless air temperature.
The last parameter of Eq. (5a) may be altered by a sudden change or a small pertur-
bation in the atmosphere, which occurs when the surface of the tissue is subjected
to an air stream, creating a stochastic value. Equation (6) may be used to determine
this perturbation:

θ f = θ0s + ∈ (t); where ∈ (t) = λT (0.5 − σi ), (6)
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where ∈ (t) is the discrete stochastic variation. λT is a constant temperature, since
this study is based on the average normal human body temperature of 37 ◦C and
considering that thermal damage occurs around the 42 ◦C Torvi and Dale (1994),
this constant must not exceed from 5 ◦C. Finally σi is the stochastic parameter which
takes values of 0 < σi <1. As the temperature only depends on time, the set of
equations generated can be numerically integrated by using the following initial
condition:

τ = 0, θt (ξ, η) = 0, (7)

3 Results and Discussion

The solution of the model was discretized using a second-order central difference
formulation for all the spatial derivatives, with an explicit method and uniform grid
of 100× 100. The numerical simulations were generated by a code developed in the
programming language Fortran, Ripley (1987).

3.1 Steady State Temperature

The first case is used to verify the numerical code and as referencemodel. It considers
a uniform heat source, which represents the conditions when the tissue is in thermal
equilibriumwith the surroundings. Factors affecting this state are due to themetabolic
activities and to the energy exchangewith the environment, this justifies using theBiot
number as reference. The temperature distribution is shown in Fig. 2, alongside with

Fig. 2 Temperature distributions in steady state with different Biot numbers and forms ofmetabolic
heat. a Bio = 0.2, ∅m = 0.038, b Bio = 1.3, ∅m = 1.4554, c Bio = 1.3, ∅m = 5.2903
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Fig. 3 Dimensionless skin surface temperature for different perturbations

the temperature profiles developed. Curve A indicates that the effect of the metabolic
heat on the temperature is very small, hence, this value will be taken as reference for
the results reported. Curve B does not exceed the maximum temperature, however
a Bi > 0.4347 indicates some pathology such as cancer. In curve C, the trajectory
exceeds the maximum temperature causing thermal damage. Curves A′, B′ and C′
include the perturbation to θ f by placing a stochastic parameter; this has a damping
effect along the curve due to the perfused tissue. Figure3 shows the effect of the
perturbation on the skin surface temperature. It is worth mentioning that when the
value of λ increases, the surface presents higher variations and this effect is damped
inside the tissue by the blood perfusion, according to Fig. 2. In order to facilitate the
profile comparison, the seed used to generate the perturbation in this case was the
same. Lastly, the temperature distributions using a constant surface flux are depicted
in Fig. 4. This situation occurs when the tissue is burned by a point contact with an
object. Case (1). The classical Fourier equation is compared (DeT = 0) with the
relaxation equation for different values of DeT and for a time τ = 0.2. The results
show that with the increase of DeT the relaxation effects are more likely to reach a
steady state. However, for short times and small scales an opposite effect is produced,
the tissue begins to raise its internal energy in a more controlled manner. Namely,
the temperature increases more slowly than the classical Fourier Case (2).

A comparison with Case (1) is exposed, including the stochastic effect in θ f ;
which results in a variation of the temperature distribution that increases as τ does.
For values of DeT > 0.0013, it can be seen that the temperature ranges between
[0.02 − 0.25] through the whole curve, as compared with the relaxation curves.
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(a) (b)

Fig. 4 Temperature as a function time for different thermal Deborah numbers, a unperturbed b
perturbed DeT , with ξ = 0, ∅r = 0, ∅s = 0.3405

4 Conclusions

The heat transfer process in biological tissues is studied numerically through a modi-
fied Pennes bioheat equation. This study showed that for very large times the temper-
ature distributionswithin the tissue can bewell described by the classical Fourier law.
Nonetheless, the effects that occur on short time scalesmay not be equally predictable
with these theories. The Maxwell-Cattaneo model considers a relaxation time which
represents the time lag required to establish steady heat conduction, which is the time
that takes to transmit the signal from the stimulus to the whole structure of the tissue.
The energy transfer process in a biological tissue involves the interaction of multi-
ple internal mechanisms (i.e. metabolic activity and blood flow) and their response
to external stimulus. When blood perfusion increases, the energy transfer process
occurs faster and easily, until the system achieves thermal equilibrium. When the air
temperature is perturbed, the temperature profiles are constantly modified near the
upper boundary of the tissue, however they recover a linear trend along the system;
in addition to the timely behavior that presents a monotonous growth until it reaches
a steady state.
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Simulation of In-situ Combustion
in a Matrix-Fracture System
at Laboratory Scale

O. Cazarez-Candia and C.G. Aguilar-Madera

Abstract In this work, a mathematical model for in-situ combustion (ISC) was
numerically solved for one heterogeneous system composed by a porous-matrix adja-
cent to a fracture. The main aim was to investigate the effect of fractures on the ISC
behaviour. Threemobile-phaseswere considered: non-volatile single-component oil,
incondensable gas, and water. The combustion process was modeled with a kinetic
model and two chemical reactions: cracking reaction (coke production), and combus-
tion reaction (coke consumption). A benchmark case was established by comparison
of suited numerical results against experimental data from a homogeneous com-
bustion tube experiment reported from the literature. It was found an acceptable
agreement between theoretical and experimental data for the temperature field and
other variables of interest. The validated mathematical model was extended for one
system including adjacent fractures, and their effects over the ISC were investigated.
It was observed gas breakthrough because it moves preferably through fractures. It
was found that around the combustion front, significant amount of oxygen penetrates
from the fracture to the porous matrix, as here the coke combustion takes relevance.
In addition, an important amount of oil is expelled from the matrix to the fracture.

1 Introduction

ISC is an enhanced oil recovery technique for mature or non-conventional reservoirs.
Its main objective is to enhance oil mobility by reduction of viscosity occurring when
temperature increases in the reservoir. Before the implementation to a commercial
scale, previous field- and lab-scale assessments are required in order to evaluate
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the possibility of success. To study the phenomenon at core-scale, combustion
tubes and simulators are used to investigate the formation and propagation of a
combustion front.

In ISC experiments there are several phenomena with engineering interests. One
of them concerns the oxygen transport into the reservoir in order to reach zones with
fuel for further reaction and heat releasing. Using in-situ combustion tubes, experi-
mental efforts have been done to understand the main mechanisms and phenomena
controlling the ISC. To quote some examples, Moore and coworkers have developed
extensive investigations at lab-scale and simulations for various types of operations,
geometrical configurations and oils (Alamatsaz et al. 2011; Montes et al. 2010).

In reservoirs with heterogeneous characteristics such as fractured systems, the
transport of phases and components is different in comparison with homogeneous
media. Due to phases move preferably by fractures, fluids breakthrough appears
and oxygen transport from fractures to the porous matrix plays a crucial role for
the propagation of the combustion front. To broaden the understanding of ISC in
fractured systems, some theoretical (Fatemi and Kharrat 2008; Schulte and Vries
1985) and experimental (Awoleke et al. 2010; Greaves et al. 1991) efforts have been
made. Nevertheless, the complex nature of ISC involving simultaneous heat, mass
and momentum transfer between phases, thermodynamic restrictions and chemical
reactions, suggests further investigations for the sake of gaining more knowledge
applicable to actual field-scale reservoir conditions.

Based on published works so far, it seems that fractures in ISC processes hin-
der the propagation of the combustion front and eventually the burning process is
extinguished. The oxygen availability in the burning zone may play a crucial role,
and such a feature is highly influenced by the contrast of fluids mobility between the
porous matrix and fracture. Thus, in this work we focus on the numerical investi-
gation of the effect that one fracture adjacent to one porous matrix has over an ISC
process. The study is carried out at 2D lab-scale (combustion tube), and profiles of
most relevant variables are presented and discussed.

2 Theoretical Model

In this study a three-phase, six-component ISC model was implemented. Table1
shows components and phases taken into account in the model.

The mathematical model comprises the mass balance for oil- (o), gas- (g) and
water-phases (w) as follows,

∂ (φραsα)

∂t
+ ∇ · (ραuα) = qα, α = o, g, w, (1)

where φ is porosity, and ρ and s are density and saturation, respectively. q is the
mass source/sink due to exchange between phases or chemical reactions. The phase
velocity u is computed according to Darcy’s Law,
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Table 1 Phases and
components

Component Phase

Water Oil Gas Solid

Oxygen, O2 X

Inert gas, I G X

Rock X

Coke X

Oil X

Water, H2O X X

uα = − K krα

μα

(∇ pα − ραg) , α = o, w, g, (2)

with K being permeability, kr , μ and p are relative permeability, viscosity and
pressure, respectively, whilst g is the gravity acceleration.

The energy balance assuming local thermal equilibrium is

(
ρcp

)
eq

∂T

∂t
+ ∇ · [φ (

soρocp,ouo + sgρgcp,gug + swρwcp,wuw
)
T

]
= ∇ ·

(
k∗

eff · ∇T
)

+ qT
o + qT

g + qT
w + qT

s − �
(3)

where

� = φT

{[
ρocp,o − ρg

(
cp,g − cg R/M̄g

)] ∂so

∂t[
ρwcp,w − ρg

(
cp,g − cg R/M̄g

)] ∂sw

∂t
+ (

cp,g − cg R
)

sg
∂ρg

∂t

} (4)

(
ρcp

)
eq = φ

[
soρocp,o + sgρg

(
cp,g − cg R/M̄g

)
+swρwcp,w + (1/φ − 1) ρscp,s

] (5)

with k∗
eff being the total thermal dispersion tensor, qT the thermal source/sink, T the

temperature, M̄g the average gas molecular weight, cp the heat capacity, cg the gas
compressibility, and R the ideal gas constant.

The oxygen balance is given by,

∂
(
φsgωgO2ρg

)
∂t

+ ∇ · (
φsgωgO2ρgug

) = ∇ ·
(
φsgρgD∗

gO2
· ∇ωgO2

)
+ RO2 (6)

And for coke we have that,

(1 − φ)
∂ (ρsωsCoke)

∂t
= RCoke (7)
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where ωsCoke is the coke mass fraction in the solid, ωgO2 is the oxygen mass fraction
in the gas, D∗

gO2
is the oxygen total mass dispersion tensor, and RO2 and RCoke are

the oxygen and coke mass sink/source due to chemical reactions. Moreover, phase
properties, the restriction so + sw + sg = 1, and relations between phase pressures
(capillary pressures) were utilized. Additionally, two chemical reactions (cracking
and combustion) were considered as follows,

Oil → ηCoke/OilCoke (8)

Coke + ηO2/Coke O2 → ηI G/Coke I G + ηH2O/Coke H2O (9)

where ηi/j is the stoichiometric factor between the i and j chemical species. In Eq. (9)
the chemical species I G (inert gas) represents an hypothetical mixture of COx and
N2. To compute chemical reactions, Arrhenius-like expressions were used.

In order to set up completely the mass, momentum and energy transport problem,
initial and boundary conditions are needed. These are the corresponding ones for
injection boundaries:

n · ψ = ψin j (10)

isolation boundaries:
n · ψ = 0 (11)

production boundaries
n · ∇ψ = 0 (12)

ψ = ψp (13)

and continuity conditions at the matrix-fracture boundary:

n · ψm = n · ψ f (14)

Here the subscripts inj, p, m and f refer to the injection, production, matrix and
fracture boundaries (generally known values), respectively, and n is a unit vector
perpendicular to the boundary and pointing outside. For brevity, the generic variable
ψ refers to any primary (scalar or vector) variable; for instance, for energy transport
ψ = T I (I being the identity tensor) or the total (convective plus conductive) heat
flux, if applicable. The same formulation applies for the each mass balance, and can
be applied also for initial conditions, i.e. ψ = ψ0.

3 The Base Case

The benchmark case performed to validate the numerical results was carried out by
comparison of relevant results with those reported by Mamora (1993). The main
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Table 2 Main characteristics of Mamora’s experiment

Hamaca crude oil (Venezuela)

Tube length (m) 0.9906

Internal radius (m) 0.0376936

Total mixture weight (kg) 7.739

Oil (%w/w) 4.6

Water (%w/w) 4.1

Sand (%w/w) 86.8

Clay (%w/w) 4.6

Oil saturation 0.29

Water saturation 0.27

Gas saturation 0.44

Porosity 0.31

Oil gravity (◦API) 10.2

Oil viscosity (cP) 14,000

Initial temperature (◦C) 50

Production pressure (psig) 100

Fig. 1 Comparison of temperature profiles from numerical results and data from Mamora (1993)

characteristics of experiments are reported in Table 2. Characteristics of Mamora’s
experiments correspond for a 1D homogeneous combustion tube.

Figure1 shows theoretical and experimental temperature fields in the combustion
tube. At early times, the theoretical front advance slower than the experimental one,
but eventually both profiles match for further times. Nevertheless, the combustion
frontwidth increaseswith time,meanwhile the experimental front preserves its thick-
ness, leading to substantial errors for long times. In a general sense, the numerical
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results fairly follow the tendency of experimental data in spite of simplifications
assumed in the mathematical model. Other comparisons of relevant variables such
as: oil, water and oxygen production, combustion front location and produced oil
gravity were carried out with good agreement. However, such comparisons were
omitted here for the sake of brevity.

4 The Matrix-Fracture Case

Comparison of temperature profiles for the benchmark case, and that one where
1mm adjacent fracture is added, are plotted in Fig. 2. As one small fracture is con-
sidered, heat transport is not strongly affected by the channelization phenomenon as
effective thermal properties, as heat capacity and thermal conductivity, do not vary
significantly in the matrix and fracture. However, effective transport properties, as
mass dispersion and permeability, are very contrast. This leads to one marked effect
of fracture over phase flows and oxygen availability, as shown later.

Figure3 shows the oxygen and oil fluxes at the porous-fracture boundary as func-
tion of time, when a fracture is adjacent to the porous matrix (the heterogeneous
case). Larger values indicate that coke combustion is taking place at that position.
As convention, a positive flux indicates that there is mass transport from the matrix
to the fracture, and the opposite is true. At the vicinity of combustion front, there is
high oxygen consumption, because of the coke combustion, and more oxygen must
be feed from the fracture, where there is more oxygen available than in the matrix
(see Fig. 4).

At surroundings of the combustion front, significant oxygen concentration gradi-
ents take place and, as this is the driving force for diffusive mechanisms, then the
matrix microstructure (tortuosity and porosity) plays a crucial role to facilitate y the

Fig. 2 Comparison of temperature profiles between the benchmark case and the fracture case
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Fig. 3 Oxygen and oil fluxes at the matrix-fracture boundary

Fig. 4 Evolution of oxygen content

oxygen transport inside thematrix. It is obvious that a poorly permeable matrix could
not favour oxygen transport with further combustion front extinction.

Along the tube, the high temperatures decrease the oil viscosity, and then due to a
pressure gradient between matrix and fracture, a significant amount of oil is expelled
from the matrix to the fracture region close to the combustion front (see Fig. 3).

5 Concluding Remarks

A mathematical model, for ISC at lab-scale, was numerically solved for a
matrix-fracture system. The model was based on a benchmark case for a homo-
geneous system, which was validated with experimental data, obtaining good agree-
ment. The matrix-fracture system presents fluids breakthrough due to the phases and
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components move easier through the fracture. The oxygen penetrates from fracture
to the matrix and plays a crucial role to the propagation of the combustion front.
A significant oil expulsion from the matrix to the fracture also was observed, which
is a consequence of the enhanced oil mobility by the high temperatures and perme-
ability of fracture. We found that: (1) temperature is not strongly affected by the
fracture, (2) oxygen concentration gradients is the driving force for diffusive mech-
anisms, then the matrix microstructure plays a crucial role to facilitate the oxygen
transport inside the matrix, (3) a poorly permeable matrix could not favour oxygen
transport with further combustion front extinction, and (4) along the tube, the high
temperatures lead to a decrease the oil viscosity, and then due to a pressure gradient
between matrix and fracture, a significant amount of oil is expelled from the matrix
to the fracture region close to the combustion front.
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Numerical Simulation of In-situ Combustion
in a Fracture-Porous Medium System

O. Cazarez-Candia, P.V. Verazaluce-Barragán and J.R. Hernández-Pérez

Abstract In this work, the numerical simulation of in-situ combustion in a
fracture-porous medium system at laboratory scale, was done. The simulations were
developed in a commercial reservoir simulator designed to evaluate oil recovery
by thermal methods. The simulator involves the mass, momentum (Darcy law) and
energy balance equations for multiphase and multicomponent flows. The main aim
of this work was to study the effect of the airflow rate and oil saturation on the in-situ
combustion behaviour. In the first stage of this study, the in-situ combustion was
simulated in a homogeneous porous medium and the simulation was validated using
experimental data. In a second stage, such simulation was modified in order to incor-
porate fractures in the porous medium. It was found that the oxygen diffusion from
fractures to porous medium controls the in-situ combustion in fractured systems.
Moreover, it is necessary to restrict the injected air flow rate due to the breakthrough
phenomenon and because the oil recovery is not substantially increased for larger
flow rates.

1 Introduction

In-situ combustion (ISC) is a thermal oil recovery technique used in the petroleum
industry.Mainly, thismethod has been applied in heavy-oil fields. In order to evaluate
if a given oil reservoir is a candidate for an ISC project, it is common to study the
propagation of the combustion front in small multiphase systems known as in-situ
combustion tubes.
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Currently, a large amount of petroleum is in naturally fractured reservoirs. This has
leaded to develop theoretical and experimental works for gaining knowledge about
the effects that fractures have on the thermal and hydrodynamic performance of the
ISC (Awoleke et al. 2010; Greaves et al. 1991; Schulte and de Vries 1985). Most of
these works agree that the oxygen transport is one of the main phenomena to sustain
and propagate the combustion front. Thus, oxygen dispersion from fracture to matrix
plays a crucial role for the ISC inside the porous medium. Despite the theoretical
and experimental research that has been done, the ISC behavior in fracture systems
is no clear nowadays.

In this work, we simulated one experiment of the ISC process in a combustion tube
filled with a homogeneous system (Kumar 1987) obtaining an excelent fitting. Later,
the simulation model was modified in order to include fractures. This model was
compared against the conducted simulation by Tabasinejad et al. (2006) obtaining
also excellent fitting. The last model was used to evaluate the effect of air flow rate
and the oxygen diffusion from fractures to porous medium.

2 Governing Equations, Boundary and Initial Conditions

The general model, for multicomponent multiphase flow (gas, oil and water) in
porous media used in this work, is presented below:

Mass conservation equation

(1 − σ)

∂

∑
α=g,o,w

φSaραωiα

∂t = −∇ ·
( ∑

α=g,o,w

ρα Dαi∇ωiα

)
− ∇ · (ρiωiαuα)

+
∑

α=g,o,w

riα +
∑

α=g,o,w

ωiαqα i = 1, . . . , nc.

(1)
Energy equation

∂

∂t

( ∑
α=g,o,w

φSaραUα + (1 − φ) ρsCs T

)

+ ∇ ·
∑

α=g,o,w

ραuα Hα − ∇ · (kT ∇T ) = qc − qL (2)

where

uα = −kkrα

μα

(∇ pα − ραg) (3)

nc∑
i=1

Aiωi =
nc∑

i=1

Biωi (4)
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∑
α=g,o,w

Sα = 1 (5)

nc∑
i=1

ωiα = 1, α = g, o, w (6)

pcow(Sw) = po − pw, pcgo(Sg) = pg − po (7)

ωiα = Kiαβ (p, T ) ωiβ; i = 1, . . . , Nc, α, β = g, o, w (8)

Initial and boundary conditions

ωiα(x, 0) = ωiα(x), i = 1, . . . , nc − 1, α = o, w
Sw(x, 0) = Sw0(x)

Sg(x, 0) = Sg0(x)

po(x, 0) = po0(x)

T (x, 0) = T0(x)

uα(x, t) = 0, x ∈ ∂	

∇T (x, t) = 0, x ∈ ∂	

(9)

In Eqs. (1)–(9) Ai represents the reactants stoichiometric coefficients, Bi the
products stoichiometric coefficients, Cs the solid mass heat capacity, Diα the diffu-
sion coefficient of component i in phase α, g is the gravity vector, H is the enthalpy,
kT is the total thermal conductivity of the porous media, k is absolute permeabil-
ity, kr is the relative permeability, Kiαβ is the equilibrium K-value of component i
between phases α and β, nc is the number of components, p is pressure, pcow is
the oil-water capillary pressure, pcog is the oil-gas capillary pressure, q is the source
volumetric rate, qc is heat source rate, qL is heat loss rate, riα is the rate of production
of component i by reactions, S is saturation, T is temperature,U is internal energy, u
is velocity, x is position vector, φ is porosity, ρα is phase density, ρs is solid density,
μα is phase dynamic viscosity, ωiα is the mass fraction of component i in phase
α, and σ is the solid volume fraction. The subscript α(= g, o, w) represents phase
evaluated as gas, oil or water.

For more information about the mathematical model, we refer to the reader to the
STARS user’s guide (see references list).

3 Homogeneous System Simulation

Themodel simulation was validated using experimental data from a combustion tube
reported in the work from Kumar (1987). In the experiment, a sand pack (mixture of
oil, water and sand) was put in the tube. An electrical igniter was used at the top of
the tube in order to generate a combustion front that propagates along the tube. For
more information, we refer the reader to the work of Kumar (1987).
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The experiment was simulated using the commercial software known as STARS,
which is the software most used around the world to simulated thermal oil recovery
process (in-situ combustion, steam injection and hot-water injection).

Fig. 1 Temperature profiles along the tube

Fig. 2 Oil and water recovery
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The reaction model used is the same one from the work of Fadaei et al. (2009).
Such model involves the cracking reaction and the HO, LO and coke combustion
reactions. Figure1 shows that combustion front temperature has a good fitting against
experimental data fromKumar (1987). The differences at top of the tube are attributed
to the boundary effects due to the experimental procedure.

Figure2 shows oil and water recovery. The very good agreement between predic-
tions and experimental data allows to conclude that the fluids mass balance was well
simulated.

4 Fracture-Porous Medium System Simulation

The validatedmodel, used to simulate a homogeneous system (Sect. 3), wasmodified
in order to involve a fracture formed by the porous medium and the tube wall. Table1
shows the data used for the simulation (Tabasinejad et al. 2006).

Figure3 shows that temperature profiles along the tube have a very good fitting
against the predictions from the work of Tabasinejad et al. (2006). The oil recovery
also shows a good agreement (Fig. 4), then the simulation model obtained represents
a tool to study in-situ combustion in fracture-porous medium systems.

The simulation model, obtained in this section, was the benchmark case to study
the effect of air flow rate on: (1) the oil recovery factor, and (2) the behavior of
oxygen from the fracture to the porous medium. The effect of oil saturation on the
oil recovery factor was also studied.

Figure5 shows that the larger the air flow rate the larger the oil recovery factor,
however if the air flow rate is very large oxygen breakthrough could occur, then
there is an optimum flow rate to obtain the largest oil recovery without or with a little
oxygen breakthrough. Due to this, the oxygen behavior was also studied.

Figure6 shows the oxygen mole fraction for 0.277, 0.554, and 1.108 ft3/h. The
larger the flow rate the larger the Peclet number (for gas and oil) and Reynolds

Table 1 Parameters used in
the simulation

Parameter Value

Matrix permeability (md) 1.27× 104

Fracture permeability (md) 1.27× 106

Matrix porosity (%) 39.7

Fracture porosity (%) 100

Oxygen molecular diffusion (ft2/s) 1.1× 10−5

Pressure (psi) 2,000

Temperature (◦F) 100

Water saturation (%) 17.8

Oil saturation (%) 65.4

Gas saturation (%) 16.8

Air flow rate (ft3/h @ s.c.) 0.277, 0.55, 1.108
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Fig. 3 Temperature profiles along the tube for a fracture system

Fig. 4 Oil recovery from a fracture system

number in the porous medium. This indicates that more oxygen penetrates from
the fracture to the porous medium by convection, and more oil is pushed from the
porous medium to the fracture. However, it must take care because the larger flow
rate the larger amount of oxygen produced. For the air flow rates used in this work
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Fig. 5 Oil recovery for different airflow rates

(a) (b)

(c)

Fig. 6 Oxygen mole fraction for an air flow injection rate of: a 0.277 f t3/hr, b 0.554 f t3/hr, and
c 1.108 f t3/hr
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0.554 ft3/h was the best value because it allows recover 91.3% of oil and a small
amount of oxygen is produced (less than 10%).

Figure7 shows that the larger the oil saturation the larger the oil recovery factor,
however for oil saturations larger than 40%, the total oil recovery factor is little

Fig. 7 Oil recovery for different oil saturations

Fig. 8 Temperature for different oil saturations
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affected. This means that the amount of produced coke is almost the same for oil
saturation values of 40, 50 and 65.4. Then, the amount of energy release from the
coke combustion is similar. Thus, temperature profiles should be similar, as shown
in Fig. 8 (at 12h).

Note that although the total oil recovery factor is similar for oil saturation values
of 40, 50 and 65.4, its behavior is different along the time. For large oil saturations,
the most oil is produced at short times. For instance, at 12h. we have an oil recovery
factor of 75% of a total of 92% for an oil saturation of 65.4, but we have only an oil
recovery factor of 23% of a total of 68% for an oil saturation of 20.

5 Conclusions

In this work the numerical simulation of in-situ combustion in a fracture-porous
medium system at laboratory scale, was done. It was found that in a fractured sys-
tem, the oil recovery factor increases when air flow rate increases, however exist an
optimum flow rate value for which: (1) the oil recovery is high, and (2) the oxygen
transport from the fracture to the porous zone is high without oxygen breakthrough.

The results of this work show that the oxygen diffusion from fractures to porous
mediumcontrols the in-situ combustion in fractured systems. This because the extinc-
tion of the combustion front occurs when a small amount of oxygen comes into the
matrix, and oxygen breakthrough occurs when a large amount of oxygen is injected.

On the other hand, as the initial oil saturation is larger, the oil recovery factor is
larger; however, for oil saturations larger than 40%, the total oil recovery factor is
little affected.
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Mathematical Modeling of Steam
Injection in Vertical Wells

F. Aguilar-Gastelum and O. Cazarez-Candia

Abstract In this work, a steady-state hydrodynamic model for steam injection
vertical wells and a transient thermal model (2D energy diffusion equation) for the
heat losses from awell towards the porousmedium are presented. The hydrodynamic
model is formed by mass, momentum and energy conservation equations (drift-flux
model) for a steam-water two-phase flow. The steady-state drift-flux model was
resolved using the finite differences method and the explicit Godunov scheme, while
the thermal model solution was found with an implicit Godunov scheme. Mod-
els allow predicting the next parameters: pressure, temperature, steam quality, heat
losses and flow patterns along the well. The parameter predictions presented good
agreement against field data and simulations reported in literature. For the conditions
simulated, it was found that: (1) the thermal model reaches its steady state at 500h,
(2) due to few steam condensation, pressure drop due to gravity is smaller than the
friction and acceleration contributions, and (3) temperature gradients are large at the
beginning of steam injection, but they diminish along time.

1 Introduction

Direct Steam injection through vertical wells is a promising technique to improve
oil recovery from reservoirs where natural energy or a primary/secondary recovery
method is not enough to still producing. Some researchers (Ramey 1962; Pacheco
and Ali 1972; Ali 1981; Fontanilla and Aziz 1982; Durrant and Thambynayagam
1986; Hasan and Kabir 1994) have made important investigations into this area,
however, they were not able to get a completely understanding. In order to simu-
late steam injection through vertical wells, Bahonar et al. (2009) proposed a not-
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isothermal mathematical model that was resolved using the finite difference method
and a Godunov discretization scheme. Themodel solution was divided in three steps:
(1) the hydrodynamic modeling of two-phase flow through the well using a drift-flux
model proposed by Hasan et al. (2007), (2) the heat losses from the wall well toward
the formation using a global heat transfer coefficient, and (3) the heat diffusion in
the formation. The heat diffusion was modeled by the transient cylindrical 2D heat
equation. Their results showed good agreement against field data. On the other hand,
Mozaffari et al. (2011) solved numerically a mixture model for steam injection, fol-
lowing the same approach as Bahonar et al. (2009). Their predictions of pressure,
temperature and steam quality showed good agreement against field data.

Previous studies have shown that the drift-flux model coupled to a transient 2D
heat diffusion equation, allow to analyze the steam injection process in vertical wells.
The aim of this work is to study the behavior (pressure, temperature, steam quality,
and heat loss) of a vertical steam injection well using a drift-flux model.

2 Model Formulation

2.1 Physical Model

Figure1 shows the physical model of a system formed by a steam injection vertical
well and a surrounding porous medium. The system is divided in three main parts:
(1) the well tubing, (2) insulation, annulus (filled with air), casing and cementing,
and (3) the porous medium, which is considered as a continuum media. The system
is fed with a water-steam mixture at constant pressure and steam quality.

2.2 Mathematical Model

To simulate the steam injection system showed in Fig. 1, the semi-unsteady-state
model proposed by Bahonar et al. (2009) is used. Such model involves: (1) a steady-
state drift-fluxmodel to simulate the hydrodynamic behavior of a steam-water down-
ward flow into the injection well, (2) an overall heat transfer coefficient to evaluate
the total heat loss from the well to the porous medium, and (3) a thermic model,
which consists of a 2D transient heat diffusion equation to evaluate the heat transfer
through the porous medium.

The hydrodynamic model consists of mass, momentum and energy conservation
equations as follows.

Mass balance equation

− ∂

∂z

(
ρgvsg + ρl vsl

) = 0 (1)



Mathematical Modeling of Steam Injection in Vertical Wells 341

Fig. 1 Physical model and schematic representation of the well and porous medium discretization

Momentum balance equation

− dP

dz
= −ρm g cos θ

gc
+ fmv2mρm

2dti gc
+ ρmvm

gc

dvm

dz
(2)

Energy balance equation

Q̇loss
3600x Ati

+ ∂
∂t

{∑
p

[
f pρp

(
u p + v2p

2gc Jc

)]}

= − ∂
∂z

{∑
p

[
ρpvsp

(
h p + v2p

2gc Jc

)]}
+

∑
p

ρpvspg cos θ

gc Jc

(3)

where the subscripts g, l and m represent gas, liquid and mixture, respectively, P is
pressure (which is the saturation pressure Psat ), ρ is density, vs is superficial velocity,
g is the gravity acceleration, θ is the local angle between the well and the vertical
direction, gc is the gravitational conversion constant, dti is the inner diameter of the
tubing, fm is friction factor, v is velocity, Q̇loss is the fluid heat loss, Ati is the inner
tubing area, p is the phase index (liquid or gas), h is enthalpy, u is internal energy, f
is the gas volume fraction, Jc is the mechanical equivalent of heat (788 ft-lbf/Btu),
and 3,600 converts hours to seconds.

The heat losses, from the water-steam mixture to the porous medium, are dimin-
ished by thermal resistances due to the wall well, insulation, annulus, casing and the
cementing wall (see Fig. 1), then we have that
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Q̇loss = 2πrtoUto(T f − Twb) (4)

where, rto is the outer tubing radius, Uto is the overall heat transfer coefficient based
on rto, T f is the fluid temperature (saturation temperature, Tsat ) inside the injection
well and Twb is the temperature in the well-porous medium boundary. The overall
heat transfer coefficient is given by

1

Uto
= rto

rti ht
+ rto ln (rto/rti )

kt
+ rto ln (rins/rto)

kins
+ rto

rins(hc + hr )

+ rto ln (rco/rci )

kc
+ rto ln (rwb/rco)

kcem
(5)

where kt , kins , kc and kcem are the thermal conductivity of the tubing, insulation,
casing and cementing, respectively. rins and rco are the insulation and casing external
radius, rci is the casing internal radius and rwb is the cementing-porous medium
interface radius. ht is the convective heat transfer coefficient for the water-steam
mixture, hc and hr are the convective and radiation heat transfer coefficients in the
annulus.

The thermic model involves a 2D transient heat diffusion equation in cylindrical
coordinates

1

r

∂

∂r

(
kerr

∂Te

∂r

)
+ ∂

∂z

(
kez

∂Te

∂z

)
= ρeC pe

∂Te

∂t
(6)

where, Te is the porous medium temperature, ker is the conduction coefficient in the
radial direction, kez is the conduction coefficient in the vertical direction z, ρe is the
porous medium density, C pe is the porous medium heat capacity and r is the radius.
One initial condition and four boundary conditions are necessary to solve Eq. (6).
The geothermal gradient was used as initial condition

Tei = Teiwh + gT z cos θ (7)

where, Tei is the initial porous medium temperature and Teiwh is the initial wellhead
temperature. The boundary conditions are given by;

Te = Tsurface → z = 0, r ≥ rwb (8)

Te = Treservoir → z = L , r ≥ rwb (9)

∂Te

∂r
= 0 → 0 ≤ z ≤ L , r → ∞ (10)

Q̇loss = −2πrke
∂Te

∂r
→ 0 ≤ z ≤ L , r = rwb (11)
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The mathematical model solution allows knowing the pressure, temperature,
steam quality, and flow patterns of the water-steam mixture, as well as the ther-
mal energy that is dissipated to the surroundings. Although a steady-state drift-flux
was used, such solution is on semi-unsteady-state due to the accumulation term in the
2D heat diffusion equation allows us to evaluate temperature changes in the porous
medium as time elapses.

On the other hand, to get a closed system, some auxiliary equations were used to
evaluate: (1) the gas volume fraction, (2) the drift velocity, (3) flowpatterns transitions
and (4) fluids properties. Peng-Robinson and Valderrama-Patel-Teja state equations
were also implemented to evaluate steam and air density.

3 Numerical Implementation

Finite differencemethodwas used to resolve the steam injectionmathematicalmodel.
A staggered mesh (see Fig. 1) was implemented for the hydrodynamic model, so
most of variables were evaluated at the center of each cell, but superficial andmixture
velocities were evaluated at the boundary of the cells. The transient 2D heat diffusion
equation was discretized with an implicit scheme, with an irregular grid in r direction
and regular spacing in z direction (see Fig. 1). Spatial derivatives were discretized
applying the standard Godunov first-order upwinding scheme, while for the time
derivative in the heat diffusion equation we used a forward first-order scheme. A
computational algorithmwas built in the FORTRAN language to solve the discretized
system of equations. We refer to the reader to the work of Bahonar et al. (2009) for
detail about the flowchart that shows the steps of the numerical algorithm that has
been used in this work. The following steps proposed by Bahonar et al. (2009) yield
a more detailed description of the numerical solution procedure:

1. At first grid block, Psat and ẇ are known, so the properties x , ρl , ρg , vsl , vsg , hl

and hg can be calculated using correlations or an state equation.
2. For the first iteration, the properties of the previous grid block are used at the

current grid block. However, from second iteration the values of the previous
iteration are used at the current grid block.

3. Knowing Psat ; Tsat , hl , hg , ρl and ρg are calculated.
4. The overall heat transfer coefficient is calculated as a function of depth using an

iterative scheme. For the first iteration,Uto is calculated based on both, the initial
temperature distribution along the well and the boundary formation. For other
iterations, Uto takes the value from the previous iteration. Knowing Uto, we can
calculate Tto and Tci , and then know a new value for Uto. If there is difference
between them (old and new value for Uto), the iterative process has to continue
until convergence is achieved.

5. For the first iteration a superficial gas velocity, vsgk , is assumed and it is approx-
imated to vsgk+1/2 . Then the superficial liquid velocity vslk+1/2 is calculated using
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the mass balance equation (Eq.1). Also, water and steam densities at k + 1/2,
are approximated as ρlk+1/2 = ρlk and ρgk+1/2 = ρgk .

6. In-situ volume fraction, fg , is calculated using correlations for downward two
phase flow for different flow patterns.

7. vsg is recalculated using the momentum balance equation (Eq.2), and the fluid
properties are reevaluated.

8. Heat loss is calculated using Eq. (4).
9. vsg is calculated from the energy balance equation using an iterative Newton-

Raphson scheme. The vsg calculated is compared against the vsg assumed, and
if they are different, step 5 is repeated; otherwise, the pressure convergence at
current grid block is reviewed. If Psat calculated in step 7 is different than Psat

assumed, then step 2 is repeated; otherwise, steps 1–9 must be done for the next
grid block until all the grid blocks are visited.

10. Equation (6) is solved and the results are saved in a text file. If the simulation
time has been reached, the solution process will stop, otherwise; steps 1–9 must
be repeated for a next time step.

4 Results and Discussions

In order to validate the computational code, predictions were compared against
numerical/field data reported in literature. Table1 shows the field data parameters of
the Martha Big Pond well (Bahonar et al. 2009), which were used to get predictions.

Figure2 shows a comparison of predictions (flow pattern, pressure, temperature,
steam quality, and heat loss) against numerical/field data. Pressure and temperature
profiles have good agreement and small differences (smaller than 2%) were gotten
for steam quality and heat loss. Figure2d shows that there is not a large steam
condensation, then: (1) the hydrostatic pressure drop is small and pressure diminishes
along the well (Fig. 2a), (2) there is annular flow along the whole well.

Table 1 Field data parameters of Martha Big Pond well (Bahonar et al. 2009)

rti 0.08850 ft kcem 0.2BTU/h ft ◦F
rto 0.104167 ft εto 0.9

rins No insulation εci 0.9

rci 0.166667 ft W 4850 lbm/h

rco 0.187500 ft X 0.8

rwb 0.600000 ft P 250 psia

ke 1BTU/h ft ◦F Twh 50 ◦F
αe 0.0286 ft2/h Depth 1600 ft

gT 0.0283 ◦F/ft Annulus pressure 14.7 psia
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Fig. 2 Predictions at 71h: a pressure (annular flow), b temperature (at 117h), c heat loss, d steam
quality

Figure3 shows temperature in the cementing-porous medium interface. Temper-
ature profile changes significantly for small steam injection times, however, as the
steam injection period is higher temperature profiles are closer to each other. The sys-
tem gets its steady state at 500h, this means that the temperature difference between
the well wall and the interface is almost constant. Therefore, the energy dissipation
through the porous medium does not changes significantly when steam injection
time is increased, this because the accumulation term in the energy diffusion equa-
tion (Eq.6) is negligible.
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Fig. 3 Temperature
prediction in the
cementing-porous medium
interface
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5 Conclusions

Thenumerical results have good agreement against field data andpredictions reported
in literature.

