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Preface

The understanding of fluid flow has become a very important field of research
because of its relevance in many human activities. The study of fluid flow is
essential in many fields such as physics, biology, medicine, engineering, envir-
onmental sciences, energy, atmospheric flow processes that influence the weather
and the climate, and so on. Many industrial processes are governed by the equa-
tions of fluid dynamics and so its study is valuable. Numerical simulations of fluid
flow is reducing the high cost of very expensive experimental tests. Dynamical
fluid dynamics are also very important for understanding fundamental physical
processes at all scales.

This book presents recent experimental and theoretical advances in fluid
dynamics in physics and engineering. It begins with invited lectures given during
the International Enzo Levi Spring School 2012 held at the Universidad Autónoma
Metropolitana-Azcapotzalco, May 17–18, 2012, and invited seminars presented in
the 18th National Congress of the Fluid Dynamics Division of the Mexican Physical
Society, held at the Centro de Investigación Científica y Educación Superior de
Ensenada (CICESE), Ensenada, Baja California, Mexico, November 21–23, 2012.

The Spring School is organized every year in honor of Prof. Enzo Levi, a well-
known Mexican scientist that dedicated his research to the study of fluids. He was
one of the founders of the Instituto de Ingeniería (Engineering Institute) of the
Universidad Nacional Autónoma de México (UNAM), and of the Instituto
Mexicano de Tecnología del Agua (Mexican Institute for Water Technology) of
the National Water Commission. He was the mentor of several generations of
Mexican Engineers.

During the 2 days school, lectures were given by well-known national and
international scientists. In 2012, many people attended the meeting with 50
researchers and more than a hundred graduate and undergraduate students. A wide
variety of topics were presented by young national researchers that included
asymptotic methods in fluids, convection, computational methods for biological
systems, interfacial fluid dynamics, and problems related to colloidal dispersion
and fractured porous media. Among the lectures we want to mention a very
interesting description of the Alya Cardiac Computational Model given by
Mariano Vazquez of the Barcelona Supercomputing Center in Spain, two lectures
by Rouslan Kretchetnikov of the University of California in Santa Barbara entitled
Walking with coffee: why it splits and A few puzzles in interfacial fluid dynamics,
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two lectures by Cesar Treviño (UNAM) on asymptotic method in fluids and linear
stability of mixed convection flows. Other interesting lectures were given on the
Turbulence of marine currents by Angel Ruíz (UNAM), on the hydrodynamic
interactions of heterogeneous colloidal dispersions by Catalina Haro (UAM-A), on
the Boundary element method in Fluid Mechanics by Abel López Villa (IPN), and
on An Experimental Analogy of Pedestrians under Panic Situations by Abraham
Medina (IPN). Several of these lectures were included in Part I of the Book.

The Annual Fluid Dynamics Congress has a different format. In 2012, it lasted
3 days and was composed of five plenary lectures and many short oral presenta-
tions of students and researchers.

In part I, we also included the plenary lectures given during the congress by
international well-known invited speakers and some of the most interesting short
oral contributions. Among the plenary lectures, we can mention those given on the
basic concepts of ignition and fuel through diffusion flames by Amable Liñan of
the Universidad Politécnica de Madrid, on the Transition to turbulence in stratified
wakes by Patrice Meunier of the Aix-Marseille University, France, on flow driven
by harmonic forcing in planetary atmospheres and cores by Michael Le Bars, also
of the Aix-Marseille University, France, on the role of symmetry in biomimetic
wakes for propulsion by Verónica Raspa of the University of Paris Diderot,
France, on toroidal vortex with chaotic stream lines by Oscar Velasco of CICESE,
Baja California, México, on the symmetry instability in a mixed convection
problem by Cesar Treviño of UNAM, and on The boundary element method for
bubble formation by Abel López of the IPN, México.

The other short presentations are organized in topics: Multiphase Flow and
Granular Media (Part II), Convection and Diffusion (Part III), Vortex, Oceanog-
raphy and Meteorology (Part IV), and General Fluid Dynamics and Applications
(Part V).

In Part II, Multiphase Flow and Granular Media, we have focused on petro-
leum-related applications, you can find interesting contributions on the nitrogen
dispersion in the neighborhood of a well, on a phenomenological description of
heavy oil, on an experimental study of the growth of bubbles in corrugated tubes,
which has applications for foam injection in fractured porous media, on surface
tension and interfacial tension measurements in water-surfactant-oil systems, and
other related problems. Other contributions in this section are in granular media
and mass flow in a silo.

Convection and Diffusion can be found in Part III, with interesting contribu-
tions on conjugate convection in an open cavity, and on transport of particles in a
periodically forced flow. We also found two applications to porous media flow:
experimental studies of a vaporization front, and the mass and mass transfer during
steam injection. There is also an interesting numerical study with SPH of the
Kelvin–Helmholtz instability.

In Part IV, Vortex, Oceanography, and Meteorology, one can find three con-
tributions on atmospheric fluid dynamics, the first on forced dynamics by normal
wind to the boundary, the second on numerical experiments of wind circulation off
the Baja California coast, and the third one is a review on environmental fluid
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dynamics. Two further contributions are on the effect of the inlet flow angle on the
vortex induced vibration of a collinear array of flexible cylinders and the wake
patterns behind a flapping foil.

Finally, in Part V, General Fluid Dynamics and Applications, we find several
contributions of fluid dynamics to various fields such as magnetohydrodynamics,
evaporation of a liquid layer, a study of the drag coefficient in the Navier–Stokes
fractional equation, interactions of fluids, numerical simulation of biological sys-
tems with the DPD method, and soil transport of contaminants.

The book is aimed to fourth-year undergraduate and graduate students, and to
scientists in the field of physics, engineering, and chemistry that have interest in
fluid dynamics from the experimental and theoretical point of view. The material
includes recent advances in experimental and theoretical fluid dynamics and is
adequate for both teaching and research. The invited lectures are introductory and
avoid the use of complicated mathematics. The other selected contributions are
also adequate to fourth year undergraduate and graduate students.

The editors are very grateful to the institutions who made possible the realization
of the International Enzo Levi Spring School 2012 and the 18th National Congress
of the Fluid Dynamics Division of the Mexican Physical Society, especially the
Consejo Nacional de Ciencia y Tecnología (CONACYT), the Sociedad Mexicana
de Física, the Universidad Autónoma Metropolitana-Azcapotzalco, the Centro de
Investigación Científica y Educación Superior de Ensenada (CICESE), the
Universidad Autónoma de México (UNAM), the Instituto Politécnico Nacional
(IPN), Cinvestav-Abacus, and the Instituto Nacional de Investigaciones Nucleares
(ININ).

We acknowledge the help of the Edition Committee: Carlos A. Vargas, Gerardo
Ruíz Chavarría, Catalina Stern, Salvador Galindo Uribarri, Estela Mayoral Villa,
Elizabeth Teresita Romero Gúzman, Eduardo de la Cruz Sánchez, Abel López
Villa, and in particular Fernando Aragón and Ruslan Gabbasov for their important
and valuable contribution to the final manuscript.

Mexico City, July 2013 Jaime Klapp
Abraham Medina
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Symmetry Breaking Instability in a Mixed
Convection Problem

J. C. Cajas, L. Martínez-Suástegui and C. Treviño

Abstract In this work, the stability of a strongly non-parallel symmetrical
counterflow mixed convection problem is studied, using numerically generated
eigenfunctions. The base flow is numerically obtained for each value of the buoyancy
parameter (Richardson number), and the stability of this flow is analyzed by increas-
ing its value while all the others remained fixed. The perturbed linear functions are
numerically generated by introducing a transient modulated asymmetrical buoyancy,
relaxing at later times to ‘numerical eigenfunctions’. The time evolution of the am-
plitude of these perturbations is used to obtain the stability characteristics. Symmetry
breaking instability occurs, for fixed geometry, Reynolds and Prandtl numbers, for
values of the buoyancy parameter larger than a critical one. However, there is also
a window for the buoyancy parameter below this critical value, where the system
shows instability, producing a slightly asymmetric thermal and flow response.

1 Introduction

Mixed convection is defined as heat transfer situations where both natural and forced
convection mechanisms interact. In particular, the oscillatory behavior in mixed con-
vection flows is of great interest because of its rich dynamical features and useful
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results to applied problems. Chang and Lin (1993) studied the steady laminar and
transient oscillatory mixed convection in a symmetrically heated vertical plane chan-
nel, subjected to an opposing buoyancy assuming a fully developed velocity profile
at the inlet and discrete heat sources that are maintained at uniform and equal heat
fluxes. The authors pointed out that an oscillatory flow with a single fundamental
frequency is found when the buoyancy parameter, or Richardson number, exceeds a
critical value. Lin et al. (1993) investigated numerically the detailed flow and ther-
mal characteristics in transient laminar opposing mixed convection in a vertical plane
channel subjected to a symmetrical heat input. Their results show that at high op-
posing buoyancy, sudden flow asymmetry and oscillation occur simultaneously in an
early steady flow after the initial transient. Evans and Greif (1997) showed the strong
effects of buoyancy, even for small temperature differences, on the downward flow of
nitrogen in a partially heated tall vertical channel and reported time-dependent oscil-
lations, including periodic flow reversals along the channel walls. Martínez-Suástegui
and Treviño (2007, 2008 ) investigated the transient laminar mixed convection in an
asymmetrically and differentially heated vertical channel of finite length subjected
to an opposing buoyancy. Their results show that a final steady or oscillatory flow
response is obtained depending on the value of the Reynolds and Richardson num-
bers, and that the critical value of the buoyancy strength between the two regimes
strongly depends on the value of the Reynolds number.

Stability analyses in natural and mixed convection flows have been developed
through the years, since they provide further insight of the instability mechanisms
present in such situations and give quantitative information about the defining and
critical parameters involved. Ever since the pioneering work of Lorenz (1963), who
studied the instability of finite systems of deterministic ordinary non-linear differen-
tial equations representing forced dissipative hydrodynamic flows, stability analyses
of fluid flow phenomena experienced a rapid growth and became the starting point of
the chaos theory. Carey and Gebhart (1983) studied theoretically and experimentally
the stability and disturbance amplification produced by the combination of a natural
convection flow induced by a vertical uniform heat flux surface and a forced convec-
tion flow given by a uniform free stream by assuming a weak forced convection flow
with strong buoyancy effects. The authors presented stability planes and constant am-
plification contours, and found very good agreement between the two approaches.
Daniels (1989) studied the stationary instability of the convective flow between differ-
entially heated vertical planes and determined the subsequent structure of the neutral
curve for stationary disturbances. Later, Chait and Korpela (1989) studied numeri-
cally the multicellular flow between two vertical parallel plates using a time-splitting
pseudo spectral method for a steady flow of air and a time-periodic flow of oil. In the
case of air, the authors analyzed parametrically the three-dimensional linear stability
of the flow and found that the domain of stable two-dimensional cellular motion is
constrained by the Eckhaus instability and by two types of monotone instabilities.
Their results show that the two-dimensional multicellular flow is unstable above a
Grashof number of about 8,550. Hence, the authors conclude that the flow of air in
a sufficiently tall enclosure should be considered three-dimensional for most practi-
cal applications. Two decades ago, Rogers et al. (1993) studied the finite amplitude
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instability of mixed convection of air in a vertical concentric annulus with each
cylinder maintained at a different temperature by use of weakly non-linear instabil-
ity theory and direct numerical simulation. They found three different instabilities in
the parameter space of Grashof and Reynolds numbers: one due to shear and the two
others induced by thermal effects. Suslov and Paolucci (1995) studied the stability of
mixed convection flow in a tall vertical channel under non-Boussinesq conditions and
showed that the stability characteristics, such as the critical Grashof number and the
disturbance wave speed, depend strongly on the temperature difference when fluid
properties are allowed to vary. Chen and Chung (1996; 1998) studied the stability of
a differentially heated vertical channel for various Prandtl numbers and showed that
both the Prandtl and Reynolds numbers hold very important effects on the instability
mechanism for high Prandtl number fluids. More recently, van Putten et al. (2001)
presented experimental results of heat transfer processes in mixed convection from
a ducted vertical hot-plate thermal flow sensor for aiding and opposing flows for
three different values of the Grashof numbers, Gr = 289, 411 and 456 for a range
or Reynolds number from 0 to 120. The authors found, in the transition from free
to mixed and to essentially forced convection, distinct sequences of instabilities in
the flow that lead to several local minima and maxima in the heat transfer from the
plate. Benoit Cushman-Roisin (2005) proposed a non-usual approach to the Kelvin-
Helmholtz instability by considering the latter as a boundary-value problem instead
of using the traditional approach of an initial-value problem where wave perturba-
tions of a two-layer shear flow grow over time into billows and eventually generate
vertical mixing. His results show that although the wavelength and period of the
critical wave differ from the classical problem, the outcome of the boundary-value
problem is the same as for the initial-value configuration. In the last years, Guillet
et al. (2007) considered the case of laminar mixed convection flow between vertical
parallel plates heated uniformly, they used a method based on the center manifold
theorem to reduce the Navier-Stokes equations to ordinary differential equations in
the vicinity of a trivial stationary solution and pointed out that when the forcing para-
meter or Rayleigh number increases beyond a critical value, the stationary solution
is a pitchfork bifurcation point of the system. In the same year, Bera and Khalili
(2007) used the linear theory of stability analysis to study numerically the impact of
permeability on the stability of a buoyancy-opposed mixed convection in a vertical
channel. They found that two main instability modes (Rayleigh-Taylor and buoyant
instability) appear, and that for Darcy numbers ≤ 10−9, the Rayleigh-Taylor insta-
bility dominates within the entire Reynolds number range considered. In addition,
they also found that for the same Re, the fully developed base flow is highly unstable
(stable) for porous media with high (low) permeability, whilst the introduction of a
one order of reduction in the permeability in the main flow direction made the system
approximately twenty times more stable.

Although the oscillatory behavior of Navier-Stokes type systems in mixed
convection has received relatively little attention, it is known that these flows can
exhibit interesting dynamical phenomena. In many cases, the transition to turbu-
lence is a chain of oscillatory states separated by bifurcations of different types.
Examples where the bifurcation structure of such systems has been studied follow.
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Meron and Procaccia (1987) showed that in dynamical systems described by criti-
cal flows, the onset of chaos is via gluing bifurcations, and that these systems can
be analyzed using discontinuous maps of the interval. The gluing bifurcation is a
class of global bifurcations where, as an external control parameter is varied, two
symmetrically related time-periodic states simultaneously become homoclinic to an
unstable saddle state and result in a single symmetric time-periodic state (Epstein
and Pojman 1998; Ambruster et al. 1996; Abshagen et al. 2001) . Arneodo et al.
(1981) performed a study for one route to chaos via a cascade of bifurcations involv-
ing homoclinic orbits. Rucklidge (1993) described the transition to chaos through
gluing processes in a three-dimensional magnetoconvection model. Marques et al.
(2001) studied numerically a one-dimensional route in parameter space of a peri-
odically forced flow with symmetry and provided a comprehensive analysis of the
route to chaos, which involves a new and convoluted symmetry breaking that in-
cludes heteroclinic, homoclinic and gluing bifurcations. Lopez and Marques (2000)
obtained three-tori solutions of the Navier-Stokes equations and their dynamics by
use of a global Poincaré map. Their results show that these solutions undergo global
bifurcations that include a new gluing bifurcation associated with homoclinic and
heteroclinic connections to unstable solutions (two-tori), that act as organizing cen-
ters for the three-tori dynamics.

The foregoing survey of literature reveals that there are relatively few studies
that address the thermal and flow stability in internal mixed convection for opposing
flow in situations where flow reversal occurs. In the present study, a detailed numer-
ical investigation is done of the symmetry breaking instability for laminar opposing
mixed convection flow in a vertical channel of finite length subjected to isother-
mal and discrete heat inputs. For fixed Reynolds, Prandtl and geometry, the stability
characteristics are obtained for increasing values of the buoyancy parameter.

2 Problem Description

The loss of stability is studied for a symmetrical counter-current mixed convection
problem inside a vertical channel of finite length with a flat velocity distribution at
the channel entrance, with the channel walls heated discretely and symmetrically.
The schematic view of the geometry considered is shown in Fig. 1. The forced flow
is driven by gravitational force acting vertically downward, entering the duct with a
uniform velocity u0 and ambient temperature T0. Axial distances from the entrance
section are measured by the x coordinate (positive downward), while transverse
distances are measured by y (y = 0 at the left wall). Both walls, separated by a
distance h have discrete heat sources of length l2 located at x = l1, with uniform
wall temperature Tw, where Tw > T0. All other surfaces of the channel walls are
assumed adiabatic insulators. Flow rectifiers are placed at the channel entrance and
exit, thus producing a parallel flow at x = 0 and x = l1 + l2 + l3. The viscous
dissipation in the energy equation is neglected and the thermophysical properties of
the fluid are assumed to be constant except for the density in the buoyancy term, which
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Fig. 1 Schematic
representation of the channel

is treated according to the Boussinesq approximation. By the use of the vorticity
(Ω = ∂V/∂X − ∂U/∂Y ) and stream function formulation (U = ∂ψ/∂Y , V =
−∂ψ/∂X ), the flow is described by the nondimensional equations

∂2ψ

∂X2 + ∂2ψ

∂Y 2 = −Ω, (1)

∂Ω

∂τ
+ ∂ψ

∂Y

∂Ω

∂X
− ∂ψ

∂X

∂Ω

∂Y
= 1

Re

(
∂2Ω

∂X2 + ∂2Ω

∂Y 2

)
− Ri

∂θ

∂Y
, (2)

∂θ

∂τ
+ ∂ψ

∂Y

∂θ

∂X
− ∂ψ

∂X

∂θ

∂Y
= 1

RePr

(
∂2θ

∂X2 + ∂2θ

∂Y 2

)
. (3)

where V = (U, V ) is the dimensionless velocity vector and θ is the dimensionless
temperature. In the above equations, all velocity components (U in the X -direction
and V in the Y -direction) are scaled with the inflow velocity, u0, U = u/u0 and
V = v/u0; the longitudinal coordinates are scaled with the channel width h, X = x/h
and Y = y/h; the time is scaled with the residence time h/u0, τ = tu0/h; the tem-
perature is normalized as θ = (T − T0)/(Tw − T0). The non-dimensional parameters
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appearing in the above equations are the Reynolds number, Re = u0h/ν (inertial to
viscous forces), the Prandtl number, Pr = ν/α (viscous to thermal diffusivities) and
the Richardson number, Ri = gβ (Tw − T0) h/u0

2 (buoyancy induced potential to
forced kinetic energy). Here, g is the gravity acceleration and β is the thermal expan-
sion coefficient. Another buoyancy parameter employed frequently is the Grashof
number, Gr = Ri Re2, which relates buoyancy to viscous forces. Additional non-
dimensional geometrical parameters arise through the boundary conditions, Li =
li/h, with i = 1, 2, 3. Equations (1–3) have to be solved with the following bound-
ary conditions. Uniform flow at the channel entrance: ψ(0, Y ) − Y = Ω(0, Y ) = 0,
no slip at the walls, ψ(X, 0) = Ω(X, 0) − 2(ψ(X, 0) − ψ(X,ΔY ))/ΔY 2 = 0,
ψ(X, 1) − 1 = Ω(X, 1) − 2(ψ(X, 1) − ψ(X, 1 − ΔY ))/ΔY 2 = 0, and relaxed
parallel flow conditions at the channel exit:∂ψ/∂X |X=L = ∂2ψ/∂X∂Y

∣∣
X=L = 0,

where L is the total length of the channel, L = L1+L2+L3. The boundary conditions
for temperature are the following. Fixed temperature at the heated sections θ = 1 at
Y = Yw at L1 ≤ X ≤ L1 + L2. Adiabatic channel walls are considered, ∂θ/∂Y = 0
except at L1 < X < L1 + L2 and Y = Yw. The dynamical properties of the system
are described using the average non-dimensional heat fluxes or Nusselt numbers at
both heated plates, NuL ,R = ∣∣q L ,R

∣∣ h/(k(Tw − T0)) and the non-dimensional first

moment of the longitudinal velocity, Yp = (1/h2u0)
∫ h

0 yudy. Here k is the thermal
conductivity of the fluid. NuL ,R depend only on time and Yp is a function of the
longitudinal position and time. Due to baroclinity -last term of Eq. (2)-, vorticity is
produced and vortices (large recirculation bubbles) are generated. The position of the
recirculation zones are represented by a stagnation point at X = Xs(τ ), defined by
the maximum value of X , where the longitudinal velocity component is non-negative
in the vortex region. Eqs. ( 1–3) are numerically solved using a strongly non-uniform
staggered grid system with a denser clustering near the heated plate. The technique
employed has been described elsewhere Mart?nez-Su?stegui et al. (2011). In this
work the Reynolds number is Re = 100, with l = 12h. The length of the heated
slabs is l2 = h, and they are located at x = l1 = 5.5h, that is l1 = l3 = 5.5h. The
non-dimensional time step Δτ = u0Δt/h has been set to 5×10−4, and computation
is terminated when the time evolution of the system state reaches steady-state or a
final self-sustained oscillatory state.

3 Numerical Solution

After switching buoyancy on and for relatively small values of the Richardson
number, the flow reverses close to the heated slabs and a pair of symmetric vortices
develop due to baroclinity. Both vortices reach a maximum position represented by
the stagnation point, which decreases (higher positions) as the buoyancy parameter
increases. There is an equilibrium between buoyancy in the hot recirculation bubble
and the dynamical pressure and drag from the cold downward fluid. For a range
of values of the Richardson number of Ri < 5.2, the transient response leads to a
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Fig. 2 Final states for a steady and symmetrical dynamical response of the system

symmetrical steady state solution. For these relatively low Richardson numbers there
is only a weak interaction in the dynamics of both recirculation bubbles. Figure 2
shows the velocity and temperature profiles after the dynamical system has reached
a symmetrical steady state. For this range of the buoyancy parameter, the final states
of the system correspond to steady symmetric flow. As the Richardson number in-
creases, small amplitude flow oscillations appear in the downstream region of the
channel and their amplitude increase for increasing values of the buoyancy parame-
ter. These flow oscillations are a manifestation of the Kelvin-Helmholtz instability
due to the strong shear between the ascending hot fluid and the descending cold fluid
located in the middle of the channel. This triggers a symmetry-breaking bifurcation
and one of the two vortices (assumed to be close to the left heated surface, for sim-
plicity) climbs while the other is pushed down by the downward flow with increased
longitudinal momentum. If one vortex climbs, the cold fluid deflects to the other side
of the channel increasing the longitudinal velocity and thus the momentum, pushing
down the other vortex. As the fluid reaches the top of the lower vortex, the cold
downward fluid switches sides again, thus supporting the upper recirculation bubble.
Crude numerical simulations show that the symmetry breaking bifurcation occurs
for a Richardson number of Ri = 5.2. As a result, a stable non-symmetric pattern
develops after a relatively short transient. Figure 3 shows the resulting evolution of
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Fig. 3 Hysteresis behavior for Re = 100 and Pr = 7

the overall Nusselt number for the specific case of a Reynolds number of 100 and a
Prandtl number of 7. As the Richardson number increases, the Nusselt number first
decreases and later increases. This behavior is due to the change of the flow direction
close to the wall. For a Richardson number close to 5.2 symmetry breaks and one
of the recirculation bubble climbs while the other is pushed down, producing two
solution branches for both hot surfaces. If now, the Richardson number decreases,
the response continues to be asymmetric for values down to 4.1, where suddenly
the symmetric behavior is recovered. This hysteresis loop is a clear indication of a
subcritical bifurcation process to be analyzed below.

4 Linear Stability Analysis

For a given fixed Reynolds number and small values of the Richardson number, a
symmetrical flow response is obtained. In order to study the stability of the symmetri-
cal flow, a symmetrical strongly non-parallel base flow with variables denoted by ψ0,
Ω0 and θ0 as functions of the Richardson number, is numerically generated, given
by Eqs. (1–3), but with the following symmetrical boundary conditions: Uniform
flow at the channel entrance: ψ0(0, Y ) − Y = Ω0(0, Y ) = θ0(0, Y ) = 0,; no slip
at the wall, ψ0(X, 0) = Ω0(X, 0) − 2(ψ0(X, 0) − ψ0(X,ΔY ))/ΔY 2 = 0; symme-
try conditions at the symmetry plane (Y = 0.5), ψ0(X, 0.5) − 0.5 = Ω0(X, 0.5) =
∂θ0/∂Y = 0 and relaxed parallel flow conditions at the channel exit:∂ψ0/∂X |X=L =
∂2ψ0/∂X∂Y

∣∣
X=L = 0. A solution of the form Ω = ∑∞

i=0 δnΩn , ψ = ∑∞
i=0 δnψn

and θ = ∑∞
i=0 δnθn , is assumed, with δ → 0. The linearized first order equations are
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Fig. 4 Time evolution of the perturbed Nusselt number for Pr = 7 and different values of the
Richardson numbers from 4.2 to 5.0

∂Ω1

∂τ
+ ∂ψ0

∂Y

∂Ω1

∂X
− ∂ψ0

∂X

∂Ω1

∂Y
− 1

Re
∇2Ω1 = −∂ψ1

∂Y
∂Ω0
∂X + ∂ψ1

∂X
∂Ω0
∂Y − Ri ∂θ1

∂Y , (4)

∇2ψ1 = −Ω1, (5)

∂θ1

∂τ
+ ∂ψ0

∂Y

∂θ1

∂X
− ∂ψ0

∂X

∂θ1

∂Y
− 1

RePr
∇2θ1 = −∂ψ1

∂Y

∂θ0

∂X
+ ∂ψ1

∂X

∂θ0

∂Y
, (6)

with the required homogeneous boundary conditions in the whole channel. A non
trivial solution can be obtained from numerically generated eigenfunctions, using
the perturbed Richardson number

Riε = Ri (1 + εe−τ/τ0 f (y)),

with two different modes: f (y) = sin(2π y) or f (y) = cos(π y). In the above rela-
tion τo is set of order unity and ε is a parameter with a value very small compared with
unity. The non-symmetric forcing relaxes the solution in a short time to a numerical
eigenfunction, which evolves with time, giving the stability conditions by detecting
the amplitude evolution of the overall Nusselt perturbation and its oscillation fre-
quency, Nu1 = ∫ L1+1

L1
∂θ1/∂Y |Y=0 d X ∼ exp(σ + i S)τ , where i = (−1)1/2. Posi-

tive values of σ means instability. S is then the non-dimensional oscillation frequency
(Strouhal number). Figure 4 shows the time evolution of the perturbed Nusselt num-
ber Nu1 for a Prandtl number of Pr = 7 at both heated surfaces, for different values
of the Richardson numbers up to Ri = 5.0. For Richardson numbers up to 4.6 the
perturbed solution decays without oscillating. On the other hand for values between
4.9 and 5.0 the response solution decays oscillating with different frequencies and
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Fig. 5 Time evolution of the perturbed Nusselt number for Pr = 7 and different values of the
Richardson numbers from 5.0 to 5.2

Fig. 6 Growth rate as a function of the Richardson number for Pr = 7. Positive values means
instability

decay rates. However, surprisingly, for a Richardson number of 4.7, the amplitude
perturbed solution increases monotonically with time, which is indication that for
this particular case, the symmetrical flow is unstable. Using the non-linear equations
it can be shown that a slightly non-symmetric steady state flow response is obtained
for this Richardson number. For Richardson numbers above 5.0, Fig. 5 shows the
time evolution of the perturbed Nusselt number. Here again, for Ri = 5.0 the stable
decaying oscillating response is depicted. As the Richardson number increases, the
oscillating frequency also increases. For Richardson numbers Ri � 5.1 the system
is now unstable. Figures 6 and 7 show the the real (σ) and the imaginary (S) parts,
respectively, of the exponential growth, for a Prandtl number of Pr = 7. The sys-
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Fig. 7 Oscillation frequency of the linear perturbation as a function of the Richardson number for
Pr = 7

tem is linearly unstable in the ranges 4.606 < Ri < 4.72 and Ri > 5.06. Instability
leads in both cases to steady nonsymmetric thermal and flow configurations with two
vortex structures at different heights. Although the symmetrical flow configuration
is unstable for values of 4.606 < Ri < 4.72, soon non-linearities limit the growth
of perturbations producing a slight modified asymmetrical steady thermal and flow
pattern, where the recirculation bubbles only move apart slightly in the vertical po-
sition. However, for values of Ri > 5.06, the difference of the maximum height of
both vortical structures at the final steady state is of the order of the channel width,
that is of order unity in non-dimensional units. Figure 7 shows that the time evolution
of the perturbation is monotonic for Ri < 4.85 and oscillatory for larger values of
the Richardson number, except for a very thin region around Ri = 4.92, where the
oscillation frequency reduces drastically. This atypical response arises because for
each Richardson number, a different base flow is needed.

5 Conclusion

In this work, the linear stability of a two dimensional symmetrical counter-current
mixed convection system is analyzed using numerically generated eigenfunctions.
The problem depends on several non-dimensional parameters like the flow Reynolds
number, the Prandtl number of the fluid, the Richardson number (buoyancy para-
meter) and geometrical parameters of the vertical channel. The symmetry breaking
instability has been obtained for fixed geometry, Reynolds (Re = 100) and Prandtl
(Pr = 7) numbers, by increasing the buoyancy parameter. For low Richardson num-
bers (Ri < 4.606), the resulting flow is steady and symmetric with two vortical
flow structures anchored slightly above the heated sources. The system shows an
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instability for the range 4.606 < Ri < 4.72, where the two vortical structures sep-
arate only slightly in the vertical position. The steady-state symmetrical response
is again obtained for larger Richardson numbers up to Ri = 5.06, where again the
system looses stability, producing a much larger separation of the vortices in the
vertical coordinate.
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The Boundary Element Method in Fluid
Mechanics: Application to Bubble Growth

A. López-Villa, Luis S. Zamudio and A. Medina

Abstract The origin of the numerical implementation of boundary integral equations
can be traced from fifty years earlier, when the electronic computers had become
available. The full emergence of the numerical technique known as the boundary
element method occurred in the late 1970s. In implementing the method, only the
boundary of the solution domain has to be discretized into elements. In the case of a
two-dimensional problem, this is really easy to do: put closely packed points on the
boundary (a curve) and join up two consecutive neighboring points to form straight
line elements. In this chapter we present one of the applications of this method,
namely, the growth and detachment of bubbles generated by the continuous injec-
tion of gas into a quiescent liquid and the effect of partial confinement on the shape
and volume of bubbles generated by injection of a constant flow rate of gas. In the
problem of bubble generation, the contours are the surfaces of the bubbles and the
solid surfaces of the reservoir, which are all surfaces of revolution. The unknowns
involved in the formulation of the boundary element are fluid particle velocities that
define surfaces of the bubbles and the stresses on the vessel wall. First, we neglect
viscous effects and assume the flow to be irrotational so that a velocity potential
exists. In second case we solve the Stokes equations for the liquid and the evolution
equation for the surface of a bubble. Experiments with two different liquids show
that cylindrical and conical walls and cylinder walls with periodic concentric corru-
gations with a gas injected through an orifice at the bottom of the liquid may strongly
affect the shape and volume of the bubbles, and can be used to control the size of the
generated bubbles without changing the flow rate of gas.
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Fig. 1 Number of journal articles published by the year on the subject of BEM, based on the Web
of Science search. Refer to Appendix for the search criteria (Search date: May 3, 2004)

1 Introduction

Mathematicians from the eighteenth to twentieth centuries, whose contributions were
the key to the theoretical development, are honored with short biographies. The origin
of the numerical implementation of boundary integral equations can be traced back
to the 1960s, when the electronic computers had become available.

The full emergence of the numerical technique known as the boundary element
method occurred in the late 1970s. This article reviews the early history of the
boundary element method up to the late 1970s.

After three decades of development, the boundary element method (BEM) has
found a firm footing in the area of numerical methods for partial differential equa-
tions. Comparing to the more popular numerical methods, such as the Finite Element
Method (FEM) and the Finite Difference Method (FDM), which can be classified
as the domain methods, the BEM distinguish itself as a boundary method, mean-
ing that the numerical discretization is conducted at reduced spatial dimension. For
example, for problems in three spatial dimensions, the discretization is performed
on the bounding surface only; and in two spatial dimensions, the discretization is on
the boundary contour only. This reduced dimension leads to smaller linear systems,
less computer memory requirements, and more efficient computation. This effect
is most pronounced when the domain is unbounded. Unbounded domain needs to
be truncated and approximated in domain methods. The BEM, on the other hand,
automatically models the behavior at infinity without the need of deploying a mesh
to approximate it. Figure 1 presents the histogram of the number of journal papers
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published annually, containing BEM as a keyword (Alexander and Daisy 2005;
Costabel Martin 1986).

Because a given set of boundary and initial conditions uniquely define the solution
in the domain, the value of the function at any point in the interior can be expressed as a
sole contribution of boundary values, what is achieved mathematically by the Green-
Stokes-Gauss-divergence theorem, which is the foundation of the boundary elements
method (BEM). With this method, first the full solution (function and derivatives)
at the boundary points are computed by a kind of finite-element method where the
base functions are the fundamental solutions of the PDE at the boundary nodes, then
solving a set of algebraic equations at the nodes, and finally, if needed, the value at
any internal point is directly computed by a quadrature (without interpolation).

The problem with the boundary element method is that the local integration in
the boundary is more involved than in the standard FEM because there are singular
points that require more elaborated computations. Other handicap is that the BEM
only applies to regions of constant properties. The great advantage is that for bulky
domains the number of nodes significantly decreases, particularly for infinite domains
(what explains its massive use in external fluid mechanics and geomechanics). Inci-
dentally, for infinite domains, besides the BEM, one may also resort to classical
FEM with a truncated domain progressively enlarged, or matched to an asymptotic
analytical expansion, or stretching the external elements with a log-transformation.

On the other hand, the growth and detachment of bubbles generated by the contin-
uous injection of gas into a quiescent liquid has been very much studied in conditions
where the viscosity of the liquid plays no important role (Davidson and Schuler 1960;
Longuet-Higgins et al. 1991; Marmur and Rubin 1976; Clift et al. 1978; Corchero
et al. 2006). Results of these studies are of interest in metallurgical and chemical
industries among others, where liquids of low viscosity, such as liquid metals and
aqueous solutions, need to be handled. Bubbles in these liquids can be used to modify
the concentrations of different substances and promote chemical reactions between
them, to clean liquids from impurities captured by adhesion or diffusion processes,
and for many other purposes (López-Villa et al. 2011).

The generation and dynamics of bubbles in very viscous liquids is also of interest
but has not been so much studied. Thus, while many aspects of the dynamics of bub-
bles in unbounded viscous liquids are well understood, the formation and detachment
of bubbles in confined systems has received less attention. Bubbles in very viscous
liquids are commonly found when dealing with polymers in their liquid phases, in
the flows of lava, and in processes of oil extraction from production pipelines, among
others. The latter example is a motivation of the present work, which sprang from
interest in the so-called gas lift technique of enhanced oil recovery, where bubbles
formed by injecting gas in oil extraction pipes help pumping the oil. Another moti-
vation is the foam formation, where we study the problem of the film thickness that
is formed between the free surface of a single bubble and the wall when the bubble
reaches its critical size in the vertical circular tube with smooth or ribbed walls filled
with a quiescent liquid of high viscosity. The foam formation is very important for
enhanced oil recovery (EOR), where the foam is used for channeling oil and clogs the
fractures to keep out gas, in fractured oil reservoirs. If gas mobility can be controlled,
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oil displacement efficiency is improved (Kovscek et al. 1995). Foam is a promising
general agent for controlling gas mobility in EOR processes (Hirasaki and Lawson
1985) and in other applications, such as aquifer storage of natural gas (Witherspoon
et al. 1987) and compressed air.

Scaling laws show that the volume of the bubbles generated by injecting a high
flow rate of gas into a very viscous liquid increases as the power 3/4 of the flow rate
and is independent of the diameter of the injection orifice. The simplest way to control
the size of the bubbles in a given liquid is, therefore, to act on the flow rate of gas.
This possibility, however, is limited in the application at hand, because the flow rate
of gas to be injected in the confined space of an extraction pipe is often determined
by other requirements of the gas lift technique. The limitation poses a problem to
control the size of the bubbles and brings to the front elements of the generation
process such as the viscous drag of the bubbles and the shear stress in the vicinity of
the walls, which are disregarded an inviscid analyses but offer a clue to the solution of
the size-control problem. In this chapter, we first neglect viscous effects and assume
the flow to be irrotational so that a velocity potential exists; in second case we solve
the Stokes equations for the liquid and the evolution equation for the surface of a
bubble. The shape of the tube in the vicinity of the injection orifice, or the use of
properly shaped injection nozzles, may cause substantial distortion of the growing
and shape of the bubbles and modify their volume at detachment. In our analysis,
a constant flow rate of gas is injected through a circular orifice at the horizontal
base of a container filled with non-viscous and very viscous liquid, and the space
where the bubbles grow can be partially confined by surrounding the orifice with a
vertical cylindrical wall or an inverted vertical cone. The extent of the confinement
can be gradually increased by decreasing the radius of the cylinder or the angle of
the cone, which allows quantifying the effect of the wall on the evolution and size
of the bubbles. This size is determined numerically and experimentally, and scaling
laws that are extensions of well-known laws for unconfined liquids are proposed and
validated.

To reach our goal the structure of the chapter is as follows. In the next section
we formulate the problem in terms of dimensionless equations for the motion of
the non-viscous liquid and the dimensionless boundary conditions for the evolution
of the free surface. In Sect. 3 we formulate the problem in terms of dimensionless
equations of motion of viscous fluids and the dimensionless boundary conditions for
the evolution of the free surface. In Sect. 4 we briefly explain the BEM method. The
main results of the numerical solution of this problem are given in Sect. 5, discussing
the evolution of the free surface during the growth of the bubble at constant gas flow
rate in conical and cylindrical containers. In Sect. 6 we compare some qualitative
experiments to our numerical results. Finally, Sect. 7 summarizes the main findings
and limitations of this work.
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2 Equations for Bubbles in Non-Viscous Liquids

Generation of bubbles by injection of a gas into a liquid at rest is an important
and much studied problem. Extensive research has been summarized in a variety of
models that address the many facets of the problem with different levels of detail;
see Clift et al. (1978), Räbiger and Vogelpohl (1986), Tsuge (1986) and Sadhal et
al. (1997) for reviews. The conceptually simplest models are based on a balance of
the forces acting on a bubble of assumed shape (see Davidson and Schuler (1960),
among others). These models clearly show the existence of a regime of low gas flow
rate in which the effect of the inertia of the liquid is negligible and the volume of
the bubbles is a constant independent of the gas flow rate, and a regime of high gas
flow rate in which the effect of the surface tension is negligible and the volume of
the bubbles increases as the 6/5 power of the gas flow rate and is independent of the
size of the injection orifice.

The original models of Davidson and Schuler (1960) and Ramakrishna et al.
(1968) which served to establish these results, have been extended to include a variety
of effects such as the viscous drag of the bubbles, the flow left by the viscous wake
of the preceding bubble, the momentum flux of the injected gas, and the different
shapes and apparent masses of the bubble at different stages of its growth. Extensions
also include a set of ad hoc criteria to account for the interference, collision and
coalescence of bubbles (Zhang and Shoji 2001), which are observed to occur at
high flow rates and eventually lead to non-periodic and chaotic regimes of bubble
generation (Leighton et al. 1991). More sophisticated non- spherical models (Marmur
and Rubin 1976) postulate equations of motion for each element of the bubble surface,
whose shape changes continuously during the growth and detachment. These models
rely on varying degrees of solutions for the potential flow of the liquid (Wraith and
Kakutani 1974). Oguz and Prosperetti (1993) numerically computed this flow using
a boundary element method and described in full detail the growth and detachment
of a single bubble at the end of a tube in different cases of interest, finding good
agreement with high speed video visualizations (see also Oguz and Zeng 1997).

This section focuses on time periodic bubbling regimes featuring coalescence
of two or more bubbles in a strictly inviscid liquid. Though the bubble generation
process ceases to be periodic when the flow rate is increased to sufficiently high
values, these more complex regimes will not be discussed here. Instead, the purpose
of the work is to examine to what extent coalescence at moderate gas flow rates can
be described in the framework of potential flow theory. In this respect, the work is
an extension of those of Oguz and Prosperetti (1993) and Oguz and Zeng (1997)
to include bubble coalescence. The main result is that potential flow computations
suffice to describe many aspects of coalescence, without resorting to any wake effect
or other effects related to the viscosity of the liquid.

Attention will be restricted to the simplest case of injection of a constant flow
rate of a gas through a single circular orifice at the bottom of an inviscid liquid at
rest (see Fig. 2). The gas will be treated as incompressible, with a density negligibly
small compared to the density of the liquid. The only parameters of the problem are
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Fig. 2 Definition sketch (a), with details of the contact line attached to the edge of the orifice (b)
and spreading on the horizontal bottom (c)

then the radius of the orifice, a, the density of the liquid, ρ, the liquid–gas surface
tension, σ, the contact angle of the surface with the bottom, θ, the gas flow rate, Q
(volume of gas injected per unit time), and the acceleration due to gravity, g. The
dimensional parameters can be grouped into a Bond number and a Weber number:

B = ρga2

σ
W e = ρQ2

σa3 (1)

The flow induced in the liquid by the train of bubbles released from the orifice is
irrotational if the viscosity of the liquid is neglected. The velocity potential, ϕ, such
that v = ≤ϕ, satisfies the Laplace equation

≤2ϕ = 0 (2)

in the liquid, to be solved with the conditions

D fi

Dt
= 0, (3)

Dϕ

Dt
= 1

2
|≤ϕ|2 − pgi − Bx + ≤ · ni , (4)
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at the surfaces of the bubbles; and ∂ϕ
∂x = 0 at the bottom (x = 0) and ≤ϕ ∞ 0

at infinity. Here fi (x, t) = 0 is the equation of the surface of the i-th bubble, with
i = 0 denoting the bubble growing at the orifice and i = 1, 2, . . .. denoting the
bubbles detached previously. These surfaces are to be found as part of the solution.
Distances and times are non-dimensionalized with the radius of the orifice a and
the capillary time (ρa3/σ)1/2. In Eq. (4) x is the dimensionless height above the
bottom, D

Dt = ∂
∂t + v · ∇ is the material derivative at points of the bubble surfaces,

ni = ≤ fi/ |≤ fi |, and pgi is the gas pressure in the i-th bubble referred to the
pressure of the liquid at the bottom far from the orifice and scaled with a factor a/σ.
These pressures are functions of time which are determined by the conditions that
the volume of the growing bubble (i = 0) increases at a constant rate equal to the
volume of gas injected per unit time (Q), and the volumes of the detached bubbles
(i = 1, 2, . . .) do not change with time.

An additional condition is needed at the contact line of the growing bubble with the
solid. Here the contact line will be taken to coincide with the edge of the orifice when
the angle of the liquid–gas surface with the horizontal is larger than the contact angle
(i.e. when −nx0 < cos θ, where nx0 is the vertical component of the unit normal
n0 to the attached bubble, see Fig. 2), and to spread away from the orifice with the
liquid–gas surface making a constant contact angle with the solid (−nx0 = cos θ)
otherwise. The two possibilities are sketched in Figs. 2b and c. The contact angle θ is
a third parameter of the problem, along with B and We defined in (1). Time periodic,
axisymmetric solutions of the problem have been computed numerically using a
standard boundary element method to solve the Laplace equation and a second order
Runge–Kutta method to advance the material nodes at the surfaces of the bubbles
and the velocity potential at them according to (3) and (4), with pgi (t) determined
at each time step. The implementation follows that of Oguz and Prosperetti (1993).

The final volume of the bubbles is shown in Fig. 3 as a function of the dimen-
sionless flow rate W e1/2 for two different values of the Bond number, B = 0.1 and
B = 1, which correspond to orifices of radii a = 0.85 and 2.68 mm, respectively, in
pure water. The contact angle was taken as θ = 45→ though results for other values
of θ are qualitatively similar.

Numerical computations have been carried out of the axisymmetric, irrotational,
time periodic flow induced in a quiescent strictly inviscid liquid by the growth,
detachment and coalescence of bubbles (see Figs. 4 and 5) due to the injection of
a constant gas flow rate through a horizontal submerged orifice. The results show
that this simple potential flow formulation may qualitatively describe many aspects
of the well-known transition from quasi-static generation of independent, constant
volume bubbles at low Weber numbers to inertia and buoyancy controlled growth
and interaction of bubbles at moderately high Weber numbers.
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Fig. 3 Volume of the bubbles scaled with a3 as a function of the dimensionless gas flow rate W e1/2

for B = 0.1 (upper set of curves) and B = 1(lower set of curves). The solid curves of each set
give the final volume of the bubble. The lower dashed curves give the volume of the first detached
bubble of a compound bubble, and the intermediate dashed curves give the volume of the first
detached couple when double coalescence occurs. The dotted horizontal line is the dimensionless
volume 47.497 computed in (Longuet-Higgins et al. 1991) for quasi-static detachment at B = 0.1.
For comparison, notice that the Fritz’s dimensionless volume for B = 0.1 is VF = 2π

B = 62.83.
The dotted lines at the right correspond to volumes proportional to W e3/5 (Corchero et al. 2006)

Fig. 4 Periodic generation of single bubbles for B = 0.1 and W e1/2 = 10 (a), 20 (b), and 40 (c)

3 Equations for Bubbles Growing in Non-confined
and Confined Viscous Liquid

The case of bubble generation in very viscous liquids is of interest in connection with
polymer melts (Bird et al. 1987) and molten glasses and magmas (Sahagian 1985;
Manga and Stone 1994), for example, but it has been comparatively less studied.
Using a balance of buoyancy and viscous forces on the surface of each bubble,
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Fig. 5 Four snapshots of the generation of a (double) compound bubble for B = 0.1 and W e1/2 =
100. a t = 13.77, immediately after the detachment of the leading bubble; b t = 25.34, immediately
after the detachment of the trailing bubble; c t = 25.64, immediately after breakup of the thin upward
jet; d t = 33.68, immediately after coalescence of the two bubbles. Times are non-dimensionalized
with the capillary time (ρa3/σ)1/2 and measured from the detachment of the bubble preceding
bubble 1 in (a). The period of the process is 25.34. Notice the weeping in (c) and the displacement
of the contact line away from the orifice in (c) and (d)

Davidson and Schuler (1960) proposed that the volume of the bubbles injected in
a very viscous quiescent liquid increases as the 3/4 power of the gas flow rate and
is independent of the radius of the injection orifice. This estimate is intended to
apply for high gas flow rates, for which the effect of the surface tension acting
across the contact line of the attached bubble with the solid surface of the orifice is
negligible. At very small flow rates, on the other hand, viscous forces are negligible
during most of the growth of the bubble, whose shape is determined by a hydrostatic
balance of buoyancy and surface tension. Longuet-Higgins et al. (1991) computed
the equilibrium shapes of attached bubbles and the volume at which equilibrium
state is not possible anymore and the bubble should detach. In orders of magnitude,
the volume of the bubble at detachment, V , is given in this small-flow-rate regime
by the hydrostatic balance ρgV ∇ σa, or V/a3 ∇ 1/B in dimensionless terms.
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Fig. 6 Two-dimensional projections of the reservoirs symmetrical to the gas injection needles.
Three different geometries are considered for bubbles growth in viscous fluids

Here ρ is the density of the liquid, σ is the liquid–gas surface tension, a is the radius
of the injection orifice, g is the acceleration due to gravity, and B is de Bond Number
(1).

A constant flow rate Q of an incompressible gas of negligible density and viscosity
is injected into a liquid of density ρ and viscosity μ initially at rest in a reservoir under
the action of the gravity. The gas is injected through a circular orifice of radius at the
center of the base of radius R∼ of the reservoir. The lateral wall of the reservoir may
be cylindrical, cylindrical corrugated or conical, making an angle θ to the vertical,
as sketched in Fig. 6. The gas accumulates in a bubble attached to the base of the
reservoir. The volume of this bubble increases with time until it detaches and begins
to ascend in the liquid, being replaced by a new attached bubble. The effect of the
inertia is assumed to be negligible in the motion induced in the liquid by the growth
and displacement of the bubbles. A sufficient condition for the effect of the inertia
to be negligible is that Re = ρQ

μRb
� 1 (Wong et al. 1998; Higuera 2005; Ajaev and

Homsy 2006). Here Rb is the characteristic radius of the detaching bubble or of its
upper cap.

The model used here is valid to understand the bubble formation in a very viscous
liquid in confined axisymmetric geometries (López-Villa et al. 2011). The equations
of continuity and Stokes have the following dimensionless forms, respectively

≤ · v = 0, (5)

0 = −≤ p + ≤2v − Bi (6)
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Here distances and times are scaled with the radius of the orifice a and the viscous
time μa/σ, respectively, p is the pressure, v is the velocity field: v = v∼σ/μ, i is the
normal vector pointing in the upward direction (x is the vertical coordinate).

When the bubble grows the dimensionless gas flow rate Q is constant and the
capillary number is a dimensionless flow rate

Ca = μQ

σa2 . (7)

When a bubble is formed in the liquid, a free surface of the form f (x, t) > 0
exists. Equations (5) and (6) must be solved with the boundary conditions

D fi

Dt
= 0, (8)

− pni + τ ′ · ni = (∇ · ni − pgi )ni , (9)

on the surfaces of the i-th bubbles and

v = 0 (10)

on the inner cylinder’s surface (r = R∼), and at infinity, because the fluid does not
move there. Moreover, the pressure far from the bubble must satisfy

p + Bx = constant. (11)

The uniform pressure of the gas in the bubble, pg(t), is determined using the
conditions that the volume V of the bubble increases linearly with time at a rate equal
to Q for the attached bubble. In dimensionless variables,

dV

dt
= Ca. (12)

In above equations n = ≤ f/ |≤ f | is a unit vector normal to the surface of the
bubble, τ ′ = ≤v + (≤v)T is the dimensionless viscous stress tensor, x and r are
distances along the axis of the reservoir and normal to it. The condition (8) shows
that the surfaces of the bubbles are fluid surfaces which separate the liquid from the
gas, and therefore there is no mass exchange through them. The condition (9), in
turn, expresses the balance of the stress acting on surfaces of the bubbles.

If the gas pressure pgi is known in each bubble, the Eqs. (5) and (6) together
with the boundary conditions determine velocity fields and fluid pressure, and in
particular, the velocity on the surface of each bubble. To determine the pressures
and complete the formulation of the problem conditions to be used, the volumes of
the released bubbles (i > 1) are assumed constant and equal to the volumes at the
instant of their release.
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Fig. 7 Details of the contact line with two possibilities of line of contact of the bubble adhesion

An additional condition is needed at the contact line of the growing bubble with
the solid. Here the contact line will be taken to coincide with the edge of the orifice
when the angle of the liquid–gas surface with the horizontal bottom is larger than the
contact angle (i.e. when −nx0 < cos θ, where nx0 is the vertical component of the
unit normal vector n0 to the attached bubble), and to spread away from the orifice,
with the liquid–gas surface making a constant contact angle with the solid bottom
(−nx0 < cos θ) otherwise (Higuera 2005); see Fig. 7.

The line of contact of the bubble adhered (i = 1) with the reservoir base is a
circle which may coincide with the edge of the orifice or move to a position r > 1
to be determined. Figures 7a and b illustrate both possibilities. In the first case, the
radius of the contact line coincides with the hole edge, r = 1. In the second case,
the angle which the bubble surface makes with the base of the reservoir must match
the contact angle θ, which is a property of the liquid and the material of the shell.

Then the problem contains five dimensionless parameters which are the Bond
number, B, the capillary number Ca, the dimensionless radius of the base of the
reservoir R = R∼/a, semiangle of the conical base α and the contact angle θ of the
liquid with the base (Fig. 7).

The set of equations given above will satisfy the outflow boundary conditions at
infinity, the non-slip conditions on walls, and the quasi-static pressure balance. The
evolution of the free surface (bubble shapes) is given by the solution of Eq. (8), under
a fourth order Runge-Kutta scheme, which is attained after solving the hydrodynamic
problem, imposed by Eqs. (5) and (6), by using the BEM method (López-Villa et al.
2011). The reservoir configurations are shown in Fig. 6.
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4 Method for Numerical Solution

We seek for axisymmetric solutions of the Eqs. (5)–(12). We use a standard boundary
elements method (Pozrikidis 1992, 2002) to solve the Stokes Eqs. (5) and (6) with the
boundary conditions (9)–(11), and a fourth order Runge-Kutta method to calculate
the evolution of free surface f given by (8).

4.1 History

After three decades of development, the boundary element method (BEM) has found
a firm footing in the arena of numerical methods for partial differential equations.
Compared to more popular numerical methods, such as the Finite Element Method
(FEM) and the Finite Difference Method (FDM), both of which can be classified
as the domain methods, the BEM distinguishes itself as a boundary method, mean-
ing that the numerical discretization is conducted at reduced spatial dimension. For
example, for problems in three spatial dimensions, the discretization is performed
on the bounding surface only; and in two spatial dimensions, the discretization is
on the boundary contour only. This reduced dimension leads to linear systems, less
computer memory requirements, and more efficient computation. These advantages
are most notorious when the domain is unbounded. Unbounded domain needs to
be truncated and approximated in domain methods. The BEM, on the other hand,
automatically models the behavior at infinity without the need of deploying a mesh
to approximate it. In the modern day industrial settings, mesh preparation is the most
intensive labor and the most costly portion in numerical modeling, particularly for
the FEM. Without the need of dealing with the interior mesh, the BEM is more
cost effective in mesh preparation. For problems involving moving boundaries, the
adjustment of the mesh is much easier with the BEM. With these advantages, the
BEM is indeed an essential part in the repertoire of the modern day computational
tools (Alexander and Daisy 2005).

One can view BEM as the numerical implementation of boundary integral equa-
tions based on Green’s formula, in which the piecewise element concept of the FEM
is utilized for the discretization.

4.2 BEM in Axisymmetric Domains

In this section we describe the standard boundary elements method for three-
dimensional flow in an axisymmetric domain. Our goal is to reduce the boundary
integral equation to a one-dimensional equation, or a system of one-dimensional
equations, over the trace of the boundaries in an azimuthal plane. First, the Green’s
functions of Stokes flow represent solutions of the continuity equation ≤ · v = 0 and
the singularly forced Stokes equation
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− ≤ P + μ≤2v + gδ (x − x0) = 0, (13)

where δ(x−x0) is Dirac’s delta function in three dimensions, g is an arbitrary constant,
x0 is an arbitrary point. Introducing the Green’s function G for three dimensions, we
write the solution of (13) in the form

ui = 1

8πμ
Gi j (x − x0) gi , (14)

here x is the observation or field point. Physically, (14) expresses the velocity field
due to a concentrated point force of strength g placed at the point x0, and may be
identified with the flow produced by the slow settling of a small particle. In the
literature of boundary integral methods, the Green’s function may appear under the
names fundamental solution or propagator (Pozrikidis 1992).

It is convenient to classify the Green’s functions into three categories depending
on the topology of the domain of flow. First, we have the free-space Green’s function
for infinite unbounded flow; second, the Green’s functions for infinite or semi-infinite
flow that are bounded by a solid surface; and third, the Green’s function for internal
flow are completely confined by solid surfaces. The Green’s functions in the second
and third categories are required to vanish over the internal or external boundaries
of the flow. As the observation point x approaches the pole x0 all Green’s functions
exhibit singular behavior and, to leading order, behave like the free-space Green’s
function. The Green’s functions for infinite unbounded or bounded flow are required
to decay at infinity at a rate equal to or lower than that of the free-space Green’s
function.

∂Gij (x − x0)

∂xi
= 0, (15)

for (14).
Integrating (15) over a volume of fluid that is bounded by the surface D and using

the divergence theorem, we find

∫
D

Gij (x − x0)ni (x) dS (x) = 0, (16)

independently of whether the pole x0 is located inside, right on, or outside D.
The vorticity, pressure, and stress fields associated with the flow (15) may be

presented in the corresponding forms:

ωi = 1

8πμ
Ωi j (x − x0) g j , (17)
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P = 1

8πμ
p j (x − x0) g j , (18)

τi j = 1

8πμ
T i jk (x − x0) g j , (19)

where �, p, and T are the vorticity tensor, pressure vector, and stress tensor associated
with the Green’s function The stress tensor T, in particular, is defined as

T i jk (x − x0) = −δikp j (x − x0) + ∂Gi j (x − x0)

∂xk
+ ∂Gi j (x − x0)

∂xi
. (20)

It will be noted that Ti jk = Tk ji as required by the symmetry of the stress tensor
τ . When the domain of flow is infinite, we require that all �, p, and vanish as the
observation point is moved to infinity.

Considering first axisymmetric flow with no swirling motion, we observe that in
cylindrical coordinates, none of the boundary variables is a function of the azimuthal
angle. This reduces the number of variable.

In the problem of bubble generation, the contours are the surfaces of the bubbles
and the solid surfaces of the reservoir, which are all surfaces of revolution. The
unknowns involved in the formulation of the boundary element are the velocities of
fluid particle that define surfaces of the bubbles and the stresses on the vessel wall.

We introduce the dimensionless driving pressure P = p + Bx , which allows us
to write the Stokes Eq. (6) as

0 = −∇P + ∇2v = ∇ · τ , (21)

where τ = −PI + τ ′ is a modified stress tensor, with fluid pressure replaced by the
driving pressure. The stress of liquid on the surface of the i-th bubble, given by left
hand side of (9), is then

− pni + τ ′ · ni = −Pni + τ ′ · ni + Bxni . (22)

We will use the notation f = τ · n for the modified stress on the limiting contour
of the liquid, where n is the normal to the contour directed towards the liquid. With
this notation −pni + τ ′ · ni = f + Bxni and the boundary condition (9) on the
bubble, the i-th surface takes the form

f = (≤ · ni − Bx − pgi
)

ni . (23)

Additionally, we use the Green’s functions for axisymmetric flow, which are the
solutions of Stokes equations in unlimited space (14) with the stresses concentrated
on a circumference of radius r0 centered at point x0 on the axis of symmetry. These
forces can be either directed along the axis of symmetry or be in perpendicular to
it, which gives rise to two distinct solutions whose velocity and motion pressure
distributions denoted as Gx (x, x0) and Px (x, x0) for axial force, and Gr (x, x0) and
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Pr (x, x0) for a radial force. Here, x = (x, r0) and x = (x, r) (a generic point) in
cylindrical coordinates defined above. The equations to be solved to determine the
Green’s functions are

∇ · Gx = 0, 0 = −∇Px + ∇2Gx + 8πδ (x, x0) ex , (24)

and
∇ · Gr = 0, 0 = −∇Pr + ∇2Gr + 8πδ (x, x0) er , (25)

with the conditions (Gx , Px ) ∞ 0 and (Gr , Pr ) ∞ 0 at infinity. In these equa-
tions ex , er , are the unit vectors parallel and perpendicular to the axis of symmetry,
respectively, δ is the Dirac function, and 8π factor is introduced by convention. We
will also use the notation T r and T x for stress tensor of the solutions (24) and (25).
These solutions are known and are given in Appendix A.

Given that ≤ · v = ∇ · Gx = 0 verifies that

≤ · (
Gx · τ − v · T x) = Gx · (≤ · τ ) − v · (≤ · T x) .

Using (22) and (24) (i.e. ≤ ·τ = 0 and ≤ ·T x = 8πδ (x, x0) ex ) in the second term
of the above equality, and by integrating the result over the volume occupied by liquid
and using the Gauss theorem for flow in an axisymmetric domain and transforming
the integral of the first member in a surface integral. Then in a line integral on the
meridional section of the bubbles and the walls tube denoted as C, is obtained

−
∫

c
Gx (x, x0) · f (x) r (x) dl (x) +

∫
c

v (x) · Tx (x, x0) n (x) r (x) dl (x)

= 8πr0vx (x0) , (26)

where f (x), r (x) and dl (x) are defined in a point x in the contour C, which are,
respectively, the distance from this point to the axis of symmetry, and the arc element
on the boundary. Similarly,

−
∫

c
Gr (x, x0) · f (x) r (x) dl (x) +

∫
c

v (x) · Tr (x, x0) n (x) r (x) dl (x)

= 8πr0vr (x0) , (27)

In the derivation of (26) and (27) it is assumed that the circumference on which
the force is applied is concentrated in the volume occupied by liquid. If not, the
second members of these equations are null. The second integral on the left hand
side of (26) and (27) diverge when the point tends x0 to the contour C. A detailed
calculation, deforming the contour in the vicinity of x0 (see, for example, Pozrikidis
1992) shows that for x0 ∈ C ,
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vj (x0) = − 1
4π

∫
c

G j
k (x, x0) fk (x)

r

r0
dl + 1

4π

∫ PV

c
vk (x) T j

kl (x, x0) nl (x)
r

r0
dl,

(28)
where PV indicates the principal value of the integral and subscripts notation was
used with or (i, j, k) = x or r, for compactness.

Equation (28) is a ratio between speeds and stresses on the contour surface C
domain occupied by the liquid. If stresses f were known at all points of C, this
equation lets calculate the velocity of the liquid in C. Similarly, if in v C is known the
equation allows compute f (except for an undetermined constant P; see Pozrikidis
2002).

In the problem of bubble generation, v = 0 on the solid surfaces wetted by the
liquid. The velocity of liquid on the bubbles is unknown, however, the modified stress
can be obtained by using Eq. (23). Moreover, suppose all bubble stresses are known
at a certain instant. The stress given by Eq. (23) would then be known if pgi were
known. In this case, the solution of (28) determines the velocity of the liquid on the
surfaces of the bubbles and stresses on the solid surfaces. With pgi unknown, the
stress on the bubble i is the sum of a known stress (≤ · ni − Bx ) ni , and a normal
uniform stress, −pgi ni .

Given the linearity of the Eq. (28), the velocity on the surfaces of bubbles and
stress on solid surfaces are

v = v0 +
∑

i
vi (pgi

)
and f = f 0 +

∑
i
f i (pgi

)
(29)

where v0 and f 0 are the velocity and the stress calculated for all pgi = 0 in (18), and
vi and f i are the velocity and the stress calculated for f = 0 on all surfaces of the
bubbles except the bubble i, where f = −ni.

Equation (28) provide the solution of (27) in terms of the pressures of the gas in
the bubbles, pgi . We now need to establish equations to calculate these pressures.
These equations express the conditions (12) and the volumes of the bonded bubbles
released (i > 1) are constant and the volume of the bubble grows linearly with time.
In terms of the velocities of the liquid (28), the rate of change of volume of the bubble
j is

dVj

dt
= 2π

∫
c j

v · njrdl = a j0 +
∑

i
a ji pgi , (30)

where C j is the contour of the bubble, and a j0 and a ji are easily calculated from
velocities v0 and vi . Thus, the linear equations are obtained

a10 +
∑

i
a1i pgi = Ca and a j0 +

∑
i
a ji pgi = 0 for j > 1, (31)

which determine pgi and complete the solution (28) given the surfaces of the bubbles.
To complete the formulation of the problem, we must consider the conditions (8),

expressing the surface of each bubble moving with the local velocity the liquid. The
position x(t) of a fluid particle on the surface of a bubble satisfies
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Fig. 8 Meridional sections of bubbles which are about to detach from the base of a cylindrical
reservoir for B = 0.2, Ca = 10, and R = 5 (a), 4 (b) and 3.5 (c)

dx
dt

= v (x, t) , (32)

where v(x, t) is the solution of (28)–(31) at the point x on the surface in the time t.
To solve numerically the integral Eq. (28), the contours of the bubbles and solid

surfaces must be discretized. This is done using Ni nodes distributed uniformly
on the bubble boundary i and Nd nodes on the base of the reservoir, distributed
non-uniformly with space increasing with distance from the axis of symmetry. The
integrals in (28) are calculated using a Gaussian integration with six points allocated
in the interval between each pair of nodes. The surface is discretized with a finite
number of nodes that move as material particles. Numerical tests conducted with
different numbers of nodes show that 120 nodes give sufficient resolution.

The value θ = 45→ has been used for the contact angle in the computations that
follow. Numerical computations with other values θ of show that the effect of the
contact angle on the volume of the bubbles is small as far as θ < 90→.

5 Numerical Results

From the numerical solutions a set of important results are achieved. These results
are compared with experiments qualitatively, where the effects of reservoir geometry
and film thickness is studied.

5.1 Cylindrical Reservoir

Some numerical computations have been carried out to study the growth and detach-
ment of a bubble in a cylindrical reservoir and validate it with experiments. Figure 8
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Fig. 9 Plots of a volume V f and b aspect ratio Δ of a bubble at detachment from the base of the
cylindrical reservoir as functions of it R for B = 0.2, and Ca = 10

shows a bubble which is about to detach from the base of the reservoir for B = 0.2,
Ca = 10, and the three values R = 5, 4 and 3.5 of the dimensionless radius of the
reservoir. Figure 9 shows plots of Vf, volume of detachment, and the aspect ratio
Δ of the bubble (defined as the ratio of the height to the maximum diameter of the
bubble) as functions of R.

The finite radius of the reservoir affects only the high-flow-rate regime for the
values of B and R used here. The decrease of Δ with increasing R in Fig. 9b is in
qualitative agreement with the estimate L f /R ∇ Ca/

(
B R4

)
for columnar bubbles.

The decrease of Vf in Fig. 9a also agrees with the previous estimates, according
to which the ratio of the volume of a columnar bubble to the volume of a bubble
detaching in an infinite reservoir is of order (Ca/B)1/4 /R for Ca/B large compared
to R4. Figure 9 shows Vf as a function of Ca for B = 0.2 and three values of R.
The nearly linear increase of Vf agrees with the estimate Vf ∇ Ca/B. Notice, in
comparison, that Vf ∇ (Ca/B)3/4 for a bubble in an infinite reservoir.
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Fig. 10 Meridional sections of bubbles growing in cones which are about to detach from the base
of a conical reservoir for B = 0.2, Ca = 50, R = 1.2, and various values of α

Numerical computations also show (results not displayed) that the center of mass
of a columnar attached bubble rises linearly with time during the growth of the
bubble, and that the velocity of the center of mass is nearly constant, except in the
early stages of the process, when the bubble is still small compared to the radius of
the tube.

5.2 Conical Reservoirs

Figure 10 shows the shape of a bubble which is about to detach from the base of
a conical reservoir for B = 0.2, Ca = 50, R = 1.2, and various values of the
semi-angle of the cone, α, and Fig. 11 shows the volume Vf and the aspect ratio
Δ of the detaching bubble as functions of α and different values of B and Ca. As
it can be seen, the volume of the bubble always increases as the angle of the cone
decreases, the effect being more pronounced for small values of the Bond number,
for which the bubble is larger and therefore more easily affected by the wall of the
reservoir. Figure 11a displays an important result of this work, namely, that at low
Bond numbers and high capillary numbers, the volume of the bubbles can be easily
controlled through the angle of the cone without having to change the flow rate. This
is a desirable feature in some applications.

These results can be rationalized by means of a straightforward extension of the
estimations of the previous section for the high-flow-rate regime in cylindrical reser-
voirs. Figure 10 shows that the bubbles in conical reservoirs are columnar for mod-
erately small values of α, with a cap that increases linearly with its height above the
bottom of the reservoir. (See also Fig. 11b; the bubble is slender for smaller than 30→).
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Fig. 11 Plots of a volume V f and b aspect ratio Δ of a bubble at detachment from the base of a
conical reservoir as functions of α, for R = 1.2 and (B, Ca) = (0.2, 10)(solid), (2, 10) (dashed),
and (2, 20) (dotted). Symbols in panel (b) show the values of Δ measured experimentally for
B = 0.0176 (�) and B = 0.15 (♦), with Ca = 50.78 and R = 1.2

5.3 Corrugated Pipes

For the corrugated cylinder case, the numerical study was done to understand how
corrugations affect the bubble shape. We tried different number of nodes distributed
along the tube walls, and found that as in the case of the smooth walls, the number
of nodes has no importance on qualitative behavior.

Figure 12 shows differences between bubbles formed in tubes with several cor-
rugation wavelengths in the viscous case, and in Fig. 13 the cases in the inviscid
approximation are shown with different amplitudes of corrugation. Figure 13 shows
that the film thickness is small in the case of a small capillary number.

In Figs. 14 and 15 we observe the bubbles detachment process and a possible appli-
cation to understand the foams formed in viscous fluids in porous media (Kovscek
et al. 1995; Hirasaki et al. 2006).
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Fig. 12 Bubble shapes in corrugated cylinders of same amplitude but different wavelengths of the
corrugations. The conditions are for viscous liquid and Ca = 25, B = 0.2

Fig. 13 Bubble shapes in corrugated cylinders of same wavelenghts but different amplitudes. a
Bubbles growing in nearly inviscid liquid, i.e., Ca = 0.1 and B = 0.2. In b Ca = 1 and B = 0.2.
Notice that the thickness of the film in both cases is very thin
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Fig. 14 Details of the bubble detachment process and the effect of the tube wall

Fig. 15 Bubble shapes in the corrugated pipe compared to a bubble growing in a porous medium
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Fig. 16 Bubble in a vertical tube (a). Notice the existence of a film of thickness b∼. b Plot of the
scaled dimensionless film thickness b/R as a function of the scaled capillary number Ca/R2

5.4 The Film Thickness

In Fig. 16a it is shown that during the bubble growth in the pipe there is an annular
film of thickness b∼. In a classical study of the lubrication theory, the dimensionless
thickness of the film scales as

b

R
∇

(
Ca

R2

) 2
3

, (33)

which is valid whenever Ca ∞ 0 and R and the Bond number are also small. In
Fig. 16b a plot obtained from the numerical computations that obeys the relation (33)
is given. In such a plot the continuous curve was obtained through our numerical
solution. Meanwhile, the dashed part of the curve only shows the trend given by
Eq. (33) but was numerically inaccessible. Despite it, in this case, clearly b ∞ 0 if
Ca ∞ 0. Physically the condition Ca ∞ 0 implies that the bubble in an inviscid
liquid touches the inner solid wall.

Figure 17a shows some bubble profiles: in this case they were obtained for low
capillary numbers and it is evident that the film thickness tends towards zero for small
values of Ca and R. It can also be seen that the profiles show some “corrugations”,
this is because they become unstable when the height of the tubes is very large
compared with the tube radius, i.e. in this case height of the tube is 30 times the
radius. In experiments it was observed that when Ca � 1 the small bubble profiles
are unstable.

Moreover, very different results were obtained when the film thickness was com-
puted for very viscous liquids, i.e., Ca ↓ 1 in the limit of low Bond number. In
Fig. 17b it is possible to notice that the film thickness tend towards a constant value
when the capillary number increases. In Fig. 18 it is sketched how b ∞ constant for
Ca ↓ 1 . In dimensional terms the actual thickness of the annular film, b∼ ∞ 1.5a∼,
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Fig. 17 Bubble shapes in cylinders filled with a liquid of low viscosity and b with very viscous
liquid. In a the height and the film thickness between the bubble and the wall diminishes when
Ca ∞ 0 (Ca = 0.4, 0.3, 0.2 and 0.1). In b the film thickness b ∞ constant , for Ca ↓ 1. The
larger bubble corresponds to Ca = 35; other cases are Ca = 20, 10 and 5. The dimensionless pipe
radius was R = 5

Fig. 18 Plot of the thickness of the annular film, b, as a function of the capillary number, Ca. Notice
that b ∞ constant for Ca ↓ 1

i.e., the lower value of b∼ is 1.5 times the radius of the gas injection orifice. Physically,
this condition is attained in very viscous liquids or at very large gas flow rates.
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Fig. 19 Volume of a bubble attached to the base of a conical reservoir filled with glycerine as a
function of time during the growth of the bubble for B = 0.0176, R = 1.2, and different values of
the semi-angle of the cone. α = 10→ (�), 20→(x), 25→(�), 30→(�) and 90→ (�)

6 Experiments

A series of experiments have been carried out to study the growth and detachment of
bubbles in very viscous liquids. Glycerine and a silicone oil have been used in dif-
ferent experiments. The properties of glycerine at 25→ are: density ρ = 1260 kg/m3,
viscosity μ = 7.9 × 10−1 N s/m2, and surface tension σ = 6.3 × 10−2 N/m. The
properties of the silicone oil at the same temperature are: density ρ = 971 kg/m3,
viscosity μ = 9.71 × 10−1 N s/m2. In each experiment, a large open container with
an horizontal bottom where a circular orifice of radius a = 0.3 mm has been drilled
was filled with the chosen liquid to a height of 100 mm.

A glass tube of inner radius R∼ = 3.2 mm was set vertically and concentrically
with the orifice to form a cylindrical reservoir. Conical reservoirs of various angles
were formed by carefully inserting cones made of acetate sheet concentrically with
the orifice. Air was pumped through a capillary tube 40 cm long and 0.6 mm of inner
diameter which ends at the orifice in the bottom of the container. We found in a
previous work (Corchero et al. 2006) that a length of 40 cm suffices to make the
pressure drop in the air line it is large compared to the pressure variations in the
bubble during the growth process and therefore ensure a constant flow rate in our
experiments, which is one of the premises of the numerical work. To check that
the flow rate is constant, the evolution of the attached bubble was video recorded;
the contour of the bubble was extracted from the video images using a standard
algorithm (Russ 2002) implemented in a home made code; and the volume of the
bubble, V(t), and the height of its center of mass, xCM(t), were computed assuming
that the bubble is axisymmetric. Some sample plots of V as a function of time for a
bubble growing in glycerine within conical reservoirs of various angles are shown
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Fig. 20 Growth of bubbles at different angles of inclination α

in Fig. 19. The approximate linear variation of V with time shows that the flow
rate is nearly constant and independent of the angle of the cone. The value of the
flow rate determined by fitting a straight line to the experimental data of Fig. 19 is
Q = 364.5 mm3/s. The same procedure was used to measure the flow rate of air
injected into silicone oil and in cylindrical containers. The flow rate was found to be
nearly constant in all cases.

Figure 20 shows the shapes of bubbles in glycerine which are about to detach
from the injection orifice in conical reservoirs of various angles. Here α = 90→
corresponds to a bubble detaching in an infinite reservoir, and the shape of the bubbles
begin to differ significantly from this case when α becomes smaller than about 30→.
Coalescence between previously detached bubbles can be seen in some of the images.
The presence of the conical wall of the reservoir increases the drag of the ascending
bubbles, decreasing their velocity and apparently promoting coalescence. We plan
to analyze this important aspect of the generation of bubbles in a future work. The
gas flow rate in this sequence of experiments is that measured from Fig. 19. Values
of the dimensionless parameters are Bo = 0.0176, Ca = 50.78 and R = 1.2.

The aspect ratio Δ of the bubbles in Fig. 20 and others was also extracted from the
images and is included in Fig. 12b (triangles and diamonds), where it is compared to
numerical results obtained for similar values of the dimensionless parameters. The
comparison is reasonably good, though the experimental values of Δ increase with
decreasing somewhat faster than the numerical values, and become larger than them
for small values of α. We think that the difference is due to the vertical momentum
injected with the gas, which was not taken into account in the numerical compu-
tations. The evolution of the center of mass of the bubble is shown in Fig. 21 and
compared to numerical results. The nearly linear increase of xCM with time is to
be compared to the xCM ∝ t1/3 evolution expected for a round bubble growing in
an infinite reservoir (Davidson and Schuler 1960). The difference clearly shows the
effect of the conical wall.

Only silicone oil was used in experiments with cylindrical reservoirs because
glycerine tends to produce small bubbles that linger in the reservoir for a long time
and interfere with the observation of the bubble attached to the orifice. Figure 22
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Fig. 21 Height of the center of mass of a bubble attached to the base of a conical reservoir as a
function of time during the growth of the bubble for Bo = 0.04, Ca = 70.23, R = 1.2 and = 15→.
Symbols are experimental results and the solid curve shows the results of the numerical computation

Fig. 22 Five equispaced images spanning the period of growth of a bubble attached to the base of
a cylindrical reservoir for B = 0.04, Ca = 209.94 and R = 10.66. The period of bubbling is 1.33 s

shows five images equispaced in time that span the cycle of growth and detachment of
a bubble. The flow rate of gas measured from the video record is Q = 419.59 mm3/s
in this experiment, and the period of bubbling is 1.33 s. Values of the dimensionless
parameters are Bo = 0.04, Ca = 209.94 and R = 10.66. Figure 23 shows profiles
bubbles formed into tubes with periodic corrugations c = 7.33, dimensionless radius
R∼ = 3.7, Bo = 0.2 to different capillary number.

7 Conclusions

The growth of a bubble due to the injection of a constant flow rate of a gas through
an orifice in the horizontal base of a container filled with a very viscous liquid has
been investigated numerically and experimentally in conditions in which nearby
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Fig. 23 dimension of profiles bubbles formed into tubes with periodic corrugations c = 7.33,
dimensionless radius R∼ = 3.7, Bo = 0.2 to different capillary number

solid walls partially confine the space where the bubble is allowed to grow. Conical,
cylindrical and cylindrical with corrugations walls coaxial with the injection orifice
have been used to allow easy control of the extent of the confinement by simply
changing the angle of the cone or the radius of the cylinder or frequency in the
corrugated case.

Numerical solutions of the Stokes equations for the liquid and the evolution equa-
tion for the free surface of the bubble show that the wall near the injection orifice may
have an important effect on the shape of the bubble and its volume at detachment.
Computations for small Bond numbers (Bo = 0.2) and moderately large capillary
numbers (of the order of 10) made with BEM show that vertically elongated bubbles
with volumes significantly larger than those of the round bubbles generated in the
absence of walls are obtained when the radius of the cylindrical wall is smaller than
about six times the radius of the orifice, or when the semi- angle of the cone is smaller
than about 30→. The computed distributions of forces on the surface of the bubble
and the wall suggest that buoyancy, viscous drag and viscous friction with the wall
all play a role in the dynamics of the bubbles. A brief explanation of the foundations
of the BEM in axi-symmetric domains was given in order to understand the esence
of the method.

Experiments have been carried out with two different viscous liquids that have
allowed to explore wide ranges of the Bond and capillary numbers keeping the effect
of the inertia of the liquid small. Good qualitative agreement has been found between
numerical and experimental results. The known scaling law for the volume of a bubble
at detachment from the bottom of an unconfined liquid has been extended to take
into account the presence of conical or cylindrical walls. For a conical reservoir, the
semi-angle of the cone appears as an extra factor α−1/4 multiplying the standard
(Ca/Bo)3/4 scaling. For a cylindrical reservoir, the exponent may change from 3/4
to 1 when the radius of the cylinder decreases.
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The results of the work may have a bearing on the methods of enhanced oil
recovery, where properly shape injection nozzles may allow optimizing the volume
of the bubbles generated in oil production pipes without having to change the flow
rate of gas or the foams injection in homogeneous or fractured reservoirs.
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SIP20131821 and SIP20131821-IPN, and also acknowledge the CONACyT for its partial support
through the project SENER-CONACyT 146735.

Appendix A. The Green’s Functions for Axisymmetric Flow

This Appendix lists Green functions for axisymmetric flow generated by a ring force
of unit strength located at (x0, r0) and pointing in the direction ek with k = r, x .
Defining the following quantities in cylindrical coordinares

Z = x − x0
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√

Z2 + (r + r0)

D =
√
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√
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m = 2 (rr0)
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L

and elliptic integrals

K (m) =
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2

0

dθ√
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√
1 − m2sen2θdθ,

we have
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Effect of Surface Contamination on the Drag
of a Bubble Rising in a Line

Jorge Ramírez-Muñoz, Sergio Baz-Rodríguez, Alberto Soria,
Elizabeth Salinas-Rodríguez and Sergio Martínez-Delgadillo

Abstract The presence of surfactants critically increases the drag on bubbles rising
in contaminated water compared with bubbles rising in pure water. This is explained
by the Marangoni effect, occurring when the surface tension forces existing on the
surface generate tangential shear stresses on the surface bubble. This mechanism
has been studied by considering stagnant cap hypothesis to simulate the increase
in the drag as a function of surface contamination. In this work, the steady drag
for contaminated spherical bubbles was obtained numerically for 0.1 ≤ Re ≤ 200
by using Comsol Multiphysics� 3.5a assuming the stagnant cap hypothesis. The
numerical values of the vorticity, flow velocity and pressure fields as function of
the angle of superficial contamination and Re were examined. The agreement of
the numerical results with reported drag values for clean and partially contaminated
bubbles, as well as rigid spheres was proved. By using an appropriate normalization of
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the numerical data, a simple drag correlation for contaminated bubbles as a function
of the spherical angle of the stiff surface zone was obtained.

1 Introduction

The description of the motion of gas–liquid flows requires information regarding the
drag forces between the phases. Therefore, the determination of the drag on bubbles
rising in a liquid is important for understanding the basic bubble behavior in relevant
industrial applications. In the case of ascending air bubbles in water, the viscosity of
the gas is negligible compared to that of the fluid, so there is little viscous resistance
to the internal gas circulation, therefore, the drag and in consequence the terminal
bubble rise velocity are very sensitive to the presence of surfactants. Consequently,
a slight contamination of the water may significantly affect the free circulation of
liquid on the bubble surface (Levich 1962; Clift et al. 1987; Cuenot et al. 1997).
Besides, the surface contamination also affects the rate of coalescence of bubbles.
Thus, it influences strongly the interfacial area and the residence time of the dispersed
phase.

It is well-known that the presence of surfactants critically decreases the rising
velocity of bubbles in contaminated water compared with bubbles rising in pure
water. Thus, while a spherical bubble rising in a contaminated liquid flow behaves like
a rigid sphere, a clean spherical bubble of the same size in an uncontaminated liquid
behaves differently. The reason for this retardation is that adsorbed surfactant is swept
at the rear surface of the contaminated bubble driving to a surface tension gradient.
This creates a Marangoni effect, i.e. a tangential shear stress appears on the bubble
surface, which balance the surface tension force, increasing the drag coefficient and
reducing the rising velocity of the bubble (Cuenot et al. 1997). At some point, a
limiting value of the rise velocity is reached, no longer affected by a further increase
in concentration. In this limit, both the rate of kinetic (adsorption–desorption) or
diffusive transport of surfactant to the bubble surface and surface diffusion are slow
relative to surface convection. Therefore, the surfactant is collected in a stagnant cap
region at the back end of the bubble while the front end is stress free and mobile
(Alves et al. 2005).

Considering the mechanism that governs the phenomenon, in the literature, most
mathematical models propose the stagnant cap hypothesis to simulate the increase
in drag coefficient as a function of surface contamination (Cuenot et al. 1997; Alves
et al. 2005; Palaparthi et al. 2006), which was first proposed by Frumkin and Levich
(1947). It is valid when surface diffusion is extremely weak compared to advection
and part of the bubble surface (and in certain cases the entire interface) tends to
become stagnant (Cuenot et al. 1997). The stagnant cap regime has been successful
in explaining experimental observations of bubbles rising in liquids contaminated
with surfactants. For instance, by successive adjustments of the contaminated angle
in the numerical computations, it is possible to properly reproduce the experimental
rise velocities of bubbles.



Effect of Surface Contamination on the Drag 51

In this chapter, the steady drag for spherical bubbles rising in a liquid contaminated
with surfactants was obtained numerically for 0.1 ≤ Re ≤ 200 assuming the stagnant
cap hypothesis and by using Comsol Multiphysics� 3.5a. Different levels of surface
contamination from clean bubbles up to solid sphere bubbles were considered. By
using an appropriate normalization of the numerical data and incorporating well-
known drag correlations for clean bubbles and solid spheres, a simple explicit drag
expression for contaminated bubbles was obtained. In addition, the structure of the
flow around the bubble as a function of Re and the angle of contamination were
examined. Re is the Reynolds number defined through the bubble diameter and
single bubble rise velocity.

This work is organized as follows: In Sect. 2, the problem formulation and the
governing equations of the problem are presented. In Sect. 3, the numerical solution
of the model is discussed in detail and numerical results supported with previously
reported numerical data are presented. In Sect. 4, numerical results for drag, vorticity,
velocity and pressure profiles are presented and discussed. Also, the obtained results
for the drag of contaminated bubbles are compared with available data reported in
the literature. Finally, in Sect. 5 some concluding remarks are provided.

2 Problem Formulation

Consider a spherical bubble of diameter d = 2R (R is the bubble radius), at rest
with respect to an infinite body of Newtonian and incompressible moving fluid, as
shown in Fig. 1. The uniform velocity far away from the bubble is u, and the flow
is assumed to be axisymmetric and steady. In order to simplify the analysis of the
problem it is assumed that an amount of surfactant is collected in the stagnant cap
at the back end of the bubble and it remains constant (stagnant cap model). Thus, θ
is the angle between the front stagnation point on the bubble surface and a current
arbitrary point on the interface, i.e. the region free of surfactants where a shear free
condition, τrθ = 0, is imposed, then 180 − θ is the fully contaminated region where
a tangential velocity equal to zero is assumed (uT = 0).

It is assumed that the bulk mass transfer toward the bubble surface can be
neglected, thus, the surfactant concentration, Cb, in the liquid is constant, and the gov-
erning equations are further described by the steady incompressible Navier–Stokes
and continuity equations, given by

ρ (u · ∇) u = ∇ ·
[
−pI + μ

(
∇u + (∇u)T

)]
(1)

and
∇ · u = 0, (2)

where u, p, ρ and μ denotes the velocity and pressure field, the density and the
dynamic viscosity of the liquid, respectively. Assuming that the bubble does not
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Fig. 1 Stagnant cap model
scheme

deform and that no phase change occurs, the normal velocity vanishes at the interface,
i.e. un = un = 0.

3 Numerical Solution of the Model and Results Validation

Numerical simulations were conducted for the axisymmetric flow around a spherical
bubble for Reynolds numbers ranging between 0.1 and 200. The continuity and mo-
mentum equations (Eqs. 1 and 2) were solved under the assumptions of the stagnant
cap model described above (Fig. 1) using the Comsol Multiphysics� 3.5a simulation
code. A 2D geometry with axial symmetry was used (see Fig. 1) and several types
of meshing were included in order to obtain independent results from the numerical
parameters. Furthermore, an adaptive mesh refinement scheme was useful to ensure
grid independence. Different levels of surface contamination are considered based
on the stagnant cap angle. Clean bubbles correspond to θ = 180◦, while fully con-
taminated bubbles to θ = 0◦. Two boundary conditions in the gas–liquid interface
were imposed in the simulations: (1) a region free of surfactants of angle θ, where a
free shear stress was imposed (slip condition), and (2) a fully contaminated region
of angle 180 − θ, where a tangential velocity equal to zero was imposed (no slip
condition).

The vertical component of the drag force on the bubble surface, Fd, was directly
obtained from Comsol Multiphysics� 3.5a. The drag coefficient was calculated from
its definition, given by

Cd,CB = Fd
/

4πd2

ρU 2
r /2

, (3)

where Cd,CB, is the drag coefficient of the contaminated bubble and Ur = u − Ub,
Ub is the bubble velocity, which for this particular case is equal to zero.
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Fig. 2 Comparison of our numerical drag coefficient with reported correlations for clean bubbles
and solid spheres

Figure 2 shows the variation of the numerical drag coefficient Cd as function of
Re. Predictions by Mei et al. (1994) and Clift et al. (1987) for a clean bubble (Cd,B)
and a rigid sphere (Cd,S), given by

Cd,B = 16

Re

{
1 +

[
8/Re + 1/2

(
1 + 3.315/Re0.5

)−1
]}

(4)

and

Cd,S = 16

Re

(
1 + 0.1935Re0.6305

)
, (5)

respectively, are also shown. As can be observed in Fig. 2, the numerical data re-
covered the values computed from both expressions. The Re range for bubbles
(Re ≤ 200) and solids spheres (Re ≤ 130) shown in Fig. 2 were selected because for
the case of bubbles or solid spheres moving at Re higher, the formed wake is no more
axisymmetric (Yuan and Prosperetti 1994; Ramírez-Muñoz et al. 2007). Therefore,
their paths of movement are no longer rectilinear.

4 Results and Discussions

In this section results from numerical simulations for drag, vorticity diffusion, and
velocity and pressure profiles around the bubble are presented and discussed.
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Fig. 3 Normalized drag coefficient as a function of the contamination angle θ

4.1 Drag on a Contaminated Bubble

In Fig. 3, the numerical results of the normalized drag coefficient given by

Cd,CB − Cd,B

Cd,S − Cd,B
, (6)

are shown as a function of the contaminated stagnant cap angle, 0◦ ≤ θ ≤ 180◦, and
for 0.1 ≤ Re ≤ 200. Fitting of the function

f (θ) = 1

1 + exp (0.06678 θ −6.84645)
(7)

to the normalized drag coefficient defined by Eq. (6), can be appreciated as the solid
line in Fig. 3, with a 0.9 % average relative error for all Re. These results show that the
drag of a contaminated bubble is nearly the one of a clean bubble if θ > 160◦ and the
one of a rigid sphere if θ < 40◦. Between these bounds, the drag is a strong function of
θ, with its maximum dependency being observed in the range 90◦ < θ < 130◦. These
results are in agreement with those of Sadhal and Johnson (1983) in the creeping
flow limit for θ < 90◦ and for θ > 160◦, see dotted line in Fig. 3. However, as it can
also be observed, the normalized drag coefficient shows a slight dependence with Re
for 90◦ < θ < 160◦. Meanwhile, for Re = 100, the results are in agreement with
the numerical data of stagnant cap model reported by Cuenot et al. (1997), see filled
circles in Fig. 3.
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4.2 Vorticity Diffusion Around a Contaminated Bubble

The contaminated zone of the bubble surface behaves as a vortex sheet, from the θ
angle towards the rear stagnation point. In order to get insights on the effect of the
surfactant on the flow structure, the numerical vorticity contours around the bubble
for different contamination angles were evaluated. A shared feature to be noticed,
for all contamination angles, is that vorticity diffuses in the main stream (vertical)
direction, leaving a reduced vorticity zone at the rear of the bubble, which becomes
shrinked as the Re is increased.

In Fig. 4, the vorticity contours for fully contaminated (θ = 0◦) and partially but
strongly contaminated bubble (θ = 20◦) are shown. For fully contaminated bubble,
the Reynolds number effect can be seen in Fig. 4–c; the stagnant surface of the bubble
generates flow vorticity in the adjacent fluid. The vorticity diffusion in the vertical
direction becomes more apparent as the Re increases. Also, a bottom zone with
reduced vorticity at Re = 0.1, which is vertically aligned and shrinked towards the
rear surface zone as Re increases, becomes apparent. A similar behavior is observed
in the strongly contaminated bubble, with a contamination angle θ = 20◦, but for
the front zone behavior due to the fact that the vortex sheet has now been reduced,
sliding the vorticity contours towards its new position, as it can be seen in Fig. 4d–f.

For fully and strongly contaminated bubbles at same Re (see Fig. 4a vs d, b vs e,
c vs d) the vorticity distributions are very alike and their spans are almost the same.
It also should be pointed out that in Fig. 4c and f a region on the surface where the
vorticity contours converge is observed. This zone is around 100◦ to 120◦, which
is close to the separation point for a solid sphere at Re ≥ 60, located at 109.5◦,
as reported by Schlichting (1979). Vorticity contours convergence can already be
observed in Figs. 4b and e for Re = 20, even when separation does not yet occurs.

On the other extreme, the vorticity behavior of the wholly clean bubble (θ = 180◦)
can be seen in Fig. 5a–c, while the vorticity contours of a slightly contaminated bubble
(θ = 60◦) can be observed in Figs. 5d–f, for the same Reynolds numbers as in Fig. 4.

Considering the fully clean bubble, Figs. 5a–c and the fully contaminated bubble,
Figs. 4a–c, an increasing difference in vorticity span, as Re keeps increasing, should
be pointed out. Thus the span ratio of fully contaminated to fully clean bubbles is
1.500 for Re = 0.1, 2.310 for Re = 20 and 4.192 for Re = 100. It can also be seen
that the highest negative values of vorticity are found closer to the front for the fully
contaminated bubble than for the fully clean bubble, where they locate close to the
equator.

Concerning the slightly contaminated bubble (θ = 160◦) as compared to the
fully clean bubble, its vorticity span divided by the clean bubble span is 2.773 for
Re = 0.1, 1.527 for Re = 20 and 1.526 for Re = 100. It is remarkable that, even for
the higher span ratio, at Re = 0.1, the vorticity maps for same Re look very much
the same, but for a small zone where the vortex sheet is placed, giving the highest
negative vorticity values.

In order to select other angles whose vorticity patterns may be interesting to be
observed, let us come back to Fig. 3 where the dependence of the normalized drag
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Fig. 4 Vorticity contours for θ = 0◦ and θ = 20◦, and Re = 0.1, 20 and 100

coefficient with respect to the Re appears to be lumped up to a contamination angle
of θ = 90◦. Moreover, the higher variability of drag coefficient with respect to Re
seems to be close to a θ = 120◦. Therefore we select both angles to visualize their
vorticity contours in Fig. 6.

In Fig. 6, the vorticity span of the less contaminated bubble (θ = 120◦) divided
by the span for the clean bubble gives 4.357 for Re = 0.1, 4.446 for Re = 20 and
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Fig. 5 Vorticity contours for θ = 180◦ and θ = 160◦, and Re = 0.1, 20 and 100

6.717 for Re = 100, meanwhile a similar comparison of θ = 90◦ gives 2.954 for
Re = 0.1, 4.237 for Re = 20 and 9.557 for Re = 100. As can be seen, for Re of 0.1
and 20 the vorticity span at θ = 120◦ is greater than at θ = 90◦, however, this trend is
reversed at Re = 100. These results indicate that a strong dependence of the vorticity
distribution on the Re should be expected for θ = 120◦ and Re = 100. Meanwhile,
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Fig. 6 Vorticity contours for θ = 90◦ and θ = 120◦, and Re = 0.1, 20 and 100

for θ = 90◦, the largest amount of vorticity is generated near—i.e. centered—to the
bubble equator, as in the creeping flow regime regardless of the contamination angle
(Figs. 4a, 5a, d, 6a and 6d), where the vorticity production on the bubble surface is
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(a) (b)

Fig. 7 z-Velocity evaluated at (a) outer up and (b) outer down positions, for Re = 100

symmetric—i.e. also centered—to the bubble equator. This fact could be helpful to
explain why for θ = 90◦, the normalized bubble drag is independent of Re.

4.3 Velocity and Pressure Profiles Around the Bubble

Figures 7 and 8 shows the z-velocity and pressure profiles along the transversal
direction to the undisturbed flow at outer up (Figs. 7a and 8a) and outer down (Figs. 7b
and 8b) positions for Re = 100, see Fig. 1. As can be seen, the increase in the grade
of contamination from clean bubble (θ = 180◦) to slightly contaminated bubble
(θ = 135◦) and from strongly contaminated bubble (θ = 45◦) to fully contaminated
bubble (θ = 0◦) has no important effect in both, the velocity and pressure profiles.
Because the magnitude of the velocity and pressure profile can be directly associated
with the drag (form and friction drag) on the bubble surface (Landau and Lifshitz
1987; Ramírez-Muñoz and Soria 2007), both fluid-dynamic variables explains the
cause why the drag is not increased in the same proportion as contamination angle
increased. Thus, the approach and results presented in this work can be useful for
an integral understanding of the effect of contamination grade on bubble’s drag. On
the other hand, for θ = 90◦, the velocity and pressure profiles evaluated at the Outer
up position differs from other contamination angles evaluated (180◦, 135◦, 45◦ and
0◦); however, at the Outer down position both fluid-dynamics profiles are very alike
to the fully contaminated bubble. Therefore, the wake structure downstream from
the bubble surface for θ = 90◦ and Re = 100 tends to be similar to that of a fully
contaminated bubble.
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(a) (b)

Fig. 8 Pressure profiles evaluated at (a) outer up and (b) outer down positions, for Re = 100

5 Conclusions

The drag, vorticity diffusion and disturbed flow around a spherical bubble rising
stationary in a liquid contaminated with surfactants were investigated in this work.
The model solved in the present work is based on the stagnant cap hypothesis,
where the surface diffusion of surfactants is considered extremely weak, compared
to advection, so steady conditions are reached. A simple explicit normalized drag
correlation for contaminated bubbles as function of the stagnant cap angle, which is
valid for 0.1 ≤ Re ≤ 200 was obtained. Comparison of the model predictions with
existing data were performed, showing very good agreement.

The simulations revealed several interesting features concerning the drag on the
contaminated bubble and the flow structure around the bubble as function of the
grade of contamination and Reynolds number. Among these features, the following
are pointed out: (1) For θ > 160◦ and θ < 40◦, the normalized drag on the bubble
remains practically constant and is independent of Re. (2) For θ > 160◦ and θ < 90◦
a slight dependence of the normalized drag on the Re can be observed. The maximum
variability is achieved for θ = 120◦. (3) The vorticity span and its distribution around
an almost fully contaminated bubble (θ = 20◦) are more alike to the one of the fully
contaminated bubble (θ = 0◦), than the slightly contaminated bubble (θ = 160◦)
with respect to the clean bubble (θ = 180◦). (4) The vorticity production at θ = 90◦ is
located near to bubble equator. This is similar to the creeping flow vorticity production
from a clean up to a fully contaminated bubble. This fact could be helpful to explain
why for this angle of contamination the normalized bubble drag is independent of
Reynolds number. (5) The velocity and pressure profiles shows that for the outer up
and outer down positions for the clean bubble and the low contaminated angle bubble
(θ = 180◦ and θ = 135◦) behave very similar. A similar behavior is observed as the
bubble is almost fully contaminated (θ = 0◦ and θ = 45◦).
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Hydrodynamic Interactions in Charged
Vesicles Suspensions

C. Haro-Pérez, M. Quesada-Pérez, J. Callejas-Fernández, R. Hidalgo-Álvarez,
J. Estelrich and L. F. Rojas-Ochoa

Abstract We have measured the short-time dynamics and the structure of charged
liposome dispersions upon increasing the volume fraction. Although the structural
properties of the suspensions suggest an interparticle potential not purely repulsive,
the hydrodynamic theory of Beenakker-Mazur can explain the experimental hydro-
dynamic functions of the dispersions. This result suggests the generality of the theory,
which up to now, only had been tested in pure repulsive systems.

1 Introduction

The complete description of colloidal interactions includes both, direct and hydrody-
namic interactions. Considerable progress has been made in the description of both
interactions using hard-sphere colloids suspended in apolar, nearly index-matching
fluids (Segré et al. 1995; Pusey et al. 1997). Indeed, to access information on both in-
teractions requires the measurement of the static and dynamic structure factor, which
are easily accessible by static and dynamic light scattering. However, these exper-
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imental methods suffer from the need of measuring single scattered light, which is
difficult to achieve when the refractive index of the colloidal particles differs consider-
ably from the one of the solvent. This, however, is the case for most charged colloidal
systems, where the direct interactions are dominated by Coulomb-repulsion. Indeed,
measurement on the hydrodynamics of charged particles mostly involved silica par-
ticles suspended in various organic solvent mixtures (Philipse and Vrij 1988; Härtl et
al. 1999; Rojas et al. 2003; Phalakornkul et al. 1996; Riese et al. 2000) (none of them
pure water), where the refractive index is nearly matched to the one of the solvent.

To gain an understanding of interplay between direct and hydrodynamic inter-
actions in relatively dense charged colloidal systems we thus investigate the static
and dynamic properties of aqueous suspensions of charged liposomes. These sys-
tems nearly fulfill conditions, index and density matching. Moreover, hydrodynamic
theories have only been tested in pure repulsive systems. In fact, more than twenty
years ago, Genz and Klein addressed the relevance of testing these theories in sys-
tems showing other kind of direct interactions, like attractive ones (Genz and Klein
1991). In this chapter, we will study the validity of the hydrodynamic theories in
dispersions of charged liposomes, which show static structure factors that cannot be
explained by a purely repulsive potential (Haro-Pérez et al. 2009).

2 Hydrodynamic Interactions

The dynamic structure factor depends on the direct interaction potential between
the colloidal particles and on the indirect hydrodynamic interactions mediated by
the solvent. Hydrodynamic interactions arise from the flow patterns generated in the
surrounding fluid by the moving particles. The effect of direct and hydrodynamic
interactions on the particle diffusion is described by the well-known expression
Def f /D0 = H(q)/S(q) (Pusey 1991), where Def f (q) and D0 are the effective and
the single particle diffusion coefficient, respectively. The hydrodynamic function,
H(q), contains the configuration-averaged effect of hydrodynamic interactions on
the particle dynamics.

The hydrodynamic function H(q) is connected to the mobility tensor μ̃i j ({≤r N })
by

H(q) = S(q)Def f (q)

D0
= ΩB T

N D0

N∑
i, j=1

∞q̂.μ̃i j ({≤r N }).q̂eiq̂.(≤ri −≤r j )→ (1)

where N is the particle number, q̂ is the unit vector in the direction of the scattering
vector ≤q , D0 = ΩBT(6Δπa)−1 is the Stokes-Einstein free-diffusion coefficient and
≤r N represents the position of all colloidal particles. The brackets <..> stand for the
ensemble average over all the spatial configurations of the particle systems.

Beenakker and Mazur have evaluated H(q) applying a renormalization method
valid at arbitrary volume fractions that has been successfully employed with
hard sphere systems (Beenakker and Mazur 1984). This method has also been
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used by Genz and Klein for dispersions of moderately charged particles
(Genz and Klein 1991). The result is called the δγ -expansion to zero order and
can be expressed in terms of S(q)

H(q) = DS(φ)

D0
+ 3

2Δ

∫ ∇

0
d(aq ∼)

(
sin(aq ∼)

aq ∼

)2 [
1 + φSγ0(aq ∼)

]−1

×
∫ 1

−1
dx(1 − x2)(S(|q − q ∼|) − 1) (2)

where Ds(φ) is the self-diffusion coefficient and x = cos(q ∼, q). The function Sγ 0

depends on the volume fraction φ through the scalars {γ (1)
0 }. An alternative hydrody-

namic theory used for charged systems is the Pairwise Additivity Approximation. In
our case we choose the Beenaker and Mazur formalism since the Pairwise Additivity
Approximation needs as an input function in the calculations the radial distribution
function which is described in the real space, and our experimental data, S(q) are in
the reciprocal one.

3 Experimental

Liposomes are composed of egg phosphatidylcholine (PC) and phosphatidylserine
(PS) at a ratio of PS/PC = 0.25. PC is a zwitterionic phospholipid, comprising a
choline and a phosphate group. At the working conditions we presume PC to be
uncharged. By contrast, PS is an ionic phospholipid with an expected charge of 1e−
per molecule, which sets the total surface charge of our liposomes, thereby controlling
the long-range repulsion between liposomes. The preparation technique used (Haro-
Pérez et al. 2003) leads to unilamellar vesicles that are rather monodisperse in size,
which we determine by dynamic light scattering as 98 ± 5 nm. The volume fraction
of the stock suspension was estimated from the lipid weight fraction, 30 μmol/mL,
and the mean outer and inner vesicle radii (a and b, respectively) (Stuchly et al. 1988),
considering that the thickness � = a − b and the density of the phospholipid shell
are 4.5 nm and 1.015 g/cm3, respectively (Huang and Mason 1978; Lasic 1991).

We perform static and dynamic light scattering using an ALV-5000 spectropho-
tometer with an Argon-Ion Laser (Coherent, model Innova 308) of wavelength
λ0 = 514.5 nm. Average intensities are obtained from several measurements at
each angle, with different cell positions to minimize the effect of scratches on the
cell surface. The intermediate scattering functions, g2(q,t), are recorded during a time
around four orders of magnitude the decay time of the correlation function, which
depends on density and angle, in order to obtain a good statistic. For ergodic systems,
where the ensemble average of the intensity can be identified with the time average
intensity, the field correlation function is obtained from the time correlation function
of the intensity by the Siegert relation (Berne 1976) as
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Fig. 1 Static structure factor for liposome dispersions as a function of wave vector at different
volume fractions: 0.7, 1.16, 1.45, 1.93 %, (from left to right). Inset: Mean interparticle distance
versus volume fraction. Experimental data (squares), theoretical values 0.9 · n−1/3 (dashed line)

g2(q, t) = ∞I (q, 0)I (q, t)→E

∞I (q, 0)→2
E

= 1 + |βg1(q, t)|2 (3)

where I(q,t) is the scattered intensity by the sample at time t and at scattering vector
q and β is an experimental constant smaller than one. The ergodicity theorem allows
replacing the ensemble average of the intensity, I E =<..>E , by its time average, I t ,
which is the magnitude that a correlator in a light scattering device provides.

As multiple scattering is strongly dependent on the particle concentration and
particle refraction index, usually researchers eliminate it reducing the contrast be-
tween solvent and particles, reason why the medium composition has to be altered.
In this case, the contrast of the system is intrinsically low since the refraction in-
dex of the liposomes, nl = 1.36, is quite close to that of the water, nw = 1.33
(Haro-Pérez et al. 2009).

Subsequently, several structures were formed for increasing liposome concentra-
tions from 0.7 to 1.9 % volume fraction. The suspensions studied in this work were
kept for 5 days over a bed of ion exchange resin (Amberlite NRM-150).

4 Results

The static structure factor may be calculated by S(q) = (ρ0/ρ)(I (q)/

I0(q), where I0(q) is the light intensity scattered by a sample of non-interacting
particles with number density ρ0. The results obtained are shown in Fig. 1. Obvi-
ously, this figure reveals the existence of liquid-like order in the vesicle suspension.
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Fig. 2 a Field autocorrelation functions for a suspension at concentration φ = 1.45% at the wave
vectors marked with arrows in the right side: (a) 39◦, (b) 69◦, (c) 101◦, (d) 133o. The straight lines are
fits to the linear part related to the short-time dynamics (dotted line) and to the long-time dynamics
(solid line). b Angular dependence of the effective diffusion coefficient for the same sample

The structure factor exhibits a pronounced maximum, whose position strongly de-
pends on the particle volume fraction. The height and position of the main peak
exhibit the expected behavior as the particle concentration increases, i.e., the peak
height increases and their position shifts to large q-values as a function of n−1/3,
where n is the particle number density. This trend is characteristic of charged col-
loidal systems. However, we have seen in previous studies that the structure factor
calculated theoretically by solving the Ornstein-Zernike equations along with a clo-
sure relation by assuming a purely repulsive potential can only describe the main
peak of S(q). The fits start to fail at lower q-values where we find an upturn of the
static structure factor, being S(q) larger than predicted. In a similar system, we could
describe the low-q regime by assuming a mixed potential that comprises a long range
repulsion and a shorter range attraction (Haro-Pérez et al. 2009).

Concerning the dynamic properties, dynamic light scattering measurements were
performed via the normalized intensity correlation function. The analysis of the
curves

√
g2(q, t) − 1 versus t reveals interactions between liposomes have a marked

effect:
√
g2(q, t) − 1 departs strongly from a simple dependence on time and its

decay cannot be described by a single exponential law as can be seen in Fig. 2a).
In this plot several field correlation functions measured at different wave vectors
for a given sample are displayed. In all cases, we observe that the decay of g1(q, t)
is linear for t∈0, so the short-time effective-diffusion coefficient can be measured
from their slope −Def f q2 (Snook and Tough 1983), g1(q, t) = exp(−q2 Def f t). To
obtain Def f , a cumulant expansion of second order was fitted to the autocorrelation
function. The second linear regime found at longer times is related to the long-time
dynamics, which is not the focus of the present work. The angular dependence of
the normalized short-time effective diffusion coefficient Def f on the wave vector is
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Fig. 3 Left Measured normalized effective diffusion coefficient at different volume fractions (a) 0.7
%, (b) 1.16 %, (c) 1.45 %, (d) 1.93 %, along with their corresponding theoretical fits according to δγ

expansion theory but with the experimental data of S(q) used as input functions in the calculation of
H(q). Offset by 2. Right Comparison of their corresponding experimental hydrodynamic function
at the same volume fractions (solid squares) with the theoretical fits computed according to δγ

expansion theory but with the experimental S(q) used as input function in the calculation of H(q)
(solid line). Offset by 1

shown in Fig. 2b). These values are obtained by fitting the initial slope of the field
correlation functions, as shown in Fig. 2a).

The single particle diffusion coefficient is measured by dynamic light scattering
using diluted samples of liposomes where the measurements are performed at several
angles. The obtained result was D0 = (4.98±0.20)·10−12m2/s. Similarly, we analyze
the rest of the samples. The angular behavior of the normalized effective diffusion
coefficient for different volume fractions is plotted in Fig. 3 (left). We can observe the
inverse of the curves show surprising similarities with their corresponding S(q): an
atypical upturn at the collective regime, a maximum occurring at the same scattering
vector qmax where the static structure factor S(q) has its first peak and the oscillatory
behavior for q > qmax . The decrease at low q values of the normalized diffusion
coefficient reflects that the dynamics in the collective regime slows down. Moreover,
the minimum related to the mean peak of S(q) shifts with concentration to larger
q values in the same way S(q) does. This link between structure and dynamics is
well known (Ackerson 1976). A striking feature observed in the diffusive behavior
of these dispersions is the appearance of a maximum in the collective regime, placed
at the same position as the minimum of the static structure factor. This maximum
occurs at a scale corresponding to 2–2.5 interparticle distance units, suggesting the
existence of dynamical heterogeneities of these sizes.

Combining the effective diffusion coefficient Def f (q) and the measured static
structure factor enables to determine the hydrodynamic function without taking re-
course to any theoretical model beforehand. In Fig. 3 on the right, we plot H(q) versus
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q obtained for different volume fractions, whose structure factors are shown in Fig. 1.
All the curves show common features: An increase at low-q values followed by a
minima resembling the one of S(q) and the presence of a pronounced peak (concen-
tration dependent) at the same position as the particle-particle correlation peak of
the static structure factor. The height and the width of the main peak increase with φ,
and its value is always bigger than unity. This feature indicates hydrodynamic inter-
actions speed up the system dynamics in the vicinity of the particle correlation peak,
behaviour that has been previously observed in charged systems (Härtl et al. 1999;
Rojas et al. 2003). As different authors reveal, this contrasts with hard-sphere dis-
persions, where the peak never exceeds one and its height decreases with increasing
φ (Segré et al. 1995).

With regard to the behaviour at low q, we observed an unusual minimum that
mimics the one observed in the structure factor. For a more detailed analysis, we
perform a theoretical approach to explain our experimental results. As the particles
we are dealing with are charged, we tried to fit the experimental H(q) according to the
Modified Beenakker and Mazur Formalism where the input parameter is the structure
factor. In Fig. 3, comparisons of the experimental results to model calculations are
presented. Firstly we tried to calculate the H(q) by assuming a pure repulsive interac-
tion potential to generate the input function S(q), data are not shown. In this case the
fits are rather poor, particularly at low wave vectors. This finding is predictable, as
the statics could not be explained assuming a purely repulsive interaction potential.
To describe our experiments we have used a different approach, instead of using as
input the theoretical curves of S(q), which failed as well at low angles to describe the
static experiments, we employ the experimental S(q) to evaluate the hydrodynamic
function. In this case, we observe that the theory (solid lines) reproduces the ten-
dency of the experimental curves at low wave vectors although there is a little vertical
displacement. The error bars are considerable since the experimental values of the
hydrodynamic function are obtained from the multiplication of two experimentally
determined quantities. That is the reason why we prefer to compare the theoretical
fits to the experiments in terms of the effective diffusion coefficient, where we can
see a better agreement between experiments and theory, see solid lines in Fig. 3 (left).
As we can see, the theory starts to fail for the most concentrated sample mainly at
low wave vectors. These discrepancies could be due to the proximity of a phase
transition where the theory would not be valid. The novelty of our findings is that the
Beenakker-Mazur formalism, in principle devised to describe hydrodynamic inter-
actions in hard spheres systems, and later adapted to charged particles, has now been
applied to systems that show hallmarks of attraction. Moreover this theory provides
a qualitative description of the experimental hydrodynamic functions.

5 Conclusions

In this work ordered colloidal suspensions from moderate to large volume fractions
of charged liposomes are formed and their static and dynamic properties are analyzed
by light scattering techniques. The particle-particle peak of the static structure factors
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follows the usual n−1/3 law, but there is an upraise at low q’s that cannot be explained
by a purely repulsive interaction potential. Concerning the short-time dynamics,
despite the lack of understanding of the S(q) we can simply predict the short time
dynamics by using the modified Beenaker-Mazur formalism, which describes the
experimental data reasonably well. We have found the Beenaker-Mazur formalism is
more general than expected and can be applied successfully to other kind of systems,
not only repulsive, but also with attraction as long as the structural properties of the
dispersion are well determined and used as input functions in the theory.

Acknowledgments C.H.P acknowledges financial support from Conacyt (Project 166645) and
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Laminar-Turbulent Transition in Stratified
Wakes

Patrice Meunier

Abstract This chapter presents experimental and theoretical results on the transi-
tion from a laminar to a turbulent wake in a stratified fluid. The case of a cylinder
is analysed in detail at low Reynolds number since it gives rise to the famous von
Karman vortex street when the Reynolds number exceeds a critical value. This value
highly depends on the stratification and on the tilt angle of the cylinder. A moderate
stratification tends to suppress the von Karman vortex street, in agreement with the
stabilisation of shear flows at high Richardson numbers. However, it is surprising
to see that a strong stratification destabilises the flow when the cylinder is tilted.
This new von Karman vortex street is allowed because the vortices exhibit horizon-
tal streamlines although the vortices are tilted. The experimental stability diagram
obtained by dye visualisations are compared to numerical results. At larger Reynolds
numbers, the 2D von Karman vortex street leads to a 3D instability. Shadowgraph
visualisations clearly reveal that the unstable mode is similar to the mode A well
known in homogeneous cylinder wakes if the cylinder is vertical. This mode seems
to be more unstable for moderate stratifications and more stable for strong stratifica-
tions. When the cylinder is tilted a new unstable mode appears at moderate Froude
numbers, which exhibits thin undulated dark lines. This mode is due to a Kelvin-
Helmholtz instability of the critical layer which appears in each tilted vortex of the
von Karman street. Finally, at high Reynolds numbers, the wake becomes turbulent
in the early stages for the case of a sphere. However, the late stages of the wake
exhibit once again a von Karman street of flat horizontal vortices. The size and the
velocity of the wake vary algebraically with time. These scaling laws can be pre-
dicted by a simple model of turbulent diffusion in the horizontal direction and of
viscous diffusion in the vertical direction.
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1 Introduction

Despite an extensive number of studies on bluff body wakes in a homogeneous fluid,
there has been very few results on wakes in a stratified fluid. The goal of this chapter
is to analyse the influence of the stratification on the transition from a laminar to a
turbulent wake of a bluff body.

Bluff body wakes have been a main subject of interest for engineers due to their
application to terrestrial and naval vehicles, where drag reduction has been a major
concern for cars, trains and boats. Bluff body wakes have also direct engineering
significance for civil constructions, where the presence of alternate vortices in the
wakes may cause structural vibrations, acoustic noise and even resonances, leading to
catastrophic failures. Of course, the behaviour of the wake is dependent on the shape
of the bluff body. However, both boundary layer separation and shedded vortices are
present in the wake of a circular cylinder. This basic geometry is thus often used for
fundamental studies on bluff body wakes.

The presence of a continuous stratification is characteristic of geophysical appli-
cations, since the atmosphere and oceans are stratified in density. This may have an
influence on the large scale wakes of mountains and islands but also on the small
scale wakes of submarines and off-shore platforms. How much mixing is caused
by islands wakes in oceans? Can meteorological weather forecast simulations take
into account mountain wakes? Are submarine wakes detectable? Can the off-shore
platforms resist in strong storms and currents? All these questions partly motivate
this study which however remains very fundamental.

2 Presentation of the Problem

The experimental set-up for the study of the stratified wake of a cylinder is presented
schematically in Fig. 1. The experiments are performed in a 150 cm long, 75 cm wide
and 50 cm high Plexiglas tank allowing visualisations from all sides. The tank is filled
with a linearly stratified fluid up to a height Z = 45 cm. The density profile ρ(Z) is
established by the two-tank method, using fresh water in the first tank and salt water
with a density ρ = 1.15kg/l in the second tank, leading to a Brunt-Väisälä frequency
N = ≤−(g/ρ)(∂ρ/∂Z) close to 2 rad/s.

A circular cylinder of diameter D varying between 0.3 and 1 cm is towed hori-
zontally in the stratified fluid, at a velocity U varying between 0.4 and 4 cm/s. As
can be seen on Fig. 1, the cylinder axis is tilted relative to the vertical, at an angle α
in the cross-stream plane. A sphere has also been used at large Reynolds number.

The tilted stratified wake of a cylinder is characterized by five non-dimensional
parameters: the tilt angle α, the Reynolds number Re = U D/ν, the Froude number
F = U/N D, the Schmidt number Sc = ν/κ (κ being the diffusivity of salt in water)
and the non-dimensional stratification length L . However, the two last parameters
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Fig. 1 Schematic of the experimental set-up: the stratified cylinder wake is analyzed by dye visu-
alisations on the right side and by PIV measurements on the left side

will be assumed very large in this study, which reduces the problem to 3 main non-
dimensional parameters.

In order to visualize the flow, a fluorescent dye mixture made of Fluorescein is
deposited on the upstream side of the cylinder and then advected in the von Karman
vortices. A laser sheet allows to reveal the 2D structure of the flow. Shadowgraph
visualisations have also been done by putting a light far from the tank, whose rays are
deviated inside the tank (due to the variation of the refractive index with the density)
and focused inside a camera on the other side of the tank. This allows to reveal the
3D instabilities of the flow. Finally, Particle Image Velocimetry (PIV) measurements
have been obtained by seeding water with small reflecting particles.

3 Two-Dimensional von Karman Vortex Street

It is well known that a cylinder wake exhibits alternate vortices above a critical
Reynolds number equal to 49.9 (Williamson 1996b). This von Karman vortex street
remain discernible in a turbulent wake at very large Reynolds numbers.

Figure 2 shows dye visualisations behind the cylinder tilted with a 30∞ angle at a
moderate Reynolds number (Re = 100). In a homogeneous fluid, it is well known
that the wake is unstable at this Reynolds number and leads to a von Karman vortex
street. It is indeed what is observed on Fig. 2a because the Froude number is relatively
high (F = 1.8), i.e. the stratification relatively low.

When the Froude number is decreased to 1.3, the vortex street disappears and is
replaced by a stationary recirculation bubble, even though the Reynolds number is
still equal to Re = 100. This is very clear on the visualisation of Fig.2b, where the
dye rolls-up in the two counter-rotating vortices of the recirculation bubble and then
stretches in a long straight line with no apparent sinusoidal perturbation.
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Fig. 2 Dye visualisation of the wake behind a cylinder tilted at a 30∞ angle with respect to the
vertical. The pictures are obtained at the same Reynolds number Re = 100 and at three different
Froude numbers: a F = 1.8, b F = 1.3 and c F = 0.8. The field of view is approximately 35 by
10 diameters in the cross-cut plane (x, y)

Intuitively, the presence of a stratification stabilises the flow because the restoring
force tends to attenuate the vertical velocity V created by the tilted vortices (Meunier
2012a, b). This restabilising effect is very similar to the stabilisation of a vertically
sheared flow which occurs when the Richardson number is larger than 1/4, as shown
by Miles (1961). Indeed, the von Karman vortex street is generated by the two shear
layers which detach from the cylinder and which are subject to a shear instability.
This is why the wake is stabilised when the Froude number decreases.

However, it is surprising to see that when the Froude number is decreased further,
the wake loses this stability and leads once again to a von Karman vortex street as for
a homogeneous fluid. This is clearly shown on Fig. 2c for F = 0.8, where the dye
rolls up again in the vortices shed on each side of the cylinder. This structure seems to
be similar to the von Karman vortex street obtained at high Froude number. However,
the wavelength is larger, showing that it is in fact a different unstable mode. Indeed,
these vortices do not contain any vertical velocity although their axes are tilted (and
parallel to the cylinder), meaning that the streamlines are horizontal ellipses.

This new unstable mode is indicated schematically at low Froude number (F <

1.3) in the stability diagram of Fig. 3a. It appears above Rec = 45 at vanishing
Froude numbers and at larger Reynolds numbers for larger Froude numbers (up to
Re = 130). At large Froude numbers, the classical von Karman vortices appear, but
they are suppressed by the moderate stratification. These two modes create a strange
stability diagram which is more stable only for moderate Froude numbers with a
cusp at F = 1.3.
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Fig. 3 Stability diagram of the wake of a cylinder tilted at a α = 30∞ and b α = 90∞, with
respect to the vertical. Symbols correspond to stable (•) and unstable (→) experiments. The solid
line corresponds to numerical results. In b Grey symbols correspond to the experimental results of
(Boyer et al. 1989)

However, when the tilt angle α increases, the low Froude number mode is sup-
pressed because the streamlines become more and more elliptical. The low-Froude
part of the critical Reynolds number curve is translated toward smaller Froude num-
bers and eventually disappears for a horizontal cylinder, as shown in Fig. 3b.

4 Three-Dimensional Instabilities

When the Reynolds number increases, the 2D von Karman vortex street becomes
unstable with respect to a 3D instability. This transition has been well studied for a
homogeneous cylinder wake, where the first mode (called mode A) exhibits counter-
rotating vortex pairs perpendicular to the primary von Karman vortices. They are
nicely visualised in Fig. 4 by shadowgraph for a weak stratification. The vortex pairs
are clearly visible in the front view. The side view highlights the fact that their tails
are advected by the cylinder wake. The wavelength is equal to 4 diameters, as in a
homogeneous fluid (Williamson 1996a).

The stability diagram of Fig. 5 indicates that this mode becomes more unstable for
moderate stratifications. This is surprising because the mode A is due to the elliptic
instability of the von Karman vortices (Thompson et al. 2001), whose growth rate σ
decreases with the presence of a stratification as noted by Kerswell (2002):

σ = 9

16
ε(1 − 3

4F2
v

)

Here, ε is the ellipticity of the streamlines and Fv = Ω(0)/N is the vortex Froude
number based on the angular velocity at the center of the vortex. We would thus expect
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(a)

(b)

Fig. 4 Shadowgraph visualisations of the 3D unstable mode for a vertical cylinder (α = 0∞) in a
side view (a) and in a front view (b). Re = 190, F = 4

Fig. 5 Stability diagram of the mode A for a vertical cylinder

for weak stratification (large Fv) to have a smaller growth rate and thus a larger critical
Reynolds number. However, at smaller Froude number (F < 1.5), there is a large
increase of the critical Reynolds number, probably due to the presence of critical
layers in the Kelvin modes of the vortices, as explained by Le Dizès (2008).
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Fig. 6 Shadowgraph visualisations of the 3D unstable mode for a cylinder tilted at α = 45∞ in a
side view. Re = 180, F = 2.5

Fig. 7 Stability diagram of the mode S for a cylinder tilted at α = 45∞

The dynamics of the 3D wake is totally different when the cylinder is tilted with
respect to the vertical. Indeed, Fig. 6 shows that thin dark and bright lines appear in
the wake, and start to undulate above a critical Reynolds number, creating S shaped
lines. This new unstable mode (that we called mode S), only appears for moderate
Froude numbers (between 2 and 4), as can be seen in Fig. 7.

At these Froude numbers, the tilted vortices exhibit strong axial flows even in the
absence of 3D instabilities. This is clearly visible in the 2D numerical simulations
presented in Fig. 8a, where mushrooms of strong positive and negative axial velocity
surround the vortices. This characteristic structure can be retrieved theoretically by
summing the axial flow created by each vortex, as has been done in Fig. 8b. Indeed,
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(a) (b)

Fig. 8 Axial velocity of the 2D flow generated by the von Karman vortex street (a) numerically
and (b) theoretically at α = 45∞, F = 2.5, Re = 180

each tilted vortex contains a critical layer at the radius rc where the angular velocity
Ω(rc) is equal to the buoyancy frequency N . This is due to a resonance of the
stratified fluid to the periodic vertical forcing at frequency Ω(r) which is created by
the tilted streamlines. At small tilt angle α, Boulanger et al. (2007) showed that the
axial velocity is simply equal to

w(r) = rΩ(r)3

Ω(r)2 − N 2

and thus diverges at rc. Inside the critical layer, viscous effects can be taken into
account and lead to an analytic solution with an amplitude scaling as Re1/3 and a
thickness scaling as Re−1/3. This structure, plotted in Fig. 8, exhibits two embed-
ded positive and negative circular jets. When summing the critical layers of all the
von Karman vortices, we recover the mushroom structures found in the exact 2D
numerical simulations.

Boulanger et al. (2008) showed that this critical layer creates a strong shear which
is unstable with respect to the Kelvin-Helmholtz instability. This is nicely visualised
in Fig. 9, where the thin lines start to undulate leading to Kelvin-Helmholtz billows.
The lines exhibit an S shape very similar to the structure of the mode S in the wake
of the cylinder, which is visualised in Fig. 6. This explains the origin of this new
3D unstable mode of the cylinder wake, due to Kelvin-Helmholtz instabilities of the
critical layers.

5 Turbulent Wake

When the Reynolds number increases further, the wake becomes turbulent with the
presence of small-scale fluctuations, especially at large Froude numbers. However,
the stratification still plays a major role at late stages when the mean velocity of
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Fig. 9 Temporal development of the tilt-induced instability of a vortex in a stratified fluid tilted at
α = 4∞ visualized by Shadowgraph

the wake has decayed to the characteristic value N D. This leads to the presence of
horizontal vortices in order to reduce the vertical velocity, as has been well shown by
Lin and Pao (1979) for a sphere wake. The stratification also prevents the extension
of the wake in the vertical direction, which imposes a very small aspect ratio of the
vortices. As a consequence, the velocity decays slower than in a homogeneous wake
because the flow rate is constant.

This can be modeled using a turbulent diffusivity νT which depends on time.
Indeed, assuming that the Reynolds stresses are proportional to the mean shear, it
can be shown that the mean streamwise velocity satisfies a diffusion equation (see
Tennekes and Lumley 1972):

∂u

∂t
= νT

(
∂2u

∂y2 + ∂2u

∂z2

)
(1)
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Fig. 10 Mean velocity amplitude of the stratified turbulent wake of a sphere as a function of time

In the homogeneous case, this equation has a Gaussian solution

u(y, z, t) = U0(t) exp(− y2

L2
y

− z2

L2
z
) (2)

with an amplitude U0(t), a horizontal width L y(t) and a vertical height Lz(t) which
depend on time. If the turbulent diffusivity νT is proportional to U0 L y , the amplitude
decreases as t−2/3 and the width and height increase as t1/3. This is indeed observed
in homogeneous wakes and in the early stages of stratified wakes, as shown on Fig. 10
for Nt < 2. However, at Nt ∇ 1, the amplitude U0 becomes close to N L y and the
wake starts to feel the effect of the stratification. The turbulent vertical velocities are
suppressed such that the vertical Reynolds stress < u∼w∼ > vanishes. The turbulent
diffusive term νT ∂2u/∂z2 must be replaced by a viscous diffusive term ν∂2u/∂z2,
which is much smaller (Meunier et al. 2006). This explains why the mean profile
expands in the horizontal direction but not in the vertical direction. The amplitude
U0 decreases as t−1/2 like in a 2D homogeneous wake, leading to a slower decay
of the wake. This is clearly visible in Fig. 10 for Nt > 2, where the initial decay is
drastically slowed down when the stratified effects become important.

However, at very late stages, the viscous diffusion eventually becomes important
and leads to an extension of the wake in the vertical direction. This creates a decrease
as t−3/4 of the amplitude of the wake U0. This is visible in Fig. 10 for Nt > 50 and
has been called the quasi-2D regime in the literature (Spedding 1997).
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Taking the empirical values of the coefficients between the Reynolds stress and
the mean shear, it is possible to predict the exact laws for the velocity amplitude with
no fitting parameter. This is plotted in Fig. 10 and compared to all the experimental
and numerical data found in the literature. There is an excellent agreement, which
indicates that a simple model of turbulent diffusivity can accurately predict the mean
characteristics of a stratified wake.

6 Conclusion

This chapter highlights the fact that a density stratification such as the stratification
of the atmosphere or the oceans can drastically modify the structure and dynamics of
a bluff body wake. At small Reynolds numbers, the transition from a stationary wake
to a 2D time-periodic and then to a 3D wake are highly dependent on the Froude
number and on the orientation of the bluff body, which gives a very rich dynamics
of bifurcations and instabilities. At large Reynolds numbers, the stratification plays
a major role in the late stages even for a weak stratification.

All these results indicate that a great care should be taken when using simple
models of homogeneous wakes for geophysical applications of mountain or island
wakes. The presence of resonances and waves creates a very complex and surpris-
ing structure of the wake, which has been very weakly studied in clean laboratory
experiments or even in numerical simulations. How are modified the transitions for
different bluff bodies? What is the structure and stability of the lee waves for a
3D bluff body? How much mixing is created by these 3D wakes? These are a few
questions that will need to be answered for a better understanding and modeling of
geophysical wakes.

Acknowledgments Special acknowledgements to Prof. Anne Cros for her invitation to the
congress of the División de Dinámica de Fluidos. I also thank the Secretaría de Relaciones Ex-
teriores, Dirección General de Cooperación Educativa y Cultural de México for their financial
support. Finally, I would like to thank Prof. Geoff Spedding for introducing me to the study of
stratified wakes.

References

Boulanger N, Meunier P, Le Dizès S (2007) Structure of a stratified tilted vortex. J Fluid Mech
583:443–458

Boulanger N, Meunier P, Le Dizès S (2008) Tilt-induced instability of a stratified vortex. J Fluid
Mech 596:1–20

Boyer DL, Davies PA, Fernando HJS, Zhang X (1989) Linearly stratified flow past a horizontal
circular cylinder. Philos Trans R Soc Lond Ser A 328:501

Le Dizès S (2008) Inviscid waves on a lamb-oseen vortex in a rotating stratified fluid: consequences
for the elliptic instability. J Fluid Mech 597:283

Kerswell RR (2002) Elliptical instability. Ann Rev Fluid Mech 34:83–113



82 P. Meunier

Lin JT, Pao YH (1979) Wakes in stratified fluids: a review. Ann Rev Fluid Mech 11:317–338
Meunier P (2012a) Stratified wake of a tilted cylinder. Part 1. Suppression of a von Karman vortex

street. J Fluid Mech 699:174–197
Meunier P (2012b) Stratified wake of a tilted cylinder. Part 2. Lee internal waves. J Fluid Mech

699:198–215
Meunier P, Diamessis P, Spedding GR (2006) Self-preservation in stratified momentum wakes. Phys

Fluids 18:106601
Miles JW (1961) On the stability of heterogeneous shear flows. J Fluid Mech 10(4):496–508
Spedding GR (1997) The evolution of initially turbulent bluff-body wakes at high internal Froude

number. J Fluid Mech 337:283–301
Tennekes H, Lumley JL (1972) A first course in turbulence. M.I.T Press, Cambridge
Thompson M, Leweke T, Williamson C (2001) The physicsl mechanism of transition in bluff body

wakes. J Fluids Struct 15:607
Williamson CHK (1996a) Three-dimensional wake transition. J Fluid Mech 328:345–407
Williamson CHK (1996b) Vortex dynamics in the cylinder wake. Ann Rev Fluid Mech 28:477–539



Flows Driven by Harmonic Forcing in Planetary
Atmospheres and Cores

Michael Le Bars

Abstract It is a commonly accepted hypothesis that convective motions are re-
sponsible for most flows in planetary and stellar fluid layers, and in particular that
convective motions are responsible for planetary dynamos, as it is the case on Earth
today. However, the validity of the convective dynamo model can be questioned in
certain planets. Besides, even in planets where the dynamo is of convective origin,
additional driving mechanisms may significantly modify the organization of fluid
motions in their core. The same question holds for all large-scale flows in any fluid
layer of astrophysical bodies, such as atmospheres of gas giants, subsurface oceans
of icy satellites, and convective/radiative zones of stars. In particular, three mechan-
ical forcings present at the planetary scale remain largely unknown regarding their
fluid mechanics and planetary consequences: libration, precession, and tidal dis-
tortions. Combining analytical studies with numerical simulations and laboratory
experiments, we show here that libration and tides can drive highly energetic turbu-
lent flows, which could for instance participate in the generation of Jupiter bands
and in the generation of the past Moon magnetic field. The key point is that flows
are excited by resonance mechanisms such as the elliptical instability, where the
harmonic forcing only acts as a conveyor to extract energy from the huge reservoir
related to the rotational dynamics of planetary systems. Even small forcing can thus
have important consequences.

1 Introduction

Since the seminal works of the 1960s and 1970s (see for instance Busse 1970; Spiegel
1971, …), most research on the domain of planetary and stellar flows has focused
on convection. In planetary sciences, one of the most significant outcomes of this
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research (see Glatzmaier and Roberts 1995) was to demonstrate that convective flows
in a spherical shell indeed generate a dynamo, and that the present magnetic field of
the Earth is most probably due to such motions driven by the solidification of its iron
core. Since its formulation, this same model has been applied, with only marginal
modifications, to other planetary systems. However, the validity of the convective dy-
namo model can be questioned in certain planets and moons, for instance in Mercury
and Ganymede. More generally, it is often tacitly assumed that all motions in fluid
layers of astrophysical bodies (e.g. atmospheres of gas giants, subsurface oceans of
icy satellites, convective zones of stars, …) are controlled and driven by convective
effects only. For instance Jupiter’s bands may be explained by the surface trace of
deep convective flows (Heimpel et al. 2005). But in the view of the latest data coming
from moons and planets in our solar system as well as from more exotic extrasolar
ones (see for instance the fast magnetic inversions in Tau-Boo studied by Donati et
al. 2008), it is now high time to re-evaluate these standard models and to explore
the role of other instabilities in the organization of fluid motions at the planetary and
stellar scales. In particular, three processes are generically present at the planetary
or stellar scales, but remain mostly neglected when looking at their driving influence
in fluid layers: precession, tidal distortion and libration.

Precession corresponds to the periodic change in the orientation of the rotational
axis of a planet. The flow of a rotating viscous incompressible homogeneous fluid
in a precessing container has been studied for over one century for both planetary
and engineering applications. In the spheroidal geometry, the early work of Poincaré
(1910) demonstrated that the flow of an inviscid fluid has a uniform vorticity and
takes the form of an inclined solid body rotation called tiltover. But precession can
also drive turbulence (e.g. Noir et al. 2003), whose origin remains a matter of debate
and the subject of current research.

Tidal distortions come from the gravitational interactions of any planet with its
neighbours. They affect all the layers of a given body, which all take an ellipsoidal
shape with the long axis oriented towards the deforming body. Tidal distortions are
generally time-periodic (i.e. dynamic tides), but they also have a static component in
synchronized systems (i.e. static bulges). The most obvious consequences of dynamic
tides are of course the oceanic flows on Earth, but they are also responsible for
the intense volcanism on Io for instance, and for various flows that we will detail
in Sect. 3.

The term longitudinal libration (hereafter called libration) refers to periodic
variations in the rotation rate of a planet around its axis. Such oscillations are present
in many bodies stacked in a spin–orbit resonance. The determination of the libra-
tional motions of a planet allows to better constrain its internal organization (see for
example, Margot et al. 2007). Libration may play a fundamental role in the dynamics
of planetary fluid layers, for example in the liquid core of Ganymede, in the subsur-
face ocean of Europa and Titan, or in the atmosphere of hot-Jupiters and in the core
of super-Earths in extrasolar systems. This will be shown in Sect. 4.

From a fluid dynamics point of view, libration, precession and tides correspond
to closely related mechanisms, which we generically call “harmonic forcing”: they
correspond to periodic perturbations of an otherwise simple solid-body rotation,
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Fig. 1 Experimental set-up. The picture in (a) highlights the existence of two different rotation
rates: the spin rate of the studied planet, and the orbital rate of the body responsible for the tidal
deformation. As shown in the equatorial cross-section (b), this companion body is replaced in our
set-up by two symmetric rollers. c and d show the experimental set-up

with an azimuthal wave number m respectively equal to 0, 1 and 2. For planetary
systems, it is well known that a huge amount of energy is stored in their rotational
dynamics (spin and orbit): those mechanical forcings could play the role of efficient
conveyers that extract this energy and drive large scale and intense fluid motions, as
initially suggested by Malkus for the Earth (1963, 1968, 1989). Note that the studies
of Malkus have long been neglected by the scientific community, mainly because
of a misunderstanding (e.g. Rochester et al. 1975): as later mentioned by Kerswell
(1996), critiques indeed focused upon establishing the energetic irrelevance of the
laminar response to mechanical forcing, rather than considering the fully turbulent
case, which is significantly more energetics, thus more relevant for astrophysical
bodies. Malkus’ studies are now being rehabilitated, in the view of the latest results
from space missions and extrasolar systems observations that highlight the need to
go beyond the standard models in order to understand the variety of planetary and
stellar configurations. My team “Rotating and Geophysical Flows” at IRPHE has
largely contributed to this rehabilitation over the past 10 years, and I will shortly
present below our main contributions in the field of tides and libration driven flows.

2 Methods

Our studies are based on combined theoretical, experimental and numerical
approaches. Our purpose is to describe generic physical mechanisms and to derive
and validate generic scaling laws, which are then extended towards planetary
applications.

Following the first study by Malkus (1989), we have developed an original
experimental set-up to study the tides driven flows in spherical geometry (Fig. 1).
In this device, the container consists in a hollow sphere molded into a deformable
silicone matrix and filled with water, that is set in rotation. The container is
elliptically deformed by a pair of opposed rollers that mimics a tidal deformation
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rotating at an independent “orbital” velocity. Typical parameters are: radius R =
10 cm, rotation rates up to ±160 rpm, and tidal distorsion up to 5 mm. Our device
is equipped with two measuring systems: a simple visualization by Kalliroscope
(reflective flake particles) in a vertical laser sheet from the laboratory frame, and a
camera system with a wireless transmission, embarked in rotation with either the
container or the rollers. This visualization is especially interesting since it allows us
to perform PIV measurements in an equatorial cross-section and to determine the
velocity field that takes place above the imposed rotation. Two types of experiments
have been performed so far with this device, as developed in the next sections:

• studies on the effects of tides for both elliptical instability (Le Bars et al. 2010)
and zonal wind generation (Morize et al. 2010) in a tidally deformed sphere;

• studies of libration in a perfect sphere, in which case the rollers are removed but
the spin rate is modulated sinusoidally (Sauret et al. 2010).

Numerical simulations have been performed using the commercial code COM-
SOL Multiphysics (e.g. Cébron et al. 2010a,b,c, 2012a). This software is capable
of solving Navier–Stokes equations (and additional physics such as a thermal field
or the induction equations) using a finite element method: this allows to deal with
complex geometries, such as the triaxial ellipsoidal shape representative of tidally
deformed and polarly flattened planets and stars. This constitutes a significant added
value compared to previous numerical simulations of planetary cores and stars. In-
deed, most other numerical resources use spectral methods and hence suppose an
exact axisymmetry of the boundaries of the studied body around its rotation axis,
which eliminates most of the interesting dynamics that we want to tackle here. All
hydrodynamical and MHD aspects of the numerical simulations have been validated
by direct comparison with our previous analytical and experimental results.

3 Tides Generated Flows

As for any rotating flow, fluid layers of planets and stars support oscillatory motions
called “inertial waves”, whose frequencies range between± twice the spin frequency.
Usually damped by viscosity, these waves can nevertheless be excited by harmonic
forcings, and in particular by tides. For instance, Ogilvie and Lin (2004, 2007) showed
that in stars and atmospheres of gas giants, tidal forcing might excite inertial waves
that significantly alter the energy dissipation of the system. The nonlinear interaction
of such forced inertial modes can then generate intense axisymmetric geostrophic
jets in the bulk of the fluid, which could for instance participate in the generation of
Jupiter’s stripes (see e.g. our experimental study Morize et al. (2010) and Fig. 2).

Additionally, tidal forcing induces an elliptical deformation of the rotating stream-
lines in fluid layers that may excite a parametric resonance of inertial waves called the
elliptical instability (see e.g. the review by Kerswell (2002)). Initially motivated by
the aeronautical applications of the elliptic instability, our research group at IRPHE
has significantly participated in its theoretical, numerical and experimental investi-
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Fig. 2 a Axisymmetric geostrophic jet as visualized in our laboratory experiment by Kalliroscope
in a meridional plane. b Corresponding norm of the horizontal velocity in the equatorial plane, as
measured by particle imaging velocimetry (PIV) in the rotating frame. c Surface flow visualized
by Kalliroscope in the combined presence of tides and precession: the geostrophic flows generate
stripes similar to the ones observed for instance on Jupiter. See details in Morize et al. (2010)

gation in spherical containers for planetary and stellar applications (see e.g. Le Bars
et al. 2007, 2010; Cébron et al. 2010a). We have also investigated the interaction
between elliptic and convective instabilities (Le Bars and Le Dizès 2006; Lavorel
and Le Bars 2010; Cébron et al. 2010b). Then, we have studied the response of
the flow in a liquid metal when a magnetic field is imposed along the rotation axis.
Experimental measurements and numerical simulations have shown the induction of
a horizontal magnetic field by the instability as well as its progressive attenuation
by Joule dissipation, in perfect agreement with the complete analytical resolution
(Lacaze et al. 2006; Herreman et al. 2009; Cébron et al. 2012a). Besides, various
chaotic behaviours with excursions and inversions of the induced magnetic field may
take place depending on the relative strength of the elliptical forcing and imposed
magnetic field (Herreman et al. 2010). Results from these ideal models have been
applied to natural systems, showing for example that the early Earth’s core was
clearly unstable (Cébron et al. 2012b). We have also proposed a complex tempo-
ral evolution of binary systems, passing successively through resonance bands of
the elliptical instability, separated by stability regions (Le Bars et al. 2010). Lately,
we have suggested that the elliptical instability in the Moon’s core, temporarily de-
synchronized by large meteoritic impacts, may be responsible for its early dynamo
(Le Bars et al. 2011).

4 Libration Driven Flows

The determination of the librational motions of a planet allows to better constrain
its internal organization (see for example, Margot et al. 2007). The main problem of
these models is that they tacitly assume the complete absence of specific motions in
detected fluid layers outside the viscous Ekman boundary layer. One result of our
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work was to demonstrate that on the contrary, libration forcing generates complex
and intense flows, which participate in the energy balance and orbital dynamics of
the planet, and possibly even in the generation of a magnetic field.

Since the solid boundaries surrounding a liquid layer of a planet generically have
a triaxial ellipsoid shape, couplings of viscous and topographical origins have to be
envisaged. Librational flows generated by viscous coupling have first been studied
by Aldridge and Toomre (1969), who observed experimentally that inertial waves
can be excited in a sphere at resonant libration frequencies, as latter confirmed nu-
merically (see e.g. Rieutord 1991). More recently, Busse (2010) demonstrated by a
weakly nonlinear study in the limit of small libration frequency, that the libration of
a sphere generates via the nonlinearities in the Ekman layer, an axisymmetric zonal
flow whose amplitude varies as the square of the libration amplitude, regardless of
the Ekman number. These predictions were confirmed experimentally and numeri-
cally by our group (Sauret et al. 2010), then extended to a more generic configuration
(Sauret and Le Dizès 2013). Finally, Noir et al. (2009) have demonstrated experi-
mentally the presence of a centrifugal instability in a librating sphere under the form
of Taylor-Görtler type vortices appearing in the viscous layer near the boundary.
However, Calkins et al. (2010) emphasised that in the limit of small Ekman numbers
relevant to planetary applications, these structures remain localised in the boundary
layer and near the equator, and therefore have a very marginal role in the dynamics
of the fluid layer. In the view of new numerical results in a cylindrical geometry, we
have recently re-evaluated this conclusion by showing a new mechanism of inertial
waves generation by the boundary layer turbulence, which could significantly alter
the bulk dynamics, no matter what the libration frequency is (Sauret et al. 2012): this
mechanism has also been described systematically in the spherical geometry (Sauret
et al. 2013).

The libration flows generated by topographic coupling appear to have been
even less studied than those with viscous coupling. Recently, Zhang et al. (2011)
combined theoretical and numerical approaches, to show the persistence of a
zonal wind generation in a triaxial ellipsoidal geometry. They have also sug-
gested that no inertial wave could be forced in this case. However, 4 publica-
tions have shown that a hydrodynamic instability of elliptical type driven by li-
brational forcing could develop in triaxial containers (see Fig. 3): the original
paper by Kerswell and Malkus (1998) and subsequent contributions of our group
(Herreman et al. 2009; Cébron et al. 2012c; Noir et al. 2012). Such a mechanism
would be of fundamental importance at the planetary scale because it would generate
space-filling turbulence in fluid layers, possibly explaining for instance the magnetic
signatures of Io and Europa. This however has to be confirmed by a more systematic
experimental and numerical study.
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Fig. 3 a Time evolution of the absolute value of the axial velocity integrated over the whole
container, showing the cycles related to the growth and collapse of the libration driven elliptical
instability. Numerical simulations are performed at an Ekman number E = 5×10−4. b Norm of the
velocity field in a meridional cross section and in the plane z = −0.5. The sequence shows, from
left to right, the typical field during the exponential growth, at saturation and during the collapse.
From Cébron et al. (2012c)

5 Conclusions

By combining analytical, experimental and numerical studies, we have shown that
“alternative” mechanisms driven by libration, precession and tides, may participate in
core and other layers fluid dynamics, where they can replace or significantly perturb
usually considered convective motions. For these motions, the source of energy
comes from the rotational dynamics of planetary systems (spin and orbit), and the
harmonic forcing only acts as a conveyor. Hence, even very small forcing can give
rise to intense flows, explaining for instance the existence of strong localized jets
when a given inertial wave is resonantly excited (e.g. Jupiter’s bands), or the presence
of a planetary dynamo when 3D turbulence is excited by elliptical instability (e.g.
Moon’s dynamo). One should thus remember that on no account, planetary or stellar
fluid motions systematically mean convection.
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Numerical Simulation of Ocean Response
by Offshore Wind Stress Events

F. A. Velazquez-Muñoz, J. A. Martínez and R.Durazo

Abstract In this chapter we present some of the features of the wind forced
mesoscale current in the Gulf of Tehuantepec, Mexico. We use a three-dimensional
numerical model with topography and a realistic wind as the only forcing. We find
that starting with “at rest” conditions and horizontally uniform vertical stratification,
in a few days (∼20) the main features observed in regional coastal circulation are
developed, which establishes the importance of local wind on coastal dynamics. Our
results show that the model produces an asymmetrical ocean response on both sides
of the wind jet, forming only an anticyclonic eddy on the western side of the Gulf
of Tehuantepec. This response is explained by the balance of momentum in terms of
external mode equations (vertically average). It was observed that the geostrophic
balance dominates and is asymmetrical with respect to the axis of high wind. On the
west side, the balance is part of a nearly geostrophic anticyclonic eddy. In the east,
the presence of a wide platform and the shore-line, results in an altered geostrophic
balance, making other terms important. The terms of lower order of magnitude also
showed this asymmetry, notably on the west side where the anticyclonic eddy is
formed and along the coast, influenced by the decrease in depth. This adds alterna-
tive information to the descriptions given (stationary and uniform offshore wind) of
the ocean response to northerly winds and complements the explanation of the asym-
metrical results. The wind used to force the model contains much of the temporal
variability, therefore allowing the observation of differences in length, intensity and
frequency between wind events.

F. A. Velazquez-Muñoz (B)

Departamento de Física, Universidad de Guadalajara, Guadalajara, Jalisco, México
e-mail: federico.velazquez@red.cucei.udg.mx

J. A. Martínez · R. Durazo
Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja
California, México

J. Klapp and A. Medina (eds.), Experimental and Computational Fluid Mechanics, 93
Environmental Science and Engineering, DOI: 10.1007/978-3-319-00116-6_7,
© Springer International Publishing Switzerland 2014



94 F. A. Velazquez-Muñoz et al.

1 Introduction

Most of the work in the Gulf of Tehuantepec has been focused on: the study of
high winds (Chelton et al. 2000), on the generation of a large number of eddies
(Palacios and Bograd 2005; Zamudio et al. 2006) and on the effects of winds over
the ocean (Lavín et al. 1992; Trasviña et al. 1995; Velázquez-Muñoz et al. 2011).
The wind events have been characterized in terms of the duration, its intensity and
the sequential effect when two events occur during relatively short times (Velázquez-
Muñoz et al. 2011). Most of the events are of short extent (1–4 days) compared to
the local inertial period (∼2 days), however, because of its intensity, the effect on the
GT is notable (Trasviña et al. 1995; Velázquez-Muñoz et al. 2011). Wind events have
been associated with the formation of eddies at the side of the wind axis (Barton et al.
1993; Trasviña et al. 1995; Trasviña and Barton 2008). From the time when the first
remote measurements with satellites were made (Stumpf 1975; Stumpf and Legeckis
1977) till most recent measurements using HF radars (Velázquez-Muñoz et al. 2011;
Flores-Vidal et al. 2011), it has been possible to obtain information during wind
events. This has served to study the circulation for longer time periods. However,
some of these measurements are limited only to the surface layer of the ocean or
cover a relatively small area offshore, compared to the scale of influence of wind
events.

Moreover, work done to investigate Gulf dynamics by measurements makes diffi-
cult to assess the influence of events in an isolated maner. There has been some works
using numerical and analytical models (McCreary et al. 1989; Clarke 1988, Chap. 2)
that study the response of the ocean to wind stress, trying to simulate the Tehuanos.
While these studies provide some physical concepts that control the dynamics forced
by wind, they are limited to relatively simple cases, not taking into account the influ-
ence of coastline or bathymetry variations. Works like Zamudio et al. (2006)include
the heat flux at the surface, forcing at the borders and also the wind forcing, making it
difficult to isolate the effect of the dynamic local wind. Other studies with numerical
models like Umatani and Yamagata (1991) or, more recently Sun and Yu (2006) use
monthly averages to force the model, so that wind events are considerably underes-
timated, or simply disappear. Even so, they find that there is a strong contribution
from the GT to the seasonal variability of eastern tropical Pacific due primarily to
wind events, which is even stronger than the contribution from the Gulf of Papagayo.

2 Numerical Model

In this work, we use the nonlinear, hydrostatic and three-dimensional numerical ocean
model POM (Princeton Ocean Model) developed by Blumberg and Mellor (1987).
This model solves the primitive equations for the momentum and thermodynamic for
the conservation of temperature and salinity. The computational solution of numerical
model includes the mode splitting technique that separates the problem into two sets:
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the first being a set of vertically integrated equations (external mode) and the second
set vertical structure equations (internal mode). The equations are solved by spatial
and temporal finite difference methods using an implicit scheme in a tri-diagonal
metrix wich is solved by a Gaussian elimination method. The original version of this
model -coded in Fortran77- was run in a MacPro 8 cores personal computer. The
model also incorporates a turbulent mixing scheme (Mellor and Yamada 1982). The
vertical coordinates of the model are also called “following terrain”, such that at any
point of numeric domain, the same number of vertical levels exist. This feature is
very useful to represent healthy Ekman layers.