For the conditions simulated, it was found that: (1) the thermal model reaches its
steady state at 500h, (2) due to few steamcondensation, pressure drop due to gravity is
smaller than the friction and acceleration contributions, and (3) temperature gradients
are large at the beginning of steam injection, but they diminish along time.
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Oxygen Transport Under Combustion
Conditions in a Fracture-Porous
Medium System

O. Cazarez-Candia, G. Rojas Altamirano and C.G. Aguilar-Madera

Abstract In this work the oxygen transport was modeled numerically, at pore scale,
in a matrix-fracture system saturated by nitrogen. This system appears when the
in-situ combustion (ISC) method is applied for oil recovery in fractured reservoirs.
The main aim was to study the effect of oxygen flow rate and the fracture width
on the oxygen transport from the fracture to the porous matrix due to this controls
the combustion front propagation. The porous matrix microstructure was modeled
as a medium composed by circular particles in a periodic arrangement. In order to
simulate the combustion reaction that occurs in an in-situ combustion process, the
coke-oxygen reaction was taken into account on the particles surface. The gas, coke
and oxygenmass balances as well as the gas momentum balance were resolved using
a software that involves the finite element technique. The oxygen distribution was
studied in the matrix-fracture system as a function of: (1) the oxygen flow rate, and
(2) the fracture width. It was found that increasing such parameters stimulate the
coke consumption. Moreover, they increase the oxygen transport from the fracture
to the matrix.
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1 Introduction

The in-situ combustion (ISC) is one enhanced oil recovery method. It is applied
mainly in heavy-oil reservoirs. In the ISC method, standard or oxygen enriched
air are injected into the reservoir to promote the oil ignition and propagation of a
combustion front from the injections wells to the producer wells. Thus, the high
temperatures taking place inside the reservoir improve the oil mobility due to the
reduction of its viscosity and fluid (steam, combustion gases, water) flooding. In
ISC there are several complex mechanisms driving the momentum, energy and mass
transport. The modelling of such mechanisms plays a crucial role for understanding
the physics behind the process parameters.

Currently, a large amount of petroleum is in naturally fractured reservoirs. This has
leaded to develop theoretical and experimental works for gaining knowledge about
the effects that fractures have over the thermal and hydrodynamic performance of
the ISC (Awoleke et al. 2010; Greaves et al. 1991; Schulte and de Vries 1985). The
most of these works agree that the oxygen transport is one of the main features to
sustain and propagate the combustion front. Thus, the oxygen dispersion from the
fracture to the matrix plays a crucial role for the ISC inside the porous medium.

In an ISC process, the availability of oxygen is a key factor because several chem-
ical reactions involve it with further heat releasing. The oxygen might react directly
with some oil components, or with coke, which is produced by a pyrolysis reaction.

In this work, we focus specifically on the oxygen transport from fractures to
porous medium at pore-scale, and eventually the influence of the fracture width,
Peclet number and oxygen-coke reaction rate were studied. With these aims, we
avoid the real complexity of an ISC process and we consider a two-phase (rock and
gas), three-component (N2, O2 and coke), isothermal system. The porous medium
has an idealized 2D microstructure, which is initially saturated with nitrogen.

2 Physical and Mathematical Models

An ISC process involves several phenomena interacting simultaneously in a mul-
tiphase mixture. For instance, we can quote: (1) the existence of several chemi-
cal reactions, (2) multicomponent and multiphase equilibrium, (3) multiphase flow,
(4) thermal expansion, etc. In order to study such phenomena at lab-scale, combus-
tion tube experiments are carried out, where air is injected to promote and propagate
a combustion front (Mamora 1993; Cazarez-Candia et al. 2010).

The predominance of some phenomena over others yields characteristic zones
in an ISC as: the burned, combustion, coking, condensing steam, water, oil and
undisturbed zones (starting from the injection to the production well). A detailed
explanation of each zone can be found in the work of Sarathi (1999). In Fig. 1 a
simplified scheme of the coke and surrounding zones are depicted. There, the picture
corresponds to a hypothetical combustion tube where the porous core is surrounded
by an annular space representing the fracture. In our study we are interested only
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Fig. 1 Scheme of combustion and coke zones in a combustion tube

Fig. 2 Scheme of combustion tube and pore-scale domain for simulation

in the movement of oxygen through the clean zone until the coke zone be reached.
With this aim, the production of combustion gases are ignored as these travel mainly
ahead the coke consumption zone. Under the same premise, within the clean zone
we consider only nitrogen and oxygen.

In order to carry out simulations at the pore-scale we need to reduce the solution
domain to decrease the computing costs. With this aim, as depicted in Fig. 2, from
the combustion tube containing a core surrounded by an annular fracture we take a
small region encompassing some few solid particles. For the sake of simplicity, we
adopt some assumptions andwe focus only in the oxygen transport and its interaction
with the coke through a combustion reaction. It is assumed that this reaction does
not release heat neither produce other gases, i.e., the combustion reaction is used
only to simulate the oxygen and coke consumption over the particles surface. The
assumptions are summarized as follows:

(1) There is only gas in the system, avoiding the existence of oil and water. This is
an idealized system, which can be found behind a combustion front (see Fig. 1).

(2) Initially there is coke homogeneously distributed over the entire particles surface.
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(3) The porous matrix is idealized consisting in a periodic array of infinitely long,
rounded solid rods, allowing to reduce the dimensionality to 2D (see Fig. 2).

(4) A first-order combustion reaction is assumed.
(5) The combustion reaction is isothermal, avoiding the solution of the energy

balance.

The last issue indicates that the conditions for simulations are close to those
encountered at the vicinity of the combustion front, where the combustion reaction
takes relevance.

The existence of only gas in the system and an initial coke distribution is sup-
ported on the idea that these conditions are mainly met behind the combustion front.
Indeed, as seen in Fig. 1, the assumptions mentioned above mean that our simula-
tions correspond for the clean zone, where only there are sand and gas, and the coke
zone represents the vicinity of the combustion front where simultaneously there are
generation and consumption of coke.

2.1 Governing Equations, Initial and Boundary Conditions

The mathematical model includes the oxygen mass balance in the gas-phase

∂CO2

∂t
+ u · ∇CO2 = DO2∇2CO2 (1)

where CO2 is the oxygen molar concentration and DO2 is the oxygen diffusion coef-
ficient inside the gas-phase. The field velocity u is computed through the solution of
the gas momentum balance:

ρ
∂u
∂t

+ ρ (u · ∇) u = −∇ · (pI) + ∇ ·
{
μ

[
∇u + (∇u)T

]
− 2

3
μ (∇ · u) I

}
(2)

Here ρ is the mixture density, p is pressure and μ viscosity. In addition, the
gas-phase continuity equation is required,

∂ρ

∂t
+ ∇ · (ρu) = 0 (3)

Equations (2) and (3) are enforced to satisfy the following initial and boundary
conditions (see Fig. 2 to identify each boundary):

At t = 0, CO2 = 0, u = 0, p = patm (4)

At the inlet boundary:

CO2 = Cinj
O2

, u = − Finj

ρ
n (5)
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At the upper boundary:

−n·NO2 = 0, u·n = 0,
[
∇u + (∇u)T

]
n−

{[
∇u + (∇u)T

]
n · n

}
n = 0 (6)

At the lower boundary:
− n · NO2 = 0, u = 0 (7)

At the outlet boundary

− n · (∇CO2

) = 0, p = patm,

[
∇u + (∇u)T − 2

3
(∇ · u) I

]
n = 0 (8)

At the particle surface:

− n · NO2 = −Kr CO2Ccoke, u = 0 (9)

In Eqs. (4)–(9) patm is the atmospheric pressure, I is the identity tensor, Cinj
O2

is

the oxygen concentration in the injected gas, Finj is the mass flux of the injected
gas, n is the unit normal vector pointing outside the boundary, Kr is the reaction rate
constant, Ccoke is the coke surface molar concentration at the particle surface, and
NO2 represents the oxygen total molar flux expressed in the next form

NO2 = −DO2∇CO2 + uCO2 (10)

The units of CO2 and Ccoke are mole/m3 and mole/m2, respectively. As initially
the oxygen concentration is 0, then the gas is only composed by nitrogen with a
molar concentration depending on temperature and pressure.

In turn, the coke concentration at the particle surface is computed through the
solution of the following differential equation

∂Ccoke

∂t
= −ηKr CO2Ccoke (11)

where η is the stoichiometric coefficient between oxygen and coke. This equation
has the next initial condition

At t = 0, Ccoke = Co
coke (12)

where Co
coke is the initial coke concentration.

On the other hand, the density (ρ) was calculated using the real gas equation, the
reaction rate constant (Kr ) was obtained using an Arrhenius-type expression, and
the gas viscosity was calculated with the Wilke approach (Wilke 1950) for binary
mixtures at low pressures. The oxygen diffusivity was obtained from the work of
Bird et al. (2010).
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3 Results and Discussions

For solving Eqs. (1)–(3), along its initial and boundary conditions, we used a finite
element solver ensuring mesh-independent results. For model validation purposes
the experimental concentration profile of a tracer (Rolle et al. 2012), that is injected
in a system of porous medium saturated with water, was simulated. An excellent
fitting was obtained. For more details we refer the reader to the work of Rolle et al.
(2012).

In all simulations, we used 300 particles with 0.3mm diameter, and arranged in a
simple periodic array. Such particle diameters are according to those encountered in
combustion tube experiments (Cazarez-Candia et al. 2010). In our study, the matrix
porosity was 0.4. The total length of the domain is 10.49mm and the height only
including the porous medium is 3.5137mm, see Table1.

3.1 Effect of the Fracture Peclet Number

The effect of the fracture Peclet number (Pef) over the non-dimensional oxygen and
coke concentration profiles is illustrated in Fig. 3, for t = 25 and 145s. The plotted
results correspond for diffusive (Pef = 0:01), competitive (Pef = 1) and convective
(Pef = 10) regimes in the fracture. Indeed, a given value of Pef does not necessarily
mean that such Pef also stands inside the porous medium. However, we use Pef , as
our priority is to investigate the influence that fractures have over the ISC inside the
porous matrix. In our simulations, the manipulation of Pef was made by increasing
or decreasing the injected flow Finj.

As Finj increases, coke is faster consumed mainly by the increasing oxygen avail-
ability that takes place by two reasons:

Table 1 Values of some parameters used in the simulations

Parameter Value Reference/comments

μO2 1.76 × 10−5 kg/(ms2) at 293.15K White (2001), Table A.4

μN2 2.00 × 10−5 kg/(ms2) at 293.15K White (2001), Table A.4

DO2 0.181cm2/s at 273.2K Bird et al. (2010), Table 17.1-1

η 1/1.18 Fadaei (2009), Table 3.4

Oil API 26

Mcoke 13.1g/mole Fadaei (2009), Table 3.3

Moil 290g/mole Fadaei (2009), Table 3.3

C0
coke 6,745mol/(aν m3) Based on the assumption that 10% of oil is

converted to coke (Schulte and de Vries 1985).
aν is the particle specific surface area
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Fig. 3 Oxygen and coke concentration profiles as function of time and fracture Peclet number
(Wf = 1.67dp)

3.2 Effect of the Fracture Width

As the fracture width increases the amount of oxygen being transported through the
fracture is augmented. As the oxygen storage in the fracture is increased, the oxygen
flow from the fracture to the matrix is enhanced. This issue is shown in Fig. 4 where
oxygen concentration profiles are presented for t = 55 and 255 s, andWf = 1.67, 3.34
and 6.67dp. The arrows direction show that oxygen is transported from the fracture
and, in this way, the coke is faster consumed as Wf increases.

4 Conclusions

The oxygen transport, in a matrix-fracture system saturated by nitrogen, was mod-
eled numerically, at pore scale. In an in-situ combustion process, a coke-oxygen
reaction occurs and it was taken into account. The oxygen distribution was studied
in the matrix-fracture system as a function of: (1) the oxygen flow rate, and (2) the
fracture width. It was found that increasing such parameters stimulate: (1) the coke
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Fig. 4 Oxygen and coke concentration profiles as function of time and fracture width (Pef = 1)

consumption and (2) the oxygen transport from the fracture to the porous zone. These
conclusions are explained below.

As oxygen flow rate increases, coke is faster consumed mainly by the increasing
oxygen availability that takes place by two reasons: (1) the amount of oxygen, enter-
ing to the porous zone through the inlet boundary, is increased and, (2) the amount of
oxygen, entering from the fracture to the matrix, is considerably augmented. On the
other hand, as the fracture width increases, the amount of oxygen being transported
through the fracture is augmented. Then, as the oxygen storage in the fracture is
increased, the oxygen flow from the fracture to the matrix is enhanced.
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Numerical Simulation of the Flow in an Open
Cavity with Heat and Mass Transfer
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A. Servin Martínez and J.A. Hernández Zarate

Abstract In the present work, we analyze the laminar steady-state fluid dynamics,
heat and mass transfer in a two-dimensional open cavity for the decomposition of
a substance. The numerical study is carried out for Reynolds numbers of 10, 25
and 50 with a Schmidt number of 425. A hot plate is provided at the bottom of
the cavity which generates the thermal decomposition of the substance. In order to
investigate the effect of the length of the plate two different plate sizes are consid-
ered. The governing equations of continuity, momentum, mass transport and energy
for incompressible flow are solved by the finite element method combined with an
operator-splitting scheme. We calculate the temperature field, the streamlines, the
velocity and the concentration field and analyze the velocity, concentration and tem-
perature profiles as a function of the transversal position. We find that the Reynolds
number plays a major role in the mass transport and the thermal behavior of the flow
inside the cavity.
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1 Introduction

The fluid flow in an open cavity with heat and mass transfer is an important issue
in many technological processes. Deng et al. (2004) investigated the fluid, heat and
contaminant transport structures of mixed convection in a two-dimensional venti-
lated room with heat and contaminant sources while Beya and Lili (2007) analyzed
the unsteady heat and mass transfer by mixed convection in a two-dimensional ven-
tilated enclosure, obtaining the streamlines, heatlines and masslines for different
cases. More recently, Serrano-Arellano and Gijon-Rivera (2014) studied the heat
and mass transfer in a two dimensional differentially heated closed square cavity,
where the working fluid is initially at rest and with a uniform temperature. Kuznetsov
and Sheremet (2009) reported a numerical study on the conjugate heat transfer in a
rectangular enclosure under the assumption of internal mass transfer and in the pres-
ence of local heat and contaminant sources. The double-diffusive mixed convection
in a lid-driven triangular cavity filled with air has been examined by Hasanuzzaman
et al. (2012). The bottom and inclined walls of the triangle had constant high tem-
perature and low temperature, respectively. On the other hand Shehata et al. (1999)
both studied both experimentally and numerically the mass transfer to the bottom
wall of a cavity in the presence of an external unsteady flow, while Jeng et al. (2009)
reported an experimental and numerical study of the flow structure and mass transfer
on inclined, low aspect ratio enclosures. The present study addresses the effect of the
heater length and Reynolds number on the heat and mass transfer in an open cavity.

2 Problem Formulation

Consider an open cavity with a hot plate at the bottom which generates the thermal
decomposition of a substance, as shown in Fig. 1. The flow is assumed to be laminar,
steady and two-dimensional. The Reynolds numbers (Re = Umh/ν), based on the
velocity of the inlet flow Um and the height h of the entrance of the cavity, studied
in this investigation were Re = 10, 25 and 50 for a Schmidt number of Sc = 425

Fig. 1 Geometry of the open cavity with heat and mass transfer
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and a Prandtl number of Pr = 6.0. The entrance and exit of the cavity was fixed
to h = 0.4 H , where H is the height of the cavity with a length of W = 4H . Two
different lengths of the heater plate Wp = W/5 and Wp = W/3.33 were analyzed.
The horizontal and vertical dimensions of the cavity are W = 0.2m and H = 0.05m,
respectively.

The governing equations for a non-isothermal incompressible steady-state flow
in a two-dimensional domain � are given by:

− 1

Re
�u + u · ∇u = −∇ p, (1)

∇ · u = 0, (2)

− 1

Re Pr
�T + u · ∇T = Q. (3)

The mass transfer by thermal decomposition inside the cavity depends on both
the fluid flow and the temperature distribution, and is given as:

− 1

Re Sc
�CA + u · ∇CA = R, (4)

In the above equations u = (u1, u2) is the velocity vector, being u1 y u2 the
horizontal and vertical velocity components, respectively; p is the pressure, T is the
temperature, and CA is the concentration. Q and R are the source term in the energy
and mass transport equations, respectively, defined as follows:

Q = r�h

ρC pUm (TH − TC )
, (5)

and

R = −rh

UmCAc
, (6)

where � is the heat of reaction, ρ is the density, Cp is the specific heat capacity
at constant pressure and CAc is the concentration of reference. In addition r is the
reaction rate defined as:

r = kCA, (7)

where k is the rate constant:
k = Ae−E/Rg T . (8)

Here A is the frequency factor, E is the activation energy and Rg is the fluid constant.
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3 Numerical Solution and Validation of the Results

Numerical simulations were conducted for the laminar flow inside a horizontal open
cavity for Reynolds numbers ranging between 10 and 50. A 2D geometry was used
(see Fig. 1) and several types of meshes were included in order to obtain independent
results from the numerical parameters. The governing equations were solvedwith the
finite elementmethod combinedwith the operator splitting schemeGlowinski (2003).
This approach was implemented in a numerical code, developed by the authors and
written in Fortran 90. The convergence analysis was done for three different meshes
consisting of 4,850, 14,900 and 18,250 elements. An analysis of the temperature
profiles on themiddle horizontal and vertical lines indicates that the largest difference
of the results between themeshes of 4,850 and 14,900was 8.5%,while themaximum
difference of the results between the meshes of 14,900 and 18,250 was 1.0%. The
analysis was also done for the velocity components, in which cases the worst relative
error between the meshes of 14,900 and 18,250 was less than 1.0%. The simulations
presented in this paper were performed for a cavity with a mesh of 18,250 elements.
The validation of the computer code has been carried out for the double-diffusive
mixed convection in a ventilated cavity by Deng et al. (2004). The average Nusselt
number obtained with this code for Gr = 18,207 and Re = 500 was 1.59 which
coincides with the value of (1.61) reported by Deng et al. (2004).

4 Results and Discussions

The results are given in terms of streamlines, isotherms,Nusselt numbers and velocity
profiles, temperature and concentration. Figure2 shows streamlines for the case of
Wp = W/5. The top panel shows the behavior of the fluid inside the cavity for
Re = 10, where three vortices can be observed, the first one is a big, strong and

Fig. 2 Streamlines for Wp = W/5. Top Re = 10. Bottom Re = 50
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clockwise vortex located after the step of the cavity; the second vortex appears after
the heater of the cavity with a clockwise rotation. These two vortices are formed as a
result of the boundary layer detachment from the surface driven by the fluid motion
that crosses the cavity.At the superior right corner, a thirdweak, anti-clockwise vortex
emerges from the impingement of the fluidwith the corner. Furthermore, for Re = 50
the same vortex distribution can be observed (see bottom panel). However, the size of
the vortices is increased. Themain vortex extends over the heater affecting the energy
and mass transport inside the cavity. The jet emerges horizontally from the flow inlet
of the cavity, but as it moves ahead of its horizontal component decreases and the
vertical component increases due to the change of the transversal area of the cavity.

Figure3 shows the isotherms for Wp = W/5. The top panel shows the thermal
behavior of the fluid inside the cavity for Re = 10, while the bottom panel is for
Re = 50. It can be seen that the temperature contours are clustered around the heater,
and a hot temperature region grows toward themiddle of the cavity due to the thermal
plume that heats the fluid in the neighborhood of the heater. However, beyond this
region the contours tend to elongate from the heater toward the exit of the cavity and
they also spread toward the interior part of the cavity with smaller values since the
fluid is cooled as a result of the flow motion that crosses the cavity. Increasing the
Reynolds number, a stronger disturbance of the contours can be appreciated behind
the heater. Furthermore, for a higher Reynolds number the thermal plume does not
completely ascend up to the top part of the cavity, instead it is dispersed towards the
exit of the cavity.

For Re = 50, the fluid behind the heater is hotter than the fluid in front of it, hence,
the left region of the heater can have a higher heat generation rate. For Re = 10,
the fluid in front of the heater is hotter than the fluid behind the heater, and hence,
the right region of the heater can have a higher heat generation rate. However, we
note that in both cases the temperature decreases away from the heater, and the
maximum temperature occurs in the layer of fluid adjacent to the heater. For the low
Reynolds number stratification can be observed in the isothermal; and the lower the

Fig. 3 Isotherms for Wp = W/5. Top Re = 10. Bottom Re = 50
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flow velocity the hotter is the cavity. As expected, on the right side of the heater the
contours are distorted and follow the main stream direction toward the outlet of the
cavity. The two vortices associated to the heater transport hot fluid heating the main
stream of fluid. The interaction of the solid heater with the flow generates a thermal
boundary layer separation which is recirculated there by increasing the heat transfer
from the heater to the fluid.

Figure4 shows the concentration contours for Wp = W/5. The top panel shows
the behavior of the concentration inside the cavity for Re = 10, where gradual
reduction of the concentration can be observed along the fluid motion path due to the
heating decomposition of the substance. At the entrance the concentration isCA = 1.
However, at the neighborhood of the heater it is zero as a consequence of the effect
of the temperature. On the top right corner the concentration also tends to zero as
a result of the heating of the fluid in this region, which is associated with the rise
of the thermal plume. At the exit of the cavity the concentration is practically zero,
meaning that the substance has been completely decomposed. The bottom panel
shows the behavior of the concentration inside the cavity for Re = 50. For this case,
incomplete decomposition is observed and the concentration is reduced to only about
50% because the flow velocity increases and the main stream of fluid remains cool.
For Re = 10, the outlet flow concentration was 0.08, while for Re = 50, the outlet
flow concentration was 0.5.

Figure5 shows the axial velocity profile (left panel), and the temperature profile
(right panel) on the middle vertical line for Wp = W/5 and three different Reynolds
numbers. From the axial velocity profile, we may observe that this velocity compo-
nent increases as the Reynolds number is increased. On the heater the axial velocity
is zero and increases up to a maximum value to finally decrease to zero on the upper
wall of the cavity. From the temperature profile, it can be appreciated that the tem-
perature is 1 on the heater and starts to reduce as the transversal coordinate increases
and becomes zero at y/H = 0.5. Furthermore, the temperature is reduced more
rapidly as the Reynolds number is increased.

Fig. 4 Concentration for Wp = W/5. Top Re = 10. Bottom Re = 50
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Fig. 5 Axial velocity profile (left) and temperature profile (right) at x/H = 2.0 for Wp = W/5
with three different Reynolds numbers

Fig. 6 Left Transversal concentration profiles at x/H = 2.0. Right Axial concentration profiles at
y/H = 0.6 for Wp = W/5

Figure6 shows the concentration profiles for Wp = W/5. The left profile is the
transversal concentration on themiddle vertical line, indicating that the concentration
starts to increase, reaches a maximum value about y/H = 0.6 and then decreases.
The larger the Reynolds number the greater the concentration values are. The right
profile is the axial concentration at y/H = 0.6,which indicates that the concentration
tends to reduce as the fluid passes through the heater. The initial reduction of the
concentration can be explained by the heating of the fluid at the region where the
vortices recirculate hot fluid. It is also observed that as the Reynolds number is
increased the variations in the concentration of the substance are lower due to less
heating of the fluid.

Figure7 shows the effect of the heater length on the temperature profile at the
middle vertical line and the Nusselt number as a function of the Reynolds number.
From the left panel of the figure, it can be observed that increasing the length of the
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Fig. 7 Effect of the heater length on the temperature profile at x/H = 2.0 and Nusselt number for
various Reynolds number

heater the fluid temperature does not decay to zero, since more energy is injected
by the heater to the fluid. The right panel of the figure indicates that for a specific
Reynolds number, increasing the length of the heater leads to an increase of the
heat transfer rate. By further increasing the Reynolds number for a given length of
the heater, the heat transfer rate to the fluid is also increased, so more energy can be
transported by the fluid,which therefore causes it to releasemore heat from the cavity.

5 Conclusions

The fluid dynamics, heat and mass transfer in an open cavity for the de composition
of a substance is investigated in this work. The analysis is carried out for the laminar
flow and the governing equations were solved with the finite element method. The
simulations revealed several interesting features concerning the flow structure, ther-
mal and mass transport inside the open cavity as function of the length of the heater
and the Reynolds number. For Re = 10, the concentration at the exit of the cavity
is practically zero and the substance has been completely decomposed. However,
for Re = 50 incomplete consumption of the substance is observed and the outlet
concentration is reduced to only about 50% due to higher inlet velocity keeping the
main stream of the flow at lower temperature. On the other hand, if the length of
the heater increases, the temperature inside the cavity is increased due to energy
injection from the plate to the fluid being improved. As a result the decomposition
of the substance inside the cavity is more efficient.
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3D Numerical Simulation of Rayleigh-Bénard
Convection in a Cylindrical Container

N.Y. Sánchez Torres, E.J. López Sánchez, S. Hernández Zapata
and G. Ruiz Chavarría

Abstract The heat transport by natural convection is a central mechanism in
the explanation of many natural phenomena. Despite many existing work on the
Rayleigh-Bénard convection, often the phenomenon is studied by making a two-
dimensional approach or using a rectangular container. In this work, we solve numer-
ically the Navier-Stokes, continuity and energy equations in cylindrical coordinates.
To this end a finite difference scheme is used for the time and spatial coordinates
r and z, whereas a Fourier spectral method is used for the angular coordinate. The
advantage of this procedure is that it can be easily parallelized. The numerical results
include the formation of concentric rolls and other patterns, which are comparedwith
experimental results reported in the literature.

1 Introduction

An important problem in Fluid Mechanics is the study of convection. In this paper
we focus our attention on a liquid layer heated from below and initially at rest.
Depending on a dimensionless parameter, that is, the Rayleigh number (Ra), the
final state can be a pattern of cells or even the transition to a turbulent state. The
stability theory, the experiments and numerical simulations agree in that the critical
Rayleigh number is 1708 (Chandrasekhar 1961; Rayleigh 1916; Guyon et al. 2001;
Bodenschatz et al. 2000). Below this value the fluid remains at rest. Analytical results
on this problem have been obtained within the framework of hydrodynamic stability,
which provides information about critical values of dimensionless parameters and
the wavenumber of the most unstable perturbation. Often the stability analysis is
performed assuming small two-dimensional disturbances so that nonlinear terms are
neglected (Drazin and Reid 1981; Chandrasekhar 1961). The factors influencing the
growth of instabilities are viscosity, bouyancy and the surface tension if the upper
boundary is a free surface.
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When Bénard began to study this problem, he decided to keep free the upper
surface. He observed the formation of hexagonal cells [Bénard-Marangoni problem,
(Bénard 1900; Guyon et al. 2001; Bodenschatz et al. 2000)]. When Rayleigh studied
this problem, he assumed that all boundaries of the fluid layer are solid walls. He
observed the formation of rolls instead of hexagonal cells [Rayleigh-Bénard prob-
lem, hereafter referred to as the R-B problem (Chandrasekhar 1961; Rayleigh 1916;
Guyon et al. 2001; Bodenschatz et al. 2000)].

In this work we solve numerically the equations governing the R-B convection in
a cylindrical container (3D). This problem has been studied previously (Getling and
Brausch 2003). In most cases the geometry was a rectangular box (Valencia 2005;
Ternik et al. 2013), or cylindrical one (Tagawa et al. 2003; Li et al. 2012; Paul et al.
2003). The numerical simulation was done by using a Fourier spectral method (Boyd
2000; Peyret 2002) for the angular coordinate and finite differences for the radial and
vertical coordinates. In addition, we use a semi-implicit Adams-Bashforth second
order scheme. The choice of a Fourier spectral method was made on the basis that
it is easy to run the code in parallel provided the Adams-Bashforth scheme is used.
Under this condition we have for each Fourier mode a system of equation decoupled
from other modes. Finally the Navier-Stokes equations are solved with the projection
method.

This paper is organized as follows. In Sect. 2, we expose the methodology used
in the numerical study, including the differential equations for the R-B convection.
In Sect. 3, we show some numerical results and a comparison with cases reported in
the literature. In the last section, we draw some conclusions.

2 Methodology

For the study of convection of a liquid heated from below we need to solve the
three components of the Navier-Stokes equations along with the continuity and the
energy equations. In order to compare with other results, we need to write down the
equations in dimensionless form. To this end we use κ/d as a representative velocity,
the characteristic length is the height of the container d and the characteristic time
is d2/κ , where κ is the thermal diffusivity coefficient. In addition, we assume that
the density depends on temperature. We use the Boussinesq hypothesis according
to which the density is left constant except in the bouyancy term. The equations to
solve are:

∇∗ · u∗ = 0

∂u∗

∂t∗
+ (u∗ · ∇∗)u∗ = −[g∗ − Ra Pr (T

∗ − T ∗
0 )]k̂ − ∇∗ P∗ + Pr∇∗2u∗

∂T ∗

∂t∗
+ u∗ · ∇∗T ∗ = ∇∗2T ∗,
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where the asterisk means dimensionless variables and operators. The dimensionless
parameters are Prandtl Pr = ν/κ and Rayleigh Ra = gαβd4/(κν) numbers. The
unknowns are the velocity field (with components ur , uθ , and uz), the temperature
T and the pressure P . In cylindrical coordinates, the above equations become:

∂ur

∂r
+ ur

r
+ 1

r

∂uθ

∂θ
+ ∂uz

∂z
= 0, (continuity eq.)

∂ur

∂t
+ ur

∂ur

∂r
+ uθ

r

∂ur

∂θ
+ uz

∂ur

∂z
− u2

θ

r
= −∂p

∂r

+ Pr

(
∂2ur

∂r2
+ 1

r

∂ur

∂r
+ 1

r2
∂2ur

∂θ2
− 2

r2
∂uθ

∂θ
− ur

r2
+ ∂2ur

∂z2

)
, (radial eq.)

∂uθ

∂t
+ uθ ur

r
+ ur

∂uθ

∂r
+ uθ

r

∂uθ

∂θ
+ uz

∂uθ

∂z
= −1

r

∂p

∂θ

+ Pr

(
∂2uθ

∂r2
+ 1

r

∂uθ

∂r
+ 1

r2
∂2uθ

∂θ2
+ 2

r2
∂ur

∂θ
− uθ

r2
+ ∂2uθ

∂z2

)
, (angular eq.)

∂uz

∂t
+ ur

∂uz

∂r
+ uθ

r

∂uz

∂θ
+ uz

∂uz

∂z
= −

[
g

d3

κ2 − Ra Pr (T − T0)

]
− ∂p

∂z

+ Pr

(
∂2uz

∂r2
+ 1

r

∂uz

∂r
+ 1

r2
∂2uz

∂θ2
+ ∂2uz

∂z2

)
, (vertical eq.)

∂T

∂t
+ ur

∂T

∂r
+ uθ

r

∂T

∂θ
+ uz

∂T

∂z
= ∂2T

∂r2
+ 1

r

∂T

∂r
+ 1

r2
∂2T

∂θ2
+ ∂2T

∂z2
.

(Energy eq.) (1)

In order to solve these equations we use the projection method (Fuentes and
Carbajal 2005), which consists in the introduction of a fictitious velocity which is
the solution of the Navier-Stokes equation for a constant pressure. For this fictitious
velocity the condition ∇ · u = 0 is not fulfilled. In a second step, the pressure is
calculated by solving an equation resulting from taking the divergence of the Navier-
Stokes equations and imposing the condition of zero divergence to the velocity field.
Finally, a real velocity is obtained from the Navier-Stokes equations by including
the pressure calculated in the previous step.
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2.1 Fourier Series Approximation

Since the angular coordinate is 2π -periodic, we can approximate the velocity, the
temperature and the pressure (represented by φ) as a Fourier complex series:

φ(r, θ, z, t) ≈
m∑

k=1

φ̂k(r, z, t)eikθ . (2)

So, the first and second derivatives with respect to θ are:

∂φ(r, θ, z, t)

∂θ
≈

m∑
k=0

ikφ̂k(r, z, t)eikθ , (3)

∂2φ(r, θ, z, t)

∂θ2
≈ −

m∑
k=0

k2φ̂k(r, z, t)eikθ , (4)

Then, the unknowns are the Fourier coefficients φ̂k(r, z, t).

2.2 Projection Method

Themethod is called “projection” because the velocity field is calculated in two steps.
The first step consists in the calculation of the Navier-Stokes equations by assuming
a constant pressure. In a second step, this velocity field is projected onto a space
of zero divergence and satisfying the appropriate boundary conditions (Fuentes and
Carbajal 2005).

We assume a uniform pressure field and we approximate the time derivative with
a backward finite difference formula. This leads to the following equation

3u∗ − 4un + un−1

2Δt
+ℵ(un,n−1

r )+
[

g
d3

κ2 − Ra Pr (T − T0)

]
k̂ + Pr∇2u∗ = 0, (5)

where u∗ is the fictitious velocity field and ℵ(un,n−1
r ) is the estimate of the non-

linear term according to the Adams-Bashforth scheme. The term ℵ(un,n−1
r ) requires

knowledge of the velocity field at the two previous times n and n−1 (n+1 represents
the actual time). On the other hand, the equation for the true velocity field is:

3un+1 − 4un + un−1

2Δt
+ ℵ(un,n−1

r ) +
[

g
d3

κ2 − Ra Pr (T − T0)

]
k̂ + ∇ pn+1

+ Pr∇2un+1 = 0. (6)
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Subtracting Eq. (6) from (5) we obtain:

un+1 = u∗ − 2Δt

3

[
∇ pn+1 + Pr∇2(u∗ − un+1)

]
. (7)

Taking the divergence of Eq. (7) and using the fact that ∇ · un+1 = 0 we obtain
the equation for the pressure:

∇2 pn+1 = 3

2Δt
∇ · u∗ − Pr∇2(∇ · u∗). (8)

2.3 Initial and Boundary Conditions

As the initial conditions we consider a temperature distribution with a constant gra-
dient ΔT/d, so that the pressure is hydrostatic and the fluid at rest. For the boundary
conditions we impose a non-slip condition at the solid walls for the velocity field,
whereas the temperature is set to a constant (in agreement with the imposed tem-
perature gradient) in both the lower and upper walls. For the remaining boundaries
(this includes velocity at r = 0) Neumann and/or Dirichlet boundary conditions are
imposed. The Neumann conditions mean that the normal derivative of φ vanishes at
r = 0, and the Dirichlet condition implies that φ(r = 0) = 0.

3 Results

The numerical simulations were carried out with a constant Prandtl number (Pr =
0.7), which correspond to air and other gases, and some Rayleigh number above the
critical one Ra = 1,708. To what concerns the geometry, we use either a cylindrical
container (0 < r < rext ) or an annular domain (rint < r < rext).

Figure1 shows the vertical component of the velocity in the container midplane.
Each red region corresponds to positive vertical velocity, while the blue regions
correspond to negative velocities. So, we can empirically establish that the number
of rolls is twice the number of red regions (or blue regions). Figure1a corresponds to
the steady state for Ra = 2,000 and rext = 10. We can see eight concentric circular
rolls. This figure is similar to the experimental result reported by Charru (2007).
Figure1b corresponds to the steady state for Ra = 2,500 and the annular domain,
with rint = 1 and rext = 5. We can count fourteen convective rolls, but they are not
concentric.

Figure2 shows the results of our simulations for Ra = 2,500 and a cylindrical
container with rext = 10 at different times. At the beginning the pattern is always
concentric but after a while (see Fig. 2a at t = 13.8), the concentric rolls begin to
deform. We can see how the concentric circular pattern starts to ripple. In Fig. 2b,
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Fig. 1 a Steady state for Ra = 2,000. The rolls are concentric circles. b Steady state for the annular
case for Ra = 2,500

Fig. 2 Case Ra = 2,500. a At the beginning, the concentric circles pattern appears and after a
while these circles begin to ripple. b The concentric circles pattern is totally destroyed

corresponding to t = 28, the initial pattern is lost completely. It is a different shape
with respect to the case shown in the Fig. 1b. it is important to note that Fig. 2b has
a similar trend with respect to the experimental results reported by Chandrasekhar
(1961).

Figure3 shows the vertical velocity in the midplane of the container for Ra =
5,000 at (a) t = 3.8 and (b) t = 4.2. We can see that the pattern changes rapidly and
no steady state is reached in this time interval.

The dependence of the growth rate with the Rayleigh number has been well
studied (Charru 2007). When the Rayleigh number coincides with the critical value
Rac = 1,708 the growth rate is zero (this is the neutral stability state). It becomes
positive when the Rayleigh number is above Rac. This is a very important criterion
to test our simulations. We have performed two calculations, one is the time for the
beginning of the pattern formation and the second is the time elapsed to attain the
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Fig. 3 Case Ra = 5,000. It begins forming a concentric circles pattern. a Time is t = 3.8. b Time
is t = 4.2

Fig. 4 a The time that it takes to the perturbation to overcome a certain threshold versus Rayleigh
number. b The time that it takes to the system to attain a stationary state versus Rayleigh number

steady state. Both quantities must be decreasing functions of the Rayleigh number.
Our simulation satisfies this criterion as we can see from Fig. 4. The calculation of
the first quantity consists of obtaining the time for which the velocity at a certain
point is no longer zero (in a numerical sense, see Fig. 4a). For the second time we
determine the time elapsed until the velocity variations at a certain point are less
than a value ε (see Fig. 4b). In both figures, we observe that the time is a decreasing
function of the Rayleigh number.

4 Conclusions

The numerical simulations reproduce some of the patterns observed in experiments
other than the annular cells. If the Rayleigh number is not much bigger than the
critical value, the steady state consists of a collection of concentric rolls. As the
Rayleigh number increases, the time to reach the steady state decreases, and the rolls
pattern becomes unstable, as we showed for Ra = 2,500 case. For the Ra = 5,000
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case our simulation does not exhibit a stationary state during the time of integration.
We have shown a result in an annular domain. In this case the steady state does not
consist of a pattern of concentric circles. The results of the numerical simulations
can be compared qualitatively with experimental results and those reported in the
literature.

The method we used is easy to run in parallel, taking advantage of the features of
the Fourier spectral method.

Acknowledgments Authors acknowledge DGAPA-UNAM by support under project IN116312,
“Vorticidad y ondas no lineales en fluidos”.
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Solidification in the Presence of Natural
Convection in a Hele-Shaw Cell

G. Ramírez, J.E. Cisneros, G. Hernández Cruz and E. Ramos

Abstract The solidification of water with particles in a suspension that fills the
gap in a Hele-Shaw cell has been experimentally studied by visualization and using
particle image velocimetry (PIV). The upper wall of the cell is kept at a temperature
lower than 0 ◦C, while the lower wall is exposed to ambient temperature. Water
starts solidifying near the upper wall of the cell, and a solidification front moves in
the downward direction. Since the temperature gradient established is unstable in the
gravity acceleration field, the liquid acquires a natural convective motion, and the
solidification and convection interact with each other. The growth of the solidification
region in the Hele-Shaw cell modifies the volume available to the liquid and in this
way determines the convection pattern. In turn, the convective flow of the liquid
is an efficient heat pump at the liquid-solid boundary, and determines the velocity
and geometry of the solidification front. We present quantitative data of the velocity
and shape of the solidification front and the velocity field in the liquid region as
functions of time. We have found that the convective motion stops when the aspect
ratio (height/width) of the liquid region is approximately 0.45 and from this time on,
the motion of the solidification front follows Stefan’s law.