For this study, we chose the simulation period from February 1st to March
18th, 2005, which coincides with measurements described in Velázquez-Muñoz et
al. (2011). The considered domain extends from 104◦ to 82◦W in longitude and
3◦–19◦N in latitude (Fig. 1a). In the open boundaries of the west, south and east,
the Orlansky radiation conditions for sea level and velocity components for internal
and external mode were applied. For temperature and salinity, an advection bound-
ary condition was used. The initial distribution of temperature and salinity is only
a function of the vertical coordinate. The bathymetry was taken from the product
ETOPO2 (Geodetic Center, Boulder, Colorado), and was interpolated to a cartesian
grid of 5 km horizontal resolution. The number of cells in direction (x, y) is (484,
350). In order to properly resolve the boundary layers, we used 71 sigma levels with
a logarithmic distribution near the surface and bottom. Outside the boundary layers,
the level distribution is linear. The Coriolis parameter varies as f = 2Ω sin(ϕ),
where Ω is the angular velocity of the Earth and ϕ the latitude. The coordinate sys-
tem is oriented with the positive x-axis to the east and the positive y-axis northward.
We use the notation (u, v) and (U, V) to refer to the horizontal three-dimensional
and vertically integrated components of current velocity, respectively. Sea level is
represented by η.

WE used Cross-Calibrated Multi-Platform (CCMP) of Atlas et al. (1996) for wind
speed values for in the entire planet in a uniform matrix array of 0.25◦ × 0.25◦ with
temporal resolution of 6 h. For this study, we calculate the wind stress following
Large and Pond (1981). Several features are evident in Fig. 1a: the offshore wind
jet in the GT is narrow, intense and follows an inertial tray after leaving land in
the Gulf of Tehuantepec. Another similar wind jet appears almost simultaneously
and occurs in the Gulf of Papagayo. The intensity of the wind in the GT is only
significant in a strip of about 100 km wide and is weak in adjacent regions along the
coast. Towards the south, the influence of events extends for about 400 km. During
the winter months, wind events are an important forcing factor on coastal dynamics
in the Tropical Pacific region (Barton et al. 2009a). Figure 1b shows the magnitude
of wind stress time series at the point of maximum temporal variability in front the
Gulf of Tehuantepec. Throughout the 45 days selected for this study, we identify
five events where the meridional component of the wind stress reaches significant
values towards the South (shaded in Fig. 1b), which can be considered as northern
wind events. The first and the most intense event is presented between February
2nd to 6th, reaching a value close to 1.0 Nm−2(∼20ms−1). Between February 10th
and 12th, there is a second wind event with half the intensity of the previous one
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Fig. 1 (a) Map of the numerical model domain. Black arrows correspond to temporal wind average
from February 1 to March 18, 2005. The time series of the magnitude of the wind stress in 95◦W
and 15◦N are shown in (b), which corresponds to the maximum wind variability. We can identify
four periods with strong wind (shaded in gray). The units are [N m−2]

(0.5 Nm−2 or 16 ms−1), while the third event is from 18th to 20th of February with
0.4 Nm−2. After a period of relative calm, from February 20th to March 10th, there is
a pair of short consecutive events, or pulses, which last 2 days and 1 day, respectively,
reaching values of 0.7 Nm−2 the first and 0.3 Nm−2 the second.

3 Circulation Induced by the Wind

3.1 Surface Currents

Using the results of the last 25 days of simulation, temporal average surface current
in Tehuantepec was calculated. Figure 2 shows the time averages of model surface
currents (black arrows) and surface current measurements (gray arrows), systems reg-
istered with High Frequency Radio and reported by Velázquez-Muñoz et al. (2011).
The color scale is the root mean square (rms) of the model time series currents.
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Fig. 2 rms values of surface current on numerical model (color tones). Black arrows correspond
to the time average of surface current on model and the gray arrows, surface current reported by
Velázquez-Muñoz et al. (2011). In all cases the time period is from February 20 to March 18, 2005

We must emphasize that there is a great similarity in the magnitude and direction
between the average surface current model and measurements. In this part of the
numerical domain, far from the borders, the sea surface dynamics consist of a coastal
current entering from the east that is deflected to the south (offshore). The rms pat-
tern of sea surface current (color in Fig. 2) is also quite similar to measurements
(Fig. 2b in Velázquez-Muñoz et al. 2011) having lower values near the shoreline and
increasing seaward.

3.2 Kinetic Energy and Relative Vorticity

During the northerly winds, one of the first effects that the wind produces on the
ocean is through the development of current (increasing kinetic energy) on the entire
surface of the numerical domain, and a way to compact the information is through
the quantities integrated over a defined area. In Velázquez-Muñoz et al. (2011), it
was shown that the kinetic energy integrated over the HFR coverage area is closely
related to the intensity of the wind, and it is suggested that the duration and temporal
interval between events can be as important or even more so, than the intensity
of the event. Following the calculations of kinetic energy density and of relative
vorticity presented in Velázquez-Muñoz et al. (2011), we can make a comparison
between measurements and numerical model results. Taking the results of the surface
current model, it is possible to calculate the density of kinetic energy (Ek*) and
relative vorticity (ω∗) for the nodes that are located within the HFR coverage area.
Figure 3a shows the time series Ek* and Fig. 3b shows ω∗. In both cases the thin line
corresponds to measurements and the wide line, to model data. It can be clearly seen
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Ek* [ m2 s-2]

ω* [ s-1]

(a)

(b)

Fig. 3 Time series of density of (a) kinetic energy, Ek*, and (b) of relative vorticity, ω∗, during
Feb–Mar 2005. In both cases the wide lines show an area from the model and thin lines are for
measurements

from the Ek* on February 21st and ω∗ in the model, that observations are very similar
in frequency and amplitude, although the model Ek* is generally weaker than that
obtained from measurements with HFR. From March 10th to 13th, two consecutive
events occur: the first one which lasts 2 days, is much stronger than the second one,
which lasts for 1 day (see Fig. 1b). Contrary to what might be expected, the increase
in Ek* is greater for the second event (weaker event) than the first one (intense event),
as described by Velázquez-Muñoz et al. (2011). The model similarly reproduces the
relationship described between Ek* and the intensity of the wind, so that the relative
increase in Ek* between the first and second events is proportional to observations,
although the model underestimates the Ek*.

The relative vorticity is also satisfactorily reproduced by the model. The data
shows increases in negative ω∗ in the three wind events where measurements were
taken (Fig. 3b). For the model, the ω∗ is negative during the first and last wind
events. During the events of February 10 and 21 the correlation between the model
and the observations regarding relative vorticity cannot be appreciated well, nor in
Ek*, because the model is still in the initialization period (spinup). After day 22,
the correlation improves. During the events of March 10–13, the increase in ω∗
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shows a similar behavior to that of Ek*, since both increases are lower during the
first event than in the second event, that is more intense. The second event lasts for
only 1 day and is significantly less than the first one, but the increase in Ek* and
in (negative)ω∗ are greater. Unlike Ek* which is generally underestimated by the
numerical model, the ω∗ is well represented by the model. In this case it can be
assumed that the differences between observations and model results are due to the
lack of other forcing factors in the model, however, the strong similarity between
both variables should be noted.

3.3 Sea Level

An outstanding feature of the GT is the emergence of numerous eddies associated
with strong winds, which can be identified as circular domes or depressions in the
sea level. Figure 4b shows the time average for output sea level taken from the model
simulation in the last 25 days and sea level anomaly from AVISO product (http://
www.aviso.oceanobs.com) from February 20 to March 18. In both cases a depression
is formed in front of the GT and an elevation in the west. Elevation in the pattern
coincides with the forming zone of the numerous anticyclonic eddies that emerge in
this area. Moreover, the corresponding sea level elevation in satellite observations
is shifted westward, away from the coast and is more intense. This elevation is
apparently caused by a cyclonic eddy which is already formed on February 1 with
the position and size very similar to that obtained with the numerical model, and
with westwards movement. Towards the south in the satellite data we can see the
influence of the passage of anticyclonic eddies generated in the Gulf of Papagayo.
Simultaneously, an eddy formed in Papagayo, enters the domain from the east and
travels to the west as shown in Fig. 4a. This takes about two months for the eddy to
cross the domain, so that by taking the time average footprint, a passing zone elevation
is seen. The numerical model (Fig. 4b) also shows the formation of an eddy in the
Gulf of Papagayo, but its spread is slower than in the observations (Fig. 4a). Along
the coast, observations show a depression in sea level, which is not present in the
model. Due to the short period of model initialization (spinup) a recurrence or residual
features in the circulation or in the sea level is not expected. On the other hand, as
already mentioned, the continuous passage of eddies generated south of GT, masked
the comparison. The open boundary conditions, especially in the south and east do
not introduce energy into the numerical domain, so that the continuous passage of
coastal trapped waves from the south (Zamudio et al. 2006) and the presence of local
low frequency currents, alter the statistics of the observations and are not contained
in the model. It is notable that while the model generates eddies, the travel speed of
these is much slower than observed and this requires further investigation.

http://www.aviso.oceanobs.com
http://www.aviso.oceanobs.com
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Fig. 4 Time-average of AVISO sea level product (a) and numerical model simulation (b) and time-
averaged sea surface temperature of GOES product (c) and numerical model simulation (d). All
averages were calculated from February 20 to March 18, 2005

3.4 Sea Surface Temperature

An obvious effect of wind stress on the GT is the cooling effect on the sea surface.
The lower part of Fig. 4 shows the mean field of GOES-SST product (JPL Physical
Oceanography DAAC) (Fig. 4c) and the surface temperature taken from the model
(Fig. 4d), between February 20 and March 18, during the last 25 days of simulation.
Both variables from the model and satellite show a sea surface cooling on the area just
below the maximum wind, which for both is about 4 ◦C lower than the surrounding
water. In both cases it is possible to observe on the east side a thin tongue of warm
water extending along the coast to the northern part of the GT. The dimensions of
the cold spot in the model and the observations are similar, although the model is
slightly shifted eastward. The shift can be attributed to the absence of ambient large
scale flows.
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4 General Circulation

4.1 Surface Dynamic

The previous sections show that the numerical model reasonably reproduces the
observations of surface currents, the density of kinetic energy and of relative vorticity.
Temporal changes and spatial distribution of surface temperature and sea level are
also well represented by the model. This section describes aspects observed in the
general circulation model obtained, which have been reported by Barton et al. (1993)
and Trasviña et al. (1995), among others through observations. Figure 5 shows the
maps of the daily average temperature (left column in Fig. 5) and sea level (right
column in Fig. 5) obtained with the numerical model for days March 3, 8 and 13,
2005. In both cases there is an overlap of black arrows showing the daily average of
the surface current. The first feature to note is the presence of an anticyclonic eddy
with well-defined circular shape and center in about 97◦W, 14◦N. It has a diameter of
about 200 km moving slowly towards the southwest at ∼2.0 km d−1 on average. The
propagation velocity value is less than 3.5 km d−1 reported by Trasviña and Barton
(2008) and the 3.3 km d−1 reported by McCreary et al. (1989). This anticyclonic
eddy can be clearly observed in the surface temperature (Fig. 5a–c) and in sea level
(Fig. 5d–f). On the east side, it is possible to observe some cyclonic circulation
patterns, but they fail to organize themselves to form a cyclonic eddy. As pointed
out by Trasviña et al. (1995), the cyclonic eddy is formed with warm water coming
from the west, outside the Gulf (Fig. 5a–c). In the center you can see an area with a
cooling surface temperature, which is stretched around the eddy.

In Fig. 5a, b warm water east along the northern gulf is visible. At sea level
(Fig. 5d, e) distinguishes a depression covering the central gulf, where circulation
is cyclonic (which remains briefly) and extends to the east coast, causing a pressure
gradient associated with the aforementioned coastal current.

After consecutive events at the end of the simulation, the characteristic surface
temperature and current shows some significant changes. In Fig. 5c one may notice a
cooling of ∼2 ◦C in the area of wind influence accompanied by a change in direction
of the current, now towards the southwest. Associated with this decrease in surface
temperature and the change in current direction, Fig. 5f shows that the depression in
sea level becomes smaller.

The results shown here on cyclonic swirling development (Fig. 5a–c) can be
compared with Fig. 3 of Barton et al. (1993). They show surface temperature obser-
vations and current measurements to identify an anticyclonic eddy with the same
characteristics as that obtained with the model. In both cases there is the emergence
of a cyclonic eddy in the east, so the question remains as to what factors are involved
in the asymmetrical response in the GT and what prevents eddies developing on the
east side.

It is not only the emergence of anticyclonic eddy emergency which are the main
features that play an important role in asymmetrical ocean response. Barton et al.
(2009a) mention the presence of a persistent coastal current entering the east side
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Fig. 5 Daily averages of surface temperature on the left (a-c) and sea level on the right side (d-f).
In both cases the daily average of sea surface current velocity are overlap with black arrows

of the gulf, while on the west side, the coastal current has a strong temporal vari-
ablility. Our results show the same patterns on both sides. On the west side we find
a weak current of approximately 0.20–0.25 ms−1 surface speed on average, while
in the east it is higher, reaching values between 0.3 and 0.4 ms−1. To compare the
features between the data reported and the results of the model, we calculate the
transport in Sverdrups (1 Sv = 106 m3 s−1) produced by coastal currents gener-
ated. West transport is weak, with about 0.1 Sv, while east transport is much higher,
ranging between 0.55 and 0.92 Sv. This result is very similar to that reported by
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Barton et al. (2009a), where he obtained a value of 0.87 Sv with ADCP observations
and 0.5–0.7 Sv through geostrophic velocity calculations. Surprisingly, the wind in
the Gulf of Tehuantepec generates a stream similar to that observed, so it is very
important to further explore this coastal current to clarify the factors that cause it.

4.2 Interior Dynamics

Into the ocean, the wind forcing causes upwelling of subsurface water with lower
temperature and large amount of chlorophyl concentration as has been reported by
several authors (Müller-Karger and Fuentes-Yaco (2000); McClain et al. (2002);
Gonzalez-Silvera et al. (2004)) , whom describe the importance of wind to generate
eddies that transport biological properties. It is therefore important to understand the
mechanisms leading to the surface water which may be trapped by the anticyclonic
eddy.

In this simulation we found that just as in the surface layer, the internal ocean
responds is promptly. Figure 6 shows the vertical structure of temperature and merid-
ional component of tridimentional velocity in a section parallel to the coast along
14.75◦N. Similarly, Fig. 7 shows the temperature and the zonal component of tridi-
mentional velocity, in this case in a section along 95◦W. During the period of relative
wind calm between March 3 and 8 (Figs. 6a, b) is maintaining a lifting of isotherms,
so that isotherms of 22–23 ◦C reach the surface. Associated with this lifting, the
meridional velocity component (v) in the same section parallel to the coast shows a
southward flow centered near 95.5◦W with opposing flows at both sizes. The flow in
the west side is limited to 100 m deep, while the east side is weaker but extends from
the surface to 250 m depth. It is notable that the vertical movement of the isotherms
and the width of the upwelling is higher east of 96◦W to the coast, while the isotherms
westward almost maintained their position being narrower sinking area between 97.5
and 96◦W. Similarly, the behavior of the southern current componte shows the out-
ward flow of the coast (blue tone in Fig. 6d–f) centered at the maximum of wind at
∼95◦W. The sections of meridional velocity and temperature can be compared with
the measurements shown in Figs. 7 and 9 of Barton et al. (2009a), who describe
similar features to those shown here for measurements in winter.

The vertical section of zonal current (Fig. 7d–e) correspond to the days of relative
weak wind, show that in the north, the zonal flow is westward (negative) from the
subsurface layers up to 250 m depth. South of 15◦N the currents is mainly toward east
(positive). In temperature, for the same days of calm Fig. 7a–b shows two isotherms
upwelling locations, at 13.5 and 15◦N. After the two wind events from March 10 to
12, the internal conditions change significantly. It can be seen in Fig. 7c an upwelling
very wide, from 13.5◦ to 15.5◦N. At the same time, in Fig. 7f the surface current in
the first 50 m has a strong zonal component moving towards the west (negative).

These results again show that the intensity of the wind events is so high that its
influence is also reflected in the ocean interior quickly. This results allows us to
propose that these characteristics are in temperature and current dynamics of the
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Fig. 6 Zonal section along 14.75◦N of temperature (a–c) and meridional component of velocity
(d–f)

gulf, at least in winter, when the main force is the wind and not only during wind
events. We can assume that wind events reinforce these shape in temperature and
leading upwards the isotherms and forcing the current to offshore. Once the wind
event ends, the relaxation process inside the ocean should be long in time, so that
the next Nortes not allow a significant change in these conditions.

5 Balance of Terms

This section presents an attempt to add new elements to the conceptual diagram of the
ocean response by wind stress forcing in the region of the Gulf of Tehuantepec. The
basic explanation of this ocean response to wind events in the Gulf of Tehuantepec
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Fig. 7 Meridional section along 95.0◦W of temperature (a–c) zonal component of velocity (d–f)

(Lavín et al. 1992; Willett et al. 2006) has considered only stationary and with wind
direction normal to the coast (Clarke 1988; McCreary et al. 1989). It is also considered
that the pressure gradient is in geostrophic balance and does not contribute directly
to the wind-induced circulation.

In this section we analyze the prevailing balances temporarily averaging terms
in the equations for the external mode in the model along a zonal line parallel to
the coast. A robust numerical model as the used in this work allows to evaluate
the balance of momentum equations terms for realistic simulations. The momentum
equations in the vertical or integrated shallow water equations are
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Fig. 8 (a) Time average of the terms in first-order zonal direction for the last 25 days of simulation.
The lower order terms are shown in detail in Fig. 9. In (b) shows the bathymetry profile along 15◦N.
Horizontal axis correspond to longitude west
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In these equations (U, V) are the velocity components and are functions of the
horizontal position and time, f is the Coriolis parameter, η is elevation of the sea
surface and g, acceleration of gravity. In a first experiment in which we use flat
bottom (Ho = 1,000 m), the terms of geostrophic balance (cori and grpr) shows a
slight asymmetry along a zonal line parallel to the coast. The advective terms are
evidently asymmetrical, being important only in the side where cyclonic eddy is
formed.

Once incorporated into the model topography variations, h(x,y), the balance of
momentum terms changes considerably. It is obvious from Fig. 8 that there is an
asymmetric balance. The most important terms in the simulation remain Coriolis
and pressure gradient. Figure 8a shows the balance in the direction parallel to the
coast (red line: Coriolis and cyan line: pressure gradient). Both terms have sign
change at 95.5◦ and 93.5◦W. West of 94.5◦W is great depth (Fig. 8b), since the
platform narrows north of GT. The topographic changes, coupled with the coastal
current which spreads northward along the coast (Fig. 5), seem to compress the eddy
formed at east of the GT, as seen in the balance of terms shown in Fig. 8a, of 94.5◦W
to the east. To the west, the anticyclonic eddy is limited by the presence of the coast,
but the depth is still large, and seems "squeezed" to the southwest, where the depth
increases rapidly. When moving into deeper water, it is likely that conservation of
potential vorticity (vortex stretching) the vortex intensifies, flows whit no alterations
by topographic.
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Fig. 9 Time average of the second order terms in (a) zonal and (b) meridional direction last
25 days of simulation. In (c) shows the bathymetry profile along 15◦N. Horizontal axis correspond
to longitude west

Although dominates geostrophic balance is not identical to zero, which is also
shown as a single term that call GEOS (= cori + grpr) which is comparable with the
other terms of second order, as shown in Fig. 9 .

When the balance is purely geostrophic, the terms of Coriolis (cori) and pressure
gradient (grpr) in (1) are canceled and the other terms must be zero. But if the
balance is not equal cero, the ageostrophic terms should balance each other, as has
been discussed by Gan and Allen (2005). The remaining terms of (1) shown in Fig. 9
are: acceleration (temp); advection and horizontal diffusion (advc); wins stress at
surface (surf ) and bottom friction (botm). It also includes the term is the sum of
Coriolis and the pressure gradient (GEOS).

In Fig. 9, the second-order terms have a very different balance on both sides of
the gulf. In the part located where the cyclonic eddy emerge, between 98◦ and 95◦W
term advc balances GEOS term in meridional direction (Fig. 9b), while in the zonal
direction there is a slight contribution of temporal and surf wind stress terms (Fig.
9a). On the continental shelf on the east side, all terms in zonal direction (Fig. 9a)
become important, indicating a very active and complex dynamic, while in southern
direction, key terms are advc and GEOS, a lower temp participation terms, surf and
botm. In the middle, between 95.5◦ and 94◦W, where the northerly winds acts, the
terms are smaller in both directions, so we can consider that the geostrophic balance
is more pure.

The time average of wind stress term (surf ) is not significant across the Gulf of
Tehuantepec, but it is important for both sides. West of 96◦W wind component along
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shore is higher that perpendicular component, while at the 95◦W both components
are significant. This is an important result, especially because most of the works
are focused on wind stress perpendicular to the coast. The wind stress is strongest
between 93.0◦ and 94.5◦W, where the acceleration term (temp) increase mainly
whereas GEOS and advc terms are balanced with each other. This is also the only
place where the bottom friction (botm) is significant. This shows that the bathymetry
is fundamental in the dynamics of GT, as it highlights the friction, which does not
occur to the west, where there is more depth.

In summary, the balance of terms shows a clear asymmetry in the direction parallel
to the coast. We can identify three areas with different types of balance: 1. To the
west the balance between GEOS and advc is moderate and have temp and surf
contribution in zonal direction only; 2. The central part (between 95.5◦ and 94.5◦W),
where the terms are lower, making it more pure the geostrophic balance; 3. To the
east, on the continental shelf where the coastal current form, all terms are important.

6 Conclusions

In this work we show the result of a three-dimensional numerical model with a
realistic configuration to investigate the dynamics forced by the wind stress in the
Gulf of Tehuantepec. Unlike previous studies in which the wind field is symmetrical
and varies smoothly over time, in this study we used a forcing containing a significant
temporal variability by the presence of strong wind events in direction normal to the
shore. Furthermore, the model configuration includes the coastline and bathymetry
variation from 50 m on the coast up to maximum depth of ∼6,000 m.

The results show that from initial condition of rest, in 20 days the main features
of the local circulation are developed in the GT during winter, which highlights the
importance of the wind stress on local dynamics. The model response shows the
formation of two coastal currents flowing into the northern part of gulf. On the East
side, the poleward current is persistent, with an approximate width of 100 km and
an average surface speed of 0.3–0.4 ms−1. The transport for this coastal current is
about 0.55–0.92 Sv, which agrees with the value previously reported by Barton and
Trasviña (2009b) using data from ADCP. On the West, the coastal current has a
variability associated with wind events and shows sign changes: positive during the
beginning of the event and negative or very low after the events. The most important
values of transport in this side reaching 0.1 Sv in the northern gulf. After February
20 can be identified an anticyclonic structure of approximately 200 km in diameter
on the west side of the GT, which is formed by an incursion of warm water. This
anticyclone structure moves at low speed (∼2.0 km d−1) compared to the observed
eddies in Tehuantepec, so we can assume that current environmental conditions and
ambient vorticity play an important role in the drift of the eddies.

The balance terms in momentum equations of the model external mode shows
that the geostrophic terms dominate the dynamics in the GT, which have a marked
asymmetry in a section along parallel to the coast. This asymmetry is influenced by
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the continental shelf in the eastern Gulf, where it forms a northward coastal current.
In a second order, other terms are compared with the sum of geostrophic terms, that
are important over Eastern continental shelf and in the west side, where anticyclonic
eddy development.

These results suggest that the continental shelf prevents eddy formation in the
eastern gulf. On the opposite side, where the depth rapidly decreases from de coast,
the effect of wind induces an anticyclonic eddy, which has not found obstacles to
develop.
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Quasi-Steady Endless Vortices with Chaotic
Streamlines

Oscar Velasco Fuentes

Abstract This chapter reviews the dynamics of one or more endless vortices in an
incompressible inviscid fluid. Each vortex, a thin closed tube lying on the surface of
an immaterial torus, is characterised by the number of turns, p, that it makes round
the torus symmetry axis and the number of turns, q, that it makes round the torus
centerline. Since the vortices are assumed to be identical and evenly distributed on
any meridional section of the torus, the flow evolution depends only on the vortex
topology (p, q), the number of vortices (n) and the torus thickness (r1/r0, where r0 is
the centerline radius and r1 is the cross-section radius). Numerical simulations based
on the Biot-Savart law showed that a small number of vortices (n = 1, 2, 3) coiled on
a thin torus (r1/r0 ≤ 0.16) progressed along and rotated around the torus symmetry
axis in an almost uniform manner while each vortex approximately preserved its
shape. In the comoving frame the velocity field always possesses two stagnation
points. The stream tube emanating from the front stagnation point and the stream
tube ending at the rear stagnation point intersect along a finite number of stream
lines, giving rise to a three-dimensional chaotic tangle. It was found that a single
toroidal vortex Vp,q generates a larger chaotic region if it makes less coils round the
symmetry axis (smaller p) or if it lies on a thicker torus (larger r1/r0). Similarly a set
of linked ring vortices V11 generate a larger chaotic region if there are less vortices
in the set (smaller n) or if they lie on a thicker torus (larger r1/r0).

1 Introduction

An endless vortex is a mass of fluid rotating round a closed curve. The best known
example is the smoke ring, which is a vortex whose axis of rotation is approximately
circular. Ring vortices have been observed for over 400 years in man-made situations,
like the firing of cannons or the puffing of tobacco smoke, and possibly longer
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in natural situations, like the exhalations of volcanoes and geysers. The earliest
references to smoke rings appeared at the dawn of the seventeenth century in the
writings of English dramatists, and soon afterwards the first graphical representations
of them appeared in the works of Dutch painters (Velasco Fuentes 2013). Despite this
ancient interest, it was seemingly not until the beginning of the nineteenth Century
that it was recognised that the mysterious smoke rings are in fact vortices. At this time
it was even suggested that their motion is responsible for their stability and capacity
to carry fluid (B 1804): the “quick rotation of the ring, from within outwards, (...)
seems, in some manner or another, as if it kept the parts together.” In the following
decades the interest in smoke rings increased to such an extent that Helmholtz (1858)
and Rogers (1858) published, with only a few months of difference, an analytical
study of the motion of kreisförmige Wirbelfäden (circular vortex-filaments) and an
experimental study of the formation of rotating rings, respectively.

A few years later Kelvin (1867a) placed the ring vortex in a prominent scientific
position with his hypothesis that matter consists of vortex atoms moving in an all-
pervading ideal fluid. This turned out to be an erroneous conjecture, but it also proved
to be very fruitful for fluid mechanics and mathematics. Indeed, the major advances
on vortex dynamics in the following decades were made in the pursuit of the vortex
atom theory (e.g., the Kelvin circulation theorem, Kelvin waves on a cylindrical
vortex, the stability of a polygon of point vortices, the motion of ring vortices, etc.).
And the theory of knots, now one of the most active areas of research in mathematics,
received a decisive impulse from the speculations of Kelvin and Peter Guthrie Tait
about the shapes that these vortex atoms could take.

One of the first things Kelvin wondered about was the motion of linked ring
vortices. On 22 January 1867 he wrote to Helmholtz that he was “a good deal puzzled
as to what two vortex-rings through one another would do (how each would move, and
how its shape would be influenced by the other)” (Thompson 1910). Kelvin (1875)
later deduced that specific configurations of individual as well as multiple endless
vortices could rotate and advance uniformly along a fixed line without changing
their shape. Kelvin did not give the exact configuration of these steady vortices
but hypothesized that they should be thin tubular vortices uniformly coiled on an
immaterial torus so that each vortex winds p times around the torus’ symmetry axis
and q times around the torus’ centerline before closing on itself (see Fig. 1).

Building on Kelvin’s hypothesis, Thomson (1883) analysed the motion of two
or more toroidal vortices. He obtained an approximate analytical expression for the
shape and translation speed of two steady, linked vortices of equal circulation. And
by considering the limit of infinitely thin vortices lying on the surface of a torus of
infinite centerline radius, Thomson (1883) obtained his celebrated result about the
stability of a regular polygon of n equal point-vortices.

Almost a century later, Kida (1981) found steady vortex solutions under the local-
induction approximation (LIA, an approximation that amounts to omitting distant
effects when computing the vortex’ self-induced velocity, which then turns out to
be proportional to the local curvature of the filament). In the LIA solutions of Kida
(1981) the supporting torus may have an oval cross section but steady vortices exist
only when q ≥ p. Ricca et al. (1999) studied the evolution of these vortices under
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Fig. 1 Thin tubular vortices coiled on an immaterial torus represented by the grey surface. a A
toroidal helix coiled once round the torus symmetry axis and five times round the torus centerline.
b Two linked ring vortices, each one coiled once round the torus symmetry axis and once around
the torus centerline. Right frame adapted from Velasco Fuentes and Romero Arteaga (2011)

both the Biot-Savart law and the LIA: the numerical simulations based on the Biot-
Savart law confirmed the hypothesis of Kelvin (1875) whereas those based on LIA
were consistent with the analytical results of Kida (1981).

Recently Kleckner and Irvine (2013) succeeded in generating, in a controlled
and systematic way, knotted, unknotted and linked vortices in water. Their toroidal
helical vortices were stable, the more complicated vortices rapidly became unstable
and underwent topological changes through reconnection. The probable cause of
these results is that neither the couple of ring vortices nor the trefoil-knot vortex
were, in their initial condition, close to the steady solutions hypothesised by Kelvin.

Here we review published results on the dynamics of knotted and unknotted
vortices (Velasco Fuentes 2010) and of linked vortices (Velasco Fuentes and Romero
Arteaga 2011). Two aspects are central in this review: the vortices’ steadiness, that
is to say the uniformity of their motion and the constancy of their shapes; and the
vortices’ capacity to carry fluid, that is to say, the existence of three-dimensional
islands of stability surrounding the vortices. In Sect. 2 we discuss the conservation
laws discovered by Kelvin, which were the basis for his deductions. The numerical
results of Sect. 3 confirm that thin tubular vortices coiled on a torus according to
Kelvin’s prescriptions are quasi-steady. In Sect. 4 we analyse the velocity field and
the transport properties of toroidal vortices. Section 5 contains some conclusions.

2 Integrals of Motion

We assume that the vortices evolve in an inviscid, incompressible, homogeneous
fluid which is unbounded and acted upon by conservative forces only. Therefore the
kinetic energy, E , and the linear an angular vortex impulses, I and A respectively,
are invariants of the motion. If all vorticity is concentrated on a single line vortex,
these conserved quantities are defined as follows:
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E = 1

2
Ω

∮
u · R × ds (1)

I = 1

2
Ω

∮
R × ds = Ω

∫
dS (2)

A = −1

2
Ω

∮
R2ds = Ω

∫
r × dS (3)

Here we have used standard notation: the vortex has circulation Ω , moves with
velocity u, and lies on the three-dimensional curve R(s); ds is a line element along
this curve and dS is the surface element at the point r of an arbitrary surface spanning
the closed curve R(s).

Kelvin (1869) demonstrated the conservation of linear and angular vortex impulses
in the general case, and discovered their geometric meaning when the vorticity is
concentrated on a set of filamentary vortices (Kelvin 1875). To achieve this, he first
introduced the following definitions:

1. The resultant area of a 3D closed curve is the area of its projection on the plane
that makes this projection a maximum.

2. The resultant axis of this curve is the line that passes through its centre of gravity
and is perpendicular to the plane of its resultant area.

3. The areal moment of a 2D surface about any axis is equal to its area multiplied
by the distance between that axis and the line passing perpendicularly through
the surface’s centroid.

4. The resultant areal moment of a 3D closed curve is equal to the moment, about the
curve’s resultant axis, of the areas of its projections on two mutually orthogonal
planes that are parallel to this axis.

With these definitions Kelvin (1875) was able to spell out Eqs. (2)–(3) in the form
of two theorems:

Theorem 1 The linear impulse of a curvilinear vortex of unit circulation is equal
to its resultant area.

Theorem 2 The angular impulse of a curvilinear vortex of unit circulation is equal
to its resultant areal moment.

These theorems, combined with the conservation of linear and angular impulses,
allowed Kelvin (1875) to give the following description of the behaviour of a fila-
mentary vortex of arbitrary shape: “the resultant area, and the resultant areal moment
of the curve formed by the filament, remain constant however its curve may become
contorted; and its resultant axis remains the same line in space. Hence, whatever
motions and contortions the vortex filament may experience, if it has any motion of
translation through space this motion must be in average along the resultant axis.”
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Antecedents of these results can be traced back to Helmholtz and Maxwell. The
former showed that in a purely azimuthal vorticity field the sum of the projected
areas of all ring elements, multiplied by their vorticity, is constant (Helmholtz 1858).
The latter, writing to Tait in July 1868, stated that “two ring vortices of any form
affect each others area so that the sum of the projection of the two areas on any plane
remains constant” (Maxwell and Harman 1995).

2.1 Numerical Method

We compute the vortex motion with the Rosenhead-Moore approximation to the
Biot-Savart law (Saffman 1995):

u(x) = − Ω

4Δ

∑
i

∮ [x − Ri (s)] × ds(|x − Ri (s)|2 + μ2a2
)3/2 , (4)

The use of this approximation implies that the vortices are no longer infinitely thin:
they now have an undeformable, circular cross-section of radius a. The value of
the radius is chosen to be a = 0.05r0, that of the constant μ depends on the vortex
internal structure. The particular value used here, μ = e−3/4, corresponds to uniform
vorticity on the vortex cross section (Saffman 1995).

In order to evaluate the integral on the right-hand side, we represented each vortex
with a set of material markers. We chose the number of markers as m ≈ 2L/a, where
L is the vortex length, and the time step as dt ≈ a2/Ω , because preliminary tests
showed that these values resulted in accurate simulations of the motion of a circular
ring, i.e. the shape was preserved and the speed deviated less than 0.5 % from the
analytical value. Higher spatial or temporal resolutions substantially increased the
computational costs without providing major improvements in the accuracy. Since the
vortices evolved without significant changes in length or shape it was not necessary
to update the spatial discretization as is usually done in highly time-dependent flows
(see, e.g., Baggaley and Barenghi 2011).

We used a fourth-order Runge-Kutta scheme with fixed time step to integrate the
evolution equation

dxk

dt
= u(xk, t),

where xk is the position of the node and u(xk, t) is its velocity, computed with
equation (4). Note that k runs through all nodes ( j = 1, . . . , m) of all filaments
(i = 1, . . . , n). To verify the accuracy of the simulations, we monitored the evolution
of the integrals of motion (1)–(3): the energy varied by less than 0.1 % of its initial
value; the linear and angular impulses varied by less than 0.001 and 0.1 % of their
initial magnitudes, respectively, while their directions, which initially coincided with
the torus symmetry axis, deviated from this direction by angles of about 0.0001 s.
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Fig. 2 Topology of toroidal
vortices as a function of p
and q: ring (black), helices
(green), loops (red), and knots
(blue)
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2.2 Initial Conditions and Parameter Space

Following Kelvin (1875) we assume that a number of identical tubular vortices of
small cross-section are uniformly coiled on a torus whose centerline has a radius r0
and whose cross-section has a radius r1. In Cartesian coordinates the centerline of
the vortex is given as follows:

x = (r0 + r1 cos π) cos δ,

y = (r0 + r1 cos π) sin δ,

z = r1 sin π.

where π is the angle round the torus centerline and δ is the angle round the torus
symmetry axis (see Fig. 1). They are given by π = qs − 2(n − i)Δ/n and δ = ps,
where n is the number of vortices, i indicates the vortex being described, p and q are
co-prime integers and s is a parameter in the range 0−2Δ . Therefore, before closing
on itself, each vortex Vp,q makes p turns round the torus symmetry axis and q turns
round the torus centerline. These numbers determine the topology of the vortex, as
follows: when p > 1 and q > 1 the vortex forms a toroidal knot, when either p = 1
or q = 1 the vortex forms a toroidal unknot (see Fig. 2). In the latter situation it is
useful to make a further distinction between toroidal helices (p = 1 and q > 1), and
toroidal loops (p > 1 and q = 1).

When there are two or more vortices in a given configuration, all of them have
the same circulation, Ω , and topology, p, q. Equal circulations are necessary for
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the steadiness of motion; equal topologies are necessary to avoid an intersection of
the vortices, which would be in violation of the condition ∇ · γ = 0. Note also that
the term 2(n − i)Δ/n ensures that the vortices are equally spaced on the section of
the torus (i.e., they intersect any meridional plane on the vertices of a regular polygon
inscribed on the corresponding cross-section of the torus).

Here we discuss the dynamics of a small number (n < 5) of toroidal vortices
(Vpq ) coiled on thin tori (r1/r0 < 0.16). We must further set a lower bound for
r1/r0 because of the desingularization of the Biot-Savart law, which implies that the
vortices have an undeformable cross-section of radius a. Consistency then requires
that the vortices are never too close to each other, i.e. their centerlines must be
separated by distances about or larger than 3a. We chose to use a value which amply
satisfies this condition for n = 2 and narrowly does it for n = 4. Therefore in this
study the aspect ratio of the torus will be in the range 0.1 < r1/r0 < 0.16 (except
for one case in Sect. 4).

3 Vortex Motion

3.1 Knotted and Unknotted Vortices

Figure 3 shows the evolution of a trefoil-knot vortex (V23). The vortex, initially coiled
on a thin torus (r1/r0 = 0.1), progresses along the torus’ symmetry axis (the thin line
in the lateral view) while rotating around the same axis (the cross in the front view).
As predicted by Kelvin (1875), all vortices Vpq coiled on thin tori are observed to
progress and rotate in an approximately uniform manner. The linear speed, U , is
proportional to p and is almost unaffected by the value of q (Fig. 4, left panel). This
behaviour is easily explained as follows: since r1/r0 = 0.1 the progression speed
behaves as if there was a single ring with circulation pΩ instead of p loops of a
filament with circulation Ω . As a matter of fact U ≈ 3/4pU0, where U0 is the speed
of a circular ring of strength Ω and radius r0 (Kelvin 1867b):

U0 = Ω

4Δr0

[
log

8r0

a
− 1

4

]
(5)

The angular speed, φ , grows with increasing p and decreasing q (Fig. 4, right panel).
Note that toroidal helices (p = 1) rotate in the opposite sense and at a much lower
rate than toroidal loops (q = 1); and toroidal knots rotate in the same sense and at
lower rates than toroidal loops.

3.2 Linked Vortices

Figure 5 shows the evolution of a pair of linked ring vortices V11 of equal circula-
tion. The vortices were initially coiled on a thin torus (r1/r0 = 0.1). The lateral
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Fig. 3 Evolution of a trefoil-knot vortexV23 with r1/r0 = 0.1. The axis of the system is represented
by a cross in the frontal view (left-hand side column) and by a straight line in the lateral view (right-
hand side column). The stages depicted are (a) t = 0, (b) t = 0.23T , (c) t = 0.46T , (d) t = 0.69T ,
where T is the time required by a circular ring vortex of centerline radius r0 and cross-section radius
a to advance a distance equal to r0

view shows the progression of the vortices along the torus’ symmetry axis whereas
the front view shows the rotation of the vortices around the same axis. This figure
shows exactly one vortex rotation and since this is relatively fast, the vortices are
seen to advance only a short distance during this time. They, however, continue ro-
tating and progressing in the same way for much longer times. Figure 6, for example,
shows the vortices advancing a distance equal to eight-times their diameter while
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Fig. 4 Linear speed (U ) and angular speed (φ) of the vortex system as functions of p and q. The
speed of linear motion along the torus axis, U , is scaled by Ω/4Δr0; the angular speed of rotation
round the torus axis, φ , is scaled by Ω/2Δr0r1. The black dots indicate the only points where
toroidal vortices exist. The contours of U and φ were drawn by interpolation to show how these
speeds change in the parameter space. Taken from Velasco Fuentes (2010)

performing almost sixteen rotations around their symmetry axis. The bottom row of
the same figure shows the corresponding time evolution of quantities that, theoreti-
cally, should be conserved but which are not exactly so in the numerical simulations.
Instead of the instantaneous values of the energy and the linear and angular impulses,
Eqs. (1)–(3), we plotted their relative change; thus Fig. 6 shows, respectively, E(t)/
E(0) − 1, |I(t)|/|I(0)| − 1 and |A(t)|/|A(0)| − 1. In the period shown, the energy is
preserved within 0.01 %, the linear impulse within 0.001 %, and the angular impulse
within 0.02 %.

The progression of the vortices corresponds, because of Helmholtz (1858) vortex
laws, with the advance of material elements. The vortex rotation around the symmetry
axis does not match a similar motion of material elements: it is actually an azimuthal
wave. To verify this, note that the hue of the colour marks fluid elements along each
vortex and that, in the front view, the darker hues remain on the right-hand side and
the lighter ones on the left-hand side of the vortices. The cause of the azimuthal
wave is a different motion of the material elements, namely their rotation around the
torus centerline. This can be qualitatively verified by close inspection of the vortices’
lateral view in Fig. 6.

Hence the motion of the fluid elements that make up the vortices has two main
components: (a) progression along the torus’ symmetry axis, and (b) rotation around
the torus’ centerline. We found that these components are approximately uniform so
that we characterised them by the average speeds U and φc, respectively.

The linear speed U grows with the number of vortices n and decreases with
the aspect ratio r1/r0. A simple argument accounts for this: since r1/r0 << 1 the
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Fig. 5 Evolution of two linked ring vortices V11 with r1/r0 = 0.1. The axis of the system is
represented by a cross in the frontal view (left-hand side column) and by a straight line in the lateral
view (right-hand side column). The stages depicted are (a) t = 0, (b) t = 0.105T , (c) t = 0.210T ,
(d) t = 0.315T , where T is the time required by a circular ring vortex of centerline radius r0 and
cross-section radius a to advance a distance equal to r0. Taken from Velasco Fuentes and Romero
Arteaga (2011)

progression speed behaves as if, instead of n toroidal rings with circulation Ω , there
was a single circular ring with cross-section radius r1 and circulation nΩ . The speed
of this virtual vortex is U0 = (nΩ/4Δr0)[log(8r0/r1) − 1/4]. Figure 7 shows that
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Fig. 6 Top Progressive motion of a pair of linked vortices (the same of Fig. 5 but for a 16-times
longer period). Bottom Time evolution of the kinetic energy E (continuous line), linear impulse
I (dashed line), and angular impulse A (dot-dashed line). The relative change of these quantities
(see text) is shown as a function of the adimensional distance travelled by the vortices, Z = Ut/r0
(where U is the speed of the vortices, t is the time and r0 is the torus’ centerline radius). Taken from
Velasco Fuentes and Romero Arteaga (2011)

this is in good agreement with the speeds measured for sets of linked ring vortices,
particularly when n = 2.

The angular speed φc increases with n and decreases with r1/r0. This can be
explained following (Thomson 1883): since the vortices are thin and r1/r0 << 1
they move on the meridional plane as if they were a set of point vortices. Indeed, in
the parameter region studied here, φc ≈ 0.94φ0, where φ0 is the angular speed of
a set of n point vortices of circulation Ω placed on the vertices of a regular polygon
inscribed on a circle of radius r1: φ0 = (n − 1)Ω /4Δr1

2. We argued above that the
material rotation around the torus’ centerline causes the azimuthal wave around the
torus’ symmetry axis. The close agreement, shown in Fig. 7, between φ0 and the
angular speed of the azimuthal wave, φ , quantitatively demonstrates the connection
between these two rotations.

We applied several diagnostics to measure the deformation of the vortices
throughout their evolution. The simplest one was the time evolution of the vortex
length, which was observed to vary within 0.3 % of its initial value in the region of
the parameter space studied here (n = 2, 3 and 0.1 ≤ r1/r0 ≤ 0.16). The second
diagnostic consisted in finding the torus that best fitted the vortices at every stage of
the evolution. The conservation laws (2)–(3) guarantee that the fitting torus has the
same symmetry axis as the initial one, therefore the former is uniquely determined
by the radii r0(t) and r1(t). We found that r0(t) remained within 1 % of its initial
value, whereas r1(t) remained within 5 % of its initial value. The final diagnostic was
to measure the signed distance, �r1, from the surface of the torus to every material
marker representing the vortices. The time series of histograms of �r1 showed that
the markers remained within a distance 0.01r0 of the torus (as in the case n = 2,
r1/r0 = 0.1, shown in Fig. 8).
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Fig. 7 Linear speed (U ) and phase angular speed (φ) of n linked vortices as functions of the torus
aspect ratio (r1/r0), for sets of n = 2 (thickest line and largest markers), n = 3 and n = 4 (thinnest
line and smallest markers). The continuous lines represent the analytical functions discussed in the
text, the markers represent the results of the numerical simulations. The linear speeds are scaled by
the speed of a circular ring vortex of circulation 2Ω , centerline radius r0 and cross section radius
2a, the angular speeds are scaled by the rotation speed of a pair of point vortices of circulation Ω

separated by a distance 4a. Taken from Velasco Fuentes and Romero Arteaga (2011)
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Fig. 8 Evolution of the vortex shape as illustrated by a time series of the histogram of distances
from the vortex markers to the surface of the torus (see text). The signed distance, �r1, at which a
certain percentage of the markers is located (white: 0 %; black:100 %) is shown as a function of the
adimensional distance travelled by the vortices, Z = Ut/r0 (where U is the speed of the vortices,
t is the time and r0 is the torus’ centerline radius). The results correspond to the simulation shown
in Fig. 6. Taken from Velasco Fuentes and Romero Arteaga (2011)

4 Flow geometry

The toroidal vortices discussed in the previous section very nearly keep their shape
and are almost stationary when observed in a frame that translates with speed U and
rotates with angular speed φ . Hence we will use this comoving frame to analyse
the geometry of the velocity field. Since the vortices lie on a thin torus the velocity
field they produce may be regarded as a small perturbation of the velocity field of a
circular ring vortex, at least away from the immediate vicinity of the vortices.
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Hence we describe first the flow geometry of a circular ring vortex of radius r0 and
cross section r1 in the comoving system (i.e. progressing with speed U ). The flow
may qualitatively change depending on the numerical value of r1/r0 but all values
used here fall within the regime of fat ring vortices (r1/r0 > 1/86, see Saffman 1995
for a detailed analysis). In this regime the velocity field has two stagnation points,
both lying on the ring’s symmetry axis. The forward one, P , has a linear attractor and
a planar repellor; the backward one, Q, has a linear repellor and a planar attractor.
The two stagnation points are connected by an infinite number of streamlines starting
at P and ending at Q. These lines form a surface with the shape of an oblate spheroid.
This stream surface is called separatrix, because the streamlines located inside it are
qualitatively different from those located outside it: the former are closed whereas
the latter are open and of infinite length. From a more physical point of view, the
separatrix is the surface that divides the ambient fluid from the fluid permanently
carried by the vortex.

The addition of a solid body rotation, φ , round the symmetry axis affects neither
the existence nor the position of the stagnation points. The rotation transforms the
plane streamlines into helical curves but it leaves the shapes of all stream surfaces
unaltered. Therefore, the separatrix of a circular ring vortex in a system progressing
with speed U and rotating with speed φ is the same oblate spheroid described above.

Let us now see what happens when we substitute back the toroidal vortices in the
place of the virtual ring vortex. The stagnation points survive, although somewhat
displaced. The separatrix, in contrast, disappears: instead of a single surface starting
at P and ending at Q, there are now two surfaces. The first one, called the unstable
manifold, starts at P and ends infinitely far downstream; the second one, called the
stable manifold, starts infinitely far upstream and ends at Q. These surfaces intersect
along a finite number of streamlines which start at P and end at Q.

We obtained the unstable manifold by computing a set of streamlines starting on
the vicinity of the front stagnation point. The starting points lay on a circle of small
radius (0.01r0), coaxial with the torus and centred at the stagnation point. The stable
manifold could have been computed in a similar way, but this was unnecessary. Note
that a time reversal in the equations of motion is equivalent to a change of sign of
all vortex circulations (i.e. Ω → −Ω ) and this is equivalent to the transformation
(x, y, z) → (x,−y,−z), because of the initial conditions described in Sect. 2.2.
Therefore, to obtain the stable manifold, we rotated the unstable one by an angle Δ

around the x axis.
In the vicinity of the vortices the flow is always very different from that of a ring

vortex. In order to study the geometry of the flow in this region, we used Poincaré
sections. We constructed these by numerically computing a set of streamlines that
started on a radial line going from the vicinity of the torus symmetry axis to the
vicinity of the vortices, and plotting every intersection of the streamlines with the
meridional plane that contains the starting points.
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Fig. 9 The unstable manifold of toroidal vortices Vp,q . All vortices have small cross-section
(a/r0 = 0.05) and are coiled on a thin torus (r1/r0 = 0.1); their intersections with the merid-
ional planes δ = 0, Δ are represented by grey dots. Taken from Velasco Fuentes (2010)

Fig. 10 Poincaré sections of streamlines induced by toroidal vortices: (a)V3,1, (b)V4,1 and (c)V5,1.
The intersections of the vortices with the meridional plane δ = 0 are represented by white circles,
those of the streamlines by dots coloured according to the position of the streamline’s starting point
(blue: closer to the torus’ symmetry axis; red: closer to torus centerline). Adapted from Velasco
Fuentes (2010)

4.1 Knotted and Unknotted Vortices

Figure 9 shows meridional cross-sections of the unstable manifold for all toroidal
vortices in the range 1 < p < 5 and 1 < q < 5. The shape of the manifolds
is mainly determined by p, whereas the value of q is important only for toroidal
helices (p = 1). Note, for example, that the manifold of the knotted vortex V2,5 is
more similar to that of the unknotted vortex V2,1 than to the knotted vortex V3,5.
As p grows the oscillations of the unstable manifold start closer to the backward
stagnation point Q. When p > 3 the unstable and stable manifolds differ very little
(except in the immediate neighbourhood of P and Q) from the separatrix of a fat
ring vortex.
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The Poincaré sections show at least 2p large islands of stability: p correspond to
the single tube of fluid permanently trapped by the vortex, and p correspond to a single
tube of irrotational fluid which runs parallel to the vortex and has approximately the
same shape (see Fig. 10). When p > 2 there is an additional island of stability which
corresponds to a tube of irrotational fluid that surrounds the torus centerline. When
p = 1, 2 all these tubes are embedded in the unbounded chaotic sea generated by
the intersections of the manifolds. When p > 2 the tubes are embedded in a chaotic
sea that is itself bounded by a KAM-like torus.

4.2 Linked Vortices

Figure 11 shows meridional cross sections of the stable and unstable manifolds of
two linked vortices; each frame corresponds to a supporting torus of a particular
aspect ratio (r1/r0 = 0.07, 0.1). In both cases the red curve, which represents the
unstable manifold of P , smoothly moves downstream but, as it approaches Q, it
starts to oscillate about the blue curve, which represents the stable manifold of Q.
Similarly, the stable manifold of Q smoothly moves upstream but as it approaches P
it starts to oscillate about the unstable manifold of P . Note that when the supporting
torus is thinner (frame a, r1/r0 = 0.07) the oscillations of the manifolds are of small
amplitude and they start close to the opposite stagnation point. In contrast, when the
supporting torus is thicker (frame b, r1/r0 = 0.10) the oscillations of the manifolds
are of larger amplitude and they start closer to their own stagnation point.

The presence of this geometric structure, known as heteroclinic tangle, implies
that streamlines are chaotic in this region (Wiggins 1992). It also provides a template
for the wandering of streamlines around different flow regions through the following
mechanism (lobe dynamics, for details see Rom-Kedar et al. 1990). Consider two
adjacent intersections, on some meridional plane, between the unstable manifold of
P and the stable manifold of Q; the two line segments bounded by these points form
a closed contour which defines an area, say A1, usually called lobe (see Fig. 11b).
The streamlines passing through A1 successively intersect the same meridional plane
within the lobes A2, A3, . . . , thus reaching at some point the interior of the so-called
vortex atmosphere. This is, however, only a transient situation because the same
mechanism eventually brings them out to the downstream side of the vortex.

Figure 11b shows that there are two independent sequences of lobes, the green
ones and the white ones, which implies that the unstable manifold of P intersects the
stable manifold of Q along four streamlines. In fact we found that manifolds always
intersect along 2n streamlines, where n is the number of vortices. Note also that here,
as in all cases we have analysed, the areas of the lobes are larger when they are closer
to the torus symmetry axis. This occurs because the fluid is incompressible and the
azimuthal velocity grows with the distance to the torus axis.

Analogously to the case of a single vortex Vpq , the Poincaré sections show at least
2n large islands of stability: n correspond to the tubes of fluid permanently trapped
by an individual vortex, and n correspond to tubes of irrotational fluid which run
parallel to the vortices and have approximately the same shape. When n > 2 there is
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Fig. 11 Meridional cross section of the three-dimensional chaotic tangle of two linked ring vor-
tices coiled on tori of different thickness: (a) r1/r0 = 0.07, (b) r1/r0 = 0.10. The red and blue
lines represent, respectively, the unstable manifold of the front stagnation point (P), and the stable
manifold of the rear stagnation point (Q); the grey circles represent the vortices and the green areas,
labelled with Ai , represent successive intersections of a particular streamtube with the meridional
plane (see text). Adapted from Velasco Fuentes and Romero Arteaga (2011)

an additional island of stability which corresponds to a tube of irrotational fluid that
runs between the n vortices and surrounds the torus centerline.

If the number of vortices is large or the aspect ratio of the torus is small these
islands of stability are embedded in a chaotic sea bounded by a nested set of KAM
tori, as evidenced by the bands of differently coloured dots in Fig. 12a, c. Note that
the largest KAM torus almost fills the “unperturbed” oblate spheroid. If, however,
the number of vortices is small or the aspect ratio of the torus is large these islands of
stability are embedded in an unbounded chaotic sea, as evidenced by the well mixed
coloured dots in Fig. 12b, d.

5 Conclusions

Our numerical results confirm Kelvin (1875) deductions about knotted and linked
toroidal vortices: they progress along and rotate around the torus symmetry axis with
almost uniform speeds while undergoing negligible deformations. Although these
results make plausible the existence of exact solutions which are both steady and
stable, finding the analytical expression of such solutions is still an open problem.
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Fig. 12 Poincaré sections of streamlines in the velocity field of n linked ring vortices lying on tori
of different thick nesses: a n = 2 and r1/r0 = 0.07, b n = 2 and r1/r0 = 0.10, c n = 3 and
r1/r0 = 0.10, d n = 3 and r1/r0 = 0.15. The intersections of the vortices with the meridional
plane δ = 0 are represented by white circles, those of the streamlines by dots coloured according to
the position of the streamline’s starting point (red: closer to the torus’ symmetry axis; blue: closer
to the vortices). Taken from Velasco Fuentes and Romero Arteaga (2011)

The quasi-steadiness of the linked ring vortices enables us to interpret the results
about the flow geometry in terms of the capacity of the vortices to carry fluid. We
may thus conclude that a single toroidal vortex Vp,q carries more fluid if it makes
more coils round the symmetry axis (larger p) or if it lies on a thinner torus (smaller
r1/r0). Similarly a set linked ring vortices V11 carries more fluid if there are more
vortices in the set (larger n) or if it lies on a thinner torus (smaller r1/r0).

Equation (4) shows that the velocity field depends on the value of μa, particularly
in the neighbourhood of the vortices. This affects the self-induced velocity and,
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through it, the flow geometry. For if μa is smaller the vortices move faster and their
stagnation points are closer to each other, and vice versa. To evaluate the extent of the
modifications produced by changing the value of μa, we used thinner vortices (a =
0.025r0) with the same internal structure used above (μ = e−3/4) and hollow vortices
(μ = e−1/2) with the same cross-section used above (a = 0.05r0). The thinner
vortices moved with a 6 %-larger speed and the distance between their stagnation
points was 8 % smaller. The hollow vortices moved with a 3 %-smaller speed and the
distance between their stagnation points was 4 % larger. In neither case the chaotic
tangles or the Poincaré sections exhibited significant changes with respect to those
shown in the present chapter.
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Minimum Resistance in a Rare Medium

J. Cruz-Sampedro and M. Tetlalmatzi-Montiel

Abstract The aim of this chapter is to offer a short account of classical and recent
results about Newton’s problem of minimal resistance available to undergraduate
students. Part of this material was presented by the first author in a lecture addressed to
undergraduate students of engineering. We begin with a derivation of Newton’s model
for the resistance of a body moving with constant velocity in a rare medium. Then
we show how to recover from Newton’s geometric constructions, the corresponding
solutions to Newton’s aerodynamic problem for the frustum of a cone and for radially
symmetric solids. Finally, we consider Newton’s problem for nonsymmetric solids
and describe the existence and lack of uniqueness of non-radially symmetric solutions
to this minimization question.

1 Introduction

An important problem in the aerodynamic design of ships, aircrafts and rockets is
the determination of shapes that experience minimal resistance during motion. In
order to achieve optimal performance, nose cones of aircrafts and rockets are often
designed to be conical, parabolic, elliptic, hemispheric, bi-conical, or blunted conical
solids of revolution (see for example Fig. 1). This fact brings to mind the following
question:
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Fig. 1 The Titan rocket family displays a variety of rocket nose cones http://en.wikipedia.org/wiki/
Titan_(rocket_family)

Question 1 Which of all possible solids of revolution of given base and altitude
will undergo minimal resistance while moving with constant velocity in a certain
medium?

This problem was already considered by Newton over 300 years ago and is referred
to in the literature as Newton’s Problem of Minimal Resistance or as Newton’s
Aerodynamical Problem (Butazzo and Kawohl 2001; Goldstine 1980; Tikhomirov
1990). In the scholium to Section VII: Of the motion of fluids, and the resistance
made to projected bodies of his Principia, Newton wrote:

... figures may be compared together as to their resistance; and those may be found which
are most apt to continue their motions in resisting mediums. ... Which Proposition I conceive
may be of use in the building of ships.

Principia, vol. 1, p. 328, (Newton 1934).

Newton actually solved this problem but in his note he only presents a geomet-
ric description of how to construct both the frustum and the solid of revolution of
minimum resistance, without giving a single suggestion of his method of derivation.
One of the goals of this chapter is to show how to recover from Newton’s geometric
constructions, the corresponding solutions to Newton’s aerodynamic problem for the
frustum of a cone and for radially symmetric solids.

Newton’s problem of minimal resistance is one of the first problems of the calculus
of variations (Goldstine 1980; Tikhomirov 1990). To understand its formulation the
following terms need explanation:

• The class of solids where the minimizer is sought.
• The medium where the solid moves.
• The model of resistance.

http://en.wikipedia.org/wiki/Titan_(rocket_family)
http://en.wikipedia.org/wiki/Titan_(rocket_family)
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Fig. 2 Front end of a convex
body with maximal horizontal
cross section Ω

There are several possible classes of solids where the minimizer could be sought.
Newton considered the class of truncated cones as well as the class of solids of
revolution of prescribed base and altitude (Newton 1934). Recently, Butazzo et al.
(1995) have studied Newton’s problem for various classes of non-radially symmetric
bodies. We will describe these classes with more detail in the last section of this
chapter.

Concerning the medium where the solid moves, Newton calls this a rare medium
and consists of “equal particles freely disposed at equal distances from each other”.
Each particle is assumed to be a perfectly elastic ball.

In the following section we derive Newton’s model for the resistance undergone
by a solid moving with constant velocity in a rare medium. It turns out that if Ω is
the maximal horizontal cross section of the body whose front end is given by the
graph of a nonnegative function u(x, y) with (x, y) ≤ Ω (Fig. 2), then the resistance
experienced by this solid is proportional to

Φ(u) =
∫

Ω

dx dy

1 + |∞u|2 . (1)

With this terminology at hand, Newton’s problem of minimum resistance can be
stated as follows:

Problem 1 Minimize the functional Φ(u) over a suitable class of functions u.

In what follows we study this minimization problem. We begin with a derivation
of Newton’s model for the resistance. Then we analyze Newton’s solution of the
problem for the frustum of a cone and solve this problem using elementary methods.
After this we derive the solution to the problem for radially symmetric solids from
Newton’s geometric construction. We conclude this chapter with a description of the
recent results of Butazzo et al. about Newton’s problem for non-radially symmetric
solids. In particular, we show the lack of uniqueness of the solution to Newton’s
problem in some classes of non-radially symmetric solids.
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Fig. 3 Profile of the frustum of a cone hit by particles of a rare medium obeying the law of reflection

Our exposition has benefited very much from (Butazzo and Kawohl 2001;
Tikhomirov 1990; Cruz-Sampedro and Tetlalmatzi-Montiel 2010; Butazzo et al.
1996) and is meant to be available to students of undergraduate level.

2 Newton’s Model for the Resistance in a Rare Medium

In this section we derive a mathematical model for the resistance of an object moving
in a rare medium with constant velocity. If the moving object is radially symmetric
we assume that the body moves in the direction of its axis. According to Newton

since the action of the medium upon the body is the same (...) whether the body moves in a
quiescent medium, or whether the particles of the medium impinge with the same velocity
upon the quiescent body, let us consider the body as if it were quiescent, and see with what
force it would be impelled by the moving medium.

Principia, vol. 1, p. 327, (Newton 1934).

Taking into account Newton’s remark, we assume that each particle has mass m and
that the density of the rare medium is a constant ρ. We assume that the object is
at rest, that the particles hit it from above with constant velocity v or, equivalently,
with momentum p1 = mv, and that the collisions are perfectly elastic (Fig. 3). More
precisely:

1. If p1 and p2 denote the momenta of the corresponding particles, before and after
the collision, then |p1| = |p2| = m|v|.

2. The collisions follow the law of reflection, i. e., the angle of incidence is equal to
the angle of reflection.

2.1 Resistance of the Frustum of a Cone

In order to provide the reader a concrete and simple example that illustrates the
general idea, before we derive a model of the resistance for a general body, we
compute the resistance for the frustum of a cone.
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Fig. 4 Particles hitting the
upper base of the frustum
during the time Δt

Let us consider a frustum of a cone of altitude h, with lower base of radius
r > 0 and upper base of radius x ≤ [0, r ] (Fig. 4). We will derive a mathematical
expression for the resistance R(x) encountered by this frustum when moving in a
rare medium. By Newton’s second and third laws, the resistance R(x) will be the
vertical component of the momentum gained by the frustum from the total number
of collisions received per unit time.

Let P = p2 − p1 denote the change of momentum of a single particle that hits the
frustum (Fig. 3). If Rs denotes the vertical component of P for a particle hitting the
side of the frustum, then

Rs = |P| cos θ

Since P is perpendicular to the side of the frustum, using the sine law of trigonom-
etry and |p1| = |p2| = mv, where v = |v|, we obtain

|P|
sin(π − 2θ)

= mv

sin θ
.

Thus |P| = 2mv cos θ and therefore

Rs = 2mv cos2 θ. (2)

Note that if the particle hits the upper base of the frustum, then the vertical com-
ponent Ru of the change of momentum is

Ru = |P| = |2mv| = 2mv.

Thus, if Ns is the number of particles that hit the side of the frustum per unit time,
and Nu is the corresponding quantity for the particles that hit the upper base, then
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R(x) = Nu Ru + Ns Rs

= 2mvNu + 2mvNs cos2 θ.

Note next (Fig. 4) that the volume occupied by the particles that hit the upper base
of the frustum during the time Δt is πx2vΔt . Since the total mass of this volume is
m NuΔt , then

ρ = m NuΔt

πx2vΔt
.

Hence

Nu = πρx2v

m
.

Similarly, the volume filled by the particles that hit the side of the frustum during the
time Δt is equal to π(r2 − x2)vΔt . Since the mass of this volume is m NsΔt , then

ρ = m NsΔt

π(r2 − x2)vΔt

and therefore

Ns = πρ(r2 − x2)v

m
.

Substituting Nu and Ns in the last expression for R(x) we find that

R(x) = 2πρv2[x2 + (r2 − x2) cos2 θ].

Noting from Fig. 4 that

cos θ = (r − x)/
√

(r − x)2 + h2,

we arrive at

R(x) = 2πρv2
[

x2 + (r2 − x2)
(r − x)2

(r − x)2 + h2

]
. (3)

Note now that the resistance of a cylinder of radius r is

RC := R(r) = 2πρv2r2.

On the other hand, the resistance RS of the side of a frustum of height h, lower base
of radius r and upper base of radius x is

RS = 2πρv2
[
(r2 − x2)

(r − x)2

(r − x)2 + h2

]
. (4)
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It follows from (3) that the resistance of the cone of height h = r and radius r is

R(0) = πρv2r2 = R(r)/2 = RC/2. (5)

In addition, it follows from (3) that the resistance of the frustum of a cone with h = r
and x = r/2 is

R(r/2) = 4πρv2r2/5 = 2R(r)/5.

As a result of these simple calculations we arrive at the following surprising
conclusion:

The most aerodynamic frustum is not the cone, as one would have initially guessed,
but a frustum of a cone whose top is flat.

Now we consider the northern hemisphere of a sphere of radius x2 + y2 + z2 = r2

as formed with thin frusta of height dz, lower base of radius x + dx , and upper base
of radius x , with 0 → x → r . Since dz = −x dx/

∇
r2 − x2, after a short calculation,

using (4) and ignoring second order terms, we find that the resistance RH of this
hemisphere is

RH = 4πρv2

r∫
0

(
x − x3

r2

)
dx = πρv2r2 = R(r)/2 = RC/2,

which is in agreement with Newton’s prediction:

..., a globe and a cylinder described on equal diameters move with equal velocities in the
direction of the axis of the cylinder, the resistance of the globe will be but half so great as
that of the cylinder.

Principia, vol. 1, p. 327, (Newton 1934).

It is interesting to note that the resistance of the sphere is the same as that of a cone
(5) of the same radius and altitude.

2.2 Resistance of a General Body

Now we derive a model of the resistance for a general body. To this end we suppose
that the maximal horizontal cross section of the body is described by Ω ∼ R

2, and
that the shape of the object is given by a smooth nonnegative function u(x, y) with
(x, y) ≤ Ω (Fig. 2). In addition to the assumptions on the medium and the velocities
of the particles considered above, we assume that the particles and the body interact
at most once and that tangential friction, turbulence and other effects are neglected.
Hence, if ΔR denotes the resistance due to the infinitesimal piece ΔS of the surface
of u, using (2) we find that

ΔR = 2mvN cos2 θ,

where N denotes the number of particles hitting ΔS per unit time. Since the normal
to the surface u is n = (−ux ,−uy, 1) we have
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cos θ = 1/

√
1 + u2

x + u2
y .

Moreover, since
ρ = m N/vΔx Δy

we find that

ΔR = 2ρv2 Δx Δy

1 + u2
x + u2

y
.

Integrating over Ω we find that the resistance of the solid bounded by Ω and the
surface u is given by

R(u) = 2ρv2
∫

Ω

dx dy

1 + |∞u|2
= 2ρv2Φ(u), (6)

where Φ(u) is as in (1).
In particular, if the body is a sphere of radius r we have u(x, y) = √

r2 − x2 − y2

and Ω = {(x, y) : x2 + y2 → r2}. Thus, using (6) and polar coordinates x = η cos θ
and y = η sin θ we obtain once again

RH = 2ρv2 1

r2

∫
Ω

(r2 − x2 − y2)dx dy

= 4πρv2
∫ r

0

(
η − η3

r2

)
dη

= πρv2r2.

3 Newton’s Aerodynamic Frustum

As pointed out in the comment following (5), the most aerodynamic frustum of a cone
will have a flat top. In 1687, in his Philosophia Naturalis Principia Mathematica,
Newton provided the following geometric answer for the problem of the frustum of
a cone:

As if upon the circular base C E B H from the centre O , with the radius OC , and the altitude
O D (Fig. 5), one would construct a frustum C BG F of a cone, which should meet with least
resistance than any other frustum constructed with the same base and altitude and going
forwards towards D in the direction of its axis: bisect the altitude O D in Q, and produce
O Q to S, so that QS may be equal to QC , and S will be the vertex of the cone whose frustum
is sought.

Principia, vol. 1, p. 328, (Newton 1934).

Following Newton’s directions quoted above we observe that setting h = O D,
r = OC , and p = h/r , then O Q = pr/2 and
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Fig. 5 Newton’s construction
of the frustum of a cone of
minimal resistance

Fig. 6 A simple construction
of Newton’s frustum of a cone
of minimal resistance

r∗

r

h

φ p r

θ

QS = QC =
√

p2 + 4

2
r.

Therefore,

O S = O Q + QS = p + √
p2 + 4

2
r = Φpr,

where Φp is the positive solution to x2 − px − 1 = 0, and is referred to in the
literature as pth order extreme mean or POEM (Cruz-Sampedro and Tetlalmatzi-
Montiel 2010).

Thus, Newton’s frustum is precisely the one for which the angle θ, between the
generator of the frustum and the plane of its lower base (Fig. 6), satisfies

tan θ = Φp.

This means that Newton’s frustum can be obtained with the following simple con-
struction: Rotate the right angled triangle of base r and height Φpr of Fig. 6 about
its longest side. Then cut the cone so constructed at a height h = pr .

In view of (3), to solve Newton’s problem for the frustum of a cone we must
minimize
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S(x) = x2 + (r2 − x2)
(r − x)2

(r − x)2 + h2

= r2 − h2 r2 − x2

(r − x)2 + h2 . (7)

for x ≤ [0, r ]. This minimization problem can be solved using the standard calculus
technique but we shall do it here using the simple fact that the positive solution Φp

to x2 − px − 1 = 0 satisfies

Φ2
p = pΦp + 1 and 1 − p

Φp
− 1

Φ2
p

= 0. (8)

Using these last properties of Φp and little algebra we have

1

pΦp
− r2 − x2

(r − x)2 + h2 = (1 + pΦp)x2 − 2xr + (1 − pΦp)r2 + h2

pΦp((r − x)2 + h2)

= Φ2
p(1 + pΦp)x2 − 2xΦ2

pr + Φ2
p(1 − pΦp)r2 + h2Φ2

p

pΦ3((r − x)2 + h2)

= Φ4
px2 − 2xΦ2

pr + (1 − p2Φ2
p)r

2 + h2Φ2
p

pΦ3
p((r − x)2 + h2)

= (Φ2
px − r)2

pΦ3
p((r − x)2 + h2)

.

To go from the second to the third line in this last identity we used the first equation
in (8). From the third line to the fourth we used h = pr in the numerator. Thus,
combining this last identity with (7), and using the second equation in (8) we obtain

S(x) = r2 − h2

pΦp
+ (Φ2

px − r)2h2

pΦ3
p((r − x)2 + h2)

=
(

1 − p

Φp

)
r2 + pr2

Φ3
p

(Φ2
px − r)2

(r − x)2 + h2

= r2

Φ2
p

+ pr2

Φ3
p

(Φ2
px − r)2

(r − x)2 + h2 .

(9)

It follows that the minimum value μp of S(x) for x ≤ (−∞,∞) is attained at
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r∗ = r

Φ2
p
,

and is given by

μp = r2

Φ2
p
.

Since Φp ∈ 1 we have that 0 → r∗ → r . Therefore μp is the minimum value of
S(x) for x ≤ [0, r ]. In addition, if θ is the angle between the generator of Newton’s
frustum (Fig. 6) and the plane of its lower base, using r∗ = r/Φ2

p and the second
identity in (8) yields

tan θ = h

r − r∗ = pr

r − (r/Φ2
p)

= p

1 − (1/Φ2
p)

= Φp.

Thus, we have recovered Newton’s result in terms of the POEM’s. An analogous
calculation was done in (Cruz-Sampedro and Tetlalmatzi-Montiel 2010), using the
algebraic properties of the so called golden ratio Φ1, to find the most aerodynamic
frustum with altitude equal to the radius of its base.

4 Newton’s Aerodynamic Solid of Revolution

In this section we present the solution to Newton’s aerodynamic problem for radially
symmetric convex bodies. To this end we assume that u is a radial concave function,
that is to say u = u(η), with 0 → η → r . First, we note that in polar coordinates
x = η cos θ and y = η sin θ the gradient is

∞u = ∂u

∂η
eη + 1

η

∂u

∂θ
eθ, (10)

where eη = (cos θ, sin θ) and eθ = (− sin θ, cos θ). Then the resistance (6) can be
written in polar coordinates as

R(u) = 2ρv2
∫

Ω

dx dy

1 + |∞u|2
= 4πρv2

∫ r

0

η dη

1 + (u♦(η))2 .

Thus, from all concave functions u(x) with u(0) = h and u(r) = 0 (Fig. 7) we
must find the one that minimizes

Φ(u) =
∫ r

0

x dx

1 + (u♦(x))2 .
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Fig. 7 Newton’s geometric construction of the radially symmetric solid of minimal resistance

In the note to Section VII: Of the motion of fluids, and the resistance made to pro-
jected bodies of his Principia, Newton provided the following geometric description
of the solid of revolution of least resistance

If the figure DN FG is such a curve, that if, from any point thereof, as N , the perpendicular
N M let fall on the axis AB, and from the given point G there be drawn to the right line G R
parallel to a right line touching the figure in N , and cutting the axis produced in R, M N
becomes to G R as to G R3 to 4B R · G B2, the solid described by the revolution of this figure
about its axis AB, moving in the before mentioned rare medium from A towards B, will
be less resisted than any other circular solid whatsoever, described of the same length and
breadth.

Principia, vol. 1, p. 328, (Newton 1934).

In spite of being so brief, Newton’s note contains essentially all the information
to obtain the desired function u. In fact, setting M N = x and BG = r0 we see from
Fig. 7 that

B R = −r0 tan φ and G R = r0(1 + tan2 φ)1/2.

In addition, since tan φ = u♦(x) we have

R = −r0u♦(x) and G R = r0(1 + (u♦(x))2)1/2.

Hence, Newton’s statement

M N

G R
= G R3

4B R · G B2

yields
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x

r0(1 + (u♦(x))2)1/2 = −r3
0 (1 + (u♦(x))2)3/2

4r3
0 u♦(x)

from which we arrive to the so called differential equation of Newton’s curve

xu♦(x)

(1 + (u♦(x))2)2 = −r0

4
, (11)

which is subject to the conditions u(0) = h, u(r) = 0, and u♦(r+
0 ) = limx↓r0 u(x) =

−1. This last condition was also foreseen by Newton

... and FG, H I may be inclined to G H in the angles FG B, B H I of 135 degrees...

Principia, vol. 1, p. 328, (Newton 1934).

This last condition can be naively explained as follows. As the altitude h of the
most aerodynamic frustum goes to zero we have that p → 0 and therefore Φp → 1
and θ → 45∝. The reader familiar with the basics of the calculus of variations may
verify that the Euler-Lagrange equations for the functional Φ(u) render

xu♦(x)

(1 + (u♦(x))2)2 = c, r0 → x → r,

where c is a constant which, in view of the condition u♦(r+
0 ) = −1, turns out to be

equal to −r0/4, in agreement with (11).
Now we turn to the solution of the differential equation of Newton’s curve. Setting

t = −u♦ we have

x = −c(1 + t2)2

t
(12)

and

du

dt
= du

dx

dx

dt
= c

(
−1

t
+ 2t + 3t3

)
.

Integrating this last equation with respect to t we find that

u = c

(
3

4
t4 + t2 − ln t

)
+ d.

Using u(r0) = h and u♦(r+
0 ) = −1 yields d = h + 7/16r0. Thus Newton’s curve is

given by

u = h − r0

4

(
−7

4
+ 3

4
t4 + t2 − ln t

)
, x = r0

4

(1 + t2)2

t
, 1 → t → T,
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Fig. 8 Newton’s curve
that generates the radially
symmetric solid of minimal
resistance for h = r = 1

0 1

1

where T is defined by

r = r0

4

(1 + T 2)2

T
.

Using this last equation and the fact that u(r) = 0 we obtain

h

r
= T

(1 + T 2)2

(
−7

4
+ 3

4
T 4 + T 2 − ln T

)
.= f (T ).

Hence T = f −1(h/r) with r0 = 4rT/(1 + T 2)2. In particular, for h = r = 1 we
have T √ 1.9168 and r0 √ 0.3509. Figure 8 shows Newton’s curve in this situation.

5 Newton’s Problem for Non-Symmetric Solids

In this section we describe some results concerning Newton’s problem of minimal
resistance for non-symmetric solids. We remark that the results presented here are
fairly recent in comparison to the classical results of Newton.

First, we consider the problem of minimal resistance for the class of solids of
height h, with a concave front and a convex maximal horizontal cross section Ω .
The solution to this problem was given in 1995 by Butazzo et al. (1995) and is stated
precisely in the following

Theorem 1 Let h > 0 be given and let Ω ∼ R
n be open, convex and bounded. Then

the functional

Φ(u) =
∫

Ω

dx

1 + |∞u|2 ,

attains its minimum in the set

Ch(Ω) = {u : Ω → R|u is concave and 0 → u → h}.
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That is to say, there exists u0 ≤ Ch(Ω) such that

Φ(u0) → Φ(u),

for all u ≤ Ch(Ω). Furthermore, if Du0 is the differential of the minimizer u0 then
|Du0| �≤ (0, 1).

Since the proof of this theorem is beyond the scope of the purpose of this chapter
it will not be presented here. The interested reader may verify the details in Butazzo
et al. (1995). There is however a number of remarks that we would like to make:

• The existence part follows from the fact that in an appropriate space the set Ch(Ω)

is compact (Marcellini 1990) and the functional Φ(u) is lower semi-continuous.
• We will see below that if Ω ∼ R

2 is a disk, then u0 does not coincide with Newton’s
radially symmetric solution. Therefore, in general u0 might not be unique.

• It is not known if the top of the minimizer is flat.
• It is not known if u0 must vanish identically on the boundary of Ω .

The following result due to Butazzo et al. (1996) establishes the lack of uniqueness
of Newton’s aerodynamic problem for convex solids on the unit disk.

Theorem 2 Let Ω be the unit disk in R
2 and let u be Newton’s solution to the

radially symmetric problem of minimum resistance. Then u does not minimizes Φ(u)

on the class of functions Ch(Ω).

Proof Let u be Newton’s radial solution to the radially symmetric problem of min-
imum resistance corresponding to Ω with h = 1. Let r0 ∈ 0 be as in (11) and
let

A(r0, 1) = {(x, y) ≤ R
2 : r2

0 < x2 + y2 < 1}.

For t > 0 and any infinitely differentiable function ϕ with support in A(r0, 1) we
define

g(t) = Φ(u + tϕ).

A short calculation shows that

g♦(0) = −2
∫

Ω

∞u · ∞ϕ

(1 + |∞u|2)2 dx dy

and that

g♦♦(0) =
∫

Ω

8(∞u · ∞ϕ)2 − 2|∞ϕ|2(1 + |∞u|2)
(1 + |∞u|2)3 dx dy.

If ϕ is nonzero and radial, then in view of (10) we have ∞u · ∞ϕ = |∞u| |∞ϕ| and
thus

g♦♦(0) = 2
∫

Ω

|∞ϕ|2(3|∞u|2 − 1)

(1 + |∞u|2)3 dx dy > 0,
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since |∞u| > 1 on A(r0, 1). On the other hand, if

ϕ(r, θ) = η(r) sin(kθ),

where η(r) is an infinitely differentiable function with support in (r0, 1), then for k
sufficiently large we have

g♦♦(0) = 2
∫

Ω

4u2
r ϕ

2
r − (1 + u2

r )(η
2
r sin2(kθ) + k2η(r)2 cos2(kθ)/r2)

(1 + |∞u|2)3 dx dy < 0.

Since u ± tϕ(r, θ) ≤ Ch(Ω) for t > 0 sufficiently small and

g(t) = g(0) + g♦(0)t + t2g♦♦(0)/2 + o(t),

if g♦(0) = 0 there exists t > 0 such that g(t) < g(0), that is to say

Φ(u + tϕ(r, θ)) < Φ(u).

It follows from this result that if Ω ∼ R
2 is a disk, then Newton’s aerodynamic

problem for the class Ch(Ω) does not have a unique solution.
The problem of proving existence of a minimizer for the functional Φ(u) has

been intensively investigated in recent times by several authors for various classes of
functions. For example, Butazzo et al. (1995) also prove that Φ attains its minimum
in the class

Eh(Ω) = {u ≤ H1
loc(Ω) : 0 → u → h,∞2u(x) → 0, x ≤ Ω},

where ∞2u represents the Laplacian of u. Note that in view of the concavity of the
functions in Ch(Ω) the class Eh(Ω) is larger than Ch(Ω).

Another class of functions which is often considered for physical reasons is

Sh(Ω) = {u : Ω → R| 0 → u → h and every particle hits the body at most once}.

As far as we know, the existence of a minimizer for the functional Φ in the class
Sh(Ω) is up to now an open problem.

We remark that the choice of appropriate classes of functions to minimize the
functional Φ(u) is a delicate matter. For example,

• If uh is the graph of a cone on the unit disk then, according to (3),

Φ(u) = 2πρv2

1 + h2 .

Thus Φ(uh) → 0 as h → ∞ but there is no u such that Φ(u) = 0.
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• Assuming the existence of h > 0 such that ‖u‖∞ → h for all u is not enough
either. If un = h sin2(n|x |) then Φ(un) → 0 as n → ∞ but there is no u such that
Φ(u) = 0.

6 Conclusion

The solutions to Newton’s Problem of Minimal Resistance for the class of truncated
cones and for the class of radially symmetric solids can be recovered from the cor-
responding geometric constructions of Newton. The minimizers for various classes
of non-radially symmetric solids are not unique; in addition, the results for these
classes are still far from complete. Furthermore, although other constraints for New-
ton’s model of resistance are also considered in the literature (Miele 1965), to our
knowledge rigorous results for models of resistance in other kind of fluids are still
missing.

Acknowledgments Both authors thank the referee for his useful comments and remarks. The first
author acknowledges Professor Abraham Medina-Ovando for his kind invitation to participate in
the XIX Enzo Levi Seminar, held at Universidad Autónoma Metropolitana Azcapotzalco in Mexico
City in the Spring of 2012.

References

Butazzo G, Ferone V, Kawohl B (1995) Minimum problems over sets of concave functions and
related questions. Math Nachr 173:71–89

Butazzo G, Ferone V, Kawohl B (1996) A symmetry problem in the calculus of variations. Calc
Var 4:593–599

Butazzo G, Kawohl B (2001) On Newton’s problem of minimal resistance. Springer, Heidelberg
Cruz-Sampedro J, Tetlalmatzi-Montiel M (2010) POEM’s and Newton’s aerodynamic frustum. Coll

Math J 41(2):145–153
Goldstine H (1980) A history of the calculus of variations. Springer, New York
Marcellini (1989) P Non-convex Integrals of the Calculus of Variations. In: Cellina A (ed) Pro-

ceedings of methods of non-convex analysis, Varenna, Lecture notes in mathematics No. 1446.
Springer Verlag 1990:16–57

Miele A (1965) Theory of optimum aerodynamic shapes. Academic Press, New York
Newton I (1934) Philosophia naturalis principia mathematica. University of California Press, Cal-

ifornia (Motte’s Translation)
Tikhomirov VM (1990) Stories about maxima and minima. In: Proceeding of AMS-MAA, Wash-

ington



Competitive Adsorption of Surfactants
and Polymers on Colloids by Means
of Mesoscopic Simulations

Armando Gama Goicochea

Abstract The study of competitive and cooperative adsorption of functionalized
molecules such as polymers, rheology modifiers and surfactant molecules on col-
loidal particles immersed in a solvent is undertaken using coarse-grained, dissipa-
tive particle dynamics simulations. The results show that a complex picture emerges
from the simulations, one where dispersants and surfactants adsorb cooperatively
up to certain concentrations, on colloidal particles, but as the surfactant concentra-
tion increases it leads to dispersant desorption. The presence of rheology modifying
agents in the colloidal dispersion adds complexity through the association of surfac-
tant micelles to hydrophobic sites of these agents. Analysis of the simulation results
reported here point clearly to the self-association of the hydrophobic sites along the
different polymer molecules as the mechanism responsible for their competitive and
cooperative adsorption.

1 Introduction

Polymer adsorption is crucial for the performance in modern applications of complex
fluids, such as in stimuli—responsive systems, biological membranes, and consumer
goods such as paints, cosmetics or food products. In particular, polymer adsorp-
tion on pigments surfaces remains a popular mechanism to stabilize architectural
paints (Napper 1983). There are other types of polymeric molecules that can also
be adsorbed on particles, such as surfactants and rheology modifying agents. These
functionalized molecules have usually different lengths and interact not only with
each other and the solvent, but also with themselves.
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The characterization of polymer and surfactant adsorption is usually carried out
through measurements of adsorption isotherms, which yield directly information
about the optimal amount of polymer needed to achieve stability (Kronberg 2001).
However, the simultaneous presence of more than one type of polymers in the dis-
persion can give rise to a complex combination of competition and synergy between
polymer molecules, which leads to competitive adsorption isotherms. These types of
experiments are laborious and time consuming, taking up to several weeks to com-
plete. One attractive alternative is the use of molecular modeling using appropriately
adapted algorithms for relatively complex fluids, which can then be solved highly
accurately using modern computers.

This work is devoted to the presentation of coarse-grained computer simulations
for the prediction and understanding of competitive adsorption isotherms of poly-
mers and surfactants on colloidal particles. It is argued that the mesoscopic reach of
the simulations carried out is especially important to obtain results that are directly
comparable with scales probed with experiments on soft matter systems. This study,
which is the first of its kind to the best of the author’s knowledge, is a useful repre-
sentation of architectural paints and coatings, as well as of other complex fluids of
current academic and industrial interest.

2 Models, Methods and Systems

The force model used in the simulations presented here is a mesoscopic, coarse-
grained method known as dissipative particle dynamics (DPD) (Hoogerbrugge and
Koelman 1992). It involves central, pairwise forces between DPD beads, which are
not physical particles but rather momentum—carrying sections of the fluid. There are
three types of forces in the DPD model: a conservative force (FC ), which determines
the local hydrostatic pressure; a dissipative force (FD), that represents the local
viscosity of the fluid, and a random force (FR), constituted by the Brownian motion
of DPD beads. The latter two forces exactly balance each other by construction, as a
result of the fluctuation—dissipation theorem (Groot and Warren 1997); this feature
is the essence of the DPD model. The functional dependence of the forces is not
specified by the DPD model, but they are usually chosen as simple as possible; the
most employed ones are repulsive, linearly decaying (for FC ) and short ranged. The
structure of the DPD model, as well as some of its strengths and weaknesses are well
known, and the reader is referred to recent reviews, like the one by Murtola et al.
(Murtola et al. 2009) for details.

The systems studied are constituted by the polymeric molecules of different func-
tionality (surfactants, dispersant polymers, rheology modifiers), the solvent (water),
and the colloidal particles (pigments, fillers). The latter are typically much larger than
the rest, so one can consider them as flat surfaces fixed in space, and then invest the
computational cost on solving the motion of the rest of the particles. Although these
polymeric molecules share the characteristic that they are amphiphilic in nature, they
are usually distinguished by the role they play. Hence, surfactants are typically short
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molecules whose only purpose is to reduce the surface or interfacial tension. Disper-
sant polymers are longer and they are used to adsorb on colloids and keep them apart,
hence their name. Rheology modifiers are large polymeric molecules, generally made
of units of different chemical nature, with hydrophobic and hydrophilic parts. Their
function is to modify the viscosity of the fluid in which they are dissolved. The poly-
meric molecules are constructed as DPD beads joined by freely rotating harmonic
springs, and can be linear or branched; the solvent is represented by single beads and
for the surfaces, an effectively exact DPD wall force is used, given by a repulsive,
short range polynomial (Gama Goicochea and Alarcón 2011). For the surfactant, a
non-ionic, linear, 14—bead polymer was used as a model for a nonylphenol etoxy-
late surfactant. The dispersant was modeled as a 48—DPD bead linear polymer, to
represent a hydrophobic dispersant made of maleic anhydride and styrene. As for
the rheology-modifying agent, I used a hydrophobically modified alkali-swellable
emulsion (HASE) polymer, which is represented by 60 DPD units. In regards to the
conservative DPD force interaction parameters, they have been chosen following the
standard procedure (Groot and Warren 1997), beginning with the isothermal com-
pressibility of water at room temperature to choose the equal—particle interaction.
For different particles interaction, the Flory—Huggins parameter is used based on
the chemical composition of each DPD bead. As for the choice of wall—DPD par-
ticle force, it has been chosen by fitting the interfacial tension values of the confined
fluid with the wall—particle value. The interaction parameters as well as the specific
bead sequence shall be omitted for brevity but may be consulted in reference (Gama
Goicochea 2013), along with all simulation details.

Adsorption experiments are generally performed following a route in which the
polymers to be adsorbed are added to the system and the measurements are per-
formed when chemical, thermal and mechanical equilibrium is achieved. To properly
reproduce those conditions, the simulations are carried out in the grand canonical
thermodynamic ensemble, where the chemical potential, temperature and volume
are kept constant as the polymer concentration is increased. The DPD method has
been adapted to the grand canonical ensemble (constant chemical potential, vol-
ume and temperature) to obtain the competitive adsorption isotherms presented
here. The procedure is the following: the volume of the simulation box is fixed
(Lx = L y = 7; Lz = 14 DPD dimensionless units), then a fixed number of one type
of additives, say, dispersant polymers is added to it, along with a fixed number of rhe-
ology modifying agents. Then, the adsorption is monitored by adding molecules of,
for example, surfactants to the box and performing the simulations until equilibrium
has been achieved, while the temperature, volume and chemical potential are kept
fixed. The chemical potential is fixed through the exchange of solvent particles with
the virtual bulk. In the simulations, this chemical potential was fixed at µ = 37.7
units so that the total average density in the simulation box was nearly equal to 3.
In doing so, one ensures that the equation of motion of the DPD fluid is invariant
under changes of the interaction parameters (Groot and Warren 1997). Full details of
the DPD algorithm adapted to the grand canonical ensemble, as well as simulation
details such as the integration algorithm, time step, simulation length, etc., can be
found in (Gama Goicochea 2007).
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Fig. 1 Equilibrium configuration of a single linear molecule of a rheology-modifying agent (HASE)
with a surfactant micelle formed at one of its hydrophobic sites. The colors represent the different
chemical characteristics of the molecules (see Gama Goicochea (2013) to see the exact chemical
composition and DPD mapping). The hydrophilic parts of the HASE and surfactant molecules, as
well as the solvent molecules are omitted for clarity

3 Results

Let us first illustrate the capabilities of the DPD method by presenting the associ-
ation of a surfactant molecules with a single HASE (rheology modifier) molecule.
The system consists of 60 surfactant molecules, in addition to the HASE polymer,
in solution with solvent monomers. No colloidal particles were present therefore
periodic boundary conditions were used in all directions. All molecules positions are
chosen at random initially and are allowed to evolve, subjected to the DPD forces.
Figure 1 shows the final configuration obtained after equilibrium was reached.

As suggested by Fig. 1, HASE molecules modify the rheology of fluids by pro-
moting the formation of surfactant micelles on specific hydrophobic sites on the
HASE backbone. Self-association, and association between different HASE mole-
cules can then be modulated through the judicious choice of surfactants, which in
turn will modify the rheology of the fluid. This obviously follows from Fig. 1: when
many HASE molecules are present in a solution with surfactants, they shall tend to
associate as shown in Fig. 1 and therefore an association between HASE molecules
will be unavoidable due to the steric interactions between those complex molecular
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conglomerates. Figure 1 represents a textbook example (Glass 2000) of the mecha-
nism through which these types of molecules are thought to associate, but here it has
been shown to emerge from molecular modeling.

I shall now proceed to the presentation of the adsorption isotherms, of which 2
different types were calculated. One, where the dispersant polymer concentration
was fixed while the surfactant concentration was increased, and one where it was
the surfactant concentration what was kept fixed while the dispersant concentration
was varied. The purpose of carrying out the adsorption isotherms through these two
routes is deciding which procedure leads to the optimal dispersion conditions. The
fluid in all cases is confined by two different types of surfaces: one is a metal oxide,
TiO2, and the other is a silicate-based colloid with almost negligible interactions with
the polymers involved in this study, whose only purpose is that of occupying space,
hence its name “filler”. The parameters of interaction between these surfaces and
the DPD fluid have been tested and have been successfully used before, see Gama
Goicochea (2007, 2013).

In the left of Fig. 2 I show the adsorption isotherm of the surfactant when the
dispersant and the thickener (HASE) concentrations are fixed. It may appear that
the surfactant adsorption is hardly influenced by the presence of the other types of
polymers in the dispersion, for the saturation concentration of the surfactant remains
almost constant. However, when the isotherm of the surfactant is obtained, at fixed
dispersant concentration (without rheology modifiers), which is shown in the inset,
the number of adsorbed surfactant molecules is found to increase slowly with added
surfactant concentration. Hence, there is clearly an interplay between the surfactant
and the dispersant, which enhances the adsorption of the surfactant by the thickener,
cooperatively. While the surfactant adsorption is greatly influenced by the thickener
and the filler, the dispersant is not. This conclusion is obtained from the right panel
in Fig. 2.

The isotherm on the right in Fig. 2, which corresponds to that of the dispersant
at fixed surfactant and rheology modifier concentrations, is not at all perturbed by
these additives. When the adsorption isotherm for the dispersant only was calculated
(not shown, for brevity), the same trend was obtained, namely, a constant satura-
tion concentration, as shown on the right panel in Fig. 2. Therefore, the adsorption
mechanisms that take place even if the components of the colloidal dispersion are
the same, can change radically depending on the variable of control.

A clear image of the evolution of the adsorption process which may not be appre-
ciated from the isotherms alone can perhaps be better gained from inspection of
Fig. 3. In it I show snapshots obtained from the DPD simulations, after equilibrium
was reached. At the lowest surfactant concentration ([c] = 20) all the dispersant is
adsorbed on the TiO2 surface, with the thickener almost completely extended and the
surfactant associated with the dispersant. As the surfactant concentration is increased
to [c] = 40 molecules, some of the dispersant molecules were desorbed and even
migrated to the filler substrate, on the right. At the largest surfactant concentrations,
the dispersant got even more desorbed, with the surfactant replacing it at the adsorp-
tion sites, on both substrates. The thickener shows self association (see the middle
of the simulation box) and the dispersant prefers to associate with the surfactant and
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Fig. 2 Adsorption surfactant isotherm obtained for (a) fixed dispersant concentration (10 dispersant
molecules, with the number of surfactant molecules varying from 20 up to 80) and (c) dispersant
adsorption isotherm at a fixed surfactant concentration (10 surfactant molecules, with the number
of dispersant molecules ranging from 6 up to 40). (b) The single (non competitive) isotherm for the
surfactant alone. For cases (a) and (c) the system contains 6 HASE molecules and is confined by
flat walls representing TiO2 and a filler (silicate-based colloid) surfaces

the thickener rather than remain adsorbed. Evidently, at low concentrations the sur-
factant promotes the adsorption of the dispersant, i.e., they behave synergistically,
whereas at large surfactant concentrations the opposite happens.

Precisely this type of behavior has been observed in experiments of competitive
adsorption carried out with polymers and cationic, anionic and nonionic surfactants
(Karlson et al. 2008) where the authors found that at low surfactant concentration, the
polymer (which plays the role of the dispersant) remained adsorbed (on polystyrene
and silica particles) while the surfactant formed micelles. As the concentration of
the surfactant was increased, and if the polymer and the surfactant attract, they form
complexes that can be desorbed. If one of them, be it the surfactant or the polymer
has higher affinity for the surface, it will replace the other on the particle surface.
The conclusions derived from the experimental model, water-based paint designed
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Fig. 3 Configuration of the dispersant (green), surfactant (yellow) and rheology modifier (brown)
molecules as the surfactant concentration is increased, from 20 up to 80 molecules. For all cases
the system contains 10 dispersant molecules and 6 HASE molecules and is confined by flat walls
representing TiO2 (left) and filler (right) surfaces. The solvent has been removed for clarity

by Karlson and co workers are fully supported by the results of the simulations
presented in this work.

The simulations presented here give additional insight into why the phenomena
presented in Figs. 2 and 3 occur. Figure 4 shows the density profiles of the hydropho-
bic sections of all three types of polymers in the colloidal dispersion.

The density profiles shown in Fig. 4 shows that the polymers associate because
of the affinity of their hydrophobic sections, as clearly indicated by the maxima
around z = 5 and z = 15 (dimensionless units). Although most of the dispersant
remains adsorbed on the TiO2 surface (on the left), some of it desorbed and formed a
complex associated structure with the surfactant and the rheology modifier close to
the pigment. Additionally, the surfactant formed a micelle around the hydrophobic
sites of the thickener, and some dispersant molecules were completely desorbed and
associated with the surfactant micelle, as shown by the structure form around z = 15.
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Fig. 4 Density profiles of the hydrophobic sections of the surfactant (blue), thickener (red) and
dispersant (black). The pigment surface is the one on the left and the filler surface is on the right

Obviously this behavior arises from basic molecular hydrophobic interactions due
to the structure and characteristics of the polymers modeled in these simulations.

4 Conclusions

The complex mechanisms that give rise to competitive and cooperative adsorption
of polymers with different functional groups in a colloidal dispersion were stud-
ied for the first time, using mesoscopic, DPD computer simulations. Two different
colloidal particles were included: a pigment (TiO2) and a silicate-based filler. The
surfactant, dispersant and rheology modifying polymers were found to associate
cooperatively at low surfactant concentration, promoting the full adsorption of the
dispersant which, in turn, leads to a more stable paint. This is the result of the affinity
that the hydrophobic groups present in all three types of molecules have. However, as
the surfactant concentration is increased, the same affinity of the hydrophobic groups
makes it energetically and entropically more advantageous for some of the dispersant
molecules to be desorbed, forming micelles with the thickener that eventually lead
to a less stable dispersion. It was argued that these conclusions are fully supported
by recent experiments on model paints. This work is expected to be useful not only
to formulators and expert designers of modern water-based paints and coatings, but
also to those studying smart materials and biological membranes.

Acknowledgments The author is indebted to the following individuals for enlightening discus-
sions: F. Alarcón, M. Briseño, N. López, A. Ortega, H. Ortega, E. Pérez, and F. Zaldo. This work
was sponsored in its initial phase by the Centro de Investigación en Polímeros (Grupo Comex), and
afterward by PROMEP through project 47310286-912025.



Competitive Adsorption of Surfactants and Polymers on Colloids 155

References

Glass JE (2000) Associative polymers in aqueous media, ACS Symposium Series 765. Chap. 21,
pp 22

Gama Goicochea A (2007) Adsorption and disjoining pressure isotherms of confined polymers
using dissipative particle dynamics, Langmuir 23:11656

Gama Goicochea A (2013) Supplementary information for ‘Competitive adsorption of surfactants
and polymers on colloids by means of mesoscopic simulations’ in https://www.researchgate.net/
profile/Armando_Gama_Goicochea/

Gama Goicochea A, Alarcón F (2011) Solvation force induced by short range, exact dissipative
particle dynamics effective surfaces on a simple fluid and on polymer brushes. J Chem Phys
134:014703

Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic
and mesoscopic simulation. J Chem Phys 107:4423

Hoogerbrugge PJ, Koelman J (1992) Simulating microscopic hydrodynamic phenomena with dis-
sipative particle dynamics. Europhys Lett 19:155–160

Karlson L, Olsson M, Bostrom G, Picullel L (2008) Influence of added surfactant of particle floc-
culation in waterborne polymer-particle systems. J Coat Technol Res 5:447–454

Kronberg B (2001) Measuring adsorption. In: Krister H (ed) Handbook of applied surface and
colloid chemistry 2, Chapter 22. Wiley, Chichester

Murtola T, Bunker A, Vattulainen I, Deserno M, Karttunen M (2009) Multiscale modeling of
emergent materials: biological and soft matter. Phys Chem Chem Phys 11:1869–1892

Napper DN (1983) Polymeric stabilization of colloidal dispersions. Academic Press, New York

https://www.researchgate.net/profile/Armando_Gama_Goicochea/
https://www.researchgate.net/profile/Armando_Gama_Goicochea/


Annular Two-Phase Flow Regimen
in Direct Steam Generation for a Low-Power
Solar System

Iván Martínez, Rafael Almanza, María Dolores Durán and Miriam Sánchez

Abstract This study aims to quantify and to model the temperature profile around
an absorber tube belonging to a parabolic trough concentrator when fluid is applied
at low powers. This study was specifically developed for the Solar Power Plant
of the Engineering Institute, National University of Mexico. This work presents
experimental results under saturated conditions and low pressures (1.5–3 bars) using
water as the thermal and working fluid for direct steam generation (DSG). The control
variable was feed flow. Solar irradiance was used as the restriction variable because
all experimental tests should be developed under very specific values of this variable
(for example, I > 700 W/m2). The objective of this experiment was to study the
thermal behavior of a temperature gradient around the absorber tube under steady-
state conditions and with low flow. Additionally, a theoretical analysis was carried out
by means of the homogeneous heat conduction equation in the cylindrical coordinate
system using only two dimensions (r,ϕ). The finite-difference numerical method was
used with the purpose of proposing a solution and obtaining a temperature profile.
The aim of this theoretical analysis was to complement the experimental tests carried
out for direct steam generation (DSG) with annular two-phase flow patterns for low
powers in parabolic trough concentrators with carbon steel receivers.
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Cp heat capacity in kJ/(kg · K)
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d pipe diameter in m
G irradiance in W/m2

h convective heat transfer coefficient in W/(m2K)
k thermal conductivity in W/(m · K)

Nu overall Nusselt number
P pressure in bar

Pr Prandtl number
q ≤≤ heat flow in kW/m2

q̇ energy generation in kW/m2

Q volumetric flow in L/s
r radius in m; radial coordinate

Re Reynolds number
t time in seconds

T temperature in K
u velocity in m/s

Greeks

α absortance; void fraction
Ω interval or difference
ε emittance
ϕ radial angle; azimuth coordinate
ν kinematic viscosity in m2/s
ρ reflectance; density in kg/m3

σSB Stefan-Boltzman constant

Subscripts and Superscripts

a air
atm atmospheric
cov convective
Fe Iron

l liquid
rad radiation
sup superficial

S solar
T total

int internal
ext external



Annular Two-Phase Flow Regimen 159

1 Introduction

Direct steam generation (DSG) in parabolic trough concentrators is a technique
being increasingly developed by many researchers world-wide. The method has great
potential to improve hybrid power systems and retain competitive energy prices.
In this case, the main interest is to develop a low power system (Almanza et al.
2002). During the operation of the Solar Power Plant of the Engineering Institute,
National University of Mexico (UNAM), it was observed that some problems for
DSG occurred under specific flow and temperature conditions. These problems cor-
responded to the stratified two-phase flow regimen that occurs when boiling water
is transferred into the receiver tube when the thermal gradient in its periphery is
increased (Almanza et al. 2002). Such problems are related to the bending of tubes
owing to thermal stress, causing their permanent deformation and breaking their
glass covers.

In order to find a solution to this problem, a project was carried out that included
experimental tests and the production of a mathematical model to predict stratified
two-phase flow pattern under transient conditions of normal solar beam irradiance
to low flows (Flores 2003). This study considered flows between 1 and 2.5 L/min,
with solar beam irradiance that fell on the lower part of pipe or on one side of
the pipe. It is essential to understand the thermal behavior of absorber pipes under
annular two-phase flow conditions with low pressures and low flows, in order to
contribute to the development of low power systems like the ones proposed by
Almanza et al. (2002). In order to continue the project previously described, it was
considered necessary to develop experimental tests and a mathematical model for
annular flow pattern during DSG. Preliminary results were generated by Martínez
and Almanza (2003) but, because of high uncertainty, experimental tests required
more replication and better data acquisition techniques.

These works form part of the basis required to develop a proposal for direct com-
mercial application of DSG using parabolic trough concentrators in Mexico. For
example, it is possible that in the near future the Federal Commission for Electricity
(CFE) of Mexico, along with the Engineering Institute (UNAM) and CIEMAT (Cen-
tro de Investigaciones Energéticas, Medioambientales y Tecnológicas) from Spain,
might build an experimental hybrid installation in Baja California State, Mexico.
However, it is known that there is a high probability that annular two-phase flow
exists in most of their pipes. It is hence required to experimentally explore and eval-
uate this idea. It is necessary to increase the mass quality of steam, from the current
mixture of 40 % steam and 60 % brine found in the geothermal wells of Cerro Prieto
in the Northwest of Mexico. This brine has a mass concentration of different sorts of
salts, mainly NaCl, of approximately 2 %. Therefore, it is not advisable to increase
this parameter too much in order to avoid the buildup of scale in the receiver pipes,
which is important in maintaining the annular flow pattern along the DSG with solar
energy.

A geothermal system in Cerro Prieto works well with low pressures between 10
and 16 bars. Hence, it is possible that all tests made at the Engineering Institute’s
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solar power plant could be extended for parameters like these, with the purpose of
establishing better operational conditions with a steady-state regimen for the hybrid
system proposed. Therefore, annular two-phase flow is a good regime to minimize
thermal gradients around absorber pipes so to avoid thermal stress.

2 Experimental Development

The main intention of this experiment was to determine the temperature gradient
around the receiver tube under steady-state conditions with an annular two-phase
flow pattern. In order to achieve this, it was necessary to maintain control over the
feed water (the control variable), which was done by choosing three volumetric flow
rates; 4, 8, and 12 L/min. Each test was replicated at least five times per value.

The temperature and pressure were measured using a high performance acquisi-
tion system registered at the beginning and at the end of the solar field. The steam
volumetric flow, which contains a small quantity of liquid drops because the steam
trap cannot separate them completely, was also measured. The liquid from the steam
trap was quantified and it was possible to establish its effectiveness in approximately
80 % of the trials. Temperatures, as detected by an RTD (Platinum Resistance Tem-
perature Detector) fixed on the external surface around the end of the last absorber
pipe, were captured by another acquisition system.

Additional data recorded by the weather station were also taken into account in
order to determine the possible influence of these parameters on the values of the
process variables and the superficial absorber temperature.

Steady-state conditions were reached when the fluid was under saturated condi-
tions that depended on pressure. The mass quality of the generated steam was hence
dependent on feed flow and the irradiance level. The experiments were carried out
near 800 W/m2 of normal solar beam irradiance. Each experiment was conducted
maintaining the flow with constant feeding, as for a sub-cooled liquid, so that any
change in the process could cause changes in the amount of heat absorbed by the
working fluid and hence be automatically controlled to be within ±0.5 L/min varia-
tion. This sort of oscillation cannot be avoided and, on some occasions, the system
oscillated beyond this control range. In these cases it was necessary to terminate the
experiment. The process variables (pressure, flow and temperature) were registered
every two seconds, and the absorber’s surface temperature was measured every five
seconds.

The data registered during the commencement and termination of each experi-
mental test were not taken into account for this study, although it was noted that they
were very useful for analyzing the thermal behavior of this system during transient
conditions.

2.1 Description of Facilities and Equipment

All tests were carried out in the solar field of parabolic trough concentrators located
at UNAM in Mexico City (19 ∞ 19’ 6.9" north latitude, 99 ∞ 11’ 29.7" west longitude)
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Fig. 1 Solar power plant, Engineering Institute (UNAM)

and at an altitude of 2330 ± 20m meters above sea level (as measured with a GPS).
Eight modules are connected in serial mode, each one with a length of 15 m and an
aperture area of 34m2 (Fig. 1). The total aperture area of solar field is 272m2, with
mirrors whose reflectance is approximately 0.85. The absorber pipes are 25.4 mm
(1") nominal diameter and are covered with a black chrome selective film with an
absorptance of approximately 0.89 and emittance of approximately 0.18 at 25 ∞C.

The solar plant has a water deionizer system that works with ionic interchange
resins, so the water conductivity is reduced to 0.39 mS/cm at 20 ∞C. Although the
main application of this study is for geothermal wells, as a first step it would be
better to start with this water quality in order to avoid damage to the experimental
equipment. This water is stored within a cistern, which serves as a reservoir for a
feeding tank that is connected to one condenser, and this also serves as a feed water
tank. The pump is a double pass regenerative turbine with a capacity ranging from 3
to 32 L/min. It is controlled by a 3 hp motor with a current frequency converter.

At the end of the 8th module concentrator, the two-phase flow achieved can be
observed through two peepholes made of borosilicate glass of 24.5 mm diameter and
30 cm length. With these elements is was possible to visually determine the flow
pattern that was obtained in the experimental tests. In order to show how a two-phase
flow looks through a flow-peephole a photograph is shown at Fig. 2.

After the peepholes, a steam trap serves to separate the phases and allows the
flow to be measured for each phase. Both currents reach the condenser tank and a
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Fig. 2 Flow peephole photograph with annular two-phase flow

Table 1 Average values of
feed water

Experimental test (L/min) Feed flow Velocity
(L/min) (m/s)

4 4.3 0.47
8 8.1 0.87
12 12.6 1.37

saturated liquid is then re-circulated to the solar field. Measuring instruments used
to make recordings were:

– 8 RTDs (platinum Resistant Temperature Detector) around the absorb er pipe.
– 2 RTDs at the beginning and the end of the system.
– 2 pressure transducers at the beginning and the end of the system.
– 1 ‘Headland’ variable area transducer for measuring flow of liquid.
– 1 ‘Endress & Hauser’ vortex sensor transducer for measuring flow of steam.
– 9 pressure dial indicators along the tube
– 8 temperature dial indicators along the tube

In addition, data were collected from a meteorological station that registers the
values of global and diffuse horizontal irradiance (using a rotating shadow band
pyranometer), dry bulb temperature, and speed and direction of wind every 5 min.
Direct normal irradiance was also calculated.

2.2 Experimental Results and Discussion

The temperature distribution around the absorber pipe when the working fluid has an
annular two-phase flow pattern is the most interesting result of this work. The goal
of always working with a fluid in conditions of saturation with constant feeding flow
was achieved (Table 1), and the maximum pressure reached on the system was 3.5
bars. The next step will be to repeat the experiment at 10 bars. The Goebel (1997)
and Herbst et al. (1996) experiments were useful for this study in order to know what
happens with DSG under higher values of process conditions.
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Because the experimental tests were carried out in winter, the heating tended to
be from below and to one side of the receiver, between 3/4π and 7/4π radians of the
circumference. As a result, it was necessary to carry out tests by heating exclusively
from below part of the absorber pipe.

Owing to small instabilities during the heating process, such as normal beam irra-
diance changes, pressure values oscillated throughout each test. It was thus necessary
to calculate average values of pressure, temperature and velocity. This allowed the
average value of each process property to be estimated from simply fixing the feed.
At the beginning, the feed had a specific velocity which was constant until the boil-
ing process started. When steam appeared we started to increase the feed’s velocity
in order to maintain a good mass balance. The liquid phase then changed its initial
velocity according to the process conditions. For example, 4 L/min flow had 27 %
reduction of its speed value, for 8 L/min the reduction was 7 % and for 12 L/min
there was no change because variations were minimal with respect to feed. Hence
the liquid velocity diminished for the first two tests at 4 and 8 L/min, whereas for the
third test, at 12 L/min, it stayed relatively constant.

Temperature and pressure behaviors of feed flow were similar to a sub-cooled
liquid (97 ∞C and 3.5 bars). These values are important in order to reach boiling
point as soon as possible in the receiver pipes. It was observed that for greater flow,
the system was more stable with these parameters. It was also observed that its
variation did not have great repercussions with respect to low feed flow throughout
heating in the solar concentrators. Its behavior is more stable when the evaporation
stage begins.

In order to verify changes in temperature and pressure during the heating and
evaporation process of water in the absorber tubes, dial indicators for temperature
and pressure were installed in the bridges between each module of concentrators. At
the end of the last module, the variables were measured with instruments connected
to a data acquisition system.

Pressure is the main parameter affecting inlet and outlet currents. The other para-
meter that independently affects the process is solar beam irradiance, a factor that
depends on the weather. The graph of outlet pressures (Fig. 3) shows a uniform
behavior; nevertheless, small variations in pressure that occurred were translated
into temperature changes. The velocities reached for the generated steam are shown
in Fig. 4, and the typical patterns for different feed flows can be seen under similar
conditions of irradiance, which oscillated around ±10 %. In order to calculate the
steam quality, a phase separator with a steam trap was installed and steam flow was
measured with a flow meter.

The mass balance was calculated under similar values of irradiance, and the results
are presented in Fig. 5. Figure 6 shows a graph depicting the relationship between
liquid velocities and steam velocities; this demonstrates that a smaller feed flow
generates a greater amount of steam, and therefore the liquid film is thinner and the
friction factor has more influence on its velocity.

In agreement with Hahne et al. (1997), the convective heat transfer coeffi-
cient increases if the liquid film thickness diminishes. The measurements con-
firm this effect because external temperature is higher at 12 L/min than at 4 L/min.
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Fig. 3 Liquid-steam mixture manometric pressure
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Fig. 5 Mass and volumetric fraction for outlet steam

Nevertheless this condition is directly related to the amount of normal beam irradi-
ance that is being received in each test. Table 2 shows the average values of normal
beam irradiance that were recorded during these tests. The highest temperature dif-
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Saturated Liquid-Steam Mixture
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Fig. 6 Relation of velocities between phases and the feed flow
Table 2 Normal beam irradiance for experimental tests (average values)

Irradiance (W/m2) 4 (L/min) 8 (L/min) 12 (L/min)

Global 934 895 893
Normal beam 882 793 821
Diffuse 52 102 72

ferential value that was reached with annular flow was 41 K, which persisted for only
a few minutes. If an average differential of all maximums is calculated, the resulting
value is 31 K.

3 Theoretical Development

Equation 1 represents the general form of the heat diffusion equation in the cylindrical
coordinate system; it determines the transference velocity of energy by conduction
in a unitary volume, at any point within the work media. In addition, the volumetric
generation velocity of thermal energy must be equal to the change velocity of the
stored thermal energy within this volume (Incropera and DeWitt 2001). Specifically,
the system under study takes the form of tubes which are warmed up by concentrated
solar radiation falling on half of their external circumference. Therefore heat flux,
as shown in Fig. 7, has been established for very clear conditions and to enable
subsequent analysis of these conditions.

1
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The following conditions are proposed in order to develop a simplified analysis:

Steady state
(

∂T
∂t = 0

)
; no variation along longitudinal axis

(
∂T
∂z = 0

)
; it does not

have internal heat generation (q̇ = 0).
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Fig. 7 Heat flux and reference point in an absorber pipe

Because of the preceding conditions, the diffusion equation is reduced to Eq. 2.

1

r

∂

∂r

(
kr

∂T

∂r

)
+ 1

r2

∂

∂ϕ

(
k
∂T

∂ϕ

)
= 0 (2)

Numerical methods are useful for solving heat transfer problems in order to obtain
reliable results, when such problems can not be handled by exact analysis because
of nonlinearities, complex geometries, and complicated boundary conditions. One
major approach currently used in the numerical solution of partial differential equa-
tions of heat transport is the finite-difference method. The boundary conditions that
correspond to this problem are of the third kind type, since they express the heat flux
between the surface of the system under study and a moving fluid that is in contact
with this surface, at a precisely-known temperature. This condition must demonstrate
the relationship between the heat transmitted by conduction in the system and the
heat transferred by convection.

3.1 Boundary Conditions

(1) If r = rint → 0 ∇ ϕ < 2π then −k ∂T
∂r = hl (T − Tl)

(2) For concentrated irradiance on the lower part of the receiver tube:
If r = rext → 1/2π < ϕ < 3/2π then −k ∂T

∂r = q ≤≤ − ha (T − Ta)

If r = rext → 0 ∇ ϕ ∇ 1/2π → 3/2π ∇ ϕ ∇ 2π then −k ∂T
∂r =

ha (T − Ta)

(3) For concentrated irradiance on one side of the receiver tube:
If r = rext → 0 < ϕ < π then −k ∂T

∂r = q ≤≤ − ha (Ta − T )

If r = rext → π ∇ ϕ ∇ 2π then −k ∂T
∂r = ha (T − Ta)
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3.2 Finite Differences

Different numerical methods allow the determination of the temperature only at
discrete points, in contrast with an analytical solution that allows the determination
of temperature at any point of interest in a specific environment. Therefore in order
to obtain functions which describe the distribution of temperatures around a receiver
tube, the first step is to select reference points, which usually are called “nodal points”
or simply “nodes”, so that a set of these points is known as a nodal grid Özişik 1993.

Each node represents a specific region whose value is a measurement of the
average temperature in that region. The selection of these points depends generally
on geometric convenience and the degree of precision that is desired. Figure 8 shows
a proposed cross-sectional profile for this work and it displays the proposed nodal
network in external circles that correspond to the walls of the absorber pipe. A third
circle is also shown at the centre of Fig. 8, which has a slight displacement on the
vertical axis, representing the steam-liquid interface. Therefore Fig. 8 exhibits a two-
phase flow with an annular pattern. Such displacement is considered to be a phase
velocity function as well as a function of liquid film thickness in the upper part of
the pipe compared to the lower part.

Using this method, the heat equation is obtained by applying the law of energy
conservation to a control volume around the nodal region, supposing that all the
heat flow occurs towards the node ( Rohsenow and Hartnett 1973). Heidemann et al.
(1992) used the finite differences method in order to propose a mathematical model
for steady-state and transient conditions of temperature during DSG with stratified
two-phase flow.

The bi-dimensional model considers the following elements: carbon steel pipe,
liquid-steam flow with annular pattern, and air atmosphere around the external surface
of the receiver tube. The reference angle is in radians, and begins in the upper part of
the pipe in order to agree with Flores (2003). The general exposition of the energy
balance equations for each node is based on the nodes that surround it. For this reason,
two sorts of equations can be written according to the location of such nodes.

For the equation that represents the nodes from 1 to 60, a radiation term is added
which can be greater than or equal to zero, depending on the boundary conditions that
are being considered. The energy balance begins with Node 1, expressed in Eq. 3.

kFe · (T2 + T60 − 2T1)(Ωr/2)

rextΩϕ
+ kFe · (T61 − T1) · (rext − Ωr/2) · Ωϕ

Ωr
+ q ≤≤

T = 0

(3)
where,

q ≤≤
T = q ≤≤

rad + q ≤≤
cov − Esup ∼

⎧⎨
⎩

q ≤≤
rad = αSGS + αatm Gatm

q ≤≤
cov = har1Ωϕ(Ta − T1)

Esup = εsupσT 4
sup

⎫⎬
⎭ → Gatm =

σSB T 4
atm

The heat contribution by radiation only applies for those nodes in which concen-
trated irradiance is being considered on half their circumference, whereas for nodes
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Fig. 8 An (r,φ) nodal network for an absorber pipe with annular two-phase flow

that are not exposed to the concentrator effect, this term is near zero. After regroup-
ing Eq. 3, each part can be modified in order to have an equation for each node. For
example, node 1’s equation is shown as Eq. 4.

−
[

Ωr

rextΩϕ
+ (2rext − Ωr)Ωϕ

2Ωr
+ harextΩϕ

kFe

]
T1 + Ωr

2rextΩϕ
T2

+ Ωr

2rextΩϕ
T60 + (2rext − Ωr)Ωϕ

2Ωr
T61 = −q ≤≤

T (4)

where q ≤≤
T = εsupσT 4

sup−(αS GS+αatmσT 4
atm+har1ΩϕTa)

kFe

In order to enumerate Eq. 4, it is necessary to know the convective heat transference
coefficient of the air next to the external surface of the receiver, which is determined
by applying Eqs. 5, 6, and 7 (Bejan 1995).
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Nu = 0.3 + 0.62R1/2
e P1/3

r[
1 + (0.4/ Pr)2/3]1/4

[
1 +

(
Re

282000

)5/8
]4/5

(5)

conditions: {
Re · Pr > 0.2
7 × 104 < Re < 4 × 105

}
(6)

Annular two-phase flow regimen in direct steam generation.
where:

Re = ua · dext

νa
and ha = Nuka

dext
(7)

Correlations expressed in Eqs. 5 and 6 assume the following conditions:

– Single cylinder in cross-flow
– Speed of the air-flow is uniform
– Temperature of the air-flow is equal to room temperature

For nodes that are in the internal part of the steel tube, i.e. nodes from 61 to 120,
the energy balance is expressed by Eq. 8.

kFe(T1 − T61)(rint + Ωr/2)Ωϕ

Ωr
+ kFe(T62 + T120 − 2T61)(Ωr/2)

rintΩϕ

+ h f r61Ωϕ(T f − T61) = 0 (8)

After rearranging Eq. 8, we obtain the expression (Eq. 9) that we will use to cal-
culate the temperatures in the aforementioned nodes.

(2rint + Ωr)Ωϕ

2Ωr
T1 −

[
Ωr

rintΩϕ
+ (2rint + Ωr)Ωϕ

2Ωr
+ h f rintΩϕ

kFe

]
T61

+ Ωr

2rintΩϕ
T62 + Ωr

2rintΩϕ
T120 = −h f rintΩϕ

kFe
T f (9)

The heat convective coefficient of heat transfer for two-phase flow was calculated
by means of a self-developed algorithm that is described by Martinez (2005) and is
supported from different proposed correlations by authors such as Goebel (1997),
Gungor and Winterton (1986), and Kattan et al. (1998).

Once all equations for each node have been considered, it is possible to solve
them by means of any algebraic method. For this work it is possible to assume the
following values are constants: the pressure of the system for the two-phase mixture,
the cross-sectional area of the receiver, and the mass flow of the mixture. One assumes
that the convective coefficient of heat transfer is based on the liquid film thickness,
and it can be calculated according to Luninski et al. (1983).
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Table 3 Data used for the simulation of temperature profile

Symbol Quantity Unit Description

Ta 349.5 (K) Air film temperature
Tf 406.15 (K) Temperature of the saturated fluid
ha 8.05 (W/m2K) Air convective heat transfer coefficient
hf 6,768.1 (W/m2K) Fluid convective heat transfer coefficient
kFe 50.89 (W/m · K) Iron thermal conductivity
rext 0.0167 (m) External pipe radius
rint 0.0131 (m) Internal pipe radius
Ωr 0.0036 (m) Pipe thickness
Ωφ 0.1047 (rad) Angular separation between nodes
Gdir 550 (W/m2) Useful solar beam irradiance
Gtub 27,614 (W/m2) Concentrated solar beam irradiance

3.3 Results and Discussion

In order to obtain a theoretical temperature profile as function of r and φ, it is
necessary to adjust some process parameters that are expressed in Table 3. We know
that in annular flow conditions the liquid film thickness at the top of the pipe is
thinner than at the bottom. It is possible, therefore, that the value of the two-phase
heat transfer convective coefficient changes as a function of the film thickness.

It is a known fact that heat losses always exist, and it is therefore necessary to
determine a thermal efficiency to quantify these losses. Nevertheless, it is possible
to assume that heat losses only exist when the receiver temperature is lower than
the working fluid. When the calculated values of temperature are compared with the
experimental data, it is necessary to take this assumption into account.

In calculating the effect of heat transfer during the liquid’s boiling process, we can
assume the liquid-steam interface can be almost homogeneous and have a variable
distance with respect to the centre of the tube, the reason being that the thickness
of the annular liquid film will be based on slip ratio and the wet angle calculated
from 0 radians (top part) to π radians (bottom part) in such a way that the pattern is
symmetrical in the interval from π to 2π radians.

In order to know what happens when the convective heat transfer coefficient is
considered constant (theoretical A) or variable with respect to the liquid film thickness
(theoretical B), a relative error factor was calculated and results were compared with
experimental data. Table 4 shows a maximum value of 18.7 % for option A and
5.3 % for option B. Figure 9 shows the comparison and data behaviour around the
external surface of the absorber pipe. The calculated data of liquid film thickness
were 1.06mm at the top and 2.66mm at the bottom. These values accorded with flow
peephole observations, where it was possible to see a double thickness of liquid film
at the lower part compared to the upper part, and the estimated thickness observed
correlated approximately with the values already given above.
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Table 4 Relative error between theoretical model and experimental temperature

RTD Node φ angle Temperature (∞C) Relative error
No. No. (rad) Experimental Theoretical A Theoretical B A (%) B(%)

1. 1 0.00 107.0 108.0 104.5 1.0 2.4
2. 8 0.79 117.6 126.6 120.1 7.1 2.1
3. 16 1.57 118.8 131.6 123.6 9.7 3.9
4. 23 2.36 125.4 131.6 123.7 4.8 1.4
5. 31 3.14 114.2 129.1 122.0 11.6 6.4
6. 39 3.93 107.2 111.1 107.0 3.5 0.2
7. 46 4.71 99.3 104.7 102.4 5.2 3.0
8. 54 5.50 97.0 104.1 102.0 6.8 4.8
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Fig. 9 Temperature profile around absorber pipe

According to the graph in Fig. 9, it is possible to observe the tendency of data
to demonstrate periodicity. This is because temperature analysis is done in radial
and angular directions, and the angular direction should exhibit a periodic behavior.
This aspect is very important because is possible to propose an analytical solution
in trigonometrical terms that could be like Eq. 10. All constants (A, B, C and D)
could be obtained from boundary conditions and specific experimental values, but
its particular solution is a subject for other work.

T (r,ϕ) = (
A · rν + B · r−ν

) · (C · sin(ν · ϕ) + D · cos(ν · ϕ)) (10)

In any sort of mathematical model, the convective heat transfer coefficient is a
very important parameter that should be calculated by applying the best correlation
that satisfies the specific process parameters required. To define an acceptable value
for this coefficient, we have taken the model proposed by Goebel (1997), which is
based on experimental data. Another theoretical analysis related to two-phase flow
with DSG was developed by Zarza (2003); he emphasizes the importance of the
convective coefficient.
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Where this kind of analysis is applied to brine, for example, when analyzing a
fluid in a working environment, it could be necessary to define a maximum salt
concentration of 5 %, as in, for example, geothermal brine. This is because the heat
transfer properties of the working fluid are not affected considerably, and therefore
it is possible to consider it as a pure substance. Such an approximation should be
acceptable in order to obtain preliminary results.

On the other hand, different types of methods can be applied to solve the homoge-
neous heat conduction equation in the cylindrical coordinate system for an absorber
tube that is analyzed in two or more dimensions. For example, in the separation of
variables in the cylindrical coordinate system method, where an exact will be required
whose results will have to be very similar on order to separate the variables. However
the choice of methods depends on the approaches that are needed to implement each
one of them.

4 Conclusions

It has been shown that for annular two-phase flow within a pipe (i.e. an absorber
tube) warmed by concentrated solar energy, the temperature differential registered
between the hottest point and the coldest point over the external wall of the pipe
will increase if the feeding flow increases too. This situation even happens when
the internal wall of the pipe is completely wetted. This result verifies that the heat
transference from the pipe to the liquid phase of the fluid is not constant and could
depend on the liquid film thickness.

In order to be able to raise an experimental correlation for the change of heat
transfer coefficient with respect to the film thickness, it is necessary to carry out
further experiments with reliable and specialized devices.

The finite-differences method is useful in order to obtain a preliminary approxima-
tion for predicting the temperature values of an absorber tube with annular two-phase
flow. Because the maximum relative error value was almost 12 % and the minimum
was approximately 1 %, these results do not change significantly if the number of
nodes in the network is increased. Nevertheless an improvement is obtained because
of the error reduction.

In order to obtain preliminary comparative results to determine the viability of
a hybrid power project, it is recommended to implement a theoretical analysis of
this type. Results will depend on the boundary conditions and approximations that
are considered in order to calculate thermal parameters such as the convective heat
transfer coefficient. This is why it is very important to verify the theoretical values
with experimental results.

To calculate a theoretical value for the convective heat transfer coefficient, some
acceptable correlations may be used whose application depends on the operating
conditions of the system. In the case of this work with low power and process con-
ditions that are not extreme, is possible to obtain a very good approximation of the
temperature profile around the receiver tube.
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With respect to the comparison of experimental and theoretical data it was pos-
sible to prove that the convective heat transfer coefficient changes as a function of
liquid film thickness. The theoretical temperature could correlate better with the
experimental data if the convective heat transfer coefficient is considered a variable
instead of a constant.

As a final suggestion, if low power solar systems with lower flows are necessary,
it might be possible to operate them with an annular two-phase flow and a liquid-
steam separator before the last module, in order to obtain steam of high mass quality
without completely evaporating the feed fluid. This aspect will be tested in the near
future.
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Özişik N (1993) Heat conduction, 2nd edn. Wiley, New York
Rohsenow WM, Hartnett JP (1973) Handbook of heat transfer. McGraw-Hill Book Co., USA, pp

(4–22)–(4–23)
Zarza E (2003) Direct steam generation with solar parabolic trough collectors, direct solar steam

project (DISS). Doctoral Thesis, Seville University, pp 139–149 (In Spanish)



Random Forces on Obstacles in Channels
with Grains: A Mechanical Analogy
of Crowd Disasters

A. Medina, A. López-Villa and G. J. Gutiérrez

Abstract In this work we have studied experimentally, through sensitive force
measurements, the fluctuating forces on a rigid obstacle located at the middle of
a horizontal channel, when a two-dimensional (2D) granular forced flow is induced
by a wall-piston which moves with constant velocity along the channel. In this piston-
like system, the force measured show strong fluctuations which are much larger than
the average force, giving rise to intermittent behavior. Two different initial packing
factors were employed, showing different flow characteristics. In the well-ordered
high packing system, the force on the obstacle is very high, producing force peaks
at time intervals almost constants. The main frequency is well correlated with the
residence time of each row of grains. However, in case of initially disordered, loose
packing systems, there is an initial relaxation time where force on the obstacle is
extremely low, thus allowing the free flow of several grain rows. The temporal force
traces have a 1/fα character and depend on the initial arrangement of grains.

1 Introduction

The nature of the forces on objects embedded inside granular flows has been a topic
scarcely studied Atkinson et al. (1983); Tuzun and Nedderman (1985); Wieghardt
(1974, 1975); Albert et al. (1999, 2000). However, this phenomenon frequently
occurs, for instance, during the gravity induced granular flows in silos where fixed
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inserts are commonly used to improve the flow rate or to add mechanical strength to
the silo structure Tuzun and Nedderman (1985); Johanson and Kleysteuber (1966);
Tuzun and Nedderman (1985). Following this line, Tuzun and Nedderman Tuzun
and Nedderman (1985) in an experimental work, measured the normal and shear
loads on big obstacles and analyzed the temporal fluctuations of these quantities.
The main result in such conditions was that the force signals evidenced the existence
of temporal force oscillations of nearly constant amplitude and frequency. In another
experiments, some researchers have studied the fundamental problem of the drag
force on solid objects. In particular, rigid cylinders fixed to load cells were intro-
duced, to different depths, within a granular flow originated during the axisymmetric
rotation of buckets of sand Wieghardt (1974, 1975); Albert et al. (1999, 2000). In such
experimental configuration the existence of periodic and stepped fluctuations in the
drag force were detected. Moreover, for a wide range of velocities, little Wieghardt
(1974, 1975) or none Albert et al. (1999, 2000) dependence with respect to the
magnitude of the velocity was noted.

The aim of this work is to study experimentally the behavior of the instantaneous
force and its time-averaged properties on an obstacle due to the forced motion of a
nearly two-dimensional (2D) granular flow composed of spherical, big rigid grains,
in order to determine the role of a fundamental quantity of the granular material: the
granular packing.

Two well defined and very different grain arrangements have been induced in a
horizontal container in order to seek its influence on the force fluctuations. We have
used a detailed approach to determine, through an idealized 2D system, the force
in two types of initial packing: a hexagonal 2D monodisperse arrangement whose
packing factor is η = π/(2 ·31/2) ≤ 0.9069 and a loose uncorrelated packing whose
value was 0.81 Meakin and Jullien (1991). In this study we treated cases of relatively
low velocity, 20–50 mm/s. We have examined the random behavior of the force
acting on the obstacle and its relation to the collective dynamics of grains, like the
formation of force chains during motion.

This mechanical study can be assumed as a mechanical analogy of the problem
of crowd disasters, because people in a crowd stampede, move and push towards the
exit causing a domino effect Helbing et al. (2000). A similar effect can be induced
by a collective of grains which move and interact among them and against a fixed
obstacle located at the middle of a channel. Thus, this study can be used to under-
stand the collective motion of pedestrians under panic conditions, which occurs very
frequently.

This work is structured as follows: in the next section we explain why the
mechanical problem of interaction of grains is associated with the crowd disasters.
After, in Sect. 3, we describe the experimental setup and the measurement proce-
dure. In Sect. 4, we analyze the temporal properties of the time series of the force
for several velocities and packings of grains. There, we detect interesting properties
of the force fluctuations and the character of the noise associated to the time series.
Finally, in Sect. 5 we discuss the main results and their implications on the problem
of how improving crowd safety.
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Fig. 1 Muslims circled the Kaaba, Islam’s holiest site (taken from http://www1.whdh.com/news/
articles/world/BO38831/)

2 Crowd Disasters

Due to growing populations in the urban centers, the frequency of programmed
events like sporting event egress and ingress, religious events, food distribution and
entertainment events, among others, is increasing. Similarly, the occurrence of sud-
den incidents as stampedes and failures of crowd control, fires and protests is also
increasing.

These events tend to involve a large number of people. For instance, see Fig. 1.
They also often occur in times of mass panic (e.g. as a result of a fire or explosion); as
people try to get away crowd forces can reach levels that almost impossible to resist
or control. Virtually all crowd deaths are due to compressive asphyxia and not the
“trampling” reported by the news media. Evidence of bent steel railings after several
fatal crowd incidents show that forces of more than 4,500 N (1,000 lbs.) occurred.
Forces are due to pushing, and the domino effect of people leaning against each other.

Compressive asphyxia has occurred from people being stacked up vertically, one
on top of the other, or horizontal pushing and leaning forces. In the Ibrox Park soccer
stadium incident, police reported that the pile of bodies was 3 m (10 ft) high. At
this height, people on the bottom would experience chest pressures of 3600–4000
N (800–900 lbs.), assuming half the weight of those above was concentrated in the
upper body area.

Horizontal forces sufficient to cause compressive asphyxia would be more
dynamic as people push off against each other to obtain breathing space. In the
Cincinnati rock concert incident, a line of bodies was found approximately 9 m (30
ft) from a wall near the entrance. This indicates that crowd pressures probably came
from both directions as rear ranks pressed forward and front ranks pushed off the
wall.

http://www1.whdh.com/news/articles/world/BO38831/
http://www1.whdh.com/news/articles/world/BO38831/
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Fig. 2 Experimental setup for the force measurements in a rectangular and horizontal channel of
dimensions: length Lc, width H and thick w. The obstacle has a characteristic length D (diameter
for the circular obstacle and side for the square obstacle) and the granular material is made up of
bearing balls of diameter d. In a we depict the top view where the obstacle position is shown. In b
we depict the containers lateral view and we show the location of the force meter. g and x indicate
the gravity field and the direction of the induced flow, respectively

3 Experimental Setup and Force Measurements

Our experimental set-up consists of a piston-like system where a high-torque motor
coupled to an endless screw moves a slim Plexiglas plate 8 mm thick with a constant
velocity, along a Plexiglas channel filled with grains. This set-up configuration is
shown in Fig. 2. The grains used in this work were bearing balls with a diameter,
d = 7.85 ± 0.05 mm, Young modulus E = 2 × 1011Pa and friction coefficient
μ ≤ 0.3. The channel has the following dimensions: w = 0.8 mm thick, Lc = 450
mm length and variable wide, so that, H = 143, 165 and 195 mm width. The
obstacles included two different shapes: circle and square, the circular obstacles has
a diameter D = 8, 16 and 24 mm, while the square obstacle has a side D = 16 and 24
mm. The motion of the plate along the channel generates a 2D granular flow: all the
grains are moved by the plate and many of them nucleates force chains which reach
and, consequently, push the rigid circular obstacle located just at the middle of the
channel (Fig. 2a). In order to obtain reproducible force measurements, the obstacle,
which was attached just at its center to a rigid harm and this to the force sensor,
does not touch neither the upper nor the lower confining walls (Fig. 2b). During the
motion we measured the force, F(t) = Fx (t), on the obstacle transmitted by the
continuous pushing of the grains along the direction of the main flow each 2 ms ( i.e.,
at a measurement frequency, fm = 500 Hz) by using a force meter with a dynamic
range between 0 and 50 N with a sensitivity of 0.001 N. In Fig. 2b we show the way
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Fig. 3 a Schematic view of random loose packing which was obtained by raining the grains from
the top and b the ordered (hexagonal) packing in the rectangular channel

in which the force meter was placed. The experimental error of this measurement
procedure is of around 1 %.

We have treated cases where the initial packing was hexagonal and other ones
where the initial packing was disordered as shown in Fig. 3. This latter packing,
called random loose packing, was obtained by raining the grains from the top and
after tilting the container to the horizontal position. It is also important to note that
along the container’s width, we can have several arrays of exactly 18, 21 and 24
grains that allow us to build the hexagonal packing. We made experiments with
several velocities and we have not observed appreciable dependence on this quantity
despite of the forces generated by the ubiquitous chains of grains from the pushing
plate to the frontal area of this obstacle.

The velocities of the piston-plate used in the experiments, v, range between 20
∞ v ∞ 50 mm/s. A couple of representative force measurements are shown in Fig. 4,
where it is evident the strong force fluctuations (peaks) which are of one order of
magnitude larger than the mean value for tight packing (Fig. 4a) and less than 8 times
the mean value for loose packing (Fig. 4b). Another difference occurring between
the temporal trace for the tight packing and that occurring for the lose packing is that
the strong pulses appear more evenly distributed in the initially ordered cases.

We have observed appreciable dependence between the quantity of material after
the obstacle so-call L/d for both types of packing where is more strong for the
hexagonal packing, add to above a large influence of the parameters H/d and D/d.

In the following Sect. 4 we will analyze with more detail these facts.
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Fig. 4 Temporal measurements of the effective force along the x-direction. In a we show the
force variation on the obstacle for initial hexagonal packing while in b we show this quantity but
considering initial random loose packing

4 Analysis of Results

We analyzed several cases from both shape obstacle, the initial packing is hexagonal
(close packing) with a packing factor η1 = 0.9083, and the random loose packing
with η2 = 0.814. We vary the speed of granular material and change the parameter
L/d and H/d. The representatives cases are from the circular obstacle with η1, v =
37.5 mm/s (Case 1), and η2, v = 38 mm/s (Case 2), hexagonal and loose packing
respectively, L/d = 6, H/d = 24 and D/d = 1.

The time series for the force on the obstacle for Case 1 is shown in Fig. 4a and
for Case 2 is shown in Fig. 4b. These plots show the influence of the packing in the
force on the object: the close packing transmits to the obstacle, almost immediately,
the strong fluctuating forces nucleated in the grain chains and the occurrence of
these strong peaks is very frequent and almost equidistant. Conversely, in systems
with initial loose packing the nucleation of the force chains which produces strong
fluctuations takes a relaxation time and are not so frequent as in Case 1. Moreover,
the force chains in the tight packing are more robust than in case of loose packing and
therefore the intensity of the force fluctuations are larger in the first case. The initial
packing factor is then extremely important in determining the force induced by the
granular flow. In Case 2, the flow does not show any big resistance in the first second,
indicating that more than 4 rows of grains can move around the obstacle without any
big problem. This relaxation time is used to rearrange the grains upstream increasing
its packing factor, increasing then the flow resistance. In Fig. 5 we show, for Cases 1
and 2, the root mean square (rms) for the force fluctuations, defined by

√
→(F(t) − →F(t)∇)2∇

→F(t)∇ , (1)

where <X> represents the time moving average of X(t), i.e.,
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Fig. 5 Normalized rms force fluctuations for the systems here considered: system initially ordered
with v = 37.5 mm/s (line-square) and system initially disordered with v = 38 mm/s (line-circle)

<X>= 1/t
∫ t

0
X (s)ds.

This quantity allows us to understand the role of the packing in the occurrence
of the peaks of force respect to the mean, i.e., intermittency. Fig 5, in fact, shows
that the nucleation of force chains in Case 1 is immediate and after these occur in
a random manner. It is easy to note that each force peak (a sudden increase in the
fluctuation) is reached after a nonlinear decrease of the intensity of the fluctuation
which indicates that formation of force chains is neither cyclic nor monotonic in
time. In the same Fig. 5, are shown the fluctuations for Case 2, where initially the
intensity of the fluctuations are lower than those of Case 1 and they increase suddenly
with time.

The increase in the level of the fluctuations in this latter case is sudden because
the chains of force are weaker and they break near instantaneously. In Fig. 6 we show
the rms of the force for Case 1 but changing the quantity L/d. It determines that a
certain quantity of grains affects the subsequent history of the force chains.

We show in Fig. 7 the behavior of the average force on the circular obstacle
and square obstacle, too we have observed that the shape of the obstacle produce
a significant change on the average force due to the instabilities of the chain force
and that is produced by small perturbations on the contact point of material with the
obstacle. This plot also indicates that apparently the mean force is larger on circular
obstacles than on angulated square obstacles.

The noisy behavior of the time series of the force has been also studied. In this
case we obtained the power spectra, S(f), for the traces of Fig. 4. In both cases we
found that in the UV-range, f >> 1, the spectra obey the relation
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Fig. 6 Normalized rms force fluctuations for several velocities in the system with circular obstacle
and D/d = 1 and H/d = 18: a L/d = 0 and b L/d = 6

Fig. 7 Comparison of the mean force for circular and square obstacles

S( f ) ∼ f −α,

where the exponent α depends on the initial packing. The plots for Cases 1 and
2 are shown in Fig. 8. In Fig. 8a we have plotted the power spectrum of the tight
packing and its best fit which yields a very accurate value for the exponent α =
2.23 ± 0.1. This value of α implies that successive points in the time series are
strongly correlated. Similarly, in Fig. 8b we show the power spectrum and the best
fit where α = 1.45 ± 0.1. In this case we have time series which obeys fractional
Brownian motion which implies that successive points in the time series are weakly
correlated.

One of the most important parameters to be obtained from the present measure-
ments is related with the maximum peak of the power spectrum of the measured
force. There is a characteristic frequency dictated by the way in which a layer of
grains arrives at the obstacle and is defined by fg = v/d. In the present experiments
we have for Case 1, fg = 2.7 Hz. For the case of loose packing, the characteristic
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Fig. 8 a Power spectrum (in arbitrary units, a.u.), S(f), for the time series of the force in a system
with tight packing and b system with loose packing. The straight line was obtained by using a least
squares fit for the noisy part. Speeds were very similar

Fig. 9 The characteristics frequencies for a close packing

frequency is fg = 6.1Hz, respectively. The occurrence of this frequency for the first
case is shown in Fig. 9, indicating that the peaks in the force are strongly related with
this characteristic frequency, fg .

5 Conclusions

In this work we studied experimentally the force produced by a granular flow on
an obstacle in a finite horizontal channel, for different initial packing. There are
four main immediate results depending on the initial configuration: (a) the force
fluctuations in the case of initial ordered systems are distributed through the overall
measurement interval. Moreover, the force fluctuations are about twice the force
fluctuations in initially disordered systems. In this latter case, the flow resistance
is very low at the beginning, thus allowing several rows of grains to flow around
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the obstacle, without any problem. (b) The time-averaged force apparently does not
depend on the velocity, c) the time interval between consecutive force peaks is well
correlated with the transit time of the flow needed to move the distance given by a
particle diameter. The resulting Strouhal number defined by St = f peak/ fg is then of
order unity and (c) The power spectra, in initially tight packing systems, of the time
series for the force are strongly correlated and systems with initial loose packing the
time series are weakly correlated.

Finally, this study could be connected to the collective motion of pedestrian under
panic conditions, for instance, fire which advance in a corridor at constant velocity.
There, people in a crowd stampede move and push towards the exit at constant veloc-
ity Helbing et al. (2000). So, it is possible that forces on fixed obstacles originated
in escape panics have, in a first approximation, the same nature as that found here
and many of our results, adequately scaled, could be useful to guide the theoretical
efforts. We have shown how initial order (high packing) produces strong flow resis-
tance, generating forces, due to the domino effect, one order of magnitude larger
than the average. For loose packing the level of forces is weaker. Finally, this type of
studies can be of interest to propose better models in order to introduce public offi-
cials to the best crowd safety standards, laws and techniques for preventing common
safety missteps and haphazard event planning in the communities.
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Part II
Multiphase Flow and Granular Media



Experimental Study of the Growth of Bubbles
in Corrugated Tubes

U. Romero, A. López-Villa, A. Medina and G. Domínguez Zacarías

Abstract In this chapter we study some experiments with different liquids to validate
theoretical results on the growth of bubbles in corrugated pipes. These experiments
were performed using a high range of capillary numbers Ca, as well as different
values of the Bond number Bo, the purpose is to approach the cases of inviscid
and viscous limits in liquids. The experiments are done in the tubes with different
diameters and different lengths with periodic corrugations and different amplitudes.
We also characterized the effect of the corrugated walls on the shape and size jets of
bubbles for constant flow rate.

1 Introduction

In literature there are different works studying bubbles, most of the extensive research
carried out on the generation of bubbles by injection of gas into a liquid at rest has
been devoted to the important case of liquids of small viscosity, for which the flow
induced by the expansion and rise of the bubbles is dominated by inertial effects;
see Kumar and Kuloor (1970); Oguz and Prosperetti (1993); Clift et al. (1978);
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Räbiger and Vogelpohl (1986); Longuet-Higgins et al. (1991). Applications include
direct-contact operations in chemical, metallurgical, and biomedical systems, among
many others. The opposite case of bubble generation in very viscous liquids is of
interest in connection with polymer melts (Bird et al. 1987; Davidson and Schuler
1960; Doshi et al. 2003; Higuera 2005) and molten glasses and magmas (Manga and
Stone 1993, 1994).

Results may be expressed in terms of two dimensionless numbers, the Bond
number and the Capillary number. Bond number is a measure of the intensity of
flotation forces respect to the surface tension

Bo = ρga2

σ
, (1)

where ρ is the density, g is the acceleration of gravity, a is the inner radius of the
capillary and σ the surface tension.

Meanwhile the capillary number is a measure of the competition between viscous
forces caused by the air inlet in fluid and the surface tension forces that keep the
bubble adhered with the mouth of the air injection tube where

Ca = μQ

σa2 , (2)

where μ is the viscosity, Q the gas flow rate which is constant.
When expressing the results in terms of these two parameters we can have a wide

variety of physical conditions under which bubbles grow.

2 Experiments

It is considered the simple case of incompressible gas (air) when it is injected at
constant flow rate with viscosity and density negligible into a reservoir filled of
quiescent and incompressible liquid of density ρ and viscosity μ.

In experiments the air is injected through a capillary tube with a 2 mm inner radius
and 40 cm length, fed by a pump from a tank and a programmable syringe pump,
that maintained a constant flow, has already been shown in a previous work (Corchero
et al. 2006). The purpose of using two coupled pumps is to prevent the entry of liquid
into the capillary tube when liquid is injected and to measure very accurately the
flow can be performed in each test. The aquarium pump passes through a bypass
valve its output to the syringe pump, then it joins the capillary tube as shown in
Fig. 1. The bubbles are generated by injecting controlled air into a tube with periodic
corrugations filled of viscous and non viscous liquids.

The process of growth and detachment was video recorded. Subsequently, each
video was digitized to have photos of events every 1/30 s. The experiments were
performed by using transparent plastic tubes with different periodic corrugations
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Fig. 1 Schematic array of the programmable syringe pump and the aquarium pump

and different diameters. Which were coaxially connected on the capillary pipes,
perfectly upright and centered.

The liquids level in the container was always =100 mm, and its dimensions of
length, width and height were 10 × 10 × 30 cm respectively.

The liquids used for the experiments were glycerin and honey for the viscous case
and water for the near inviscid case.

At a temperature of about 25 ◦C the glycerin properties used are density ρ =
1260 kg/m3, μ = 1.2 Pas and surface tension σ = 6 mN/m. On the other hand, the
honey properties depend on the type of honey at use, in this case ρ = 1413 kg/m3,
μ = 10 Pas and surface tension σ = 33 N/m.

The same experiments were performed with water at a temperature of about 25 ◦C,
the properties of water at that temperature are ρ = 998 kg/m3, μ = 1.002 mPa and
surface tension σ = 72.8 mN/m.

3 Results and Discussions

The corrugated tube walls have a great friction which causes the bubbles to growth
slowly, ip to they reach a volume that allows the buoyance force equals to the force
exerted by the viscous drag of the walls.

In this work it can be seen as in other earlier works that the volume bubble increases
as the pipe radius, R is reduced, where R is the mean distance of the corrugate tube
walls from the center and R/a is the dimensionless radius. The ratio increases non
linearly with the capillary number growth and is faster than that found in a semi
infinite or conical vessel (Ortiz et al. 2009; López-Villa et al. 2011).

In experiments with glycerin when R/a = 3.7 and the corrugation wavelength is
c/a = 7.33 it was observed that the film thickness in between the bubble and the tube
wall increases with the volume of the bubble, i. e., the capillary number increase, as
shown in Fig. 2.

When the Bond number is constant and the Capillary number changes, by varying
the flow provided by a programmable syringe pump, we found the behavior shown
in Fig. 3. The volume grows in a near linear form with the increase of the capillary
number (the flow rate increase), the behavior is shown for R/a = 3.7 and Bo = 0.2.

Figure 4 shows the bubble profiles with the values used in Fig. 3.
Others experiments were bubble performed at constant flow rate and diameter,

with variations only in the wavelength of the corrugations, values were R/a = 4.5,
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Fig. 2 plot of the capillary number against the dimensionless film thickness for in dimensionless
radius R = 3.7 of corrugated tube and a wavelength c/a = 7.33 and a Bond number Bo = 0.2

Fig. 3 Plot of the dimensionless bubble volume versus Ca, with R/a = 3.7 and Bo = 0.2

Fig. 4 Profiles of bubbles growing into tubes with wavelength c/a = 7.33, dimensionless radius
R/a = 3.7 and Bo = 0.2 with different capillary numbers
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Fig. 5 Plot of the bubble volume versus the number of bubbles generated each minute, with
R/a = 3.7, Bo = 0.2 and Ca = 10.64

Fig. 6 Bubble profiles growing in tubes with c/a = 6.4, 11.0 and 15.1, dimensionless radius
R/a = 4.5, Bo = 0.2, Ca = 10.64. Number of bubbles/min = 274, 221, 214, Vol/a3 =
182.5, 226.6, 233.3

flow rate 25.28 cm3/min, Bo = 0.2, Ca = 10.64 and c/a = 6.4, 11.0 and 15.1.
In such experiments it was found that the bubbles reached a maximum volume at a
function of the wavelength. When this distance is large, the bubble attains a volume
greater than the reached when the wavelength is shorter. The bubble generation rate
is a function of the period of corrugation thus if we know the flow rate and know this
rate, we can know the volume of the bubbles. As a consequence the rate at which
bubbles are generated decreases linearly with the increasing volume of the bubbles,
this is shown in Figs. 5 and 6. We can observe the bubbles profiles with different
wavelength, the same used in the plot of the Fig. 5.