G. Ramírez (B) · J.E. Cisneros · G. Hernández-Cruz · E. Ramos
Renewable Energy Institute, Universidad Nacional Autónoma de México,
62580 Temixco, Mor, Mexico
e-mail: guraz@ier.unam.mx

J.E. Cisneros
e-mail: jcx2514@gmail.com

G. Hernández-Cruz
e-mail: ghc@ier.unam.mx

E. Ramos
e-mail: erm@ier.unam.mx

© Springer International Publishing Switzerland 2015
J. Klapp et al. (eds.), Selected Topics of Computational and
Experimental Fluid Mechanics, Environmental Science and Engineering,
DOI 10.1007/978-3-319-11487-3_28

375



376 G. Ramírez et al.

1 Introduction

The phenomenon of solidification is of great importance inmany industrial processes
like casting, refrigeration, crystal growth and others. Frequently, in these processes,
the large temperature gradients and the unavoidable presence of gravity results in
a convective motion that interacts with the change of phase. In turn, the geometry
modification of the volume occupied by the fluid is decisive for the dynamic charac-
teristics of the convective motion making this a two-way coupled phenomenon. The
systematic study of heat transfer during solidification started in the nineteenth cen-
tury with the analysis of the displacement of a solidification front by J. Stefan in the
context of ice formation in the polar seas. In the classical Stefan problem, the growth
of the solid takes place in absence of fluid motion, and it considers a one dimensional
system composed of the liquid and solid regions and the interface, whose position
is determined by the heat exchange between the two phases. An important result of
this theory indicates that the displacement of the solidification front is proportional
to the square root of time. Many refinements and generalizations of this model that
consider more realistic physical situations are now available in the literature. See, for
instance, Langlois (1985). Specifically, a two dimensional model of the solidification
front indicates that a straight front is unstable and develops awavy shapewhose crests
evolve to form cusps that are interpreted as the precursors of fingers and dendrites
(Davis 1990). Presently, it is recognized that the solidification process is extremely
complex, and many studies have focused in the description of the microstructure of
the newly formed solid. A topic that has received much attention is the formation of a
semisolid region that forms between the solid and the liquid regions which has been
named the “mushy layer” and that has its own complex dynamics. For instance, the
solidification of an aqueous ammonium chloride solution confined in a Hele-Shaw
was studied by Chen (1995) to clarify the role played by the local convection in
the formation of channels devoid of solid or “chimneys” in the solidified material.
An approximate estimation of the convective velocity near the solidification front is
given, but no attempt is made to describe the velocity distribution or its time depen-
dence. In the presence of a body force, the thermal gradients that take place due to
the latent heat released at the solidification front induce buoyancy-driven convec-
tion that greatly affects the interfacial patterns, i.e. the solidification microstructures
that are present in the solidified material (Rosenberger 1979; Worster 1997). The
emphasis of the present study is not on the analysis of the solid structure or in the
liquid-solid transition layer but in the fluid motion. This phenomenon is strongly
dependent on the geometry of the container, and thus our observations refer to a
quasi two-dimensional motion in the direction parallel to the Hele-Shaw plates.
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2 Experimental Device and Visualization Methods

The experimental device where observations were made consists of a Hele-Shaw cell
formed by two 1mm thick glass plates with an area of 2.0cm × 2.0cm. The plates
were separated 1mm by Nylamid pieces placed along the vertical walls of the cell
which provide mechanical support and thermal insulation. The upper horizontal wall
of the cell is a piece of copper that is physically in contact with the cold side of a
square thermoelectric device. The hot side of the thermoelectric is in contact with
a heat sink which is constituted by a container filled with pellets of solid CO2 and
designed such that a mini fan blows the cold gaseous CO2 product of the sublimation
to the upper wall of the Hele-Shaw cell. The illumination of the fluid inside the cell
is made through the lower horizontal wall which is made of a plexiglas piece that
acts as a light guide for three white light emitting diodes. The cell arrangement is
shown in the left panel of Fig. 1. Small holes at the lower part of the vertical walls
connected to atmospheric pressure allow for the expansion of the working fluid as it
is cooled. The cell is fixed on a breadboard and aligned to a Microsoft, 960 × 540
pixels video camera that captures images at 15 fps (see the right panel of Fig. 1).
The resulting spatial resolution is 23 pixels per mm. Special care was required to
prevent water condensation from the ambient on the external walls of the cell since
this reduces the quality of the images, and may modify the boundary conditions on
the faces of the cell.

The working fluid is water with small (10 µm in diameter) neutrally buoyant
hollowed glass particles in suspension. The temperature of the fluid inside the cell is
monitored with two thermocouples located near the top and bottom horizontal walls
as shown in Fig. 2. The flow pattern and the position of the solidification front are
captured with the video camera and analyzed with the PIVLab software and image
processing tools. The maximum velocity observed is 0.8mm/s and the interrogation

Fig. 1 Left Geometry and components of the Hele-Shaw cell. Right Experimental setup showing
the heat sink (solid CO2 reservoir), and the position of the video camera
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Fig. 2 Sample image of the
cell and the solidification
front. The positions of the
upper and lower
thermocouples are indicated
by red dots. The horizontal
broken line is the average
vertical position of the
solidification front. h is the
(time dependent) vertical
magnitude of the volume
occupied by the liquid and w
is the width of the cell

area is 12 × 6 pixels with an overlap of 50%. The flow is mostly two dimensional
and the color contrast between the solid and the liquid produced by the illumination
coming from the lower wall of the cell provides images of excellent quality as can
be seen in Fig. 2.

3 Results

As heat is pumped from the fluid and from the lower boundary by the upper, colder
boundary, the temperature inside the cell drops and the thermodynamic conditions
inside the cell correspond to solidification. As will be described in more detail below,
the present design and operation of the cooling system leads to time-dependent upper
and lower temperature boundary conditions.Although this featuremakes it difficult to
generalize the results presented in this report, it is expected that the qualitative obser-
vations will be similar to those obtained by keeping constant temperature boundary
conditions. The total observation time is of the order of 40 min when the solidifica-
tion front touches the lower wall of the cell. The temperature of the thermocouples
inside the cell are shown in Fig. 3. As it can be seen, the temperature of the upper
wall (TC ) is a monotonously decreasing function of time with an initial value of
0 ◦C and a final reading of approximately−30 ◦C. The temperature of the lower wall
(TH ) is 22.5 ◦C at the onset of the observations and reduces to 10 ◦C at the end of the
experiment. The temperature gradient between the upper and lower walls (TH − TC )
is initially 20 ◦C but settles to 40 ◦C after approximately 14 min from the beginning
of the experimental observations. Ambient temperature (Tamb) is 22 ◦C throughout
the experiment. The vertical broken lines in the figure indicate the earliest timewhere
the solidification front can be identified (to = 2.7 min) and the time when the motion
of the fluid stops (ts = 15.7 min).
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Fig. 3 Temperatures as functions of time. TC denotes the temperature at the upper wall, TH is
temperature at the lower wall, Tamb is ambient temperature and TH − TC is the temperature dif-
ference between the lower and upper horizontal walls. to and ts indicate respectively the onset of
solidification and the time when the liquid in the system becomes stagnant

Fig. 4 Velocity field in the liquid region of the cell and advancing solidification front for six
snapshots. The white zone on the upper part of the images is ice. a t = 2 min, Ra = 105; b t = 3.5
min, Ra = 6.9 × 104; c t = 6 min, Ra = 3.6 × 104; d t = 8 min, Ra = 1.9 × 104; e t = 10.5 min,
Ra = 9 × 103; f t = 17.1 min, Ra = 3.2 × 103
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A sequence of six representative snapshots that illustrate the dynamic behavior
of the convective flow observed inside the cell is shown in Fig. 4. The velocity field
obtainedwith the PIV technique is superposed to the liquid region to give quantitative
information on the convective pattern. The most important feature of the flow is
that the motion of the solidification front has the effect of modifying the aspect
ratio of the volume where the fluid moves and therefore it has a definite influence
on the dynamics and convective pattern. The dynamics of the convective flow is
conveniently described in terms of the Rayleigh number (Ra) defined as

Ra = gβΔT h3

αν
, (1)

where g is the acceleration of gravity, β, α and ν are respectively the coefficient of
thermal expansion, the thermal diffusivity and the kinematic viscosity of the liquid.
Since the thermal properties are functions of temperature,wehave considered average
values. The temperature difference between the upper and lowermost regions of the
fluid, which in our case coincide with the solidification front, and the lower wall
of the cell is ΔT . As shown in Fig. 2, the distance between the upper and lower
boundaries of the liquid region in the cell is denoted by h. Notice that this distance
reduces in time as the solidification front advances and, as was mentioned in the
first paragraph of this section, ΔT is also time dependent and therefore the Rayleigh
number is modified as the solidification progresses.

At the onset of the experiment,when the aspect ratio A = h/w=1, a single convec-
tive cell moving counterclockwise is observed. The average velocity is 0.66mm/s,
the Rayleigh number is Ra = 105 and the energy per unit mass of the system is
4.4 × 10−7 m2/s2. Then, the single cell evolves into two symmetric cells with fluid
descending in the central region and ascending near the vertical walls of the cell as
shown in Fig. 4b, at t = 3.5 min and A = 1 since no advance of the solidification
front can be noticed, Ra = 6.9 × 104. The average velocity is 0.73mm/s and the
energy is 5.3 × 10−7 m2/s2. In later stages, the two cell configuration persists (see
Fig. 4c, d), and then the patterns of convective motion in the cell becomes highly
irregular and undergo time dependent motions with time scales of the order of sec-
onds when the aspect ratio is in the range 0.6 < A < 0.5, as illustrated in Fig. 4e.
At approximately 15.7 min after the onset of the observation when the aspect ratio
A ∼ 0.45, the liquid motion stops and the solidification proceeds in a stagnant fluid
for the rest of the observation. The critical Rayleigh number when the convective
motion stops is Rac = 3.2 × 103.

The shape of the solidification front at different times is shown in Fig. 5. The
front grows slightly faster near the center but its curvature is small. This effect is
attributed to imperfect thermal insulation at the vertical walls of the cell. Observe
that this feature is consistent with the rotation direction of the double cells displayed
in Fig. 4b where the relatively hot fluid ascends near the vertical walls. It was found
that at the scale of the cell, the geometry of the front is stable in the sense that no
preferential growth positions along the solid front were detected; the whole front
moves approximately at the same speed toward the lower wall.
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Fig. 5 Profiles of the solidification front as a function of time. Starting at the uppermost profile
downwards, the position of the solidification fronts are captured at t= 6.1, 7.6, 9.2, 10.7, 12.3, 13.8,
15.4, 17.7 min

h h

Fig. 6 Normalized position of the solidification front h∗ and Rayleigh number based on the height
of the liquid region as functions of time. In the inset, the log-log plot of the solidification front
position as a function of time is given to establish the h∗ ∼ t1/2 relation for t > 15.7 min. The
vertical lines in the inset indicate the times corresponding to 3 and 15.7 min respectively

The time evolution of the position of the (normalized) solidification front h∗ =
1− h/h(t = 0) and the Rayleigh number Ra are shown in Fig. 6. The front starts
moving at t = 2.7 min (indicated in the graph with a vertical line) and reaches its
maximum value at t = 40 min. The Rayleigh number is a monotonously decreasing
function of time, but before the formation of the solidification front, the slope is
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smaller sinceΔT is decreasingbut the aspect ratio remains constant. Then, twoeffects
contribute to the reduction of the Rayleigh number, the characteristic distance h gets
smaller as time progresses and the temperature gradient is also smaller. The critical
Rayleigh number when the motion of the liquid stops is indicated with the second
vertical line. Although the solidification front is not a horizontal line as would be
required by a one-dimensional model, a simple one dimensional heat transfer balance
at the position where phase change takes place can be proposed, considering also that
the liquid is motionless. Upon assuming that the heat released at the solidification
front is conducted away by the solid phase, the velocity of the front is proportional to
the temperature difference at the front position and the temperature at the boundary
condition in the ice divided by the distance that separates them. i.e.

− k
T f − TC

y
= Lv f = −Ldy

dt
(2)

where k is the heat conductivity of ice, T f is the temperature at the solidification
front, the L is the enthalpy of phase change and y is the position of the front which is
a function of time. The previous expression can be integrated considering that y = 0
at t = 0. The result indicates that the position of the front is given by:

y(t) = Ct1/2 where C = L
k(T f − TC )

(3)

Even though the front is not a horizontal line but has a small curvature, the simple
model indicates the correct value of the exponent of time as compared with the
observation once the velocity of the liquid has become small enough at time t >

15.7 min. This feature is illustrated in the inset in Fig. 6. Although the motion of the
solidification front has a major influence on the dynamics of the convective motion,
under our experimental conditions, the motion of the fluid does not greatly modify
the shape of the liquid-solid interface.

The intensity of the motion of the liquid is obtained by calculating the L2 norm
of the flow defined by:

L2 = 1

Vo

∫
Vo

(u2 + v2)dVo, (4)

where Vo(t) is the volume occupied by the liquid and is a function of time. The
velocity components in the x and y directions are u and v respectively. Under the
approximation of constant density, L2 corresponds to twice the kinetic energy of
the system. As can be observed from Fig. 7, the convective motion starts when the
unstable temperature gradient is established in the cell and the velocity increases at
t= 3min due to the increase in the temperature gradient and the concurrent condition
of constant aspect ratio of the liquid volume (see Fig. 3). At approximately t= 3 min,
the solidification front starts moving downwards shortening the volume available to
the liquid and the kinetic energy of the system reduces monotonically until the fluid



Solidification in the Presence of Natural Convection in a Hele-Shaw Cell 383

Fig. 7 Red trace Kinetic energy of the flow L2 as a function of time. Blue trace Velocity of the
solidification front

becomes stagnant at t = 15.7 min. The velocity of the solidification front is also
shown in Fig. 7 to emphasize the different time scales of liquid and solid motions.

4 Discussion and Conclusions

Solidification in the presence of natural convection has been observed in a quasi two
dimensional system composed by water with spherical particles in suspension con-
fined to a Hele-Shaw cell. The experimental arrangement permits a full visualization
of the process both in the solid and the liquid regions. In the present experimen-
tal set up, the temperature boundary conditions on the upper and lower horizontal
walls are time dependent, but it is expected that the qualitative features of the results
observed are similar to those obtained in the time independent case. Our observations
indicate that the reduction of the region occupied by the liquid impacts greatly on
the convective pattern, but the shape of the solidification front is not much affected
by the convective motion. The presence of particle tracers may arguably modify the
dynamics of the solidification as comparedwith the a pure liquid (Peppin et al. 2007);
however, it is likely that this effect has its largest impact at a microscopic level and
not on the macroscopic scale which is the main objective of the present report.

Acknowledgments Guillermo Ramírez acknowledges support from CONACYT-Mexico through
MSc. and PhD. grants. Mr. Agustín Barrera built an early version of the convective cell.
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Confinement and Interaction Effects
on the Diffusion of Passive Particles

A. Gonzalez, E. Diaz Herrera, M. Sandoval, M.A. Chavez Rojo
and J.A. Moreno Razo

Abstract We use Molecular Dynamics simulations to study the effect of interac-
tions and confinement (walls) on particle diffusion. We extend previous studies by
analyzing the mean squared displacement (MSD) of an interacting fluid constrained
to a circular, square and triangular cavity of nanometric size. The interactions among
particles and walls are modeled by means of three classic potentials namely, Lenard-
Jones (CLJ), soft Lenard-Jones (SLJ) and hard Lenard-Jones (HLJ) potentials. For
hard spheres, for all cavities, and for very diluted densities, diffusion is shown to be
less favorable in comparison with particles interacting with a CLJ. It is also observed
that HLJ particles do not show difference in their MSD with SLJ particles at these
densities. Confinement effects also appear at these densities and it is shown that dif-
fusion decreases in the following cavity shape order: triangular, square and circular.
For moderated densities, the combination of confinement and interactions shows a
non-trivial effect. It is observed that particles inside a triangular cavity interacting by
means of HLJ, reduce their MSD in comparison with CLJ or SLJ particles, since for
this cavity shape, hard collisions reduce the particles’ speed. For higher densities,
another non-trivial effect appears. Once again, the combination of interactions and
confinement gives rise to order in the system that clearly reduces the system MSD.
It is also shown that order appears for SLJ particles but it is absent for CLJ or HLJ
particles.
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1 Introduction

Diffusion processes ofmolecules and particles are very common in nature. Breathing,
human metabolism, motion of viruses and bacteria, medical drug delivery, are only
some examples. The fundamental mechanism behind these processes was elucidated
for the first time in 1905 when a theoretical framework for difussion was proposed by
Einstein (1905). Since then, classical work concerning diffusion of non-interacting
particles includes the study of isotropic particles in the absence (Einstein 1905;
Chandrasekhar 1943; Batchelor 1977) and presence of external fields (Ferrari 1990;
Zagorodny and Holod 2000; Foister and Ven 1980; Jimenez-Aquino et al. 2008).
Additionally, anisotropic particles diffusing in the absence (Han et al. 2006; Hinch
and Leal 1972) and presence of external fields (Grima and Yaliraki 2007) have also
been considered. More recently, and based on the previous works, the impact of
thermal agitation on non-interacting active particles (driven by an assumed internal
mechanism) has received attention. For example, steadily-swimming self-propelled
bodies of simple shape, one sphere (Howse et al. 2007; Hagen et al. 2011; Sandoval
et al. 2014), multiple spheres (Lobaskin et al. 2008), or ellipsoids (Hagen et al. 2011)
have been studied.

Another interesting aspect about diffusive processes is the effect of confinement
on particle displacement. In nature and in many technological applications, parti-
cles (ions, molecules, photons) generally move under the presence of boundaries,
like through ionic channels (Alberts et al. 2007), membranes (Hille 2001), artificial
nanopores (Siwy et al. 2005; Healy et al. 2007) porus media (Daniel and Astruc
2004) and carbon nanotubes (Berezhkovskii and Hummer 2002). As it can be seen,
confinement is mainly due to physical walls (although hydrodynamic confinement is
also possible (Alar Ainla and Jesorka 2012)) hence the need of including wall effects
on particle diffusion. A theoretical framework that includes wall effects on particle
diffusion was achieved by Zwanzig (1992). Based on the idea that physical walls can
be seen as entropic potentials,and that effective diffusion coefficients depend on posi-
tion, he derived for the first time, a Smoluchowski equation for a confined particle.
By solving this equation, an effective analytical diffusion coefficient that includes
the influence of the walls can then be obtained. Recent work concerning confined,
non-interacting particles is given by Reguera and Rubi (2001), Reguera et al. (2006),
Kalinay and Percus (2005, 2008). Confined active non-interacting particles have also
been computationally studied (Ghosh et al. 2013). A theoretical analysis of active
non-interacting confined particles has just recently been developed ( Sandoval and
Dagdug 2014).

The latter works do not consider particle-particle interactions, hence in this
research we study confined particles where interactions among elements of the
system (particle-particle and wall-particle) are allowed. These interactions in their
own provide to the system richer thermodynamic properties (like phase transitions).
Moreover, the effect of confinement on the physical properties of geometrically con-
strained fluids is not yet well understood. It has been shown that confinement deviates
a traditional bulk fluid phase transition (Evans 1990; Klein and Kumacheva 1998;
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Heffelfinger et al. 1987), thus providing novel properties to that system. It also creates
layers near the walls hence affecting crystallization on the system (Alba-Simionesco
et al. 2006). Confinement also induces a non-uniform distribution of the particles’
density (Magda et al. 1985). As one can see, confinement may provide new char-
acteristics to constrained interacting systems, hence the necessity of studying them.
Recent theoretical and computational works studying the influence of confinement
on interacting fluids are given by Karbowniczek and Chrzanowska (2013), Das and
Singh (2013), Hartkamp et al. (2012).

In this research we use Molecular Dynamics simulations to study the effect of
interactions and confinement (walls) on particles diffusion.We extend previous stud-
ies by analyzing the mean squared displacement of an interacting fluid constrained
to a circular, square and triangular cavity. The interactions among particles and walls
are modeled by means of three classic interaction potentials namely, Lenard-Jones
(CLJ), soft Lenard-Jones (SLJ) and hard Lenard-Jones (HLJ) potentials, and whose
differences in the interaction they produce are also analyzed. This work is organized
as follows. In Sect. 2 we set up the problem and detailed information on the sim-
ulations is given. Section3 presents the obtained results, and finally we offer our
conclusions in Sect. 4.

2 Model

Consider a fluid made up of spherical interacting particles of mass m, diameter
σ, and confined in a two-dimensional closed cavity of three prototypical shapes
(circular, square and triangular, as shown in Fig. 1). Particle-particle and particle-
wall interactions are modeled via the Lennard-Jones potential. Thus we formally
solve for a set of coupled first order differential equations for the position ri and
momentum pi of the i-particle

σ

σ

σ

σ

σ

σ

(a) (b) (c)

Fig. 1 (Color online) Schematics of the three cavities studied. Note that the spherical particles
forming the walls and the fluid particles, have the same diameter σ for all cavities. a circular cavity;
b square cavity; c triangular cavity
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·
ri = ∂H

∂pi
= pi

m
, (1)

·
pi = −∂H

∂ri
= −∇Ui j = Fi , (2)

where the Hamiltonian of the system is given by H = (1/2m)
∑

pi · pi + Ui j ,

and Fi = −∇
(∑N

j �=i Ui j

)
is the force acting on particle i due to intermolecular

interactions, ∇ is the gradient operator, and the dot represents time derivative. Here
Ui j is the interaction potential defined as

Ui j (ri j ) = 4ε

[(
σ

ri j

)2n

− β

(
σ

ri j

)n
]

, (3)

where ri j represents the nearest separation between particle i and wall parti-
cle/particle j, σ is the diameter for both, the fluid particles and particles conforming
the wall, ε is the potential depth, n is a positive integer, and β = {0, 1}. To study the
interaction effects on particles diffusion, we consider three different potentials (see
Fig. 2), (a) the classic Lenard-Jones potential (CLJ), n = 6 and β = 1; (b) a soft
Lennard-Jones potential (SLJ), n = 6 and β = 0; and (c) a hard repulsive potential
(HLJ), n = 36 and β = 0. Note that to speed up the code, we consider Ui j = 0 for
ri j > rc where rc is a cut-off distance defined as rc = 3σ.

We confine the fluid with a wall made up of spherical particles fixed in space (see
Fig. 1) and interacting with the fluid particles by means of the interaction potential
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Fig. 2 (Color online) Schematics of the three potentials studied. a The classic Lenard-Jones poten-
tial (CLJ), n = 6 and β = 1; b a soft Lennard-Jones potential (SLJ), n = 6 and β = 0; and c a
hard repulsive potential (HLJ), n = 36 and β = 0. Here r∗ = r/σ is a reduced variable
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Table 1 Geometrical properties of the three cavities studied

Confinement Number of particles at the wall Relevant parameter (σ units)

Circle 200 Radius = 31.83

Square 228 Side = 57

Triangle 258 Side = 86

Table 2 Number of particles (density) inside the three cavities studied

ρ∗ Circular Square Triangular

0.1 318 324 320

0.25 795 812 800

0.5 1,521 1,624 1,601

0.75 2,387 2,436 2,401

Ui j . Confinement is built with a fixed number of spherical particles in such a way
that the order of magnitude for the cavities is around nanometers. Table1 shows
detailed geometrical properties of the three cavities studied in this work.

In our simulations we vary the number of particles inside the cavities (density
ρ), while keeping a reduced temperature T ∗ = kT/ε = 1, here k is the Boltzmann
constant. The reduced density ρ∗ = ρσ3 was varied from 0.1 to 0.75 at intervals of
0.25. A detailed description of the number of particles for each studied density is
shown in Table2.

For the integration of the governing equations (Eqs. 1 and 2) we use a Velocity-
Verlet scheme with a step size of Δt = 0.003 (20ns in the Argon scale). To start
the simulations, particles are randomly distributed. For high densities, overlapped
particles were relocated using a Monte Carlo algorithm. The simulations were per-
formed in a canonical ensemble using 3 × 106 integration steps and 6 × 106 steps
for the reported averages that characterize diffusion. To maintain thermodynamic
equilibrium a classic (Berendsen et al. 1984) thermostat was used. To speed up the
code a force decomposition MPI formalism plus neighbor list was used.

3 Results

In this section,we study the effect of confinement and interaction on particle diffusion
based onMolecularDynamics simulations. By focusing on three prototypical cavities
(triangular, square and circular) we simulate four scenarios (varying ρ∗ from 0.1 to
0.75 at intervals of 0.25) for each cavity, and for the three mentioned interaction
potentials. Figure3 shows three representative density scenarios (0.1, 0.5 and 0.75)
and we plot in each column, the mean-square displacement as a function of cavity
shape for the three analyzed potentials (CLJ, SLJ and HLJ). At low densities (ρ∗ =
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Fig. 3 (Color online) Confinement effect on the mean-square displacement (MSD). Rows shows
three representative densities (ρ∗ = 0.1, 0.5 and 0.75). Columns show the studied interaction
potentials, classic Lenard-Jones (CLJ), soft Lenard-Jones (SLJ) and hard repulsive potential (HLJ)

0.1, first row) and for long times, the MSD tend to a constant value since particles
have visited all the cavity area, therefore this plateau is a confinement effect. There
is also a small effect of the cavity shape on the MSD for all the interaction potentials.
We see that the magnitude of the MSD decreases in the following cavity shape
sequence: triangular, square and circular. This trend can be easily understood since
the maximum traveling distance (from the center of the cavity to its walls) occurs
inside a triangle, followed by a square and finally by a circle (see Table1 showing
the relevant parameters of the cavities).

For ρ∗ = 0.5, we can see a similar behavior between particles interacting with a
CLJ and aSLJ, however,we observe that particles interactingwith aHLJ and confined
in a triangular cavity, reduce their MSD. This case can be explained as follows. HLJ
originates hard collisions among particles, which reduce the speed of the spheres,
resulting in more free space inside the cavity and smaller MSD compared with the
SLJ. In the SLJ, collisions will not be so hard thus allowing to keep the speed of the
spheres high, resulting in less free space and higher MSD. This situation is visually
shown in Fig. 4 where particles inside a triangular shape and colliding by means of
a HLJ, produce more free space (see Fig. 4b) compared with particles interacting by
means of SLJ (see Fig. 4a). Note that for this density, the MSD has not yet reached
a constant value (see Fig. 3, second row).

For ρ∗ = 0.75we observe in general a reduction of the system diffusion compared
with the lower density cases due to a decrease of free space. The case ρ∗ = 0.75
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Fig. 4 (Color online) Particles inside a triangular cavity (ρ∗ = 0.5) interacting bymeans of different
potentials. a Particles interacting by means of a SLJ potential; b Particles interacting by means of
a HLJ potential. Note that HLJ particles produce more free space, see (b), compared with particles
interacting by means of a SLJ, see (a)

also shows an interesting effect due to an interplay among confinement and particle
interaction. We notice that order appears for particles interacting with a SLJ and for
all the three cavity shapes. This order reduces the MSD compared with the MSD of
systems at the same density but subject to CLJ or HLJ (see Fig. 3, third row, second
column). Figure3 also shows that order appears as the strength of the interaction
potential grows, however this order slowly disappears as the strength of Ui j is still
growing (that is, if we make 2n = 36, 40 and so on). Note for example that the
HLJ potential at this density does not show order, hence its MSD increases again.
The appearance of order is visually shown in Fig. 5 where one can see that order has
emerged in the left triangular cavity interacting by means of a SLJ (see Fig. 5a). In
contrast, the right triangular cavity does not show order thus allowing the particles
to have more freedom and hence a higher MSD.

Figure6 shows once again three representative density scenarios (0.1, 0.5 and
0.75). This time, each column shows the mean-square displacement for the same

Fig. 5 (Color online) Particles inside a triangular cavity (ρ∗ = 0.75) interacting by means of
different potentials. a Particles interacting by means of a SLJ potential; b Particles interacting by
means of a HLJ potential. Order has emerged in the left triangular cavity interacting by means of a
SLJ, see (a)
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cavity shape but for the three analyzed potentials (CLJ, SLJ and HLJ). As already
discussed, the triangular cavity has the longest available distance, that for a very
diluted system generates the highest MSD for all the interaction potentials studied
(see Fig. 6, first row). For ρ∗ = 0.75 we see that the MSD for CLJ particles is
slightly higher than the MSD for HLJ particles for all cavities. A system made of
hard spheres has also repulsion at the walls, so that the particles stay away from the
walls and migrate to the center, with their impacts generating a high pressure that
reduce diffusion. In contrast, CLJ has attraction and therefore particles attach to the
walls originating free space at the center of the cavity and hence increasing diffusion.

The case of SLJ with aMSD even smaller than CLJ and HLJ (Fig. 6, third row, for
all shapes) can be understood easily since for this case the system presents order thus
decreasing its MSD. When order appears the argument of hard collisions decreasing
the speed of spheres (case ρ∗ = 0.5) is not longer valid since the system is not
liquid-like, but rather crystal-like and hence entropy plays an important role. The
effect of confinement for an ordered system, as in the case of particles interacting by
means of a SLJ potential, can be seen in the third row of Fig. 6. Here, as one moves
to the right, the MSD decreases in the following shape sequence: circular, square
and triangular. This is a plausible result since geometrically and for high densities,
the triangular cavity constrains more the particles. Note that for a diluted system the
cavity shape effect on theMSD has the opposite sequence, that is, theMSD decreases
in the following shape sequence: triangular, square and circular, since the longest
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Fig. 6 (Color online) Interaction effects on the mean-square displacement (MSD). Rows shows
three representative densities (ρ∗ = 0.1, 0.5 and 0.75). Columns show the studied cavity shapes
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available distance (from the center of the cavity to its walls) for particles, is in the
triangular cavity.

4 Conclusions

In this work we have studied the behavior of confined particles (inside circular,
square and triangular cavities) interacting by means of three different potentials
namely, Lenard-Jones (CLJ), soft Lenard-Jones (SLJ) and hard Lenard-Jones (HLJ)
potentials. We showed that diffusion is strongly affected when particles are confined
inside nanometric cavities. In this work, we varied the number of particles inside the
cavity (density) while keeping a reduced temperature T ∗ = 1, and studied particle
displacement by usingMolecular dynamics simulations in a canonical ensemble.We
showed that for low densities (ρ∗ = 0.1) diffusion for all fluids is similar, and that the
highest MSD occurs for a triangular cavity since the longest available distance (from
the center of the cavity to its boundaries) occurs in the triangular cavity. It is also found
that the highest MSD occurs for particles with attractive interactions (CLJ). The first
relevant result in this work occurs for moderated densities (ρ∗ = 0.5). Here, HLJ
particles confined in a triangular cavity, strongly reduce theirMSDdue to the absence
of spatial order, resulting in a low particle speed. This effect should be investigated in
detail in a future work. We also observe that fluids with attractive interactions (CLJ)
and with week repulsion (SLJ) possess similar diffusivities inside all the cavities.
Finally, the second relevant result is obtained at high densities (ρ∗ = 0.75) where
fluids with week repulsion (SLJ) and for all the cavity shapes, show the lowest MSD.
This is a surprising result that can be explained due to the appearance of spatial
order that particles show inside all the cavities. We conclude by pointing out that
the appearance of order in our system shows how the interplay of confinement and
interaction may produce non-trivial behavior in geometrically constrained fluids.
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Thermal Convection in a Cylindrical
Enclosure with Wavy Sidewall

F.A. Sánchez Cruz, S. Martínez Martínez, H.G. Ramírez Hernández
and S. Méndez Díaz

Abstract An axisymmetric convection flow within a vertical cylindrical enclosure
with adiabatic wavy sidewall was studied. Two important cases of thermal con-
vection were considered, heating from below and heating from the top, while the
wavy sidewall is adiabatic. An analytical coordinate transformation was used to
obtain a coordinate frame for computation in which the irregular domain fits into a
square. Non-dimensional parameters which include the cavity aspect ratio, dimen-
sionless wavelength, dimensionless amplitude, constant Prandtl number equal to 7,
and Rayleigh numbers between 103 and 106, were used to characterize the convec-
tion heat transfer through the cavity. Computational solutions showed that the wavy
wall promotes thermal stratification and low velocity multiple cells patterns. The
effect of the wavy wall was found to restrict the convection fluid flow which yields
low heat transfer through the cavity.

1 Introduction

Thermal convection heat transfer in enclosures has received considerable attention
due to the relevance of the phenomena occurring in many engineering applications
such as cooling of electronic equipment, solidification processes, buildings design,
solar collectors and cooling chambers. Moreover, heat and mass transfer in enclo-
sures are natural common processes found in science fields as geophysics and met-
allurgy. Many real cavities are irregular shaped and the fluid flow and heat transfer
show complicated behaviors, nevertheless, typical analysis are focused on character-
izing enclosures with regular shapes; hexahedral, cylindrical and spherical cavities
being the most studied geometries. Roughness and waviness of walls are parame-
ters scarcely considered when studying transport phenomena in enclosures. Since
the shear stress and heat flux on the walls define the hydrodynamics and heat trans-
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fer in enclosures, the inclusion of waviness parameters of walls, as amplitude and
wavelength, could become important to model realistic conditions.

In recent years, studies of external natural convection from wavy walls have
been investigated to analyze waviness parameters on heat transfer and fluid flow.
Ashjaee et al. (2007) studied the natural convection heat transfer from a constant
temperature wavy wall and computed local heat transfer coefficients using theMach-
Zehner interferometer. Experimental measurements were carried out for amplitude-
wavelength ratios of 0.05, 0.1 and 0.2, and Rayleigh numbers from 2.9×105 to 5.8×
105. Numerical results from a finite-volume based code were successfully compared
with experimental measurements. The average heat transfer coefficient decreases
as the amplitude-wavelength ratio increases. Additionally, experimental data were
fitted to a single equation which gives the local Nusselt number along the wavy
surface as function of the amplitude-wavelength ratio and the Rayleigh number. A
thermal convection from a more complex wavy surface is found when a combination
of two sinusoidal functions occurs, a fundamental wave and its first harmonic (Molla
et al. 2007). Using transformed coordinates on the boundary layer equations yields
a mapped regular and stationary computational domain to evaluate the wavy wall
effect. The additional harmonic alters the flow field and temperature distribution
near the vertical wavy surface. Prescribed heat flux along wavy surfaces have been
investigated solving the boundary layer equations for unconfined flows (Tashtoush
and Abu-Irshaid 2001). According to the specific amplitude and wave length a point
of separation appears restricting the solution. Additionally, the wavelength of the
local Nusselt number and surface temperature variation were found to be equal to
those of the wavy surface. On the other hand, the wavelength of the average Nusselt
number was a half of that on the wavy surface.

Wavy surfaces are also frequently involved with mass transfer. Effects of com-
bined buoyancy forces due to concentration and thermal gradients from a vertical
wavy surface have been analyzed for unconfined flows focusing on the evolution
of the surface shear stress, the heat transfer, and surface concentration gradient
(Hossain and Rees 1999). Wide ranges of the governing parameters have been con-
sidered such as Schmidt numbers ranging from 7 to 1,500, amplitude of the waviness
from0 to 0.4, and the buoyancy parameter ranging from0 to 1. Thewavywall reduces
the heat transfer, concentration gradient and shear stress. The effect of the inclination
angle has been studied for laminar thermal convection from a constant temperature
wavy wall in a square cavity (Dalal and Das 2004). For the case of a square cavity
differentially heated through a hot wavy wall, the mean Nusselt is lower than that
corresponding to the flat wall square cavity (Adjlout 2001). Turbulence improves the
convection heat transfer on the wavy wall surface compared to the case of a square
cavity with high Rayleigh numbers, and different from laminar flow, the presence of
the wavy wall increases the local Nusselt number (Aounallah et al. 2006). Previous
analysis regarding transport phenomena from wavy walls include the steady flow
and solute uptake in a wavy-walled channel (Woollard et al. 2008) and the effect of
variable viscosity and variable thermal conductivity on the magneto-hydrodynamics
and the resulting local skin friction, and local Nusselt and Sherwood numbers
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(Elgazery andAbd 2009). Frequently, natural processes involve transport phenomena
from wavy walls through porous media in both, confined and unconfined flows.

For combined heat and mass transfer processes by natural convection along a
vertical wavy surface in a fluid saturated porous enclosure, thermal and mass strati-
fications diminish the Nusselt and Sherwood numbers. Rathish-Kumar and Murthy
(2010) analyzed the Soret and Dufour effects to estimate the combined heat and
mass transfer processes by natural convection from a wavy vertical surface in a
fluid-saturated semi-infinite porous medium. Numerical solutions have been devel-
oped to study natural convection inside an inclined wavy cavity filled with a porous
medium (Misirlioglu et al. 1999). The fluid flow and thermal structures were found
to be highly dependent on the surface waviness when the inclination angle is lower
than 45◦, specially for high Rayleigh numbers. Rostami (1999) studied the two-
dimensional transient heat transfer and fluid flow in a laterally heated enclosure with
vertical wavy walls, while the horizontal ones were flat and adiabatic. Dalal and
Das (2006) studied the natural convection inside a two-dimensional cavity with a
wavy vertical wall. The enclosure was heated through the bottom wall by varying
the temperature spatially, while the other three walls were kept at constant temper-
ature. Local and average Nusselt numbers were computed for both conduction- and
convection-dominated regimes.

Transport phenomena in cylindrical enclosures result of practical interest. Nev-
ertheless, the effect of a wavy-side wall on thermal convection is not reported in
literature. The present study considers an axisymmetric flow inside a vertical cylin-
drical enclosure with adiabatic wavy sidewall. Two important cases are studied,
heating from below and heating from the top. Under such conditions the adiabatic
wavy sidewall affects the transport phenomena giving rise to different convection
patterns which modify the heat transfer rate even for conditions where convection
dominates.

2 Problem Statement

Consider the thermal convection within the cylindrical enclosure shown in Fig. 1a.
The top and bottom walls are kept at constant temperature T1 and T2, respectively,
while the wavy sidewall is thermally insulated. The cylinder has an average radius R
and height L , the wavywall generatrix curve is a sinusoidal functionwithwavelength
λ and amplitude a, see the Fig. 1b. The enclosure is filled with a Newtonian fluid and
the properties are assumed to be constant except the density for which the Boussi-
nesq approximation is applied. The temperature difference between the bottom and
top walls, T2 − T1, is either positive or negative and the gravity acts parallel to the
cylindrical axis.
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Fig. 1 a Physical model, b coordinates and boundary conditions

3 Mathematical Formulation

The problem can be solved as an axisymmetric flow using cylindrical coordinates.
The axial direction z∗ coincides with the axis of the cylinder and the wavy sidewall
is located at r∗ = R + a cos(2π z∗/λ). The continuity and steady-state momentum
and energy equations are respectively:
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subject to the following boundary conditions:

v∗
r = v∗

z = 0, T = T2 at z∗ = 0, 0 ≤ r∗ ≤ R + a, (5)

v∗
r = v∗

z = 0, T = T1 at z∗ = L , 0 ≤ r∗ ≤ R + a, (6)
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v∗
r = ∂v∗

z

∂r∗ = ∂T

∂r∗ = 0 at r∗ = 0, 0 ≤ z∗ ≤ L , (7)

v∗
n = v∗

t = ∂T

∂n∗ = 0 at r∗ = R + a cos(2π z∗/λ), 0 ≤ z∗ ≤ L , (8)

where ∗ indicates dimensional variables, r and z are the radial and axial coordinates,
vr and vz are the radial and axial components of velocity, respectively,ρ is the density,
P is the modified pressure accounting for the hydrostatic effect, ν is viscosity, g is
the acceleration of gravity, β is the thermal expansion coefficient, α is the thermal
diffusivity, Tm = (T1 + T2)/2 is the mean temperature, vn and vt are the normal and
tangential velocity components to the wavy sidewall, i.e. vn = v · n and vt = v · t ,
where n and t are normal and tangential unit vectors to the wavy wall.