We observed different bubbles profiles growing in tubes with corrugated walls at
constant flow rate, in which Ca = 10.64, Bo = 0.2, and the dimensionless radii are
R/a = 3.7, 4.5 and 5.5 (see Fig. 7). In experiments with honey we also observed
dimensionless profiles similar to those observed with glycerin, but with flow rate
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Fig. 7 Bubble profiles growing in tubes, are maintained at a constant flow rate of 25.28 cm3/min
with dimensionless radii R/a = 3.7, 4.5, 5.5, Bo = 0.2 and Ca = 10.64

Fig. 8 Bubble profiles in tubes growing at constant flow rate of 25.28 cm3/min with dimensionless
radii R/a = 3.7, 4.5, 5.5, 0.42 and Bo = 0.42 and Ca = 127.72

of magnitude 25.28 cm3/min (equal to that used with the glycerine) are bubbles of
larger volume obtained for Ca = 127.72, Bo = 0.42, and dimensionless radii are
R/a = 3.7, 4.5 and 5.5, respectively, see Fig. 8.

Experiments made with water at a flow rate of 25.28 cm3/min show a different
behavior to that of highly viscous liquids, experiments were performed with Ca =
0006, Bo = 0.134, and the dimensionless radius R/a = 3.7, 4.5 and 5.5 as shown
in Fig. 9.

The bubble volume is approximately constant for a wide range of capillary number
(small capillary number), which has not been possible to identify with precision (see
López-Villa et al. 2011). On the other hand an increasing flow, the bubbles are
obtained have non-symmetrical shape see Fig. 9.

In previous works, such as Higuera (2005) and Corchero et al. (2006) we have
observed the same results with a small flow.
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Fig. 9 Bubble profiles in tubes growing at constant flow rate of 25.28 cm3/min with dimensionless
radii R/a = 3.7, 4.5, 5.5, Bo = 0.134 and Ca = 0.006

Fig. 10 Bubble profiles in water, honey and glycerin, growing in tubes with R/a = 3.7, c/a = 7.33,
at 25.28 cm3/min, Bo = 0.134, 0.2, 0.42, Ca = 0.006, 10.64, 127.72, dimensionless volume
V/a3 = 61.3, 158 and 1336 respectively

Fig. 11 Dimensionless Plot volume as a function of capillary number, Ca, with R/a = 3.7
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We also performed a comparison of the three fluids used before, maintaining
a constant flow rate of 25.28 cm3/min and a dimensionless radius R/a = 3.7 in
order to observe the difference in volume of the bubbles with a same flow rate see
Fig. 10. We plot the capillary number vs the bubble volume and we compare the
graph obtained to those reported in the literature, see Fig. 11.

4 Conclusions

We have found that the final volume of the bubbles depend on the dimensionless
numbers Bo and Ca, therefore the increased viscosity creates a bubble of a large
volume and on the other hand a greater film thickness formed between the wall and
the bubble.

When Bond and Capillary numbers are kept and the radius of the tube is decreased,
the volume of bubbles increases, it is similar to the fact when the wavelength of
corrugations is increasing.

Thus, the corrugations of the pipe are very important in the final bubble shape.
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The Cooling of a Granular Material
in a Rotating Horizontal Cylinder

Ever Góngora-Leyva, Gerardo Ruiz-Chavarría, Ángel Columbié-Navarro and
Yoalbis Retirado-Mediacejas

Abstract In this chapter we investigate the cooling of the lateritic ore moving inside
a rotating horizontal cylinder. The mineral, which has been previously milled, forms
a granular bed. Due to rotation, the granular material undergoes discrete avalanching,
whose characteristics depends either upon the angular velocity and the filling degree.
The ore enters into the cooler at a temperature of approximately 750 ≤C and after
moving along the cylinder its temperature decreases. The goal is to reduce the ore
temperature to a value around 170 ≤C, so its metallic properties are preserved. To
model this process a system of two differential equations and an algebraic equation
depending only on the axial coordinate is solved. Otherwise we present data of the
cooling in a cylinder 30 m long, a diameter d = 3 m and rotating with an angular
velocity of 6.24 rpm. We show that numerical solution exhibits a partial agreement
with experimental data.

1 Introduction

During the production of nickel, the ore is extracted from open-pit mines. After
extraction the ore is milled to convert it in a granular media (the mean diameter of
grains is 0.074 mm). In the next step the lateritic ore enters in a reduction oven where
its temperature rises. After, the ore passes through the cooler before its metallurgical
treatment. The cooler is a system consisting of a hollow steel cylinder and a basin
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filled with water (hereafter referred as the pool). The cylinder is 30 m long, has a
diameter of 3 m and the shell thickness is 16 mm. In standard operating conditions
the cylinder rotates at an angular velocity of 6.24 rpm, whereas the filling degree lies
in the range 15–25 %. The ore enters into the horizontal cylinder through a conical
cover, and then it is continually stirred and shifted from the entrance toward the exit,
with the aid of internal scrapers. The mean speed of the granular media is in the range
0.01–0.017 m/s, so the residence time lies between 30 and 50 min. An additional
feature of the scrapers is to avoid the ore to adhere to the solid walls, a fact that
hinders the heat transfer to the wall. Concerning the pool, the water is continuously
renewed with a flow rate varying from 15 to 100 m3/h. The liquid moves in the
opposite direction to the displacement of the granular material. It enters at ambient
temperature at the end of the cooler and at the far side the water has attained a
temperature lying in the range 60–85 ≤C. Besides from enhancing heat transfer, the
water has also the role to make floating the cylinder, reducing the amount of energy
to maintain it in rotation (Góngora-Leyva et al. 2012).

A frequent problem in the coolers is the inability to lower the ore temperature
from 750 ≤C to a value around 170 ≤C, which is the design temperature (Valle-Matos
et al. 2000a,b). The final temperature of the granular media depends on variables like
the water flow rate, the ore mass flow and the angular velocity of the cylinder. The
latter factor is closely related to avalanching because this phenomenon produces a
mixing of material inside the cylinder.

Góngora-Leyva et al. (2007, 2009) deduced a model based on the energy bal-
ance for a volume element, from which a system of partial differential equations is
derived. The system is supplemented with other equations that relate the heat trans-
fer coefficients with some physical parameters. Following the way of some previous
works, we assume that only the axial coordinate is relevant, then the system is trans-
formed into one of ordinary differential equations. This is the case of the works by
Wang et al. (2010) and Xiaodong et al. (2012) where the cooling process of ash is
investigated. Their simplified model predicts and explains some important features
of the system they studied.

The chapter is organized as follow: in Sect. 2 some details of the system under
study are given, in particular, the features of granular and liquid flows. In Sect. 3 the
system of equation for heat transfer is outlined. In Sect. 4 some data obtained for
a cooler 30 m long are present and a comparison with numerical solution is made.
Finally, the conclusions are drawn in Sect. 5.

2 Description of the Cooling System

The Fig. 1 shows the cross section of the system under study, formed by the reduced
lateritic ore (1), the rotating horizontal cylinder (2), the pool (3) and the surrounding
air (4). The ore is discharged into the cooler at a temperature of 750 ≤C. For this
temperature the modes of heat transfer involved in the ore cooling are conduction,
convection and radiation.
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Fig. 1 Cross section of the
cooler. The reduced ore (1)
partially fills the rotating
cylinder (2). Under standard
operating conditions the
filling degree is the range
from 15 to 25 % and the
angular velocity is 6.24 rpm.
Otherwise, the cylinder is
partially submerged in a pool
(3) and it is contact with the
surrounding air
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In the system under study two flows exist. The first one is the motion of the
granular bed, which is a mixing of a translation in the axial direction and a succession
of avalanches induced by the rotation. The avalanching is characterized by a critical
angle (θc) and a stop angle (θs), which determines the position of the granular bed
inside the cylinder. According to a work Liu et al. (2010) in a system with low rotation
and with irregular grains (they used rice grains), the value of θs is dependent on the
filling degree, while the critical angle is nearly constant. Due to the difficulties to make
measurement in the plant, the evolution of the granular bed has been investigated in
a small rotating cylinder, its diameter being 30 cm and in which the front and back
ends are covered by Plexiglas plates. Two different amounts of reduced ore were put
inside the channel, which correspond to filling degrees of 10 and 20 %. Evolution
of surface of the bed has been recorded with a video camera. The images have been
digitized and the angle of the surface of the granular bed is measured. The results
show that θc ∞ 45≤ for a filling degree of 10 %, while θc ∞ 35≤ for a filling degree
of 20 %. For both cases the stop angle θs is less than 10≤.

The second flow is the motion of the water from B to A (see Fig. 2). The liquid
is injected into the pool at ambient temperature in the region where the ore leaves
the cooler. As the water moves the temperature increases attaining a value between
60 and 85 ≤C at point A. Finally the water leaves the basin. The water motion is a
forced convection used to flush thermal energy outside the system.

3 A Model for the Cooling Process

In order to construct a model for describing the ore cooling we start from the heat
equation:
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Fig. 2 Upper view of the cooling system. The lateritic ore moves from left to the right, whereas
the water in the basin flows in the opposite direction. For this cooling system the water flow rate
lies in the range 15–100 m3/h

∂T

∂t
+ →u · ∇T = χ∇2T + q̇ (1)

where →u is the velocity of the fluid (or granular media), T is the temperature and q̇
stands for heat sources and sinks.

To derive the model some assumptions must be made. First, we assume that the
process is stationary, so the time derivative vanishes. This assumption is well verified
because most of time the operating conditions of the cooler remain unchanged.
Second, we assume (Wang et al. 2010) that temperatures of the granular bed, the
cylinder and the water have a weak dependence on the radial and angular coordinates.
This implies that solution depends only on the axial coordinate. Measurement in plant
show that this assumption is reasonably fulfilled in certain cases. Third, we assume
that heat transfer between two adjacent control volumes along the axial direction is
negligible and consequently the laplacian in Eq. 1 also vanishes. These assumptions
lead to a system of two differential equations and an algebraic equation:

ṁoCo
dT

dx
= αwco Awco (T − Tw) + αwnco Awnco (T − Tw) (2)

αwco Awco (T − Tw) + αwnco Awnco (T − Tw) = αl Ac
(
Tw − Tl

)
(3)

ṁlCl
dTl

dx
= αair Al (Tl − Tair ) + αl Ac (Tw − Tl) + Qevp (4)

In Eqs. 2–4 subscripts w, o, l and air refer respectively to the solid wall (cylinder), the
granular bed (ore), the liquid (water) and the air, T is the temperature, ṁ is the mass
flow (of the ore and the water), Awco is the arc length where the ore and the cylinder
cross section are in contact, Awnco is the arc length of the cylinder cross section
not in contact with the ore, Ac is arc length where water is in contact with cylinder
cross section, α represents the coefficient of the heat transfer and Qevp is the heat
transferred by evaporation. The variable without subscript T is the ore temperature.
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Table 1 Temperature of the ore at x = 30 m (exit of the cooler)

ṁo = 20
experiment

ṁo = 20
model

ṁo = 34
experiment

ṁo = 34
model

ṁl = 50 144 ≤C 149 ≤C 214 ≤C 250 ≤C
ṁl = 100 132 ≤C 148 ≤C 188 ≤C 248 ≤C

The temperature is a decreasing function of the water flow rate and an increasing function of the
ore mass flow. The agreement between numerical solution and measurements in plant is good only
for the case ṁo = 20 and ṁl = 50

The coefficients of heat transfer were taken from a work of Góngora-Leyva (2013).
As already stated in the introduction, convection, radiation and conduction are taken
into account. The conduction is the dominant mode for heat transfer of the ore in
contact with the cylinder, convection occurs in the gases that are in contact with
the ore and radiation is present because the high temperature of the ore. The heat
absorbed by the cylinder is transferred to the outer wall by conduction. For the heat
transfer between the cylinder and the water we consider that the dominant mode
is convection and that boiling doesn’t exist. We assume that the cylinder is always
covered with a thin layer of water in the region that is not inside the pool and that the
liquid layer rotates at the same angular velocity as the cylinder. Then, the convection
in water is the same as in a Couette flow (Incropera and Dewitt 1999). Finally, the
heat transfer from the water to environment involves convection and evaporation of
the water.

In order to obtain a solution of Eqs. 2–4 we need to impose two boundary con-
ditions. The first one is the ore temperature at the entrance of the cooler (x = 0),
which has been set to 750 ≤C. The second condition is the temperature of the water
at x = 30, which is set to 30 ≤C.

The solution of the mathematical model (Eq. 2–4) was calculated with a fourth
order Runge-Kutta method. The domain we use is 30 m long and the step is
Ωx = 0.01, then the solution is calculated in 3,000 points. The numerical code
was implemented in the free software Scilab. The numerical data were calculated for
values of ore mass flow and water flow rate respectively in the ranges 15–44 tons/h
and 40–100 m3/h.

4 Numerical Solution and Measurements in Plant

In Table 1 we present data (taken in plant) of the ore temperature at the exit of the
cooler (x = 30) for two different values of ore mass flow (20 and 34 tons/h) and
two values of water flow rate (50 and 100 m3/h). We also include the results of the
numerical solution. It must be stressed that final temperature is a decreasing function
of the water flow rate and an increasing function of the ore mass flow. In fact, if
water flow rate is kept constant we see that a change in the ore mass flow leads to
important changes in the final ore temperature. The data of table I show that when
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Fig. 3 Final temperature of the ore versus ore mass flow. Continuous curve corresponds to a water
flow rate of 50 m3/h whereas dashed line corresponds to a water flow rate of 100 m3/h. Both curves
are very similar, indicating that, according to the numerical model, the water flow rate has a weak
influence in the cooling process

Fig. 4 Curves of final temperature of the ore T(30) versus water flow rate. a ṁo = 34 tons/h
(continuous line) and b ṁo = 20 tons/h (dotted line). An increase in the water flow rate leads to a
small decrease in the final temperature

ṁo changes from 20 to 34 tons/h the increase of the final ore temperature is greater
than 50 ≤C. The comparison between measurement and numerical solution show an
agreement only for the case ṁo = 20 and ṁl = 50. In the remaining cases the model
overestimates final ore temperature for more than 10 ≤C.

The Fig. 3 shows the curves of final temperature of the ore as a function of ṁo in
two cases, ṁl = 50 m3/h (continuous lines) and ṁl = 100 m3/h (dotted line). Both
curves are very similar, indicating that an increase in the water flow rate has a weak
influence in the cooling of the lateritic ore.

In Fig. 4 we present the curves of the final temperature T(30) versus water flow
rate ṁl . The continuous line corresponds to an ore mass flow ṁo = 34 tons/h, while
the dashed line corresponds to an ore mass flow ṁo = 20 tons/h. In both cases the
increase of the water flow rate from 50 to 100 m3/h leads (according to the numerical
model) to a change of the final temperature T(30) of only few degrees.
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Fig. 5 Data of water temperature Tl versus x. a ṁo = 34 tons/h and ṁl = 50 m3/h, (�) mea-
surements in the left side, (*) measurements in the right side, (continuous line) data obtained from
numerical solution, b ṁo = 34 tons/h and ṁl = 100 m3/h, (o) measurement in the left side, (Ω)
measurement in the right side, (continuous line) data obtained from numerical solution

Some measurements of the water temperature were made at different points along
the pool, using PT-100 probes. Temperatures were recorded to the left and to the
right of the cylinder (see Fig. 1). We have encountered a difference in data obtained
along right and left sides, showing that there is a dependence of the cooling on the
angular coordinate. This effect is related to the fact that surface of granular bed
does not remain horizontal and also to the existence of discrete avalanches. However
differences are only of few degrees and consequently one dimensional model can
retain some important features of the cooling process. In Fig. 5 we present the data of
water temperature Tl versus x and we include the prediction of the numerical solution.
The Fig. 5a shows the temperature profile for an ore mass flow of 34 tons/h and a
water flow rate of 50 m3/h. There is an important difference between data obtained
from measurement and the prediction of numerical solution, however, prediction
of temperature of water at x = 0 is close to the experimental value. With respect
(Fig. 5b), the ore mass flow and the water flow rate are respectively 34 tons/h and
100 m3/h. The agreement between experimental data and numerical solution is good
for 5 < x < 15. In this case, the temperature of water at x = 30 is different from the
assumed value Ta = 30 ≤C.



204 E. Góngora-Leyva et al.

Fig. 6 Temperature profile of the granular bed, ṁl = 50 m3/h a ṁo = 34 tons/h (continuous line)
and b ṁo = 20 tons/h (dashed line). A reduction in the ore mass flow allows to a reduction of the
temperature of the ore at the exit of the cooler

Finally, in Fig. 6 we present the ore temperature versus x for water a flow rate
equal to 50 m3/h and two different values of ore mass flow, namely ṁo = 34 tons/h
and ṁo = 20 tons/h. In both cases the temperature at x = 0 is 750 ≤C. But the final
temperature is different, for the first case T(30) = 250 ≤C and for the second case
T(30) = 149 ≤C.

5 Conclusions

In this work we have presented data measured in situ and results of a model for
the process of the cooling of lateritic ore occurring during the production of nickel.
This simplified model is based on a system of two ordinary differential equations
and an algebraic equation. Despite its simplicity the model allows to make some
predictions for improving the efficiency of the cooler system. As a result of the
numerical simulation we have found that an increase in the mineral flow and a
decrease of the water flow rate lead to an increase of the temperature of the mineral
at the cooler outlet. Therefore it is recommended to work with flows of mineral
of 20 t/h and a water flow rate around 50 m3/h. On the other side It was found in
experimental data that the temperature of the cooler (the rotating horizontal cylinder)
have a dependence on the angular coordinate, then an improvement of this model
could be the modeling of the cooling process with a system of partial differential
equations dependent on two coordinates (x, θ).
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Experimental Study of Mass Flow Rate in a Silo
Under the Wall Width Influence

D. A. Serrano, D. Cabrera, G. J. Gutiérrez and A. Medina

Abstract The mass flow rate, ṁ, associated with the lateral outflow of dry,
cohesionless granular material through circular orifices of diameter D made in verti-
cal walls of silos was measured experimentally in order to determine also the influence
of the wall thickness of the silo, w. Geometrical arguments, based on the outflow
happening, are given in order to have a general correlation for ṁ embracing both
quantities, D and w. The angle of repose appears to be an important characterization
factor in these kinds of flows.

1 Introduction

Since the first studies by Hagen (1852), it has been well known that the mass flow rate,
ṁ, of the gravity flow of dry granular material emerging from the bottom exit of a silo
scales essentially as ṁ ≤ ρg1/2 D5/2 where ṁ is the mass flow rate (grams/second),
ρ is the bulk density, g is the acceleration due to gravity and D is the diameter of the
circular orifice. This result contrasts with that occurring in liquids where the mass flow
rate depends on the level of filling above the orifice. Moreover, in granular material
a continuous flow occurs provided D > 6dg , where dg is the grain’s diameter. After
the fundamental study of Hagen was established, many researchers have proven the
validity of his law, and slight modifications have also been proposed in order to
improve the agreement with the experimental data. See, for instance Beverloo et al.
(1961) and Ahn et al. (2008).

Despite the enormous utility of Hagen’s law only a few studies have conducted
to tests its validity for the flow of grains from exit holes located in the vertical wall
of a silo Bagrintsev and Koshkovskii (1977) and Sheldon and Durian (2010). The
aim of this work is to study experimentally the mass flow rate when the exit holes
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are located in the vertical walls of the silos for different orifice sizes, D, and several
wall thicknesses, w. As can be seen afterwards, the thickness of the wall can be used
to control the grains dosage but this flow can be arrested if w overcomes a critical
value that depends also on the angle of repose the granular material.

In order to reach our goal, the division of this work is as follows: in next section
we give a short review of experimental studies of the mass flow rate where the
orifices were made in lateral walls. After, in Sect. 3, we report new experiments
where the influence of D and w was studied. In Sect. 4 we propose, on the basis
of our experimental results, a correlation that embraces both changes in D and w.
In Sect. 5 we discuss some new results based on this new correlation and finally, in
Sect. 6, we give the main conclusions of this work.

2 Previous Work

To our knowledge, Bagrintsev and Koshkovskii (1977) were the first researchers who
studied experimentally the problem of the gravity driven lateral outflow of granular
material in vertical cylindrical silos with vertical walls. They used oval and circular
exit holes made in transparent plastic walls and in relation with the wall thickness
uniquely observed that “the outflow capacity decreases as wall thickness increases”.
Later, other authors did experiments in silos with rectangular exit holes 6–9 and
circular exit holes. Bagrintsev and Koshkovskii (1977) and Choudary and Kesava
(2006) and Kumar and Kesava Rao (2006) have found that apparently the better
correlation among ṁ and D was of the form ṁ ≤ ρg1/2 D7/2, meanwhile Davies and
Foye (1991) and Sheldon and Durian (2010) reported measurements of the mass flow
rate in silos with lateral orifices that follows a relation of the type ṁ ≤ ρg1/2 D5/2 (it
is important to comment that in some studies Bagrintsev and Koshkovskii (1977) and
Davies and Foye (1991) D is essentially a hydraulic diameter). Nevertheless, none
of the referred works have analyzed systematically the effect of the wall thickness
on ṁ.

In order to reach a better understanding of the behavior of the mass flow rate
in lateral circular exit holes we performed a series of experiments, using circular
orifices, where we mainly analyzed the influence of D and the wall thickness, w,
on such a quantity. Clearly, wall thickness will be important for the occurrence of
the flow because if the silo wall is very thick the outflow of granular material will
be arrested. Detailed experiments given in the next section allow quantify these and
other facts.

3 Mass Flow Rate Measurements

A. Bottom exit holes

It is well known that the wall thickness does not affect substantially the value of
ṁ0 the mass flow rate when the exit hole is located at the bottom of a silo. In Fig. 1 we
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(a) (b)

Fig. 1 Snapshots of the outflow of granular material: a thin bottom wall and b thick bottom wall

Fig. 2 Plot of the mass flow rate through horizontal orifices, ṁ0, as a function of ρg1/2 D5/2. Data
fit the Hagen’s law ṁ0 = 0.48ρg1/2 D5/2. Error bars are of 4 %

show a jet of sand (mean diameter dg = 0.3 mm and bulk density ρ = 1.5 gr/cm3)
that crosses through circular orifices in an acrylic-made box with a slim wall (Fig. 1a)
and a bold wall (Fig. 1b).

In Fig. 2 we show the experimental plot of ṁ0, as a function of ρg1/2 D5/2, for
two different wall thicknesses: w = 0.3 cm and w = 0.9 cm.

In this figure we observe that both cases fit very well the Hagen’s law, and thus
the effect of w does not is appreciated. The relation that follows the straight line is

ṁ0 = aρg1/2 D5/2, (1)
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(a) (b)

Fig. 3 Depict of the silo used in experiments. a a schematic of the silo where the staggered exit
holes are shown. Orifices of equal diameter are at the same height. b Top view of the silo showing
the four different wall thickness

where the dimensionless constant has the value a = 0.48. Afterwards we will discuss
more about our measurement procedure of ṁ and its accuracy degree.

B. Lateral exit holes

In order to reveal the influence of the wall thickness on the mass flow rate in
silos with vertical walls, experiments were made using an acrylic box, 50 cm height
and 10 × 10 cm2 inner cross-section, as the one shown in Fig. 3a the positions of the
staggered orifices of different diameter D are sketched. As is sketched, orifices were
made at the middle part of each wall. Diameters of the exit holes were: D = 0.6 cm
at a height H = 5 cm from the bottom, D = 0.7 cm at H = 15 cm, D = 0.8 cm at H
= 25 cm, and D = 1.0 at H = 35 cm. The circular orifices were made in each wall
of the silo; in experiments four different wall thicknesses were used: w = 0.3, 0.4,
0.6 and 0.9 cm. In Fig. 3b we show a top view of the silo with the four different wall
thicknesses. Thus, an exit hole of a given diameter is at the same height H in each
wall.

A schematic of the experimental procedure employed to get the mass flow rates is
shown in Fig. 4: a reservoir attached to a force sensor model Pasco C I -6537 with a
resolution of 0.03 N was located close to the wall and data of weights were acquired
each 1 s for each orifice in each wall, i.e., in each experimental run only one orifice
was opened.

To understand our measurement procedure is crucial to quantify the involved
forces in the fall of sand. In quantitative terms, suppose that the sand is dropping at
a steady rate of ṁ gr/s and that it takes t1 seconds for the sand particles to hit the
reservoir. The velocity of sand hitting the compartment would be essentially v = gt
(in the simplest case we have neglected the initial velocity of grains just at the exit of
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Fig. 4 Schematic of the
experimental setup to measure
the mass flow rate of granular
material through circular
orifices in vertical walls

Fig. 5 Plot of the weight of the granular material in the reservoir of the apparatus depicted in Fig. 4,
F , as a function of time. In the inset is the plot of ṁ0 as a function of time. Error bars are of 4 %.
Notice that the several measurements of ṁ0 are around a constant (horizontal line)

the hole). In an infinitesimal time, dt , the change in momentum experienced by the
reservoir would be vṁdt , so that the impulsive force experienced by the reservoir
would be F = vṁdt/dt = ṁv = ṁgt1. This force corresponds to a stepwise increase
in the weight in the reservoir and for a time of measurement tm , longer than t1, it
will occur a succession points as that shown in plot of Fig. 5. Finally, we can plot
ṁ as a function of time. See inset of Fig. 5. There, is appreciated that ṁ is near a
constant. Thus, actually the time-average of ṁ is the quantity that we report as the
mass flow rate. For example, the mean value of this quantity was computed from
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Fig. 6 Plot of the mass flow rate, ṁ, as a function of the wall thickness w. Each fit to experimental
data corresponding to different diameters was made by using the relation (2) which is discussed
afterwards. Error bars are of 4 %)

ten independent measurements for each couple of values (D, w). It is important to
comment that no dependence on the level of filling of the silos was detected in our
mass flow rate measurements.

In Fig. 6 we show the plot of ṁ vs w for different diameters. It is noticed that for
a fixed value of D there is a strong dependence of the mass flow rate on the wall
thickness w. In some cases, for instance, when D = 0.6 cm in each wall, the outflow
is arrested if w ∞ 0.9. In Fig. 6 there is a set of non linear fits which will be discussed
in the next section on the basis of a simple geometrical correlation.

4 A Geometrical Correlation

From the results reported in plot of Fig. 6 it is clear that the wall thickness w also
modulates ṁ. As an illustration, in Fig. 7a we show visually such a behavior: in a thin
wall the outflow is strongest than in a thick wall, meanwhile in Fig. 7b it is observed
that the flow is strongest as the height increases because the diameter of the staggered
holes also increases.

All these results allow us to propose the next model. As can be seen in Fig. 8,
we show schematically the lateral view of the zone where there is a hole of size D
in a vertical wall of a silo Fig. 8a. In Fig. 8c is more evident that always there is a
natural angle of wall, α, which can be defined as α = arctan(D/w). In this same
figure is observed that if there is no flow, due to the wall thickness is wide enough,
the granular material maintained there will attains its angle of repose, θr . Thus, an
outflow is occurs as long as (α −θr ), i.e., (see Fig. 8a and Fig. 8b) and conversely the
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(a) (b)

Fig. 7 Snapshot of the outflow of sand: in a we show the effect of the wall thickness on the mass
flow rate because the two holes have the same diameter but in the thinner wall the flow is strongest.
b in the staggered holes the mass flow rate increases due to the diameter of the holes in a same wall
increase

outflow should be arrested if θr → α. Consequently, the mass flow rate itself must be
proportional to (α − θr ), i.e., ṁ ≤ (α − θr ).

Another important feature to get a general relation for ṁ is that the mass flow rate
through vertical holes is a fraction of ṁ0(the mass flow rate through bottom holes).
Consequently, the mass flow rate dependence on D and w would be a relation of the
form

ṁ = cṁ0

[
arctan

(
D

w

)
− θr

]
, (2)

where c is a dimensionless fitting parameter.
In order to show if the Eq. (2) is a correct correlation, in Fig. 9 we have plotted ṁ

as a function of ṁ0[α − θr ], where ṁ0 is given by Eq. (1) and also was measured.
Here, we used the experimentally measured angle of repose θr = 33∇ = 0.57 rad.
This angle was measured by using the circular heap method (Wieghardt and Ann,
1975).

The direct comparison between ṁ and ṁ0[α − θr ] yields a linear relation of the
form
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(a) (b) (c)

Fig. 8 Schematic lateral view of the exit hole in a vertical silo. In a the wall thickness is ideally
null, meanwhile in b the wall thickness satisfies that α > θr and a granular outflow proportional to
(α − θr ) occurs. Finally, in c the wall thickness produces the condition α < θr and consequently
there is no flow. The granular flow is arrested in such a form that the slope of the granular material
in the exit hole is featured by the angle of repose

Fig. 9 Plot of the mass flow rate ṁ, as a function of ṁ0[α − θr ]. Data fit the straight line and
produces the relation ṁ = 0.23ṁ0[α − θr ] = 0.23ṁ0[arctan(D/w) − θr ]. Error bars are of 4 %

ṁ = 0.23ṁ0

[
arctan

(
D

w

)
− θr

]
, (3)

and the different sets of data (taken from Fig. 6) fit very well this straight line (in
our experiments the value of c was c = 0.23, but, as in the case of the Hagen’s law,



Experimental Study of Mass Flow Rate in a Silo Under the Wall Width Influence 215

this proportionality factor must be determined depending on the different materials,
grains and silo walls, involved in the flow).

Giving all these results, we can conclude that Eq. (2) is a universal curve and
that, essentially, in this work we would need of a unique experiment to fix ṁ0 and
then determine the main parameter of such equation (c), because the other point is
the value ṁ0[α − θr ] = 0. Giving two points, always it is possible to depict the
corresponding straight line, as the one shown in Fig. 9.

5 Other Results

The results of the previous section give us the confidence to explore another impor-
tant consequences of Eq. (2). The first one is that Eq. (2) allows us to determine the
critical value, wc, for which the outflow will be arrested, as was discussed in Sect. 1.3.
Graphically, the outflow will be arrested when ṁ0[α − θr ] = 0 or if α = θr . See
Fig. 9. Equation (2) also allows us to find the critical value of w for the arrest, as a
function of D and θr , this is

wc = D

tanθr
, (4)

By employing the four values of D used in the experiments and bearing in mind
that θr = 33∇ we have verified that this relation predicts the precise thickness wall
for which the outflow will be arrested.

A second consequence takes in to account that ṁ0 = aρg1/2 D5/2, and by using
it in Eq. (2), we have that

ṁ0 = c∼ρg1/2 D5/2[arctan(D/w) − θr ] (5)

where the dimensionless parameter c∼ here takes the value c∼ = ac = 0.11. The
Eq.(5) is the explicit formula of the mass flow rate with simultaneous dependence
on D and w. An expansion in series of (D/w) < 1 transforms Eq. (5) into

ṁ = c∼ρg1/2
[

1

w
D

7
2 − θr D

5
2 + O(D

11
2 )

]
. (6)

In Eq. (6) the term proportional to D7/2 will be dominant if the wall thickness
satisfies the condition

D

θr
> w, (7)

http://dx.doi.org/10.1007/978-3-319-00116-6_1
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this condition is commonly fulfilled when the wall thickness is small respect to the
hole diameter. Due to it, experiments of Bagrintsev and Koshkovskii (1977) and
Choudary and Kesava (2006) Kumar and Kesava Rao (2006) where were used very
thin walls, have shown that apparently the better correlation among ṁ and D takes
the form ṁ = c∼ρg1/2 D7/2/w.

6 Conclusion

In this work we studied experimentally the problem of the mass flow rate of granular
material through circular orifices in vertical walls of silos. Specifically, we have
studied the dependence of ṁ on D and w by using well characterized beach sand. To
our knowledge, this is the first time that a systematic study of the effect of the wall
thickness on the mass flow rate has been done. Our results show that Eq. (2), based in
geometrical arguments, describes very well the influence of w and D on the mass flow
rate, which can be considered a general formula including both quantities. In such an
equation the role of the angle of repose is fundamental to describe the occurrence of
the outflow of grains and its arrest. We gave also evidence that the use of Eq. (2) only
requires to measure ṁ0(if α and θr are known) to depict the corresponding straight
line. Moreover, when the wall thickness is small respect to the hole diameters, the
explicit dependence on D yields that ṁ0 = ρg1/2 D(7/2)/w; this later result has
been reported previously in some experiments of vertical orifices Bagrintsev and
Koshkovskii (1977), Choudary and Kesava (2006) and Kumar and Kesava Rao (2006)
and is obtained straightforward from our model. Finally, some studies have shown
that the discharge rates from bottom exit decrease with the increase in particle size
Hersam (1914). In such a case, instead the term D5/2 in Eq. (1), it has been introduced
the annular zone effect through the term (D − kdg)

5/2 (where k is a constant);
however, this assumption and the existence of many different orifice shapes requires
the realization of more studies in order to have a general formula valid in a wide
range of practical configurations. Work along these lines is in progress.
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Surface Tension and Interfacial Tension
Measurements in Water-Surfactant-Oil Systems
Using Pendant Drop Technique

A. H. Cortés-Estrada, L. A. Ibarra-Bracamontes, A. Aguilar-Corona,
G. Viramontes-Gamboa and G. Carbajal-De la Torre

Abstract The study and modeling of physical properties such as surface tension and
interfacial tension are important factors in the formation and stability of fluid sys-
tems such as emulsions. The present work shows the experimental results for surface
tension and interfacial tension measurements in water and/or oils systems in the pres-
ence of surfactants, using the pendant drop technique. Distilled water and straight-
chain alkanes such as hexane, dodecane and hexadecane were used. The surfactants
employed were sodium dodecyl sulphate (SDS) and sorbitan monooleate (SPAN 80),
which are hydrophilic and lipophilic surfactants respectively. Some results show the
dependence of surface tension or interfacial tension with respect to the surfactant
concentration, other results were obtained by varying the temperature in a range
from 20 to 60 ◦C.

1 Introduction

Research in surface physics is of relevance to many scientific areas such as Chem-
ical Engineering, Materials Sciences, Physics, Electronics, among others. Surface
Tension is one of the most widely used thermophysic property for surface character-
ization. Moreover, many industrial applications require (as part of their technological
developments) the surface characterization of water–oil interfaces in the presence of
other additives; this is the case of some processes in the Paint, Agrochemical, Oil
and Cosmetics industries.

Several investigations have been carried out in the field of surface and
interfacial tension of fluid systems. It is worth mentioning the work of Goebel and
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Lunkenheimer (1997), where surface tension between water and a series of n-alkanes
(from pentane to hexadecane) were presented for a single temperature (22 ◦C). In
Zeppieri et al. (2001), surface tension between water and different alcanes (from
hexane to dodecane) for a range of temperatures between 10 − 60 ◦C were reported.
In turn, Rolo et al. (2002) reported surface tension for different kind of oils and
binary mixtures of them.

The objective of this work is to analyse the experimental results obtained from
surface tension measurements on different alcanes such as hexane, dodecane and
hexadecane at different temperatures, as well as interfacial tension results between
the aforementioned alcanes and water for different surfactant concentrations. The
main purpose is to provide information that contribute to the study of emulsion type
fluid systems, in particular, the surfactants SDS and Span 80 were selected due to
their wide applicability in emulsions.

2 Methodology

In order to obtain surface and interfacial tension measurements an optical tensiometer
was used. Image analysis of an emerging (pending) droplet was carried out so the
determination of the surface parameters was achieved through the geometry of the
drop and its relationship with surface.

The pendant drop technique allows for the determination of the surface or inter-
facial tension from distinct characteristics of the droplet profile. This calculation
requires the solution of the Young-Laplace equation, which for the case of a pending
drop can be expressed as:

2H = −τρg
σ

y + 2
R0

where y is the vertical coordinate, Ω ρ is the density difference between both fluid
phases, R0 is the curvature radius of the drop bottom, H refers to its average curvature
(which is a function of y) (Zeppieri et al. 2009). Figure 1 shows a sketch of the
experimental setup used to obtain the measurements under controlled temperature
conditions.

Different configurations for the dispersed phase injection may be used depending
on the type of measurement, as shown in Fig. 2. For surface tension measurements a
straight needle was used, while a curved “U” shaped immersed needle was selected
for the interfacial tension measurements.

Once the droplet is fully developed for each case, Image Analysis was carried
over in order to determine the curvature parameters, which complemented with the
density differences determine the interfacial and surface tension. The fluid phases
were deionized water, three types of oils: hexane, dodecane and hexadecane. The
selected surfactants were: Sodium Dodecil Sulfate (SDS), which is a hydrophilic
(affinity for water, i.e. soluble in water) surfactant; Sorbitan Monooleate (Span 80),
which is a lipophilic (affinity for oil, i.e. soluble in oil) surfactant.
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Fig. 1 Experimental setup for the surface and interfacial tension measurement using the pending
drop technique

Fig. 2 Sketch of the drop
injection depending on
the type of measurement:
a surface tension, b interfacial
tension

(a) (b)

Next, Table 1 shows the corresponding values for density ρ, surface tension
Δ and interfacial tension between water–oil γ reported in the literature for the dif-
ferent systems studied here Pardo et al. (2001); Vargaftik et al. (1983); Giner et al.
(2007); Rolo et al. (2002) and Zeppieri et al. (2001).

For the experiments under different controlled temperatures, the fluid densities
were selected from Pardo et al. (2001), as well as the corresponding values of the
surface and interfacial tension were compared from Giner et al. (2007); Rolo et al.
(2002); Zeppieri et al. (2009); Goebel and Lunkenheimer (1997).
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Table 1 Physical properties for the selected fluids at 20 ◦C

Fluid ρ(gr/cm3) Δ (mN/m) π (mN/m)

Water 0.99823 71.8 –
Hexane 0.6616 18.40 50.80
Dodecane 0.7680 24.47 52.87
Hexadecane 0.7750 28.12 53.10
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Fig. 3 Graph of surface tension (σ ) versus temperature (T) for the oils: hexane, dodecane and
hexadecane

The experimental results are presented in the next section. The values shown in
the different figures correspond to averages of five independent experiments carried
out under the same conditions. The error bars were determined from the sample
standard deviation divided by the square root of the sample size.

3 Results

The first measurements correspond to surface tension in the range of temperature
from 20 to 60 ◦C. Figure 3 shows the graph of surface tension versus temperature for
three different types of oil, such as hexane, dodecane, and hexadecane.

In Fig. 3 it can be seen that as the temperature increases, the surface tension
decreases. The rate of change of surface tension with respect to the temperature
is different for the three different types of oils that were studied. In the case of
hexane a rate of change of −0.058 mN/m ◦C was obtained, while for dodecane the
rate of change was −0.081 mN/m ◦C, and for hexadecane the rate of change was
−0.092 mN/m ◦C. These results indicate that as the linear chain length increases, a
larger slope in the surface tension is obtained as a function of temperature.
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Fig. 4 Graph of interfacial tension (γ ) versus temperature (T) for water–hexane interface

Giner et al. (2007) reported surface tension values only for the case of hexane,
which are in good agreement with the results presented in this work. Values reported
of surface tension with temperature for dodecane and hexadecane oils are limited.

Next, some results for the measurements of interfacial tension both in pure phases
and also in the presence of hydrophilic and lipophilic surfactants are presented.

Figure 4 shows the graph of interfacial tension for variations in temperature, in
this case for a water–hexane system. The range of temperature was from 22 to 40 ◦C.
As already mentioned in the preceding paragraphs, as the temperature increases the
system tends to reduce its interfacial tension.

According to the results obtained the interfacial tension for the system hexane/
water in the region studied here, it shows a dependence with the temperature as fol-
lows: γ = −0.10665 (mN/m ◦C)T+53.2363 (mN/m). Constructing the prediction
interval (Walpole et al. 2012) that has a probability of 95 % for the interfacial tension
measurements in a range from 22 to 40 ◦C, in this region the interfacial tension data
reported by Zeppieri et al. (2001) are contained into the prediction limits (see Fig. 4).
For example, estimating the 95 % prediction interval for the interfacial tension in the
case of 30 ◦C is 49.8047 ≤ γ(30 ◦C) ≤ 50.2689 in units of mN/m. For the same
temperature, a value for interfacial tension of 49.96 mN/m ±0.04 was reported by
Zeppieri.

Now comparing both results obtained for the surface tension and interfacial ten-
sion in the case of hexane, the rate of change of interfacial tension with temperature
is greater than the one obtained for surface tension. This result shows a greater
sensitivity of the interfacial tension to temperature changes.

Next, let us present the results obtained from introducing surfactant molecules
as a third component in the system. Figures 5 and 6 show the results of interfacial
tension with hexadecane as the organic phase with a temperature set to 25 ◦C.

Figure 5 shows the results when an hydrophilic surfactant was used, in this case
the SDS concentration was dissolved in water. Interfacial tension measurements were
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Fig. 6 Graph of the interfacial tension (γ) of water–hexadecane versus the surfactant concentration
[Span 80] dissolved in oil

obtained for different SDS concentrations in a water–hexadecane system. The surfac-
tant concentration of SDS was measured in terms of the critical micelle concentration
(cmc) of SDS in water, which has a value of 8×10−3 mol/L. The SDS concentration
values that were used in this investigation were: 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9
and 10 all in units of cmc. The first result in the graph corresponds to the interfacial
tension value without surfactant.

It is known that the main function of surfactant molecules is to decrease the surface
tension or the interfacial tension in a fluid system, this is clearly showed in the graph.
Also it can be noted that the greater variations in the interfacial tension occur at
the lower surfactant concentrations. Thereafter, the interfacial tension values remain
unchanged when a certain surfactant concentration is reached. This can be explained
from the fact that these molecules saturate the interface once a given surfactant
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concentration is reached, and the surfactant excess no longer modifies the properties
of the interface. The intersection value can be determined by the trend lines in the two
regions of the interfacial tension, this point shows a threshold-value of approximately
0.18 cmc.

Figure 6 shows the results for the interfacial tension of water–hexadecane system
at different concentrations of a lipophilic surfactant, in this case different concen-
trations of Span 80 were dissolved in oil. Due to the high viscosity of Span 80, the
corresponding surfactant concentrations are usually reported in weight fraction or
weight percent in the organic or continuous phase (% w/w). The values used for the
interfacial tension measurements were as follows: 0.0 01, 0.005, 0.01, 0.05, 0.1, 0.5,
1, 1.5, 2, 2.5 all in units of % w/w.

Again the effect of surfactant in the oil–water systems lowers the interfacial ten-
sion. The lower values for surfactant concentration produce greater variations in the
interfacial tension measurements up to a given threshold value, and then the interfa-
cial tension maintains a constant value. The intersection of the trend lines in the two
regions of the interfacial tension, shows a threshold value of approximately 0.06 %
w/w.

4 Conclusions

The technique of the pending drop was used to obtain surface and interfacial tension
for water–oil systems at different temperatures in pure phase and in the present of
surfactants. The threshold value that corresponds to the saturation was established,
when an increase in surfactant concentration no longer causes a significant decrease
in interfacial tension, both for the hydrophilic as well as the lipophilic surfactant.
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Experimental Measurement Process
of a Volume Displacement of Oil Caught
in a Fractured Rock by Gravity and Using
Surfactant Foam

Arnulfo Ortíz Gómez

Abstract We present a series of experiments conducted in a cell with two parallel
plates made of acrylic, the foundation plate used as a base is 0.5 in. thick. Inside it
4 mm deep and 6 in. wide channel was made, the wet perimeter was covered with sand
and a cementing material, after the cap was set, it was filled with oil. We measured
the filling time by means of a constant column, the time it took the cell to empty
from different angles, where the only acting force displacing oil was gravity. We
also measured the emptying time when using foam as displacing agent on different
slopes, the foam was generated by injecting air into a mixture of water, glycerin
and a surfactant, them it was introduced to the cell through a latex line of 10.0 mm
diameter. The results found allowed us to establish meaningful conclusions in order
to understand the rheology of foams, after being used as secondary methods of oil
production in fractured reservoirs.

1 Introduction

Enhanced Oil Recovery (EOR) refers to all the processes used to recover more oil
from a reservoir than the one being recovered by primary methods, it mostly involves
the injection of gas or liquid chemicals and/or using thermal energy. Among the
former ones, the most used are: gaseous hydrocarbons, CO2, nitrogen and flue gas.
Among the liquid chemicals polymers, surfactants and hydrocarbon solvents can be
found. Finally, thermal processes are related to the use of steam or hot water, or the
in situ generation of thermal energy by internal combustion of oil in the rock of the
reservoir (Donaldson and Chilingarian 1985; Baviere and Canselier 1997; Roehl and
Choquette 1985).
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Such interactions can, for example, lead to a decrease in interfacial retention, oil
swelling and reduction in viscosity, modifying the wettability or favorable behavior
of phases. The latter ones are of special interest in this work, which deals with the
process of oil displacement that is trapped in a crevice, by means of reducing the
phenomena listed above.

The study was done by making an acrylic rectangular cell, where the wetted
perimeter was covered with sand produced in the Cantarel area. Inside the cell a
series of filling and emptying experiments were performed by means of gravity and
by surfactant injection. We measured the filling and emptying times from differ-
ent angles, using a surfactant, saturation and volume displacement percentages at
emptying times. With the information gathered, capillary pressure variation, perme-
ability of the material and percentages of saturation graphs were prepared. It was
also possible to verify the formation of fingers due to the menisci advance.

2 Injection Foam (Surfactant)

The process demanding our attention is the one related to the injection of gases and
mixed fluids in a surfactant, known as foam. In secondary recovery operations when
water or gas is injected into the reservoir, also immiscible displacements occur, such
kind of sweeping is due to the mixture of gas, liquid and additives which allow inter-
facial activity; surfactants is the term normally used to abbreviate the compounds
with activity between phases (Morrow and Mason 2001; Shah and Schechter 1977).
Chemically, the surfactants are characterized by having a molecular structure con-
taining a group that has little attraction or antipathy for the solvent, known as liofóbico
group, along with another group that has strong attraction, appetite for the solvent,
called liofílico group. If the solvent is water, these groups are known as hydrophobic
and hydrophilic portions of the surfactant. Usually, the hydrophobic group is a linear
carbon chain or branched, while the hydrophilic portion is a group with some polar
character. In the case of water injection the process is similar to the one mentioned
above, this is due to the physicochemical characteristics of both fluids, a surfactant
that allows the interaction between the present phases is required.

Assuming for simplicity that the porous medium containing a brine (water-crude,
W-O), these two phases are distributed by the hydrostatic laws of capillarity. The
basic Laplace Law capillary equation relates to the pressure difference between the
sides of an interface (capillary pressure, Pc) with the curvature:

Pc = ΩP = Po − Pw = 2Δ R (1)

Where γ is the interfacial tension, R is the average curvature of the interface. A
hemispherical surface to the average curvature radius is reversed. Pair any surface,
R is half the sum of the reciprocal surfaces of the principal radius of curvature (high
and low).
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The interfacial tension is the Gibbs Energy per unit of area, this one depends
on the substances absorbed in the interface. For water to be in equilibrium with a
hydrocarbon phase, this energy is just of some sets of 10 dyne (din/cm or mN/m)
(Johansen and Berg 1978; Shah 1981; Larry 1989). In the presence of a surfactant
this energy is generally reduced to 1.0 or 0.1 din/cm.

Contact angle. The three-phase contact, water (W), oil (O) and solid (S) is iden-
tified as the contact angle between the surfaces.

If we assume that the solid is quite flat at the point of contact, you can set a vector
equation of equilibrium between the forces, called Newman balance.

ΔSW + ΔWO (cos πW ) = ΔSO (2)

cos πW = (ΔSO − ΔSW )/ΔWO (3)

The magnitude of the contact angle depends on the interfacial tension between O
and W (γW O) and on the free interfacial energies of the solid with the two fluids as
well, in other words, it depends on the natural fluids and the surface of the solid.

The fluid which has a contact angle, π < 90◦ wets the solid surface. The reservoir
rocks have a polar nature (silica carbonate) and thus the clean rock can be wet with
water. Despite this, in many reservoirs π > 90◦ something different is observed,
because the solid surface is covered by a layer of absorbed substance which gives
an oily character (Baviere 1991; Salager and Antón 1999; Pillai et al. 1999; Salager
and Microemulsions 1999).

3 The Experiment

In order to understand the rheology of the surfactant interacting with the water and oil
an acrylic cell with three sidewalls made of stone was designed, Fig. 1a. Subsequently
it was filled with high density oil, so that it could not be displaced in the absence
of gravity. Then we proceeded to inject a mixture of water, surfactant and glycerin,
the latter one was to prevent minimal surfaces from dehydrating quickly and being
broken down.

The idea is to simulate what happens in a fractured rock full of oil, when the
lower part is connected with the reservoir and the upper part is in contact with the
atmosphere, after an injection well was drilled (Fig. 1b).

In order to improve oil recovery, we developed a chemical formula that can alter
the wettability of the oil and preferably water, lowering surface tension, so that the
effect of capillary breaks and the oil can be conducted by effect of gravity, and can
change the cross flow between layers permeability.

The experiment was performed as follows: firstly we connected a supply valve
(Qe Fig. 1) to a conducting line (latex hose inner diameter 0.8 cm), secondly, we filled
the container with a volume of oil equal to the volume of the cell ensure that the
flow opened two keys; the supply and the output. The filling process was always the
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Fig. 1 a Experimental model; acrylic cell slot 50.0 mm by 4 m deep, the wetted perimeter is a
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Fig. 2 a Advancing front during the filling process. b Advancing front during the casting process.
c Graph of slope π , versus time t, it is seen a shorter steeper emptying the cell

same, the total filling time associated with the cell was 15.0 min (TL L = 15 min),
maintaining a hydraulic head of 20.0 cm above the cell. This process is performed by
simulating a source and a sink (Qe and Qs Fig. 1), since the supply valve and outlet
are located at the base of the cell. Right in the source, oil gets radially into the cell
but as soon as it finds walls, it advances or moves in a horizontal direction (xi), the
face is convex, because the friction on the walls increases, the liquid is confined to
four walls where the wetted perimeter of the landfill is sandy and the top cover is
4.0 mm acrylic to make it easy to view. In Fig. 2a an image of the forward advance
in two different instants is shown. During this movement it was observed that the
parabola formed by the advancing front is not parallel, sometimes it fills more in one
side of the cell than in the other and vice versa, this is because the wall friction does
not have a constant presence.

The times associated to the emptying of the cell to different slopes were measured
too, now the walls stop the oil slick, emptying first in the center, so the front is con-
cave Fig. 2b. The experiment was performed from different angles (0◦ < π < 80◦)
measuring the times for each slope, the results found are shown in the graph of
Fig. 2c.
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Fig. 3 Capillary pressure
variation to successively
injects of water and oil in a
rock core, usually for a study
of the perforations. In the
experiment we do it in the cell
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When two immiscible fluids coexist in equilibrium in a porous medium, they are

distributed according to the laws of hydrostatics and capillarity. The distribution of
the fluids depends on the dimension of the pores, the contact angle, the interfacial
tension and the saturation SW and SO .

In practice, the variation of the capillary pressure was experimentally determined.

ΩPc = Pc L/Δ (4)

Where L is the characteristic length of the medium, for example the average pore
diameter, in our case we use the channel height that was practiced in the cell of the
cell (4 mm), Eq. 4 allows the drainage on determined imbibitions curves, Fig. 3.

Curves I and D comprise the hysteresis loop of capillary pressure. This means that
for a certain state of saturation of the porous medium, the given capillary pressure
in the real distribution of the fluids depends on the previous history of the system
evolution.

The drain and saturation experiments show that it is not possible for one of the
fluids to be displaced completely by the other. In both displacement cases there is
a residual saturation of 20 %, which corresponds to a fluid in form of beads discon-
nected from one another and trapped by capillary force.

The motion of a single-phase fluid in a porous medium is dependent on one
specific property of the medium called permeability, this can be found experimentally
by determining the relationship between the velocity of a fluid movement and the
pressure drop produced.

u = (k/δ)(d P/d L) (5)

Darcy’s law (Eq. 5, is a linear relationship that satisfies the low speeds involved:
where u is the specific speed or filtration speed, i.e. the volumetric flow per unit area
of the medium it passes through, the viscosity δ, fluid, dP/dL is the pressure gradient
(also comprises hydrostatic pressure).
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Fig. 4 Graphical
permeability determined in
a core of 20 cm height and
5.0 cm radius, extracted from
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The Eq. 5 is equivalent to the Poiseuille Equation for a cylindrical capillary, and
to involve all the pores, it incorporates a factor (0.125R2):

v = (R2/8δ)(d P/d L) (6)

By defining Eq. 6 for each of the fluids involved in the experiment, it was found
that the effective permeability was lower than the permeability of the porous medium.

The ratio of the effective permeability and the one of the medium is defined as
the relative permeability K.

K0 = kO/k, KW = kW /k (7)

For a core of 20.0 cm high and 5.0 cm radius, graphs of relative permeability were
constructed as a function of saturations SW and SW, Fig. 4.

4 Conclusions

In order for the displacement of fluids to take place it is necessary that the displacing
fluid possess more energy than the displaced one. As the first fluid is injected, a
separation front starts appearing and two zones in the cell are well distinguishable,
one of them is called non-invaded, where an oil bank is being formed due to the oil
displacing forward. Behind that bank is the invaded zone, which was formed by the
injected fluid and the remaining oil.

In order to improve the recovery of oil it is required to develop a chemical formula
that can alter the preference wettability of the oil and water, which reduces the low
surface tension in such a way that the capillary effect of the oil is broken and can be
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driven by gravity effect, and the permeability between layers can be changed by the
crossed flow.

Chemical products injected can be introduced in the zones of less permeability,
not only by spontaneous imbibitions, but also by the foam that diverts the liquid
in the lower permeability layer. The foam as mobility control can also improve the
efficiency of sweeping.

As a result in each of the flow processes, the foam is usually injected after low
surface tension. The disadvantage in lowering the surface tension of the surfactant is
in the lack of mobility control, generating a poor swept. It is ideal that the formulation
of surfactants can simultaneously reduce the surface tension to very low values and
generate strong foams which generate microscopic displacement and an efficient
swept of the reservoir.

The laboratory-scale dimensions are totally different from the reservoir, as a con-
sequence, several aspects need to be considered when extrapolating results.

The effect of gravity cannot be neglected in a field of several meters thick, or in
the case of a sloping site. The reservoir thickness produces gravitational segregation
with higher saturation of oil in the upper part, therefore conditions along the vertical
axis change.
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Modeling, Simulation and Scale-up of a Batch
Reactor

René O. Vargas and Francisco López-Serrano

Abstract A simple model for the batch emulsion polymerization of styrene,
considering different size reactors has been studied. The resulting differential
equation-set was solved for the temperature (jacket and reactor) and conversion
profiles as a function of time. The fundamental dimensionless numbers, appearing in
the different terms of the reaction equation-set, involving the physics of the process,
were compared for different size reactors allowing the basic description of scaling
and its difficulties.

Nomenclature

A Heat transfer area (m2)
Kp Propagation rate constant (Lmol−1s−1)
mo Monomer charge (mol)
Mp Monomer concentration inside particles(molL−1)
n Average number of radicals per particle (dimensionless)
Nav Avogadro’s number (mol−1)
NT Total particles concentration (L−1)
t Time (s)
U Overall heat transfer coefficient (W/m2K)
V Reactor volumen (L)
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1 Introduction

Emulsion polymerization has grown to become one of the major means for the
production of synthetic polymers. There are substantial incentives for improved
design and control of emulsion polymerization reactors (Fogler 1992; Schork et
al. 1993). To achieve these aims the problem of laboratory data scale-up is cru-
cial (Barton and Nolan 1987). Polymerizations are very complex reaction systems
characterized by a strong change in the bulk viscosity and high exothermicity, often
accompanied by autoacelerating kinetics that can lead the system toward uncontrol-
lable situations (Soh and Sundberg 1982). Regarding the equation-set complexity,
nonlinearity characterize the polymerization processes. To this date, many industrial
polymerization reactions are carried out in batch reactors, especially at laboratory and
pilot scales. In emulsion polymerization, monitoring and controlling, the monomer
conversion trajectory is crucial both for proper process operation and for obtaining
products with the desired properties (due to the influence of the conversion trajectory
on the polymer molecular weight and particle size distributions) (Thickett and Gilbert
2007; Yoon and Kim 2004). Polymer reaction engineering is a discipline that deals
with various problems concerning the fundamental nature of chemical and physical
phenomena in polymerization processes. Mathematical modeling is a powerful tool
for the development of process understanding and advanced reactor technology in
the polymer industry (Asteasuain et al. 2006a,b; Nauman 2001). The application
of process design of model-based reactors and their control with a dimensionless
approach to scaling, is considered in this work.

2 Model Description

The model was developed for a batch reactor with a cooling/heating jacket, as
shown in Fig. 1. For this reactor, geometrical similarity was keep for scaling-up
considerations.

The reactor temperature control is achieved by means of a cooling/heating fluid
through a jacket. Energy balances lead to the following set of ordinary differential
equations, describing the batch reactor and jacket temperature dynamics:
Reactor

dTr

dt
= − U A

Ωr C pr V
(Tr − Tj )+ Qloss

Ωr C pr V
+ ΔH RpV

Ωr C pr V
+ μV

Ωr C pr V
π,Tr (0) = Tr0 (1)

Jacket

dTj

dt
= U A(Tr − Tj )

Ω j C pj Vj
+ Qls j

Ω j C pj Vj
+ Fh SC pj Th

Ω j C pj Vj
+ Fc(1 − S)C pcTc

Ω j C pj Vj
− FC pj Tj

Ω j C pj Vj
;

Tj (0) = Tj0 (2)
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Parameter Description

Cp Specific heat capacity [J/kg K]

h Partial heat transfer coefficient [W/m2K]

k Thermal conductivity [W/m K]

Mw Molecular weight [kgmol/kg]

Q Heat release rate [W]

Tr, Tj Reactor and Jacket temperatures [K]

onversion X C

H
Enthalpy [J/mol]

Viscosity [Pas]

Density [kg/m3]

η

ρ

Fig. 1 Reactor description and nomenclature

For simplicity, an on-off controller is used in this dynamical system, where the
manipulated variable is either at maximum or at zero flow rate (F) (Asteasuain et al.
2006b; Nauman 2001; Thickett and Gilbert 2007; Yoon and Kim 2004).

Tset = Kcm(Tset1−Treactor)

set1 = Kcs(Tset−Tjacket) (3)

here, Tset1 is the desired reactor temperature, for this process Tset1 was 70 ◦C. The
conversion evolution (x) is:

dx

dt
= kp MpnNT V

m0 Nav

(4)

In stirred batch reactors heat transfer is governed by forced convection and
conduction.

q = U (Th − Tc) (5)

The proportionality factor U is denoted as the overall heat transfer coefficient, several
resistances in series determine the value of U.

1

U
= 1

hi
+ 1

hdi
+ Di

2kw

∗ I n
D0

Di
+ 1

h0

Di

D0
+ 1

hd0

Di

D0
(6)



238 R. O. Vargas and F. López-Serrano

here, hi and h0 represent the partial heat transfer coefficients in the vessel and the
jacket, respectively; kw stands for the thermal conductivity coefficient of the wall; hdi

and hd0 are the fouling factors for the inner and outer side of the wall, respectively;
Di and D0 are the inner and outer diameter of the vessel, respectively. To derive the
dimensionless equations, the following dimensionless variables and parameters are
introduced:

T ∗
r = Tr − T0

TSL − Tc
; T ∗

j = Tj − Ti0

TSL − Tc
; πv = π∗

v t2
B

T ∗
0 = (T0 − Ti0)

(TSL − Tc)
; T ∗

h = Th − Tc

TSL − Tc
;

T ∗
c = Tc − Ti0

TSL − Tc
; t∗ = t

tB
;

The dimensionless equations take the form:

dT ∗
r

dt∗
=For [−Nur (T

∗
r + T ∗

0 − T ∗
j ) + Q∗

loss + DaNr DaI I I + Brπ∗
v ];

T ∗
r (0) = T ∗

r0 (7)

dT ∗
j

dt∗
=Fo j [Nu j

(
T ∗

r + T ∗
0 − T ∗

j

)
+ Q∗

ls j + F(T ∗
h S + T ∗

c − T ∗
j )];

T ∗
j (0) = T ∗

j0 (8)

dx

dt
= DaNr; x(0) = 0 (9)

Where Fo, Nu, Qloss, Da, DaI I I , Br are Fourier, Nusselt, Damkohler I, Damkohler
III and Brinkman dimensionless numbers, respectively.

3 Result and Discussions

The main objective was to obtain a product with the same characteristics. This can
be warranted if the conversion profiles are kept similar in all scales. The operating
conditions for the emulsion polymerization were: initial reactor temperature (Tr0)
25 ◦C, initial jacket temperature (Tj0) 25 ◦C and the desired reactor temperature
(Tset1) 70 ◦C. It is a common practice to consider the overall heat transfer coefficient
(U) constant for any size reactor (Asteasuain et al. 2006a). Figure 2a shows the effect
of the impeller speed on U for different reactor sizes (1–10,000 L), in all cases U
increases with the impeller speed and for small sizes this effect is more pronounced.
Conversion as a function of the time, for different reactor sizes, is shown in Fig. 2b.
This figure tells that increasing the size requires more time to reach the desired
temperature for starting the reaction (heating time). In Fig. 2b all curves, except the
one for 10,000 L, were shifted by the lag time, to a single one, depicting the same
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Fig. 2 a Overall heat transfer coefficient U as a function of the impeller speed. b Conversion of
the reaction for different reactor sizes

Fig. 3 Reactor and jacket temperatures as a function of time for rpm = 50. Reactor size 100 L
(left) and 1,000 L (right)

chemical similarity. The polymerization process should be isothermal, to obtain a
product with the same thermal history. This is one of the most difficult challenges
in the scaling-up procedure for exothermic reactive systems due to the heat reaction
generation can lead to a run away of the process.

The reactor and jacket temperatures, during the process for two different scales
(100 and 1,000 L), are shown in Fig. 3. In both cases the reactors have been well
controlled at Tset1, meaning that the thermal as well as the mechanical histories were
kept constant. The latter because the stirrer operated at the same rpms. Figure 4a
shows the required time to reach Tset1 as a function of the jacket Reynolds number
(Re). Increasing Re the time is shorter, as expected. In Fig. 4b the Damkohler I (Da I )

number is shown for different reactor sizes) from 1 up to 3,000 L), Da I remains
constant, this is a common industrial practice for scaling. This figure only verifies
the initial assumption referred to as chemical similarity. Recalling that Nu is a strong



240 R. O. Vargas and F. López-Serrano

Fig. 4 a Heating time as a function of Reynolds number. b Damkohler I as a function of reactor
size

Fig. 5 Reactor Nusselt number (100 L) as a function of time for: constant viscosity (left) and
conversion dependent viscosity (right)

function of Re, the effect of the viscosity on the Nusselt number, is shown in Fig. 5.
This effect can be observed in the right graph. The viscosity increase, drastically
affects the heat removal of the reactive system and could damage the final product.

4 Conclusions

A simple dimensionless model was developed for the scale-up batch polystyrene
emulsion polymerization keeping geometrical, thermal, mechanical and chemical
similitude. It was possible to scale-up the process from 1 up to 3,000 L. The largest
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reactor (10,000 L) could not be controlled keeping the above mentioned scale-up
criteria.
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Fluid Flow Modelling Through Fractured Soils

Roberto González-Galán, Jaime Klapp-Escribano, Estela Mayoral-Villa,
Eduardo de la Cruz-Sánchez and Leonardo Di G. Sigalotti

Abstract The main goal of this study is to simulate fluid flow across a fractured
medium and to visualize its motion as a function of several parameters such as the
tortuosity, the inlet pressure and the geometry of the fracture. Using the concept
of double porosity, we have developed a hybrid model based on the Finite Ele-
ment Method. The hydraulic characterization of the medium is realized with a 3D
geometry, while the transport process of radionuclides (RNs) through the interface
fracture—porous matrix is done in 2D. The results show that the sorption increases
when the flow rate decreases. Moreover, an increment in the inlet pressure reduces
the residence time of the RNs in the fracture.

1 Introduction

Deep geological repository (DGR) systems are needed to isolate residual long-lived
radionuclides (RNs) produced by human activity. DGRs are based on the multiple
barriers concept, in which the barriers work together to provide containment. The
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natural (or geological) barrier is the host rock formation itself. Since the retention
of RNs within the natural barrier delays or prevents RN migration, it can be con-
sidered one of the most important safety functions of the deep geological repository
(Astudillo 2001).

In crystalline rocks, fractures play an important role in the transport because the
permeability of the fractured network is greater than the permeability of the rock
and therefore fractures represent a highly effective pathway for transport. However,
in most cases the flow occurs through a few preferential pathways which form chan-
nel clusters of flow or macro—channels that intercepts between them (Tsang and
Neretnieks 1998). Therefore, the permeability of the fractured soil depends on the
degree of interconnectedness of the fractures, and should also take into account a
dependence on scale, which has been observed from laboratory to field scales (Brace
1980; Clauser 1992). The study of flow in a fractured medium is more difficult than
the study of flow in a porous media because of the complex geometry characterizing
fractured systems.

Early research work has mainly focused on the plane of the fracture and assumed
that the flow through a fracture is similar to that between two parallel plates for
which the Navier-Stokes equations can be applied. One of the most relevant results
is the expression for calculating the velocity of the fluid in the fracture, which is
known as the cubic law. Actually, several conceptual models have been developed
for describing fluid flow in fractured porous media. Four concepts have dominated the
research: (a) The explicit discrete fracture, (b) dual continuum, (c) discrete fracture
network and (d) single equivalent continuum. Each method can be distinguished on
the basis of the storage and flow capabilities of the porous medium and the fracture.

The aim of this study is to simulate the fluid flow across a fracture and visualize
how its motion is affected when several parameters such as the tortuosity, the inlet
pressure and the aperture are modified. The mathematical model is based on the
substitution of the mass balance equation by the Darcy’s law and the derivation of
expressions for the pressure and the velocity in discrete blocks within the system.
The pressure-velocity equations are related to the rock and fluid properties. In this
model, one of the most important parameters is the “aperture” of the fracture. In
order to understand fluid flow in a fractured medium, we need to analyze its motion
and take into account the variation of its velocity at the fracture scale depending on
the variable aperture and the inlet pressure.

The influence of the tortuosity of the fracture on the flow is studied by using
a derivation of the Reynolds equation, also known as the “cubic law” equation. In
this relation, it is very important the “aperture” term, which is assumed to be a
non-constant function of the x- and y-coordinates (COMSOL 2008). We use the
aperture data by defining an interpolation function, which is used as the aperture in
the cubic-law equation.

Another related problem is to understand how the flow of the fluid affects the
radionuclides’ concentration in provisional or permanent sites for nuclear waste
disposal. Since the retention of RNs within the natural barrier delays or prevents RN
migration, the geophysical and chemical parameters can be considered as some of
the most important safety functions in deep geological repositories.



Fluid Flow Modelling Through Fractured Soils 245

In this work the conditions that govern the flow through the fracture and the rela-
tions governing the matrix-fracture exchanges along the fracture surface are studied.
In our simulations, we use a pre-calculated result for the pressure-velocity fields,
which is then used in the estimation of the RN transport rate along the fracture and
across the porous matrix.

In addition, the water flow rate affects the residence time of the RNs in the fracture
(Zimmerman et al. 2002) and their interactions with the rock, as well as the extent
of the matrix diffusion. With respect to this problem, several simulations have been
performed to establish a comparison between the different inlet pressure values of
the fracture and the RNs’ transfer rate at the fracture—porous matrix interface.

Using the concept of double porosity, we have developed a hybrid model based
on the Finite Element Method and simulated it using the COMSOL software. The
hydraulic characterization of the medium is realized with a 3D geometry, while
the transport process of radionuclides (RNs) through the interface fracture—porous
matrix is done in 2D.

The proposed model contains an interchange layer, where the contaminant travels
by diffusion through the porous matrix, and this reduces the RNs’ concentration in the
aqueous stream of the fracture. The model has been validated through comparisons
with analytical solutions (see Souley and Thoraval 2011).

The results obtained indicate that the sorption increases when the flow rate
decreases. Moreover, an increment in the inlet pressure reduces the RNs residence
time in the fracture.

2 The Problem

2.1 The Mathematical Model

Barenblatt et al. (1960) introduced the dual continuum approach which is based on
an idealized flow medium which is constituted by a primary porosity or the “solid”
matrix and a secondary porosity created by fracturing, jointing or dissolution. The
porous medium and the fractures are envisioned as two separated but overlapping
continua. This concept implies the definition of two coupled equations, the first one
for the flow through the solid matrix and the second one for the flow in the fracture.
Darcy’s law governs the velocity in the matrix blocks, while the flow in the boundary
of a fracture is established by taking into account the fracture’s thickness. In this
work we consider saturated conditions.

The time-dependent fluid flow in the matrix block is governed by Darcy’s law

[
Ω f Δs+Ωs (1 − Δs)

] πp

πt
− ∇ ·

(
km

δ
∇ p

)
= 0; γ matrix block, (1)
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where the dependent variable p is the fluid pressure in the pore space [Pa] Δs , is
the void fraction, or porosity of the matrix blocks [m3/m3], Ω f and Ωs are the
compressibilities [1/Pa] of the fluid and solid, respectively, km gives the permeability
of the matrix blocks [m2], and δ is the fluid dynamic viscosity [Pa · s]. Here we
use a predefined velocity variable that gives the Darcy velocity variable: uesdl =
−

(
km
δ

∇ p
)

, which is a volume flow per unit area.

In the fracture, we modify the coefficients of the Darcy’s law to account for a
relatively small flow resistance on the fracture and the fracture thickness:

(
S f rac d f rac

) πp

πt
− ∇ ·

(
k f rac

δ
d f rac∇ p

)
= 0; γ f racture (2)

where S f rac is the fracture-storage coefficient [1/Pa], k f rac describes the fracture
permeability [m2], and d f rac is the fracture thickness or aperture [m]. Because the
thickness appears in the fracture flow equation, the predefined variable uesdl gives
the volume flow rate per unit fracture length on the fracture:

uesdl = −k f rac

δ
d f rac∇TT p; γ f racture (3)

where ∇TT p denotes the gradient operator restricted to the fracture’s tangential plane.
Fluids in fractured porous media move quickly through the fractures but also

migrate, albeit relatively slowly, through the tiny pores within the surrounding matrix
blocks. In this work, the fluid mass transfer between the porous matrix and the
fractures occurs at the interface layer. The transfer occurs according to the interface
conditions described by dimensionless partition coefficients.

Based mainly on the formulation given in Sudicky and Frind (1982) and Gonzalez-
Galan et al. (2013), we consider convection–diffusion within the fracture, here mod-
ified to take into account a finite length of fracture, diffusion in the interface layer
and convection-diffusion within the porous matrix:

∇ · (−D∇C1 + C1u) = 0; in γ f racture (4)

∇ · (−Dm∇C2) = 0; in γinter f ace (5)

∇ · (−D∇C3 + C3u) = 0; in γmatri x (6)

where Ci denotes the concentration of the contaminant (mol/m3) in the respective
phases, D denotes the diffusion coefficient (m2/s) in the liquid phases, and Dm is
the diffusion coefficient in the membrane, while u denotes the velocity (m/s) in the
respective liquid phase.
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Fig. 1 Implementation of the suggested mix model in 3D (a) and in 2D (b)

2.2 Set up of the Model

A synthetic example is developed in order to show the resolution methodology for
the RNs’ transport problem in fractured porous media as is illustrated in Fig. 1.

In the 3D model we study the flow across the fracture and the matrix block. This
model consists of a solid block that represents the porous matrix. The fracture in this
model is represented by a sequence of interior boundaries. Because the thickness
appears in the fracture flow equation, the predefined variable uesdl gives the volume
flow rate per unit fracture length on the fracture. In this model, we first calculate
the pressure and velocity fields of both the fracture and the porous matrix. We then
analyze the interchange mechanics between the porous matrix and the fracture with
a 2D model.

2.3 Boundary Conditions

Along all faces of the block a zero flow boundary condition is applied. The boundaries
of the fracture are edges that intersect the porous media block. Conditions in these
edges are: at the inlet edge the pressure is constant, p = p0, and at the outlet it
decreases linearly with time: p = p0 − t · 10

[ Pa
s

]
. There is no flow through the

other edges so that − k f rac
δ

d f rac∇ p = 0.
For the RNs’ transport, the contaminant must be dissolved in the interface layer

in order to be transported through it. At the inlet of the model domain, we define the
following concentration conditions: c1 = c0 at the boundary γ f rac,in and c3 = 0
at the boundary πγmat,in . At the outlet, we assume that the convective contribution
to the mass transport is much larger than the diffusive contribution: ∇ · (−D∇Ci +
Ci u) · n = Ci u · n at πγ f rac,out and πγmat,out . Here n is the normal unit vector
to the respective boundary. Furthermore, we assume that there is no transport on the
symmetry boundaries: ∇ ·(−D∇Ci +Ci u) ·n = 0 at πγ f rac,sym and πγmat,sym . We
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Fig. 2 a Flux along the fracture and b flow velocity field through the porous matrix

also assume symmetry at the horizontal boundaries of the interface: (−Dm∇C2)·n =
0 at πγint,high and πγint,low.

The interface conditions between the liquid and membrane phases for the con-
centration are described by the dimensionless partition coefficient:

K = cint
2

c f rac
1

− cint
2

cmat
3

.

3 Results

In the simulation, the fluid moves from the left to the right through the block, entering
at the upper fracture edge and exiting at the lower edge. Initially, the fluid does not
move within the volume. The walls of the block are impermeable to the flow except at
the fracture edges. The fracture is divided in three sections, the first is the upper one
and is located in the z = 0.75 plane, the second section is a vertical plane at y = 0.5,
and finally the third section is located in the z = 0.25 plane (see the geometry in
Fig. 1). The fracture has a thickness of 0.1 mm in the first two sections. The third
section of the fracture has a variable thickness defined by the aperture, which is
an interpolation function over a sample data that corresponds to an aperture with a
fractal dimension of 2.6.

In panel (a) of Fig. 2 the arrows show the flux along the fracture. In panel (b) we
show the velocity streamlines of fluid through the porous matrix. The slice shows
the velocity field between the planes z = 0.25 and z = 0.75.

The fracture is far more permeable to the fluid than the matrix block, and the
influence of its variable thickness over the velocity field is clearly seen in Figs. 2
and 3. The first two sections have a constant aperture; its velocity field has a regular
distribution, while in the third section the velocity field is not uniform because in
this section the fracture has a variable thickness.



Fluid Flow Modelling Through Fractured Soils 249

Fig. 3 Detail of the fracture. The velocity and pressure fields are strongly influenced by the variable
thickness of the fracture in this region a Enlarged view of the velocity field in the near area to the
exit of the fracture. In this zone, is shown the strong influence of the fracture’s thickness. b Lateral
view of the pressure field in the same area next to the out of the fracture

Fig. 4 In right panel, the isosurfaces show the pressure field in the porous matrix. In left panel, the
streamlines are the velocity field through the domain of simulation, in a lateral view

In Fig. 3 we show in detail the region mentioned above. The left panel shows the
velocity field while in the right panel we show the pressure from a lateral view of this
section. We can see that the pressure field is highly affected by the variable thick-
ness, and accordingly the velocity field (represented by arrows) follow an irregular
trajectory according to the variable pressure field estimated.

The isosurfaces depicted in Fig. 4 are pressure contours throughout the block. The
pressure is continuous across the fracture from block to block. Even so, the bends in
the isosurfaces indicate different flow regimes in the fracture and the matrix blocks.
This is observed in the region for a non-constant fracture aperture. The pressure and
the velocity fields do not have a uniform structure as is indeed observed in other
regions of the system.
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Fig. 5 Concentration profiles in the fracture interface (left panels) and the porous matrix (right
panels) for a p0 = 10 [Pa] and b p0 = 104 [Pa]

The streamlines in the right panel indicate velocities in the porous matrix. The
fluid moves from the inlet to the outlet along the fracture with a velocity field that is
uniform across the block. The figure indicates that the linear velocity in the matrix
is significantly smaller than the average linear velocity along the fracture.

On the other hand, the surface plot and the plot in Fig. 5 visualize the concentration
distribution throughout the three model subdomains: the fracture region inside the
model on the left side, the interface fracture-porous matrix in the middle, and the
porous matrix to the right. In the left panels of Fig. 5, the concentration profiles in
each region are shown (three lines in r = 0.18 [mm], r = 0.22 [mm] and r = 0.32
[mm] which correspond to the three regions mentioned above). The plots in the right
panels show the distribution of concentration along each sub-domain. The figure also
shows the concentration jump that arises at the boundary between the fracture and
the interface membrane. Finally, we can also see that the concentration absorbed by
the porous matrix is influenced by the filtration process and the velocity flux.
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4 Conclusions

In this work, we described a mathematical model for simulating flow in a fractured
porous media, using the dual media approach. According to the proposed model
and the results obtained, one of the most important parameters is just the fracture
aperture.

We have showed how to model the flow in a discrete fracture by considering the
interactions between the fluid and the porous matrix. The fracture is defined as a 2D
domain within the other 3D domains; this prevents us of using a large number of grid
elements along the fracture that reduces the computational time significantly, thus
making our method computationally very efficient.

The velocities in the porous matrix are of the order of 5 × 10−7 [m/s], while
they are 2 × 10−6 [m/s] along the fracture. As expected, this result indicate that the
linear velocity in the matrix is significantly smaller than the average linear velocity
along the fracture. The variation of the aperture parameter in the fracture produced
a large variation in the pressure, and therefore also in the velocity. There is enough
evidence to conclude that on the fracture surface there is a large variation in the
flow resistance due to the variability in the opening and contact areas, which creates
tortuous flow lines over the plane of the fracture. As was shown, the concentration
inside the fracture decreases markedly over the first sections of the interface from
the inlet.

Moreover, the simulations were performed for a wide range of pressures at the inlet
of the fracture and the obtained results clearly indicate that for high inlet pressures
the radionuclides flow through the fracture with high velocities, which shortens
the residence time and reduces the interaction with the porous matrix. Thus, the
radionuclides’ concentration in the porous matrix gets smaller as the inlet pressure
increases.
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Part III
Convection and Diffusion



Numerical Analysis of the Conjugate
Convection in an Open Cavity with and Without
an Obstruction Inside

G. E. Ovando-Chacón, S. L. Ovando-Chacón, J. C. Prince-Avelino,
A. Servín-Martínez and J. A. Hernández-Zarate

Abstract Conjugate mixed convection due to the steady state heat transfer and the
incoming fluid dynamics inside a two-dimensional square cavity is studied numer-
ically for a Reynolds number of 400. The boundary of the left side of the cavity
is a hot thick wall. The other three sides are bounded by adiabatic walls. In order
to investigate the effect of a solid body on the conjugate heat transfer, a circular
obstruction is placed at the centre of the cavity. The fluid inlets are at the lateral
lower left wall, and the exits are located at the lateral upper right wall. The analysis
is carried out for different ratios between the solid and fluid thermal conductivities.
The governing equations of continuity, momentum and energy for incompressible
flow are solved by the finite element method combined with the splitting operator
scheme. The temperature field, the streamlines, the velocity and the pressure field are
studied, and the axial velocity profiles are analysed as a function of the transversal
position. It is observed that an obstruction placed inside the cavity plays a major role
on vortex formation and on the thermal behaviour of the flow inside the cavity.

1 Introduction

The numerical simulation of the conjugate convection in an open cavity with and
without obstruction is an important issue in many technological processes. Manca
et al. (2003) investigated the mixed convection in a U-shaped cavity, and evaluated
its thermal performance in terms of the heated wall position. Mahmoudi et al. (2010)
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Fig. 1 Geometry of the cavity

numerically examined the effect of the inlet and the outlet locations on the mixed
convection flow and on the temperature field in a vented square cavity. Rahman et
al. (2011) analysed the mixed convection in a ventilated square enclosure with a
heat generating circular block. Mariani and Coelho (2007) presented the simulation
of natural convection due to the temperature difference between the left and the
right walls, and an internal local heat source in open cavities. Mamun et al. (2010)
studied the effect of a heated hollow cylinder on mixed convection in a ventilated
cavity. Radhakrishnan et al. (2007) reported experimental and numerical investiga-
tion of mixed convection from a heat generating element in a ventilated cavity. Varol
et al. (2008) investigated the conjugate natural convection in enclosures via entropy
generation. The main aim of this numerical investigation is to study the effect of the
thermal conductivity of a finite thickness wall on the thermal behaviour in an open
cavity with and without an obstruction. The analysis is carried out for the laminar
regime and for the case when the buoyancy effect is outweighed by forced convection.

2 Problem Formulation

This work presents 2D numerical simulations inside an open square cavity
(H/W = 1) with and without an obstruction placed at the centre of the cavity,
H is the height and W is the width of the cavity. The fluid, with a thermal conductiv-
ity k, enters at the left lower side wall and leaves the cavity at the right upper side wall,
see Fig. 1. The thickness of the left wall, with thermal conductivity ks, is 0.05 W.
Different ratios ks/k are investigated. The blockage ratio of the solid is fixed to
d/W = 0.2, where d is the diameter of the obstruction. The Reynolds number
(Re = Um W/ν), based on the velocity of the inlet flow Um and the width W of
the cavity, studied in this investigation was Re = 400 for a Richardson number of
Ri = 0.01 and a Prandtl number of Pr = ν/α = 10.0, where ν is the kinematic
viscosity and α is the thermal diffusivity. The entrance and exit of the cavity was
fixed to 0.25 W.
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The governing equations for a non-isothermal incompressible steady state flow
are given as:

− 1

Re
Ω≤u + ≤u · ∞ ≤u + ∞ p = RiT ≤J in Δ, (1)

∞ · ≤u = 0 in Δ, (2)

1

Pe
ΩT + ≤u · ∞T = 0 in Δ, (3)

For the solid cylinder, the energy equation is

ΩTs = 0 in Δ, (4)

In the above equations Ω is the laplacian operator, ≤u = (u1, u2) is the velocity
vector, being u1 y u2 the horizontal and vertical velocity components, respectively; ν
is the kinematic viscosity, p is the pressure, T is the temperature, Ts is the temperature
of the solid and ≤J is the vertical unitary vector. In the governing equations, the
Richardson number, the Reynolds number and the Peclet number are defined as
follows:

Ri = gβh (Th − Tc)/U 2
m, Re = Uwh/ν, Pe = Re Pr, (5)

where g is the gravity,β is the compressibility coefficient, Th is the hot temperature, Tc

is the cold temperature. No slip boundary conditions (u1 = u2 = 0) were established
in all the walls of the cavity, and adiabatic walls (∂T/∂n = 0) were supposed except
in the left wall where the heating takes place. The temperature of the inlet flow
was fixed to T = Tc, while the isothermal left wall was fixed to T = Th . The
non-dimensional values of this temperature were Tc = 0 and Th = 1. The boundary
conditions of the inlet flow were u1 = Um , and u2 = 0. On the outlet flow ∂u/∂n = 0
was imposed. The governing equations were solved with the finite element method
combined with the operator splitting scheme, see Glowinski (2003). The convergence
analysis was done for three different meshes with resolution of 4,500, 15,800 and
18,700 elements. An analysis of the temperature profiles on the middle horizontal and
vertical lines indicates that the largest difference between the results of the meshes of
4,500 and 15,800 elements was 10 %, while the maximum difference of the results
between the meshes of 15,800 and 18700 was 1.02 %. The analysis was also done for
the velocity components. For all cases, the worst relative error between the meshes
of 15800 and 18700 was less than 1.0 %. All the simulations presented in this paper
were performed for a cavity with 18,700 elements.

3 Results

Figure 2 shows the velocity field and streamlines, for Re = 400, Ri = 0.01,

Pr = 10 and ks/k = 1.0. The left panel shows the behaviour of the fluid inside
the cavity without an obstruction. For this case, three vortices can be observed along
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Fig. 2 Velocity fields and streamlines for ks/k = 1.0. Left: without obstruction. Right: with
obstruction

the diagonal perpendicular to the one that connects the inlet with the outlet. One of
the vortices is anti-clockwise, big and strong, located at the central superior region
of the cavity. At the upper left corner, a clockwise weak vortex appears, and at the
inferior right corner another clockwise vortex emerges from the impingement of the
fluid with the corner. The inlet jet emerges horizontally from the flow entrances of
the cavity, but as it moves forwards, its horizontal component is decreased and the
vertical component is increased. The right panel shows the behaviour of the fluid
inside the cavity with a centred obstruction. For this case, the flow is characterized
by four vortices, the clockwise vortex at the lower right corner remains, while three
vortices appear around the obstruction as a consequence of the interaction of the
solid with the flow that moves from the inlet to the outlet of the cavity. Two anti-
clockwise vortices can be appreciated, one near the entrance and another near the
exit of the cavity. Both are driven by the jet of fluid that crosses the cavity. The third
vortex around the obstruction rotates clockwise and is driven by the motion of the
other two vortices. The top panel of Fig. 3 shows the isotherms for the cases without
obstruction. The contours tend to concentrate at the left wall of the cavity. The heat
of the hot wall flows to the right upper part of the cavity due to the main stream
of the fluid. As expected, high temperature occurs near the left wall. Farther, the
contours are distorted and follow the main stream direction towards the outlet of the
cavity. For low values of the thermal conductivity ratio (ks/k = 0.1) the temperature
contours remain undisturbed near of the left hot wall. As the thermal conductivity
ratio (ks/k = 5) is increased, the thermal boundary layer detaches from the lower
part of the hot wall and a thermal plume moves toward the exit of the cavity due
to the motion of inlet flow. This behaviour is intensified for ks/k = 100. For this
case, the flux of heat reaches the central part of the cavity. The bottom panel of
Fig. 3 shows the isotherms for the case when the obstruction inside the cavity has the
same thermal conductivity as the fluid. This explains the behaviour of the isotherms
through the obstruction, which are not affected by the boundary of the circular solid.
The interaction of the solid with the flow distorts the temperature contours towards
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Fig. 3 Isotherms. Top: without obstruction. Bottom: with obstruction. Left: ks/k = 0.1. Middle:
ks/k = 5.0. Right: ks/k = 100

the central part of the cavity even for lower values of the thermal conductivity ratio
(ks/k = 0.1). As the ratio is increased to ks/k = 5 and ks/k = 100 the distortion of
the isotherms towards the centre of the cavity are increased. When a solid is present
inside the cavity, its interaction with the flow generates thermal boundary layer sepa-
ration not only from the lower part of the hot wall, but also from the upper part of the
hot wall, This phenomenon increases the flux of heat from the left hot wall towards
the fluid.

Figure 4 shows the temperature profiles in the interior surface of the left hot wall
for the cavity without obstruction (see left panel) and the cavity with obstruction
(see right panel) for different values of the thermal conductivity ratio. For both cases
the temperature is increased as the ks/k ratio increases. The maximum temperature
value, for a given ks/k ratio, is reached at the upper part of the left interior wall.
For ks/k → 1.0 the temperature of the lower part of the interior left wall is T ∇ 0.
However, for ks/k ∼ 10.0 the temperature of the lower part of the interior left wall
is T > 0.5. For low values of ks/k the maximum temperatures are higher with,
than without the solid blockage. For large values of ks/k the temperatures tend to be
uniform and the maximum temperature is T ∇ 1.0.

Figure 5 shows the temperature profiles on the middle vertical line. The left panel
shows the behaviour of the temperature without the effect of the obstruction. The
temperature starts to increase, reaches a maximum value about y = 0.43 and then
deceases. The larger the ks/k ratio the greater the temperature values. The right panel
shows the effect of the obstruction on the temperature behaviour, which is more
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Fig. 4 Left wall interior temperature. Left: without obstruction. Right: with obstruction

Fig. 5 Middle vertical line temperature. Left: without obstruction. Right: with obstruction

Fig. 6 Velocity profile for ks/k = 1.0. Left: Horizontal component on x = 0.5. Right: Vertical
component on y = 0.5

complex and is characterized by the increase of the temperature up to a maximum
value of about y = 0.63. Beyond this value, the temperature starts to decrease to
a minimum and then increases again. Given a ks/k ratio for a particular vertical
coordinate, the temperatures are higher when the obstruction is present. Figure 6
shows the horizontal velocity profiles on the middle vertical line (left panel) and
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the vertical velocity profile on the middle horizontal line (right panel) for the cavity
with and without an obstruction. On the middle vertical line, it can be seen, for the
flow without obstruction, that the fluid is accelerated as the vertical coordinate is
increased, its horizontal velocity reaches a maximum at about y = 0.22, then the
velocity decreases and changes its direction to generate the main vortical motion. The
effect of the obstruction is insignificant near the bottom wall. On the obstruction the
velocity becomes zero and above of the obstruction surface the horizontal velocity
decays. On the middle horizontal line, it can be seen, that without obstruction, the
flow goes downwards as the horizontal coordinate is increased, then starts to move
upwards and reaches a maximum at about y = 0.78, then the velocity decreases
toward the right wall. When the obstruction is present the vertical velocity near of
the left wall becomes zero and after the obstruction the vertical velocity also reaches
a maximum value.

4 Conclusions

We have presented in this work results of a finite element simulation of the flow inside
an open cavity with and without a centre solid obstruction for different values of the
ratio between the thermal conductivities of the solid and the fluid. The streamline
patterns reveal that for a square cavity without obstruction three vortices are formed
along the diagonal perpendicular to the line between the inlet and the outlet of the
cavity. When the circular obstruction is placed at the centre of the cavity, the flow
becomes more complex. Four vortices appear inside the cavity, three of them around
the obstruction. The isotherms reveal that the presence of the obstruction intensifies
the distortion of the thermal plume towards the centre and the exit of the cavity. So
far, this study is limited to Re = 400, Ri = 0.01 and Pr = 10. The fluid dynamics
for other values is the subject of on-going research, but it is useful to understand the
thermal behaviour of the flow inside an open cavity with and without an obstruction
in applications like the cooling of electronic and electrical devices, thermal design
of building, greenhouse design and refrigeration.
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Experimental Studies of a Steam Front
in a Radial Porous Cell

A. Torres, S. Peralta, F. Aragón and A. Medina

Abstract In many Geothermal reservoirs water is injected through porous media in
order to obtain steam. This process is basically used to generate geothermal energy.
It could be expected that the water or steam injected in the homogeneous porous
media will have a stable motion. It has been found experimentally that this is not
always true. In porous media with high permeability, steam migrates in a finger-shape
form reported in literature as the Saffman-Taylor Instability. In this work, a couple
of experiments based on steam injected through a radial porous cell are shown. The
main objective of this study is to present the observed instabilities in the steam front.

1 Introduction

In this paper the experimental study of a steam front in a porous radial cell is studied.
This kind of phenomenon is observed in Geothermal Reservoirs which are used for
electrical production, therefore the importance of this research. It is assumed that
the flow of the interface vapour–liquid through the porous radial cell is planar. The
experiments here developed show the existence of some instabilities. This kind of
disturbance in the flow of the interface through the porous medium is known as
Saffman-Taylor Instability (1958).
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The flow of a liquid–steam interface in low permeability Geothermal Reservoirs
remains stable, it means that the steam front does not advance in a finger-shaped
form (a characteristic form in presence of this kind of instability but in the case of
Geothermal Reservoirs considered of high permeability the movement of the vapor
front occurs in a finger-shaped form, due to that the vapour-liquid interface in the
liquid phase experiments minor opposition to the movement and advances quickly,
reaching more exposition to the super-heated rock and rapidly vaporizing (Islam and
Azaies 2010).

2 Problem Description

Many geothermal systems are characterized by a low permeability and by the fact
that their internal flows have low Reynolds numbers, hence the flow can be described
with the law of Darcy

ṁ = − K

μ

≤ P

L
. (1)

where ṁ is the mass flow rate, K is the permeability, μ is the viscosity, ≤ P is the
gradient of the pressure and L is the total radial length of the radial porous cell.
The problem of the motion of the steam front through a radial porous cell is described
by using the Conservation of Mass (Continuity) and Darcy’s Law, Eqs. (1) and (2)

Ω
Δπv

Δt
+ ≤ · (vvπv) = 0. (2)

where Ω is the porosity and πv is the steam density.
Moreover, if we want to study the heat transfer in this system, we need to add the
Conservation of Energy (First Law of Thermodynamics) and the Perfect Gas Law to
this system in every moment during the phenomena.

Δ(CaT )

Δt
+ ≤ · (vvCvT ) = δaCa≤2T. (3)

P = πv RvT . (4)

where C is the specific heat referred to the unit volume, δ is the thermal diffusivity,
subindexes are a for the average and v for the steam, R is the Universal Gas Constant
and T is the temperature.
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Fig. 1 Scheme showing the vaporization front phenomenon

If we observe Fig. 1, from the equality of the flow in the liquid–gas interface

ṁl − ṁv = (πl − πv)A
dr

dt
(5)

where “r” is the radial coordinate, A is the area and is the massic flow.
Towards the steam front, part of the injected steam is condensed and we can see that
(Fig. 1):

Hence, we can write the conservation of mass equation in this way:

Ω(πl − πv)
dr

dt
= πlvl − πvvv (6)

Darcy velocity for each phase can be expressed as:

vv ∞ kγPv

μvlv
(7)

and

vl ∞ kγPl

μl ll
(8)

If:
πl → πv
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Table 1 Properties of different elements used in the experiment

Property Value

Sand porosity 0.5
Atmospheric pressure 101 325 Pa
Water density 21 ∇C: 998 kg/m3

Steam viscosity at 100 ∇C 1.37473 × 10−5 Pa∼s
Sand permeability 1.8 × 10−6

Water viscosity at 21 ∇C 2.30763 × 10−4 Pa∼s
Steam pressure 392.26 kPa

Substituting (7) and (8) in (6) we have:

dr

dt
= 1

Ω

k PT

vv L

(
γPv L

γPT lv
− γPl Lvv

γPT vl

)
(9)

Finally, with this expression we can estimate the total advance of the liquid and
the steam front:
The values used in the experiment are shown in Table 1. Hence, in order to estimate
the velocity of the flow we use the next values (Table 1):
Also, an expression for the Conservation of Energy can be found as:

Ω(hl − hv)
dr

dt
=

[
δaCa

ΔT

Δr

]
+ hlvl − hvvv (10)

where [r ] denotes the change of the property r through the interface and denotes the
specific enthalpy.
The problem is completely described with Eqs. (1)–(4), as it can be seen in (Fitzgerald
and Woods 1995) and it can be solved numerically.

3 Experimental Procedure

A radial porous cell is manufactured with a circular plate of tempered glass with
a 36 cm diameter. These dimensions allow us to see the complete behavior of the
phenomenon. The glass plate is placed above a metallic container with the same
diameter and a depth of 2 cm. One is filled with silica sand forming a nonconsolidated
porous matrix. The injection port was drilled at the center of the glass plate in order
to allow us to inject the steam (as can be seen in Fig. 2).
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Fig. 2 Scheme showing the main conformation of the radial porous cell

Fig. 3 Plot showing the steam
front advance as a function of
time

In the first experiment water is injected at ambient temperature (21 ∇C) through the
center and it spreads through the matrix to a preheated porous matrix (about 100 ∇C).
Part of the injected water boils almost instantly because of the heat exchanged with
the porous matrix and the steam front moves through this system (Fig. 1). In Fig. 3,
the advance of the steam front as a function of time can be observed.

In Fig. 4 water is injected and moving forward in a stable form, but due to the
growth of the radial area, the rate area-injected water begins to decrease and the fluid
begins to boil quickly, this steam front begins to move in a finger-shaped form, and
we can say that the Saffman-Taylor instability is present.

In the second experiment, as in the previous one, water is injected constantly at
an ambient temperature (21 ∇C) through the preheated porous matrix at about 120 ∇C
over 20 ∇C more than in the first experiment. In this case, the steam front begins
to destabilize in an asymmetric form at early stages of the phenomenon (Fig. 5). In
Fig. 6 the advance of the vapor front as a function of time can be observed.
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Fig. 4 Behavior of the vapor front moving through to the radial porous matrix in presence of a
discrete Saffman-Taylor instability



Experimental Studies of a Steam Front in a Radial Porous Cell 269

Fig. 5 Sequence showing a steam front moving through the radial porous matrix in presence of a
strong “Saffman-Taylor” instability (Slide series was taken by using a thermal camera)
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Fig. 6 Plot showing the steam front advance as a function of time

4 Conclusions

As it can be observed in this work, for both experiments the flow of the steam front
through the porous cell showed the same behavior. This means that the steam front
advanced in a finger-shaped form due to the Saffman-Taylor instability caused by
the formation of zones of high and low pressure. The nonsymmetric finger-shaped
behavior of the steam front observed in the second experiment (compared with the
first one) can be attributed to the sudden change of state from water to steam due to
the high temperature of the host core.
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Transport of Particles in a Periodically
Forced Flow

Erick Javier Lopez-Sanchez and Gerardo Ruiz-Chavarria

Abstract In oceanography particle transport is a constant: the ocean currents carry
the plankton from one place to another. In shallow water trawling and sand deposition
can affect positively or negatively certain human activities. For example, sandbars
formed by the deposition in areas of low pressure may affect navigation near the coast,
but at the same time they can reduce the intensity of a tsunami when approaching a
populated coast. In this work we present a numerical solution of particle transport
in a flow occurring in a system formed by the channel and an open domain and
that is subject to a periodic forcing. For this purpose the equations of motion in
the formulation vorticity- stream function are solved with a pseudo spectral method.
After the velocity field is calculated, the trajectory of particles is obtained through the
solution of a differential equation deduced from first principles. The goal is to model
the transport of particles in a tide induced flow. The results we obtain are consistent
with some experimental and observational data reported in previous works.

1 Introduction

An example of a system formed by a channel connected to an open domain (see
Fig. 1) is a river flushing into a lake or the open sea. The tides induce a flow between
both domains, in fact, during the stage of positive flow rate (positive is considered
when flow is directed toward the open domain) a pair of vortices is formed. This
is a coherent structure known as a dipole. The evolution of dipole depends on a
dimensionless parameter, the Strouhal number S, defined as follow:
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Fig. 1 System geometry
under study, consisting of a
channel connected to a basin

S = H1

U T
(1)

where H1 is the channel width, U is the maximum speed at the channel and T is the
forcing period. Considering a potential flow composed of a linear sink (or source,
depending of the stage) and two counter rotating point vortices, Wells and Van Heijst
(2003) shown that when S < 0.13 the dipole escapes, and when S > 0.13 the dipole
returns to the channel. The numerical code described in this manuscript provides a
detailed knowledge of the vortex formation or another features of the flow, like the
coexistence of multiple dipoles, interaction among them or even the coalescence of
vortices. All these facts are important because is well known the ability of dipoles
to carry particles from one region to another. There are some previous works about
both dipoles and particle transport. For instance Duran-Matute et al. (2010) made a
numerical simulation of a dipole assuming as initial condition the velocity field of
a Lamb-Chaplygin vortex in the horizontal plane and a Poiseuille velocity profile
for the vertical coordinate. The relevant parameters are the Reynolds number Re
and the aspect ratio δ = H/R0, where H is the fluid-layer depth and R0 is the
radius of the Lamb-Chaplygin vortex. They found that the three-dimensional nature
of the flow depends on the single parameter K = δ2 Re. When K < 6 the flow
remains bidimensional, and when K > 15 the flow becomes three dimensional with
a spanwise vortex in front of dipole. From the experimental side Lacaze et al. (2010)
and Albagnac (2010) produced a dipole by rotating two vertical plates in a rectangular
basin. They also observed a spanwise vortex in front of the dipole and report that
intensities of the spanwise vortex and the dipole are comparable.

Concerning the mass flow Angilella (2010) investigated the transport of dust in
the vicinity of a pair of identical point vortices rotating about a common center and
that remain in a vertical plane. To this end the equation of motion for trajectories is
solved in a rotating reference frame, then Coriolis and centrifugal forces are included
in addition to gravity and drag. The motivation of the research was to test the idea
that the particle dispersion increases with the presence of a co-rotating vortex pair.
When drag is the dominant force, the particle trajectories exhibit chaotic behavior,
so mixing is enhanced.
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Shaden et al. (2007) made experiments to determine the particle transport during
the formation and growth of an annular vortex, which was produced with a piston-
cylinder apparatus immersed in a water tank. They found that in the early stage, most
of the fluid that enters the region of nonzero vorticity comes from the cylinder, and
as the vortex ring grows and moves, fluid outside this cylinder is entrained.

The goal of this work is to calculate the trajectories of solid particles from an
equation deduced from first principles (Maxey and Riley 1983) in which drag, added
mass and history forces are included. For the integration of this equation the velocity
field of the flow in the system shown in Fig. 1 is required. The solution obtained
allows to determine the regions from which the particles are expeled and the regions
where the particles are deposited .

The paper is organized as follows: In Sect. 2, we introduce the equation for particle
motion equation, then it is written in dimensionless form. After we present the gov-
erning parameters and describe the methodology. In Sect. 3, we present data obtained
for different values of S and Re and we compare them with some experimental results
and, finally, we draw conclusions in Sect. 4.

2 Theoretical Background

In the flow the driving force is introduced through a periodic flow rate given by

Q = Q0 sin

(
2π

T
t

)
(2)

where T is the driving period. This choice allows periodic reversal of the flow. In
dimensionless variables the flow rate is:

Q = sin (2π St) (3)

In order to describe all equations and results in dimensionless form we need to
introduce a second parameter, namely, the Reynolds number, defined as: Re = U H1

ν
.

Here H1 as the channel width, U = Q0/H1 is the maximum velocity in the channel
and ν the kinematical viscosity. For the calculation of trajectories we solve a second
order differential equation deduced by (Maxey and Riley 1983):

m p
dvp

dt
= (m p − m f )g + m f

Du
Dt

+ 6πrμ f (u − vp) + m f

2

D(u − vp)

Dt
(4)

+ 6r2√πμ f ρ f

∫ t

0

D(u−vp)

Dτ√
t − τ

dτ
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in which it is assumed that solid particles are spheres. Here, u is the fluid velocity
at the particle position (if the particle was removed), vp is particle velocity, m p is
its mass, m f is the mass of fluid displaced by the solid sphere, μ f is the dynamic
viscosity, g is gravity, and r is the radius of the particle. The first term on the right-
hand side is the sum of gravity and the buoyant force. The second term is the Stokes
force, which is proportional to the difference between particle and fluid velocities.
The third term is the added-mass term, and the last term is the history force (Mordant
2001). In the last equation the velocity field of the flow is required. This field has been
obtained in a previous paper (Lopez and Ruiz 2013). Now we write this equation in
non dimensional form:

dvp

dt
= −

(
ρp

ρ f
− 1

)
Fr ẑ + 3(

2ρp
ρm

+ 1
) Du

Dt
(5)

+ 9(u − vp)(
2ρp
ρm

+ 1
)

Re

(
H1

r

)2

+ 9(
2ρp
ρm

+ 1
) √

π Re

(
H1

r

) ∫ t

0

D(u−vp)

Dτ√
t − τ

dτ

where ρp is the particle density, ρ f is the fluid density and ẑ is a unit vector in the

vertical direction. Fr = gH1/U 2 is the Froude number. For this calculation we
make the approximation:

d(u − vp)

dt
≈ Du

Dt
− dv

dt
(6)

Equation (5) is solved in two dimensions, so gravity and buoyancy are dropped
and consequently the Froude number does not enter in the calculations.

For the integration we use ρp = 2400 kg/m3 (tipical sand density) and r =
5×10−4 m (the radius of the solid particles). We present results for particle transport
in the flow using various values for S and Re. The calculation were made in some
selected initial positions and we assume that the initial velocity is zero.

3 Particle Transport

Before to describe the motion of particles we present a result about the vorticity field
obtained by solving equations of fluid dynamics in the vorticity - stream function
formulation. Figure 2 shows the vorticity field for S = 0.05 and Re = 667. Multiples
dipoles appear, each one is formed during a cycle. The solution was calculated using
a pseudo-spectral method, based on Chebyshev polinomial for the space, and an
Adams-Bashford semi-implicit schema for the time. In order to have a picture of the
motion induced by the flow, some trajectories of solid particles and fluid elements
are plotted in Fig. 3. The values of Reynolds and Strouhal numbers are respectively
67 and 0.0075. A comparison between motion of solid particles and fluid elements
reveals that at the early stage both kind of trajectories resembles each to other.
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Fig. 2 Vorticity at t = 3.24 T. Multiple dipoles are present

Fig. 3 Trajectories of both the solid particle (continuous) and the fluid elements (dotted) for two
initial points p1 = (1.1, 1.4) and p2 = (3.5,−1), for the case Re = 67, S = 0.0075

However, after a while trajectories separate which is a signature of the influence of
drag and other forces acting on the solid particles.

In Fig. 3, the particle initially located at the point p1 = (1.1, 1.4) moves away
from the axis of symmetry. Then, due to the passage of the first dipole it is pulled
back to the centerline and for a while it follows a nearly parallel path to the x-axis
and after it make several curls. This kind of motion is induced by the presence of
the dipole, which pulls and drives the particle. On the other side the particle initially
located at the second point p2 = (3.5,−1) has in the early stage a similar behavior as
first one, in the sense that it is moved away and pulled back to the axis of symmetry.
Furthermore the path between x = 6 and x = 28 do not follow any curl. Finally, the
curve made a curl, which is related to the presence of the second dipole.
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Fig. 4 Solid particles position at two times for S = 0.0075, and Re = 67. (a) and (c) Show the
initial position of the particles and the white spaces indicate erosion zones. (c) and (d) Show the
particles distribution at the time indicated in each panel

An overall picture of the transport of particles is obtained if the calculation of
trajectories is performed for many particles. For this reason the entire domain is
divided in a set of cells. In each one a fixed number of particles (9 in this work) is
placed there at initial time. The size of a cell is 0.88×0.96. Then we integrate Eq. (5)
for all these particles. With this procedure we can identify regions where particles
accumulate or where particles are expelled. In Fig. 4 initial (upper graphs) and final
(lower graphs) position are plotted. The assertion “initial position” includes only
those particles that remain in the domain at the final time of integration. Blanks in
the graphs indicate regions where particles are expelled outside the domain. These
blanks correspond to erosion zones. The lower graphs correspond to final position of
particles. Figure 4a shows the erosion zones until the time t=0.94T . Figure 4b shows
areas of erosion until the time t=1.9T . The particle distributions at time t=0.94T
and t=0.94T are shown in Figs. 4c and 4d respectively. In those graphs the passage
of dipole is clearly observed. Particle transport can be outlined by the calculation of
the histogram of the particle position. We proceed as follow: First, we chose a set of
uniformly distributed particles, so that the probability density function (PDF) is the
same elsewhere. After a while a new distribution of particles is obtained because the
particles are constantly moving. The particles may remain inside the domain or may
leave it. In the latter case the final particle position is unknown and consequently this
particle position is not considered in the histogram.

A histogram of particle position for t = 5.6 T, S = 0.05, and Re = 333 is
presented in Fig. 5. For this histogram the size of cells is Δx = 0.56 and Δy = 0.54.
In Fig. 5 left, we see that the particle concentration rises to 50 in a small region inside
the channel.
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Fig. 5 Left Histogram of particle positions at t = 5.6T , S = 0.05, and Re = 333. Right Experi-
mental setup

The right side of Fig. 5 shows a picture of a experiment in which the same para-
meters were used in the histogram. We place sea sand uniformly distributed and after
various periods, we can observe an accumulation of particles within the channel near
the outlet. In addition in front of the channel there is a region where the particles
were removed by the flow.

A description of the sand barriers position in tidal inlet system is made by de
Swart and Zimmerman (2009). The tidal currents induce the formation of a barrier
in front of the inlet. The results presented above are in some agreement with these
observational data.

4 Conclusions

In this paper we have made a study of the motion of solid particles in a flow with
periodic forcing. In this flow one or more dipoles can coexist. The calculation of
trajectories was made by the integration of a second order differential equation in
which drag, added mas and history forces are included. The results show the existence
of regions where particles are expelled outside the entire domain. Otherwise, there
are also regions where particles concentrate. Some of these results are in agreement
with observational and experimental data, even if trajectories were calculated in 2D
and gravity was not taken into account.
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Experimental Study of Heat and Mass
Transfer During Steam Injection in
Homogeneous Porous
Media

S. Peralta, A. Torres, F. Aragón, G. Domínguez Zacarías, A. Medina
and A. López-Villa

Abstract We carry out experiments in which we have already measured, in a short
period of time, the physical parameters that appear during the steam injection in a
homogenous porous media (Woods and Fitzgerald 1993). For this work, we measured
the distribution of displacement and temperature that occurred when steam is injected
at different pressures (0.25–1 kg/cm2) in a homogeneous porous media by the control
of the injection pressure and flow rate.

1 Introduction

The displacement of a fluid through a porous medium has been a topic of interest
because of its relevance in the recovery of oil (Chung and Butler 1989b). Most
thermal recovery methods have been applied to high viscosity oil reservoirs with the
objective of increasing oil production by reducing oil viscosity. Heat can be injected
into the reservoir as hot water or steam, or can be generated in-situ by burning part of

S. Peralta (B) · A. Torres
Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas 152, Col. Atepehuacán,
Distrito Federal, 07730 México, DF, México
e-mail: peraltasalomon@hotmail.com

F. Aragón
SEPI-ESIME Zacatenco, Av. Instituto Politécnico Nacional s/n,
Unidad Profesional “Adolfo López Mateos”, Col. Lindavista,
Del. Gustavo A. Madero, C.P. 07738 México, DF, México

G. D. Zacarías
Cordinación Tecnológica de Ingeniería de Yacimientos,
Eje Central Lázaro Cárdenas Norte 152 Col. San Bartolo Atepehuacán, Del. Gustavo
A. Madero, C.P. 07730 México, DF, México

A. Medina and A. López-Villa
SEPI-ESIME-Azcapotzalco. Instituto Politécnico Nacional, Av. de las Granjas 682,
Col. Santa Catarina, Azcapotzalco, 02250 México, DF, México

J. Klapp and A. Medina (eds.), Experimental and Computational Fluid Mechanics, 279
Environmental Science and Engineering, DOI: 10.1007/978-3-319-00116-6_23,
© Springer International Publishing Switzerland 2014



280 S. Peralta et al.

the reservoir crude oil. Of all these processes, steam injection is the most reliable, and
has enjoyed by far the most commercial success. In 1988, 72 % of the total enhanced
oil recovery in the U.S.A. was due to steam injection (Castanier and Gadelle 1991).
Steam injection technology was the leading thermal method in the former U.S.S.R.
and it represented the basement for modeling thermal recovery processes for heavy
oil (Jabbour et al. 1996).

This chapter aims to describe some experiments on the method of steam flooding.
Recovery by steam flooding is commonly used in heavy-oil reservoirs containing
oil whose high viscosity is a limiting factor for achieving commercial oil-producing
rates. It has also been considered, however, as a method for recovering additional
light oil.

High-temperature steam is continuously injected into a reservoir. As the steam
loses heat, it condenses into hot water which, coupled with the continuous supply of
steam behind it, provides the drive to move the oil to production wells.

As the formation heats, oil recovery is increased by:

1. The heated oil which becomes less viscous, making it easier to move through the
formation towards production wells.

2. Expansion or swelling of the oil aids in releasing it from the rock.
3. Lighter fractions of oil tend to vaporize, and as they move ahead of the steam

they condense and form a solvent.
4. Finally, the condensed steam cools as it moves through the reservoir and results

in an ordinary water flood ahead of the heated zone.

An added bonus from the use of steam in both steam flooding and cyclic steam
stimulation is the flushing of liners and casing perforations, as well as the reduction
of deposits that may build up in the wells. Possible flow restrictions to oil production
through the wells are thus reduced (United Energy Group, Enhanced Oil Recovery
2008).

In order to understand this phenomenon, it is very important to have an experi-
mental previous study. Therefore, we present some experiments in tubes filled with
sand with different particle diameters, simulating the steam injection in a porous
media.

2 Experiments

The experiments have been carried out by controlling the variables that are involved,
such as the pressure, temperature and steam flow rate, all in cylindrical pipes filled
with homogeneous sand.

The first problem was the control of the pressure, temperature and flow rate. We
used a high resolution digital camera (Nikon, 16 megapixels) to measure the fluid
velocity within the porous medium and to measure the temperature distribution a
thermal camera FLIR SC660 was used.



Experimental Study of Heat 281

Fig. 1 Steam generator. The tube was made with an AISI 1040 steel pipe dt = 0.0508 m and
Lt = 1.5 m with a capacity of 4 lt

The steam generator was made with an AISI 1040 steel pipe with a diameter D =
0.0508 m and a length of L = 1.5 m with a capacity of 4 lt. The maximum pressure
and temperature that we could reach were 8 kg/cm2 and 120 ◦C respectively, see
Fig. 1.

The test core is a cylindrical acrylic tube, with 0.006 m wall thickness, a length
L = 0.42 m and a diameter dt = 0.039 m, filled with a homogeneous mixture of
two types of sand, see Fig. 2. The test sands are: Ottawa sand 850µm mean diameter
(dO ) and Veracruz sand with 315µm mean diameter (dV ).

We made experiments with the material mentioned above, at different pressures
p = 0.25, 0.5 and 1 kg/cm2.

The first experiment was made under the following conditions: p = 0.25 kg/cm2,
Tinitial = 26 ◦C, T f inal = 81.6 ◦C. Volume of condensed fluid 50 ml, v =
0.03604 m/s and Q = 0.00004305 m3/s, or 43.05 ml/s.

For this pressure, the gravitational force is very important in the displacement of
the steam. We observe that in the bottom, the condensate forms a protuberance due
to the force of gravity see Fig. 3.

For the second experiment we obtained a displacement within the matrix at a
steam pressure of 0.5 kg/cm2, an initial temperature of 26 ◦C and a final temperature
of 83.3 ◦C, v =0.07157 m/s and Q = 0.00008549 m3/s or 85.49 ml/s see Fig. 4.

In the third experiment steam injection pressure reached 1 kg/cm2 in the porous
media. Figure 5 shows the photograph of the displacement of the steam and a con-



282 S. Peralta et al.

Fig. 2 Acrylic cylinder with a wall thickness of 0.06 m, L = 0.42 m and φtest tube = 0.039 m

Fig. 3 Condensed profile in a homogeneous matrix formed in Ottawa sand, with an injection
pressure of 0.25 kg/cm2. As seen in the photograph, at the bottom of the specimen, bulges condensate
due to the effect of the gravitational force on the experiment

Fig. 4 Displacement with p = 0.5 kg/cm2, the gravity force forms a protuberance
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Fig. 5 Profile observed in the homogeneous matrix with steam injection at the pressure of 1 kg/cm2

Fig. 6 Thermal sequence with steam injection at a pressure of 0.25 kg/cm2, a homogeneous matrix
consisting of sifted Veracruz sand with d = 315 m. The temperature is distributed evenly through
the homogeneous matrix homogeneous, over time the temperature converges to 81.6 ◦C

densation front caused by the temperature difference in the porous media (the porous
media temperature was 21 ◦C).

In Figs. 3, 4 and 5, we can see how the condensation front changes by the increase
of the pressure and the steam flow rate. The profile shows how the flow is transformed
to a type piston flow.
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Fig. 7 Sequence of thermal photographs of the homogeneous matrix obtained with a FLIR camera,
at a steam pressure of 0.5 kg/cm2, with an initial temperature of 26 ◦C and a final temperature of
83.3 ◦C and volumetric flow of 85.49 ml/s

Fig. 8 Homogeneous matrix (Veracruz sand) where the thermal pictures were taken with a FLIR
SC-660 camera each 10 s during all the experiment
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Fig. 9 Graphs of the steam displacement in the porous medium with Veracruz sand at p =
0.25 kg/cm2 and p = 0.5 kg/cm2

To observe the change of temperature, we have recorded the temperature gradient
along the test tube in two different cases, with a thermal camera, as it can be seen in
Fig. 6 for the case 0.25 kg/cm2.

Figure 7 shows the sequence of the temperature distribution in the homogeneous
porous matrix. The temperature distribution profiles are different because of the
different pressures. In Fig. 6 p = 0.25 kg/cm2, and in Fig. 7 the pressure is p =
0.5 kg/cm2.

In the thermal pictures the homogeneous matrix is formed with Veracruz sand in
both cases (see Fig. 8). This could be done because the low permeability of the sand
from Veracruz allows a better reading of the thermal camera, and therefore shows
profiles with better approximation.

3 Results

The graphs show the progress of the steam as a function of time. At the beginning, the
steam shows a higher velocity. After a few seconds it slows down until it reaches the
end of the test core. The final speed increases with increasing pressure (see Fig. 9).

For the case of the increase of temperature for p = 0.25 kg/cm2 and p =
0.5 kg/cm2, the maximum temperatures are 81.6 and 83.3 ◦C measured with a FLIR
camera (Fig. 10), there is a difference of temperatures between the real measurement
and the measured with the camera due to the acrylic cover, we know this difference
is of 12 ◦C.

Figure 11 shows the displacement of the steam in the porous medium at a pressure
of 1 kg/cm2. Notice that the graph is a straight line.



286 S. Peralta et al.

Fig. 10 Graphs of the increase of the temperature with time for Veracruz sand at p = 0.25 kg/cm2

and p = 0.5 kg/cm2

Fig. 11 Graph of the steam displacement in the porous medium with Ottawa sand for p = 1 kg/cm2

Comparing 0.5 and 1 kg/cm2, see Fig. 12, the slope changes due to the pressure
and the velocity inside the porous media. With the pressure of 0.25, see Fig. 10, we
can see that the gravity force domain and the displacement is not proportional.



Experimental Study of Heat 287

Fig. 12 comparison of the experiment with different steam pressures p = 0.5 kg/cm2 and p =
1 kg/cm2

4 Conclusions

In this work we have shown the basic experiments in which is involved the easiest
arrangement (porous media and steam). This is the first step to understand their
behavior into several conditions, for example at different pressures. The next step
is to complicate the situation introducing a new fluid such as light and heavy oil
for understanding how these fluids are going to behave during steam injection. The
experiments show the real behavior of the steam in the porous media.
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Properties of steam
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Below we have the following characteristics of the steam.
Properties of steam at 0.25 kg/cm2:

Pressure 0.25 kg/cm2

Saturation temperature 106.188 ◦C
Specific entalphia of water (hf) 445.24 kJ/kg
Specific entalphia of evaporation (hfg) 2240.21 kj/kg
Specific entalphia of steam (hg) 2685.45 kj/kg
Density of steam 0.731769 kg/m3

Specific volume of steam (Vg) 1.36655 kg/m3

Specific entropy of water (sf) 1.37636 kj/kg K
Specific entrophy of evaporation (sfg) 5.90557 kj/kg K
Specific entrophy of steam (sg) 7.28193 kj/kg K
Specific heat of steam (cv) 1.54032 kj/kg K
Specific heat of steam (cp) 2.06686 kj/kg K
Speed of sound 475.913 m/s
Dinamic viscosity of steam 1.25E05 Pa s
Isentropic coefficient (k) 1.31656
Comppressibility factor of steam 0.982271

Properties of steam at 0.5 kg/cm2:

Pressure 0.5 kg/cm2

Saturation temperature 111.45 ◦C
Specific entalphia of water (hf) 467.45 kj/kg
Specific entalphia of evaporation (hfg) 2226 kj/kg
Specific entalphia of steam (hg) 2693.51 kj/kg
Density of steam 0.864345 kg/m3

Specific volume of steam (Vg) 1.15695 kg/m3

Specific entropy of water (sf) 1.4346 kj/kg K
Specific entrophy of evaporation (sfg) 5.78782 kj/kg K
Specific entrophy of steam (sg) 7.22243 kj/kg K
Specific heat of steam (cv) 1.55322 kj/kg K
Specific heat of steam (cp) 2.08789 kj/kg K
Speed of sound 478.49 m/s
Dinamic viscosity of steam 1.27E05 Pa s
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Properties of water at 1 kg/cm2

Pressure 1 kg/cm2

Saturation temperature 120.44 ◦C
Specific entalphia of water (hf) 504.426 kj/kg
Specific entalphia of evaporation (hfg) 2202.01 kj/kg
Specific entalphia of steam (hg) 2706.44 kj/kg
Density of steam 1.12564 kg/m3

Specific volume of steam (Vg) 0.888386 kg/m3

Specific entropy of water (sf) 1.52938 kj/kg K
Specific entrophy of evaporation (sfg) 5.59889 kj/kg K
Specific entrophy of steam (sg) 7.12827 kj/kg K
Specific heat of steam (cv) 1.57627 kj/kg K
Specific heat of steam (cp) 2.12621 kj/kg K
Speed of sound 482.559 m/s
Dinamic viscosity of steam 1.30E05 Pa s
Isentropic coefficient (k) 1.3138
Comppressibility factor of steam 0.975884
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Numerical Simulations of the Kelvin–Helmholtz
Instability with the Gadget-2 SPH Code
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and Leonardo Di G. Sigalotti

Abstract The method of Smoothed Particle Hydrodynamics (SPH) has been widely
studied and implemented for a large variety of problems, ranging from astrophysics
to fluid dynamics and elasticity problems in solids. However, the method is known
to have several deficiencies and discrepancies in comparison with traditional mesh-
based codes. In particular, there has been a discussion about its ability to reproduce
the Kelvin–Helmholtz Instability in shearing flows. Several authors reported that they
were able to reproduce correctly the instability by introducing some improvements
to the algorithm. In this contribution, we compare the results of the Read et al. (2010)
implementation of the SPH algorithm with the original Gadget-2 N-body/SPH code.
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1 Introduction

The Kelvin–Helmholtz Instability (KHI) is the instability that appears at the inter-
face between two shearing fluid flows of different densities. Many experimental and
numerical results have been published where such instability is reproduced. In par-
ticular, in astrophysics such instabilities may be responsible for many phenomena
observed in regions of high gas density contrast (Murray et al. 1993). The necessity
for subsonic velocities for the KHI survival was first explored in the context of as-
trophysical flows by Vietri et al. (1997). As discussed by these authors, the growth
rate of the KHI is smaller than the gas speed of sound. The correct modeling of
KHI is essential since the vorticity and shear flows appear in diverse hydrodynamic
processes, such as for example, the onset of turbulence.

The Smoothed Particle Hydrodynamics method (SPH) is a Lagrangian meshless
particle method used for simulation of fluid transport. Since its original formulation
the SPH method has been constantly improved. In recent years a search for pos-
sible differences between grid-based and particle-based methods has been widely
discussed. For instance, Agertz et al. (2007) compare the results for several hydro-
dynamic tests obtained with SPH and grid-based methods. They found a striking
difference between the results. In particular, the inability to reproduce the vorticity
rolls in the shearing flow was claimed to be a deficiency of the SPH method. Price
(2008) showed that introducing an artificial thermal conductivity term into the stan-
dard SPH, in order to smooth the discontinuities in the thermal energy, allowed for
similar results to those obtained by Agertz et al. (2007) using grid-based simulations.

On the other hand, several authors suggested that the artificial conductivity is not
the main factor responsible for suppression of the instability. It is well known that
the choice of the smoothing kernel also affects the results. For example, the standard
cubic spline kernel tends to suffer from the clumping instability (known also as
pairing instability) for large number of neighbors, introducing errors and lowering the
resolution. Read et al. (2010) showed that kernels that produce a constant force term
in the center prevent the clumping. Several alternative kernel shapes were proposed to
remedy this problem [see for example, Dehnen and Aly (2012)]. Hubber et al. (2013)
performed a comparison of KHI simulations obtained with SPH and with the AMR
Eulerian code Pencil. They concluded that convergence between SPH and grid codes
may be obtained if higher order kernels (i.e., quintic) that support larger numbers of
neighbors are used. Cha et al. (2010) showed that inaccurate density gradients that
are obtained with the standard SPH formulation are responsible for the suppression
of instabilities and can be alleviated by using a Godunov formulation of SPH. These
works concluded that the standard SPH formulation is unable to reproduce the KHI
and that some improvements must be implemented.

Some of the causes that suppress the KHI are the following: when pressure dis-
continuities appear as a result of the lack of entropy mixing on the kernel scale,
when large errors are introduced in the momentum equation due to a finite number
of neighbor particles, due to the pairing instability, or due to contact discontinuities.
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In this work, we compare the results for the KHI as obtained using the standard
Gadget-2 SPH with the formulation proposed by Read et al. (2010).

2 Initial Conditions

As the initial conditions for the first part of the KHI tests (A), we use the example
already included in the OSPH code (Read et al. 2010). This is done with the aim of
providing direct comparison of our simulations with previously published results. In
the second part (B), we use the so-called “well-posed” initial conditions described
in McNally et al. (2012) [see also Robertson et al. (2010)]. The latter is regularized
by smoothing the density and velocity on the interfaces in order to prevent abrupt
pressure jumps. Such situations are frequently found for example in simulations of
real astrophysical systems. In addition, the two sets of initial conditions differ by the
type of density sampling, which is done by the spatial distribution of the particles
(set A) or by varying the particle masses (set B). Set C differs from set B only in the
magnitude of the densities and velocities.

For brevity, we describe only the initial conditions for the simulation sets B and
C, which consist of a 3D slab of size 1.0 ×1.0 ×0.0325, with the central part having
a density ρ2 = 2ρ1 and moving with the velocity v2 = −u, while the upper and
lower sections have a density ρ1 and move with the velocity v1 = u along the x-axis.
A small velocity perturbation is added, vy = δvy sin(2πx/λ), with λ = 0.5. The
gas has a constant pressure P = 2.5 everywhere and satisfies an ideal gas equation
of state P = (γ − 1)Uρ, with γ = 5/3. The system of units is such that length,
time and mass are equal to unity. For the simulation set B, we use ρ1 = 1.0, u = 0.5
and δvy = 0.01, while for the set C we define ρ1 = 32.0, u = 0.1, δvy = 0.01
and δvy = 0.002. The system is sampled with an equally spaced cubic grid of
256 × 256 × 8 particles. The parameters are chosen with the purpose of staying in
the subsonic regime, which guarantees the KHI formation.

The characteristic onset time of the KHI in the linear regime is given by:

τ = (ρ1 + ρ2)λ√
ρ1ρ2 |v2 − v1| . (1)

For the above initial parameters the characteristic times are τA ≈ 3.4, τB ≈ 1.06
and τC ≈ 5.3, and the total simulation times were 4, 2.1, and 8 respectively. Note
that different units are used for set A.

We use the Gadget-2 code (Springel 2005) and its modification—OSPH—the Op-
timized SPH introduced by Read et al. (2010). In both codes the flags-DPERIODIC,
-DNOGRAVITY and -DLONG were activated, and in OSPH the recommended flags
were also switched on (-DOSPHM, -DOSPHRT, and -DOSPHHOCT). The artificial
viscosity was set to α = 0.8 in all simulations.
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Table 1 Summary of the KHI simulations

Model Nngb Code

AGADG33 33 Gadget-2
AGADG64 64a Gadget-2
AOSPH96 96 OSPH
AOSPH442 442 OSPH
BGADG64 64a Gadget-2
BOSPH64 64 OSPH
BOSPH96 96 OSPH
BOSPH442 442 OSPH
CGADG64L 64 Gadget-2
CGADG64S 64 Gadget-2
COSPH96L 96 OSPH
COSPH96S 96 OSPH
a The runs with a higher number of neighbors with the standard Gadget-2 were not completed
because a maximum number of tree-nodes was reached due to the pairing instability

3 Results

We performed a number of tests using different combinations of the initial conditions
and code parameters. In Table 1 we summarize some of them. The first column is
the set of models coded by the first letter of the name, which are A, B or C, the
second column gives the number of neighbors, and the third column shows the
code employed for the simulation. Figure 1 (set A), Fig. 2 (set B) and Fig. 3 (set C)
summarize the results of using different initial conditions and different numbers of
neighbor particles.

From Fig. 1, we observe that model AOSPH442 is the only run that produces
well distinguished rolls, while using either a smaller number of neighbors or the
Gadget-2 code leads only to mild perturbations. This fact confirms the results of
Read et al. (2010). A notable feature is that in model AOSPH96 with a smaller
number of neighbors the perturbations are completely damped. On the other hand,
run AGADG64, which uses a nearly optimum number of neighbors for the 3D cubic
spline kernel, shows pronounced undulations, although without any rolls. Using
their new SPHS code, which implements a dissipation switch, Read and Hayfield
(2012) obtained KHI in both single mass and multimass particle models. Their initial
conditions for single mass particles are identical to those used in set A. Note that in
the set A a Mach number for the low density layer is M ≈ 0.11.

The mass varying initial conditions in the simulations of set B lead to pro-
nounced perturbations with well developed rolls being produced only in the runs
with a maximum number of neighbors (Fig. 2). Small undulations observed at
time t = τB (left column) are evolved into a KHI for t = 2τB (right column)
in runs BGADG64 and BOSPH442. Surprisingly, standard SPH with multimass
setup do develop KHI, contrary to previous claims. Comparing a BGADG64 den-
sity projection at t = 2.1 to a reference solution obtained with the Pencil code of
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Fig. 1 Projected density plots for the simulations of set A showing the perturbations at 1.2τA. From
left to right and top to bottom: AGADG33, AGADG64, AOSPH96, AOSPH442

McNally et al. (2012) (their Fig. 2) we observe a very similar shape and amplitude of
density rolls. However, the reference solution shows the density projection at t = 1.5,
indicating that in BGADG64 the KHI develops slowly. In the case of BOSPH442, the
density projection which matches approximately the reference solution corresponds
to t = 1.7. In order to check the effect of a low number of neighbors we repeated
the BGADG64 with 33 neighbors (not shown), and obtained a similar situation to
BOSPH64 with no KHI. The Mach number of the low density layer is M2 ≈ 0.34.

In order to explore the effect of different shear velocities and perturbation am-
plitudes, we performed some additional simulations with both codes reducing the
initial velocities, and either reducing or keeping the same perturbation amplitude δvy .
These models are listed in Table 1 as set C, where the last letter in the name stands
for large amplitude (L), δvy = 0.01, and for small amplitude (S), δvy = 0.002,
respectively. In this case the gas is still subsonic with c1 = 0.36 and c2 = 0.25,
giving the Mach number of low density layer M2 ≈ 0.4. The Fig. 3 compares the
results obtained with both codes. While these appear very similar, the amplitude of
the KHI looks smaller and lacks secondary ripples for the Gadget-2 code.
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(a)

(b)

Fig. 2 Projected density plots for the simulations of set B. Each column shows the perturbations
at τB (left) and 2τB (right). (a) From top to bottom: BGADG64 and BOSPH64. (b) From top to
bottom: BOSPH96 and BOSPH442
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Fig. 3 Projected density plots for the simulations of set C showing the perturbations at 1.5τC . From
left to right and top to bottom: CGADG64S, CGADG64L, COSPH96S, COSPH96L

4 Concluding Remarks

The aim of this work was to test several implementations of the SPH code and
determine the necessary conditions for successful simulations of the mixing process
in shearing flows. We have compared visually the projected densities for standard
and optimized SPH codes for non-linear structure formation. Runs with single mass
standard SPH formulations showed a similar behavior to that described in previous
studies, [c.f. Fig. 13 of Agertz et al. (2007) and Fig. 7 of Price (2008)]. On the
other hand, it seems that the multimass simulations do not depend on the SPH code
implementation, but rather on the number of neighbors. The optimized SPH code is
almost two times slower than the standard SPH for the same number of neighbors,
– a disadvantage that was reported to be absent in the new SPHS code of the same
authors (Read and Hayfield 2012). We have shown that for mixing problems using
the SPH formalism, it is essential to take much care in setting the initial conditions
and the number of neighbors. Further investigation of the problem is necessary in
order to obtain robust results with SPH.
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Part IV
Vortex, Oceanography and Meteorology



Effect of the Inlet Flow Angle on the Vortex
Induced Vibration of a Collinear Array
of Flexible Cylinders

F. Oviedo-Tolentino, R. Romero-Méndez, F. G. Pérez-Gutiérrez, G.
Gutiérrez-Urueta and H. Méndez-Azúa

Abstract In this work an experimental study of vortex-induced vibration (VIV)
was carried out in an collinear array of ten identical cylinders. This investigation
was conducted with a mass ratio (m∗ξ = 0.13) and a blockage ratio (W/D < 1%).
The inlet flow angle was fixed to 30◦ and the leading cylinder vibration amplitude
was compared under the condition of 0◦ inlet flow angle. The free-end cylinders had
two degrees of freedom with identical in-line and cross-flow natural frequencies in
still fluid medium. The experimental essays were performed in a water tunnel in the
lock-in region (90 < Re < 450). The results show that the cross-flow vibration
amplitude is 68 % reduced when the inlet flow angle increases to 30◦.

1 Introduction

In some industrial applications, such as marine risers, tall buildings, large suspension
bridges, high voltage lines, tube and shell heat exchangers, smokestacks, etc., vortex
induced vibration may occur. The particular importance of VIV on circular cylinders
is partly due to industrial problems logged on this subject. The practical importance of
VIV has led a number of fundamental studies, most of them on elastic cylinders with
one degree of freedom. The physics involved in the VIV phenomenon is extensive,
and some discussions on this topic are in the reviews of (Bearman 1984 and Gabbai
and Benaroya 2005).

The fundamental studies on VIV involved the study of the mass-damping ra-
tio, the cylinder natural frequency, vortex shedding modes and added mass on the
lock-in region. The lock-in region is frequently represented by three distinguishable
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responses: initial, upper and lower branches. High mass-damping cases are associ-
ated to lock-in regions with only two response branches, initial and lower. However,
for low mass-damping cases the lock-in region consists of three branches: initial,
upper and lower. This type of response is frequently referred as the Feng-type re-
sponse, Feng (1968). On the other hand (Khalak and Williamson 1996, 1997a,b,
1999) conducted experimental studies for a very low mass damping ratio (m∗ζ =
0.013). They concluded that the peak vibration amplitude is principally governed by
the mass-damping ratio, whereas the mass ratio controls the lock-in range. Vikestad
et al. (2000) found a mass ratio dependence on the Reynolds number. This depen-
dence modifies the natural frequency of the cylinder in the lock-in region. The lock-in
region has shown hysteretic behavior in the initial and lower branches. However for
blockages of 1 % or less, the hysteretic behavior is completely eliminated in the initial
branch.

There is evidence of the destructive nature of the vortex-induced vibration in
cylinder arrays. Paidoussis (1980) cited various industrial problems registered in
heat exchangers and nuclear reactors due to the VIV phenomenon. A good starting
point in the study of cylinder arrays is a tandem configuration. The results on this
configuration have shown a dependence of the vibration amplitude on the distance
between cylinders. The important parameter in these studies was the ratio between
the cylinder separation P to cylinder diameter D, P/D. Papaioannou et al. (2008)
showed that for P/D < 3.5, the vibration amplitude is very similar to that of an
isolated cylinder. However for P/D > 3.5 the vibration amplitude is significantly
increased. This result confirmed the hypothesis made by Tanaka and Takahara (1981),
who suggested that cylinder vibration is induced by the forces originated due to
the fluid dynamics around both the neighbor cylinders and the cylinder itself. For
the VIV in cylinder arrays, various excitation mechanisms are involved. Weaver
and Fitzpatrick (1988) discussed the excitation mechanisms in typical tube array
patterns in tube and shell heat exchangers. They pointed out the destructive nature
of the fluid-elastic instability excitation mechanism in a heat exchanger. Recently,
Zhao and Cheng (2012) investigated the effect of the inlet flow angle on the lock-in
range in a square cylinder array configuration. They showed that as the flow inlet
angle increases up to 30◦, the lock-in range is also increased; after this flow inlet
angle the lock-in range is reduced.

This investigation presents experimental results of VIV of ten identical flexible
cylinders positioned in a collinear array at 30◦ angle with respect to the inlet flow
direction. The experiments were conducted at a low mass-damping ratio m∗ζ = 0.13
and blockage ratio W/D < 1%. The natural cylinder frequency as well as the cross-
flow and in-line vibrational response were determined in the lock-in region. The
vibrational response of the leading cylinder in the array is compared with the case
when the array is aligned with the free stream direction previously studied in Oviedo-
Tolentino et al. (2013). The results show that the cross-flow vibrational response is
reduced by 68 % at 30◦ inlet flow angle. This behavior is manly due to the low
synchronization between cylinders in the lock-in region. On the other hand the lock-
in range is slightly larger in the 30◦ inlet flow case.



Effect of the Inlet Flow Angle on the Vortex 303

Fig. 1 Experimental model at 0◦ inlet flow angle

2 Experimental Procedure

2.1 Experimental Setup

Figure 1 shows a sketch of the experimental model. The model consisted of a 9 mm
thick, 95 cm long and 37.5 cm wide acrylic flat plate. The ten identical circular
cylinders were inserted into a drilled hole in a collinear arrangement. The cylinder
array can be rotated with respect to the inlet flow angle. The cylinders were 2.40
mm in diameter and 40 cm in height with an elastic modulus of 10.5 × 1010 Pa. The
experiments were carried out in a water tunnel with a test section 38.1 cm wide, 50.8
cm high and 1.5 m long. The water velocity can be varied from 0.01 to 0.3 m/s. A
flow conditioning system maintains the turbulence levels at less than 1 % RMS at the
inlet test section.

The vibration amplitude was obtained using a fast recording camera. This camera
has an internal memory (2 GB) in which images can be stored digitally at 506 frames
per second with full resolution, 1280 × 1024 px. For lower resolutions the frame rate
can be increased up to 112,000 frames per second. The shutter time can be adjusted
in the interval of 2 µs to 1 s. With these features, the free-end cylinder displacements
could be measured up to an accuracy of the order of 11 µm.

2.2 Experimental Methodology

With the experimental setup described above, the cylinder free-end was recorded
during 20 s at a rate of 240 frames per second using 100 µs as exposure time.
Under this recording conditions, an external illumination was needed. The dynamic
vibration amplitude was obtained using a particle tracking velocimetry technique on
the recorded fotograme. Therefore, plots of the cylinder free-end position as a func-
tion of time were obtained. The cylinder frequency was determined through spectral
analysis of the cylinder free-end time trace.
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Fig. 2 Inlet flow angle effect on the vibrational response, a Cross-flow lock-in and b In-line lock-in
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Fig. 3 Vibrational response in the array, a Cross-flow and b In-line

3 Results

Figure 2 shows the maximum cross-flow and the in-line vibrational responses for
cylinder 1 as a function of the Reynolds number. In the cross-flow vibrational response
(Fig. 3a), three branches are identified. This behavior confirms the mass-damping and
the vibration amplitude branches relationship made by Feng (1968) who suggested
that for low mass-damping ratio three response branches are associated. (Khalak and
Williamson 1996, 1997a,b, 1999) related the peak amplitude with the mass-damping
ratio in an isolated cylinder. The results in the collinear array reveal that the peak
response is highly related to the inlet flow angle. On the other hand, the mass ratio
has been associated with the lock-in range. The results in the collinear array show
almost no influence of the inlet flow angle on the lock-in range.

The lock-in region for the ten cylinders in the collinear array is shown in Fig. 3.
The peak vibrational response of cylinders 1 to 9 is, in general, of the same order
of magnitude. However, cylinder 10 registers the maximum peak cross-flow vibra-
tional response. This results suggest that the inlet flow angle prevents synchronization
between cylinders. Figure 4 shows the non-dimensional frequency for the ten cylin-
ders in the array. In order to show the preferred frequency at which the cylinders in
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Fig. 4 Dimensionless frequency, a Cylinders from 1 to 5 b Cylinders from 6 to 10. The frequency
was normalized using the Strouhal number

the array vibrate in the lock-in region, the cylinder frequency in still water (Fw), still
air (Fa) and the vortex shedding frequency of an stationary cylinder were included
in Fig. 4 as a reference. The non-dimensional cylinder frequency shows no synchro-
nization between cylinders in the lock-in range. The low cylinder synchronization is
partly due to the inlet flow angle. These experiments suggest that the inlet flow angle
should be taken into account in the study of the synchronization between cylinders.
The cylinder frequency in the lock-in region has, as a maximum value, the natural
frequency in still air. In accordance with the results of (Vikestad et al. 2000), the
added mass has a Reynolds numbers dependence in the lock-in region. The added
mass changes leaded to natural cylinder frequency changes. The frequency and the
added mass changes can be observed in Fig. 4. From this observation, it can be con-
cluded that the results show low and high added mass dependence on the Reynolds
number in the lock-in region.

4 Conclusions

An experimental study of vortex induced vibration in a collinear array was conducted.
The inlet flow angle shows high influence on the peak cross-flow vibration. The
cross-flow vibration amplitude is reduced by 68 % in the case of a 30◦ inlet flow
angle. The reduction in the cross-flow vibration amplitude is due to a low cylinder
synchronization in the lock-in. On the other hand, the inlet flow angle has almost
no influence on the lock-in range. The cylinders response shows agreement with
previous results, where three response branches were identified for the study mass-
ratio case. The non-dimensional frequency results show low and high added mass
dependence on the Reynolds number in the lock-in region.
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Forced Dynamics by Wind Normal to the
Boundary

Alma Delia Ortíz Bañuelos and Federico Ángel Velázquez Muñoz

Abstract The ocean response is studied through the implementation of a numerical
(POM, Princeton Ocean Model) with a constant Coriolis force, continuous vertical
stratification, flat bottom and all boundaries closed. We considered four types of
wind to force the model: Normal to the coastline; with Inertial path; in Fan shape
and Realistic (sum of Inertial and Fan). The results of the numerical simulations
show in each case the emergence of two counter rotating eddies in both sides of
maximum wind and a cooling of sea superficial temperature. In the first case, the
inertial wind adds asymmetry to the response, causing significant differences in the
size and intensity of eddies. With the wind from a Fan-shape, the response remains
similar to case one, but with more intense eddies and greater cooling. In the latter
case with Realistic wind field, evident asymmetry is shown; it is used to explain in
general, the dynamics produced by these winds.

1 Introduction

For a long time the effect of wind stress on the circulation in coastal regions has been
studied. It produces upwelling and increased primary biological production and is
responsible for the formation of anticyclonic and cyclonic eddies at the ocean surface
offshore. This phenomenon has been studied in different parts of the world, such as
in the Gulf of Tehuantepec, the Gulf of Papagayo, northwestern Baja California, the
Canary Islands and Cape Verde, to name a few places where winds blow from land
to sea controlling coastal dynamics significantly, (Lavín et al. 1992).

Observations with satellite imagery and in-situ measurements have shown that the
ocean response to these wind jets is not the same on both sides of the wind, taking
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a major component of asymmetry that can be noticed in the size and intensity of
the eddies (Trasviña et al. 1995; Clark 1988; Lavín et al. 1992; Barton et al. 1993;
Willett et al. 2006; Velázquez Muñoz et al. 2011). McCreary et al. (1989) mention
that asymmetry between the eddies is due to the accumulation of cold water on
the side of the cyclonic eddy caused by the difference in current directions (south)
and countercurrent (opposite direction). Furthermore, Clark (1988) mentions that
anticyclonic eddies can be strengthened by the introduction of negative vorticity
by the inertial path, but only shows the antisymmetry in the displacement of the
thermocline and symmetry in the Southern current of the surface layer of the ocean.

This chapter aims to provide new information and an explanation of the physical
parameters involved in the asymmetric response of the ocean by the numerical model
POM (Blumberg 1987) which is three-dimensional and solves the primitive equations
of the ocean obtained from Navier-Stokes.

2 Methodology

2.1 Configuration and Implementation of the Numerical Model

The ocean is considered a flat-bottomed rectangular basin. The computational grid
has a horizontal resolution of 5 km, with walls like closed boundaries, where there is
free sliding, i.e. the sidewalls are simulating the earth. The initial condition is at rest,
with temperature and salinity profiles varying only with depth. It is also assumed
that the Coriolis parameter is constant.

This numerical model POM version 2k, is forced by four different types of wind,
in the land-sea direction and a time period of 6 days. The first (Fig. 1a) is wind Normal
to the boundary, similar to McCreary et al. (1989). In the second case (Fig. 1b); the
wind opens in a Fan shape caused by an atmospheric pressure gradient. In the third
case (Fig. 1c), the normal wind changes direction following an inertial path (curves
to the right). Finally, the fourth type of wind (Fig. 1d), is generated by adding the
two characteristics considered in the previous cases: the Fan shape caused by the
atmospheric pressure gradient (case 2) and the inertial path curvature due to the
Coriolis force (case 3), producing a wind with the same characteristics as shown
by Steenburgh and Schultz (1998). Therefore, in this study the fourth type of wind
was named Realistic wind. For the analysis of the ocean’s response to wind stress
forcing (Normal, Inertial, Fan shape and Realistic), we used the numerical model
output data: surface temperature (Ts), current velocity components integrated in the
vertical; (UA, VA ) and the sea level (η) in 2D layer and along a zonal section at
150 km parallel to the Northern shore. The aim is to identify which of these physical
parameters respond asymmetrically, and to investigate which kind of wind contributes
to a greater asymmetry of the ocean’s response.
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Fig. 1 Wind stress fields for a normal to the boundary, b fan shape, c inertial path and d realistic.
Maximum magnitude for each case is 1.8 N m−2, (domain not complete)

3 Results

3.1 Ocean’s Response

Figures 2 and 3 show the response of the ocean’s surface to the wind stress on the
third and sixth day of simulation, respectively.

In every case there is an asymmetrical surface response when the wind reaches
its maximum intensity on the third day of simulation (Fig. 2). This can be observed
in a cooling along the northern boundary and in the emergence of two eddies: one
anticyclonic to the left and one cyclonic to the right. Both eddies are markedly
different in size and shape. It also shows that the sea level rises in the anticyclonic
and falls into the cyclonic. Similarly, on day 6, Fig. 3 shows that the characteristics
of the ocean response are maintained, but with increasing in intensity. In the normal
wind case (Fig. 2a) there is cooling near to the coast, where the cold water mass is
displaced by the water current in the same direction as the wind jet, i.e. offshore.

Figure 3a, shows the sea level for the case normal wind with an antisymmetric
response because it has a positive displacement (anticyclonic region) and a negative
displacement (cyclonic region) with the same magnitude, on day 6 (Fig. 3a) less
cooling is observed, where cold water is displaced in the wind jet direction and
slightly stretched by the anticyclonic eddy.
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Fig. 2 Ocean’s response to the wind stress a normal to the coast, b fan, c inertial and d realistic.
The color bar indicates the temperature in ◦C, the contours correspond to the sea level (solid
line represents elevation and dotted line, sinking) and the black arrows correspond to vertically
integrated current. (The complete domain is not shown)

Figure 2b shows the ocean response to a fan shaped wind stress. One can observe
the greater mass of cold water near the shore, in contrast with the case of normal
wind. The sea level has a higher displacement in the cyclonic region than in the
anticyclonic eddy.

For inertial wind (Figs. 2c, 3c), the ocean’s response shows a greater difference
from all the other cases with respect to cooling and to the sea level displacements pro-
duced (higher elevation than lowering). It also highlights the difference in the shape
one diameter of the eddies. The anticyclonic eddy is more intense than the cyclonic,
being the cyclonic eddy very weak and not well defined. In the case of realistic wind
(Figs. 2d, 3d) an asymmetrical response is shown, very similar to that obtained in
the cases of normal wind and fan shaped with respect to surface temperature, eddy
size, sea level displacement and vertically integrated current, where there is a slight
weakening of the cyclonic vortex.

The asymmetric response to the realistic wind can be attributed to its inertial com-
ponent. This result is consistent with the mechanism proposed by Clark (1988), who
remarks that anticyclonic vortex strengthening, is caused by the inertial trajectory
of the wind. This allows us to suppose that either the inertiality or the fan shape
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Fig. 3 Ocean response before wind stress a normal to the coast, b fan, c inertial d realistic. The
color bar shows the temperature, the outlines represent sea level and the black arrows the vertically
integrated current. (the domain of the complete model is not shown)

in the realistic wind could be important for the ocean’s response. In this case, the
realistic wind was built with equal contribution of these two features, but apparently,
the shape of the realistic wind is affected more by contribution of the Coriolis force
than the atmospheric pressure gradient.

Finally, with respect to the meridional southern current integrated in the vertical
at 150 km of the coast, it is shown that the wind stress generates a current by dragging
the superficial water mass offshore (Fig. 4). This current produces a vacuum near the
north boundary, which is occupied by the masses of water from both sides of the
wind jet, producing two opposite currents (countercurrent anticyclonic and cyclonic).
It also cooperates with the elevation of the subsurface cold water mass, generating
cooling near the coast. In all four cases studied, the current’s velocity is higher
than the velocity of the countercurrent, and the anticyclonic side countercurrent is
greater than the current on the cyclonic side. The inertial wind contributes more to
the southern velocity (the vertical), than the wind in all others cases.
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Fig. 4 Transect of the southern current integrated in the vertical (va) at 150 km to the coast for each
kind of wind, (the image above shows the location of the transect, which crosses the center of the
cyclonic and anticyclonic vortex)

4 Conclusions

This chapter provides an analysis of the ocean’s response for four different kinds of
offshore normal wind (1. normal, 2. inertial, 3. fan shape and 4. realistic), using a
three-dimensional numerical model.

Model results show, in all cases, an asymmetrical ocean response with respect
to the sides and shape of emergence eddies, with cooling in the sea surface, where
the mass of cold water is stretched with greater intensity by the anticyclonic eddy.
It is also noted that there is higher elevation than sinking at sea level. These results
show that the ocean’s response to normal wind (case 1) is similar to those shown by
McCreary et al. (1989).