A scale analysis suggests the following dimensionless variables:

z = z∗/L; r = r∗/R; vz = R2v∗
z /νL; vr = Rv∗

r /ν; (9)

ε = R/L;Λ = λ/L; θ = (T ∗ − Tm)/(TH − Tm);

where ε is the aspect ratio,Λ is the dimensionless wavelength, θ is the dimensionless
temperature, and TH is the higher temperature between T1 and T2.

The explicit dependence of momentum equations on pressure is dropped and the
dimensionless stream function ψ(r, z) = ψ∗/μL is introduced as
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= rvz, (10)
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The resulting motion equation is
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and the energy equation is as follows
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+ Q

∂2θ
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= 0, (13)

where coefficients A–Q are given in Table 1 of the Appendix. The Rayleigh and
Prandtl numbers are defined as Ra = gβ(TH − Tm)L3/να and Pr = ν/α, respec-
tively.

An analytical coordinate transformation was used to obtain a coordinate frame for
computation in which the irregular domain fits into a square. The new dependent and
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independent variables were analytically introduced to transform the mathematical
representation of the conservation principles before the equations were discretized.

The suitable transformation states

ξ = z, (14)

η = r

1 + Γ cos
(
2πξ
Λ

) , (15)

where Γ = a/R is the dimensionless wave amplitude. Once the coordinate trans-
formation was applied, Eqs. 12 and 13 become
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subject to the following boundary conditions

ψ = ∂ψ

∂ξ
= 0, θ = θ2 at ξ = 0, 0 ≤ η ≤ 1; (18)

ψ = ∂ψ

∂ξ
= 0, θ = θ1 at ξ = 1, 0 ≤ η ≤ 1; (19)
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= ∂θ

∂n
= 0 at η = 1, 0 ≤ ξ ≤ 1; (21)

again, coefficients b–t are given in Table 2 of the Appendix, while the coefficients
A and B are given in Table 3. Equations16 and 17 were discretized using finite
differences. The resulting square domain was meshed with 110 × 110 nodes. A
computational code was programmed using the Fortran 95 language to solve the
algebraic equations applying the LU inversion matrix algorithm. Since the motion
equation is a fourth order non-linear differential equation an iterative scheme was
employed. Themotion equation was found to need around ten iterations to generate a
total residual of order 10−9,whichwas the selected criterion to consider the numerical
solution convergence. The stream function solution was then applied to the energy
equation to compute the temperature distribution. Five iterations were done between
the energy and motion equations to generate a grand total residual of order 10−9.

The total heat transfer through the horizontal walls is
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qw = −2πk
∫ R+a

0
r∗

[
∂T

∂z∗

]
z∗=0,L

dr∗. (22)

If hav is the average convection heat transfer coefficient on the horizontal walls,
then the average Nusselt number, Nuav = hav L/k, is computed as

Nuav = −2
∫ 1

0
η

[
∂θ

∂ξ

]
ξ=0,1

dη. (23)

4 Results and Discussion

There are two possible cases for the natural convection here studied, the cylindrical
enclosure heated frombelow, and the casewhere the cavity is heated from the top. For
both cases the wavy wall is assumed to be adiabatic. The dimensionless parameters
were varied in order to evaluate their effect on the thermal convection. The studied
parameters were, for the aspect ratio ε = 0.1, 0.3, 0.5; dimensionless wavelength
Λ = 1/10, 1/5, 1/3; dimensionless amplitudeΓ = 0.05, 0.1, 0.3; Rayleigh number
from 103 to 106, and constant Prandtl number, Pr = 7.

4.1 Enclosure Heated from Below

Figure2 shows the dimensionless temperature and stream function for Rayleigh
numbers from 103 to 106. The dimensionless temperature θ = 0 corresponds to
the average temperature Tm . When the Rayleigh number is of order 103, the stream
function shows multiple convection cells near the wavy wall. Moreover, the cavity
presents a stratified temperature distribution which yields low velocity convection
cells. When the Rayleigh number is Ra = 104, the fluid flow is little intensified
according to the stream function values, which increase around one order of magni-
tude, nevertheless, the velocity is relatively low and the thermal stratification persists.
For a Rayleigh number of 105 the flow presents two convection cells, the lower cell
with a clockwise rotation. Such a flow removes thermal stratification, increasing the
temperature gradient near the upper and lower walls. For a Rayleigh number of 106

the flow shows two convection cells, the upper one flowing faster than the lower one,
as shown by the streamlines in Fig. 2d. Moreover, the temperature distribution for
Ra = 106 presents intense temperature gradients near the upper and lower walls.

The dimensionless wavelength of the wavy wall modifies considerably the con-
vection flow and the heat transfer process, particularly for high Rayleigh numbers.
Figure3 shows that there is an almost stagnant thermally stratified core and multiple
convection cells near the wavy wall when the dimensionless wavelength is small.
On the other hand, there are two convection cells with no thermal stratification when
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Fig. 2 Isotherms and stream
function for the enclosure
heated from below and
ε = 0.3, Γ = 0.1 and
Λ = 1/5. a Ra = 103,
Δψ = 2.8 × 10−6.
b Ra = 104,
Δψ = 8.6 × 10−6.
c Ra = 105,
Δψ = 9.1 × 10−3.
d Ra = 106,
Δψ = 8.5 × 10−2

Fig. 3 Isotherms and stream
function for the enclosure
heated from below,
Ra = 105, Γ = 0.1 and
ε = 0.3. a Λ = 1/10,
Δψ = 7.4 × 10−6.
b Λ = 1/3,
Δψ = 1.1 × 10−2

the dimensionless wavelength is large. The effect of Λ on the flow velocity may be
estimated by the increments of the stream function values, Δψ , corresponding to
each figure. The heat transfer through the cavity is also strongly dependent on the
dimensionless wavelength for high Rayleigh numbers. Figure4 presents the aver-
age Nusselt number on the heating surface as a function of the Rayleigh number
for Λ = 1/10, 1/5, 1/3, aspect ratio ε = 0.3, and dimensionless wave amplitude
Γ = 0.1. For Rayleigh numbers lower than 104, the heat transfer is mainly due to
conduction and the average Nusselt number is 1.74. Above Ra = 104 the average
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Fig. 4 Average Nusselt
number for the enclosure
heated from below, Γ = 0.1
and ε = 0.3

Fig. 5 Isotherms and stream
function for the enclosure
heated from below,
Ra = 105, Λ = 1/5 and
ε = 0.3. a Γ = 0.3,
Δψ = 8.7 × 10−5.
b Γ = 0.05,
Δψ = 9.2 × 10−3

Nusselt number increases with Λ, and when Ra is of order 105 the heat transfer
changes considerably, as shown in Fig. 4.

The dimensionless wave amplitude also defines the features of the convection
cells and temperature distribution (see Fig. 5). Large wave amplitude causes the
multiple cells pattern to induce slow motion in the whole cavity. Such a multiple cell
convection pattern is associated to thermal stratification. On the other hand, when
the wave amplitude is small there are two large convection cells and no thermal
stratification exists. When the wave amplitude increases the average Nusselt number
diminishes because of the thermal stratification and the resulting slow flow (Fig. 5a).
For small wave amplitude the heat transfer increases due to the transport by two
large convection cells (see Fig. 5b). Even for small Rayleigh numbers the effect of
the wave amplitude on the averageNusselt number is notable, as can be seen in Fig. 6.
The wave amplitude effect on heat transfer becomes more important as the Rayleigh
number increases because convection dominates and the wall geometry defines the
shape and velocity of the convection cells.

The cavity aspect ratio is a primary parameter for the convection patterns as shown
in Fig. 7. If the cavity is tall, i.e. ε is small, a multiple convection cell pattern and a
stratified temperature distribution hold along the whole cavity. If the cavity is short,
two convection cells and no thermal stratification are present. Moreover, there exist
thermal boundary layers near the upper and lower walls, while the fluid flow close



404 F.A. Sánchez Cruz et al.

Fig. 6 Average Nusselt
number for the enclosure
heated from below, Λ = 1/5
and ε = 0.3

Fig. 7 Isotherms and stream
function for the enclosure
heated from below,
Ra = 105, Λ = 1/5 and
Γ = 0.1. a ε = 0.1 and
Δψ = 4 × 10−6. b ε = 0.5
and Δψ = 3.3 × 10−2

Fig. 8 Average Nusselt
number for the enclosure
heated from below and
different values of ε. For this
case Λ = 1/5 and Γ = 0.1

to the wavy wall is negligible. The increment of the stream function values Δψ in
Fig. 7b shows a very low velocity for the multiple convection cells pattern. This last
observation is also verified in Fig. 8, where the Nusselt number remains constant for
103 ≤ Ra ≤ 106 and ε = 0.1, revealing the diffusion transport dominates the heat
transfer process. As ε augments the heat transport increases considerable even for
Rayleigh numbers of order 103. However, such a notable effect diminishes for large
Rayleigh numbers, i.e. when convection dominates heat transfer.
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Fig. 9 Isotherms and stream
function for the enclosure
heated from the top and
ε = 0.3, Γ = 0.1 and
Λ = 1/5. a Ra = 103,
Δψ = 8.8 × 10−7.
b Ra = 104,
Δψ = 8.6 × 10−6.
c Ra = 105,
Δψ = 1.1 × 10−2.
d Ra = 106,
Δψ = 7.3 × 10−2

4.2 Enclosure Heated from the Top

The second case studied considers that the cavity is heated from the top, cooled
from below, while the lateral wavy wall is adiabatic. Dimensionless temperature
and stream function distributions for Rayleigh numbers between 103 and 106 are
shown in Fig. 9. The stream function shows multiple convection cells near the wavy
wall when the Rayleigh number is of order 103. The cavity presents a stratified
temperature distribution due to a weak convective transport. When the Rayleigh
number increases around 104, the thermal stratification persists, while the fluid flow
intensifies, according to the stream function values which increase at least one order
of magnitude. For Ra = 105 the flow presents two convection cells, the lower
cell with a clockwise rotation, and thermal distribution with notable temperature
gradients near the upper and lower walls. Those temperature gradients become even
more intensive for Ra = 106, when heat transfer is dominated by the two convection
cells.

Figure10 shows that the convection flow and the heat transfer are notably affected
by the dimensionless wavelength, Λ, particularly for high Rayleigh numbers. When
Λ is small there exists an almost stagnant thermally stratified core with multiple low
velocity convection cells near the wavy wall. On the other hand, if Λ is large, there
are two convection cells with no thermal stratification. Convection cells and ther-
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Fig. 10 Isotherms and
stream function for the
enclosure heated from the
top, Ra = 105, Γ = 0.1 and
ε = 0.3. a Λ = 1/10,
Δψ = 7.1 × 10−6.
b Λ = 1/3,
Δψ = 9.2 × 10−3

Fig. 11 Average Nusselt
number for the enclosure
heated from the top, Γ = 0.1
and ε = 0.3

mal distribution become sensitive to the wall geometry, specially for high Rayleigh
numbers. Figure11 presents the average Nusselt number as function of Ra when
ε = 0.3, Γ = 0.1 and Λ = 1/10, 1/5, 1/3. When the Rayleigh number is lower
than 104 the heat transfer is dominated by conduction and the average Nusselt num-
ber is approximately 1 (see Fig. 11). Above Ra = 104 the average Nusselt number
increases withΛ, particularly when Ra is over 105. Additionally, whenΛ is large its
specific value does not change the convection heat transfer because large Λ yields a
two cell flow pattern.

A comparison between Fig. 12a, b reveals that the increment of the wave ampli-
tude causes a decrement of the convection velocity, according to the values of Δψ

corresponding to each condition. Therefore, if the wave amplitude increases the aver-
age Nusselt number diminishes because of the thermal stratification and the resulting
slowflow.On the other hand, for small wave amplitude the heat transfer increases due
to the transport by two large convection cells (see Fig. 13). Even for small Rayleigh
numbers the effect of the wave amplitude on the average Nusselt number is notable
and becomes even more important as the Rayleigh number increases. Indeed, the
wave amplitude restricts the convection heat transfer.

Figure14 shows amultiple convection cell patternwhich is thermally stratified and
stands along the whole cavity when the cavity is tall. Contrarily, when the cavity is
short there are two convection cells with negligible fluid flow near the wavy wall and
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Fig. 12 Isotherms and
stream function for the
enclosure heated from the
top, Ra = 105, Λ = 1/5 and
ε = 0.3. a Γ = 0.3,
Δψ = 8.1 × 10−5.
b Γ = 0.05,
Δψ = 1.5 × 10−2

Fig. 13 Average Nusselt
number for the enclosure
heated from the top,
Λ = 1/5 and ε = 0.3

Fig. 14 Isotherms and
stream function for the
enclosure heated from the
top, Ra = 105, Λ = 1/5 and
Γ = 0.1. a ε = 0.1 and
Δψ = 5.1× 10−6. b ε = 0.5
and Δψ = 3.3 × 10−2

no thermal stratification is present, instead, there exist thermal boundary layers near
the upper and lower walls. Comparing the values of Δψ in Fig. 14a, b it is clear that
the multiple convection cells pattern flows very slowly. The remarkable difference
between the heat transfer capabilities of those flows shown in Fig. 14 is also corrob-
orated in Fig. 15, where the Nusselt number remains constant for 103 ≤ Ra ≤ 106

and ε = 0.1, i.e. the diffusion transport dominates the heat transfer process. As
ε augments the heat transfer increases considerable even for Rayleigh numbers of
order 103, however, the effect of ε losses relevance for large Rayleigh numbers.
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Fig. 15 Average Nusselt
number for the enclosure
heated from the top and
different values of ε. For this
case Λ = 1/5 and Γ = 0.1

5 Conclusions

An axisymmetric convection flow occurring within a vertical cylindrical enclosure
with adiabaticwavy sidewallwas studied. Thermal convection of two important cases
were considered, heating from below and heating from the top, while the wavy side-
wall is adiabatic. Different convection patterns arise which modify the heat transfer
rate even for conditions where diffusion dominates. An analytical coordinate trans-
formation was used to solve the axisymmetric problem which allowed to obtain a
coordinate frame for computation in which the irregular domain fits into a square.
Thermally stratifiedflowwithmultiple convection cells near thewavywall arisewhen
the Rayleigh number is of order 103. If the Rayleigh number increases the thermal
stratification remains while the fluid flow intensifies. When the Rayleigh number
increases even more, the flow presents two convection cells with notable tempera-
ture gradients near the upper and lower walls. For low values of the dimensionless
wavelength there exists an almost stagnant thermally stratified core with multiple
convection cells near the wavy wall. On the other hand, if the dimensionless wave-
length is large, there are two convection cells with no thermal stratification, which
resembles the well-known convection patterns corresponding to vertical cylindrical
enclosures (Martynenko and Khramtsov 2005). Foregoing results demonstrate that
the wave amplitude restricts the convection heat transfer. Tall cavities are related to
thermal stratification with low heat transfer and there exists a remarkable difference
between the heat transfer capabilities corresponding to short and tall cavities. The
remarkable finding is that the wavy wall promotes thermal stratification and multiple
cells patterns of low velocity, restricting the convection fluid flow which yields low
heat transfer through the cavity.

Acknowledgments Authors would like to thank financial support from PAICyT-UANL through
the Project IT 647-11.
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Appendix: Coefficients and Parameters

Table 1 Coefficients of Eqs. 12 and 13

Name Coefficient Name Coefficient

A − 1
r I

2ε2

r3
∂ψ
∂z

B
2
r2

− 1
r2

∂ψ
∂z J

ε2

r2
∂ψ
∂r

C
3
r3

∂ψ
∂z − 3

r3
K − ε4

r

D − 3
r4

∂ψ
∂z + 3

r4
L

Raε4

Pr

E − 2ε2
r N

Pr
r

∂ψ
∂r

F − ε2

r2
∂ψ
∂z + 2ε2

r2
O − 1

r

(
Pr ∂ψ

∂z + 1
)

G
1
r2

∂ψ
∂r P −1

H − 1
r3

∂ψ
∂r Q −ε2

Table 2 Coefficients of Eqs. 16 and 17

Name Coefficient

b I

c J

d K

e F
2ΩΓ sin(Ωξ)

γ 2 + H

γ
+ I

2ηΓ Ω sin(Ωξ)
γ

+ J

[
3ηΓ Ω2 cos(Ωξ)

γ
+ 6ηΓ 2Ω2 sin2(Ωξ)

γ 2

]

+K

[−4ηΓ Ω3 sin(Ωξ)
γ

+ 24ηΓ 2Ω3 cos(Ωξ) sin(Ωξ)

γ 2 + 24ηΓ 3Ω3 sin3(Ωξ)

γ 3

]

f F

γ
+ J

3ηΓ Ω sin(Ωξ)
γ

+ K

[
6ηΓ Ω2 cos(Ωξ)

γ
+ 12ηΓ 2Ω2 sin2(Ωξ)

γ 2

]

g K
4ηΓ Ω sin(Ωξ)

γ

h E
4Γ Ω sin(Ωξ)

γ 3 + F
2ηΓ Ω sin(Ωξ)

γ 2 + G

γ 2 + J
3η2Γ 2Ω2 sin2(Ωξ)

γ 2

+K

[
12η2Γ 2Ω3 sin(Ωξ) cos(Ωξ)

γ 2 + 24η2Γ 3Ω3 sin3(Ωξ)

γ 3

]

i E
2ηΓ Ω sin(Ωξ)

γ 3 + K
4η3Γ 3Ω3 sin3(Ωξ)

γ 3

j E

γ 2 + K
6η2Γ 2Ω2 sin2(Ωξ)

γ 2

k
D

γ
+ F

[
Γ Ω2 cos(Ωξ)

γ 2 + 2Γ 2Ω2 sin2(Ωξ)

γ 3

]
+ H

Γ Ω sin(Ωξ)

γ 2

+ I

[
ηΓ Ω2 cos(Ωξ)

γ
+ 2ηΓ 2Ω2 sin2(Ωξ)

γ 2

]

+ J

[−ηΓ Ω3 sin (Ωξ)
γ

+ 6ηΓ 3Ω3 sin3(Ωξ)

γ 3 + 6ηΓ 2Ω3 cos(Ωξ) sin(Ωξ)

γ 2

]

+K

[−ηΓ Ω4 cos(Ωξ)
γ

− 8ηΓ 2Ω4 sin2(Ωξ)

γ 2 + 36ηΓ 3Ω4 sin2(Ωξ) cos(Ωξ)

γ 3

]

+K

[
24ηΓ 4Ω4 sin4(Ωξ)

γ 4 + 6ηΓ 2Ω4 cos2(Ωξ)

γ 2

]

(continued)
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Table 2 (continued)

Name Coefficient

l
C

γ 2 + E

[
6Γ 2Ω2 sin2(Ωξ)

γ 4 + 2Γ Ω2 cos(Ωξ)

γ 3

]
+ F

[
ηΓ Ω2 cos(Ωξ)

γ 2 + 4ηΓ 2Ω2 sin2(Ωξ)

γ 3

]

+G
2ΩΓ sin(Ωξ)

γ 3 + H
ηΓ Ω sin(Ωξ)

γ 2 + I
η2Γ 2Ω2 sin2(Ωξ)

γ 2

+ J

[
6η2Γ 3Ω3 sin3(Ωξ)

γ 3 + 3η2Γ 2Ω3 sin(Ωξ) cos(Ωξ)

γ 2

]

+K

[
3η2Γ 2Ω4 cos2(Ωξ)

γ 2 − 4η2Γ 2Ω4 sin2(Ωξ)

γ 2

]

+K

[
36η2Γ 3Ω4 sin2(Ωξ) cos(Ωξ)

γ 3 + 36η2Γ 4Ω4 sin4(Ωξ)

γ 4

]

m B

γ 3 + E

[
ηΓ Ω2 cos(Ωξ)

γ 3 + 6ηΓ 2Ω2 sin2(Ωξ)

γ 4

]
+ F

η2Γ 2Ω2 sin2(Ωξ)

γ 3

+G
ηΓ Ω sin(Ωξ)

γ 3 + J
η3Γ 3Ω3 sin3(Ωξ)

γ 3

+K

[
6η3Γ 3Ω4 sin2(Ωξ) cos(Ωξ)

γ 3 + 12η3Γ 4Ω4 sin4(Ωξ)

γ 4

]

n A

γ 4 + E
η2Γ 2Ω2 sin2(Ωξ)

γ 4 + K
η4Γ 4Ω4 sin4(Ωξ)

γ 4

o N

p Q

q Q
2ηΓ Ω sin(Ωξ)

γ

p N
ηΩΓ sin(Ωξ)

γ
+ O

γ
+ Q

[
ηΓ Ω2 cos(Ωξ)

γ
+ 2ηΓ 2Ω2 sin2(Ωξ)

γ 2

]

Table 3 Coefficients of the
boundary condition in Eq.21

Name Coefficient

A′′ ηΓ 2 ε2Ω2 sin2(Ωξ)+1
γ

B ′′ Γ ε2Ω sin(Ωξ)

where
Ω = 2π/Λ and γ = 1 + Γ cos (Ωξ) .
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Numerical Simulation of the Flow Past
a Pair of Magnetic Obstacles

J. Román, A. Beltrán and S. Cuevas

Abstract We present a quasi-two-dimensional numerical simulation of the flow of
a thin layer of electrolyte past a pair of localized Lorentz forces, named magnetic
obstacles, placed side by side. Opposing Lorentz forces are produced by the interac-
tion of the magnetic field created by a pair of small permanent magnets and a D.C.
current applied tranversally to the main flow. By varying the separation between the
magnets and the intensity of the applied current, different flow regimes are analyzed.
The attention is focused on the interference of the wakes created by the magnetic
obstacles.

1 Introduction

The flow past solid obstacles is certainly one of the most widely studied problems
in fluid dynamics and constitutes in itself a classic subject of research (Zdravkovich
1997). Its importance stems from countless applications where determining the
behavior of flows past bluff bodies is of practical interest. From the point of view of
dynamical system, the understanding of the spatio-temporal behavior of the wakes
formed in flows past solid obstacles presents interesting challenges. When more than
one obstacle is present, investigating the interference of wakes becomes a relevant
issue (Gal et al. 1996). In fact, the behavior of coupled wakes created by a pair
of cylinders placed side by side in a uniform flow has been studied experimentally
and theoretically by several authors and different flow regimes have been identi-
fied according to the separation between the cylinders (Zdravkovich 1985; Le Gal
et al. 1990; Peschard and Gal 1996; Sumner et al. 1999). But, wakes are not only
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produced by solid obstacles. It has been shown that localized magnetic forces in
flows of electrically conducting fluids act as obstacles for the flow. When the con-
ducting fluid is a liquid metal, the relative motion of the fluid and a localized magnetic
field induces electric currents that interact with the same field to produce a Lorentz
force braking the liquid (Cuevas et al. 2006; Votyakov et al. 2007). In the case of an
electrolyte, due to the low conductivity of the fluid, induced currents are negligible
but an opposing Lorentz force can still be created if an electric current is externally
applied (Honji 1991; Honji and Haraguchi 1995; Afanasyev and Korabel 2006).
In both cases, experimental and theoretical studies have shown the appearance of
different flow regimes such as steady vortices, vortex shedding, and even turbulent
wakes (Honji and Haraguchi 1995; Afanasyev and Korabel 2006; Votyakov et al.
2008; Kenjeres et al. 2011). In fact, the term magnetic obstacle was coined (Cuevas
et al. 2006) to emphasize that localized Lorentz forces produce flow behaviors that
in some aspects resemble flows past solid obstacles, although very important differ-
ences exist.

So far, investigations of flows past magnetic obstacles have mainly addressed the
problem of a single obstacle in liquid metal flows (see, for instance, Votyakov et al.
2008; Kenjeres et al. 2011; Tympel et al. 2013). Recently, the flow in an array of three
magnetic obstacles has been simulated numerically (Kenjeres 2012), a situation that
may have relevance for heat transfer applications (Zhang and Huang 2013). Flows
of electrolytes past magnetic obstacles have been less explored. Honji (1991) and
Honji and Haraguchi (1995) performed experiments in a shallow layer of salt water
contained in a long tank, where a D.C. current was applied transversally to the tank’s
long axis, while a permanent magnet located externally was dragged at a constant
velocity along the center line of the water tank. Similarly, more extensive experiments
were performed by Afanasyev and Korabel (2006). These authors considered flows
produced by a single magnet as well as by two magnets with opposite orientations,
aligned with the direction of motion and separated by a short distance. However, to
the best of our knowledge, the electrolytic flow created by a pair of magnetic obstacles
side by side has not been previously considered. This problem is interesting, since
the analogous flow with solid obstacles has been investigated extensively so that
flow regimes are well characterized (Zdravkovich 1985; Peschard and Gal 1996;
Sumner et al. 1999). In the present paper, we explore numerically the flow past a
pair of magnetic obstacles side by side and compare the flow regimes with those
corresponding to the flow past solid cylinders.

2 Formulation of the Problem

We consider the flow of a shallow layer of an electrolyte in a rectangular container
affected by localized Lorentz forces, i.e. magnetic obstacles. The forces are produced
by the interaction of magnetic fields generated by two permanent magnets and a D.C.
electrical current applied transversally to the main flow through electrodes located in
the lateral walls and connected to a power source. Square magnets whose side length
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Fig. 1 Sketch of the electrolytic flow past a pair of magnetic obstacles side by side. See details in
the text

L is much smaller than the distance between lateral walls, are placed beneath the
bottom wall of the container with an orientation such that resulting Lorentz forces
oppose the oncoming flow and generate vorticity. Figure 1 shows a sketch of the
problem under consideration. Since the thickness of the fluid layer is assumed to be
small compared with horizontal dimensions, we use a quasi-two-dimensional (Q2D)
numerical model that only considers the component of the applied magnetic field
normal to the plane of motion. This component can be expressed as

B0
z (x, y, z) = B(x, y)g(z), (1)

where B(x, y) reproduces the variation of the magnetic field in the x–y plane and is
modeled by a dipolar field distribution created by a square magnetized surface uni-
formly polarized in the normal direction, for which an explicit analytical expression
is available (McCaig 1977; Cuevas et al. 2006). In fact, the shape of the magnets is
irrelevant provided the plane of flow is separated from the surface of the magnet, so
that border effects are smoothed out (Figueroa et al. 2009). In turn, g(z) = exp(−γ z)
models the decay of the magnetic field in the normal direction z (normalized by the
layer thickness h), where γ = 0.51 is an empirical constant obtained from fitting the
decay of the magnetic field in the vertical direction (Beltrán 2010) with experimental
data from a permanent magnet (Honji 1991). In addition, the Q2D model assumes
that the momentum transfer through the thin electrolytic layer is mainly diffusive so
that the velocity field can be expressed as

u(x, y, z, t) = [u(x, y, t) f (x, y, z), v(x, y, t) f (x, y, z), 0], (2)
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where u and v are the mean velocity components in the x–y plane, while f (x, y, z)
reproduces the velocity profile in the layer thickness (Beltrán 2010). Since the elec-
trical conductivity of the electrolyte is low compared with that of liquid metals, and
the magnetic field intensity of permanent magnets is weak, induced currents in the
fluid are negligible. Therefore, it becomes unnecessary to solve the induction equa-
tion to determine the induced magnetic field. Only the applied current is relevant for
calculating the Lorentz forces (Figueroa et al. 2009).

Substituting Eqs. (1) and (2) in the three-dimensional equations of motion and
averaging along the height of the fluid layer, we obtain the Q2D equations. A detailed
description of the averaging procedure can be found in (Beltrán 2010; Figueroa et al.
2009). In dimensionless terms, the equations of motion in the Q2D approximation
take the form

∂u

∂x
+ ∂v

∂y
= 0, (3)

∂u

∂t
+

(
u

∂u

∂x
+ v

∂u

∂y

)
= −∂ P

∂x
+ 1

Re
∇2⊥u + u

τ
− Q B0

z , (4)

∂v

∂t
+

(
u

∂v

∂x
+ v

∂v

∂y

)
= −∂ P

∂y
+ 1

Re
∇2⊥v + v

τ
, (5)

where the overline in the velocity components was dropped and subindex ⊥ denotes
the projection of the ∇ operator on the x–y plane. The velocity components, u and v,
the pressure, P , the applied current density, j , and the applied magnetic field, B0

z , are
normalized by U , ρU 2, J0 and Bmax , respectively. Here, U is the uniform entrance
velocity, ρ is the mass density, Bmax is the maximum intensity of the magnetic field,
and J0 is the magnitude of the applied current density. Dimensionless coordinates
x and y are normalized by L , while time, t , is normalized by L/U . Dimensionless
parameters Re and Q stand for the Reynolds number Re = U L/ν, where ν is the
kinematic viscosity, and the Lorentz force parameter Q = J0 Bmax L/ρU 2 which
is the ratio of a magnetic pressure drop caused by the applied Lorentz force and
the free-stream dynamic pressure. Essentially, Q characterizes the strength of the
Lorentz forces. The third term on the right-hand-side of Eqs. (4) and (5) represents
the Rayleigh friction between the fluid and the bottom wall. It involves a characteristic
dimensionless timescale, τ , for the decay of vorticity due to dissipation in the viscous
layers and is given by (Beltrán 2010)

τ−1 = γ (1 − e−γ )
1
γ
(1 − e−γ ) + γ

2 e−γ − 1
. (6)

The considered boundary conditions are the following. At the entrance, a uniform
flow is imposed in the x-direction, therefore

u = 1, v = 0, at x = 0, 0 ≤ y ≤ H. (7)
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At the outlet, Neumann boundary conditions are used, that is,

∂u

∂x
= ∂v

∂x
= 0, at x = X L , 0 ≤ y ≤ H. (8)

At the side walls, we use no-slip conditions:

u = 0, v = 0, at y = 0, H, 0 ≤ x ≤ X L . (9)

Here, H is the separation between lateral boundaries which determines the solid
blockage of the confined flow, characterized by the blockage parameter β = 1/H .
In turn, X L is the total length of the channel. The magnetic obstacles are located at
distances Xu from the entrance and Xd from the outlet. All the lengths are measured
in dimensionless units. The centers of the magnets are separated by a dimensionless
distance D = d/L , where d is the dimensional separation. Figure 2 shows a sketch
of the flow conditions considered for the numerical solution.

A finite volume method implemented with a SIMPLEC algorithm is used to solve
the governing equations (3)–(6) with boundary conditions (7)–(9). The diffusive and
convective terms are discretized using a central difference scheme. Accurate tem-
poral resolution is provided by choosing a small enough time step and employing a
second order scheme for the time integration. The numerical solution was obtained
in a rectangular domain with a length of X L = 35 dimensionless units in the stream-
wise direction and H = 7 units in the cross-stream direction using an equidistant
orthogonal grid of 212 × 202 nodes. It was determined that an upstream distance
Xu = 10 and a downstream distance Xd = 25 guarantee results that are nearly
independent of the location of the obstacles.
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Electrode
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u = v = 0 

v 
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Fig. 2 Sketch of the geometry and boundary conditions considered for the analyzed flow
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3 Numerical Results

In a similar way as when the obstacles are solid cylinders, flows past a pair of
magnetic obstacles side by side present different regimes according to the flow con-
ditions. While hydrodynamic regimes are governed only by the Reynolds number
and the dimensionless separation distance D (provided three-dimensional effects are
neglected), in the present case flow regimes are controlled by Q, in addition to Re
and D. The variation of these parameters leads to steady or time-dependent regimes,
as occurs in flows with a single magnetic obstacle (Honji and Haraguchi 1995;
Afanasyev and Korabel 2006). We present numerical results for a pair of magnetic
obstacles side by side with a fixed Reynolds number, Re =1,000, and investigate
the variation of Q and D on the flow dynamics. We consider flow conditions where
vortex shedding is present and explore the effect of separation distance D on the
coupling of the wakes behind the obstacles. The parameter Q is varied in the range
1.5 ≤ Q ≤ 10, and for a given D, the value of Q corresponds to the minimum value
where vortex shedding appears. In turn, four different values of D are explored,
namely, 1, 1.5, 2, and 3, which are of interest since results for the hydrodynamic flow
past a pair of solid obstacles are available in the literature for these cases (Peschard
and Gal 1996; Zdravkovich 1985).

In hydrodynamic flows, it has been reported that for large distances between the
cylinders, the pair of wakes presents a weak coupling where in phase and out of
phase vortex shedding can appear. In turn, for shorter distances a strong coupling
arises and only in phase shedding is observed which produces a unique von Kár-
mán street (Peschard and Gal 1996; Zdravkovich 1985). At intermediate range of
coupling, a bistable regime can emerge which is characterized by a biased flow that
gives two possible values for the vortex shedding frequency. The biased flow is an
intermittent flow between two asymmetric states. That is, through the gap the biased
flow divides asymmetric states with narrow and wide wakes which can intermittently
interchange between the two cylinders (Zdravkovich 1985), apparently driven by a
random process (Peschard and Gal 1996). We now show that similar regimes are
observed in the wakes created by a pair of magnetic obstacles side by side.

Figure 3 shows the Lagrangian tracking of flows obtained numerically for different
values of D, with the corresponding minimum value of Q where vortex shedding
appears. For the smallest separation distance, D = 1 (see Fig. 3a), the magnets are in
contact and act as a larger magnetic obstacle that gives rise to a single wake similar
to the von Kármán street. If the gap between the obstacles is increased to D = 1.5,
we find a bistable regime where the flow pattern is rather complex, as is observed
in Fig. 3b. A further increase to D = 2 (see Fig. 3c) leads to a more structured flow
pattern with two interlaced wakes in phase. For the larger gap explored, namely
D = 3, the separation between the wakes is neatly defined and the in phase behavior
still persists, as observed in Fig. 3d.

To improve the understanding of the flow behavior and the coupling of the wakes
behind the magnetic obstacles, the velocity component in the x-direction is shown
in Fig. 4 as a function of time at two distinct points located on the central line of each
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(a) (b)

(c) (d)

Fig. 3 Lagrangian tracking of the numerically calculated flow past a pair of magnetic obstacles
side by side at different separation distances. Re =1,000. a D=1, Q = 2.7. b D=1.5, Q = 2.9.
c D=2, Q = 2.4. d D=3, Q = 2.3

(a) (b)

(d)(c)

Fig. 4 Velocity component in the x-direction as a function of time at two different points. Blue
(red) line corresponds to the point located at the central line of the upper (lower) obstacle five
dimensionless units downstream. Re =1,000. a D = 1, Q = 2.7. b D = 1.5, Q = 2.9. c D = 2,
Q = 2.4. d D = 3, Q = 2.3
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obstacle, five dimensionless units downstream. For D = 1 (Fig. 4a), corresponding
to the single wake of a large magnetic obstacle, the velocity signals oscillate in
antiphase. This is consistent with the fact that a large oscillating vortex structure
is formed behind the obstacle so that in the symmetrically located points where
the signals are registered, the velocity in the x-direction takes opposite values. For
D = 1.5 which corresponds to the bistable flow, velocity oscillations do not present
a defined structure. This seems to be a characteristic feature of this regime as it has
been reported in the literature for the case of circular cylinders (Zdravkovich 1985;
Peschard and Gal 1996). Figure 4c clearly shows in phase oscillations of the velocity
signals when D = 2 where even the amplitude of the oscillations coincides. Finally,
when D = 3 (Fig. 4d), although velocity oscillations are in phase, amplitudes do not
coincide which indicate a weaker coupling of the wakes.

Important information can also be obtained from the Fourier analysis of the tem-
poral behavior of the velocity signals, particularly for determining the dominant
dimensionless frequency of the flow, that is, the Strouhal number. It is precisely at
this frequency at which the greatest amount of energy in the flow is transported.
Figure 5 shows the power spectrum obtained through the fast Fourier transform of
the corresponding velocity signals presented in Fig. 4 for different values of D. Only
the spectrum at one point is shown since it coincides with the one at the other
point. In Fig. 5a (D = 1), a clear dominant characteristic frequency of 0.152 and its
corresponding harmonics are shown. This frequency is close to the ones obtained

(a) (b)

(d)(c)

Fig. 5 Power spectrum calculated by the Fast Fourier Transform of the velocity signals presented
in Fig. 4. Re =1,000. a D = 1, Q = 2.7. b D = 1.5, Q = 2.9. c D = 2, Q = 2.4. d D = 3,
Q = 2.3
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experimentally by Honji and Haraguchi (1995) for the flow past a single magnetic
obstacle. Further, it almost coincides with the value of 0.150 corresponding to the
flow past a solid cylinder (Zdravkovich 1997). For the bistable flow at D = 1.5
(Fig. 5b), it does not exist a clear dominant frequency since this local analysis does
not capture the global behavior of the biased flow that may present two distinct char-
acteristic frequencies for the vortex shedding. Finally, Fig. 5c,d display very similar
Strouhal numbers of 0.235 and 0.237 for D = 2 and D = 3, respectively. It could be
expected that for a large enough separation distance, the dominant frequency of each
wake should be close to that of a single magnetic obstacle (≈0.152). The difference
with the latter case for D = 2 and D = 3 manifests that the coupling of the wakes
is still present at these separation distances. In fact, for the flow past a pair of solid
cylinders side by side, the uncoupling of the wakes is observed at D ≈ 5.5 (Le Gal
et al. 1990).

A characteristic feature of the bistable regime is the tendency of the flow in the
gap between the obstacles to tilt towards one obstacle at a given time and towards the
other obstacle at a later time. This deflection breaks the symmetry of the flow pattern
(Le Gal et al. 1990). Figure 6 illustrates this phenomenon through the instantaneous
velocity fields at two different times for the bistable regime observed when D = 1.5.