The inertial wind in contrast with the cases of normal wind, fan and realistic,
provides greater asymmetry: higher cooling, strong meridional velocity and dis-
placements of the sea level. These physical parameters show a greater change in the
region of anticyclonic eddy than the cyclonic one.
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Focusing of Surface Waves

Gerardo Ruiz-Chavarria, Michael Le Bars and Patrice Le Gal

Abstract In this chapter we present some original experimental results of the process
of focusing of surface waves in a fluid. To this end, monochromatic waves of fre-
quencies in the range 5–15 Hz are produced in a water layer of 10 cm depth using
a parabolic wave maker. Experiments remain in the deep water approximation and
both gravity and surface tension influence the evolution of waves. We find that, as in
optics, the wave field exhibits phenomena such as diffraction, interference and the
presence of two caustics intersecting at one point and forming a cusp. To investigate
the properties of surface waves, the synthetic Schlieren method is used. Nonlinear
behavior emerges during the process of focusing even for small amplitude waves.
For example the peak amplitudes are more pronounced that the amplitude of the
troughs. Some non expected results emerge from our experiments. The first is that
the position of the maximum amplitude of the wave is dependent on the amplitude
of the initial parabolic wave front, but in any case, is always in the vicinity of the
origin of Huygens’ cusp. Second, the predictions for linear waves are only in partial
agreement with our experimental data. And finally, due to the fact that the ratio of
the size of wave maker to the wavelength does not tend to infinity some finite size
effects are observed.
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1 Introduction

In the theory of waves, the caustics are surfaces that separate illuminated regions
from shaded regions. Geometrical optics establishes that in the illuminated region
several rays reach each point, while in the shaded region no rays are present. The
same theory predicts that the amplitude of the wave goes to infinity along the caustic.
In reality this behavior does not hold, because the ray theory is only an approximation
coming from geometrical optics forgetting about the wave properties. However, the
behavior of a wave in the vicinity of a caustic has been investigated in the past (Paris
and Kaminski 2001; Lewis et al. 1967; Stamnes and Spjelkavik 1983) for two rays
superimposition. In this case, the wave field can be described in terms of the Airy
function Ai(x). This function has an oscillating behavior for x < 0, while for x > 0
the amplitude has an exponential smooth behavior. In fact, the problem we present
in this manuscript cannot be described only in terms of Airy function because inside
the cusp the wave field is the result of the superposition of three rays. The method
proposed by Pearcey (1946) must be used in this case instead of the classical theory.
In surface waves, a field with a Huygens’ cusp can be produced with a parabolic
wave maker (Pomeau (1991), see Fig. 1). The initial wavefront is described by the
equation

y0 = ax2
0 (1)

A ray starting at the parabola of equation y0 = ax2
0 moves in a direction perpen-

dicular to it, i. e. in a direction given by the normal vector n̂ in the point: (x0, y0):

n̂ = (−2ax0, 1)√
1 + 4a2x2

0

(2)

As the wave travels, its amplitude grows by focusing according to the following
relation:

A = A0

√
ρ

ρ − d
(3)

where A0 is the initial amplitude, d is the distance traveled by the ray and ρ = 1
K

is the inverse of the curvature of the parabola at the starting point, which in actual
case is:

K = y≤≤
0

(1 + y≤2
0 )3/2

= 2a

(1 + 4a2x2
0 )3/2

(4)
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Fig. 1 Parabolic wave maker
(red line). The equation of the
curve is y0 = ax2

0 . According
to geometrical optics a ray
starts at the parabola and
moves in a direction normal to
the curve (blue lines). In the
figure, the Huygens’ cusp is
plotted as the black line. The
arrow in the figure indicates
the direction of propagation of
waves
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The space where the wave progresses is divided in two regions. In the first one, which
is in contact with the parabolic wave maker, only one ray passes through each point.
Far away a second region emerges; it is characterized by the fact that three rays reach
each point. The curve separating both regions is the union of two caustics. One way
to obtain the analytical expression of the caustics is to determine the limit of the
region where only one real root exists for x0 in the equation of a ray in parametric
form (x, y) = (x0, y0)+ n̂d . An alternative method is to use the property that in the
ray theory a caustic is the locus where the amplitude becomes infinite. This happens
for d = ρ (Eq. 3). That is:

(x, y) = (x0, ax2
0 ) + n̂ρ = (−4a2x3

0 ,
1

2a
+ 3ax2

0 ) (5)

The analytical expression for caustics can be obtained if we combine both compo-
nents of this vector equation and eliminate x0. This procedure leads to the following
equation

x = ±4
∞

a

3
∞

3
(y − 1

2a
)3/2 (6)

The last equation has a cusp singularity at (0, 1
2a ) where both caustics intersect. Far

from this point, the characteristics of the wave can be deduced using the method of
the stationary phase. Near the cusp, the amplitude h(x, y) of the surface wave can
be calculated by the diffraction integral (Pearcey 1946; Paris and Kaminski 2001),
which is an approximate solution of the wave equation:
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h(x, y) =
∫ +→

−→
dx0

cos(θ(x0))

exp(ikd(x0, x, y))∞
d(x0, x, y)

(7)

where θ(x0) is the angle between the tangent to parabola at point (x0, y0) and the x
axis. We assume that cos(θ(x0)) ∇ 1. Interest is pointed out in the solution around
the singular point (0, 1

2a ). For this purpose we made a Taylor expansion of d(x0, x, y)

about this point. At first order we obtain:

d(x0, x, y) ∇ R + 1

2R

(
a2x4

0 + 2a

(
1

2a
− y

)
x2

0 − 2xx0

)
(8)

where R = 1
2a . This expression is used only in the exponential term because

kd(x0, x, y) is a rapidly varying variable and in the denominator we made the
approximation that d(x0, x, y) ∇ R. The diffraction integral is then approximated
by:

h(x, y) = exp(ik R)∞
R

∫ +→

−→
exp

(
ik

2R

[
a2x4

0 + 2a(
1

2a
− y)x2

0 − 2xx0

])
dx0 (9)

Let us make the following change of variable x0 =
(

2R
ka2

)1/4
t and define two quan-

tities U = 2
( k

2R

)1/2
( 1

2a − y) and V = − 2∞
a

( k
2R

)3/4
x .

Then we recover the Pearcey integral (Pearcey 1946; Berry 1992) for a linear
wave in the vicinity of a cusp:

h(x, y) = k

i2π

exp(ik R)∞
R

(
2R

ka2

)1/4 ∫ +→

−→
exp

(
i
[
t4 + Ut2 + V t

])
dt (10)

In the precedent equation the integral extends from −→ to +→. However, even if
in a surface wave field λ is usually smaller than the length R , the ratio R

λ
does not

go to infinity as in the case for light and the integral in Eq. 10 must be calculated
for a finite interval. In Fig. 2 we show the envelope of the amplitude along the axis
of symmetry x = 0 for a wave of frequency ν = 10 Hz (black line). We assume that
the surface is excited with a parabolic wave maker whose parameter a is 0.02 cm−1

and that extends in the interval −15 cm < x0 < 15 cm. The curve is obtained from
Eq. 10, but the integration is performed over a finite interval. For comparison we
have also included the curve when the integration is made in an infinite domain
−→ < t < → (blue line), the envelope calculated from a numerical solution of
the wave equation (magenta line) (Ruiz-Chavarria et al. (2011)) and the asymptotic
behavior resulting from the method of stationary phase (dashed red line). In all cases
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Fig. 2 Envelope of the wave amplitude along the axis of symmetry (black line) according to
the diffraction integral calculated on a finite interval. h0 is the amplitude at the wave maker. For
comparison we also plot the curve when the integral extends from −→ to +→ (blue line), the curve
obtained from the linear wave equation (magenta line) and the asymptotic behavior given by the

ray theory (red line). In the last case, amplitude is proportional to
√

1
( 1

2a −y)
and diverges at the cusp.

The theoretical position of the cusp is indicated with the vertical green line

the initial amplitude A0 is set to 1. As can be seen, the diffraction theory (both for
finite and infinite integration domain) and the solution of the wave equation predict
that the maximum amplitude happens further than the Huygens’ cusp (on the right
of the theoretical cusp position on the figure) . Moreover, the diffraction theory for
a finite integration interval and the solution of the linear wave equation predict the
same result for the position and the value of the maximum amplitude. On the other
hand the Pearcey integral predicts the existence of oscillations of the envelope to
the right of the cusp, whereas the solution of wave equation exhibits a monotonic
decrease of the wave amplitude.

2 Experimental Setup

Experiments were carried out in a basin of size 120 cm × 50 cm × 15 cm made in
plexiglass (see Fig. 3). The basin is filled with water up to a level of 10 cm. In order
to produce the wave field the parabolic wave maker is connected to a mechanical
vibrator. In all cases a monochromatic wave is produced, with a frequency between
5 and 15 Hz.

The shape of the free surface is determined with the method known as synthetic
Schlieren (Moisy et al. 2009). This procedure is based on the fact that a change in the
slope of the liquid-air interface causes a change in the direction of the light rays that
cross this surface. Then, if a pattern of dots is placed at the bottom of the liquid layer,
there is an apparent displacement of them when the free surface is deformed. The
synthetic Schlieren method works well when the slope of the liquid-gas interface is
small. In our case, the initial amplitude (at the edge of the parabolic wave maker)
is of the order of tens of microns whereas the maximum amplitudes attained during
focusing is about 150µm. If we consider that the smallest wavelength measured in the
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Fig. 3 The experiments of wave focusing were made in a plexiglass basin. The wave maker was
colocated approximately to 30 cm away from the left border. Waves progresses from left to the right
as indicated by the arrow. Frequencies in the mechanical vibrator moving the wave maker lies in
the range 5–15 Hz. In most experiments camera is at a distance of 1 m from the free surface

experiments is 1.5 cm, the maximum value of the ratio of amplitude to wavelength
is 0.15/15 = 0.01. Consequently the slopes remain small and the validity of the
measurement method is guaranteed. Higher slopes could produce a failure of the
method because the crossing of the light rays when travel from the bottom to the free
surface.

The method uses a video camera to record the spatio-temporal evolution of the
surface elevation. In order to have a good resolution we used a high definition cam-
era, with an image size of 1,920 × 1,080 pixels. The area covered by a frame is
18.5 cm × 10.4 cm, so the conversion factor between pixels and length is 103.8
pixel / cm. To determine the wave features we printed in a paper sheet a pattern of
dots randomly distributed. This sheet is placed at the bottom of the basin. A snap-
shot of the dot pattern is taken when the free surface is at rest (hereafter called the
reference image). In a second step images of are taken when a surface wave passes.
Apparent displacement is measured with a PIV software. As usually done in Particle
Image Velocimetry the pictures are divided into a set of cells having a size of 32 × 32
pixels. The number of cells in each direction is 128. In order to reconstruct the form
of the water-air interface we recall the relation between the apparent displacement
δr and the gradient of the free surface h (Moisy et al. 2009):

∼h = − δr
h∗ (11)

where 1
h∗ = 1

αh p
− 1

H . H is the distance from the camera to the bottom of the fluid

layer, h p is the thickness of the fluid and α = 1 − n≤/n (n’ and n are the refraction
indices of the gas and liquid respectively). The reconstruction of the topography
of the free surface can be done by integration of Eq. 11. The system of equation is
overdetermined and a least square routine is used to calculate h(x, y, t).
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Fig. 4 Dispersion relation for a plane wave (wavenumber versus frequency). The determination of
the wavelength was done with the method of periodograms. In the same figure the curve obtained
from Eq. 12 has been also included. It can be observed a good agreement between the theory and
experiments, which is a test of the validity of the synthetic Schlieren method

3 Results

The dispersion relation for a surface wave in a liquid is given by the following
equation (Elmore and Heald 1969) :

ω2 =
(

gk + σk3

ρ

)
tanh(kh) (12)

where ω = 2πν is the pulsation of waves, k = 2π
λ

is the wavenumber, σ is the
surface tension coefficient of the liquid and ρ is the density of the fluid. The first
experiment we made was the measurement of λ for different frequencies. To this end,
we have used a 30 cm long plane wave maker. In order to have a precise estimate
of λ, we use the procedure based on periodograms. Figure 4 shows the graph of the
wavenumber k versus frequency. For comparison we have included the prediction
given by Eq. 12. The agreement is very good implying that the synthetic Schlieren
method reproduces well the properties of waves in the system under study.

With regard to the process of focusing, measurements of the topography of the
free surface were made. The liquid-gas interface was excited with the parabolic
wave maker.. Measurements were carried out in a region between 15 < y < 45
and −8 < x < 8. The diffraction theory predicts that the maximum amplitude is
attained inside this region. Wave fronts-initially convergent- become divergent after
passing the origin of Huygens’ cusp. In Fig. 5 we present two graphs of the free
surface shape versus (x, y) for a wave of frequency f = 10 Hz corresponding to a
wavelength λ = 2.32 cm. To the right of each figure there is a scale which gives the
color to the value of the surface deformation h. As we can see in Fig. 5a (which covers
the interval 15 < y < 25) the focusing leads to an increase of the amplitude when
wave moves from left to the right. In Fig. 5b the topography of the free surface versus
the (x, y) coordinates, is plotted for the interval 25 < y < 35. In the same figure,
the Huygens’ cusp is also plotted as a dashed line. The figure exhibits the change
from a convergent (left side) to a divergent (right side) wave field. As expected, the
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Fig. 5 Topography of free surface h in the plane (x, y) of a wave produced by a parabolic wave
maker. Amplitude is proportional to the color intensity. Red stands for positive values and blue
stands for negative values. The vibrator was driven at a frequency of 10 Hz, which corresponds to
a wavelength λ = 2.32 cm. a free surface in the range 15 < y < 25. The focusing leads to an
increase in amplitude of the wave. b free surface in the range 25 < y < 35. The wave amplitude
reaches a maximum and then there is a decrease in amplitude and an inversion in the wavefront is
observed to the right

maximum amplitude is reached along the axis of symmetry after the wave traverses
the cusp. In Fig. 6 we present a snapshot of the wave field for 35 < y < 45. In
this region, the wave is divergent and consequently the amplitude decreases as the
wave travels. The amplitude of the wave does not exhibit oscillations in this region
as predicted by Eq, 10, because away from the cusp interference does not happen.

A most appropriate way to exhibit the focusing is by means of the envelope of
the wave along the axis of symmetry. The observed behavior is the combination
of nonlinearities and a finite size effect. For a linear wave, the diffraction theory
predicts that, when R

λ
approaches to infinity the maximum amplitude occurs at y =

28.6. Taking into account that R
λ

has a finite value, the maximum amplitude for a
wave of frequency ν = 10 Hz should occur at y = 25.5 according to the linear wave
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Fig. 6 Topography of the free surface h in the plane (x, y) of a wave produced by a parabolic
wave maker (a = 0.02 cm−1). The vibrator was driven at a frequency of 10 Hz, which corresponds
to a wavelength λ = 2.32 cm. This figure clearly shows the decrease in amplitude as a function of

y away from cusp. The amplitude becomes proportional to
√

1
y− 1

2a
as predicted by the theory of

linear waves

0 10 20 30 40 50
−0.01

−0.005

0

0.005

0.01

0.015

y (cm)

h m
ax

 (
cm

)

cusp

Fig. 7 Envelope of the wave along the axis of symmetry x = 0. The surface of the fluid is excited
with a frequency of 10 Hz, which corresponds to a wavelength λ = 2.32 cm. The positive and
negative branches of the envelope have a small asymmetry. This is a signature of the appearance of
nonlinearities. Otherwise, maximum amplitude is reached near the origin of cusp. For comparison,
the prediction of diffraction theory is also included (green line) and the solution of the wave equation
(black line). Amplitudes attained by the waves are greater than the prediction of the linear theory
of waves

theory In experiments we have found that position of maximum is dependent of the
initial amplitude A0 of the wave front. Figure 7 shows the envelope of the wave on
the axis of symmetry for an initial amplitude of ∇ 20 µm . In the same figure the
curves of diffraction theory (green line) and the solution of wave equation (black line)
are included. First, the positive and negative branches of the envelope have a small
asymmetry and in this sense non linearities are weak. On the other hand the position
of maximum is located to the left of black and red curves. Finally, the behavior of the
envelope to the right of the figure shows a more pronounced decrease with respect
to the predictions of the diffraction and the linear wave theories. For a greater value
of the initial amplitude A0 the experimental data show a shift of the position of the
maximun to the right. This behavior can be observed in Fig. 8, in which the envelope
is plotted for A0 ∇ 25 µm. Under these circumstances the maximum amplitude
is approximately that predicted by the linear theory. Concerning the behavior away
from the cusp, experimental data and models show a similar trend. And finally the
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Fig. 8 Envelope of the wave along the axis of symmetry. The surface of the fluid is excited with a
frequency of 10 Hz, which corresponds to a wavelength λ = 2.32 cm. The position of maximum is
shifted to the right with respect the previous figure, having a value close to the prediction by linear
theory. Otherwise, positive and negative branches of the envelope become clearly asymmetric,
which is a signature of the non linear effects. For comparison, the prediction of diffraction theory
(green line) and the solution of the wave equation (black line) are also included

positive and negative branches of the envelope become clearly different, indicating
that non linearities are relevant as expected for larger amplitude waves.

4 Conclusions

In this chapter we investigated the focusing of surface waves in water by the syn-
thetic Schlieren method. For this purpose the liquid-gas interface was excited with
a parabolic wave maker. Although the waves produced in experiments have small
amplitude the non linear effects are important in the vicinity of the Huygens’ cusp.
In this respect, we have observed that the growth of peaks is greater than that pre-
dicted by the linear theory. In the same sense the positive and negative branches of
the envelope become asymmetric as the initial amplitude grows. Another important
result is that away from the Huygens cusp the wave field becomes divergent and non
linearities stay weak in this region.

The experimental results presented here are the first step in the study of non
linear waves near a cusped caustic, which is at present an open subject. Some new
phenomena non present in linear waves will be investigated in the future. This is
for instance the case of wave breaking that can be induced by the focussing process
(Tejerina-Risso and Le Gal (2012)).
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Numerical Experiments of Wind Circulation
off Baja California Coast

Torres-Navarrete Carlos, Larios-Castillo Sergio, Mejia-Trejo Adán,
García-Toscano Jaime, Macias-Carballo Mariana and Gil-Silva Eduardo

Abstract In order to study the effect of orography on winds off Baja California, the
momentum primitive equations describing an atmospheric flow over that region are
solved numerically on a boundary-fitted grid. Numerical experiments are conducted
for several flow conditions. Results show a remarkable agreement to available obser-
vations. Von Kármán vortex street shown in satellite images are also reproduced.

1 Introduction

Baja CaliforniaCoast (BCC) is characterized by the abundance of meso-scale eddies
evidenced by cloud trails shown in several satellite images (True color composites
images from MODIS-Aqua, http://earthobserva-tory.nasa.gov/) of the region. These
features are related to the interaction of prevailing winds, local and seasonal, with the
complex orography over they flow. In particular, strong cyclonic and anti-cyclonic
eddies have been observed to emerge from major capes in Baja California such as
Punta Baja (PB), Punta Eugenia (PE), Cabo San Lucas (CSL), Guadalupe Island
(GI) and Cedros Island (CI) (Fig. 1). Winds over the coast of California and BCC
have been modeled with ∼10 km grid resolution by several mesoscale atmospheric
models (e.g. Cerezo-Mota et al. 2006; Koracin and Dorman 2001; Koracin et al. 2004;
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Fig. 1 Vortex shedding evidenced by trail clouds in Baja California coast (http://earthobservatory.
nasa.gov/)

Pickett et al. 2003). However, the coarse spatial resolution of these simulations is
not adequate to describe the locally driven processes evident in the Baja California
region with detail.

In this study a high resolution numerical model, developed by first author, is used
to study the effect of wind variability on wind circulation and eddy generation along
the Baja California coast. Wind stress, wind stress curl and ocean surface currents
are computed with the simulated winds. Coastal upwelling zones are also identified.

2 Study Area

The Baja California Coast, is at the Peninsula of Baja California in northwestern
Mexico.The Peninsula extends 1,247 km (775 mi) from Mexicali, Baja California in
the north to Cabo San Lucas, Baja California Sur in the south. It ranges for 40 km
(25 mi) at its narrowest to 320 km (200 mi) at its widest point and has approximately
3,000 km (1,900 mi) of coastline and approximately 65 islands. The total area of
the Baja California Peninsula is 143,390km2 (55,360 mi2). (http://en.wikipedia.org/
wiki/Baja_California_peninsula).

http://earthobservatory.nasa.gov/
http://earthobservatory.nasa.gov/
http://en.wikipedia.org/wiki/Baja_California_peninsula
http://en.wikipedia.org/wiki/Baja_California_peninsula
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(a)

(b)

Fig. 2 (a) Location of study region, notice that in (b) it has been rotated for modelling purposes

Baja’s mountains form a largely unbroken barrier running the entire length. The
mountains are actually a series of ranges each with their own name. The mountains
average between 2,000 and 3,000 ft. The tallest mountains on the peninsula are the
twin peaks of Picacho del Diablo, or Devil’s Peak, which rise to 10,154 ft (http://
www.questconnect.org/baja_california.htm#Geography). Study region is shown in
the box within Fig. 2.

The coastline bordering of the peninsula is characterized by bays, ports, keys,
marshes and beaches. Around the Peninsula there are 35 islands, most Gulf side.
Side of the Pacific Ocean, is the GI which is approximately 200 km seaward from
coast, but the rest are close to the coast and share their geological and biological
characteristics (Subsecretaría de Innovación y Modernización de la SPF 2011).

3 Wind Observations

Winds seasonal variability in BCC has been associated to changes in position and
strength of the Pacific high pressure center, located off the west coast of California

http://www.questconnect.org/baja_california.htm#Geography
http://www.questconnect.org/baja_california.htm#Geography
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Fig. 3 Wind time series during 2004

(Huyer 1983). Most of such variability is in magnitude rather than in direction, which
is predominantly from NW (Bakun 1975).

Wind observations in BCC are scarce. However, wind measurements at GI show
prevailing northwesterly (southeastward) winds with mean velocities of 6 m/s in
agreement with previous observations (Castro et al. 2005; Strub et al. 1987). A
typical yearly time series (2004) at GI is shown in Fig. 3.

4 Numerical Methods

4.1 The Model

In this study, we consider a background of a linearly stratified fluid of uniform
buoyancy, N, and constant Coriolis (i.e. f-plane dynamics) over irregular orography.
The governing dimensionless set of primitive variables equations describing such
situation is given as:

Du/Dt = −∇ p − (1/Ro)(vi − uj) − (1/F2) ρ k + (1/Re)∇2u (1)

D ρ /Dt = 0 (2)

∇2 p = −(1/F2)∇•(ρ k)−∇•[(u•∇)u]+(1/Re)∇2 D−Ω D/Ωt+(1/Ro)∇•(vi−uj)
(3)

where bold letters represent vectors. This way, u = (u, v, w) is the velocity vector,
and i, j and k are the unit vectors in the x, y, and z coordinates respectively, p is the
pressure, ρ is the density of the air and D(= ∇ • u) represents the divergence. The
dimensionless numbers are the Reynolds number, Re(= UL/Δ), the Froude number,
F(=U/NL) and the Rossby number Ro(=U/fL), where U and L are a typical velocity
and length respectively, Δ is the kinematic viscosity of air, f (=2π sin δ) the Coriolis
parameter and N2 = (−g/ ρ0)Ω ρ /Ωz is the Brünt-Väisälä frequency. As it is noted,
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Fig. 4 Grid in physical space

in primitive variables, unknowns are (u,ρ, p) as indicated by Eqs.1 and 2, while Eq. 3
for p substitutes the incompressibility ∇ • u = 0 condition.

The coordinate transformation is defined by x = x(γ × φ × ζ ), y = y(γ × φ ×
ζ ), z = z(γ×φ×ζ ), where (x, y, z) denotes the physical plane and (γ×φ×ζ ) denotes
the computational one. The boundary conditions are imposed on the computational
plane (γ × φ × ζ ) and are given as follows: on the upstream boundary u = (1, 0,
0) while on the downstream outer boundary Ωu/Ωx = 0, and Ω ρ /Ωx = 0. On solid
boundaries u = 0, with no flux of density, ∇ ρ •n = 0 (where n is the unit normal
vector). For p (Eq. 4), the boundary condition is determined by substituting u = 0
into the transformed momentum equations to give (Torres et al. 2004):

pζ = Re−1(xζ ∇2u + yζ ∇2v + zζ ∇2w) − F−2zζ ρ, (4)

where the subscript denotes partial differentiation. On the outer boundary of the com-
putational domain the pressure is extrapolated assuming the zero normal derivative,
Ωp/Ωn = 0 and the density perturbation is assumed to vanish, i.e. ρ = 0.

The computational domain consists of 193 × 193 × 11(γ × φ × ζ ) grid points in
the x, y and z directions respectively with 3 km horizontal resolution and 11 vertical
layers with 100 m minimum distance between points. The grid extends 523 km in
the northeast direction (y-axis) and 297 km in the southeast direction (x-axis). Grid
point distribution at ζ = 1 is shown in Fig. 4 (note that coordinates are scaled). The
dimensionless numbers used in this study were F = 200 for several Re numbers (to
take into account wind intensities). Calculated Rossby number was Ro > 1, therefore
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rotation was neglected. In all the simulations the fluid started impulsively from rest,
and several inertial periods were necessary until the fluid adjusted to this impulsive
start.

For each wind velocity simulation, an estimate of the surface wind stress was
calculated according to the bulk formula (Nelson 1977), Eq. 5:

(λx, λy) = ρa CD{|W10|U10, |W10|V10} (5)

where λx, λy denote the eastward and northward components of stress, ρa is the
surface air density which was considered to have a constant value of 1.22 kg/m3,
W10 is the observed wind speed, and U10 and V10 are the eastward and northward
components of the wind velocity measured at a height of 10 m. The empirical drag
coefficient CD, referred to the 10 m level, was given a constant value of 0.0013 (Kraus
1972).

Wind stress curl, (∇ × λ), derived from wind simulations, was used to calculate
the Ekman pumping velocity, WE (Gill 1982):

WE = 1/ f ρw(∇ × τ ) (6)

where ρw is seawater density (taken as 1,024 kgm −3). This, way the effect of wind
on ocean circulation and upwelling/downwelling generation can be assessed.

An estimation of ocean surface current velocity, us, generated by winds is given by
the relation (Bowden 1983) us = 0.875 (CD)1/2w10; CD = 1.5×10−3. For example,
wind velocities of 10 m/s would generate a surface ocean velocity of us = 0.34 m/s.

5 Results and Discussion

Vorticity field for Re = 20 and Re = 4×106 and slight stratification conditions
(F = 200) is shown in Fig. 5a, b (top panel). Cyclonic and anti-cyclonic eddies are
observed merging from GI and CI. New features unveiled by model simulations are
the recirculating zones in coastal areas, particularly the jet generated at Punta Baja
that deflects inland at Bahia Vizcaino (BV) and comes out to the coast around Bahia
Tortugas. The effect of vortical structures in mixing and transporting of physical
properties in the region could be of importance for local weather and transport of
larvaes. Corresponding vertical distribution along the blue line shown in Fig. 5a is
presented in the bottom panel (Fig. 5c, d). Another application of the 3D wind struc-
ture from this study could be in aeronautics by selecting the better routes for aircraft
landing.

The velocity field corresponding to the above figure is shown in Fig. 6. Two
jets are located at the flanks of CI, and the other one merging from Punta Baja (top
panel). Calm zones (with 2 m/s winds) are identified at BV and between CI and Punta
Eugenia. Velocity intensities are of the order of 5–7 m/s in the GI region and offshore.
Measurements of a meteorological station in Punta Baja recorded wind speeds of 5



Numerical Experiments of Wind Circulation off Baja California Coast 333

(a)

(c) (d)

(b)

Fig. 5 Vorticity field for (a)Re = 20, and (b)Re = 4 × 106. (c) and (d) is the vorticity field in the
vertical along blue line shown in (a)

m/s, with hourly winds falling in the 4–8 m/s wind. Long-term mean monthly ship
wind speeds in this region for June are 6–7 m/s (Nelson and Husby 1983). The annual
average is close to 6.7 m/s during a period of 2000–2007 (Castro and Martinez 2010).
Near the mountains, flow decelerates and winds are in the range 2–6 m/s (bottom
panel). A novel result of these simulations is that we have an estimation of the wind
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Fig. 6 Wind velocity vectors for (a)Re = 20, and (b)Re = 4 × 106, (c) and (d) corresponding
magnitudes (m/s)
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Fig. 7 Contours of Zonal (top panel) and Meridional (bottom panel) wind stress (Nm−2) for
Re = 20(a, c), and Re = 4 × 106(b, d)
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Fig. 8 WE distribution for (a) Re = 20 and (b) Re = 4 × 106

velocity of the vortices in the lee of GI and CI, this information could be of help for
tracking of passive tracers or bodies floating in the vicinity of that regions.

Calculated wind stresses are presented in Fig. 7. A characteristic feature of the
wind stress distribution is the occurrence of a line of zero wind stress at some distance
from the coast. There is an alongshore component, equatorward (Fig. 7a, b), that
promotes favourable conditions for upwelling. Maximum, values are found at Punta
Baja, GI, and Punta Eugenia consistent with the values reported in the literature
(Bakun and Nelson 1977; Nelson 1977) and those simulated by Koračin and Dorman
(2001).

The role of upwelling in bringing nutrients into the surface layers where they are
available for organic production is widely recognized (Pérez-Brunius et al. 2007;
Rykaczewski and Checkley 2008). Favorable conditions for phytoplankton growth
are maintained within surface photic layers by upwelling (positive WE values) of
nutrient-rich subsurface water. WE fields for the cases simulated are presented in
Fig. 8; positive values are marked with arrows within the figure. According to the
preliminary model simulations, the major upwelling areas characterized with the
positive curl of the wind stress are: Punta Baja, Punta Eugenia. These regions are in
agreement with those upwelling signatures found by Zaytsev et al. (2003) using the
SST temperature isotherm (-2◦C). Also, dipoles of positive (upwelling) and negative
(downwelling) curl appear in the lee of GI and CI, the strongest being in the lee of
the GI where strong eddies have been observed to form. Comparison of 8a and 8b
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Fig. 9 Estimated ocean surface currents (cm/s) for (a) Re = 20 and (b) Re = 4 × 106

seems to indicate that intensities of wind do not change the position of upwelling
zones.

Figure 9 shows estimated ocean surface currents calculated with simulated wind
fields. Numerical values are 5–20 cm/s in BV; 2 cm/s south CI; 20 cm/s Punta Baja;
∼15 cm/s Bahia Tortugas; 25–30 cm/s GI; 20cm/s Punta Eugenia. These results
show a remarkable agreement with the values reported by Palacios-Hernández et al.
(1996) obtained with a 2D numerical circulation ocean model of the region.

6 Conclusions

The present study has demonstrated the utility of a 3D high resolution numerical
simulation combined with boundary-fitted grids in describing details of wind gen-
erated surface structures over an area of the Pacific Coast of Mexico. We simulated
eddies and coastal upwelling for different wind stresses and a complex orography.
Positive values of Ekman pumping were consistent with regions of high productivity
cited in the literature. It was found the existence of wind generated jets at Punta
Baja, and at Cedros Island. Von Kármán vortex street generated at GI was also repro-
duced. Finally, an estimation of ocean surface currents due to calculated winds was
in agreement with those obtained by an ocean model of the region.
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Wake Patterns Behind a Flapping Foil

Alejandro Camilo Espinosa Ramírez and Anne Cros

Abstract We study in this work the different kind of patterns which develop in the
wake of a flapping foil. The system which makes the foil flap is simple and consists of
two pulleys and a motor. The Strouhal number St (associated with the foil frequency)
and the Reynolds number Re (associated with the flow velocity) can be continuously
varied; the oscillation amplitude AD can take two values. We localize the regions of
existence of the different patterns in the planes (St, AD) and (Re, St). We conclude
that for 140 < Re < 320, the generated structures do not depend upon the Reynolds
number.

1 Introduction

A typical system of propulsion used by insects, fish and birds, consists of flapping
wings or fins. Fish and Lauder (2006), Triantafyllou et al. (2000), Wolfgang et al.
(1999) among other describe how these animals use the vortices generated by their
own flapping to propulse in rivers or in oceans. Basically, thrust is produced when the
time-averaged velocity field behind the foil has the form of a jet. In order for the jet
to occur, the inverted von Kármán street must have formed behind the obstacle. As
was already observed in many works, the inverse Bénard-von Kármán street forms
when the oscillation amplitude and the foil frequency take convenient values (see
e.g. Anderson et al. 1998; Buchholz and Smits 2008; Dong et al. 2006; Jones et al.
1996; Schnipper et al. 2009).

Nevertheless Godoy-Diana et al. (2008) show that the inverse Bénard von Kármán
wakes precede a positive thrust.
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The experimental study performed by Schnipper et al. (2009) in a gravity-driven,
vertical soap film, allowed these authors to draw a detailed transition diagram in the
(St, AD) space, where:

St = D f/u (1)

is known as the Strouhal number, f being the foil oscillation frequency, D the width
of the foil, u the free-stream flow speed, and:

AD = A/D (2)

is the non-dimensional amplitude where A is the peak-to-peak amplitude of the flap.
Moreover, the Reynolds number is

Re = D f/Ω, (3)

where Ω is the fluid viscosity. In this work, the authors use the same terminology
as used by Williamson and Roshko (1988) in the case of the patterns observed in
the wake of a cylinder which oscillates transversally to the flow. They could observe
wake structures as numerous as: various vortex pairs emitted by cycle (2P being two
vortex pairs per cycle), the aligned Bénard-von Kármán vortices behind the obstacle
denoted 2S and also asymmetric modes like P+S, where a pair is generated during
the first half cycle and a single vortex during the other half cycle. Schnipper et al.
(2009) observed in total nine kinds of patterns in the case of the pitching foil, one of
them being up to eight pairs of vortices generated per oscillation cycle.

We propose in this work a simple experimental device to make the foil oscillate
and visualize the different patterns which develop in the wake of the foil. We observe
various patterns as complex as 16P when the three parameters Re, St and AD are
varied. We plot in two phase spaces (St, AD) and (Re, St) the region of existence of
the observed structures.

2 Experimental Device

Our experiments were performed in a water tunnel of squared section 10×10 cm2. A
convergent and a honeycomb make the flow laminar before it enters the test section.
Our foil is of aspect ratio four, as can be seen in Fig. 1, with a diameter D = 5 mm
and a chord c = 20 mm. The axis of the foil is fixed to the centre of a pulley (2)
which is itself connected to another pulley (1). A direct-current motor generates the
continuous rotation of pulley (1). As a rigid bar is fixed between pulleys (1) and (2),
when the pulley (1) makes a complete rotation, pulley (2) is only able to oscillate
between two limit angles as shown in Fig. 1. The allowed peak-to-peak amplitudes
for the foil are then A = 1.2 and 1.07 cm and the frequencies can be varied from 0 to
0.77 Hz.
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pulley            pulley
(1) (2)

D= 5 mm

motor

h = 55 mm

c = 20 mm

Fig. 1 Schema of the system which makes the foil oscillate. The pulley (1) rotates via a
direct-current motor. It is connected to the pulley (2) via a rigid bar so that pulley (2) oscillates
between two angles. The foil axis is fixed to the centre of the pulley (2) and oscillates with the
peak-to-peak amplitudes A = 1.2 and 1.07 cm

Fig. 2 Time evolution of the rotation angle of pulley (2) with the corresponding Fourier spectrum

In order to check that the foil oscillation is harmonic, we recorded the time evo-
lution of the angle of pulley (2). An example is shown in the left-hand side of Fig. 2.
The corresponding Fourier spectrum (Fig. 2, right-hand side) shows that a single
frequency is indeed predominant.

Fluorescein or vegetable dye is used to visualize the structures which develop
behind the foil. The needle of a syringe containing the dye is positioned to less than
2 mm upstream of the foil leading edge, in the center line. If fluorescein is injected,
it is necessary to illuminate the flow with black light. The patterns are recorded by a
video camera.

The experiments at Re constant are performed keeping the flow velocity constant
and increasing the foil frequency. The experiments at AD constant are done by
keeping the foil frequency constant and increasing the flow velocity.
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Fig. 3 Picture showing the Bénard-von Kármán wake

Fig. 4 Picture showing the inverse Bénard-von Kármán wake

3 Observations

Figures 3 and 4 show two typical patterns observed in the wake of the pitching foil.
The pictures were taken with fluorescein to better visualize the patterns. As will be
seen in Figs. 5 and 6, the von Kármán wake develops for intermediate values of the
Strouhal numbers.

Nevertheless the transition diagrams were drawn visualizing the patterns with
vegetable dye, as the water in the channel got dirty after a long time. As a comparison,
the fluorescein allowed only a few minutes for visualizations.

4 Transition Diagrams

The regions of existence of the different patterns are firstly drawn in the (St, AD)
plane, as in the works of Godoy-Diana et al. (2008), Schnipper et al. (2009),
Williamson and Roshko (1988). Fig. 5 was drawn for a Reynolds number



Wake Patterns Behind a Flapping Foil 345

Fig. 5 Transition diagram for the two non dimensional amplitudes AD of the foil as a function of
Strouhal number St. This diagram is drawn for Re = 257

Fig. 6 Regions of existence of the patterns in the (Re, St) plane for AD = 2.18

Re = 257. The oscillation amplitude of the foil is fixed, and the frequency is increased.
In the legend, the symbol “P” represents a vortex pair generated by cycle, “vK” the
classic von Kármán street as shown in Fig. 3, “2S” the von Kármán vortices aligned
along the center line behind the foil, and “2SivK” the inverse von Kármán vortices
aligned also along the center line behind the foil.

So Fig. 5 shows that a higher number of vortices are observed for small values of
the Strouhal number and oscillation amplitude: for AD = 1.95 and St =0.013, up to
eight vortex pairs per cycle were observed. Simultaneously with these pairs, a classic
von Kármán street is generated. When the Strouhal number is increased, the classical
von Kármán street continues to be generated but the number of pairs decrease to six



346 A. C. Espinosa Ramírez and A. Cros

and then to two. The pattern denoted “2vK” which appears around St = 0.050 means
that the vortices generated from the same side of the foil are co-rotative, and not
counter-rotative as for “2P”. Finally, for 0.055 < St < 0.075, the pattern “2P” is
advected without the lateral von Kármán vortices, and for 0.075 < St < 0.090 the
von Kármán street develops. These observations are very similar to the observations
of Schnipper et al. (2009). We comment that the inverse von Kármán wake was
not observed for this AD value because our system did not allow us to reach high
enough frequency values. Schnipper et al. (2009) observed the inverse vK street for
St > 0.10 at AD = 2.0.

For the higher value AD = 2.18, a similar sequence is observed as the lower
frequencies also allow the generation of numerous structures, whereas the increase
of the Strouhal number provokes less complex patterns. As in the works of Godoy-
Diana et al. (2008), Schnipper et al. (2009), the inverse von Kármán street first appears
aligned as “2SivK” approximately for St > 0.085.

The diagram of Fig. 5 shows the observed patterns for a fixed value of the
Reynolds number. In the previous mentioned studies, the authors also fix the
Reynolds number: Re = 220 and 440 in Schnipper et al. (2009) and Re = 255 in
Godoy-Diana et al. (2008), Williamson and Roshko (1988) mention that their transi-
tion diagram is unchanged for 300 < Re < 1000. We were interested in studying the
variation of the generated patterns when the Reynolds number is varied below this
value. Fig.6 shows the region of existence of the different patterns for AD = 2.18.

It can be seen that more structures are generated for small values of St, whereas
for higher frequencies, a simpler pattern develops. Typically for St > 0.03, only
the usual von Kármán wake, or two vortex pairs per cycle, or a combination of both
structures, develop. For St < 0.03, it is difficult to delimit on first sight a region for
each pattern.

Points that are roughly aligned along an inclined curve from low to high Re
values and for slightly decreasing Strouhal number correspond to a given series of
experiments. Along this type of curve, it can be observed that the complexity of
the structures increases. For instance, for the “bottom” series from (St = 0.016, Re
= 160) to (St = 0.010, Re = 243), the generated structures pass from (vK + 8P) to
(vK + 16P). The same evolution in the number of vortex pairs per cycle is observed in
the other series of experiments. For the run from (St = 0.025, Re = 160) to (St = 0.012,
Re = 305), the wake form passes from (vK + 4P) to (vK + 10P). Nevertheless in the
phase diagram (Re, St) the pattern (vK + 10P) is observed for very distinct Re values:
Re Δ [170; 200] and Re Δ [270; 310], both intervals for St [0.013; 0.015]. It happens
roughly the same for (vK + 6P): this pattern appears in distant Re intervals but for
the same St values. We conclude that the kind of pattern which develops behind
a flapping foil does not depend, or depends only very slightly, upon the Reynolds
number, for 140 < Re < 320.
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5 Conclusions

We developed a simple experimental system to generate oscillations in a foil. When
this flapping foil is immersed in a flow, a great variety of structures are gener-
ated depending upon three non dimensional parameters: the Strouhal number St, the
Reynolds number Re and the non dimensional oscillation amplitude of the foil AD .
We visualized complex structures like 16 vortex pairs per cycle. We localized the
region of existence of the different patterns in two phase diagrams (St, AD) and
(Re, St). The first diagram is very similar to the one drawn by Schnipper et al. (2009)
and shows that the complexity of the structures increases when the Strouhal number
and the non dimensional amplitude are small. The second permits us to conclude that
the advected patterns do not depend upon the Reynolds number. We confirm with a
systematic study the observations mentioned in other works.
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Environmental Fluid Dynamics

Elizabeth Teresita Romero-Guzmán, Lázaro Raymundo Reyes-Gutiérrez
and Jaime Lázaro Klapp-Escribano

Abstract The environmental fluid dynamics provides a comprehensive overview
of the basic principles, it emphasizes the relevance of environmental fluid dynamics
research in society, public policy, infrastructure, quality of life, security, and the law. It
then discusses established and emerging focus areas. As communities face existential
challenges posed by climate change, rapid urbanization, and scarcity of water and
energy, the study of environmental fluid dynamics becomes increasingly relevant.
This document is a review of the application of environmental fluid dynamics in
atmosphere, lithosphere and hydrosphere.

1 Introduction

1.1 Definition

A fluid is a substance that has no fixed shape and yields easily to external pressure;
http://oxforddictionaries.com/definition/english/fluid. A continuous, amorphous
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Fig. 1 Classification of
mechanic of fluids

substance whose molecules move freely past one another and that has the tendency
to assume the shape of its container.

Many things behave like a fluid: air, gas, liquid, electricity and traffic. Fluids
are hard to contain since they take many shapes based on their environment (White
2003).

1.2 Classification of the Mechanic of Fluids

Fluid mechanics is one of the four branches of mechanics: elastic-body mechan-
ics, fluid mechanics, relativistic mechanics and quantum mechanics. The study of
fluid mechanics subdivides into statics and dynamics (Fig. 1) which in turn divide
into incompressible and compressible flows. Incompressible and compressible flow
divides into real and ideal. Real divides into laminar and turbulent. And so on.

Fluid mechanics is based upon five great principles of physics:

1. Conservation of mass
2. Conservation of linear momentum
3. Conservation of angular momentum
4. Conservation of energy
5. Conservation of thermodynamics (Granger 1995).

1.3 Kinds of Fluids

Some differentiate fluid from solid by the reaction to shear stress. It is a known fact
said that the fluid continuously and permanently deformed under shear stress while
solid exhibits a finite deformation which does not change with time. It is also said that
fluid cannot return to their original state after the deformation. This differentiation
leads to three groups of materials: solids and liquids. This test creates a new material
group that shows dual behaviors; under certain limits; it behaves like solid and under
others it behaves like fluid. The study of this kind of material called rheology and it
will (almost) not be discussed in this chapter. It is evident from this discussion that
when a fluid is at rest, no shear stress is applied.
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Fig. 2 Applications of Environmental Fluid Dynamics (EFD)

The fluid is mainly divided into two categories: liquids and gases. The main
difference between the liquids and gases state is that gas will occupy the whole
volume while liquids has an almost fix volume. This difference can be, for most
practical purposes considered, sharp even though in reality this difference isn’t sharp.
The difference between a gas phase to a liquid phase above the critical point are
practically minor. But below the critical point, the changes of water pressure by
1,000 % only change the volume by less than 1 %. For example, a change in the
volume by more 5 % will required tens of thousands percent change of the pressure.
So, if the change of pressure is significantly less than that, then the change of volume
is at best 5 %. Hence, the pressures will not affect the volume. In gaseous phase, any
change in pressure directly affects the volume. The gas fills the volume and liquid
cannot. Gas has no free interface/surface (since it does fill the entire volume). The
fluids have many properties which are similar to solid (Bar-Meir 2013).

Figure 2 shows a diagram which includes several applications of the Environ-
mental Fluid Dynamics (EFD) in the three main areas of researches: atmosphere,
lithosphere and hydrosphere.

Importance and applicability of numerical flow analysis to environmental sci-
ence are outlined. Fluid phenomena in the ocean, rivers, atmosphere and the ground
are investigated by means of numerical methods and in turn proposals for the con-
trol, restoration and counter plans against the so-called environmental disrupters
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which disorder natural environment as well as ecological systems in nature. All such
environmental disrupters diffuse and are transported by environmental fluids. Those
disrupters sometimes react on some other chemicals to generate offensive odor and
even more poisonous materials. Environmental fluid dynamics is effective for the
evaluation, prediction and restoration of the environmental damage. The attentions
on the dynamical analysis of the diffusion and advection processes of environmental
disrupters in environmental fluids are focus. The objective in this matter is to make
an attempt to formulate a mathematical model for environmental fluids and to exhibit
some results of numerical simulations (Arima et al. 2007).

The purpose of this section is to explain the uses of environmental fluid dynamics
in science.

2 Environmental Fluid Dynamics Applied to Atmospheric
Research

Having acknowledged that our industrial society is placing a tremendous burden
on the planetary atmosphere and consequently on all of us, scientists, engineers,
and the public are becoming increasingle concerned about the fate of pollutants and
greenhouse gases dispersed in the environment and especially about their cumulative
effect.

Atmospheric general circulation models used for climate simulation and weather
forecasting require the fluxes of radiation, heat, water vapor, and momentum across
the land-atmosphere interface to be specified. These fluxes are calculated by submod-
els called land surface parameterizations. Over the last 20 years, these parameteri-
zations have evolved from simple, unrealistic schemes into credible representations
of the global soil-vegetation-atmosphere transfer system as advances in plant physi-
ological and hydrological research, advances in satellite data interpretation, and the
results of large-scale field experiments have been exploited (Guohui 1995).

The developments of the Computational Fluid Dynamics (CFD) method as a
powerful tool for prediction of wind environmental conditions around buildings are
presented in this study. CFD techniques have been applied in predicting wind flow
conditions: around a single building, between two parallel buildings and around a
multiple building configuration. Also presented is a limited model validation for
those simulated configurations. Finally, the application of CFD techniques for a case
study in simulating an existing site together with proposed buildings and the local
landscape (Baskaran and Kashef 1996; Zhang et al. 2011).

Some modern schemes incorporate biogeochemical and ecological knowledge
and, when coupled with advanced climate and ocean models, will be capable of
modeling the biological and physical responses of the Earth system to global change,
for example, increasing atmospheric carbon dioxide.

Will the accumulation of greenhouse gases in the atmosphere lead to global cli-
matic changes that, in turn, will affect our lives and societies? What are the various
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roles played by the oceans in maintaining our present climate? Is it possible to reverse
the trend toward depletion of ozone in the upper atmosphere? Is it safe to deposit
hazardous wastes on the ocean floor? Such pressing questions cannot find answers
without, first, and in –depth understanding of atmospheric and oceanic dynamics
and, second, the development of predictive models. In this twin endeavor, geophys-
ical fluid dynamics assumes an essential role, and the numerical aspects should not
be underestimated in view of the required predictive tools (Cushman-Roisin and
Beckers 2011).

Research activities on various types of jet flow, with particular reference to their
application in the field of environmental fluid dynamics are presented (Wang and
Tan 2010).

Some projects which are actually developing are: chemistry of climate change,
fluid dynamics and the atmospheric sciences, air flow and dispersion over an urban
downtown area, data assimilation of a dual doppler lidar, coherent doppler lidar
deployment and data analysis for terrain-induced rotor experiment (T-REX), tracking
of PM plumes using a doppler lidar, modeling the behavior of oil dispersion (Fig. 3).

3 Environmental Fluid Dynamics Applied to Lithosphere
Research

The object of geophysical fluid dynamics is the study of naturally occurring, large-
scale flows on Earth and elsewhere, but mostly on Earth. Although the discipline
encompasses the motions of both fluid phases—liquids (waters in the ocean, molten
rock in the outer core) and gases (air in our atmosphere, atmospheres of other planets,
ionized gases in stars)—a restriction is placed on the scale of these motions. Only the
large-scale motions fall within the scope of geophysical fluid dynamics. For example,
problems related to river flow, microturbulence in the upper ocean, and convection
in clouds are traditionally viewed as topics specific to hydrology, oceanography, and
meteorology, respectively.

Geophysical fluid dynamics deals exclusively with those motions observed in vari-
ous systems and under different guises but nonetheless governed by similar dynamics
(Henry 1986).

Typical problems in geophysical fluid dynamics concern the variability of the
atmosphere (weather and climate dynamics), oceans (waves, vortices and currents),
and, to a lesser extend, the motions in the earth’s interior responsible for the
dynamo effect, vortices on the planets and convection in stars (the sun, in partic-
ular) (Cushman-Roisin and Beckers 2011). The modeling of this type of system is
very important but complex (Blocken and Gualtieri 2012).

Importance of geophysical fluid dynamics: Without its atmosphere and oceans it
is certain that our planet would not sustain life. The natural fluid motions occurring in
these systems are therefore of vital importance to us, and their understanding extends
beyond intellectual curiosity—it is a necessity. Historically, weather vagaries have
baffled scientists and laypersons alike since times immemorial. Likewise, conditions
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Time: 65 to 23 million years ago: Ocean 
temperatures are about 10 to 15 degrees Celsius 
higher than today. Palm trees are growing in 
Greenland and Patagonia. The Indian tectonic 
plate collides with the Asian plate, forming the 
Himalayas. This sparks a new period of 
glaciation and Earth starts to cool down again. 
(Source: Shutterstock)

A jet airliner leaves condensation trails. The 
trails are formed by soot and water vapor from 
the plane’s engines. The Intergovernmental 
Panel on Climate Change (IPCC) estimates that 
aircraft emissions of water vapor, nitrous 
oxides, aerosols and CO2 could be 2 to 4 times 
stronger than emissions of CO2 alone. Aviation 
is responsible for 3.5 percent of man-made 
global warming, says the IPCC, and it is the 
fastest growing source of greenhouse gases. 
(Source: Reuters)

Carbon capture artificial trees suck CO2-from-
air

On April 20, 2010 the Deepwater Horizon
off shore oil rig in the Gulf of Mexico exploded,
killing 11 workers and leading to the worst oil 
spill and environmental catastrophe in U.S. history. 
A ruptured underwater pipe spewed almost 
5 million barrels of oil into the Gulf over three 
months, threatening hundreds of miles of 
beaches, wetlands, and estuaries. Thousands of 
animals, including turtles, crabs, fish, and birds 
fell victim, and the local fishing and tourism 
industries suffered badly. (Source: Reuters) 

Fig. 3 Application of environmental fluid dynamics to atmospheric research

at sea have long influenced a wide range of human activities, from exploration to
commerce, tourism, fisheries and even wars.

Thanks in large part to advances in geophysical fluid dynamics, the ability to
predict with some confidence the paths of hurricanes has led to the establishment of
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Flood History Effects on Sediment Entrainment 
and Transport in Gravel-bed Rivers

wakes of maneuvering bodies in stratified 
fluids

The beds of most alluvial river channels are not 
flat, but comprise a series of undulating 
sedimentary accumulations termed 'bedforms' that 
include ripples and dunes.

Migration of radionuclides through the 
unsaturated zone

Fig. 4 Application of environmental fluid dynamics to lithosphere research

a warning system that, no doubt, has saved numerous lives at sea and in coastal areas
(Abbott 2004).

Some current projects in this area are: applied fluid mechanics, geophysical fluid
dynamics, sediment transport, physics-based modeling support for the generation of
synthetic ship stern wake, wakes of maneuvering bodies in stratified fluids, ripple
dynamics and benthic transformations under variable wave forcing, migration of
radionuclides through unsaturated zone (Fig. 4), geophysical and environmental fluid
dynamics, numerical simulation of climate analysis and prediction, nonlinear partial
differential equations, dynamical systems, scientific computing, geophysical fluid
dynamics and turbulence.
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4 Environmental Fluid Dynamics Applied to Hydrosphere
Research

This research section is aimed at fluid flow and associated heat and mass transport
processes that arise in different types of water bodies (river, lakes, resevoirs, coastal
water) covering local and regional scales. The interaction of these flow processes with
engineering structures and devices is the first major focus of these studies (Daraio
et al. 2010). The second focus is on their response to anthropogenic heat and mass
sources with regard to water quality aspects. Examples of current research projects
that utilize a combination of analytical, numerical and experimental methods are:

a. Pollutant dispersion in rivers and river systems with pronounced heterogeneities,
such as groynes or run-of-the-river reservoirs, including development of existing
pollutant alarm modules used by river authorities.

b. Studies of flow instabilities and large-scale coherent structures in shallow flows
(wide rivers, coastal regions), including transport and mixing of dissolved and
suspended matter.

c. Mixing processes for pollutant discharges into water bodies in form of momen-
tum or buoyant jets, including multiport diffuser devices. Development of
PC-based expert systems for the qualitative description and quantitative fore-
cast of mixing intensities for different water bodies.

d. Suspended sediment dynamics in river and estuarial systems, including effect of
salt stratification and associated contaminant adsorption processes.

e. Gas exchange at the air-water interface under the influence of different turbulence
generating mechanisms.

f. Topograpical effects for stratified flows in lakes or reservoirs.

On December 26, 2004, the tsunami generated by the earthquake was not detected,
its consequences not assessed and authorities not alerted within the 2 h needed for the
wave to reach beaches in the region. On a large scale, the passage every 3–5 years of
an anomalously warm water mass along the tropical Pacific Ocean and the western
coast os South America, Known as the El Niño event, has long been blamed for
serious ecological damage and disastrous economical consequences in some coun-
tries. Now, thanks to increased understanding of long oceanic waves, atmospheric
convection, and natural oscillations in air-sea interactions scientists have success-
fully removed the veil of mystery on this complex event, an numerical models offer
reliable predictions with at least one year of lead time, that is, there is a year between
the moment the prediction is made and the time to which it applies (Cushman-Roisin
and Beckers 2011), Fig. 5.

With major implications for applied physics, engineering, and the natural and
social sciences, the rapidly growing area of environmental fluid dynamics focuses
on the interactions of human activities, environment, and fluid motion.

We have to that emphasized the relevance of environmental fluid dynamics
research in society, public policy, infrastructure, quality of life, security, and the
law. It then discusses established and emerging focus areas.
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Tsunami in Japan, March 2011 Fergana valley oil spill is the biggest oil spill to 
be occurred on land in the planet. It happened 
on march 2, 1992 when a blowout took place at 
well 5 in Mingbulak oil field, Fergana valley, 
Uzbekistan. It took place at populated 
industrial and agricultural zone in Uzbekistan. 
It spilled 88 million gallons of oil into the land 
and also the fire due to spill burnt for two 
months. The losses were estimated at over 
$250 million.

Yangtze river, China. Red river 
contaminated

Oklahoma disaster, May 20th, 2013

Fig. 5 Application of environmental fluid dynamics to hydrosphere research

Environmental Fluid Dynamics explores the interactions between engineered
structures and natural flows, the environmental pollution, with a focus on numer-
ical methods, predictive modeling, and computer infrastructure developments. The
EFD looks at practical aspects of laboratory experiments and field observations that
validate quantitative predictions and help identify new phenomena and processes. As
communities face existential challenges posed by climate change, rapid urbanization,
and scarcity of water and energy, the study of environmental fluid dynamics becomes
increasingly relevant (Harindra 2012; Imberger 2012).
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5 Conclusions

It is necessary to emphasize the relevance of environmental fluid dynamics research
in society, public policy, infrastructure, quality of life, security, and the law, to discuss
established and emerging focus areas. The application of environmental fluid dynam-
ics in atmosphere, lithosphere and hydrosphere is necessary to know the behavior of
the fluids and give some solutions to the society problems.
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Inductionless Magnetohydrodynamic
Laminar Flow in a Narrow-Gap
Annular Duct

Raúl A. Ávalos-Zúñiga, Martín J. Nieto-Pérez
and Gonzalo A. Ramos-López

Abstract We consider laminar flow of an electrically conducting fluid in an annulus
between two infinitely long, perfectly conducting cylinders subject to an azimuthal
magnetic field. The conducting fluid is driven by a pressure gradient, either constant or
harmonic. The magnetohydrodynamic equations governing the flow have been solved
under the inductionless approximation assuming a small annular gap compared to
the inner radius. As the magnetic force increases, the flow slows down as in the
Hartmann problem, notwithstanding the absence of Hartmann boundary layers.

1 Introduction

The analytical solutions to magnetohydrodynamic (MHD) laminar flow in an annular
duct under a purely radial magnetic field are well known [see Globe (1959); Elco
et al. (1962); Edward (1966), more recently Zhao et al. (2011), and for pulsating
driven flow Narasimhan (1964); Rudraiah (1966)]. However, solutions for an applied
azimuthal magnetic field have been less investigated, see for instance Edward (1966)
for a solution of steady MHD flow in a sector of an annular duct. In fact, solutions
for a harmonic driven flow in an azimuthal magnetic field have not been found.
In this paper, we describe a study of the problem when the flow is driven through
an annular duct by a pressure gradient, either constant or harmonic, subject to an
azimuthal magnetic field. In contrast to previous models, we have obtained solutions
considering the so called inductionless approximation (Priede 2009; Davidson 2001;
Müller and Bühler 2001) together with the narrow-gap approximation (Rudraiah
1966).
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Fig. 1 Sketch of two con-
centric cylinders subject to an
azimuthal magnetic field

2 General Formulation

Consider the fully developed flow of an incompressible, electrically conducting fluid
within a gap between two infinitely long, perfectly conducting concentric cylinders

subject to an imposed azimuthal magnetic field, B0. The field is defined by B0 = S

r
eΩ ,

in which S is a measure of the field strength and eΩ the azimuthal unit vector in
cylindrical coordinates (r, Ω, z). If the fluid motion slightly perturbs B0, then the
induced magnetic field, b, associated with induced currents (≤Δu×B0) is negligible
with respect to B0. That is, the total magnetic field B ∞ B0. This leads to the
inductionless approximation which is characteristic of very small magnetic Reynolds
number Rm = μ0Δu0l → 1, where μ0 is the permeability of vacuum, Δ the electrical
conductivity, u0 and l are the characteristic velocity and length scales. Then, the fluid
velocity u is governed by the Navier-Stokes equation with electromagnetic force:

πu
πt

+ (u · ∇)u = − 1
δ

∇p + γ∇2u + 1
δ

j × B0 (1)

where the induced current j is described by Ohm’s law for a moving media:

j = Δ (−∇φ + u × B0) (2)

where φ is the electrostatic potential. In Eq. (2), the electric field E has been replaced
by −∇φ because ∇ × E ∞ 0 due to the associated inductionless approximation.
Additionally, mass and charge conservation require ∇ · u = ∇ · j = 0.

The model is confined to an ideal axially unbounded system shown in Fig. 1 which
allows a pure axially velocity distribution, u = w(r, t)ez, where ez is the axial unit
vector. The simplified model is then described by Eq. (1) reduced to:

πw

πt
= − 1

δ

dp

dz
+ γ

1

r

π

πr

(
r
πw

πr

)
+ jr

δ

S

r
(3)
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where w is the axial velocity, p the pressure, γ the kinematic viscosity, and δ the
density. The last term of Eq. (3) is the Lorentz force and jr is the induced radial
current, which is given by Ohm’s law (2) as:

jr = −Δ

(
πφ

πr
+ S

r
w

)
(4)

Moreover, the charge conservation condition requires
πr jr
πr

= 0, implying that

jr = I/r , where I is some constant defined for convenience as I = −Δc. Here,
c is a new constant to be determine later. Then, inserting jr in (3), we obtain the final
governing equation for the velocity:

πw

πt
= − 1

δ

dp

dz
+ γ

r

π

πr

(
r
πw

πr

)
− Δc

δ

S

r2 (5)

2.1 The Small Gap Approximation

As developed by Rudraiah (1966), we perform the dimensionless variable change

χ = r − ri

λ
(χ ∼ [0, 1]) to Eq. (5) leading to:

πw

πt
= − 1

δ

dp

dz
+ γ

λ2

(
π2w

πχ2 + 1

(χ + ri/λ)

πw

πχ

)
− Δc

δλ2

S

(χ + ri/λ)
2 (6)

where λ = ro − ri is the annular space, in which ro and ri are the outer and inner
radii respectively. Assuming a very small annular space defined by ri/λ � 1, the
coefficient (χ + ri/λ)

−1
≈ λ/ri and (χ + ri/λ)

−2
≈ (λ/ri )

2. Then Eq. (6) simplifies
to:

πw

πt
= − 1

δ

dp

dz
+ γ

λ2

π2w

πχ2 − Δc

δ

S

r2
i

(7)

Within this approach, the Lorentz force becomes constant and the effect of curvature
in viscous terms is just negligible.

3 The Steady Flow Case

We assume a constant pressure gradient, −dp

dz
= G, which transforms (7) to:

G

δ
+ γ

λ2

π2w

πχ2 − Δc

δ

S

r2
i

= 0 (8)
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or in dimensionless form to:

π2w̃

πχ2 − c̃

r̃2
i

Ha2 + G̃ = 0 (9)

The variables in tilde indicate dimensionless quantities measured in terms of λ,
u0 and S, for length, velocity and field scales. The Hartmann number defined as
Ha = S

√
Δ/γδ is the ratio between magnetic and viscous forces. Equation (9) has a

standard analytical solution that combined with non-slip boundary conditions at the
inner and outer radii is:

w(χ) =
(

G

2
− c Ha2

2 r2
i

)
(1 − χ)χ (10)

From here until the end of the section we shall not remove the tilde symbol for
simplicity.

Moreover, Ohm’s law (4) is equal to jr = −Δ
c

r
, and then integrated from inner

to outer radius, the resulting equation in dimensionless form is:

c

ri
= ∈φ + 1

ri

∫ 1

0
w(χ) dχ (11)

Equation (11) is solved for c, by considering a short circuit, such that, βφ = 0. We
get then:

c = G r2
i

Ha2 + 12r2
i

Inserting this last result into (10), we obtain a final expression for the velocity:

w(χ) = 6G r2
i

Ha2 + 12r2
i

(1 − χ)χ

Velocity profiles at different values of the Hartmann parameter (Ha) for a given
annular space are plotted in Fig. 2a. In this case, as Ha increases the flow slows
down until it completely stops. This behavior is typical of Hartmann flow between
parallel plates. However, in our model the magnetic field is parallel to the walls:
consequently, the Hartman layers are not formed as in the Hartmann’s problem. In
Fig. 2b, the effect of varying the ratio between the inner to outer radius, k = ri/ro, on
velocity profile for a given Hartmann value is shown. In this case, as k tends to unity,
the hydrodynamic regime dominates due to a vanishing effect of Lorentz forces. In
other words, as the annular space is reduced the effect of magnetic field on the flow
tends to vanish.
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Fig. 2 Velocity profiles for several a Ha values and b radius ratio k = ri /ro

4 The Oscillatory Flow Case

In this case, the flow is driven by a harmonic gradient pressure which results in a
harmonic fluid motion with oscillating frequency ω, that is:

−d P

dz
= ♦ [

G exp (ıωt)
]

The symbol ♦ refers to the real part of the expression. It is usual to express quantities
as: {

w(χ, t)
c

}
= ♦

[{
f (χ)

co

}
exp (ıωt)

]
(12)

where f (χ) and co are complex quantities. This reduces Eq. (7) to:

π2 f

πχ2 − ıωλ2

γ
f + Gλ2

δγ
− Δcoλ

2

δγ

S

r2
i

= 0

or in dimensionless form to:

π2w̃

πχ2 − ı Rωw̃ − c̃o

r̃2
i

Ha2 + G̃ = 0

where Rω is the oscillatory Reynolds number defined by Rω = ωλ2

γ
and variables

in tilde are dimensionless quantities as defined in Sect. 3. The solution of the last
equation considering non-slip boundary conditions at the wall is:

w(χ) = 2ı
(
G r2

i − co Ha2
)

r2
i Rω cosh

(
1
2

√
ı Rω

) sinh

(
1

2

√
ı Rω(x − 1)

)
sinh

(
1

2

√
ı Rωx

)
(13)
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As before, the tilde symbol has been removed for simplicity.

We insert Eq. (12) into Ohm’s law (4) and into jr = −Δ
c

r
, the resulting equa-

tions are equal and integrated from the inner to the outer radius, which results in
dimensionless form to:

co

ri
= ∈φ + 1

ri

1∫
0

w(χ) dχ (14)

This equation can be solved for co in the case of short circuit, that is, for βφ = 0.
Explicitly we obtain:

co =
r2

i

(
−ıG

√
Rω + 2

√
ı G tanh

(
1
2

√
ı Rω

))
√

Rω
(
r2

i Rω − ı M2
) + 2

√
ı M2 tanh

(
1
2

√
ı Rω

)

Inserting this result into (13) and simplifying, we obtain a final expression for the
velocity:

w(χ) =
2ır2

i G
√

Rωsech
(

1
2

√
ı Rω

)
sinh

(
1
2

√
ı Rω(x − 1)

)
sinh

(
1
2

√
ı Rω x

)
√

Rω
(
r2

i Rω − ı M2
) + 2ı M2 tanh

(
1
2

√
ı Rω

)

In order to understand the effect of Ha on the oscillatory MHD flow, we first
analyze the hydrodynamic problem (Ha = 0) for two extreme values of Rω for
a given annular space as shown in Fig. 3. In both figures, the oscillating motion is
shown for half of a period starting from the maximum velocity in one direction to
the maximum velocity in the opposite direction. This corresponds for example to
t = 0 until t = 3.2 in Fig. 3a, or to t = 1.5 until t = 4.3 in Fig. 3b. The effect of Rω

on the velocity profile is observed in Fig. 3b. In fact, as Rω increases two distinct
regions of the flow appear: a boundary layer region where viscous effects dominate
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Fig. 5 Maximum velocity profiles at various ratio k = ri /ro for Ha = 500 and Rω = 1. Dashed
curve corresponds to hydrodynamic profile (Ha = 0).

and a non-viscous core region. Another interesting effect is the phase shift between
the regions which appear as Rω increases. For example, in Fig. 3b for t = 2.9 the
fluid in the boundary layer flows in the opposite direction with respect to the flow in
the core.

Once the main features of hydrodynamic oscillatory flow have been described,
we proceed to analyze the effect of Ha on the MHD oscillatory profile for a given
Rω, as depicted in Fig. 4.

For Rω = 1, shown in Fig. 4a, only maximum velocity profiles for various Ha
numbers are compared. As seen in the plot, the increase of magnetic field (or Ha)
slows down the flow as in the steady case. This fact is confirmed in Fig.4b which
also corresponds to maximum velocity profiles at Rω = 100.

The effect of varying the ratio between the inner to the outer radius, k = ri/ro,
on the flow for given Ha and Rω numbers is shown in Fig. 5. As in the steady case,
the hydrodynamic regime dominates as k tends to unity due to the vanishing effect
of Lorentz forces.
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5 Conclusion

We have considered the laminar MHD flow between two infinitely long, perfectly
conducting cylinders subject to a purely azimuthal magnetic field. The fluid motion
is driven by a pressure gradient, either constant or harmonic. The governing MHD
equations have been solved by considering the inductionless approximation and
assuming a small annular gap compared to the inner radius. For the case of steady
motion, the effect of magnetic field is to slow down the flow as the Hartmann value
increases. This effect is well known in the MHD flow between parallel plates known
as the Hartmann problem. However, a distinct feature in our problem is the absence
of Harmann layers which remain unchanged the velocity profile but just slow down
the flow by Lorentz force. For the case of harmonically driven flow, the magnetic field
reduces the amplitude of oscillation, and due to the absence of Hartmman layers, the
velocity profile also remains unchanged as in the steady case. This can be understood
since the Lorentz force is homogenous in the annular space for the approximation
with a narrow gap.
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Surface Waves Generated on Electrolytes
by a Traveling Electromagnetic Force

Gerardo Alcalá and Sergio Cuevas

Abstract This paper presents an experimental study of gravity-capillary waves
generated at the free surface of a thin-film of electrolyte (NaHCO3) due to the pres-
ence of an electromagnetic force created by the interaction of a direct electric current
and a traveling magnetic field.The field is generated by a permanent magnet mov-
ing in straight line, localized externally to the bottom wall of the fluid container.
The dominant component of the magnetic field is perpendicular to the plane of the
fluid surface in equilibrium. The current is applied transversely to the motion of
the magnet through a pair of parallel electrodes, in such a way that the force points
either in favour or against the motion of the magnet, depending on the polarity of the
electrodes and the magnet orientation. A vertical force component is also generated
near the edges of the magnet. It is shown that the electromagnetic force acts as an
obstacle for the flow (a magnetic obstacle) and, similarly to a moving solid object, it
is able to generate a stationary wave pattern. This patten is reconstructed by optical
methods for several magnet velocities. Differences produced by the force acting in
favour or against the magnet motion are discussed.

1 Introduction

Surface waves are a common phenomenon in nature. In many situations they are
generated by obstacles interacting with the free surface as occurs, for instance, when
a stone is dropped in a pond, a duck swims at the surface of a lake, or a river flow
passes through a fishing line, among many other situations. Such waves establish a
competition between gravity and surface tension, and the equilibrium shape taken by
the surface of the fluid is a consequence of this balance (Landau and Lifshitz 1959).
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In the present work, we are interested in the experimental study of capillary-gravity
waves generated by localized electromagnetic forces that act as obstacles for the
flow. In a biological context capillary-gravity waves are involved in the mechanisms
of locomotion, hunting or courtship for insects or arachnids (Bush and Hu 2006;
Bleckmann and Bender 1987). On the other hand, magnetic fields can be used for
the control of surface waves in different metallurgical applications (Sreenivasan
et al. 2005). Before addressing the analysis of capillary-gravity waves created by
electromagnetic forces, we recall some important features of surface waves generated
by solid obstacles.

When an object partially immersed in a fluid is moving uniformly, it will experi-
ence drag forces acting on it. Different contributions to the drag or resistance forces
can be identified (Burghelea and Steinberg 2002). In fact, in addition to the common
viscous resistance, R f , an eddy resistance, Re, caused by either laminar or turbulent
wakes will be present. But the generation of capillary-gravity waves can also con-
tribute to another form of resistance called wave resistance, Rw, which represents
the momentum removed by the waves from the object and taken away to infinity
(Havelock 1919). Due to the viscosity of water and electrolytes, usually R f and Re

can be considered negligible compared with the capillary-gravity wave resistance
(Shliomis and Steinberg 1997).

In the frame of an object moving in the fluid with velocity U, we will observe a
stationary wave pattern where the wave speed, c, satisfies the following condition
(Lighthill 1979)

c(k) = U cos θ(k), (1)

where k is the wave vector and θ is the angle between U and k, so that the component
U cos θ of the object velocity, at right angles to the crest, can cancel the crest’s motion
at the wave speed c.

In general, due to the dispersive nature of the capillary-gravity waves, complex
surface structures will be observed. By neglecting viscous effects, the phase velocity,
c, can be expressed by the following equation

c = [
tanh kh (g/k + γ k/ρ)

]1/2
, (2)

where ρ is the fluid density, γ is the liquid-air surface tension, g is the gravitational
acceleration, h is the fluid depth, and k is the wave number (Acheson 1990). As we
can see, the velocity c depends on the wavelength, so that among all wavelengths,
Eq. (1) fixes some of them which can be stationary.

According to Eq. (2), for deep waters (kh ≤ 1) phase velocity has a minimum
cc = (4gγ /ρ)1/4 at the capillary wave number κ = ∞

ρg/γ . For water at room
temperature, we have cc = 23 cm/s and λc = 1.7 cm, where λc is the wavelength.
This means that Eq. (1) cannot be satisfied for U < cc, and no such waves can be
present for a slow moving object. In fact, some waves will be found upstream and
some others downstream the obstacle, which is related with the way the energy is
propagated.
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Now, let us consider a frame of reference moving with the stream and an obstacle
traveling with velocity U in the upstream direction. The longer waves generated by
the motion of the object, with wave speed c = U , greater than the energy propagation
(group) velocity cg , are then left behind the obstacle and travel in the downstream
direction. In other words, after energy is generated, the long waves lag behind the
object. Shorter waves, for which c = U is smaller than cg , will be found ahead of the
obstacle (Lighthill 1979). The case of surface waves generated by objects of small
size, relative to the capillary length κ−1 = (γ /(ρg))1/2, has also been considered
by many authors Raphaël and deGennes (1996); Richard and Raphael (1999); Sun
and Keller (2001); Chepelianskii et al. (2008); Closa et al (2010); Le Merrer et al.
(2011). Let us now consider surface waves generated by a localized electromagnetic
force.

2 Waves Generated by Electromagnetic Forces

In this paper, we show that localized electromagnetic forces are an alternative to the
use of solid obstacles for generating surface waves in electrically conducting fluids.
In fact, it has been shown that when a uniform flow of a highly conducting fluid
(v.e. a liquid metal) passes through a localized non-homogenous magnetic field, for
instance produced by a dipolar permanent magnet, the field acts in a similar way
as a solid obstacle by deflecting the incident flow and generating a wake behind the
magnetic field spot (Cuevas et al. 2006; Votyakov et al. 2007; Votyakov and Kassinos
2009). In this case, the currents induced by the relative motion of the liquid and the
magnetic field interact with the applied field producing an opposing Lorentz force
j × B0, where j is the induced current density and B0 is the applied field. Therefore,
it is possible to conceive the localized magnetic field as an obstacle for the flow;
incidentally, the term magnetic obstacle was coined for that purpose (Cuevas et al.
2006). It has to be mentioned, however, that flows past solid and magnetic obstacles
present very important differences.

If the conducting fluid is an electrolyte, induced currents are negligibly small and
in order to observe the effect of a localized magnetic field in an electrolytic flow, an
external current, j0, has to be applied. In fact, experiments of flows of electrolytes past
localized magnetic fields have been performed by dragging an external permanent
magnet at constant velocity close to a quiescent thin layer of electrolyte, while a
steady current was imposed on the fluid layer transversely to the motion of the
magnet (Honji 1991; Honji and Haraguchi 1995; Afanasyev and Korabel 2006).
In these studies, the attention was focused on the velocity patterns created in flow
planes parallel to the bottom wall, while the effects of the localized Lorentz force
on the free surface of the electrolyte were completely disregarded. Here, we are
interested in studying flow regimes where three-dimensional effects produced by
localized Lorentz forces are able to perturb the free surface and generate surface
wave patterns.
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Fig. 1 Experimental setup. A localized Lorentz force is created by the interaction of a D.C. current
applied through parallel electrodes (1) and the field of a permanent magnet (2) dragged axially
outside the bottom wall with a linear actuator (3). The perturbed free surface is reconstructed
at the observation zone (4) with the aid of a camera (5), using the synthetic Schlieren method
(Moisy et al. 2009)

3 Experimental Setup and Procedure

A sketch of the experimental setup is shown in Fig. 1. The experiments were con-
ducted in a rectangular crystal tank (35 cm × 60 cm × 5 cm), set horizontally and
filled with a 8.6% aqueous electrolytic solution of NaHCO3 up to the depth of 3 mm.
Two electrodes (square graphite rods of 1 cm × 1 cm of cross-section and 50 cm
in length) were placed along the two long sides of the container and connected to a
power supply that provided a constant voltage of 60 V, so that a direct electric current
(D.C.) of 2 A circulated in the fluid layer in the transversal direction. Electrodes were
inside chambers (bubble traps) that allow the electric current to flow at the bottom
while preventing the bubbles to invade the main flow region. A square permanent
magnet of side length L = 2.54 cm, located below the bottom wall of the tank, was
moved along the symmetry axis of the tank at a constant speed, U , using a linear
actuator (FESTO EGC-70-500-TB-KF-0H-GK) driven by a servo motor (FESTO
EMMS-AS-70-M-RS), in which U can be carefully controlled. In the experiment,
starting at rest, the manget was suddenly set in motion reaching a constant velocity
before it enters below the tank. The interaction of the D.C. current and the localized
magnetic field of the traveling magnet, produced a Lorentz force that perturbed the
free surface and generated a wave pattern. The Lorentz force also affected the bulk
flow but this is not analyzed here.