Although in previous results only time-dependent flows were considered, at lower
values of Q steady flow patterns displaying a vortex pair are found (Román 2013).
With the aim of describing the studied flow in a more complete way, Fig. 7 presents
a map that shows the regions of steady and time-dependent behavior in terms of the
analyzed values of Q and D, for Re =1,000. The transition zone between steady
and unsteady flows is presented with a gray strip since it is not possible to determine
an exact value for this transition. This map is built based on the time behavior of the
velocity signals. It is observed that for a fixed D, vortex shedding disappears as Q
decreases.
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Fig. 6 Instantaneous velocity fields for the bistable regime. Re =1,000, Q = 2.9 and D = 1.5. a
t = 1975, b t = 1992
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Fig. 7 Stability map of the
flow past a pair of magnetic
obstacles side by side. The
gray strip displays the
transition zone between
steady and time-dependent
flow. Re =1,000

Vortex shedding

Q
 

D 

Steady vortex 
pair

4 Concluding Remarks

In this work, we have investigated numerically using a Q2D model the flow past a
pair of magnetic obstacles side by side at a fixed Reynolds number, Re =1,000.
We analyzed the coupling of the wakes behind the magnetic obstacles under vortex
shedding conditions for different values of the dimensionless separation distance,
namely, D = 1, 1.5, 2, and 3. From the numerical velocity field, Lagrangian tra-
jectories were obtained which allow to visualize different flow structures. A strong
coupling was found for D = 1 where the pair of obstacles act as a large magnetic
obstacle that produces a single wake whose dominant frequency is close to the one
found experimentally (Honji and Haraguchi 1995) and almost coincide with that of
the flow past a solid cylinder. A more complex pattern was found for D = 1.5 where
an intermediate coupling leads to a bistable regime, characterized by a biased flow
with asymmetric flow structures. Finally, a weaker coupling of the wakes was found
for D = 2 and D = 3, where well defined in phase wakes are observed. In general
terms, it can be stated that the flow past a pair of magnetic obstacles side by side
presents similar regimes as those observed in the wakes created by a pair of solid
cylinders.
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Steady and Unsteady Vortex Flow Generated
by Electromagnetic Forcing

C.G. Lara, A. Figueroa and S. Cuevas

Abstract In this paper,we present a numerical and experimental study of the laminar
flow that results from the interaction of vortices driven electromagnetically in a thin
layer of an electrolyte. The fluid motion is generated by a Lorentz force due to a uni-
formD.C. current and a non-uniformmagnetic field produced by different symmetric
arrays of small permanent magnets placed on the perimeter of a circle. Depending
on the number of magnets and the intensity of the electric current, we find that steady
or unsteady vortex flow patterns may arise. We developed a quasi-two-dimensional
numerical model that accounts for the effect of the boundary layer adhered to the
bottom wall. Once the velocity field is obtained, we perform a Lagrangian tracking
that shows a good qualitative comparison with the experimental flow visualization.
From numerical and experimental results, a map of stability that defines regions
of steady and unsteady flow, according to the electric current intensity and magnet
arrays, is built. We find that the larger the number of magnets, the less intense the
applied current required to transit from steady to unsteady flow patterns.

1 Introduction

Vortex dynamics is a topic of great importance in many natural and technological
phenomena. In particular, the study of laminar vortices may improve the comprehen-
sion of the fundamental mechanisms involved in mixing processes at low Reynolds
numbers (Ottino 1990). Usually, the interaction of vortices gives rise to very inter-
esting behaviors and flow patterns as occurs, for instance, when a pair of corotating
vortices merge into a single structure (Meunier and Leweke 2005). To a large degree,
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nonlinear effects determine the flow field that results from vortex interaction. One of
the classical problems of fluid dynamics consists in finding the motion of a set of
point vortices, and particularly to determine the conditions under which a certain
configuration of point vortices is stable. Since the pioneering work of Helmholtz
(1858) and Kelvin (1867), many important contributions have been published on
this problem, see for example Aref (2007, 2009). The main issue is to establish the
relative equilibrium of identical point vortices that rotate uniformly without change
in shape or size. The term relative equilibrium is used to distinguish it from absolute
equilibrium of the system at rest. In these systems, some points in the fluid named
co-rotating points, are in equilibrium with respect to the pattern of vortices. A com-
pilation of different flow patterns that show relative equilibrium between co-rotating
points and ideal point vortices has been presented by Dirksen (2012).

From the experimental side, to produce flow patterns that behave closely as a
configuration of ideal point vortices is not an easy task. However, we can explore
in a simple way the interaction of vortices created by electromagnetic forces in
a thin layer of electrolyte. This is a common non-intrusive method that has been
successfully applied to investigate the vortex dynamics and transport processes in
quasi-two-dimensional systems (Figueroa et al. 2009, 2011, 2014; Durán-Matute
et al. 2010; Rossi and Lardeau 2011). This paper aims to study the stability and
spatio-temporal behavior of electromagnetically driven sets of vortices in a thin
electrolytic layer. Lorentz forces are generated by the interaction of a uniform D.C.
current with localized magnetic fields produced by arrays of three to ten permanent
magnets placed equidistantly on the perimeter of a circle whose diameter is much
larger than the diameter of the magnets. When a single magnet is considered, the
Lorentz force originates a dipolar vortex. If we place more than one magnet at a
close enough distance, dipolar vortices produced by each magnet interact with each
other and lead to more complex flow patterns. Therefore, the question is whether the
resulting flow is stable or unstable and presents a steady or time-dependent behavior.
Evidently, the resulting flow not only depends on the number and separation of the
magnets but also on the intensity of the applied current. In addition to the experimental
flow visualization, we obtain numerically the velocity fields in different magnet
configurations which are used to perform a Lagrangian tracking.

2 Experimental Setup and Flow Visualization

The experimental setup consists of an open rectangular frame with interior dimen-
sions of 28cm × 36cm × 1.3cm; three sides are made of Plexiglas and one is made
of glass. The container is filled up with an electrolyte solution of sodium bicarbonate
(NaHCO3) at 8.6% in weight. The depth of the electrolyte layer is 0.4 cm with a total
volumen of 400cm3. The mass density, kinematic viscosity, and electrical conduc-
tivity of the electrolyte to ambient temperature are, respectively, ρ = 1, 086kg/m3,
ν = 10−6 m2/s, and σ = 6.36S/m. Cooper electrodes are placed along the farther
sides of the cell connected to an adjustable D.C. voltage power supply so that a uni-
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form current within the range of 3–200mA circulates in the fluid. The magnetic field
is produced by Neodymium permanent dipolar magnets of cylindrical shape with
a diameter of 0.92cm and 0.63cm of height, axially magnetized with a maximun
magnetic strength on their surface of 0.33T. Magnets are located below the bottom
wall of the container in arrays of three to ten magnets placed equidistantly on the
perimeter of a circle with diameter of 7.5cm, so that for each array, the magnets rest
on the vertices of a regular polygon.

Figure1a, b shows schematically the top and lateral views of the experimental
setup, respectively. For illustration, only two magnets with opposite orientations are
shown, the normal component of themagnetic field being perpendicular to the bottom
wall. The interaction of the current and the non-uniform magnetic field originates
Lorentz forces in the fluid that are perpendicular to both the current direction and
the normal component of the magnetic field. Evidently, the direction of the force
depends on the orientation of the magnets and the polarity of the electrodes. We
now show different arrays of magnets that give rise to flow patterns with varying
degrees of complexity. Figure2a shows schematically an array of four magnets with
alternated orientation, north orientation being represented by blue solid circles and
south orientation by red solid circles. Dipolar vortices generated by electromagnetic
forcing are represented by curved lines with the arrows indicating the direction of
rotation. Figure2b shows the experimental visualization with dye of the steady flow
obtained for this configuration with a current of 10 mA. Note that exterior vortices
remain mainly unaffected while interior vortices interact strongly. Figure3a shows
the experimental visualization of the steady flow pattern obtained by applying an
electric current of 3mA to an array of three magnets with north orientation placed at
the vertices of a equilateral triangle inscribed in the circle whose center is denoted by
a cross. Since the separation between magnets is large and the electric current rather
small, dipolar vortices created by each magnet persist mainly independently without

Fig. 1 Sketch of the experimental device used to investigate the interaction of vortices driven by a
D.C. uniform current and localizedmagnetic fields produced by different distributions of permanent
magnets. a Top view. b Lateral view
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Fig. 2 a Sketch of an array of four magnets with alternating orientation. Curved lines represent
dipolar vortices driven by electromagnetic forces and arrows indicate the direction of rotation.
b Experimental visualization with dye of the steady flow pattern obtained for an array of four
alternating magnets with an applied current of I = 10mA

Fig. 3 Experimental flow visualization in different configurations: a array of three magnets with
north orientation and applied current of I =3mA; b array of sixmagnets with alternating orientation
and applied current of I =100mA

interaction. On the other hand, Fig. 3b shows the steady flow generated by an electric
current of 100mA and a magnetic field produced by six alternating magnets placed
at the vertices of a regular hexagon. Since the distance between magnets is smaller
and the current much larger than in the case of three magnets, vortex interactions are
stronger. We observe that the interaction of counter-rotating dipolar vortices cause
the merging or coalescence of vortices forming larger and elongated structures. In
fact, vortex interactions originate a complex flow pattern although clear symmetry
features can be observed.
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3 Quasi-Two-Dimensional Numerical Model

Quasi-two-dimensional (Q2D) models for thin liquid layers have been successfully
applied in both hydrodynamic (Satijn et al. 2001; Clercx and Heijst 2003) and mag-
netohydrodynamic flows (Sommeria 1988; Figueroa et al. 2009, 2014). In these
models, the governing equations are integrated in the vertical direction or along the
magnetic field lines in such a way that effects due to the boundary layer at the bot-
tom of the container are considered by means of a linear friction term. Since induced
currents are negligible in low-conductivity electrolytes, the Lorentz force is fully
known and the dimensionless governing equations of motion are

∇ · u = 0, (1)

∂u
∂t

+ (u · ∇)u = −∇ p + ∇2u + Re∗j × B, (2)

where the velocity, u, and pressure, p, are normalized by U0 and ρU 2
0 , respectively.

The characteristic velocity U0 = j0BmaxL2/ρν comes from a balance between
viscous and Lorentz forces, where the characteristic length L is the magnet side
length, j0 the applied current density, Bmax the maximum magnetic field strength, ρ
the mass density and ν the kinematic fluid viscosity. In turn, the current density
and the magnetic field are normalized by j0 and Bmax. For numerical purposes
the Reynolds number in Eq. (2) is defined as Re∗ = U0L/ν, hence it depends
on the applied current. Due to the small layer thickness, the dominant magnetic
field component along the normal z-direction is the only one considered. For a
single permanent magnet, we assume that this component can be expressed as
(Figueroa et al. 2009)

B0
z (x, y, z) = Bz(x, y)g(z), (3)

where Bz(x, y) reproduces the variation of the magnetic field in the x–y plane
given by the superposition of two magnetized square surfaces, separated by a dis-
tance c, uniformly polarized in the normal direction (McCaig 1977). The term
g(z) = exp(−γ εz) models the variation of the magnetic field in the normal direc-
tion, where z is normalized by the depth of the liquid layer h. In turn, the constant
γ = 2.05 was obtained by fitting the experimental data of the magnetic field decay
(Figueroa et al. 2009), and ε = h/L is the aspect ratio. It has been shown that
Eq. (3) accurately reproduces the experimental magnetic field within the fluid layer
(Figueroa et al. 2009).An array ofmagnets ismodeled as the superposition of the field
generated by each magnet. In the Q2D approximation, we assume that the momen-
tum in the boundary layer at the bottom of the container is mainly transported by
diffusion in the normal direction to the wall. Therefore, the velocity components are
expressed in the form

u(x, y, z, t) = [u(x, y, t) f (x, y, z), v(x, y, t) f (x, y, z), 0], (4)
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where u and v are the mean velocity components in the x–y plane, while f (x, y, z)
reproduces the velocity profile in the layer thickness (Lara 2013). Substituting Eq. (4)
in Eqs. (1)–(2) and averaging along the height of the fluid layer, the governing equa-
tions in the Q2D approximation are found to be (Figueroa et al. 2009; Lara 2013)

∂u

∂x
+ ∂v

∂y
= 0, (5)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ ∇2u + u

τ
, (6)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ ∇2v + v

τ
− αRe∗ B0

z , (7)

where, for simplicity, the overline in the velocity components was dropped. The fac-
tor α = 1

γ ε
(1 − e−γ ε2) in Eq. (7) represents the attenuation of the magnetic field

in the normal direction while the linear terms that appear in both Eqs. (6) and (7)
account for the friction at the bottom of the container. The dimensionless time scale
τ for the decay of vorticity due to viscous effects is given by

τ−1 = γ (1 − e−γ ε2)

1
γ
(1 − e−γ ε2) + γ ε4

2 e−γ ε2 − ε2
. (8)

The governing equations (5)–(7) were solved using a Finite Volume Method and the
SIMPLEC algorithm (Versteeg and Malalasekera 1995), with no-slip boundary con-
ditions at the walls of the rectangular frame and a motionless fluid as initial condi-
tion. Once the velocity field is calculated, the advection equations (Figueroa et al.
2014) are solved to perform the Lagrangian tracking.

4 Comparison Between Numerical
and Experimental Results

Let us now compare the numerical calculations with experimental visualizations.
For each array of magnets, different applied current intensities are explored and the
associated Reynolds number is calculated from themaximumvelocity reached by the
numerical solution, Re = UmaxL/ν. Figure4 shows the experimental and numerical
results for the steady flow produced with an array of four magnets with alternating
orientation and a current of 50mA, five times larger than the one used in Fig.2b.
The corresponding Reynolds number is Re = 69. The experimental visualization is
shown in Fig. 4a while Fig. 4b, c correspond to the streamlines and Lagrangian track-
ing obtained from the numerical solution, respectively. The comparison of Eulerian
and Lagrangian results is very illustrative. While the streamlines capture the sym-
metry of the flow field, they do not show the characteristic features of the advec-
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Fig. 4 Steady flow produced by an array of fourth magnets with alternating orientation and applied
current of 50mA that corresponds to aReynolds numberRe = 69. aExperimental flowvisualization
with dye. b Streamlines calculated numerically. c Lagrangian pathlines obtained by integration of
the advective equations using the numerical flow field

Fig. 5 Steady flow produced with an array of eight magnets with alternating orientation and
applied current of 50mA (Re = 77). a Experimental flow visualization. b Numerical streamlines.
c Lagrangian trajectories obtained by integration of the advective equations from the numerical
flow field

tive scalar transport, which are neatly reproduced through the Lagrangian tracking.
Even the hyperbolic points created by the interaction of central vortices are clearly
observed. The lack of diffusion in the Lagrangian simulation is the main difference
with the experimental visualization. In fact, diffusion can be incorporated using the
Diffusion Strip Method (Figueroa et al. 2014). Figure5 shows experimental and
numerical results for the steady flow obtained with an array of eight magnets with
alternating orientation and applied current of 50mA that corresponds to Re = 77.
As in the previous case, the experimental visualization, numerical streamlines and
Lagrangian trajectories are presented in Fig. 5a–c, respectively. Due to the shorter
distance between magnets, in this case vortex interactions are stronger but still the
Lagrangian numerical simulation reproduces themain qualitative features of the flow.

For any array of magnets, if the intensity of the current is sufficiently high the
resulting flowpresents a time-dependent behavior. For instance,with an array of eight
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Fig. 6 Panels a, c show vorticity as a function of time for an array of eight magnets (see Fig. 5b).
b, d Power spectrum of the vorticity signal calculated by the Fast Fourier Transform. The first row
corresponds to I = 120mA (Re = 142) and the second row to I = 250mA (Re = 256)

alternatingmagnetswe found experimentally and numerically that the transition from
steady to time-dependent flow occurs in the range 100 < I < 120 mA, correspond-
ing to 132 < Re < 142. For a current of 120mA, the flow develops a time-dependent
behavior characterized by the oscillatory motion of the vortices, as shown in Fig. 6a
where the vorticity as a function of time at a certain point in the central flow region
shows a completely periodic behavior. Figure6b shows the corresponding power
spectrum obtained from the Fast Fourier Transform (FFT) of the vorticity signal
which yields a (dimensionless) characteristic frequency of fc = 3.72. If the applied
current increases to 250mA that corresponds to Re = 256, the amplitude of the vor-
ticity oscillation is not constant (see Fig. 6c) and the characteristic frequency becomes
fc = 6.25. The power spectrum (see Fig. 6d) also shows some harmonics and seems
to indicate the beginning of a distinct physical behavior than a purely periodic flow.

Figure7a, b show, respectively, the experimental flow visualization and
Lagrangian numerical trajectories at a given instant of the time-dependent flow pro-
duced by an array of eightmagnets with alternating orientation and an applied current
of 200mA (Re = 212). We observe that the experimental visualization is reasonably
reproduced by the numerical simulation. At initial steps, the flow pattern presents a
symmetry with respect to the y axis (as observed in Fig. 5a) but vortex interaction
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Fig. 7 Time-dependent flow produced by an array of eight magnets with alternating orientation
at t = 143. a Experimental visualization. b Lagrangian trajectories calculated from the numerical
simulation. I = 200mA (Re = 212)

lead to symmetry breaking. In general, symmetry breaking can appear due to non-
symmetric magnetic field distribution or non-linear effects. In fact, through experi-
mental flow visualization and animation of the numerical results, we observed that
some vortices in the central flow region rotate counterclockwise and cause vortex
shedding in the y-direction.

As in the previous case, the time-dependent behaviour of the flow was explored
by varying the applied current for the arrays of three, four, six, eight and ten magnets.
For each configuration, the current intensity at which the flow transits from steady to
unsteady state was determined. Although aparently unsteady flows show turbulent-
like behaviour (Rossi et al. 2006) (see, for instance, Fig. 7), the Reynolds number
is low (Re = 220), thus the unsteady flow patterns remain in the laminar regime.
The applied electric current is not high enough to generate a turbulent flow. Figure8
shows the stability map that condenses the information of the temporal behavior
of the flows from all the available numerical and experimental results. In the map,
solid black points show the numerically determined value of the current where the
transition from steady to unsteady flow occurs for each array of magnets. Due to
practical reasons, most of the results were obtained from numerical simulations,
however, note that for the available experimental results the numerical prediction
agrees with the experimental observation. From the stability map, it is clear that
increasing the number of magnets in the array, the transition from steady to unsteady
flow occurs at lower intensities of the applied current. Evidently, by increasing the
number of magnets the number of vortices also increases while the distance between
them decreases. This causes stronger interactions of vortices that lead to less stable
configurations prone to develop a time-dependent behavior. In fact, this behavior
favors a better fluid mixing (Figueroa et al. 2014).
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Fig. 8 Stability map of electrically driven flows with the different arrays of permanent magnets
placed on the perimeter of a circle. The interpolated solid line divides the regions of steady and
unsteady flow

5 Conclusions

In this work, we performed an experimental and numerical study of the spatio-
temporal behavior of laminar flows generated in a thin electrolyte layer through the
interaction of a D.C. current and a magnetic field produced by different arrays of
magnets placed on the perimeter of a circle. Flows were experimentally visualized
using dye and recorded for comparison with numerical simulations. We used a Q2D
numerical model that includes both the detailed Lorentz driving force produced by
the electromagnetic interaction and the friction effects of boundary layers at the
bottom of the container. The comparison of numerical simulations with available
experiments show a satisfactory agreement for both steady and unsteady flows. In
fact, Lagrangian trajectories calculated numerically suitably capture the motion and
elongation of the vortical structures caused by the Lorentz force. For steady flows,
well-defined spatial symmetries that depend on the magnet arrays can be identified.
For all the explored arrays of magnets, we found either experimentally or numeri-
cally the applied current for which the flow transits from steady to unsteady state.
With this information, we built a stability map that collects all the available experi-
mental and numerical results. It was found that the larger the number of magnets, the
lower the intensity of the applied current required to transit from steady to unsteady
state which could favour the fluid mixing. The characterization of time-dependent
flows and the possible appearance of a chaotic behavior remains as a future topic of
study.

Acknowledgments Financial support from CONACYT, Mexico, through Project 131399 is grate-
fully acknowledged. C.G. Lara and A. Figueroa thank, respectively, a grant and a posdoctoral
fellowship from CONACYT.
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Numerical Simulation of a Spanwise
Vortex in a Periodic Forced Flow

E.J. López-Sánchez and G. Ruíz Chavarría

Abstract In geophysical flows, vortices are present at verydifferent scales. Examples
of them are the meddies, formed at the outlet of the Mediterranean Sea or the vor-
ticity dipoles, occurring when water flushes from a channel into the open sea. In
this paper we investigate the formation and the evolution of a spanwise vortex in
the latter system, when a periodic forcing is imposed. To this end the Navier-Stokes
and continuity equations are solved with a finite volume code (OpenFOAM 2008).
The numerical solution has been obtained for a Reynolds number Re = 1,000 and
a Strouhal number S = 0.02. For comparison, we carried a simulation in a flow
produced by a single pulse. We have found that the spanwise vortex appears in front
of the dipole. It detaches from the bottom and moves away. When flow is produced
by a pulse, this vortex has a horseshoe shape, while for a periodic forcing flow, the
shape of the spanwise vortex evolves in time.

1 Introduction

When a fluid leaves a channel and flushes into an open domain the vorticity produced
into the channel leads to the formation of two counter rotating eddies. This pair of
vortices is a coherent structure, known as dipole, which moves away due to its self
induced velocity. The properties of the dipole depend on parameters as the Reynolds
number, the aspect ratio (the quotient of fluid layer depth to the dipole size) and
the Strouhal number. This kind of structures has been the aim of previous works.
For instance, Chaplygin (2007) has modeled a 2D dipole in a different way than
considering just two point vortices. The velocity field of the Lamb-Chaplygin dipole
is such that vorticity is different from zero only inside a circle of radius R. Earlier on,
Wells and Heijst (2003) modeled in two dimension the evolution of a dipole under

E.J. López-Sánchez · G. Ruíz Chavarría (B)

Facultad de Ciencias, Universidad Nacional Autónoma de Mexico,
Ciudad Universitaria, 04510 Mexico, D.F., Mexico
e-mail: gruiz@unam.mx

E.J. López Sánchez
e-mail: lsej@ciencias.unam.mx

© Springer International Publishing Switzerland 2015
J. Klapp et al. (eds.), Selected Topics of Computational and
Experimental Fluid Mechanics, Environmental Science and Engineering,
DOI 10.1007/978-3-319-11487-3_33

439



440 E.J. López-Sánchez and G. Ruíz Chavarría

periodic forcing. To this end the flow is assumed to be the sum of two point vortex and
a linear sink whose intensity is time dependent. They found that the dipole escapes
or returns to the channel outlet depending on the value of the Strouhal number. With
respect to experimental works, the properties and the evolution of the dipole have
been investigated in two cases: (a) a dipole produced by an impulsively jet (Sous et al.
2004; Lacaze et al. 2010) and (b) a dipole produced under periodic forcing (Nicolau
del Roure et al. 2009). Finally, a numerical study of a periodic forced flow has been
performed by López-Sánchez and Ruiz-Chavarría (2013). They found that lifetime
of vortices extends over more than a driving period. In this case interaction between
two dipoles can occur, leading under certain circumstances to vortex coalescence.

In shallow-water, apart from the two counter-rotating vortices, a third vortex has
been reported, which is perpendicular to the dipole (Albagnac 2010). In this respect,
Lacaze et al. (2010) have experimentally studied the properties of the spanwise vortex
produced by an impulsively jet. They found that all three vortices have comparable
intensities. On the other hand, Duran-Matute et al. (2010) made a numerical simula-
tion to study this structure in a thin horizontal layer. They assumed that initially the
velocity field is like a Lamb-Chaplygin vortex in the horizontal plane and in the verti-
cal plane the velocity field follows a Poiseuille profile. They found that, under certain
conditions, the 2D approach is no longer sufficient to describe this flow because 3D
effects are present. The three dimensional nature of the flow depends on a single
parameter K = δ2Re, where δ is the aspect ratio (the fluid depth to the size R of the
dipole) and Re is the Reynolds number. If K < 6 the flow is dominated by the vis-
cosity, so the vertical motion can be neglected. In the range 6 < K < 15, the dipole
properties are modified by the vertical motion and a spanwise vortex appears in front
of the dipole. Finally, for K > 15 the intensity of the spanwise vortex becomes com-
parable with those of the counter-rotating vortices. In the present work we make a
study of the spanwise vortex under periodic forcing. For comparison we also present
some results for a impulsively forcing. For this purpose we solve numerically the
Navier-Stokes and continuity equations with a finite volume method, using the free
software OpenFOAM. The originality lies in the fact that the flow rate is periodic.
The study of this spanwise vortex is important in coastal systems (where periodic
forcing is induced by tides) because it influences the lift, transport and deposition of
particles located at the bottom or inside the fluid.

This paper is organized as follow. Section2 is devoted to describe the system
under study and the numerical method. In Sect. 3 we present some numerical results
of both impulsively and periodic forcing. Section 4 deals with the convergence of
the numerical code and in Sect. 5 the conclusions are drawn.

2 Description of the System and Numerical Simulation

The flow we study occurs in a channel and an open domain. In order to use Open-
FOAM the overall domain is decomposed in four parallelepiped, as shown in Fig. 1.

The equations to be solved are the Navier-Stokes (1) and the continuity (2) equa-
tions for an incompressible flow. In dimensionless form, these equation are:
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Fig. 1 Integration domain to solve Navier-Stokes and continuity equations. This domain is
decomposed in four parallelepipeds. a Upper view b view in perspective

Du
Dt

= − 1

ρ
∇P + 1

Re
∇2u (1)

∇ · u = 0. (2)

Here, D/Dt ≡ ∂/∂t + (u · ∇) is the material derivative.
The forcing is introduced through a sinusoidal flow rate:

Q(t) = Q0 sin(2π S t) (3)

The dimensionless parameters appearing in Eqs. 1 and 3 are the Reynolds (Re)
and the Strouhal (S) numbers. The first one is defined ad Re = U H/ν while the
last one is defined as S = H/U T , where H is the channel width, U the maximal
velocity in the channel, ν is the kinematic viscosity and T is the forcing period.
The Strouhal number can be see like a dimensionless frequency (López-Sánchez and
Ruiz-Chavarría 2013; López-Sánchez 2013).

Equations1–2 are supplementedwith boundary conditions. The bottom, the lateral
wall in the channel and some lateral walls in the open domain are solid, then velocity
must vanish there. In the free surface we assume that both vertical velocity and
tangential stress vanish. Finally, along the channel input (wavy line in Fig. 1a) and
along the far boundary in front of the channel (dark side in Fig. 1b) the flow rate
given by Eq.3 must be fulfilled.

Open Field Operation And Manipulation (OpenFOAM 2008) is a collection of
solvers for partial differential equations. This program is structured in modules writ-
ten in C++. It incorporates pre and post-processing utilities to generate meshes and
present the results of simulations (The open source 2004).

In order to test the spatial convergence, we carried simulations with different
numbers of points in the grid. We start with 108,000 points and we finish with
2,100,000. The criterion to stop a further increase is that the difference of velocity
values in two subsequent meshes becomes less than a threshold ε = 10−6. On the
other hand, to guarantee time convergence we introduce the Courant number (Co),
defined as follow:

Co = UqΔt

Δq
, (4)
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where Uq is the velocity component in the direction q and Δq is the spatial step in
the q-direction. The Courant number can be interpreted as the ratio of the distance
traveled by a particle during a time step Δt and the size of a volume element. To
guarantee time convergence the Courant number must be less than 1.

3 Results

Numerical simulations were carried out for two cases: a pulse and a periodic flow
with S = 0.02. For the pulsing flow we have chosen a channel width of 2cm, a layer
depth of 2cm and a maximal flow rate Q0 = 2 × 10−5. On the other hand, for the
periodic forcing flow we have chosen a channel width of 4cm, a layer depth of 2cm
and the same maximal flow rate Q0 = 2 × 10−5. In order to have S = 0.02 the
forcing period must be T = 80s. In both cases the Reynolds number is Re = 1,000.

3.1 The Pulse

A pulse was applied for 4 s in the following manner (see Fig. 2): during 0.5 s the
flow rate grows from zero to the maximal value Q0 = 2× 10−5. After, the flow rate
remains constant for 3 s. Finally Q decreases from Q0 to zero during 0.5 s.

In Fig. 3 we plot the velocity field in the symmetry plane (y = 0) and the vorticity
distribution in a region in front of the channel at t= 20s. Figure3a, b, c show how the
spanwise vortex detaches from the bottom as it moves. At t = 10s (Fig. 3a) the span-
wise vortex is already present, its center is located at (x, z)= (7 cm, 0.5cm), whereas
at t = 20s the vortex has moved to position (x, z) = (13cm, 1.2cm) (Fig. 3c). To see
the shape of the spanwise vortex we include Fig. 3d, in which dipole’s isovorticity
surfaces are shown. The top of the surface with value |ω| = 0.5/s was removed in
order to see the inner surface corresponding to the spanwise vortex (valueωx = −1/s
in blue). We can observe that the spanwise vortex has a horseshoe shape and that it

Fig. 2 Pulse applied to
generate the flow through the
channel
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Fig. 3 a–c Velocity field in the vertical symmetry plane. d Isovorticity surfaces of the dipole
structure. The top was removed to see the spanwise vortex

is away from the bottom. It is important to remark that this vortex is located in front
of the dipole (the dipole is roughly delimited by the red surface).

3.2 Periodic Forced Flow, S = 0.02

The other case we studied is the flow under a periodic forcing. The values of Strouhal
and Reynolds numbers are respectively S = 0.02 and Re = 1,000. Figure4 shows
the isovorticity surface of the spanwise vortex for three different times (15, 20 and
40s). The data we show correspond to times in the interval 0 < t < 0.5 T , that is,
over a half period. Otherwise we include only positive values of y to better visualize
the structure of the vorticity field. The spanwise vortex appears approximately at
t = 10 s. As in the previous case, the vortex detaches from the bottom as it moves.
However it moves slowly. At t = 15s (Fig. 4a), the vortex is located at x = 4cm,
whereas at t = 20 (Fig. 4b) the vortex has moved to x = 8cm. As we can see in
the figure this spanwise vortex has never a horseshoe shape as in the pulsating flow.
Finally at t = 40s (Fig. 4a), the shape of the spanwise vortex has been completely
modified if we compare with the shape at t = 15s and at t = 20s.
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Fig. 4 Isovorticity surfaces of the spanwise vortex in a periodically forced flow at a t = 15s
b t = 20 s and c t = 40 s

4 Time Convergence

Figure5 shows the maximal Courant number (maximal over all the mesh) as a func-
tion of time for the cases studied here. Figure5a exhibits themaximalCourant number
in the pulsating flow. The curve never exceeds the value of 0.3, then the time conver-
gence is always guaranteed over all time integration. For the periodic forcing flow
(S = 0.02) the curve has a maximal value of approximately 0.7 (see Fig. 5b). Again,
the maximal Courant number is less than 1, that is, time convergence is guaranteed
for the periodic forcing flow.

(a) (b)

Fig. 5 Courant number in some of three coordinates. a The pulse case. b The periodic flow rate
case
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Figure5a shows that the maximum values appear when the pulse is generated.
However, these values do not exceed 0.3, and therefore the simulation converges to
the true solution over all integration time.

In the pulse case, after the half period ended, the maximumCourant number value
is approximately 0.7 (see Fig. 5b), and so convergence is also ensured.

5 Conclusions

In this paper we have presented numerical results of a flow in a channel connected to
an open domain. We studied some characteristics of the flow for two cases, namely,
flow generated by a pulse and a periodic driving flow with a Strouhal number S =
0.02. In both cases we observe the formation of a spanwise vortex in front of the
dipole. The horseshoe shape occurs only for the pulse case. In the periodic forcing
case, the shape of the spanwise vortex is modified along time. The spanwise vortex
appears near the bottom and after a while it detaches and moves away. This structure
has an influence on the lift and the transport of solid particles like sand.

Acknowledgments Authors acknowledge DGAPA-UNAM by support under project IN116312,
“Vorticidad y ondas no lineales en fluidos”.
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Erosion and Deposition of Particles
in a Periodic Forced Flow

P. Villamil Sapien, I. Sánchez Calvo González, E.J. López-Sánchez
and G. Ruíz Chavarría

Abstract In this paper we present an experimental study of the erosion and
accumulation of particles produced by a periodic forced flow in two domains con-
nected by a channel. For this purpose a thin layer of sand is deposited on the bottom
of the channel and one of these domains. Then, a periodic flow rate is produced with
the aid of a block partially submerged in the fluid and subject to a sinusoidal vertical
motion. The evolution of the system was observed for thousands of periods. The aim
of this study is to model the particle transport in a tidal induced flow between an estu-
ary and the open sea. The erosion and accumulation zones observed in our study are
compared with results obtained in numerical simulations and observational works.

1 Introduction

Along the shore, the drag and deposition of sand or other particles are phenomena
that influence human activities. For instance, sand banks formed by turbulent currents
affect the near coast navigation. On the contrary, the same sand banks, if appropri-
ately situated, canmitigate the impact of a tsunami. Due to its importance, the particle
transport in shallow waters has been studied in the last decades. First, if we focus our
attention on fundamental studies, it is necessary to mention a work by Maxey and
Riley (1983). They deduced from first principles an equation of motion for spherical
particles inside a fluid, in which forces apart from drag and bouyancy are incorpo-
rated. From an experimental approach, Mordant et al. (2001) developed a method,
based on Doppler effect, for measuring the position and velocity of particles in a
turbulent flow. A monochromatic wave is scattered by the target particles, and then
a set of detectors record the scattered sound. The signal contains information about
the velocity and position of the particles. The particle transport has been investigated
when vortices are present (as in the flow we investigate). For instance, Angilella
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(2010) studied the transport of dust by two identical point vortices rotating around
a common center. They found that the centrifugal and Coriolis forces enhance the
dispersion of particles and that if the drag force is dominant, the particle trajectories
exhibit chaotic behavior, leading to an increase of mixing. Finally, some numerical
simulations of the system considered in this paper show that a pair of counter rotat-
ing vortices (a dipole) detaches from the channel in each period (López-Sánchez and
Ruiz-Chavarría 2013a). The existence of this dipole enhances the mass transport,
because the velocity is considerably greater in the region between the vortices. Par-
ticles are sucked into that region and expelled forward. Some particles are deposited
in the region where dipole passes and others are pushed away from the symmetry
axis. According to the numerical and experimental evidence (Lacaze et al. 2010),
in shallow waters, apart from the two eddies in this flow, there is a spanwise vortex
moving in front of the dipole. The transverse vortex produces lift and enables the
motion of particles located at the bottom. It has been shown that particles accumu-
late in certain regions (López-Sánchez and Ruiz-Chavarría 2013a) or follow chaotic
trajectories (López-Sánchez and Ruiz-Chavarría 2012). In this system two dimen-
sionless parameter are relevant, the first one is the Reynolds number (Re = UH/ν),
and the second is the Strouhal number, defined as S = H/UT , whereU is a represen-
tative velocity, H is the channel width, T is the driving period and ν is the kinematic
viscosity. The Strouhal number is a dimensionless frequency.

This paper is organized as follows. In Sect. 2 we describe the experimental setup.
In Sect. 3 we show some results and we made a comparison with data reported in the
literature. In the last section we draw conclusions.

2 Experimental Setup

The experiments were performed in a container composed of two basins connected
by a channel, as shown in Fig. 1. The dimensions of the smaller basin are 45cm ×
60cm × 15cm, whereas the dimensions of the larger one are 120cm × 120cm ×

Fig. 1 Left Dimensions of the container used to model the transport of particles. Right Snapshot
of the container
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15cm. Both basins are connected by a channel 15cm long and variable width (the
channel width lies in the interval 4–18cm.). In order to produce a variable flow rate
we use a block connected to a stepper motor through a crankshaft mechanism. The
block, made in styrofoam and plexiglas, is partially submerged in the liquid layer and
develops a periodically vertical motion. The experiments were made under the fol-
lowing conditions: the depth of the liquid layer was 4cm and the amplitude of vertical
motion of the block was set to 3cm. We have chosen two different driving frequen-
cies, namely, 0.05 and 0.08Hz and three different channel widths are considered:
2.5, 3 and 5cm. In the experiments we cover the bottom of the channel and a fraction
of the large domain with a thin layer of sand. The sizes of these particles are in all
cases less than 1mm. To follow the evolution of the system we use a high definition
video camera, so that the images have a resolution of 1920× 1080 pixels. One image
is recorded every second for a time interval greater than 12h. During this interval
we observe the appearance of regions where particles are expelled or accumulated.

To estimate the flow rate and other parameters, we proceed as follows. When the
block is submerged into the fluid, a certain amount of liquid is displaced. The volume
displaced is equal to the volume of the block into the fluid:

V (t) = l × a × h(t), (1)

where l is the block length, a is the block width, and h(t) = hm + h0 sin(2πνt) is
the distance from the free surface to the bottom block (hm is the mean value of h(t)).
In our experiments l = 57.5cm and we have used two different blocks, one with
a = 8cm and the other with a = 2.5cm. The flow rate is the time derivative of V (t):

Q = d V (t)

d t
= 2πνl × a × h0 cos (2πνt). (2)

The maximum flow rate Q0 is:

Q0 = 2πνl × a × h0. (3)

The representative velocity is the quotient of Q0 and the cross section of the liquid
layer in the channel (A):

U0 = Qmax

A
. (4)

In this last equation, A = H × P , where H is the width of the channel and P is
the depth of the liquid layer. In all experiments the depth of liquid is P = 4cm.
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3 Results

3.1 Channel Width of 2.5 Centimeters

The experiments were conducted to detect the accumulation of particles after thou-
sand of periods. For this case, the channel width is 2.5cm and the driving frequency is
0.08Hz. The experiment lasted for 15h, which corresponds approximately to 4,000
periods. In a tidally induced flow 4,000 periods are approximately 6 years. Accord-
ing to Eqs. 3 and 4 the values of maximal flow rate and the representative velocity
are respectively: Q0 = 3.47 × 10−4 m3/s and U = 0.3468m/s. So the flow has a
Reynolds number Re = 8,700 and a Strouhal number S = 0.006.

In Fig. 2 we present a snapshot of the final distribution of particles. In this figure
we see how the flow lifts the particles and moves them away from their original
positions. As we stated, we start with particles uniformly distributed on the bottom.
After several periods, a fraction of the particles have been completely removed from
their initial position in the channel and near the channel outlet. After thousands of
periods the particles initially located in front of the channel have been removed. The
region for which particles are expelled extends a little more than 20cm (8H) along
the axis of symmetry and has a width of approximately 8cm (3.2H).

Under these conditions the particle distribution remains symmetric. Particles
concentrate inside the channel and a trough is formed in front of it, in the opendomain.
This last structure has been observed in coastal system by Amoroso and Gagliardini
(2010). The concentration of particles inside the channel has been reported in a
numerical simulation but only over 15 periods (López-Sánchez and Ruiz-Chavarría
2013a).

Fig. 2 Distribution of sand
in the system after 15h of
forcing. The channel width is
2.5cm and the driving period
is 12.5 s. Particles
concentrate inside the
channel and a trough appears
in front of the channel
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3.2 Channel Width of 3 Centimeters

Another experiment was made under the following conditions: the channel width is
H = 3cm and the driving frequency is 0.05Hz. Then, the maximal flow rate and
the representative velocity are: Q0 = 6.77 × 10−5m3/s and U = 0.056m/s. The
Reynolds and Strouhal numbers are respectively Re = 1,400 and S = 0.035.

In Fig. 3 we show the final distribution of particles in the channel and in a section
of the larger domain. This distribution has a similar shape to those obtained in numer-
ical simulations reported by López-Sánchez and Ruiz-Chavarría (2013b). The sand
accumulates into the channel, near to its mouth and again a trough is formed in front
of it. The trough extends about four times the channel width. However, there are
some differences. That is, the length of the zone without particles in the numerical
simulation is twice the corresponding region in this experiment.

3.3 Channel Width of 5 Centimeters

We made a third experiment with a 5cm channel width and a driving frequency
of 0.08Hz. The experiment lasted for 18h. The values of maximal flow rate and
representative velocity are: Q0 = 3.47 × 10−4 m3/s and U = 0.173m/s. So the
flow has a Reynolds number Re = 8,700 and a Strouhal number S = 0.023. The
experiment extends over 5,200 periods. In a tidal induced flow this corresponds to a
seven year. The final particle distribution is shown in Fig. 4. The particle distribution
is not similar to the previous cases, since the white spots indicating the absence
of particles are not symmetrical. The size of the trough is approximately twice the
channel width. On the other hand, it is important to remark the appearance of two
regions where particles (see Fig. 5) deposit. This regions are outside the area where
particles were initially collocated. Such regions are situated to both sides of the
symmetry axis and extend until the position where the dipole dissipates. In this sense
we can state that the presence of the vortices enhances the particle transport.

Fig. 3 Final distribution of
particles in a experiment
with the following
conditions: H = 3cm, f =
0.05, Re = 1,400, S = 0.035
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Fig. 4 Distribution of sand in the system after 18h of forcing. The channel width is 5cm and the
driving period is 12.5 s. The trough in front of the channel has a approximately a length two times H

Fig. 5 Accumulation of particles after over 5,200 forcing periods. The channel width is 5cm. There
are two regions around the symmetry axis where particles deposit

4 Conclusions

In this paper we have shown some experimental results on the motion of particles in
a periodic forced flow. We observe the formation of a trough in front of the channel,
in agreement with data reported in previous papers. On the other hand, the particles
inside andnear the channel are subject to larger velocity gradients although the overall
displacement is small. The final result is that these particles do not move away and
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form a sand bank into the channel. With respect to the relation between the motion
of particles and vortices we can assert the following: the dipole and the spanwise
vortices are structures that enhance the particle transport. Particles are sucked in the
region between vortices and are expelled forward. It is important to note that the
accumulation of particles coincides with the region where the dipole moves. Finally,
the experimental observations are consistent with numerical (López-Sánchez and
Ruiz-Chavarría 2013a) and observational (Amoroso and Gagliardini 2010; de Swart
and Zimmerman 2009) results reported in the literature.

Acknowledgments Authors acknowledge DGAPA-UNAM by support under project IN116312,
“Vorticidad y ondas no lineales en fluidos”.
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Numerical and Simplified Analytical
Solutions for Typical Spillways

F. Rojano, A. Rojano, W. Ojeda, R. Mercado, M. Iniguez
and T. Espinosa

Abstract The present work compares the numerical solution and the simplified
analytical solution to describe behavior of spillways. Specifically, the study focuses
on the identification of the water fall profile formed at crossing a spillway. Both,
the numerical and simplified analytical solutions are derived from the Navier-Stokes
equations. The numerical solution can take into account information regarding the
velocities, pressure and sources distributed in space within the regime of turbulence.
However, numerical solutions provide detailed information that usually demand a
significant amount of time and computational resources. Alternatively, the simplified
analytical solution can be reduced to the most important variables such as the head
of water arrival and the slope of the facing. Such simplification can incorporate
additional information obtained from numerical solutions to improve the accuracy
of the predictions. The objective of this study is to show how the simplified analytical
solutions can better describe the water fall profiles due to a modification that takes into
account a limited number of numerical solutions. This modified analytical solution
uses the Reynolds number (Re) and the coefficient (a) associated to the turbulent
regime.
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1 Introduction

The representation of water flow in spillways is widely studied due to the outnumbered
scenarios that their design and operation bring. The necessity to analyze simultane-
ously the water properties, the operating conditions and the design of interest can
demand a significant amount of time and computational resources in order to obtain
successful solutions. Particular projects of high impact justify the detailed investi-
gation to improve the design and efficient operation of spillways. However, in many
other cases, a quick calculation through simplified equations can give an acceptable
and meaningful outcome in advance.

The aim of this work is to improve the suggested equation presented by Arreguin
(2000) and analyzed by Mercado et al. (2013) that describes the water fall profile
of a spillway. Mercado et al. (2013) points out that the simplified analytical equa-
tion is adequately determined and considers the more significant variables: head of
water arrival and the slope of the facing. The same equation has also been studied in
Iniguez-Covarrubias et al. (2012) by summarizing various investigations. Both stud-
ies (Iniguez-Covarrubias et al. 2012; Mercado et al. 2013) bring the interest to further
comparisons of the simplified analytical equation with results of a set of numerical
solutions.

Furthermore, a proposal for a modification of the simplified analytical solution
presented by Arreguin (2000) and originally introduced by the USBR (US Bureau of
Reclamation) is presented. The modification suggested takes into account the results
obtained in a series of numerical solutions using Computational Fluid Dynamics
(CFD) through Fluent (2013). An exemplary set of two spillways that were previously
studied in Mercado et al. (2013) is provided. CFD results served as a demonstration
of the benefits in a suitable modification of the simplified analytical solution.

2 Problem Formulation

The water crossing a spillway forms a crest that has been studied using different
techniques. For instance, the Navier-Stokes equations covering the inertial, viscous
and external forces are capable to reproduce the water dynamics in a spillway includ-
ing the turbulence phenomena. Nonetheless, difficulties related to the free boundary
layer (Hirt et al. 1970), between the two phases: air and water, require the use of Vol-
ume of Fluid (VOF) approach to get the numerical solution. This kind of simulations
in large domains may imply intensive use of computational resources; consequently,
simplified analytical solutions have been used for prediction of the water fall profile
avoiding the turbulence phenomena. In this prospect, the present work finds a relation
between the numerical and simplified analytical solutions to enhance the prediction.

The simplified analytical solution (Eq. 1) deals with coefficients such as the head
of arrival and the slope of the facing to determine the water fall profile; and values
can be found in Arreguin (2000)

y = k × xn. (1)
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Mercado et al. (2013) proved that Eq. 1 was properly derived from the Navier-Stokes
equations after a series of assumptions and simplifications. The deduced Eq. 1 takes
care only of inertial forces; however, spillways operate under turbulent conditions,
which mean that viscous and inertial forces determine the flow behavior. Furthermore,
phenomena occurring at the spillway water discharge can certainly change the water
dynamics significantly, such as the conversion of kinetic to potential energy at the
moment of the spillway discharge; the air entrainment at the boundary layer between
air and water; the surface ondulation; free surface instabilities and others. Thus, Eq. 1
can be improved by considering the Reynolds number (Re) and the coefficient (a)
that incorporate the phenomena that occur in the water fall profile within turbulence
regime.

The proposal in this work suggests a methodology that allows the improvement in
the prediction of Eq. 1 after a limited number of numerical solutions in two spillways
with similar design but different dimensions. Then, the term k in Eq. 1 can be replaced
by a/Re in Eq. 2 in order to increase the accuracy of those calculations.

y =
( a

Re

)
× xn. (2)

This investigation evaluates two types of spillways as study cases (A and B) but
similar characteristics in the design. The numerical solution of each case was found
through Fluent (2013). The dimensions in each case are specified in Table 1 and
indicated in Fig. 1. Six simulations in total were performed in steady state conditions.
Five simulations were used to identify the coefficient (a) in Eq. 2 and the results of

Table 1 Spillway specifications

Symbol Cases Units

A B

Width L 35.8 86.4 m

Head Ho var var m

Height of domain H1 2(Ho+P) 2(Ho+P) m

Length of upstream spillway W1 1.5(Ho+P) 1.5(Ho+P) m

Length of downstream spillway W2 5(Ho+P) 5(Ho+P) m

Height of dam P 3.5 34.2 m

Discharge Q var var m3s−1

Hydraulic ratio hr var var m

Fig. 1 Dimensions of the
spillway



460 F. Rojano et al.

Table 2 Study cases Spillway Flow (m3 s−1) Reynolds (×105)

A1 5,000 2,088

A2 6,500 2,714

A3 8,000 3,341

B1 16,655 3,222

B2 18,155 3,512

B3 19,655 3,808

one simulation were used to validate Eq. 2. The operating conditions given for each
of the six cases are indicated in Table 2.

Three scenarios for each case (A and B) were simulated. The two types of spillways
were taken with the same specifications as the ones mentioned in Mercado et al.
(2013) with the same operating conditions that were included as case A2 and B2.

A RANS (Reynolds Averaged Navier-Stokes) model was used (Eq. 3).

∂uj φ

∂xj
= ∂

∂xj

(
�φ

∂ φ

∂xj

)
+ Sφ (3)

where φ is the variable of interest (velocity in the j direction, turbulent kinetic
energy and dissipation kinetic energy). �φ is the diffusion coefficient and Sφ is
the source term. Through the two-equation approach (κ − ε), the turbulence effects
were included. The model κ − ε realizable was used and additional parameters were
defined based on Eq. 4 (Fluent 2013).

κ = 3

2
(uI)2; ε = cμ

0.75κ1.5lt
−1; I = 0.16Re−1/8 and lt = 0.07L (4)

where Re is the Reynolds number, I is the turbulence intensity, in percent (%). lt is the
turbulence length scale in m. κ and ε are the turbulent kinetic and dissipation energy,
respectively, in m2s−2. cu is equal to 0.09. L is the characteristic length of the spill-
way, in m. Additional parameters for the same model were defined as C1−ε = 1.44
and C2−ε = 1.92.

This problem demands a free water surface simulation between the two phases
(air and water) under the presence of instabilities during the spillway water fall.
The model used the VOF approach in order to represent simultaneously in the same
domain the interaction of air and water phases. The VOF method is followed since it
has been successfully utilized in previous investigations (Ferrari 2010; Chakib 2013;
Mohammadpour et al. 2013).

3 Results and Discussion

A series of grids with different number of cells were created. Each grid was evaluated
in order to verify stability of the results. The process to obtain a convenient grid
consisted of incrementing the number of cells uniformly at the whole domain with
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a rate of 1.65. An evaluation of each one of the grids has been performed with
Fluent (2013) by implementing the momentum equation until the water velocity at
the spillway had stable results and it was found a variation of less than 5 % between
the previous and current grid. The settings followed during the test of each grid
correspond to the cases A2 and B2, for the spillway type A and B, respectively. The
grid chosen was made of structured tetrahedral cells with a maximum ratio between
cells of 22, y+ values to be less than 300 and skewness less than 0.9 as recommended
by Fluent (2013). The grids evaluated and chosen were for the cases A and B with
540,000 and 740,000 cells, respectively.

In both cases the water velocity inlet was assumed to be a constant. No slip
conditions were fixed at any wall with a roughness coefficient of 0.5. The turbulence
model was also defined in Fluent (2013) according to Eqs. 3 and 4. The SIMPLE
method (Semi Implicit Pressure Linked Equation) linking pressure and velocity was
used in conjunction with the second order upwind scheme for the discretization of
Eq. 3. The solution was found when the residuals were less than 10−5. This condition
was imposed to the x and y velocity, kinetic energy, turbulence energy dissipation,
air phase and continuity.

The numerical results were found for each of the six cases indicated in Table 2.
For instance, Fig. 2 indicates the numerical solution of the water fall profile indi-
cating the water velocity and additionally how the spillway water discharge creates
water recirculation at the downstream zone of the spillway. This water recirculation
modifies the water fall profile based on the spillway operating conditions.

For all the operating conditions shown in Table 2 the water fall profile was
obtained. Then, coefficient (a) of Eq. 2 was found using n equal to 1.84 and con-
sidering all the cases but not the case A2. The water fall profile predicted by Eq. 2
was adjusted by means of the coefficient (a) until it was similar for at least 90 %
of the water fall profile found in the numerical solution. The summary of the five
cases were plotted in Fig. 3 where it was easy to identify a correlation between the
coefficient (a) and (Re).

The linear regression from five numerical solutions and indicated in Fig. 2 was
then used to estimate the corresponding value of the coefficient (a) for the case A2
by means of the Reynolds number. The prediction obtained of Eq. 2 in the case A2

Fig. 2 Velocity gradient of
the water fall profile of
spillway B2
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Fig. 3 Identification of
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was compared with Eq. 1 and the numerical solution, presenting the results in Fig. 4.
The comparison shows that Eq. 2 significantly enhances the prediction and proves
that an additional coefficient reduces the effort demanded in an evaluation of several
scenarios through numerical solutions for a spillway with the same characteristics in
the design.

Investigations related to the implementation of Eq. 2 for a set of numerical solu-
tions with spillways of different characteristics in the design requires further analysis.
For instance differences in a set of spillways with a marked difference in the slope
of the wall at the upstream or downstream side of the spillway may affect the water
flow behavior significantly.

4 Conclusions

This work presents a proposal to evaluate the predicted water fall profile for a spill-
way with no slope at any of the two faces. The modification in a simplified analytical
equation consists only in the addition of the (Re) and an associated coefficient (a)
as parameters that can include all the phenomena happening in a spillway water
fall under turbulent conditions. The coefficient (a) will be reliable within a regime
of operation of the spillway previously evaluated through numerical solutions. The
inclusion of the coefficient (a) does not increase the difficulty in quick calcula-
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tions; rather, Eq. 2 can be more reliable for prediction purposes. Also, five numerical
solutions that include different operating conditions in two spillways with similar
design but different dimensions can be enough to improve the accuracy of a spillway
water fall profile.
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Modeling and Simulation of a Biopolymer
Processing in a Single Screw Extruder

U. Romero Ortiz, A. López Villa and R.O. Vargas Aguilar

Abstract Modeling and numerical simulation of a biopolymer processing in a single
screw extruder is developed. Polylactic acid (PLA) is one of the natural polymers
proposed as a substitute for synthetic polymers because of the similarity in physical
properties as well as processing conditions. The PLA behaves as a shear thinning
fluid, in order to involve this feature the Power Law model is used as a constitutive
equation and the temperature dependent viscosity is also considered. The model is
validated comparing typical flow curves of a Newtonian fluid generated by the model
with results previously reported in the literature. Finally, the drag flows and pressure
flows are analyzed, the effect of the power index and the flow curves for Newtonian
and non-Newtonian fluids are compared.

1 Introduction

Polymer extrusion is a process that offers advantages overmost plastic transformation
processes and with an economic cost with respect to any other. The single screw
extruder is the most common equipment in the polymer industry. It can be part of an
injection molding unit and found in numerous other extrusion processes, including
blow molding, film blowing, and wire coating (Bird et al. 1960).

Environmental concerns have led over the past years to growing over new solution
for plastics, “green plastics” have been motivated by two specific goals: reduc-
ing dependence of plastic production on petroleum supplies and developing solu-
tions to plastic waste accumulation. The development of biodegradable polymers
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is an option to use renewable resources and to reduce waste. Thermoplastic starch
(TPS), polyhydroxyalkanoates (PHAs), polylactides and their blends are promising
candidates for such replacement and are subject to many researches. Polylactic acid
(PLA) has been intensively investigated in past years. This biodegradable polyester,
which can be used in many applications from packaging to biocompatible materi-
als, has a thermoplastic behavior combined with high mechanical performance, good
appearance and low toxicity (Jamshidian et al. 2010).Due to its similar characteristics
to other polymers such as polyethylene terephthalate (PET), high impact polystyrene
(HIPS), and polyvinylchloride (PVC), the PLA is proposed as a substitute for these
synthetic polymers.

This work presents the modeling and the simulation of the PLA processing in
a single screw extruder. The model is based on the momentum equation coupled
with the energy equation through physical parameters considering the rheological
behavior of the PLA reported by Jacobsen et al. (2000) and Mehta et al. (2005).

2 Development

A single screw extruder consists of one screw rotating in a closely fitting barrel; the
transport mechanism is based on friction between the polymer and the walls of the
channel as shown in Fig. 1. The material enters through the feed throat (feed hopper)
and comes into contact with the screw and in the final part of the barrel there is a die
which gives the final product its profile.

The governing equations describing this problem, with the assumption of constant
density, are the continuity equation:

∇ · ν = 0, (1)

the momentum equation:

ρ
Dν

Dt
= −∇ p + ∇ · σ= + f , (2)

Fig. 1 Single screw extruder
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and the energy equation:

DT

Dt
= ∇ · K ∇T + σ= : ∇ν, (3)

where ν, p, K, ρ and σ= denotes the velocity, pressure, thermal conductivity, density

and the stress tensor, respectively.
As a first step in addressing the problem we assume that the screw is stationary

and the barrel is rotatory, it is also assumed that the screw can be unrolled.

• The flow is time independent, fully developed and only occurs in a longitudinal
direction (z axis).

• An incompressible fluid with constant thermal conductivity (k = constant) and
non-Newtonian (power law model) is considered.

• Constant pressure gradient along the channel.
• The viscosity depends on the shear rate and on the temperate.

Because the PLA is a polymer in which their behavior is shear rate dependent
(non-Newtonian), the power law model is used as a constitutive model coupled with
the energy equation.

η(γ̇ ) = m(T )γ̇ n−1, (4)

where
m(T ) = m0e−a(T −T0), (5)

a = is a constant with units
[ 1

T

]
.

It is preferable to work in dimensionless terms, so defining the following dimen-
sionless variables:

ξ = y

H
, φ = νz

V
, θ = a(T − T0), (6)

the velocity profile is

φ′ = −
[(Gξ + M1)eθ ]1/n, (7)

subjected with the following boundary conditions

φ
′
(ξ = 0) = 0, φ

′
(ξ = 1) = 1, (8)

where


 = H
V

1

η
1/n
0

, G = �p

L
H, (9)

where M1 is an integration constant.
In the same way the temperature profile is:

θ ′′ + β[(Gξ + M1)eθ ]1/n(Gξ + M1) = 0, (10)
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with the corresponding boundary conditions

θ ′(ξ = 0) = 0, θ(ξ = 1) = θw (11)

In order to obtain approximate solutions of these differential equations the numerical
method used is based on orthogonal collocation. The solution is achieved through
a series of known trial functions; these series of functions are called test functions,
which are studied in the differential equation and the result is called the residual. We
employ orthogonal collocation using the Jacobi polynomials for the flow problem
considered in this work. Therefore by applying themethod of placement it is required
that:

θ ′′ =
∑N+2

i=1
B jiθi , φ′ =

∑N+2

i=1
Aliφi , (12)

where j = 1, 2, . . . , N + 2.

Quantities B ji and Ali are the components of the matrix formed by the Jacobi
polynomials which correspond to the discretized forms of the corresponding deriv-
atives (Villadsen and Michelsen 1978). Convergence is accomplished by successive
calculations and the use of collocation points which are similar to the mesh points
or nodes in finite difference methods.

3 Results and Discussion

In this section, the numerical predictions for the PLA processing in a single screw
extruder are presented. The model was solved using the programming language
FORTRAN.

The proposed model is validated by comparing typical curves for the Newtonian
case published in the literature, in this case the Couette flow according to Tadmor and
Gogos (2006). Figure2 shows only the contribution of the drag flow, a straight line

Fig. 2 Dimensionless
simple shear flow
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Fig. 3 Velocity profile
created by combining drag
flows and pressure flows with
a positive pressure gradient

Fig. 4 Velocity profile
generated by the
combination of drag and
pressure flows with positive
pressure gradient for
different values of power law
index “n”

with slope equal to the viscosity is obtained, as expected. In Fig. 3 the combination
of the drag flow and the pressure flow generated by a positive gradient pressure for
a Newtonian fluid is shown.

Figure4 shows the effect of the power law index “n” in the velocity profile gen-
erated by the combination of drag and pressure flows, as expected for shear thinning
fluid with reducing “n” the viscosity decreases, thus having a lower resistance to
flow modifying the velocity profile.

The temperature profile for different screw speeds is shown in Fig. 5. The model
considers the viscous dissipation term. This implies that increasing the velocity there
also increases the fluid temperature as shown in this figure. This is very important
when setting the operating conditions because at high screw speeds the screw can be
degraded thermally and mechanically affecting the final product.
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Fig. 5 Temperature profile
at different screw speeds
with: �P = 3,000 psi,
n =1/3

Φ=0.25

Φ=0.5

Φ=1

Fig. 6 Stress depending on
the deformation rate for a
Newtonian fluid

Figure6 presents the flow curve for a Newtonian fluid which shows that the rela-
tionship between the stress tensor and the shear rate is linear. In this case the viscosity
is independent of the shear rate according to Tadmor and Gogos (2006). For a non-
Newtonian fluid the shear stress varies non-linearly with the shear rate as shown in
Fig. 7. The behavior in Fig. 7 describes a pseudoplastic or shear thinning fluid, which
is correct for the biopolymer considered in this work.
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Fig. 7 Stress depending on
the deformation rate for a
non-Newtonian fluid n = 1/5

4 Conclusions

In this work, the modeling and simulation of a biopolymer PLA processing in a
single screw extruder is performed. The development of biodegradable polymers is
an option to use renewable resources and to reduce waste. PLA can be used in many
applications and is proposed as a substitute for synthetic polymers.

The model is validated by comparing the Newtonian case with results from the
literature, this simple model captures the Newtonian and non-Newtonian behavior
shown in the flow curves of the shear stress as a function of the shear rate. The Power
Law model is versatile in the processing of materials because the temperature and
shear rate dependence of viscosity can be easily included. The results show that this
model is simple and easy to implement for analyzing a variety of alternatives to
improve this attractive sustainable process.
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An Analytical Solution for Friction Stir
Welding of an AISI 1018 Steel

V.H. Ferrer L., C.A. Hernández C. and R.O. Vargas Aguilar

Abstract Friction stir welding process has been usually studied from the solid
mechanics point of view although the use of CFD’s techniques has been increas-
ing for the numerical treatment of the problem. In this work, a simple analytical
solution using series expansions for Cauchy momentum and energy equation-set is
obtained. The Power Law model takes into account the shear thinning fluid and the
Arrhenius-type relationship the temperature dependent viscosity. Friction dissipation
as an external heat source is considered.

1 Introduction

Friction Stir Welding (FSW) is a solid state welding process used for joining similar
and dissimilar metal alloys. Thomas et al. (1991) patented this process in 1991
and developed it at The Welding Institute (TWI). Several authors have analyzed
momentum and heat transfer problem in FSW. Heurtier et al. (2006) developed a
kinematical model to determine material flow and temperature distribution in the stir
zone. Three flow fields were solved analytically using potential flow theory (Nunes
2001). Other authors (Nandan et al. 2007; Cho et al. 2013), considered Perzyna’s
model (Perzyna 1966) to take into account viscoplastic response during material
processing in the stir zone. Heurtier et al. (2006) also considered both viscous and
friction dissipation in tool/workpiece interface and heat transfer by conduction only,
for an AA2024-T351 aluminium alloy. Schmidt et al. (2004) proposed an analytical
model for heat generation regarding viscous and friction dissipation, they simplified
the problem by considering shear strain only.
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ESIME Azcapotzalco, Instituto Politécnico Nacional, Avenida de las Granjas No. 682,
Col. Santa Catarina, Deleg. Azcapotzalco, 02250 México, D.F., Mexico
e-mail: cahernandezc@ipn.com

© Springer International Publishing Switzerland 2015
J. Klapp et al. (eds.), Selected Topics of Computational and
Experimental Fluid Mechanics, Environmental Science and Engineering,
DOI 10.1007/978-3-319-11487-3_37

473



474 V.H. Ferrer L. et al.

2 Mathematical Models

2.1 Perzyna’s Model

Basedon themathematical relationofNaghdi andMurch (1963) betweenviscoplastic
strain rate and the derivative of a potential function respect to the deviatoric stress
tensor, Perzyna (1966) proposed a model in which the strain rate tensor ε̇

v p
i j depends

on the yield stress k1 as
ε̇

v p
i j = 1

2μ
Si j 〈1 − k1√

J2
〉. (1)

Here 〈 〉 stands for Macauley brackets; m is the material shear modulus; Si j is the
stress deviator; and J2 is the second invariant. Based on the expressions for effective
stress and effective strain rate (Bathe 1996), Perzyna (1966) obtained a relationship
for the viscosity μ in terms of the effective stress σ̄ and effective strain rate ˙̄ε:

μ = σ̄

3 ˙̄ε . (2)

2.2 Viscosity Power Law Model

One of the simplest and most widely used equations for modelling viscosity in a
non-Newtonian fluid flow with shear thickening and dilatant behaviour was devised
by Ostwald (1975):

μ = mγ̇n−1, (3)

where m(N sn/m2) and n are the consistency and index coefficients, respectively.
The m parameter depends on temperature as follows:

m = m0 exp

[
ΔE

R

(
1

T
− 1

T0

)]
, (4)

where m0 is the viscosity at T0, ΔE is the activation energy for the process, R is
the universal constant of gases, T0 is a reference temperature and T is the process
temperature. By making some arrangements the following expression is obtained:

m = m0 exp [−a(T − T0)] . (5)

2.3 Heat Generation Schmidt Model

Schmidt and Hattel (2008) proposed that heat generation during FSW is a function
of tool geometry, tool plunge force and material yield stress. Viscous dissipation was
computed in his work as ¯̄τ : ∇ V̄ . So, heat generation by friction q f [W m−2] in the
tool/workpiece interface is:
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q f = δ μ f P (ω − U ), (6)

where μ f is the friction coefficient, P is the pressure plunge, ω and U are the
angular and weld speed, respectively. Here δ is the contact state variable or extent of
slip which defines the influence of welding tool slipping in the heat generation (Deng
et al. 2001):

δ = 1 − exp

(
− 1

δ0

ω

ω0

Rp

Rs

)
. (7)

In the above expression ω is the welding tool normalized angular frequency, Rp and
Rs are the pin and shoulder radii, respectively; δ0 is a constant; and ω0 is the angular
velocity of a reference welding condition.

3 Mathematical Formulation

For this problema steady-state process is assumed.AISI 1018 steel is incompressible,
thermal conductivity is constant in the mathematical domain. In the velocity vector,
only the êi component prevails, which is in x direction. Velocity and temperature
are functions that depend only the y direction. Dimensionless variables are defined
in Table1. The weld speed U , the difference between shoulder and pin radii H ,
reference temperatures T0 and T1 are macroscopic variables that are established in
the process.

Figure1 depicts the mathematical domain and boundary conditions for the 1-D
case. The continuity (8), momentum (9) and energy (10) equations are solved using
a series expansion.

∂φ

∂α
= 0, (8)

Table 1 Dimensionless
variables

φ = Vx
U α = x

H γ = y
H

θ = T −T0
T1−T0

π = pHn

m0U n b = −a(T1 − T0)

Fig. 1 Scheme and
boundary conditions
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∂

∂γ

[
ebθ

(
∂φ

∂γ

)n]
= ∂π

∂α
, (9)

∂2θ

∂γ2 + Br · ebθ

(
∂φ

∂γ

)n+1

+ Aγ = 0, (10)

A = H3ω δ μ f P (R3
s − R3

p)

λ R3
s k (T1 − T0)

, (11)

Br = U n+1 m0

Hn−1 k (T1 − T0)
, (12)

where φ is a dimensionless velocity, α is the x dimensionless position, γ is the y
dimensionless position, θ is the normalized temperature, π is the thermodynamic
pressure, A is the heat generation term, and Br is the Brinkman number. For solv-
ing Eqs. (8)–(10) and decoupling the system series expansions for φ and θ with a
truncation of order O(ε2) is proposed:

φ = φ0 + εφ1 + ε2φ2 + O(ε3), (13)

θ = θ0 + εθ1 + ε2θ2 + O(ε3), (14)

ε = Br. (15)

The decoupled system of equations become:
O(1)

d

dγ

[
ebθ0

(
dφ0

dγ

)n]
= ∂π

∂α
, (16)

d2θ0

dγ2 + A γ = 0, (17)

O(ε)

d

dγ

{
ebθ0

[
bθ1

(
dφ0

dγ

)n

+ n

(
dφ0

dγ

)n−1 (
dφ1

dγ

)]}
, (18)

d2θ0

dγ2 + ebθ0

(
dφ0

dγ

)
= 0, (19)



An Analytical Solution for Friction Stir Welding of an AISI 1018 Steel 477

O(ε2)

d

dγ

{
ebθ0

[(
(bθ1)

2

2
+ bθ2

) (
dφ0

dγ

)n

+ n

(
bθ1

dφ0

dγ
+ dφ2

dγ

)n−1 (
dφ1

dγ

)

− n2 − n

2

(
dφ0

dγ

)n−2 (
dφ1

dγ

)2
] }

= 0, (20)

d2θ0

dγ2 + ebθ0

[
bθ1

(
dφ0

dγ

n+1
)

+ (n + 1)

(
dφ0

dγ

)n (
dφ1

dγ

)]
= 0. (21)

The above equations are subjected to the following boundary conditions:

γ = 0; φ0 = 0; θ0 = 0; φ1 = 0; θ1 = 0; φ2 = 0; θ2 = 0

γ = 1; φ0 = ωRp(1 − δ)

U
; θ0 = 1; φ1 = 0; θ1 = 0; φ1 = 0; θ1 = 0

(22)

The solution of Eqs. (16)–(21) was carried out for n = 1
3 ,

1
2 ,

2
3 ,

3
4 , 1. The value of

n = 1 represents a Newtonian regime as a way to validate the solution. Furthermore
a recursive solution for whatever value of 0 < n ≤ 1 (Eqs. (23)–(28)) is obtained.
Figure2 shows a comparison between the analytical solution using power law model
and the numerical solution using Perzyna’s model, employing data given in Table2

φ0 = n exp
(− 1

n bθ0
)

c0 (n + 1)

[
(c0 γ + c1)

1+n
n − c

1+n
n

1

]
, (23)

θ0 = A

6

(
γ − γ3

)
+ γ, (24)

Table 2 Material’s
properties and data used in
the calculations

Property/parameter Value

Pin radius, mm 3.95

Shoulder radius, mm 9.50

Characteristic length H, mm 5.75

Welding speed U, mm 0.31

Workpiece material AISI 1018

AISI 1018 density, kg m−3 7860.00

Pressure plunge, MPa 65.90

Conductivity, W m−1K−1 30.00

T0 temperature, K 1242.00

T1 temperature, K 1552.00

m0, Pa sn 3.5 ×106

n 1/3, 1/2, 2/3, 3/4, 1.0
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(a) (b)

Fig. 2 Comparison between analytical non-Newtonian model with different n values to Perzyna’s
model (Perzyna 1966). a Dimensionless velocity φ as a function of dimensionless length γ. b
Dimensionless temperature θ as a function of dimensionless length γ

Fig. 3 Viscosity (Pa · s) as a
function of the shear strain
rate (s−1). Dimensional
parameters are recovered
from dimensionless one
depicted in Table1

φ1 = −bθ1 exp
(− 1

n bθ0
)

c0(n + 1)
(c0 γ + c1)

1+n
n , (25)

θ1 = − n2 exp
(− 1

n bθ0
)

c20(1 + 2n)(1 + 3n)

[
(c0 γ + c1)

1+3n
n

+
(

c
1+3n

n
1 − (c0 + c1)

1+3n
n

)
γ − c

1+3n
n

1

]
, (26)

φ2 =
[ 1
2n (bθ1)

2 − bθ2
]
exp

(− 1
n bθ0

)
c0(n + 1)

(c0 γ + c1)
1+n

n , (27)

θ2 = n bθ1 exp
(− 1

n bθ0
)

c20(1 + 2n)(1 + 3n)
(c0 γ + c1)

1+3n
n . (28)
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Figure3 shows that the viscosity of the AISI 1018 steel decreases with the shear
strain rate. Arora et al. (2009) reported that the strain rate during FSW is not more
than 10 s−1 by using numerical simulations.

The Reynolds (Re) and Brinkman (Br) numbers are evaluated, using data given
in Table2 and taking a value of n = 3

4 . Both numbers are very low, meaning that the
flow field is laminar and that viscosity has great influence in FSW (Chiumenti et al.
2013, p. 357). The results of the temperature profile for the Newtonian case are in
good agreement for low Br values, i.e.,

Re = ρHn

m0U n−2 = 1.92 × 10−9, (29)

Br = m0U n+1

k Hn−1(T1 − T0)
= 6.37 × 10−5. (30)

4 Conclusions

An analytical solution for the AISI 1018 steel deformation under friction stir welding
process has been presented. The deformed solid exhibits a non-Newtonian behavior.
We found that this behavior obeys aPowerLawmodel compared to thePerzinamodel.
Both models had similar behavior when n = 2

3 ,
3
4 . The steel dilatant behavior is

more related to the temperature than to the strain rate. The low values of Re and Br
numbers demonstrated that the laminar flow and the heat transfer mechanisms were
by conduction. Future work will entail refining our model in 2-D for getting a more
accurate solution.
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Numerical Simulation of Water Flow
in a Venturi Tube Using the Smoothed
Particle Hydrodynamics Method

C.E. Alvarado-Rodríguez, A. Aviles, J. Klapp and F.I. Gomez-Castro

Abstract A numerical simulation of water flow through a Venturi tube was made
with the DualSPHysics code, which uses the Smoothed Particle Hydrodynamics
(SPH) method. The dimensions of the simulated system are equal to the laboratory
experimental setup. The experimental data were measured in the laboratory using a
rotameter and a mercury manometer. The experimental and numerical results show
a similar behavior. Discharge coefficient values are obtained from the numerical
results.

1 Introduction

TheVenturi effect predicts that thewater pressure within a close conduct decreases as
the velocity increases. The velocity increment is induced by a reduction of the cross
section. A Venturi tube is a device initially designed to measure pipe fluid velocities.
However, it is used to accelerate the velocity of a fluid in devices where the velocity
of the fluid is important as, for example, in a carburator in an oxygen mask, and in
water air purifiers. The Venturi tube sections are shown in Fig. 1.

A stationary fluid flow is described by the Bernoulli equation

v2ρ

2
+ P + ρgz = constant. (1)
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Inlet
Inlet cone

Throat 

Outlet cone Outlet

Upstream pressure tap 

Downstream pressure tap

Fig. 1 Venturi tube: diagram and characteristics

From this equation, the volumetric flow Q that relates the volumetric flux with
the pressure loss in the system considering an incompressible fluid is given by

Q = C A0

√
2g(−�P)/ρ

(D0/D1)4 − 1
, (2)

where v is the velocity of the fluid, ρ the density, P the pressure, g the gravity acceler-
ation, z the height of the fluid,D1 the diameter of the straight section,D0 the diameter
of the throat, A0 the transversal area at the throat, and C a discharge coefficient.

2 The SPH Method

Nowadays theSmoothedParticleHydrodynamics (SPH)methodhas become increas-
ingly popular to study fluid dynamics. This method uses particles to represent the
domain which could contain fluid and boundaries. The particles are interpolation
points where properties of the fluid such as velocity, density, pressure and others are
calculated. In SPHwe can easily implement complicated physics and model systems
with a complex and irregular geometries.

The main characteristics of the SPH method has been described by Monaghan
(1982, 1992, 2005) and Liu (2003). The fundamental principle of the SPH method
consists in calculating an approximation of any function by means of an integral
interpolator

A(r) =
∫

A(r ′)W (r − r ′, h)dr ′, (3)

where W (r, h) is a weight function or kernel, and h is the smoothing length of the
weight function. Then Eq. (3) is approximated for any point with the sum

A(r) =
∑

b
mb

Ab

ρb
W (r − rb, h), (4)
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Fig. 2 h region where the
kernel is applied

2h

r

ab

b

b

b
b

b

bb

where the sum is over all particles (b) within the h region in the kernel function (see
Fig. 2). The mass and density are denoted by mb and ρb, respectively, such that the
volume of a particle is defined by Vb = mb

ρb
, and for the position vector r = ra ,

Wab = (ra − rb, h) is the kernel between particles a and b.
The momentum equation is written in the form

dv

dt
= − 1

ρ
∇ P + g + �, (5)

where � is a dissipative term, and g = −9.8 m/s2 is the gravity acceleration. In the
DualSPHysics code it is possible to solve Eq. (5) by two options: artificial viscosity
(Monaghan 1992) and laminar viscosity with sub-particle scale (Lo and Shao 2002;
Gotoh et al. 2001).Artificial viscositywas used in thiswork. Themomentumequation
in SPH notation is

dva

dt
= −

∑
b
mb

(
Pb

ρ2
b

+ Pa

ρ2
a

+ �ab

)
∇a Wab + g, (6)

where �ab is a viscosity term (Gomez-Gestéira et al. 2012).
The changes in the density are calculate by

dρa

dt
=

∑
b
mbvab∇a Wab. (7)

The equation of state is based on Monaghan (1994), where the fluid is considered
as weakly compressible and Eq. (8) determines the pressure of the fluid which is
written in the form

P = B

[(
ρ

ρ0

)γ

− 1

]
, (8)

where γ = 7, B = c20ρ0
γ

, being ρ0 = 1,000km/m3 the reference density, and c0 the
speed of sound at the reference density.
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L=36cm

d=1.6 cm

L=10cm L=8.5cm

D=4.7cm

Fig. 3 Geometry and dimensions of the Venturi tube

Fig. 4 a Flow control valve, b rotameter, c mercury manometer

3 Experimental Setup

The simulations were based in a device of the Chemical Engineering Laboratory
(Universidad de Guanajuato, México), with the geometry and dimensions as shown
in Fig. 3.

Thepressurewasmeasured for different volumetric fluxes. Thefluxwas controlled
with a flow control valve (Fig. 4a) and measured with a rotameter (Fig. 4b). The dif-
ference of pressure was measured with a mercury manometer evaluating the pressure
in mercury millimeters (Fig. 4c). The velocity was calculated by the volumetric flow
divided by the transversal area at the throat. The experiment was repeated five times.

4 Numerical Simulations

The numerical simulation was made using the DualSPHysics code that has been
developed on the C++ andCUDAplatform for solving the equations on the CPUs and
GPUs processors. A 2D systemwas used in the simulation, with the same dimensions
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Fig. 5 Initial system configuration in the simulation, the fluid particles are painted in blue and
the boundary particles in red. Black points indicate the places where velocities and pressure values
were calculated

of the laboratory device. The image of the Venturi tube was reproduced in Blender
v2.76 as a .stl file. From the .stl file a new Venturi tube was created with particles in
DualSPHysics (Fig. 5).

The fluid was represented by 558,078 particles with zero initial velocity. The
simulated time was 2s, saving results each 0.01 s.

5 Results and Discussion

Numerical and experimental resultswere obtained andcompared.The total simulation
time was 2.6h on a GeForce GTX 660M GPU card. Figure6 shows the experimen-
tal and numerical results and the comparison of both. Numerical and experimental
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Fig. 6 a Experimental results obtained in the laboratory, b numerical results obtained from the
simulation, and c comparison of numerical and experimental results
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results are in good accordance for velocities >1.5m/s. A pressure difference incre-
ment generate a velocity increment according to Eq. (2). The pressure difference
oscillations at low velocities are produced by the initial water height.

To verify the Venturi effect in the simulation, velocities and pressures where
calculated in five points across the Venturi tube (Fig. 7). Each point is separated by
17mm. Figure8 shows how the velocity and pressure change with time at the points
of Fig. 7. The obtained results are in accordance with the Venturi effect, given that, a
reduction in the transversal area produce a velocity increase and a pressure decrease.
Pressure oscillations are observed at the beginning of the simulation by the water
initial conditions.

From the numerical results, the discharge coefficient variation as a function of the
Reynolds number in the throat was calculated (Fig. 9). Similar results were obtained
by Mott (2006).

Fig. 7 Points in the Venturi tube where velocities and pressures are calculated
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Fig. 8 Numerical results: a Velocity as a function of time, b pressure as a function of time. Points
1, 2, 3, 4, and 5 are indicated in Fig. 7
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Fig. 9 Discharge coefficient
as a function of the Reynolds
number
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6 Conclusions

With the SPH method it is possible to obtain the Venturi effect in good agreement
with the experimental results. In the Venturi tube, the velocity increases as the pres-
sure difference increases. From the numerical results it was possible to obtain the
discharge coefficient as a function of the Reynolds number for Re < 12,000.
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Dynamic Behavior of a Drop on a Vertically
Oscillating Surface

Fátima Flores Galicia, Flor Guadalupe Haro Velázquez,
Gerardo Rangel Paredes, David Porta Zepeda,
Carlos Echeverría Arjonilla and Catalina Stern Forgach

Abstract In the present paper the dynamic behavior of a drop of water subject to a
vertical oscillating force is studied experimentally. A hydrophobic surface was used
to maintain the form of the drop. The deformation of the drop as a response to several
frequencies was analyzed by visualizing the oscillating patterns and measuring the
maximum height of the drop as a function of time. The dynamic behavior has been
classified in three phases: harmonic, geometric and chaotic.

1 Introduction

In the last few years, the study of the response to external forces of liquids lying on
an oscillating surface has been of great interest due to its applications in industry, in
geophysics and in seismology. In particular, themixing generated by internal currents
inside the drop is used in the pharmaceutical industry (Whitehill et al. 2010).
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Fig. 1 Experimental set-up

2 Background

When a drop is subject to oscillating vertical forces, the changes of its geometry are
strongly dependent on the frequency.

These changes have been classified by previous authors taking into account some
characteristics of the pattern formation and the variation in time of its height as a
response to frequency changes (Noblin et al. 2009; Sudo et al. 2010).

3 Experimental Set-Up

The experimental set-up, shown in Fig. 1, consists of a function generator connected
to a speaker overwhich an elasticmembrane is placed. Themembrane is coveredwith
Teflon, which is a hydrophobic material. A drop of water is placed on the membrane,
and its response is recorded by a high speed camera (Phantom Miro M310) and the
images analyzed in a computer with CINE Viewer.

4 Results

The geometry of the drop was recorded as the frequency was modified. Simultane-
ously, the side view of the drop was filmed and the height of its highest peak was
measured as a function of time.

Different types of patterns, named phases by some authors, were observed as the
frequency changed. The frequency interval for each phase is strongly dependent on
the volume of the drop.

4.1 Harmonic Phase

A drop of 60 µ1 of water was placed on the membrane. In a range of frequen-
cies between 1 and 31Hz the drop oscillates as a whole contracting and expanding
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Fig. 2 Harmonic phase in a drop with 60µl at 28Hz a expansion b contraction

Fig. 3 Height of a 60 µ1
drop at subject to a
frequency of 28Hz

periodically with respect to the central axis, at the same frequency of the external
force (Fig. 2).

The height of the dropwas determined as a function of time (Fig. 3). The frequency
of the drop is the same as the forcing frequency so the response can be considered
linear.

4.2 Geometric Phase

In this phase polygonal patterns appear. Two different volumes were studied: one of
60µl to analyze the heights as a function of time, and another of 200µl to obtain
better images.

It has been observed that as the frequency increases above the harmonic phase,
the polygons increase the number of sides. Figure4 shows two instants of a drop
of 200µl subject to a frequency of 43Hz. A two dimensional pentagonal stationary
wave is formed. The motion of the five nodes and antinodes is such that vertex and
sides switch periodically in a caleidocycle.

As the frequency is slightly increased (46Hz) the figure becomes an hexagon as
can be seen in Fig. 5. The behavior is also a caleidocycle.
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Fig. 4 a and b Top view, at two different times, of a drop of 200µl of water subject to a frequency
of 43Hz

Fig. 5 a and b Top view, at two different times, of a drop of 200µl of water subject to a frequency
of 46Hz

The geometric phase also has a periodic behavior. From the side view a
compression-expansion cycle is observed. The height of one of the peaks has been
measured as a function of time (Fig. 6).

4.3 Chaotic Phase

For a drop of 60µl vibrating between 41 and 56Hz a chaotic behavior can be
observed. The form is irregular, nodes and antinodes do not seem to have any con-
nection among them; the drop does not react as a whole. The variation of the height
is different for each node, and there is not a unique frequency of oscillation as can
be seen in Fig. 7.
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Fig. 6 Height as a function of time for a drop of 60µl subject to a frequency of 34Hz

Fig. 7 Images of the side view at different instants for a 60µl drop subject to a frequency of 48Hz,
taken at a camera speed of 3,200 frames per second

However, if the height of the highest peak in each image is measured as a function
of time, an almost periodic signal is obtained. Figure8 shows a signal with a main
period of about 0.21s. The non sinusoidal form of the wave corresponds to the
nonlinear behavior of the drop.

The chaotic phase is metastable. The drop can be easily broken with a small
perturbation, attaining an atomization stage. First, large oscillating fingers appear
and small droplets are ejected from the core as is shown in Fig. 9.

For 60µl the atomization phase is present at 56Hz. The break up of the drop
happens in two different ways:

• The energy is large enough so that the liquid in the fingers overcomes surface
tension and separates. These small droplets start oscillating harmonically.

• The fingers collide and form a jet that breaks up, due to gravity, into droplets. The
droplets oscillate in the harmonic phase.
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Fig. 8 Height of the highest peak as a function of time for a 60µl drop of water to a frequency of
48Hz

Fig. 9 Atomization of a drop of water of 60µl at a 56Hz b 75Hz

The nonlinearity of the phenomenon is clearly observedwhen the frequency is further
increased. The drop becomes stable again, and enters a geometric phase. If the change
of frequency is not continuous, the atomization phase does not appear, and the drop
goes from chaotic to geometric again. If the frequency is increased once again, a new
chaotic phase is attained.

In Fig. 10, it can be observed that if the frequency is changed from 24 to 55Hz,
the heights increase in each phase and from one phase to the next. Just before each
phase transition, the height is slightly lowered, probably due to the fact that most of
the energy is used in the transition.
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Fig. 10 Height of the peaks as a function of frequency

5 Conclusions and Future Work

It can be concluded that, as observed by previous authors, the dynamical behavior
of a drop subject to vertical oscillations can be classified in three phases:

(a) harmonic: the drop deforms as a whole in periodic expansions and contractions,
(b) geometric: a two dimensional stationary wave is produced showing polygonal

patterns,
(c) chaotic: the pattern is completely irregular and changes with time. There is a

critical value at which atomization starts; the drop breaks into droplets.

A periodic or quasiperiodic behavior of the heights has been observed depend-
ing on the phase. However, a more detailed analysis of the frequency spectrum is
required.

So far there is some information that the final state depends on the trajectory.
For example, after the chaotic phase, a geometric phase can be attained following
two different procedures. Future work will make a detailed study of the changes as
a function of frequency to determine critical values for each phase. Hysteresis will
also be searched for. These experiments will give information about the nonlinear
behavior of the phenomenon, and will probably provide elements for a numerical
simulation.

In particular, the spectrum of the signal in the chaotic phase should be analyzed.
So far, a main frequency can be determined but the signal is not sinusoidal.
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To see the video of the different phases go to the video https://www.youtube.com/
watch?v=7P_c1_peG4o, or use the QR.
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Critical Phenomena of a Drop Through
a Stratified Fluid

Verónica Álvarez González, Angélica Zarazúa Cruz,
Carlos Echeverría Arjonilla, David Porta Zepeda
and Catalina Stern Forgach

Abstract The present paper describes the dynamics of a drop as it falls through
a stratified fluid with two layers. As it enters the fluid, the drop forms an annular
vortex that suffers different deformation processes depending on the conditions of
the experiment. In this work, the only variables that have been modified are the
density of the drop and the height of the upper fluid. Images of the phenomena were
taken directly with a high speed video camera and through a shadowgraph set-up.
To access the videos of the experiment, a http address and a QR image are provided
at the end of the paper.

1 Introduction

Stratified fluids are common in nature due to differences in density or in temperature.
Probably the twoexamples that affect our daily lives are the atmosphere and theocean.
However, there are many industrial applications where the knowledge and control
of these phenomena are crucial. It is important to understand how mixing or the
dispersion of particles occur in these media. Sometimes, solid particles or vortical
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structures can be trapped inside the stratification for long periods of time and the
mixing process is altered (Camassa et al. 2013).

The behavior of a vortical structure of a miscible fluid as it traverses a stratified
medium is not well understood. When a drop enters a fluid of lower or equal den-
sity, an annular ring is formed. The structure falls due to gravity. In this study, the
interaction of such a structure with the interface between two layers of water with
different concentrations of salt is observed.

In general, for this process, eight parameters have to be considered: the density
of the drop, its radius, the densities of the two fluids, the height at which the drop is
released, the thicknesses of the two layers and the thickness of the interface. In the
present work, only the density of the drop, the height at which the drop is released
and the thickness of the upper layer are varied.

There is a maximum length of penetration before the vortex becomes unstable
and breaks. This length depends on initial and boundary conditions. The viscosity
decelerates the structure as it travels through the fluid, a Rayleigh-Taylor instability
appears and entails a collapse of the core (Camassa et al. 2013).

Four different behaviors were observed confirming results reported previously by
Camassa et al. (2011): Settling, Chandelier, Bounce and Core Fallout. They will be
described in the following section.

The shadowgraphs presented in this paper show better images than the ones that
appear in the literature.

2 Experimental Set-Up

A large glass container was filled with the two fluids. Salt water with a density of
1.027 g/cm3 is the bottom fluid; the upper fluid has a density of 0.99 g/cm3. A
densimeter with an uncertainty of 0.005 g/cm3 was used. The drop has a radius of
2mm and was always released at a height of 2cm from the free surface (Fig. 1). All
lengths were measured from the images with a precision of 0.01mm. As soon as
the drop touches the fluid, a toroidal vortex was formed. The thickness of the top
layer was varied from 10 to 40mm. The interface has a thickness between one and
two centimeters because a density gradient was created between the two fluids. The
container was filled up very carefully to avoid any mixing between the two fluids.

Two images of the phenomena were obtained simultaneously. A high speed black
and white video camera was pointed directly to the container. A color video camera
recorded images through a shadowgraph (Settles 2001). Figure2 shows the position
of the cameras.
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Fig. 1 Schema of the glass container

Fig. 2 Experimental set-up
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Fig. 3 Settling: Images on the left are shadowgraphs, images on the right are direct visualizations.
There is an interval of 2.37 s between (a) and (b), and 3.6 s between (b) and (c)

3 Results

In most cases the image obtained through a shadowgraph is more clear than the direct
image.

3.1 Settling

The densities of the drop and of the top fluid are the same. The vortex is formed as
the drop enters the fluid (Fig. 3a), it touches the interface and goes up again (Fig. 3b).
Then it starts to oscillate but settles on the top layer and eventually loses its form
(Fig. 3c). The interface appears as a clear shadow

3.2 Chandelier

When the thickness of the top layer is increased, the vortex ring seems to crash as it
enters the fluid; the core of the vortex is trapped but a slow fingering process starts
on the outside (Fig. 4). After a very long time, some fingers arrive at the interface
due to gravity but most of the material remains on the top layer.

In this case both types of images show the process quite clearly.

3.3 Core Fallout

In this case the drop has a bigger radius, hence more mass and is heavier. The core
goes down faster than the outside material, as opposed to the previous case. The
vortex ring touches the interface (Fig. 5a), rises in the form of a jellyfish (Fig. 5b)
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Fig. 4 Chandelier: There is an interval of 1.6 s between (a) and (b), and 1.4 s between (b) and (c)

Fig. 5 Core Fallout: The wake can be seen very clearly on panel (a). The vortex touches the
interface in (b), and a bubble in the middle of the core seems to make the vortex rise again

and stays floating in the middle of the top layer (Fig. 5c). A bubble is formed in the
middle of the core before the material rises from the interface.

3.4 Rebound

Both the radius of the drop and the thickness of the top layer are reduced. This time
the vortex ring touches (Fig. 6a) and traverses (Fig. 6b) the interface, then a bubble
is formed and the material rebounds (Fig. 6c).

All results are summarized on Table1.
Camassa et al. (2013) present a graph of stability, shown in Fig. 7, that relates

experimental to theoretical data. The experimental data of this work are presented in
the same figure.

The blue line shows the theoretical limit of stability. The green line shows the
experimental results presented in Camassa et al. (2011). The experimental results of
this work remain mostly in the trapped region, except for the rebound.
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Fig. 6 Rebound: The material traverses the interface. There is an interval of 1.21 s between (a) and
(b), and of 0.5 s between (b) and (c)

Table 1 Summary of results

Densities of
the layers
g/cm3

Phenomenon Density of the
drop (g/cm3)

±0.0005

Thickness of
the top layer
(cm) ±0.005

Height of
release of the
drop (cm)
±0.005

Radius of the
drop (mm)
±0.05

Top 0.990 Rebound 1.027 1 1 1.95

Settling 1.027 4 2 2.06

Lower 1.027 Core Fallout 1.040 3.5 At the free
surface

1.89

Chandelier 1.030 3 At the free
surface

1.77

Fig. 7 Stability diagram: the thickness of the top layer is on the vertical axis while the density
difference between the drop and the bottom layer appears on the horizontal axis. The blue line is
theoretical, the green line are Camassa’s results and the reults from this work are shown in red
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4 Conclusions and Future Work

The four phenomena reported by Camassa et al. were reproduced and observed with
a better visualization technique. Besides, in this paper the exact value of the initial
and boundary conditions are reported for each case.

Through the shadowgraphs the density gradient can be clearly observed, in par-
ticular the interface, the wake behind the vortex and the bubble.

From the experiments it can be concluded that the evolution and stability of a
vortex ring that moves through a stratified fluid is strongly dependent on the initial
and boundary conditions. This is typical of nonlinear systems. The process is difficult
to study theoretically and even numerically.

The transitions between different regions of stabilitywill be studied inmore detail.
The effect of changes in the parameters in the behavior of the vortex ring will be
recorded. Also, the behavior of a drop of a fluid immiscible in the other two, will be
analyzed.

To see the video of the experiments described in this paper go to the video: https://
www.youtube.com/watch?v=Txsw2NcUW2A or use the following QR:
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Accretion Centers Induced in a Molecular
Cloud Core After a Penetrating Collision

G. Arreaga-García and J. Klapp

Abstract The aim of this paper is to present a set of numerical simulations of a
penetrating collision, in which a small gas core (the bullet) penetrates a larger gas
core (the target). In the target core, the gravitational collapse is supposed to be
ongoing before the collision. Each colliding core has a uniform density profile and
rigid body rotation; besides the mass and size of the target core have been chosen
to represent the observed molecular cloud core L1544. We modified the Lagrangian
code Gagdet2 to identify when a gas particle can become an accretion center, and
to inherit the mass and momentum of all the very close neighboring particles. Three
collision models are here considered for pre-collision velocities v/c0 = 2.5, 5.0, and
10 Mach. The outcome of these collision models are presented only for two different
values of the bullet’s radius, that is for R0/4, and R0/2 where R0 is the radius of the
target core. Such collision models reveal how accretion centers are formed, with a
spatial distribution that strongly depends on the pre-collision velocity. We thus show
hereby that penetrating collisions may have a major and favorable influence in the
star formation process.

1 Introduction

Gas cloud collisions may play an important role in the star formation process by
altering the physical processes in the involved clouds, including their gravitational
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collapse, see for instance Arreaga-Garcia et al. (2014) and references there in.
Recently, Higuchi et al. (2014) presented line emission observations of the core
G.0253+0.016 with the Atacama Large Millimeter Array (ALMA) and proposed
that this dense cloud may have formed due to a collision between two dissimilar
clouds.

In this paper we consider a system of two gas spheres, the first one being the target
core and is constructed in a similar way to that originally suggested by Whitworth
and Ward-Thompson (2001), as an empirical model to study the collapse of the well
observed core L1544. The latter is unstable and would collapse toward a binary
system of protostars. The second and smaller gas sphere that we will call the bullet
is directed towards the target core. We are interested in investigating what happens
in this case.

Whether a penetrating collision does or does not help the fragmentation of the
target gas core is themain aim of this study. The target core is additionally considered
to be in counterclockwise rigid body rotation around the Z axis.

There are three physical processes participating in a gas collision: (i) the
self-gravity of the target core; (ii) the flow of particles of the bullet core, which
tend to diffuse within the target core, and (iii) the friction due to the viscosity of the
gas. The pre-collision velocity determines which of these physical process is more
important than another in a particular simulation, and therefore it determines the fate
of the collision system.

It is noteworthy that Anathpindika (2009) has also simulated collisions between
two clouds, considering an impact velocity within the Mach 25–35 range, and also
that dissimilar collision models were also considered by Anathpindika (2010). But
all their pre-collision clouds are initially in hydrodynamical equilibrium since they
were modeled as Bonnor-Ebert spheres.

2 The Colliding Cores

We consider two dissimilar spherical cores which undergo a head-on collision, as
illustrated in Fig. 1. The initial position (in rectangular coordinates (X, Y, Z)) of the
mass center (MC) of the target core is located at XT C = (0,−R0, R0), while theMC
for the onrushing core is located at XOC = (0, R0, R0). As previously mentioned,
R0 is the initial radius of the target core.

The pre-collision velocity Vapp (or impact velocity) is defined as the translational
velocity given to all the particles of the bullet core, in such a manner that its MC
moves with the velocity VOC = (0,−Vapp, 0). The target coreMC is initially at rest,
that is VT C = (0, 0, 0).

All the models of this paper deal with a gas sphere of radius R0 = 8.0 ×1016 cm,
and with an average density ρave = 3.0 × 10−18 g/cm3. The total mass in the target
core is M0 = 8 M�. It should be emphasized that Whitworth and Ward-Thompson
(2001) suggested these parameters for investigating the L1544 core’s fate.
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Fig. 1 The initial geometry
of the colliding cores

The dynamical properties of the initial distribution of particles are commonly
characterized by the thermal and kinetic energy ratioswith respect to the gravitational
energy, denoted by α and β, respectively, whose values are here given by

α ≡ Etherm|Egrav| ≈ 0.3,

β ≡ Erot|Egrav| ≈ 0.1.
(1)

The sound speed c0 and the rotational angular velocity Ω0 have been calculated in
this paper to fulfill the energy ratios given by Eq. (1); they are given the following
numerical values

c0 ≡ 39956.8 cm s−1,

Ω0 ≡ 8.09 × 10−13 rad/s.
(2)

As is commonly done in papers devoted to simulate binary formation of proto-
stars, we here implement a mass perturbation mi on every particle of mass m0
according to

mi = m0 + m0a cos (m φi ) , (3)

where the perturbation amplitude is set to a = 0.1 and the mode is fixed to m = 2.
The onrushing core radius is given by R0/4, or R0/2, as can be seen in Table1,

where we show the collision models considered in this paper. The collision system
has an average density ρ0 = 9.2 × 10−18 g/cm3; a fictitious gas sphere having this
mass density would have a free fall time tff = 6.925×1011 s. It should be noticed that
these ρ0 and tff are only used to normalize density and time, both in the forthcoming
plots as well as some results given in Table1.

The entries of Table1 are as follows. The first column shows the label of the mod-
els. The second column is the bullet’s radius Rc given in terms of the target’s radius
R0. The third column shows the pre-collision velocity in terms of the core’s sound
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Table 1 Collision models and detected accretion centers

Model Rc
Vapp
c0

log10
(

ρmax
ρ0

)
tmax
tff

Nacc Npacc Mav/M�
P1 R0/4 2.5 7.62 0.44 30 6 6.24 × 10−6

P2 R0/4 5.0 7.78 0.48 43 5 4.39 × 10−6

P3 R0/4 10.0 7.89 0.51 26 6 5.61 × 10−6

P4 R0/2 2.5 6.30 0.26 37 5 4.07 × 10−6

P5 R0/2 5.0 7.90 0.26 26 7 5.62 × 10−6

P6 R0/2 10.0 2.26 0.35 – – –

The density and time are normalized by ρ0 = 9.2 × 10−18 g/cm3 and tff = 6.925 × 1011 s,
respectively

speed. As a way of comparing our simulations with other simulations elsewhere, in
the fourth and fifth columns we show the peak density ρmax reached in each run and
the evolution time, respectively. In the sixth column we show the number Nacc of
accretion centers found for each system. In the seventh column we show the average
number of SPH particles Npacc per accretion center formed in each model while in
the eight column we show the accretion center average mass Mav/Msun.

3 The Computational Method

We carry out the time evolution of the initial distribution of particles with the fully
parallel Gadget2 code, which is described in detail by Springel (2005). Gadget2
is based on the treePM method for computing the gravitational forces and on the
standard SPH method for solving the Euler equations of hydrodynamics. Gadget2
incorporates the following standard features: (i) each particle i has its own smoothing
length hi ; (ii) particles are also allowed to have individual gravitational softening
lengths εi , whose values are adjusted such that for every time step εi hi is of order
unity. Gadget2 fixes the value of εi for each time-step using the minimum value of
the smoothing length of all particles, that is, if hmin = min(hi ) for i = 1, 2...N , then
εi = hmin.

TheGadget2 code has an implementation of aMonaghan-Balsara form for the arti-
ficial viscosity, see Monaghan and Gingold (1983), and Balsara (1995). The strength
of the viscosity is regulated by setting the parameter αν = 0.75 and βν = 3

2 × αν ,
see Eq. (14) in Springel (2005). We here fix the Courant factor to 0.1.

Let us now briefly describe the modifications implemented into the Gadget2 code
for detecting accretion centers. Any gas particle with density higher than ρs is a
candidate to be an accretion center. We localize all candidate particles for a given
time t . We then test the separation between candidates: if there is one candidate
with no other candidate closer than 10 × racc, then this particle is identified as an
accretion center at time t . We define racc as the neighbor radius for an accretion
center, given by racc = 1.5 × hmin. In this way racc determines a set of particles
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which are within the sphere of radius racc, and whose center is the accretion center
itself. All those particles will give up their masses and momenta to the accretion
center. We then change the Gadget2 type for all those particles, and therefore, they
will not be advanced in time anymore.

We run our implementation to locate accretion centers in the Gadget2 code by
using only one value for the threshold density, that is ρs = 5.0 × 10−14 g/cm3.

Finally, let usmention that in order to take into account the increase in temperature
due to non-adiabatic core contraction during the gravitational collapse, in this paper
we carry out the simulations using the barotropic equation of state:

p = c20 ρ

[
1 +

(
ρ

ρcrit

)γ−1
]

, (4)

as proposed by Boss et al. (2000), where γ ≡ 5/3 and for the critical density we
assume the value ρcrit = 5.0 × 10−14 g cm−3.

4 Results

Although the penetrating collisions are clearly a 3D phenomenon, we here show the
main simulation results using 2D iso-density plots for a thin slice of matter parallel
to the XY plane. A color scale to distinguish the iso-density regions is set once
the SPH particles defining the slice have been selected. Two numerical values to
illustrate the different stages of the evolution process are included at the bottom of
each iso-density panel: the time t and corresponding peak density ρmax. It should be
noted that there is no relation between the density colors associated with different
panels, not even in the same figure.

The collision between the bullet and the target initially generates an agglomerate of
dense particles in the contact region. As the bullet penetrates into the target core, this
agglomerate is thickened by a snowplow effect, as seen as a small filament oriented
perpendicular to the pre-collision velocity direction. At the ends of the filament, two
gas arms develop due to the flow of particles emitted by the collision front, see for
instance the first panels of Figs. 2, 3, and 4.

The depth of penetration of the bullet is proportional to the pre-collision velocity.
For example, in model P3, the target core gets evenly separated in two parts, as can
be seen in Fig. 4. However, we note that in models P1, P2, and P3, the viscosity
and self-gravity manage to slow down the penetration and to re-start the gravitational
collapse of the entire collided gas system. We then note that the densest gas region
of the collided system takes the form of a bending filament, which is closely aligned
with the pre-collision velocity direction, see the last panels of Figs. 2, 3, and 4. It
is then likely that these models will still end up as a binary or multiple system of
proto-stars.
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Fig. 2 Iso-density plot illustrating the collision process of model P1

Fig. 3 Iso-density plot illustrating the collision process of model P2

Fig. 4 Iso-density plot illustrating the collision process of model P3
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Fig. 5 Iso-density plot illustrating the collision process of model P4 (top panels), P5 (middle
panels), and P6 (bottom panels)
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Fig. 6 Freely rotated view of the collided system to show the formed accretion centers observed
as yellow dots for models: P1 (top left panel), P2 (top right panel), P3 (middle left panel), P4
(middle right panel), P5 (bottom left panel), and a zoom of P2 (bottom right panel, this is a zoom
of the top right panel)

When the radius of the bullet increases from R0/4 to R0/2, the effects on the
target core aremore severe. For example, in Fig. 5we can see that even for the low and
intermediate pre-collision velocity models, the target core is almost divided entirely
into two parts and it fully breaks for the high velocity model, see the bottom panels
of Fig. 5.

In fact, for model P6, self-gravity and gas viscosity do manage to slow down
the penetration of the bullet, and the two separated core parts coalescence, such that
the system becomes a long and expanding filament, as can be seen in the last panel
of Fig. 5.

In Fig. 6 we show a freely rotated 3D view of some models, with the purpose
of better appreciating the formed accretion centers. It should be noticed that most
accretion centers grow from the gas agglomeration formed around the bullet, as the
densest gas particles are located at the interaction region. As an example, for model
P2we zoom in the top right panel of Fig. 6 to get the bottom right panel of Fig. 6where
we observe the spatial distribution of the accretion centers. There are no accretion
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centers detected in model P6, while those detected in model P5 are less visible than
for the other models.

5 Conclusions

Even though this paper has been limited to considering only highly idealized collision
systems, it has been possible to capture and display some of the essential physics of
a collapsing core (the target), that is penetrated by a denser gas core (the bullet).

We here observe that small over-densities are formed behind the perturbation front
left by the bullet along its way digging into the target core. There is still the chance
that these gas condensations may grow to end up as proto-stars. We also observe
that the number and spatial distribution of the accretion centers strongly depends on
the pre-collision velocity. The average mass of the accretion centers do not change
appreciably in the simulations.
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Abstract We present several numerical simulations of the collision of two spiral
galaxies. A spiral galaxy is modelled with a spherical bulge and halo and a Freeman
disc. The bulge is composed of a collisionless collection of stars; the halo is composed
of a set of collisionless particles of unknown nature, we only need to know their
gravitational influence and that the halo particles do not collide among them; and
the disc is composed of stars only, gas or dust are not considered in this work. A
bar is usually formed due to tidal effects after the first encounter of the spirals and
we have found that this was the case in all the numerical experiments we did. The
bar morphology is then studied during the evolution of the collision process. Here
the morphology is the bar formation in the spiral discs, its geometry, i.e., minor
and major axis length; and also we show how one of the collision galaxy partners
change its disc geometry due to impact of the other galaxy. We show finally how
the morphology of spiral galaxies changes due to collision geometrical parameters:
impact parameter or the angle between symmetry axes of the spiral discs.

J.C. Luna Sánchez
Departamento de Física, Instituto Nacional de Investigaciones Nucleares,
Apdo. Postal 18-1027, 11801 Mexico, D.F., Mexico

J.C. Luna Sánchez · A. Arrieta
Departamento de Física y Matemáticas, Universidad Iberoamericana,
Prolongación Paseo de la Reforma 880, Lomas de Santa Fe, 01210 Mexico, D.F., Mexico

M.A. Rodríguez Meza (B)

Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, La Marquesa,
52750 Estado de Mexico, Ocoyoacac, Mexico
e-mail: marioalberto.rodriguez@inin.gob.mx

R. Gabbasov
Instituto de Ciencias Básicas E Ingenierías, Universidad Autónoma de Pachuca, Ciudad
Universitaria, Carr. Pachuca-Tulancingo Km. 4.5 S/N, 42184 Pachuca, Hidalgo, Mexico

© Springer International Publishing Switzerland 2015
J. Klapp et al. (eds.), Selected Topics of Computational and
Experimental Fluid Mechanics, Environmental Science and Engineering,
DOI 10.1007/978-3-319-11487-3_42

515



516 J.C. Luna Sánchez et al.

1 Introduction

Galaxies are the basic building blocks of the large scale structure of the universe.
They were classified according to their morphology by Hubble. There are elliptical,
spiral, and irregular galaxies. Spiral galaxies are the main object in this work; they
are composed of a bulge, a spherical distribution of stars at the center of the galaxy;
a disc of stars, gas and dust; and a halo of dark matter, of unknown particles, that
only acts gravitationally on the other components. Recently Sellwood has published
a review (Sellwood 2014) that discusses several aspects of current interest in the
research of disc galaxies.

In the present work, we study bars in interacting spiral galaxies. Observations of
spiral galaxies indicate that the presence of a bar is a common feature (Elmegreen and
Elmegreen 1983; Master et al. 2011). In particular Master et al. (2011) have found
that 29.4% of the galaxies in the sample they analyse have a bar. The bar formation
in isolated models has been widely studied both analytically and numerically (Hohl
1971; Sellwood 1981; Sellwood and Carlberg 1984; Athanassoula and Sellwood
1986; Weinberg 1985; Debattista and Sellwood 2000; Weinberg and Katz 2002). In
this paper we consider the dynamical effects of non-isolated systemswhich are found
in clusters of galaxies. In this sense, it has been suggested that the observed bar in
many spirals is the result of the gravitational interaction between two or more nearby
galaxies. For instance, Nogushi (1987) has found that during the collision of two
galaxies and between the first and the second closest approaches, the disc develops
a transient bar shape. The gravitational interaction between the two galaxies gives
rise to perturbations in the orbits of the stars that results in the formation of the bar.

Bar formation in stellar discs depends upon various simultaneous effects. In the
case of collisions, simulations have shown that these factors are (Salo 1990): rotation
curve shape, disc-halo mass ratio, perturbation force and geometry. Additionally,
simulations suffer fromnumerical effects such as low spatial and temporal resolution,
too few particles representing the system, and an approximate force model. These
effects were studied by Gabbasov (2006) and Gabbasov et al. (2006) where it was
shown that specific parameter choices may change bar properties. Once numerical
effects are controlled, we may investigate all the other model parameters, which in
our case are: geometric parameters such as impact parameter and the angle between
the disc planes.

In thisworkwe study themorphologyof bars that forms as a product of instabilities
that result of the collision of two spiral galaxies. Morphology is given by finding
major and minor axes evolution after the first encounter of the spirals.

Our work is organised in the following form: In the next section we present how
to build a galaxy model by following the Hernquist method (Hernquist 1990) and
explain how to set up the parabolic collision geometry. Next, we discuss our results
for various collision cases such as off-axis impacts and for two different angles of
collision of the disc galaxies and show the resultant morphological properties of
tidally formed bars. Conclusions are shown in the final section.



Numerical Simulations of Interacting Galaxies: Bar Morphology 517

2 Initial Conditions and Geometry of the Collision

We use the standard procedure to construct a galaxy model with a Newtonian poten-
tial described in Gabbasov (2006) and Gabbasov et al. (2006). An individual galaxy
consists of a disc, halo, and bulge and its initial condition is constructed using a
bulge and a Freeman disc composed of stars embedded in a Hernquist halo model
(a Dehnen’s family member with γ = 1, where γ is the power characterising the
member; see Rodríguez-Meza and Cervantes-Cota (2004)) that acts on them gravi-
tationally. We does not consider gas.

The spatial distribution of particles are constructed using density profiles: The
bulge density profile is a spherical distribution of stars and is given by (Hernquist
1990):

ρb(r) = Mbab
2π

1

r(r + ab)3
, (1)

and for the halo we use a Dehnen density profile with γ = 0 (Dehnen 1993):

ρh(r) = 3Mh

4π

ah

(r + ah)4
. (2)

We assume that the disc follows the exponential profile (Freeman 1970):

ρd(R, z) = Mdα
2

4π z0
e−αRsech2

(
z

z0

)
. (3)

where R and z are the spatial cylindrical coordinates. In these equations Mb, ab and
Mh, ah are the mass and length of bulge and halo respectively, and Md, α−1 and z0
are the mass, length scale and the thickness length scale of the disk, respectively.

For the spherical distribution of particles, their velocities, vr , vφ , vθ , are obtained
using the Schwarzschild distribution function

fB,H (vr , vφ, vθ ) ∝ exp

[
− v2r
2 σ2r

− v2φ
2 σ2

φ

− v2θ
2 σ2

θ

]
, (4)

where σr , σφ , and σθ are the dispersion of velocities and in general they are func-
tions of r . For an isotropic ellipsoid the above velocity distribution is the Maxwell
distribution.

For a spherically symmetric mass distribution and without rotation the dispersion
of velocities is obtained using Jeans’ equation

d

dr

(
ρ(r)σ2r

)
+ ρ(r)

r

[
2σ2r − (σ2θ + σ2φ)

]
= −ρ(r)

dΦ

dr
, (5)
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where Φ is the gravitational potential. If the distribution of velocities is isotropic

σ2r = σ2θ = σ2φ. (6)

The above equation can be integrated to give a general expression for the dispersion
of velocities:

σ2r (r) = 1

ρ(r)

∫ ∞

r
ρ(r ′)dΦ

dr ′ dr ′. (7)

Particles velocities can be found by inverting the equation

fb,h(v, r) = 4π

(2πσ2)2/3
v2 exp

[
− v2

2σ2r

]
. (8)

In practice it is convenient to cut the Gaussian distribution at some finite value. A
natural choice is the escape velocity Ve.

For axisymmetric distribution we have that the velocity profiles for the disk are
computedusing the epicyclic approximation,which consists in assuming that velocity
dispersions are small (σR, σz, σφ � R ω):

fD(vR, vz, vφ) ∝ exp

[
− v2R
2σ2R

− v2z
2σ2z

− (vφ − V0)
2

2σ2φ

]
. (9)

Observations in the exterior of disk galaxies suggest that the radial dispersion is
proportional to the surface radial density:

σ2R ∝ exp(−αR). (10)

The vertical dispersion in the isothermal shell approximation is also related to the
surface density of the disk, Σ(R):

σ2z = πG z0 Σ(R). (11)

The ratio σ2R/σ2z is constant through the disk and is considered equal to 4, i.e.,

σ2R = 4 σ2z . (12)

The azimuthal dispersion is simply related to radial dispersion through the
epicyclic approximation for the Schwarzschild velocity distribution

σ2φ = κ2

4ω2
σ2R, (13)
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where ω is the angular frequency, computed from the potential

ω = ∂Φ(R)

∂ R
, (14)

and κ is the epicyclic frequency defined by

κ2(R) = 4ω2(R) + R
d

dR

[
ω2(R)

]
. (15)

For an exponential surface density profile, the azimuthal drift velocity is given
approximately by

V 2
0 = V 2

c + σ2R − σ2φ − 2αR. (16)

where V 2
c = R ω is the azimuthal circular velocity of the disk.

Table 1 Parameters of the galaxy model

Component Mass Number of particles Cutoff radius Scale-length

Bulge 0.0025 1,024 0.308 0.008

Disc 0.1017 29,491 0.5 0.045

Halo 1.6 245,760 11.55 0.3

The system of units is such that the unit of mass, length, time, and velocity are: 2.2 × 1011 M�,
40 kpc, 0.2558 Gyr, 153km/s, respectively

Table 2 Geometry of the numerical experiments

ID model Mass proportion Impact parameter p Collision angle (◦) Prograde/retrograde

IC 602 1:1 0.1 30 N/A

IC 60255 ” ” 0 Prograde

IC 60266 ” ” 0 Retrograde

IC 6027 ” ” 45 N/A

IC 6028 ” ” 90 N/A

IC 6034 ” 0.3 30 N/A

IC 6035 ” ” 0 Prograde

IC 6036 ” ” 0 Retrograde

IC 6037 ” ” 45 N/A

IC 6038 ” ” 90 N/A

IC 6039 ” 0.6 30 N/A

IC 6040 ” ” 0 Prograde

IC 6041 ” ” 0 Retrograde

IC 6042 ” ” 45 N/A

IC 6043 ” ” 90 N/A
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Once velocity dispersions are computed, the velocity components of particles in
the disk can be found by inverting the above Gaussian distribution which includes
the drift velocity V0.

Finally, the galaxy is built, numerically, using aMonte Carlo procedure by choos-
ing six randomnumbers thatwhen transformedaccording to the corresponding spatial
and velocity distribution functions give us the vector position and the vector velocity
of each particle. This is repeated N times with N the number of particles to use in the
simulation. The number of particles in each component are assigned in proportion to
their masses (see Table1, where values for other parameters are given). This initial
galaxy condition is relaxed up to a time of 3.0 in units of the code (0.7674 Gyr).
The geometry of the collision is such that we set both galaxies at parabolic colli-
sion orbit defined by the impact parameter p and the angle between disc planes. All
experiments were performed with smoothing lengths εb = εh = 0.003, εd = 0.004
(bulge, halo, and disc), time step δt = 0.01 (but this is the maximum step size, we
have using an adaptive time step scheme). In Table2 we show the experiments that
we will discuss in the next section.

Fig. 1 Contour density map of a snapshot of the collision model IC 60255
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Fig. 2 Evolution of the
center of mass separation.
The figure corresponds to
p = 0.1 (top panel), p = 0.3
(middle panel), and p = 0.6
(bottom panel)

3 Results

All collision models have N = 552,550 total particles. We consider three sets of
simulations followed up to time t = 1.56 Gyr. The sets are defined by the impact
parameter. First set is for p = 0.1, the second is for p = 0.3, and the third is for
p = 0.6. The proportion of galaxy masses is 1:1. See Table2 for more details. We
compute the evolution of the relative differences, through the whole simulations:
|(E(t) − E0)/E0| and |(L(t) − L0)/L0|, where E0 and L0 are total energy and
magnitude of total angular momentum at the beginning of the simulation and E(t)
and L(t) are the corresponding quantities as functions of time. All models show
a good energy and angular momentum conservation. The relative error is at most
≈0.4 % for the total energy and ≈0.8 % for the total angular momentum.

In order to detect the presence of a bar in a galaxy and to characterize quantitatively
its amplitude, we use the following method. We compute isodensity curves of the
disc in a 128×128 mesh, i.e., a contour map of the density field around the center of
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Fig. 3 Snapshots of the collisions: p = 0.1 upper row; p = 0.3 middle row; and p = 0.6, lower
row. The shown area has a length side of 28kpc. The left column shows snapshots before the first
encounter; the right column shows snapshots after the collision; the middle column is another view
of the same snapshots on the right column. Galaxy 1 in the first column is on the right side of the
snapshot and on the right column snapshots is the one that has a well defined disc shape. After the
first encounter, disc of galaxy 2 turns to a warped disc shape

mass of the disc. We tune the contour map to have a good resolution map (see Fig. 1).
With this contour map we scan the contour lines following several radial trajectories
starting at the center of mass. The longest trajectory which intersects the first set of
contour lines and which is in the same direction of the gradient at that point is the
major axis. The size of this trajectory is the size of the major axis. Now, assuming
the bar is rectangular in shape we follow a trajectory perpendicular to the one that
defines the major axis, and the intersection with the same set of contour lines will
define the minor axis and we will obtain its size. This method allows us to detect any
non-axisymmetric deformations such as bars in the disc plane. We have found traces
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Fig. 4 Morphology of the bar formed in the galaxies. Shown are the sizes of minor and major
axes of both galaxies. The upper row is for p = 0.1; the middle row is for p = 0.3; and the lower
row is for p = 0.6. First column (galaxy 1 and galaxy 2) are morphologies for a collision angle of
30◦ between symmetry axes of discs of the collision galaxies. The second column (galaxy 1 and
galaxy 2) if for a collision angle of 0◦, prograde. Retrogade collisions show similar behaviour, in
the last column (galaxy 1 and galaxy 2), showing a decreasing major axis of galaxy 2 for prograde
collisions

of a bar for times between the first and second encounters. In this time interval we
have computed the size of major and minor axes following the above method.

Figure2 shows the evolution of the center of mass separation for the three impact
parameter values. The behaviour of this curve is the same for all simulations for
a given impact parameter. That is because the dominant component is the halo,
which is spherically symmetric and the same for each galaxy. The first and second
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encounters, for p = 0.1, are, approximately, at time 0.38 Gyr and at 1.05 Gyr,
respectively. Increasing impact parameter increases the times of the first and second
encounters. For all the numerical experiments we look for a bar formation in each
of the galaxies for times between the first and second encounter and we analyse the
morphology of these bars at times chosen uniformly in that time interval.

Figure3 shows snapshots of the collisions for the three values of the impact
parameter and a collision angle of 30◦. Morphology of galaxy 2 for a 0◦ angle of
collision is similar as the one of galaxy 1. Galaxy 2 for a collision angle different
from 0◦ turns to warped disc shape, this is due to that galaxy 1 collides with it
crossing its disc very dramatically, but, in spite of this, the bar is formed as it is
shown in Fig. 4. The disc of galaxy 1 does not change its shape because it collides
like a knife. In this figure we show themorphology of the bars formed in galaxy 1 and
galaxy 2, i.e., the sizes of minor and major axes as function of time found with the
method we described above. Morphology of the bar is almost the same for p = 0.3
and p = 0.6. For p = 0.1 the major (minor) axis is longer (smaller) than the ones
for p = 0.3 and p = 0.6. Whereas changing the angle between disc planes does not
change morphology for p = 0.1.

4 Conclusions

Our simulations have shown that tidal forces are an efficient mechanism to generate
bars in spirals. In all our numerical experiments a bar is formed in both colliding
galaxies after the first encounter. The morphology of the barred spirals that result
from the collision does not show strong dependence on the geometry of the collision
for galaxies like “galaxy 1” that is colliding like a knife. Whereas galaxies like
“galaxy 2” show a decreasing, in time, major axis size for small impact parameters.
This behaviour could be due to the fact that disc of galaxy 2, after first encounter
acquires a warped shape.
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Abstract We review the hydrodynamics of the dark sector components in
Cosmology. For this purpose we use the approach of Newtonian gravitational insta-
bility, and thereafter we add corrections to arrive to a full relativistic description.
In Cosmology and Astrophysics, it is usual to decompose the dark sector into two
species, dark matter and dark energy. We will use instead a unified approach by
describing a single unified dark fluid with very simple assumptions, namely that the
dark fluid is barotropic and that its sound speed vanishes.

A. Aviles (B) · J. Klapp
Departamento de Matemáticas, Cinvestav Del Instituto Politécnico
Nacional (IPN), 07360 Mexico, D.F., Mexico
e-mail: aviles@ciencias.unam.mx

J. Klapp
e-mail: jaime.klapp@inin.gob.mx

J.L. Cervantes-Cota · J. Klapp
Instituto Nacional de Investigaciones Nucleares, ININ, Km. 36.5 Carretera
Mexico-Toluca, La Marquesa, 52750 Mexico, Mexico
e-mail: jorge.cervantes@inin.gob.mx

O. Luongo · H. Quevedo
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México
(UNAM), 04510 Mexico, D.F., Mexico
e-mail: orlando.luongo@na.infn.it

H. Quevedo
e-mail: quevedo@nucleares.unam.mx

O. Luongo
Dipartimento di Fisica, Università di Napoli Federico II, Via Cinthia, 80126
Naples, Italy

O. Luongo
Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Via Cinthia,
80126 Naples, Italy

H. Quevedo
Dipartimento di Fisica and ICRA, Università di Roma La Sapienza,
Piazzale Aldo Moro 5, 00185 Rome, Italy

© Springer International Publishing Switzerland 2015
J. Klapp et al. (eds.), Selected Topics of Computational and
Experimental Fluid Mechanics, Environmental Science and Engineering,
DOI 10.1007/978-3-319-11487-3_43

527



528 A. Aviles et al.

1 Introduction

Currently, the most accepted picture for the study of our Universe as a whole is
given by the so called Λ-Cold Dark Matter (ΛCDM) model of Cosmology. The
first pillar of this model is Einstein’s theory of General Relativity (GR) (Einstein
1916), in which the spacetime itself and the matter-energy fields that live in there
are related by second order partial differential equations, thus any distribution of
matter will effectively curve the arena where these matter fields evolve. Despite this
fact, many features of the evolution of the Universe can be well understood in the
context of Newtonian gravity; qualitatively, consider the spacetime as a curved four
dimensional manifold with some characteristic curvature scale lH , well below this
scale the effects of curvature could be neglected and the Newtonian limit of GR
becomes a good approximation to the whole, complete description. In the cosmic
epochs that are relevant in this short review the characteristic scale is given by the
inverse of the rate of expansion of the Universe, that is, the inverse of the Hubble
factor H , thus we expect the Newtonian results to be valid up to the length scale
cH−1, where c is the speed of light. In this work we derive the relevant equations
that govern the cosmic fluids evolution in Newtonian gravity and once we have done
thiswewill add relativistic corrections in order to reach the complete set of equations.

A second pillar of the ΛCDM model is the Standard Model of Particles. The
known matter fields of the Universe are essentially baryons,1 neutrinos and pho-
tons. These components can be approximated as fluids as long as the mean free
path of their microscopic entities are much smaller than the typical smallest macro-
scopic scale of the structure of interest. In this review we will follow this approach
by considering the matter fields as fluids that evolve according to hydrodynamical
equations. This approximation is also valid for incoherent electromagnetic radiation,
while coherency requires a detailed analysis of their distribution functions through
the coupled Boltzmann and Einstein equations; for such a treatment see for example
Ma and Bertschinger (1994).

It turns out that to describe the Universe we observe it does not suffice with the
ingredients mentioned in the two previous paragraphs. Several independent cosmo-
logical probes show that nowadays the nature of about 96% of the energy content of
the Universe is unknown to us (Cervantes-Cota and Smoot 2011). As far as today all
our knowledge of these components comes from their gravitational interaction with
the standard matter fields, in this sense we refer to them as dark. This dark sector is
usually decomposed into dark matter and dark energy, fromwhich theΛCDMmodel
inherits its name. The darkmatter component has the property that clumps at all scales
and it is responsible for the formation of the cosmic structures we observe, while
dark energy fills the space homogeneously and provides a negative pressure which
counteracts gravitational attraction and ultimately accelerates the Universe. Never-
theless, we will show—as it is done in Ref.Aviles and Cervantes-Cota (2011)—that

1 In the jargon of Cosmology we refer to any particle of the standard model that is not relativistic
as a baryon, referring mainly to protons and neutrons. In contrast, in particle physics a baryon is a
composite subatomic particle made up of three quarks.
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the dark sector can be described by just one dark fluid which can be characterized
with very simple assumptions, and that there is no observation relying on zero and
first order cosmological perturbation theory that can distinguish it from the ΛCDM
model, concluding that the standard decomposition of the dark sector is arbitrary
(Kunz 2009).

The paper is organized as follows, in Sect. 2 we develop the background evolution
of the Universe in Newtonian theory, where arguments are supplemented to under-
stand the results in a curved relativistic framework. In Sect. 3 we study the theory of
small perturbations to the background evolution, which thereafter are generalized to
curved spacetimes. In Sect. 4 we introduce the dark fluid and show explicitly that it
is degenerated with the ΛCDM model. Finally in Sect. 5 we summarize our results.

2 Homogeneous and Isotropic Cosmology
in Newtonian Gravity

One of the cornerstones of Modern Cosmology is that the Universe is homogeneous
and isotropic at very large scales (from above about 150Mpc), and this paradigm
is called the Cosmological Principle. We observe essentially the same structures on
the sky, a uniformly random field of distribution, type and composition of galaxies;
moreover, as we look in any direction we detect the same background of cosmic
microwave background radiation with a blackbody spectrum at a temperature of
2.725K with slight differences of the order of 10−5 K. Assuming that we do not
live in a privileged position in the Universe, the foundations of the Cosmological
Principle relies on firm grounds.

To properly discuss this large scale scenario in a Newtonian framework, consider
a spherical region of the space and the total mass M contained in it, and denote the
radius of that sphere by R(t), which is in general a function of time. Take a small
region over the sphere with mass m. Ignoring all other forces except for gravity, the
homogeneity of the Universe allows us to write the conservation of energy E as

(
Ṙ

R

)2

= 8πG

3
ρM + 2E

m R2 (1)

where we defined the mass density ρM ≡ 3M/(4πG R3) and a dot means derivative
with respect to time t . We can write R(t) = cτ0a(t) where c is the speed of light,
τ0 an arbitrary time scale and a(t) a dimensionless function of time called the scale
factor, then we define K ≡ −2E/mc2R2

0, and we choose τ0 such that K can take
one of the three values −1, 0 or 1, thus we obtain the Friedmann equation

H2 ≡
(

ȧ

a

)2

= 8πG

3
ρ − K c2

a2 , (2)
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where we have used the Einstein mass-energy relation to write the energy density
ρ = ρM c2 and redefined the time t → ct . In GR all forms of energy gravitate,
therefore the use of the energy density instead of the matter density allow us to
consider other forms of energy besides matter as sources of gravity. One interesting
point is that Eq. (2) is the same that the obtained in GR. The root of this apparent
coincidence is the equivalence principle: InGREq. (2) is obtained in a specific chosen
coordinates, in these coordinates the free fall observers have fixed space coordinates
and as a consequence, about these observers there is a neighborhood where the laws
of Special Relativity hold.

Note that we can solve Eq. (2) for a(t) once we know ρ(t), or alternatively ρ(a).
Then, we need at least one more equation to close the system. Consider an adiabatic
expansion of the same configuration, the thermodynamical Gibbs equation is then
d E = −PdV , where P is the pressure of the considered fluid and V = 4πG R(t)3/3
the volume enclosed by the sphere. Giving the dependence on time t we can write
Ė = ρ̇V + ρV̇ = −PV̇ , or

ρ̇ + 3H(ρ + P) = 0, (3)

which is the continuity equation. To finally solve the system of equations (2) and (3)
we need an Equation of State (EoS) that relates the energy density with the pressure.
In general this can be written as P = P(ρ, S), where S is the entropy of the fluid.
But since in this scenario we are restricted to adiabatic processes, the EoS can take
the barotropic form P = w(ρ)ρ, where w(ρ) is called the EoS parameter function.
Consider for the moment the case of constant w, in such a situation the continuity
equation can be integrated to give

ρ(a) = ρ0a−3(1+w) (4)

where ρ0 ≡ ρ(a0) and we have normalized a0 ≡ a(t0) = 1; in this work, as usually,
t0 denotes the present time. For example, the case w = 0 corresponds to a very
dilute fluid (dust) for which the energy density decays as the inverse of the volume,
ρm = ρm0a−3; the case P = ρ/3 corresponds to radiation for which the energy
density decays as the fourth power of the scale factor, ρr = ρr0a−4—three powers
for the dilution of the photons and one more for their redshift.

In GR the constant K is related to the curvature of spacetime, and due to the
assumption of homogeneity and anisotropy of space, there are only three possibilities
that correspond to flat space which is the case of K = 0, spherical space (K = 1)
and hyperbolic space for (K = −1). Consider the case in which K equals zero, we
can insert the solution given by Eq. (4) into Eq. (2) to obtain

ȧ =
(
8πG

3
ρ0

)1/2

a−3(1+w)/2+1, (5)
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which can be integrated yielding

a(t) ∝ t2/3(1+w), (6)

for w �= −1. w = −1 corresponds to non-evolving dark energy and the growth
of the scale factor as a function of time t becomes exponential while its energy
density remains constant. In general, the situation ismore complicated and an analytic
expression for the scale factor cannot be found. There are several fluidswhichmust be
considered, namely matter, incoherent electromagnetic radiation, massive neutrinos
and possibly dark energy, and therefore, the energy density of each one of themmust
contribute to the Friedmann equation. At this point it is convenient to introduce the
redshift z through a = (1 + z)−1, which is commonly used instead of the scale
factor. Consider a Universe filled with matter (m), radiation (r ), dark energy with
EoS parameter w = −1 (Λ) and with a possible non-zero curvature, the Friedmann
equation can be written as

H(z) =
(
ΩΛ + ΩK (1 + z)2 + ΩM (1 + z)3 + Ωr (1 + z)4

)1/2
, (7)

where Ωi = 8πGρi0/3H2
0 for matter, radiation and dark energy and ΩK =

−K c2/H2
0 , are the energy contents parameters at present time—Note that

∑
Ω j = 1.

Several independent probes of the expansion history of theUniversewhich include
redshift-distance measurements of Supernovae type Ia (Riess et al. 1998, 1999;
Perlmutter et al. 1999) and observations of Baryon Acoustic Oscillations (Percival
et al. 2010) agree in the fact that nowadays the Universe is spatially very flat (ΩK �
0) and the dominant components to the energy content are dark energy Ωde �
0.7 (with wde � −1) and matter ΩM � 0.3 (with wM = 0), and additional tiny
contributions of radiation are also present. The question whether all this matter can
be provided by the standardmodel of particles arises, it turns out that the answer is no
for several reasons: The theory of Big Bang Nucleosynthesis (Gamow 1948; Olive
et al. 2000) is very accurate in predicting the relative abundances of light nuclei of
atoms, these results are very dependent in the quantity of baryons b present at that
time, and to obtain the observed abundances it is necessary that Ωb � 0.04; other
constrictions to this parameter arise when one consider observations of the perturbed
Universe, for example, measurements of the anisotropies in the temperature of the
CosmicMicrowave Background Radiation (Ade et al. 2013) and large scale structure
observations (Reid et al. 2015), both agreeing on similar values to the above quoted
forΩb. Moreover, analysis of virialized cosmic structures as clusters of galaxies and
rotation curves in spiral galaxies show that there is a lot of missing matter that we
do not observe; for a review see Roos and Mod (2012). Therefore, the matter sector
that fills the Universe must be split into two components, ΩM = �b + Ωdm , one is
the contribution of the standard model of particles, and the other is the dark matter,
which comprises about 80% of the total matter and whose fundamental nature is still
unknown.
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We conclude that the origin of about 96% of the energy content of the Universe is
unknown to us. In Sect. 4 we will consider the possibility that the whole dark sector
is composed by just one dark fluid.

We finally rewrite the Friedmann equation (Eq.2) for a flat space Universe as

H2 = 8πG

3

(
ρr0

1

a4 + ρb0
1

a3 + ρdm0
1

a3 + ρΛ

)
, (8)

where possible contribution of massive neutrinos were omitted. Note that the first
two terms on the right hand side of the above equation correspond to the “light”
sector, while the last two to the dark sector.

3 Small Perturbations in Newtonian Cosmology

In the study of the Universe at small scales, the homogeneous and isotropic descrip-
tion is no longer valid. Strictly, this situation can only be completely confronted into
the framework of GR. The problem to study the Universe at these scales is that all the
symmetries present in the homogeneous and isotropic description are not present.
A possible solution, the one we adopt, is to treat only with small departures to the
background evolution.

Thus, we want to study the evolution of a fluid with energy density ρ = ρ(r, t)
and velocity field ṙ = u = u(r, t) in the presence of a gravitational field Φ(r, t).
The continuity, Euler and Poisson equations are

Dρ

Dt
+ ∇r · (ρu) = 0, (9)

Du
Dt

= −∇r P

ρ
− ∇rΦ = 0, (10)

and
∇2

r Φ = 4πGρ, (11)

respectively. We have used the convective derivative D/Dt ≡ ∂/∂t + u · ∇r which
describes the time derivative of a quantity at rest in the comoving fluid frame. Adding
an equation of state P = P(ρ, S) the problem is solvable in principle, but in practice
such a situation is intractable. The alternative studied here is to treat only small
departures from the background description introduced in the previous section. To
this end, let us first consider coordinates x which are comoving with the background
evolution, these are defined by

x ≡ 1

a(t)
r, (12)
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and the peculiar velocity v = a(t)ẋ, such that u = ȧ(t)x+v; that is, v is the velocity
of the fluid with respect to the background comoving (Hubble-)flow. By the chain
rule, the derivatives transform as ∇r → a−1∇x and (∂/∂t)r → (∂/∂t)x − Hx · ∇x.
(In what follows we will omit the subindex x from the spatial gradients and ∂/∂t
should be understood as being taken at fixed x.)

We now consider perturbations to the quantities ρ, P and Φ,

ρ(x, t) = ρ̄(t)(1 + δ(x, t)) (13)

δP = c2s δρ + σδS (14)

Φ(x, t) = Φ̄(t) + φ(x, t) (15)

where a bar denotes background quantities that only depend on the time coordinate.
We introduced also c2s = (∂ P/∂ρ)S , the squared adiabatic sound speed and σ ≡
(∂ P/∂S)ρ . Note also that the perturbation to the energy density is δρ = ρ̄δ. In terms
of the perturbed variables, the continuity, Euler and Poisson equation become

∂δ

∂t
+ 1

a
∇ · (

(1 + δ)v
) = 0, (16)

∂v
∂t

+ Hv + 1

a
(v · ∇)v = −1

a
∇φ − ∇δP

aρ̄(1 + δ)
, (17)

and
∇2φ = 4πGa2ρ̄δ. (18)

The first two equations are quadratic in the perturbed variables, therefore, in the
following we treat them as small and linearize Eqs. (16) and (17) to obtain

∂δ

∂t
+ 1

a
∇ · v = 0, (19)

∂v
∂t

+ Hv + 1

a
∇φ + 1

a
∇c2s δ = 0. (20)

Note that in the last equation we used Eq. (14) and considered adiabatic perturbations
only. By appealing the conservation of angularmoment in an expanding universe, it is
expected that the divergence-free piece of the peculiar velocity should decays quickly
with time. This can be easily seen by taking the rotational of Eq. (20), arriving at
∇×v ∝ a−1, whichmeans that in the absence of sources of vector perturbations these
modes are not relevant in first order perturbed cosmology, allowing us to consider
only the curl-free piece of the velocity in the following discussion; moreover, any
initial large vector perturbation would break the isotropy of the background, and thus
it is not compatible with the Cosmological Principle.

Now, we are in position to give a closed linear second order equation for the
density contrast δ, taking the partial time derivative of Eq. (19) and using Eqs. (18)
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and (20) we arrive at

∂2δ

∂t2
+ 2H

∂δ

∂t
− 4πGρ̄δ − c2s

a2∇2δ = 0. (21)

In this equation the second term is a friction component due to the background
expansion, the third term implies gravitational attraction,while the fourth is a pressure
term. Thus, it shows the important aspect of the competition between gravitational
attraction and pressure support.

Being the set of partial differential equations linear in the perturbations it is con-
venient to work instead in Fourier space,2 arriving to ordinary differential equation
for which each Fourier mode evolve independently.

We define the variable θ as the divergence of the velocity in Fourier space, that is

θ ≡ − i

a
k · v. (22)

The factor a−1 is a convention used since the size of a perturbation λ ∼ k−1 grows
with a, and thus k/a becomes a comoving wave number.

In Fourier Space ∇ → −ik, and Eqs. (18)–(20) can be written as

k2φ = −4πGa2ρ̄δ, (23)

dδ

dt
+ θ = 0, (24)

dθ

dt
+ 2Hθ − k2

a2 φ − k2

a2 c2s δ = 0. (25)

To obtain the last equation we have taken the dot product of ik/a with the Fourier
transform of Eq. (20) and used the definition (22). Note that in arriving at Eq. (25)
we have isolated the curl-free piece of the fluid peculiar velocity.

In Fourier space the Jeans equation for an expanding Universe (Eq.21) becomes

d2δ

dt2
+ 2H

dδ

dt
+

(
k2

a2 c2s − 4πGρ̄

)
δ = 0. (26)

From this last equation it should be clear the interplay between gravitational
instability and pressure support. There exist a threshold scale, called the Jeans length

2 Our convention for a Fourier transform of a vector or a scalar function f is

f̃ (k) =
∫

d3x f (x)eik·x.

In this work, without worrying about confusions, we omit the tilde on Fourier transform quantities.
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λJ = acs
√

π/Gρ, for which perturbations with comoving size L ∼ ak−1 > λJ

grow while those with L < λJ oscillate and decay.
From Eq. (26) we can infer the behavior of dark matter perturbations in the differ-

ent epochs of the cosmic evolution. Let us first consider amatter dominatedUniverse,
from the Friedmann equation and since ρM ∝ a−3 and a ∝ t2/3, it follows that
H = 2/3t and 4πGρ̄ = 2/3t2. In this case, Eq. (26) has two independent solutions
δdm ∝ t−1 and δdm ∝ t2/3 ∝ a. The growing mode of the density contrast grows lin-
early with the scale factor and from Eq. (23) it follows that the gravitational potential
φ is constant in this case. Similar analysis for the growth of the density contrast of the
dark matter in the epochs dominated by radiation and dark energy show that in the
first case the growing mode is logarithmic while for the second case does not exist,
but it remains constant, suppressing the formation of structure. Therefore, in order
for matter perturbations to grow enough to form the structures we observe today, it
must have elapsed a sufficiently long epoch in which the expansion of the universe
was driven by matter (either baryonic or dark).

The equations for the perturbed variables developed so far are valid for non-
relativistic matter fields and for scales which are smaller than the curvature length
scale cH−1, as discussed in the Introduction. To obtain the complete equations it
is mandatory to use the theory of General Relativity and hydrodynamics in curved
spacetimes. For completeness we present here the equations for a collection of fluids
with equation of state P = w(ρ)ρ and that do not posses anisotropic stresses. These
are the Poisson equation

k2φ = −4πG
∑

ρ̄iΔi , (27)

where
Δi = δi + 3H(1 + wi )θ/k2, (28)

the continuity equation

dδ

dt
+ (1 + w)

(
θ − 3

dφ

dt

)
+ 3H

(
δP

δρ
− w

)
δ = 0, (29)

and the Euler equation

dθ

dt
+ 2H(1 − 3w)θ + ẇ

1 + w
θ − k2c2s

a2(1 + w)
δ − k2

a2 φ = 0. (30)

First we want to make note that for perturbations with wavelengths well bellow
the Hubble scale, i.e. k 
 H , the Poisson equation reduces to the one found in
the non relativistic treatment. Moreover, for non relativistic matter w = ẇ = 0 and
dφ/dt = 0, recovering the Newtonian Euler and continuity equations.

Now, consider the case of dark energy with EoS parameter w = −1. At any epoch
of the cosmic evolution from the continuity equation follows that the density contrast
is a constant. This feature and the fact that its energy density remains also constant,
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as shown in Sect. 2, implies that this fluid permeates all the space homogeneously,
giving it the alias of non-evolving dark energy. Any departure of w = −1 would
imply that their perturbations evolve and hence possibly give rise to the formation
of dark energy structure.

4 The Dark Fluid

Is it possible that the properties of dark energy and dark matter to be different mani-
festations of the same dark fluid? Several unified dark models of the dark sector have
appeared in the literature, the prototype of these is the generalized Chaplygin gas
(Kamenshchik et al. 2001; Bento et al. 2002), which is defined as a barotropic fluid
with EoS PChap = −A/ρα

Chap with 0 < α ≤ 1. Integrating the continuity equation
(3) we obtain

ρChap(a) =
(

A + B

a3(1+α)

) 1
1+α

(31)

where B is an integration constant. This model describes a smooth interpolation
between an early phase dominated by dust, with ρ ∝ a−3 and an asymptotical future
with ρ = constant. The intermediate phase is well described by an EoS P = αρ. The
tightest constraints on the parameter α come from comparisons to the observed large
scale matter power spectrum obtaining α < 10−5 (Gorini et al. 2008), and therefore
making the model effectively indistinguishable from ΛCDM model.

Other unified models that have recently attracted the attention of the cosmolog-
ical community includes scalar fields, modifications to Einstein’s theory of gravity,
among others; see, for example Aviles and Cervantes-Cota (2011), De-Santiago and
Cervantes-Cota (2011) and Khoury (2014).

We now specialize to a specific model that is totally degenerated with ΛCDM at
least at zero and first order in cosmological perturbation theory, the dark fluid which
was introduced in Ref.Hu and Eisenstein (1999) and further studied in Aviles and
Cervantes-Cota (2011), Luongo and Quevedo (2014) and Aviles et al. (2012).

We define the dark fluid as in Aviles and Cervantes-Cota (2011), that is, a
barotropic perfect fluid with adiabatic speed of sound equal to zero.3 Gravitational
instability is driven by the competition between gravitational attraction and pressure
support. From Eq. (26) it follows that the condition for vanishing sound speed allows
perturbations of the fluid to grow at all scales, as cold dark matter does. For the dark
fluid we can write the equation of state without loss of generality as

Pd = wd(ρ)ρd , (32)

3 Other definitions are possible. In Hu and Eisenstein (1999) the barotropic condition is not con-
sidered but additional conditions on its EoS are imposed. In Luongo and Quevedo (2012, 2014) it
is defined as an ideal gas with vanishing speed of sound.
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where the subscript d stands for dark. Giving c2s = dP/dρ = 0 one obtains that

wd = P0

ρd
, Pd = P0, (33)

obtaining that the pressure is constant. For cold dark matter, this pressure is equal
to zero, but astronomical observations allow this pressure to be non vanishing, and
in fact, it could be as large as the critical density of the Universe (ρc ≡ 3H2

0 /8πG).
For example, a recent analysis of rotation curves in LSB galaxies has shown that
|wdm | < 10−6 at the center of the galaxies (Barranco et al. 2013). This allows us to
think the pressure as a source of the cosmic accelerated expansion. To see how this
is possible, consider the continuity equation for the background evolution

ρ̇d + 3
ȧ

a
(ρd + P0) = 0. (34)

This equation can be integrated to give

ρd(a) = ρd 0

1 + K

(
1 + K

a3

)
, (35)

where K = −(ρd0 + P0)/P0 is an integration constant fitted such that ρd0 is the
value of the dark fluid energy density at a scale factor a(t0) ≡ a0 = 1. Equation (35)
is what one expects for a unified dark sector fluid, that is, a component that decays
with the third power of the scale factor plus a component that remains constant.
In order for the energy density to be positive at all times, K must be positive and
therefore the pressure is negative and lies in the interval −ρd0 ≤ P0 ≤ 0, allowing
the dark fluid to accelerate the Universe. Equation (35) shows that the dark fluid
model gives the same phenomenology as the ΛCDM at the background cosmology.
Its EoS parameter can be written as

wd(a) = − 1

1 + K a−3 , (36)

which should be compared to the corresponding for the dark sector of the standard
model of Cosmology,

wΛ+dm(a) = − 1

1 + Ωdm
ΩΛ

a−3
. (37)

One can go back and forth between the two models with the identifications

K = Ωdm

ΩΛ

, and �d = �dm + �Λ. (38)
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The first of the two equations above can be written in the suggestive form P0 =
−ρcΩΛ. In Ref.Aviles and Cervantes-Cota (2011) it has been shown explicitly that
the degeneracy persist at the linear cosmological perturbed level, and heuristic argu-
ments are given that point to the degeneracy is present at all orders in perturbation
theory.

We notice an important physical difference between the ΛCDM and dark fluid
models. To describe the observed late acceleration of the Universe, in Eq. (37) it is
necessary to include the cosmological constant which is then interpreted as the vac-
uum energy. This identification gives rise to the well-known cosmological constant
problem, probably the most serious inconsistency in theoretical physics. The dark
fluid model offers a possibility to avoid this problem. In fact, in Eq. (36) the termK
does not contain any cosmological information which should be associated with the
vacuum energy, but of course it remains the problem to explainK . This problem is
however in the arena of the microscopical theory of the dark fluid, that is not devel-
oped yet. The dynamics of the dark fluid naturally leads to an accelerated universe,
mimicking the exact behavior of the ΛCDM model, without any cosmological con-
stant. Nevertheless, the final decision about this possibility requires a more detailed
investigation.

5 Conclusions

In this pedagogical short review we have developed the theory of cosmological
perturbations at the background and linear levels within the framework of Newtonian
gravity for matter-energy fields in the fluid approximation. It is remarkable that some
of the important aspects of the cosmic evolution of the Universe can be understood
without the use of Einstein’s theory of General Relativity. Despite this fact, once
we have derived the Newtonian evolution equations we proceeded to add relativistic
corrections to arrive to the complete set of equations, and special emphasis has
been done in finding the solutions for the evolution of dark matter and dark energy
perturbations.

Due to equivalence principle and that the dark sector components—in its more
radical definition—only interact with the “visible” forms of energy through gravity,
it is arbitrary to decompose the dark sector into dark matter and dark energy. In this
work we also reviewed a model, namely the dark fluid, that is indistinguishable from
the ΛCDM. This description results very appealing because it is based on a very
simple assumption, that is, the speed of sound of the dark fluid vanishes identically.
We explicitly show that both models are degenerated and therefore, it does not exist
any observation based on the background and linear perturbed cosmology that can
tell the correct description.

In addition, we noticed that the dark fluid model opens the possibility of avoiding
the cosmological constant problem because it can explain the late acceleration of the
Universe, without necessarily demanding the presence of a cosmological constant.
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The problem now is to understand the value of the parameter K , as a fundamental
property of the dark fluid.
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Capillary Rise in a Taylor-Hauksbee
Cell with a Tilted Edge

A. Jara, S. de Santiago, F.J. Higuera, M. Pliego,
A. Medina and C.A. Vargas

Abstract In this work we discuss a series of experiments to get the equilibrium
profiles when a viscous liquid rises spontaneously in the wedge-shaped gap between
two vertical plates intersecting at a tight angle α � 1. We contrast the differences
between the case with vertical edge and thosewhere the aristae is tilted to the vertical.
Our theoretical model agrees very well with the experimental data.

1 Introduction

The problem of the spontaneous capillary rise of a liquid into a vertical cell made
by two plates touching on an edge and having a small angle among them (wedge)
was initially studied experimentally by Taylor (1712) and Hauksbee (1712). In both
experiments the equilibrium profiles were rectangular hyperbolas with a very impor-
tant particularity: near the edge, liquid can reach an infinite height, which for pur-
poses of fractured oil fields it may be a huge problem because due to this dispersion
the oil recovery may be limited. Conversely, in the process of feeding of trees this
mechanism is very suitable to transport liquids as water and sap (which contains the
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nutrients) because the equilibrium heights attained through the xylem are unlimited
and it promotes photosynthesis and transpiration in the leaves.

Historically, for nearly three hundred years the dynamic problem, to the time
evolution liquid’s free surface, towards the equilibrium, remained unresolved until
by 2008 our group published a paper with the solution to this problem (Higuera et al.
2008).

In this work we report a series of experiments where the wedge’s arista is tilted
with to the vertical. This slope changes the shape of the equilibrium and dynamical
profiles with respect to cases with vertical edges. Particularly, we are interested in
finding the equilibrium shapes of the free surfaces, theoretically and experimentally.
To reach such a goal, this work is divided as follows: in the next section we reviewed
the problem of the capillary rise in the Taylor-Hauksbee cell. Later on, in the same
section, we proposed a theoretical description of the equilibrium profiles in cells with
tilted edges. Experimental data yield that such description is a suitable way to show
such profiles. In Sect. 3 we show a set of dynamical profiles. Finally in Sect. 4 we
present the main conclusions for this work.

2 Capillary Rise in the Taylor-Hauksbee Cell

2.1 Cell with a Vertical Edge

The wedge-shaped gap between two vertical plates intersecting at an angle α � 1
is initially empty. At a certain moment, the lower edges of the plates get in touch
with a liquid of density ρ, dynamic viscosity μ, and surface tension σ. The liquid
wets the plates with a contact angle θ < π /2 and therefore rises between the plates
by capillary action as shown in Fig. 1a. The ratio of the two principal curvatures
of the free surface of the liquid between the plates is small, on the order of α. The
normal section of maximum curvature, by a plane nearly normal to the plates, is
approximately a circular arc of radius αx/2cosθ, where x is the distance to the line
of intersection of the plates. The pressure jump across the surface is approximately

�p = 2σcos θ

αx
. (1)

At equilibrium, the height He(x) of the meniscus above the level of the outer
liquid is determined by the balance

�p = ρgHe, (2)

where g is the acceleration due to gravity. This balance gives the rectangular hyper-
bola (Concus and Finn 1969)

He = 2σcos θ

ρgαx
. (3)
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Fig. 1 a Scheme of the Taylor-Hauksbee cell. In this case the equilibrium profiles are given by
Hs(x). b Taylor-Hauksbee cell with a tilted edge. In this case Ys is a distance to the equilibrium
profile along the line parallel to the tilted edge and that starts at x = s and y = 0; Thus the most
suitable coordinate system is given by (s,Ys)

In order to compare the latter theoretical profile with experiments, we performed
a series of experiments with silicon oil of viscosity μ = 100 cP, surface tension
σ = 0.0215N/m, density ρ = 971 kg/m3 and an aperture angle of α = 0.0166 rad.
In experiments we used a digital Cannon Réflex T3i camera to take pictures and a
video recording of the capillary rise. In Fig. 2 we show a picture with the equilibrium
profile and also a comparison between the experimental data and the theoretical
profile given by Eq. (3). The fit is very good assuming that θ = 0 rad.

2.2 Cell with Tilted Edge

In this part we consider the cases of cells with tilted edges with respect to the ver-
tical, see Fig. 1b. The usual Cartesian coordinates appears no suitable to depict the
equilibrium profiles because it is possible that for some values of x there are two
values of H(x) (the equilibrium profile). Thus, the concept of function can be lost.

Instead, we choose the rotated coordinate system (x ′, y′) to describe the equilib-
rium profile. We analyze the problem for the point (s, Ys) shown in Fig. 1b. s is the
distance from the lower apex (x ′ = 0, y′ = 0) to any point along x, whereas Ys is
the distance to the equilibrium profile along the line parallel to the tilted edge (y′)
and that starts at the point x ′ = scosβ and y′ = ssinβ; thus the equilibrium profile
is given by the injective function y′(x ′).
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Fig. 2 Left hand side picture of the experimental equilibrium profile (rectangular hyperbola) for
β = 0 rad. Right hand side theoretical profile (curve) and experimental data (symbols)

In this case the pressure jump across the surface is approximately

�p = 2σcos θ

αscosβ
, (4)

meanwhile the equilibrium profile is determined by the balance

�p = ρgYscosβ. (5)

This balance gives the hyperbola

Ys = 2σcos θ

ρgαscos2β
, (6)

Another way to get the profile is by using the vertical length Hs(s) but it is more
complex because for some values of s could exist two values of Hs and for other
ones, none. Thus, it is better to compute s(Hs) (an injective function) given by

S = 2σcos θ

ρgαcosβHs
+ Hs tanβ. (7)

Consequently, the equilibrium profile can be plotted by using Eqs. (6) or (7).
To make sure that our model is correct in the prediction of the equilibrium profiles

in Fig. 3 we show the actual equilibrium profile in a Taylor-Hauskbee cell having
β = 0.523 rad (30◦) and α = 0.0092 rad. The liquid of work was again silicone oil
of μ = 100 cP. In Fig. 4 we give an example of Fig. 3 showing other details.
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Fig. 3 Picture of the experimental equilibrium profile for β = 0.523 rad (30◦) and α = 0.0092 rad

Fig. 4 Depict of the experimental equilibrium profile showing other details of the cell of Fig. 3

Fig. 5 Left hand side Scheme of the cell with its dimensions (in mm) for β = 0.523 rad (30◦).
Right hand side theoretical profile (curve) and experimental data (symbols), here α = 0.0092 rad
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Fig. 6 Left hand side Scheme of the cell with its dimensions (in mm) for β = 0.785 rad (45◦).
Right hand side theoretical profile (curve) and experimental data (symbols), here α = 0.01659 rad

Fig. 7 Picture of the
experimental equilibrium
profile for β = 0.785 rad
(45◦) and α = 0.0166 rad

The actual dimensions of the cell are given in Fig. 5. There, we also show the
plot of the theoretical profile Eq. (7) as well as the experimental data obtained from
Fig. 3. The fit is very fine.

In Fig. 6 we show a scheme of the cell and the plot of the actual equilibrium profile
for β = 0.785 rad (45◦) and α = 0.0166 rad. Data were taken from Fig. 7. Clearly
the fit is very good.

3 Dynamical Evolution

The equilibrium profile is attained after a succession of free surfaces. In Fig. 8 we
show a plot with several free surfaces obtained at several time instants. Such a
behavior is very similar to that occurring in the normal Taylor-Hauksbee cell (Higuera
et al. 2008). In spite of this result, the times to reach the equilibrium between the
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Fig. 8 Plot with the profiles
at several stages (time
instants) towards the
equilibrium. In this case
β = 0.523 rad (30◦) and
α = 0.0092 rad

case with vertical edge and those where the edges are tilted was very different from
each other. This is due to the intensity of the gravity field which changes with β.

4 Conclusions

In this work we have analyzed the problem of the capillary rise of a viscous liquid
into vertical and tilted Taylor-Hauskbee cells. We have put forward a theoretical
model to describe the actual equilibrium profiles. The model predicts pretty well
the profiles in such a cell. The transition to the equilibrium profiles shows complex
instantaneous profiles very similar to those occurring in a vertical cell. Further work
along this line is in progress.
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