Since the main component of the magnetic field is normal to the bottom wall
and the applied current is transversal to the motion of the magnet, the Lorentz force
points either in the direction of the motion of the magnet or against it, depending
on the polarity of the electrodes and the orientation of the permanent magnet. If the
polarity of the electrodes (i.e. the direction of the current) is fixed, the force direction
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Fig. 2 Sketch of the physical situation when the north pole of the traveling magnet (moving to the
right with speed U ) is oriented upwards and the transversal current enters the plane of the figure.
In this case, one component of the localized Lorentz force points in the direction of the motion of
the magnet and another points vertically

(a) (b)

Fig. 3 Top view of streamlines in the flow of an electrolyte past a localized magnetic field (rep-
resented by the square). Streamlines expand for a positive force and contract for a negative one.
a Positive force. b Negative force

depends only on the magnet orientation (see Fig. 2). Let us call positive force the
case when the horizontal component of the Lorentz force points in the direction of
the motion of the magnet, and negative force when it points against the motion of the
magnet. For a positive force the streamlines expand around the region affected by
the localized magnetic field, while for the other case the streamlines contract in this
region, as shown in the Fig. 3a, b, respectively. Notice that the effects of a positive
force are similar to those of a solid object while the effects of a negative force have no
mechanical analogy. We have to consider, however, that near the magnet borders the
component of the field in the axial direction gives rise to a Lorentz force component
in the vertical direction that is able to perturb the free surface. In fact, the strength
of the perturbation depends on the velocity of the magnet.

Two relevant dimensionless numbers can be identified in this problem. First, the
Reynolds number, Re = U L/ν, based on the speed of the magnet U , the side length
of the magnet L , and the kinematic viscosity of the fluid ν. Secondly, the Lorentz force
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(a)

(b)

Fig. 4 Wave patterns for a positive force for different Reynolds numbers. a Vertical wave patterns
profiles at the mid symmetry plane. b Horizontal proyection of free surface topography

parameter defined as Q = j0 Bmax L3/ρν2 where j0 is the applied current density,
Bmax is the maximum strenght of the magnetic field at the surface of the magnet,
and ρ is the mass density. The experiments reported in this work were conducted by
fixing the value of Q and varying Re.

The wave pattern generated by the traveling localized magnetic force is stationary
with respect to the system of the magnet moving with velocity U . The stationary
wave patterns were characterized experimentally over a 10 cm × 10 cm region using
an optical method called free surface synthetic Schlieren (Moisy et al. 2009). This
method allows the measurement of the instantaneous topography of the interface
between two transparent fluids. In order to implement this technique, a camera located
above the tank with the fluid at rest (see Fig. 1) records an aleatory dot pattern placed
below the transparent bottom wall. When the free surface is perturbed, an apparent
motion of the dots is observed due to refraction. By using a digital image correlation
(DIC) algorithm to measure the apparent displacement field between the refracted
image and the reference image obtained when the surface is flat, it is possible to
calculate the height, h, of the free surface by solving the following equation

→h = − r
h∇ , (3)

where r is the displacement and the effective distance h∇ is a constant that depends
on the refraction indexes and thicknesses of different media (air, glass, and the elec-
trolyte) through which light travels from the dots to the camera.
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(a)

(b)

Fig. 5 Wave patterns for a negative force for different Reynolds numbers. a Vertical wave patterns
profiles at the mid symmetry plane. b Horizontal proyection of free surface topography

(a) (b)

Fig. 6 Variation of the number of crests with Re due to emission of capillary-gravity waves.
a Positive force. b Negative force

(a) (b)

Fig. 7 Amplitude of the persisting wave in the large Reynolds number range as a function of Re.
a Positive force. b Negative force
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4 Experimental Results

Experiments were performed for a constant value of the Lorentz force parameter
(Q = 5.2) while the Reynolds number, Re, varied from 1778 to 10160. In Figs. 4
and 5, the evolution of wave patterns for the cases of positive and negative forces,
respectively, is illustrated schematically for growing Reynolds. In the upper panels
(Figs. 4a and 5a), a side view of the vertical central plane that crosses the axial
symmetry axis shows the wave pattern profiles created by the Lorentz force. In turn,
the lower panels (Figs. 4b and 5b) show a projection of the topography of the free
surface in the horizontal plane, where the color scale indicates different hights of the
surface. Maximum wave amplitudes were 1.5 and 0.8 mm for positive and negative
forces, respectively.

For a positive force, a dominant crest is observed in the low Re regime (1778 ∼ Re
∼ 2794). For higher Re, short waves appear in the front due to emission of capillary-
gravity waves. Wave emission is observed within the range 3048 ∼ Re ∼ 5080.
In fact, the number of crests increases as Re increases up to reaching a maximum
number of seven for an intermediate value (Re ≈ 4318). This is shown in Fig. 6a,
where the number of crests is plotted versus the Reynolds number for the positive
force case. When Re is increased further, the number of crests decreases. Finally, in
the high Re regime (5334 ∼ Re ∼ 10160), only a pair of crests can be identified,
corresponding to a dominant valley that persists in this range of Re (see Fig. 6a).
The depth of this valley decreases as Re grows. In Fig. 7a, the amplitude of the wave
associated with the dominant valley is shown as a function of Re. It can be observed
a sharp decrease of the amplitude from 0.8 mm for Re = 5334 up to practically
disappearing for Re = 10160.

In the case of a negative force, a dominant valley is found for low Re (2032 ∼ Re
∼ 2286). As the Reynolds number increases, wave emission appears and the number
of crests increases. Wave emission was observed in the range 2540 < Re < 5334
and a maximum number of six crests was found for Re ≈ 3302 (see Fig. 6b). As Re
decreases, the number of crests reduces first to three (3556 ∼ Re ∼ 4318), then to
two (4572 ∼ Re ∼ 5334), and finally to one (5588 ∼ Re ∼ 10160), indicating the
dominant crest that appears in the higher range of Re explored (Fig. 6b). Figure 7b
shows the amplitude of the wave associated with the dominant crest as a function of
Re. In fact, the original amplitude (0.13 mm for Re = 5842) is much smaller than
in the positive force case and similarly, decreases up to practically disappearing for
Re = 10160.

5 Concluding Remarks

The generation of surface waves through localized traveling electromagnetic
(Lorentz) forces in a thin layer of electrolyte was analyzed experimentally. The
Lorentz force was created by the interaction of a direct electric current applied
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transversally to the motion of a permanent magnet external to the fluid container. In
this work, it was shown that the localized Lorentz force acts as a magnetic obstacle
that is able to generate not only vortical flows, as has been demonstrated by previ-
ous investigations (Honji 1991; Honji and Haraguchi 1995; Afanasyev and Korabel
2006), but also to perturb the free surface and produce free surface wave patterns.
The instantaneous topography of the surface was reconstructed using the free surface
synthetic Schlieren method (Moisy et al. 2009). The evolution of the wave patterns
was characterized as a function of the Reynolds number (based on the velocity of
the traveling magnet), while the Lorentz force parameter, Q, remained fixed. The
Reynolds number varied from 1778 to 10160. In contrast with surface waves gener-
ated by moving solid obstacles, the Lorentz force can point either in favour (positive
force) or against (negative force) the motion of the traveling magnetic field, depend-
ing on the orientation of the magnet and the direction of the applied current. In fact,
the observed wave patterns differ according to the direction of the Lorentz force. It
was found that, as the Reynolds number increases, there is a transition regime where
short capillary-gravity waves are created by the localized electromagnetic force. For
a positive force the transition goes from a dominant crest in the low Reynolds num-
ber regime to a dominant valley in the high Reynolds number regime. For a negative
force, the transition occurs inversely from a dominant valley to a dominant crest.
Emission of capillary-gravity waves starts at smaller Reynolds numbers in the case
of a negative force. For both positive and negative forces, the amplitude of the per-
sistent wave in the high Reynolds number regime was found to decrease and almost
disappear as Re reached the largest explored value.
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Study of a Surface of a Liquid Layer
in Evaporation

Julio César Rubén Romo Cruz, Sergio Hernández Zapata
and Gerardo Ruiz Chavarría

Abstract In a liquid layer of alcohol or another volatile substance a pattern of
hydrodynamic cells are formed when relative humidity decreases under a certain
threshold. We describe the thermodynamical conditions under which the cells appear.
We also study the temperature as a function of the vertical coordinate in the layer and
we find that the temperature gradient can not be used to explain the origin of the cells.
The deformation of the free surface is determined by the Schlieren technique. For that
a sheet of paper with a random pattern of dots is placed in the bottom of the container.
Using PIV software the displacement of the dots in the pattern is determined. The
statistical study of the displacement allows us to study the slope of the surface and
eventually its shape. We calculate the correlation lenght and we find that it is of the
order of the size of the cells.

1 Introduction

In a liquid-gas interface the expression for the relative humidity (RH ) is:

RH = Partial pressure

Saturation pressure
. (1)

On the other hand, the chemical potential between the liquid and gaseous phases
can be estimated by the following equation (http://en.wikipedia.org/wiki/Ideal_
solution):

μv = μl + RT ln(RH). (2)
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Here R is the universal constant of the gases, μl is the chemical potential for the
liquid, μv is the chemical potential for the vapor, T is the temperature in Kelvin
degrees. In a system in equilibrium the vapor is saturated. This implies RH = 1.
Then μv = μl , i.e. the evaporation rate is equal to the condensation rate. On the
other hand if RH < 1 then μl > μv, and the vapor is subsaturated and there is
evaporation. Finally if RH > 1 then μv > μl , the vapor is supersaturated and there
is condensation.

In the present paper it is described a system that consists of a liquid-gas interface
(alcohol in the present case) where the liquid is in an evaporation process (Ward and
Fang 1999; Bohren 2001; Vázquez et al. 1995; Aspe and Depassier 1990; Mancini
and Maza 2004; Bestehorn 2007; Zhang 2006). The system is in equilibrium when
there is not evaporation in the liquid. On the contrary, if there is evaporation the
system becomes unstable and a pattern of hydrodynamic cells appears. These cells
can be observed with the aid of a visualizer (Kalliroscope). If the relative humidity
is less than 100 % but close enough to this value there are no patterns in the fluid. If
the humidity decreases under a threshold value then the fluid becomes unstable. The
hydrodynamic cells appear in the body of the liquid in a convective process. In the
center of each one the fluid rises and in the borders it descends.

The liquid is poured in a crystallizer. The system is in equilibrium when the
crystallizer is covered. The instability is reached when the crystallizer is uncovered.
Then it is observed the gradual formation of the cells. Eventually they fill all the
body of the liquid without overlapping. When the crystallizer is covered the cells
disappear gradually until the alcohol layer becomes uniform. When this happens the
liquid is in equilibrium with its vapor. That is, the relative humidity is 100 %.

It is possible to make an analogy between the performance of the hydrodynamic
cells and the famous physical toy known as “the drinking bird”. This device can be
considered like a thermodynamical machine that works when there is not equilibrium
between a liquid and its vapor (Romo Cruz Julio 2012). If there is thermodynamical
equilibrium the toy stops working. The analogy is shown in the Fig. 1.

In general, the convection processes produced in a liquid by evaporation have
importance on many industrial applications. This includes, for example, many dry-
ing techniques, distillation (water separation processes in a salty mixture), heat ex-
changers, and specially the cooling of microelectronics equipment (Liu and Kabov
2012). In the latter case, it is usual to deposit thin films (of a certain liquid) on hot
surfaces in microelectronics devices, where is very important avoid that evaporation
instabilities generate fractures in the liquid thin film. This kind of fractures lead to
disturbances in the layer behavior during the cooling process. From the point of view
of fluid mechanics, the symmetry breaking due to evaporation involves a new mech-
anism that can be contrasted with the well-studied Marangoni and Rayleigh-Bénard
mechanisms for instability generation. It should be stressed that this is really a par-
ticular case of the general topic of hydrodynamic instabilities that is central in the
understanding of a huge variety of natural phenomena associated to fluid dynamics.

The paper is organized as follows: in Sect. 2 we study how the cell size depends
on the liquid layer height. Then the relaxation time of the system when the rela-
tive humidity tends to 100 % is analyzed. This characteristic time depends on the
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Fig. 1 a The bird working normally and at the same time dynamics in the liquid. b The bird
is covered with a bell and the crystallizer is covered with a flat glass. c When both systems are
saturated, they reach a stationary state of equilibrium

initial condition on which the system is prepared. In Sect. 3 we present experimental
measurements on the dependence of the temperature with the vertical coordinate in
the liquid layer. The goal is to study if the temperature gradient leads to the cell
emergence. In order to establish if the cell dynamics is revealed on the behavior of
the layer surface, in Sect. 4 we study the surface while the process of evaporation is
taking place. With this purpose we use the Schlieren technique. Finally, in Sect. 5 we
present our conclusions.

2 Characteristic Size of the Cells and Relaxation Time

In order to study the general characteristics of the hydrodynamic cells a set of
experiments was performed. In a first stage it was determined the characteristic
size of the cells as a function of the height of the liquid layer. The system of cells
was recorded with a videocamera for different heights of the liquid layer. The digital
images were treated with a software of image processing to measure the size of the
cells. It is done in all the surface of the layer.

As it is observed in the Fig. 2a, the average size of the cells is an increasing
function of the height of the liquid layer. A polynomial of the second degree was
adjusted to the experimental data. For layers of height around 2.5 cm the cells begin
to be imperceptible in the system.

Next, the time that is needed for the cells to completely disappear, from the moment
in which the crystallizer is covered, is measured. This time is called the relaxation
time of the system. In order to realize the measurement the wet-bulb temperature
(W BT ) and the dry-bulb temperature (DBT ) are measured (Dossat 1995).



382 J. C. R. Romo Cruz et al.

Fig. 2 Experimental results. a Average size of the cells as a function of the height of the layer.
b Relaxation time as a function of the difference DBT —W BTi in Celsius degrees

To this end a pair of thermocouples is used. One is covered by a cloth dampened
with alcohol. The two thermocouples are introduced in the crystallizer and the time
elapsed for the W BT to become equal to the DBT is measured. At the beginning
the W BT is less than the DBT because the alcohol in the dampened cloth becomes
colder by evaporation. This is an indicator of the degree in which the system is
far from equilibrium. It can be observed that the cells disappear when the W BT
becomes equal to the DBT . The experiment is realized many times. In each one
the initial W BT is different. In the Fig. 2b a graphics of the relaxation time as a
function of the difference between the dry-bulb temperature and the initial wet-bulb
temperature (DBT —W BTi ) is presented. A cubical adjustment to the experimental
data is shown.

3 Measurement of the Temperature Gradients in the Liquid

We want to explore if the emergence of the cells is due to a temperature gradient.
With the use of the thermo-physical properties of the alcohol (Romo Cruz Julio 2012),
the threshold difference of temperature (ΩTc) in the Rayleigh-Bénard instability is
calculated. It must satisfy the condition (Guyon et al. 2001):

Ra = ΔΩTcga3

πδ
= 1708 = Rac (3)

where Δ is the thermal expansion coefficient, g is the gravity, a is the liquid layer
height [for this case (Guyon et al. 2001)], π is the thermal diffusivity coefficient, δ is
the kinematic viscosity and Rac is the Rayleigh’s critical number. From this equation
the value ΩTc can be obtained (Romo Cruz Julio 2012):
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ΩTc ≤ 0.01478 K. (4)

Analogously for Marangoni’s instability we have the expression for ΩTc

(Guyon et al. 2001):

Ma =
dγ
dT ΩTca

φπ
= 80 = Mac. (5)

Here, dγ
dT is the rate of change of surface tension with the temperature, φ is the

dynamic viscosity and Mac is the Marangoni’s critical number. The value ΩTc for
the alcohol in this instability is calculated [with help of tables (Vázquez et al. 1995;
Romo Cruz Julio 2012)], resulting:

ΩTc ≤ 0.007335 K. (6)

Note that the differences for the thresholds critical values in both instabilities (see
values in 4 and 6) are very small in alcohol. A very complex and expensive sys-
tem of measurement is needed in order to measure temperature differences of this
magnitude. It was proposed to work with a fluid where ΩTc be greater.

A second calculation for the critical difference of temperature is realized. In this
case for glycerol. ΩTc is calculated for the Rayleigh-Bénard instability
Vázquez et al. (1995):

ΩTc ≤ 37.367 K (7)

In an analogous way, in the Marangoni instability, it is obtained (Romo Cruz Julio
2012):

ΩTc ≤ 16.09 K (8)

In both cases it is obtained a much greater ΩTc than the one obtained for pure alcohol.
For this reason glycerol and alcohol mixtures are prepared. That is, liquids with
measurable threshold difference of temperature. Also, a high precision thermometer
based in a thermistor was constructed. A circuit for amplifying (around 50 times)
the potential difference and with the possibility to adjust the offset was constructed.
The calibration of the thermometer was done with water in a temperature interval
from 15 to 35 ∞C.

The temperature difference through the liquid layer was measured. The results of
the experiment are shown in the Fig. 3. An inverse temperature gradient was obtained,
that is, the bottom of the liquid layer is colder than the surface. This implies that the
difference of temperature can not be used to explain the origin of the cells, not in a
situation like Marangoni (in this case the more natural since the surface is free) nor
in a situation like Rayleigh-Bénard.
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Fig. 3 Experimental data of the temperature as a function of the height taken from the bottom for:
99 % of glycerol and 1 % of alcohol

4 The Surface Deformation

The next experiment consisted in the verification of the existence of some deforma-
tion in the surface of the liquid layer when the cells were present. For this purpose the
Schlieren technique was used (Moisy et al. 2009). The alcohol in the crystallizer was
taken but this time without Kalliroscope. At the bottom of the crystallizer a pattern
of random dots printed on a paper was placed. A high definition video camera was
placed on top of the system. A section of the pattern of dots was focused (Fig. 4).
The experiment consists on recording from the moment in which the crystallizer is
covered. While recording the crystallizer is uncovered, the evaporation begins and
the hydrodynamic cells appear.

The video is then transfered into a computer and fractionated in fifty images per
second. A PIV software is then used to do the analysis. A reference image is taken
(when the crystallizer is covered and the system is in equilibrium) and also images
with the cells present (once the crystallizer is uncovered).Then the displacement of
the dots between the latter images and the reference image is studied.

Using geometric optics in a paraxial approximation the following relation (Moisy
et al. 2009) can be proved for the displacement field of the dots on the deformed
surface:

→h = −
(

1

Δh p
− 1

H

)
δr. (9)



Study of a Surface of a Liquid Layer in Evaporation 385

Fig. 4 Experimental assembly that consists of a pattern of dots printed on a piece of paper, a
styrofoam container with alcohol and the video camera on top

Fig. 5 Topography of the displacement field

where δr are the apparent displacement, H is the distance from the videocamera to
the bottom, Δ = 1−n/n∇ is determined by the index of refraction between the liquid
and the external medium and h p is the height of the liquid layer.

Finally, a numerical integration of the obtained displacement field is done and the
surface deformed by the dynamics of the cells is rebuilt. We take advantage of this
to calculate the lenght correlation.

A set of data representing a section of the surface is taken (Fig. 5) and the cor-
relation lenght is obtained. For the case of a liquid layer with 0.5 cm of depth, the
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Fig. 6 Experimental results. a Curves (symmetrical) for the correlation length, was used the de-
creasing curve. b Linear fit in semi-log scale

correlation lenght is 0.35 ∼ δ ∼ 0.86 cm, this is an acceptable value which means
the method is reliable (Fig. 6).

A last experiment was measuring the density gradients in the Rayleigh-Bénard
experiment using the Schlieren technique. The method is entirely analogous to the
former. In this case, for a 1 cm distance between the bottom and the surface of the
liquid layer, the correlation length is 0.8568 ∼ δ ∼ 1.0043 cm.

5 Conclusions

An inverse temperature gradient was found in the body of the liquid, which rules
out that dynamics of the cells is due to a direct temperature gradient in the liquid
layer. We are studying the possibility that the instability is due to a pressure gradient.
With the Schlieren technique it was possible to rebuilt the deformation of the surface
and the study of the correlation length allows us to make the hypothesis that this
deformation is due to the dynamics of the cells. The size of the cells is approximately
of the order of the height of the layer in which they are studied, instabilities like
Taylor, Marangoni and Rayleigh-Bénard present properties alike. We want to study
the adimensional numbers that determine the threshold in relative humidity in order
that the instability appears. The behavior of the cells is quite similar to the functioning
of the drinking bird; we want to find more thermodynamic machines that function
under these principles.

Acknowledgments Authors acknowledge support by DGAPA-UNAM under project IN-116312,
“Vorticidad y Ondas no Lineales en Fluidos.”
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Analysis of the Performance of a Seven-Stage
Axial Compressor Carried Out
with a Numerical Simulation

I. González, M. Toledo, L. A. Moreno and G. Tolentino

Abstract This chapter presents the numerical analysis of a seven-stage axial
compressor which was carried out with commercial computational fluid dynamic
software. The results showed that the considerations made in the design method
were not satisfied. On the other hand, the numerical analysis allows having an esti-
mate of compressor performance in its operating range, with the aim to determinate
the feasibility of the compressor without a physical model. This considerably reduced
the cost in the design cycle of the compressor.

Nomenclature

C Absolute velocity, velocity
h Enthalpy
N Rotational speed
P Pressure
r Radius
s Entropy
T Temperature
U Blade velocity
α Flow angle
β Blade angle
π Pressure ratio
ρ Density
ṁ Mass flow
η Efficiency
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Subscripts

a Axial velocity
s Streamline component

w Tangential component
0 Stagnation property

1 Introduction

The axial compressor is one of the principal components of the gas turbine in which
the fluid is compressed as it passes through each stage. In the early days the design of
the compressor was carried out by methods that were based in empirical knowledge
and then they were evaluated in a rig test. After that, the geometry of the compressor
was changed, with the aim to increase the performance (Horlock and Denton 2005).
This is a very expensive procedure and it is one of the reasons that led the designers
to look for a new design tool.

Nowadays with constant development and the more usual use of the CFD software
the costs are considerably reduced. This tool makes feasible the analysis of a consid-
erable amount of configurations, the investigation of new concepts and the analysis
of the compressor performance. This is the foremost reason of why it is used in this
study, even knowing that the results tend to be more qualitative than quantitative.

2 Compressor’s Design

In the present study the free vortex design methodology was used to obtain the
geometry of the blades and vanes of the compressor. Being its main consideration is
that the fluid is in equilibrium in the radial direction. This means that pressure forces
and inertia forces acting on a fluid element are in balance. A simplified expression
of this is given by

dp
ρ dr

= C2
w

r
+ C2

s

rs
sinαs + dCs

dt
sinαs, (1)

Assuming that rs is so large, and αs is so small, the Eq. (1) is therefore

dp

ρdr
= C2

w

r
, (2)

This is known as the radial equilibrium equation. Now taking the variation of the
stagnation enthalpy with the radius as
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Table 1 Design point T0 288.15 K

P0 101325.00 Pa
π 4.15
ṁ 20.00 kg/s
Ca 150.00 m/s
Utmax 354.72 m/s
N 15000 rpm

dh0

dr
= T

ds

dr
+ dp

ρdr
+ Ca

dCa

dr
+ Cw

dCw

dr
, (3)

and substituting the Eq. (2) in Eq. (3), it gives the basic equation for the analysis of
flow in the compressor annulus as

dh0

dr
= T

ds

dr
+ C2

w

r
+ Ca

dCa

dr
+ Cw

dCw

dr
, (4)

In this study the term on the left-hand side of Eq. (4) was neglected, because the
stagnation enthalpy was assumed to be uniform far from the wall of the annulus
at the entry of the compressor. The first term on the right-hand side was neglected
also, because the entropy variation related with the shock losses is significant with
supersonic Mach numbers. However in the present study the relative Mach number
was barely above the unity. On the other hand, the axial velocity was assumed to be
constant across the annulus, then the Eq. (4) reduces to

dCw

Cw
= −dr

r
, (5)

Integrating the Eq. (5) gives

Cw ∗ r = constant, (6)

where the tangential component of the absolute velocity varies inversely with the
radius, which is known as the free vortex condition. It is the foremost characteristic
of the design method used in the present study.

3 Characteristics of the Compressor

The parameters of the design point are summarized in Table 1. These were taken
from the Saravanamuttoo’s book (Saravanamuttoo et al. 2009).

The main characteristics of the blades are summarized in the Table 2. They show
that the first two stages are transonic and all the blades have a prime number. Another
interesting characteristic is that beyond the third stage the flow and the blade angles
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Table 2 Characteristics of the blades

Stage No. of
blades

Span at leading
edge (mm)

α at mid
span (◦)

β at mid
span (◦)

Maximum relative
Mach number

1 23 112.91 0.00 60.58 1.15
2 35 97.38 10.96 57.67 1.02
3 43 84.10 28.52 50.89 0.86
4 55 71.65 27.60 51.36 0.80
5 65 61.83 27.60 51.36 0.76
6 75 53.86 27.60 51.36 0.72
7 85 47.31 27.60 51.36 0.68

Table 3 Characteristics of the vanes

Stage No. of Span at leading α at mid β at mid Maximum Absolute
blades edge (mm) span (◦) span (◦) Mach number

1 14 105.14 27.20 51.55 0.54
2 20 90.74 41.04 42.08 0.66
3 38 77.88 50.89 28.52 0.78
4 60 66.74 51.36 27.60 0.75
5 68 57.84 51.36 27.60 0.71
6 78 50.58 51.36 27.60 0.67
7 90 44.23 51.36 27.60 0.64

Fig. 1 Velocity triangles

are repeated. This is because the value of the degree reaction is 0.5 at mid span. It is
worth saying that in the present study the mean radius was taken as constant. So the
compressor has a tapered shape.

The main characteristics of the vanes are summarized in Table 3. In this case the
numbers of the vanes are even. This helps to prevent the common multiples numbers
in successive rows, leading to reduce the resonant forcing frequencies (Saravana-
muttoo et al. 2009). As in the case of the blades, we can see that beyond the third
stage, the flow and the blade angles are repeated.

The Fig. 1 shows the velocity triangle for the first and the last stages at mid
span. Here we can see that the fluid enters in the axial direction at the entry of the
compressor, and that the axial velocity is keeping constant through it. The triangles for
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Fig. 2 Meridional view of the compressor mesh

the seventh stage show that the diffusion of the relative velocity is the same for the
absolute velocity. This means that both the rotor and stator have an equal increase
in the pressure ratio of the stage. This effect is present when the value taken for the
degree reaction is 0.5.

4 Numerical Simulation

The simulation was carried out with the finite volume based Navier-Stokes solver
FineTM Turbo by NUMECA International. The turbulence model used is the one-
equation Spalart-Allmaras. The discretization was carried out with H-grids for the
inlet and outlet ducts, meanwhile O-grids were used for the blades and vanes.

The mesh of the compressor has a total of 1,790,448 points. The Fig. 2 shows the
mesh of the seven-stage compressor in a meridional view. The boundary conditions
imposed at the inlet were the total pressure, the total temperature and the axial flow.
At the outlet only the static temperature or the mass flow was set. These conditions
were imposed based in the computations realized by Braun (Braun and Seume 2006)
and Benini (Benini and Biollo 2007), which were similar to the one carried out in
the present investigation.

5 Results

Figure 3 compares the axial velocity profile considered in the design method and the
calculated one in the simulation, at the entry of the compressor. It Shows that the
profile obtained in the simulation is not constant along the radial direction. Instead,
it varies from root to tip. In around 20 % of the span it got the maximum value (161
m/s). On the other hand, near the tip and the root it shows a decrease below the design
value (150 m/s).

Figure 4 compares the blade angle profile obtained in the methodology and that
obtained in the simulation. As can be seen around the tip, the calculated values
showed an increase of the angle. However, from the 60 % to the 0 % of the span there
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Fig. 3 Axial velocity profile at the entry of the compressor

Fig. 4 Blade angle profile at the entry of the compressor

is a decrease. This happen because the axial velocity variation, directly influences
the incidence on the blade. When the axial velocity is reduced the blade angle is
increased, the opposite happens when the velocity is increased.

Figure 5 shows the variation on the axial velocity near the surfaces of the blades
and vanes in the seven-stage compressor. In the blades of the first two stages there is
an abrupt change in the velocity all along the span. After the second stage this abrupt
change is concentrated at hub of the blade. Meanwhile, on the vanes it becomes
considerable only after the second stage at the hub also. These abrupt variations are
generated because of the separation of the flow in the suction surface of the blades
and vanes of the compressor.

Figure 6 shows the flow separation on the suction surface of the first stage blade.
This occurs because decreasing the axial velocity leads to the blade angle to have
an excessive value. On the other hand, as the consideration of the equilibrium in the
radial direction is not satisfied, the fluid in the hub tends to migrate to the tip of the
blade. This causes a decrease in the compressor performance.

Figure 7 shows the flow separation in the blade row of the first stage. This can
be taken as a representation of the rotating stall. In this phenomenon, the separated
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Fig. 5 Contours of Axial Velocity

Fig. 6 Separated flow on the blade of the first stage

flow moves progressively in the direction of the rotation at about the half rotational
speed.

Figure 8 shows the performance map of the compressor. Here it can be seen that
the pressure radio of the design point is not obtained, showing a reduction of 23 %,
and that the operating range for the rotational speed design is very narrowed. This is
because the separated flow limits the useful operating range of the compressor.
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Fig. 7 Rotating stall
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Fig. 8 Performance map

6 Conclusions

The numerical simulation shows that the assumptions taken in the design method are
not satisfied. This leads to have a separated flow and a migration from the hub to the
tip of the blades and vanes. All this produces a reduction of 23 % in the pressure radio,
a poor performance and a narrowed operating range of the compressor, because the
losses are increased. In order to obtain a better performance this compressor must
be redesigned. Future researches will pursue this aim with the sweep of the blades
and vanes of the compressor.

Acknowledgments The authors would like to thank IPN, CONACYT and COMECYT for the
support of this investigation.
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The Drag Coefficient and the Navier-Stokes
Fractional Equation

J. R. Mercado-Escalante, P. Guido-Aldana, W. Ojeda-Bustamante
and J. Sánchez-Sesma

Abstract The purpose of this work is to relate the Navier-Stokes fractional equation
with the formulae for the drag coefficient, as are those of the Kármán-Schönherr,
Prandtl-Kármán, and Nikuradse. The thickness of the boundary layer induces a mul-
tifractal description and a generalization of Blasius experimental result for the friction
factor; whereas the dimensions are obtained by the approximations of Blasius and
Falkner-Skan of the pressure gradient. The number associated with the multifrac-
tal characteristics are adjusted, and formulae, under study, are inferred. They are
represented as a bi-multifractal, which provides an analytical way to find a critical
Reynold’s number, which draws the Kármán-Schönherr formula as appropriate to
limit the right of the viscous sublayer. The frictional force is generalized to repre-
sent the fractional derivative as a multifractal whose resolution is the reciprocal of
the Reynolds number and of appropriate dimension. Thus, the transformation of the
moldable wall shapes is described as the result of the action of the frictional force
on them.

1 Introduction

The purpose of this paper is to find the relationship between the formulae of Kármán-
Schönherr, Prandlt-Kármán and Nikuradse for the drag coefficient and Navier-Stokes
fractional equation.

There are ample experimental evidences supporting those formulae, but they
are not analytically connected with the partial differential equation that models the
motion of fluids. Our claim is that the classical form of the Navier-Stokes equation
can not provide that connection, but instead its fractional form is able to do it.
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The Navier-Stokes fractional equation was presented in references
(Mercado et al. 2009, 2010, 2012a, b). The essential approach is that the viscous
stresses produce a dispersive momentum flow that is described by a Darcy fractional
law, while the dispersive flux divergence coincides with the change of momentum,
according to Newton’s law.

Similar to the classic case, the substantial simplification of the Navier-Stokes
fractional equation, which leads to the boundary layer equations, is its relatively thin
thickness, which means that the main velocity set in the downstream direction, with
a great vertically velocity gradient compared with the longitudinal, which leads the
velocity to perform the non-slip condition at the channel bottom, and, conversely,
with the slight pressure gradients in the vertical-transverse direction compared with
the strong in the longitudinal (Landau and Lifshitz 1987).

In the Falkner-Skan approximation, equilibrium is established through a dynamic
triangle formed by the following forces: viscous, inertial and the longitudinal pressure
gradient, the last one is given by the free or outer velocity dependent of a power of
the longitudinal coordinate. In contrast, in the approximation of Blasius, the pressure
gradient is absent, due to the elimination of the power in the outer velocity.

We obtained the friction force and in consequence that the drag coefficient is repre-
sented by a power of the indexed Reynolds number. The power is determined by both
the spatial occupancy ratio and the power of the external velocity in a coupled way.

Alternatively and more generally, it is noted that the frictional force can be
described as a fractional derivative of a multifractal, where the order of the deriva-
tive depends on the spatial occupancy index, and the dimension of the multifractal
depends, in a coupled manner, of the power of the external velocity and the space
occupancy index.

The classical equation of Navier-Stokes lacks from a parameter that reflects the
fractal nature of the fluid motion. While fractional version expresses that charac-
ter through the order of the derivative that gives the viscous friction force. If you
want to see what is the value for that order, you can study the frictional force on a
large flat bottom, through the boundary layer equations. The results encompass the
experimental result of Blasius, which is interpreted as a multifractal. If this mul-
tifractal interpretation is maintained for the other formulae, we obtained that the
fractal dimensions do not exceed the value 1, and it is smaller as the motion is more
turbulent.Therefore, our claim is that the fractional Navier-Stokes equation applied
to the boundary layer, with a scaling that reflects the thinness of this layer, which is
interpreted as a multifractal, produces the formulas of Blasius, Kármán-Schönherr,
Prandtl-Kármán and Nikuradse, as ways to establish ties of dependence, with varying
degrees, between Euler and Reynolds numbers.

2 The Navier-Stokes Fractional Equation

The fluid motion is described from the Eurelian viewpoint, assuming a volume of
fluid limited by a boundary surface with its momentum per unit volume given by Ωv.
For the interaction by internal friction, the fractional gradient is expressed by ≤Δ

MΩv,
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wherein Ω is the mass density, v the velocity, Δ the spatial occupancy rate and M the
measure of mixture in the different spatial directions. The diffusivity of momentum
is the kinematic π−viscosity, so the Darcy’s momentum flow is qD . The time rate of
change of momentum is the negative divergence, or convergence, of the Darcy flow,
and M is chosen such that the flow be proportional to the negative of the fractional
Laplacian (Mercado et al. 2012a, b); we obtain (1) considering π = 1 + Δ,

qD = −δπ≤Δ
MΩv, d

dt Ωv = −≤ ·
(
−δπ≤Δ

MΩv
)

= −δπ (−γ)π/2 Ωv (1)

Pressure variations are incorporated to momentum change through the force provided
by the pressure gradient; composition of the viscous friction stress arises and so
the hydrostatic pressure which shapes the tensor T = δπ≤Δ

MΩv − pI resulting the
deformation law. Then an external potential force per unit volume of the type −≤Ωφ

is included and the assumption of fluid incompressibility is incorporated. It makes
explicit the material derivative which composes the local variation with the advective
one. The requirement of objectivity includes invariance under coordinate changes,
so modifying advective contribution and vorticity arises. Finally, the contribution of
vorticity is conceived as an external force that energizes the evolution of the velocity
field through its vorticity and that conflicts with the viscous force, while the third
term in (2), is interpreted as a restriction that along the current lines contains the
Bernoulli equation. The δπ coefficient is compared with the turbulent viscosity of
Boussinesq,

∂

∂t
v = −δπ (−γ)π/2 v + v × rotv − ≤

(
1

2
(v · v) + p

Ω
+ φ

)
(2)

The boundary layer equations are obtained from the Navier-Stokes fractional equa-
tion by simplifications that are induced from the premise of a relatively thin thickness.
Now the equation of the two-dimensional boundary layer is considered in its per-
manent or stationary form, together with the conservation of mass in the form of
non-divergence, as shown in equation (3), where the pressure gradient is given by
−∂x (p/Ω) = U d

dx U , U = u (x, y)|y∞→ , and U is the free velocity,

u∂x u + v∂yu = δπ∂π
y u − ∂x (p/Ω) , ∂x u + ∂yv = 0 (3)

The main velocity, downstream, is presented by way of the potential through λ (u, v)
function as u = ∂yλ, v = −∂xλ ; u, v are longitudinal and vertical components of
velocity respectively. In Blasius approach a balance between two forces is estab-
lished: the viscous force and the inertial force. In Falkner-Skan approximation is
present the longitudinal pressure gradient as the third input to equilibrium, allowing
that the free velocity depends on the longitudinal coordinate. Then the underpotential
function g (β) arises as a solution of the Blasius fractional or Falkner-Skan fractional
equation, β is auto-similar variable (Landau and Lifshitz 1987; White 2006).
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Stress is calculated by τxy = μπ∂
Δ
y ∂yλ (u, v), being μπ = Ωδπ and RlΔ = ulΔ/δπ

the indexed Reynolds number. Subsequently we determine the friction force per
binormal unit length as F f = 2

∫ l
0 τxydx . In the Falkner-Skan approximation it is

considered U = K xm , with m ∇= 0. The friction force becomes dimensionless and

the drag coefficient arises, C f = Cg,Δ,m
(
(U |l)−1) Δ

π (1+1/mΔ)
.

The exponent of the drag coefficient will be called the Blasius exponent θ (Δ, m) =
(Δ/π) (1 + 1/mΔ), but also in the Blasius approximation it is considered m = 0;
we integrate and the exponent obtained is θ (Δ, m = 0) = Δ/π, and the two can
come together in a single expression.The Blasius exponent, as well as by dimension
or decay must be θ ∼ 0, so that: either m > 0, that means a favourable pressure
gradient, or m ≤ −1/Δ, resulting in an adverse pressure gradient. In particular, the
condition given by Δ ∞ 0, or with m ≤ −1/Δ, will be called turbulent. Since
the vertical axis is noted that m = 1 horizontal line separating two intervals: m > 1
the range of the spectrum, decreasing and convex, and m < 1 the range increasing
and concave.

It is noted that the following representation is possible, θ = Δ (σ + 1/ (1 + Δ)),
because for σ > 0, there is a m > 0, given by m = 1/σΔ (1 + Δ), which allows such
representation, it is considered a generalization of Blasius experimental result. For
m = 0, there is a representation as Δ/ (1 + Δ), which also contains the experimental
result of Blasius for Δ = 1/3, and also the result for the laminar regime θ = 1/2 for
Δ = 1 (Mercado et al. 2012a, b). It is seen that the value of σ > 0 can become quite
large under the condition that m > 0 be sufficiently close to zero.

In Falkner-Skan approach, to define the similarity variable the next dilemma is
present: either m = 1 or Δ = 1, because they are the two options under which
the coefficients of the equation of the underpotential function are independent of x .
In the first option, the pressure variation is linear with the velocity as in the Hagen-
Poiseuille model. For the second, the exponent of Blasius is θ (1, m) = (m + 1) /2m,
and m is an arbitrary value and m ∇= 0, persevering the restriction: m > 0 or
m ≤ −1/Δ, which reduces to m ≤ −1. The first, is part of the flow against a wedge
angle (m/(m + 1)) π ∼ 0, with velocity lines converging and pressure decrease;
the second is associated with flows through a depression angle (m/(m + 1)) π ≤ 0,
clockwise, with divergent velocity lines or growth of pressure (White 2006; Rouse
1946). Furthermore, this exponent contains the experimental result of Blasius with
m = −2. Now the law of pressure variation with the velocity is turbulent, and
Chézy formula is exactly reproduced with m = −1. Moreover, in (4), it is possible
to describe the friction factor by fractional derivative of order γ = Δ2/ (1 + Δ),
as a multifractal transformation of dimension σΔ = 1/m (1 + Δ) in other with
dimensions θ ,

fΔ = 8C̃ (Δ) Dγ
x

(
1/RxΔ

)σ
, θ = Δ (1/mΔ (1 + Δ) + 1/ (1 + Δ)) (4)

The experimental results of the drag coefficient on a flat surface, have a first phase with
exponent 1/2, for low Reynolds numbers, thick or high resolution, then a transition
region with slight growth of the drag coefficient, a plateau and then a descent that
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approaches by an exponent of the type 1/5, for medium resolution, and then the
representation of Kármán-Schönherr (Rouse 1946).

The experimental result of Blasius is generalized and interpreted as a multifractal
taking the inverse of the Reynolds number 1/Re as resolution, under the condition
0 < 1/Re < 1, and the exponent of Blasius θ (Δ), as dimension or the spectrum of
singularities. This law can explain the phases of exponents 1/2 and 1/5, as described
in the previous paragraph and also the plateau even at the limit where the exponent
θ ∞ 0 tends to zero, which could be interpreted as fully developed turbulence, where
the participation of viscosity is removed through the annulment of the exponent
(Mercado et al. 2012a, b). In the four formulae, the characteristic is that the number
of features grows with friction force reduction.
Blasius. In the first formula, the friction factor is described as a multifractal, with

the dimension θ , varying with Δ, and being θ = θB = ln(8BΔ/ fΔ)
ln(Re)

, where 8BΔ/ fΔ is
the number of features.
Kármán-Schönherr. In the second one, the features are weakened from B/C f to
proportional to K exp

(
1/A

√
C f

)
, with two constants A andK , and dimension 1− θB .

Being A = 4.13 log e, and K B = 1, then, rebuilt Kármán-Schönherr formula or KS
as 1/

√
C f = 4.13 log10

(
ReC f

)
; or 1/

√
C f = 2AW

(√
Re/2A

)
, being Lambert W

function.
Alternatively, the Kármán-Shönherr formula corresponds to an approximation

establishing a weak dependence between Euler and Reynolds numbers given by
1/

√
C f ∈ A

(
1 − 1/B (Re)

1−θB
)
, with the particularity that between the stronger

the turbulence, the greater value of the exponent of the Reynolds number 1 − θB .
This exponent depends on both Δ and m, and m ∼ 1 restriction is required to ensure
the range increasing and concave.
Prandtl-Kármán. In the third one, it is assumed that we have a multifractal with
weakened features proportional to

(
P

√
fΔ

)
exp

(
(1/A)

((
1/

√
fΔ

) + D
))

, and 1−θB

dimension. Then, with A = 2 log e, D = 0.8 and P B = 1, the Prandtl-Kármán
formula is recovered 1/

√
f = 2 log10

(√
f Re

)−0.8, or 1/
√

f = AW
(
Re/AeD/A

)
.

Nikuradse. In the fourth one, the features of the Blasius law are weakened in the
form proportional to

(
NC f

)
exp

(
1/A

√
C f

)
, with dimension 1 − θB and N B = 1,

so you get 1/
√

C f = A ln (Re).
Therefore, the different formulae can be seen as consequences of the Navier-

Stokes fractional equation, with its reduction to the boundary layer, multifractal
interpretation, and the readjustment of its features or its related decays, hence growing
its number of features with the growth of the Reynolds number. You can then highlight
one bimultifractal (5), such that for relatively high Reynolds numbers, features are
proportional to (1/B) exp

(
1/A

√
C f

)
, with resolution 1/Re and 1 − θB dimensions,

while for low Reynolds numbers features are inversely proportional to the friction
factor: 8BΔ/ fΔ , the resolution also as 1/Re and dimensions as θB ,

NRe =
{

8BΔ/ fΔ Re ♦
(1/B) exp

(
1/A

√
C f

)
Re ↓ (5)
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3 Applications

3.1 Critical Reynolds

The change in the representation of the number of features of multifractals offers a
way to find an analytical critical Reynolds number that indicates the change from
laminar to turbulent regime or from the viscous sublayer to the mixture or transition
sublayer; which is defined by the law of change in pressure with the variation of the
velocity, and which results in a decrease of the dimension from θ = 1 to a lower value
θ < 1 (Sommerfeld 1950). For relatively low Reynolds numbers the behaviour is
given by Blasius law, while for relatively high, the Kármán-Schönherr formula could
be select, and the Reynolds number that makes the transition can be considered as the
critical Reynolds. Thus, θ = 1 is taken in Blasius and KS formulas, so that the critical
Reynolds number can be estimated by Rec = B (A ln B)2. Alternatively, using the
Lambert W function we can obtain Rec = 4A2 BW 2

(√
Rec/2A

)
. In particular, for

B = 64 and A = 4.13 log e, it is obtain Rec = 3561.1 that is of the same order of
magnitude as the experimental value estimated in 2000, where the value of both A
and B are experimentally determined (Rouse 1946).

Moreover, in the case of Nikuradse’s formula we obtain
(
1/

√
Re

)
ln

(
1/

√
Re

) =
−1/2A

√
B, which solution is explicitly expressed through Lambert W function

as Rec = 4A2 BW 2
(
−1/2A

√
B

)
; numerical evaluation with B = 64 and A =

4.13/ ln 10, produces Rec = 1.0749, whose order is outside of magnitude in com-
parison with 2000. Similarly for the KP formula an estimate of 0.86709 is also
obtained by means of the Lambert function. Therefore, it is concluded that the KS
formula, within the three is the best suitable to define the lower limit of the blending
or transition sublayer.

3.2 Bottom and Vortices

The vortices or coherent structures that form near the wall are the most significant flow
patterns of the boundary layer. In general, a coherent structure can be defined as a flow
pattern with a life time and spatial extent greater than the average of the turbulence
scales in a flow. In their research, noted the occurrence of this phenomenon, using
optical measurement techniques such as non-intrusive laser Doppler anemometry
and particle image velocimetry in channel flow with and without sediment transport.
The bed’s form causes a rupture of the developed boundary layer and a recirculation
downstream, whose main characteristic is the low velocity flow and vortex formation
that are released and finally entering to the high velocity flow, above the shear layer.
Kaftory states that three types of structures have been observed: low velocity swept
very close to the wall, horseshoe-shaped or hairpins vortices that appears at higher
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heights and fluid ejections from the bottom to the mean flow (known as bursting),
complemented with flow sweeps from the middle zone toward the wall region.

In the bottom shapes shows a characteristic spatial frequency, so that for Froude
numbers greater than 1 exhibits wave-like forms with symmetric slopes, while for
slopes less than 1 are displayed asymmetric and are called dunes. If you still have
Froude numbers much smaller than unity, but with less height, curls are called (Niño
1996). For example, the action of the wind on the dunes change their ways and carry
the sand.

Fragments resulting from the analysis of the Falkner-Skan classical equation,
have a wedge-shaped with positive angle or counterclockwise, which produces a
convergence of velocity lines and hence a decrease in pressure. Or else on the contrary,
there is a depressed positive or clockwise angle, which produces a divergence of the
velocity lines and therefore an increase in pressure. For the bed forms, a periodic
extension of the fragments is performed and is approximated by a Fourier series.

The rectangular wave of spatial period l and height h is represented by r (x) =(
4/π2

)
hl

∑→
n=1 sn (x), sn (x) = (1/2n − 1) sin (2n − 1) (π/ l) x . To do the graphi-

cal representations Lanczos filter are used; this type of filter regularizes the approx-
imation in the corners, due to the failure of convergence in them. So the filter
is introduced as sc(n (π/κ)) = (1/ (2n − 1) (π/2κ)) sin ((2n − 1) π/2κ) func-
tion, in particular κ = 50 is chosen. Regularized fragments are described by
r f (x) = (

4/π2
)

hl
∑→

n=1 sc (n (π/50)) sn (x), and its derivative fractional Weyl

type and order γ (m), is Dγ
x r f (x) = (

4/π2
)

hl
∑50

n=1 sc (n (π/50)) Dγ
x sn (x),

Dγ
x sn (x) = (1/2n − 1) ((2n − 1) (π/ l))γ sin ((2n − 1) (π/ l) x + (π/2) γ ). Such

fragments are represented by standardized period hl = π and 3π , are plotted by
fγ (x) = (1/2)

(
1 + Dγ

x r f (x)
)
, and illustrated for three values of γ . Thus, for

γ = 0 are rectangles of unit height, for γ = − 0.5 we get a shaped like shark fins,
and for γ = −1 a triangular wave train is obtained. The three figures (Fig. 1a–c) show
changes produced by the action of the fractional integral from rectangles, through fin
shapes, until the triangles, while the fractional derivative transformation performed
in reverse order.

With roughness representation by Fourier series, there are two lengths: the period
and the height of roughness and the ratio of the two lengths could be considered, l/h.
As result, l is relatively high with respect to h, or l/h >> 1, and is observed that
vortices are knotted and circling each fragment, extending to the next. The aspect
ratio is the ratio of the vortex size knot r0 with his thick a, and can be matched
with l/h, so l/h ∈ r0/a. These vortices are caused by roughness or detachment,
such as collar or collars types, and the horseshoes vortices are deformed and raised
by the current; they can reproduce and subsequently form knotted vortices that are
integrated into the external medium flow stream and feeding the layer cutting free
from the flow separation zone. To the other end, l is relatively low with respect to
h, i.e.: l/h << 1 and the above events have little space to develop so that the flow
behaves ground.
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(a) (b)

(c)

Fig. 1 Action of the friction on bottom shape. a γ = 0, b γ = −051020, c γ = −10000

4 Conclusions

When we studied the interaction of a fluid with a flat surface it could be established
that the frictional force, and therefore the drag coefficient, is characterized by a power
of the inverse of the indexed Reynolds number, power that we have called exponent of
Blasius. It presents a coupled dependence of two parameters, one as a manifestation
of the viscosity, and the other, as the pressure gradient.

Result is generalized by presenting the friction force as a fractional derivative.
This allows describing the change in the bed forms by the action of a fluid as a
fractional derivative on them.

Features are increased and multifractal structure is maintained so that it is possible
to obtain the formulas of Kármán-Schönherr, Prandtl-Kármán and Nikuradse for the
friction factor, for uniform surfaces and pipes, both smooth and rough.

Bi-multifractal description provides an analytical way to find the critical Reynolds
number, and it is observed that only the Kármán-Schönherr formula produces an
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estimated according to the order of magnitude of experimentally known results in
the change from the viscous sublayer to the mixed.
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Numerical Solution of the Swift–Hohenberg
Equation

S. Sánchez Pérez-Moreno, S. Ruiz Chavarría and G. Ruiz Chavarría

Abstract The Swift–Hohenberg equation accurately models the formation and
evolution of patterns in a wide range of systems. However, in the field of fluid
dynamics, two particular patterns arise during the Rayleigh-Bénard convection, rolls
and hexagons, and the formation of both has been simulated in this work. The Swift–
Hohenberg (S–H) equation is a nonlinear partial differential equation of fourth order,
and through an implicit finite differences method it has been numerically solved.
A set of snapshots of the evolution of these patterns is shown.

1 Introduction

Nonequilibrium physics typically studies the dynamics of systems driven far away
from thermal equilibrium, which inherently require nonlinear equations to be mod-
elled. Such systems may eventually reach a steady state as long as a net energy flux
through it is constant. Meanwhile, in this state of maximum entropy, spatio-temporal
patterns may arise as a result of self-organization, called dissipative structures
(Nicolis and Prigogine 1977).

One example of such a system is the well known Rayleigh-Bénard convection,
in which a thin layer of fluid is heated from below, such that above a critical tem-
perature of the lower plate convection rolls and hexagonal convection cells appear.
These patterns have been widely studied experimentally, theoretically and numeri-
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cally, making it one of the best understood processes in fluid dynamics (Cross and
Hohenberg 1993). The Swift–Hohenberg equation models, up to a very good approx-
imation, the formation and evolution of these patterns and will be further detailed in
the next section.

2 The Swift–Hohenberg Equation

The S–H equation was introduced phenomenologically by studying phase transitions
in the behaviour of the Rayleigh-Bénard convection, as an analogy to thermodynamic
systems (Swift and Hohenberg 1977), but soon after it revealed itself as a very
approximate model for nonlinear pattern formation. The importance of the S–H
equation relies on its simplicity to yield very much the same results as the Navier–
Stokes equations, which can be hard to solve both analytically and numerically. It
is worth mentioning it has been implemented in studies of a very different nature,
including but not limited to economy, biology, sociology, optics and of course fluid
dynamics (Cross and Greenside 2009).

The Swift–Hohenberg equation reads:

∂ψ

∂t
= εψ − (∇2 + 1)2ψ + gψ2 − ψ3, (1)

It is a nonlinear partial differential equation of fourth order, in which the order
parameter ψ is a real scalar field proportional to the vertical velocity of the fluid at
the plane z = L

2 , but it may also represent the temperature deviation from the linear
temperature profile between the lower and upper plates (Greenside and Cross 1985).
The parameter ε is the reduced Rayleigh number and is expressed as:

ε = Ra − Rac

Rac
(2)

where Rac is the critical Rayleigh number at which instability sets in and convection
begins. At last, the parameter g breaks the reflection symmetry so that the equation
is no longer invariant under a change of the sign of the field.

3 Numerical Method

Domain

The Swift–Hohenberg equation has been numerically solved in the square domain:⎧⎨
⎩

0 ≤ x ≤ L

0 ≤ y ≤ L ,

(3)
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where L is the length of both the height and width of the domain. This square has
been discretized by the two dimensional space grid:

⎧⎨
⎩

xi = i L
N , i = 0, 1, 2 . . . N − 1

y j = j L
N , j = 0, 1, 2 . . . N − 1.

(4)

In this case, the number of grid points was set to 100 per axis (N = 100), in order
to approximate the solution at 10,000 points within the domain.

On the other hand, the time parameter has been discretized by a temporal grid:

tn = Δtn, n = 0, 1, 2 . . . , (5)

where Δt is the size of the time step.
Along this section and the following, the notation ψn

i, j will be used as a short for
the function ψ evaluated at grid point x = iΔx, y = jΔy, where Δx and Δy are
the respective length intervals of the spatial grid, at time step t = n.

Discrete S–H Equation

In order to solve (1), the easiest approach was to reduce the fourth order differ-
ential equation into the following system of two coupled second order differential
equations:

φ = ∇2ψ

∂ψ

∂t
= −2φ − ∇2φ + (ε − 1)ψ + gψ2 − ψ3. (6)

The Finite Difference Method (FDM) was chosen to solve (6) to a second order of
accuracy. To begin with, the time derivative at time step t = n and at grid point (i, j)
was approximated by the following backward finite difference obtained through a
Taylor series expansion:

∂ψ

∂t
≈ 3ψn

i, j − 2ψn−1
i, j + ψn−2

i, j

2Δt
, (7)

from which it can be seen that the solution of ψi, j at time t = n depends of ψi, j at
the two previous time steps.

Secondly, the Laplacian operator found in (6) was approximated by the central
finite difference:

∇2ψ = ∂2ψ

∂x2 + ∂2ψ

∂y2 ≈ ψn
i−1, j − 2ψn

i, j + ψn
i+1, j

(Δx)2 + ψn
i, j−1 − 2ψn

i, j + ψn
i, j+1

(Δy)2 , (8)
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where it can be seen that to find the solution at every grid point, only four other
adjacent points are needed. If φ is substituted into (8) instead of ψ , one will obtain
the discretization of the second equation of (6). And finally, the non linear term was
approximated by:

gψ2 − ψ3 ≈ 2g(ψn−1
i, j )2 − 2(ψn−1

i, j )3 − g(ψn−2
i, j )2 + (ψn−2

i, j )3 (9)

which is known at time step t = n.

Boundary and Initial Conditions

For this simulation, an infinitely large domain was considered, in other words, peri-
odic boundaries were enforced. This can be mathematically expressed as:

ψ(x, y) = ψ(x ± mL , y ± mL), m = 0, 1, 2 . . . (10)

Initial conditions were set randomly so that −5 × 10−5 ≤ ψ t=0
i, j ≤ 5 × 10−5 for all i

and j . In order to trigger the instability, a small random perturbation was implemented
at all points at t = 1 in the form of:

ψ t=1
i, j = ψ t=0

i, j + δψ, −5 × 10−5 ≤ δψ ≤ 5 × 10−5 (11)

Iterative Method

Since the Swift–Hohenberg equation is a fourth order partial differential equation, an
implicit method was necessary to attain numerical stability regardless of the spatial
and temporal step sizes. A linear system of 10,000 equations and unknowns is so
obtained, and thus a successive over-relaxation (SOR) method is appropriate to find
its solutions.

Let us write ψn
i, j = F(ψn−1

i, j , ψn−2
i, j , ψn

i+1, j , ψ
n
i−1, j , ψ

n
i, j+1, ψ

n
i, j−1), so the

implementation of the latter results in:

(ψn
i, j )

k = (1 − w)(ψn
i, j )

k−1 + wF(ψn−1
i, j , ψn−2

i, j , ψn
i+1, j , ψ

n
i−1, j , ψ

n
i, j+1, ψ

n
i, j−1),

(12)
where k is the iteration step and 1 < w < 2 the relaxation factor.

The program was written in C, and run in an Intel Core 2 Duo processor at
2.40 GHz.
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Fig. 1 Evolution of a roll pattern with the following parameters: Δx = Δy = 0.9,Δt = 0.01,

g = 0.0, ε = 0.3, w = 1.3, k = 15. The value of parameter ψ is plotted at each grid point.
Brighter zones represent positive values of ψ , while darker zones represent negative values.
a Initial conditions at t = 0.01. b At t = 1.2 the instability sets in and self-organization
begins. c t = 6. d t = 20. e t = 60. f At t = 198 the system barely evolves any more, for a
steady-state has been reached

4 Results

Rolls

Figures 1, 2 and 3 show the formation and evolution of patterns that arise in the
Rayleigh-Bénard convection, when simulated with the Swift–Hohenberg equation.

If the S–H equation is solved with the parameter g = 0, then no second order
non-linearities appear and the system achieves an equilibrium state while forming
rolls (see Fig. 1).

Furthermore, it can be seen in Fig. 2 that the system indeed complies with the
periodic boundary conditions.

Since the algorithm takes a different seed to output random numbers at every
execution, different position of the rolls appear. Three more examples of these roll
patterns are shown in Fig. 3.

Hexagons

By setting g = 1.0 and ε = 0.1 the formation of hexagonal patterns can be obtained.
In Fig. 4 one can witness the dynamics of this particular pattern at different time
intervals.
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Fig. 2 Periodicity of the roll pattern from Fig. 1

Fig. 3 Different patterns formed following different initial random conditions. The following
parameters were set: Δx = Δy = 0.9,Δt = 0.01, g = 0.0, ε = 0.3, w = 1.3, k = 15

5 Discussion

In Figs. 1 and 3 one can see locally periodic rolls, whose wavelength is always
approximate to L/13, where L is the length of each side of the domain. That results
from using the same parameters at every execution. The spatial resolution allows
for 7.7 length intervals per wavelength unit, which is enough to have a clear view
of the pattern formation. The time resolution is also small enough to see the onset
of the instability, considering also that this time step was the maximum possible to
achieve numerical stability. Grain boundaries appear as the consequence of patterns
following vectors with different wave number, which make the pattern to be non
uniform globally.

In Fig. 4 it was easy to follow the dynamics of the hexagonal instability. One can
see that at the beginning, the pattern evolves quite similarly to that of rolls, though
at a certain point lines break up giving way to single droplets that take hexagonal
symmetry.
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(a)

(d) (e) (f)

(b) (c)

Fig. 4 Evolution of a hexagonal pattern with the following parameters set: Δx = Δy = 0.9,Δt =
0.01, g = 1.0, ε = 0.1, w = 1.3, k = 15. The value of parameter ψ is plotted at each grid point.
Brighter zones represent positive values of ψ , while darker zones represent negative values. Initial
conditions have been omitted since Fig. 1a is very similar. a Instability sets in at t = 1.2 and self-
organization begins. b Certain structures may be seen at t = 6. c At t = 100 rolls and isolated dots
coexist. d Rolls are broken into single droplets at t = 108. e By t = 120 a clear hexagonal pattern
can already be seen. f Equilibrium is reached and hexagons move just slightly from t = 198 on

6 Conclusion

It has been proved that an implicit finite difference method is a precise computational
algorithm to solve the Swift-Hohenberg Equation. Converting the equation into a
system of two coupled equations was a crucial step towards finding a stable and
steady-state solution; a discretization of the fourth order partial differential equation
made it harder to code and numerically unstable. It is also highly recommended to
use an implicit integration scheme, so as to not bound the time step by the fourth
power of the spatial step.

Regarding these results, it is possible to confirm the qualitative similarity of the
roll patterns obtained with those found in nature, such as the convection of Rayleigh-
Bénard or the skin of zebras. On the other hand, the hexagonal pattern clearly
resembles the convection cells found in dry lakes or the skin of certain animals
like the jaguar. Pattern formation is the result of self-organization systems and all
these are good examples of this phenomenon, in spite of the different mechanisms
that trigger and amplify the instability.

In the field of fluid dynamics it is convenient to use this equation when speaking
of pattern formation in Rayleigh-Bénard convection, instead of solving the more
difficult Navier–Stokes equations. This work can be modified to study the dynamics
of pattern formation in different parametric domains of thermal convection (e.g.
annulus, Sensoy and Greenside 2001) and with non random initial conditions.
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Experiments of Mercury Jets Impinging
on Water

F. Wong, A. Medina, A. López Villa and G. J. Gutiérrez

Abstract In this work we have analyzed experimentally the impact of mercury jets
on water surfaces, i.e., between liquids having a high contrast in their densities and
their surface tensions. Mercury jets can have different lengths but maintained the
condition of equal diameter. Measurements of the length of penetration of the jets
under normal and oblique impact on water at room and low temperatures reveal
interesting physical facts.

1 Introduction

Here we analyze experimentally the problem of the impact of mercury jets impinging
on water surfaces which are sufficiently away from the bottom so that its presence
is not important for the dynamics of penetration.
The motivation for these studies arises because in the theoretical analysis of the
dynamics of high speed impact between a long projectile (solid bar) and a thick solid
target is assumed that, because the nature of the impact, inviscids liquids of different
densities are involved (Birkhoff et al. 1948; Allen and Rogers 1961; Zukas et al.
1982; Zukas 1990). The latter means that in such formulation it is possible to use
the Bernoulli equation for describing approximately the penetration phenomena (or
rebound) for normal or oblique impact.
Far as we know, in literature there are few studies in which analyzes in detail
the impact between mercury and water, between two liquids of low viscosity and
high contrast between their densities and surface tensions. The fact that liquids are
inviscids allows the use of Bernoulli equation, the high contrast between densities is
necessary because usually the bullets are made with a high density so that they can
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pierce the target, and the condition of high surface tension is to maintain the integrity
of the jet in the air (where it was fired), as well as it enters in water.
In experiments the length of penetration of a jet of initial length L is P, the velocity
of impact is V and the velocity in water is U. The density of the projectile is ρp and it
impinges on a semi-infinite target of density ρT. To describe the main experimental
facts we calculate, for each test, the Froude, Weber and Reynolds number as Kersten
et al. (2003) did to see how their variations determinate the different profiles and
penetration lengths.

Fr = V 2

gd
; W e = ρdV 2

σ
; Re = ρdV

μ

Here d is the diameter of the capillary tube from the jet emerges, g is the acceleration
of gravity, ρ is the mercury density, σ is the interfacial surface tension and μ is the
dynamic viscosity.

2 Experimental Set-Up

In experiments we used a capillary glass-tube 2.5 mm inner diameter, a reservoir of
6 × 16 × 30 cm with water to a level of 13 cm, mercury (ρ = 13, 600 kg/m3), a
thermal bath PHYSICA, a fast camera “100K REDLAKE HG MotionXtra” and a
500 W lamp for illumination. In addition to the experimental set-up, it was necessary
an image management program to measure the progress of the mercury jet.

3 Experiments

The experiments presented here are intended to demonstrate the hydrodynamic
hypothesis used to describe the high-speed impact between solids, describe the phys-
ical facts developed between mercury jets impinging water in a container.
The variances between each one of them will be explained at each point (Fig. 1).

Normal Impact at Constant Target Temperature, the Role of L

Here we demonstrated that penetration length of a jet of high density depends mainly
of the ratio between target and projectile.

The series of photographs presented below shows the importance of the length of
the projectile (in this case the jet of mercury on water has a fixed densities ratio) to
achieve a penetration length depending on the length, L, of the mercury jet (Fig. 2).
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Fig. 1 Schematic of the jet: a jet impinging in a normal direction and b oblique jet

Fig. 2 Images of the initial (upper) and final shapes (lower) of different mercury jets impinging
on water. The details of each jet are the next ones: from left to right, 2 cm (Fr: 73.72, We: 150.84
and Re: 29,324), 2.5 cm (Fr: 91.85, We: 188 and Re: 32,734) y 3 cm (Fr: 80, We: 162.6 and Re:
30,450)

The following plots describe the penetration length, velocity and acceleration of
different lengths of mercury jets once they impact water. We observed the profile
they draws on the water and we established a criteria to stop the experiments (the
same to each experiment) (Figs. 3 and 4).
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Fig. 3 Plot at the left hand side(lhs) shows the importance of L (jet length) to ensure a deeper
penetration in the same target, plot at the right hand side (rhs) shows the velocity variations once
the mercury jet is in water
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Fig. 4 Once the mercury jet penetrates in the water, its changes of acceleration are oscillatories

Normal Impact with Different Target Temperature, the Role of ρp/ρt.

Here it is demonstrated that penetration length of a jet of a high density fluid depends
mainly of the ratio of densities of the target and projectile (Figs. 5, 6 and 7).

Oblique Mercury Jet Impact, the Role of θ , the Angle of Incidence

In cases of oblique impact of mercury jets we study the effect of the entry angle. We
found that it directly affects the projectile length penetration; In Fig. 8 we analyze
the input cases 30◦, 45◦ and 60◦.
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Fig. 5 In these pictures are shown the initial (upper) and final shapes (lower) of different mercury
jets impinging on water at 10 ◦C temperature. The details of each jet are the next: from left to right,
2 cm (Fr: 94.19, We: 192.73 and Re: 33,148), 2.5 cm (Fr: 111.75, We: 228.67, and Re: 36 106) and
3 cm (Fr: 106, We: 216.7 and Re: 35,150)
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Fig. 6 Plot of the LHS shows that if we decrease the temperature of the water, it tends to increase
its density, so that the penetration of the jet will decrease, and plot on the RHS shows the velocity
variations once the mercury jet is in water

4 Conclusions

Normal Impinging

Summary of the experiments made:

1. Under normal impact, and with an similar impact velocity (V), the mercury jet
length is the main variable to ensure a deeper pierce if we got a bigger L.
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Fig. 7 Evolution of the jet acceleration different temperatures of water

Fig. 8 Effect of the entrance angle, θ , of a 2cm length mercury jet, at room temperature. Details of
each jet are the following: from left to right, 2cm @ 30◦ (Fr: 178.8, We: 366 and Re: 45,675), 2 cm
@ 45◦ (Fr: 61.5, We: 125.7, and Re: 26,776) y 2 cm @ 60◦ (Fr: 30.5, We: 62.4 and Re: 18,859)

2. The temperature effect could be observed, and with similar lengths of jets, that
variation (although small) of the density of water due to its temperature (10 and
5 ◦C) the ratio (U/V) is much greater than when mercury jet entries at room
temperature (25 ◦C).
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Fig. 9 LHS: Plot of the penetration length as a function of θ , RHS: plot of the penetration length
as a function of time for several angles
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Fig. 10 LHS: Velocity variations of a 3cm mercury jet impinging on water at different entrance
angles, RHS: variations of accelerations in water

Oblique Impinging

It was determined that the mercury jet penetration is strongly affected depending on
the angle at which it enters. Plots of these events determine that the greater angle of
incidence the lower penetration is obtained by a column of the same length on water
at the same temperature.

Taking into account the above, we can justify the following:

1. Compared to the normal impacts to the surface, in the oblique impact, indepen-
dent of the ratio (U/ V), the penetration length is (according the experiments)
always smaller when the angle of incidence increases with respect to the vertical
(Figs. 9 and 10).
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Velocity Estimation of a Vertically Falling
Soap Film

Salvador Galindo-Uribarri, María Dolores Duran-García
and Jaime Klapp-Escribano

Abstract The continuously soap film tunnel is a device suitable for experimental
studies of the hydrodynamic evaluation of cross sections. The velocity of the undis-
turbed film is among the important flow parameters of these particular devices. This
paper suggests an indirect method for quickly estimating the velocity of vertically
falling soap films.

1 Introduction

In recent years Soap film tunnels have gained a more widespread usage in the exper-
imental study of fluids (Bandi et al. 2013). The concept of using flowing soap film in
experimental work has been around for some decades (Gharib and Derango 1989).
These tunnels are employed primarily for hydrodynamic evaluation of cross sections.
They have the advantage of attaining low flow speeds allowing a more detailed obser-
vation and associated photographic and video recording than has been achieved in
wind tunnels. In addition, experimental information useful for solving hydrodynamic
problems may be obtained when the flow characteristics of these particular devices
are known. Among them the film speed and its thickness are the most important
parameters to be determined of the flowing film. This paper suggests an inexpensive
alternative method for quickly estimating the speed of such films.
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Fig. 1 Diagram of the
vertically flowing soap film
apparatus. The terminology
used is as follows: A Upper
supply reservoir, B metering
valve, C injection nozzle,
D guide wires, E pull lines,
F test section, G tension-
ing weight, and H collecting
deposit

We begin this paper, by describing the apparatus we used to create robust flowing
films and then we briefly discuss some of the available techniques for measuring
speeds. Next we explain the foundations of our speed estimation method and finally
we show our results.

2 The Experimental Set-up

The apparatus used is a fairly conventional but efficient one based on a previous
design by Rutgers et al. (Rutgers et al. 2001). The device is schematically shown in
Fig. 1. Letters used in the following description refer to those in Fig. 1.

The arrangement consists of a top reservoir (A) of a constant level soap solution.
The solution is gravity driven downwards into a plastic metering valve (B) that
regulates the flow rate into a nozzle (C). Inside the nozzle there is a pair of nylon
fishing lines serving as guide wires once they spread out (D). At this stage a soap
film is formed. To branch out the guide wires, two pairs of thinner nylon pull lines,
separated at a certain distance, are attached to each of the guide wires (E), as shown in
Fig. 1. The pull lines are kept in tension to hold the guide lines parallel to each other.
In this way a rectangular “test” section is formed (F). In this section the fluid reaches
its speed due to the balance between the gravity pull and air drag resistance. This
terminal speed depends on the fluid injection rate which is regulated by the opening
of the metering valve (B). Past the test section, the distance between the guide wires
reduces until both wires contact each other at the bottom of the instrument. Wires
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remain tensioned by a hanging weight (G). At the contact point of the guide wires,
the soap film ruptures and the fluid is collected at a bottom reservoir (H).

3 Velocity Measurement Techniques

As already stated, it is very important to know the velocity of the soap film at the
test section. There are several methods that can be employed to measure the film
velocity, namely:

3.1 Laser Doppler Velocimetry (LDV)

The laser Doppler velocimeter sends a monochromatic laser beam toward the target
and collects the reflected radiation by seeded particles within the flow. These particles
will reflect light with a Doppler shift corresponding to their velocities. A major
disadvantage, apart from the high cost of the equipment, is that the fluid needs to be
seeded (Durst et al. 1981).

3.2 Hot Wire Anemometry

This instrument uses a very fine wire heated up to some temperature above the
ambient. The wire is introduced into the fluid to be measured. The flow past the wire
cools the wire changing its electrical resistance. To determine the velocity of the
fluid, the calibration between the resistance of the wire and the flow velocity must
be known beforehand. This implies that a second method of velocity measurement
must be employed to obtain the calibration.

3.3 Fiber Velocimeter

The tip of an optical fiber is plunged through the flowing soap film. Due to the
drag force of the surrounding fluid, the tip will experience a small deflection. The
resulting deflection can be measured by a position-sensitive detector when a laser
light is coupled to the fiber from the other end. The deflection is related to the fluid
velocity. A disadvantage is that the inserted tip may have a perturbing effect on the
flow (Kellay et al. 1995).



428 S. Galindo-Uribarri et al.

Fig. 2 Diagram showing the
distance S and the point p
where the stream lines that
limit the wake region join
together

3.4 Particle Imaging Velocimetry (PIV)

PIV as LDV is another example of a tracer method. The basic idea is very straight-
forward. In simple words two pictures are taken of a large number of particles with
a known time interval between exposures and the distance traveled by each particle
during that time interval is measured. One difficulty in applying this technique to soap
films is that the films undulate. This can be suppressed by enclosing the soap film
into two parallel glass plates, each on each side of the film. This PIV is ideally suited
for measuring soap film velocity, however the apparatus is relatively high-priced and
also image treatment software is needed (Rivera et al. 1998).

4 Outline of an Alternative Method

We have developed an alternative method to those described above for estimating the
soap film velocity. The method indirectly estimates the falling speed of the soap film
by comparing a feature that appears in photos of the soap flow pattern with reliable
computer calculations. The procedure involves the insertion of a small circular cylin-
der of known diameter through the test area of the soap film. By photographically
recording the flow pattern that sets up in the soap film following the insertion, we can
measure the distance “S” from the edge of the circular cross section of the cylinder
to the point “p” where the stream lines—that limit the wake region—join together
(see Fig. 2). The position of p depends among other factors on the flow speed.

In particular this point p (shown in Fig. 2) corresponds to the place along the
horizontal symmetry axis where the flow is no longer turbulent and consequently
the angular component of the velocity at that point becomes null. Given that it has
been well established that computer simulations adequately predict the simple case
of a flow past a circular cylinder, it follows then that we can compute a graph of the
distance S as function of the velocity (v∞) of the undisturbed soap film. Hence, a
simple comparison of the experimentally measured distance S to the calculated value
of S versus v∞ graph, leads us to a straightforward estimation of the required value
of the undisturbed flow velocity v∞.
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Fig. 3 Grid display showing the origin of coordinates

Fig. 4 Example of a fluent display showing the contours of velocity for a small cylinder

5 Details of the Alternative Method

Computer calculations can be performed by using one of the several available com-
mercial computational fluid dynamics codes. We have chosen to simulate the flow
past the cylinder the FluentTM 6.3 code, developed and marketed by Fluent Inc.,
(Fluent 2011). Our choice is based on reports asserting that Fluent is able to accurately
simulate the fluid behavior around geometrically simple and complicated shapes over
a large range of Reynolds numbers (Jones and Clarke 2008). The Fluent code solves
the mass, momentum and energy conservation equations using a cell-centered finite-
volume method. First the fluid domain is divided into a number of discrete control
cells using a pre-processor code which creates a computational mesh on which the
equations can be solved. The Fluent code includes the preprocessor GambitTM for
mesh generation. The latter software allows the use of several types of computational
cells including triangular, quadrilateral, hexahedral, tetrahedral, pyramidal, prismatic
and hybrid meshes. Figure 3 shows the mesh we have used for computing the flow
past a circular cylinder. For our purposes the origin of coordinates is at the center of
the circular section of the cylinder.

Once the fluid domain has been meshed, the code applies the governing equations
(in integral form) to each discrete control cell. These are a set of non-linear algebraic
equations for the discrete dependent variables. Fluent then offers the user a number
of choices for the algorithm used to solve these equations, including coupled explicit,
coupled implicit, and segregated solvers. In the calculations reported here only the
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Fig. 5 Example of the angular velocity component of the film along the x-axis

segregated solver has been used. In this approach the governing equations are solved
sequentially. Since these equations are non-linear they are first linearized using an
implicit method. This produces a scalar system of equations containing only one
equation per computational cell per degree of freedom. A point implicit (Gauss-
Siedel) linear equation solver is then used in conjunction with an algebraic multi-grid
method to solve the resultant scalar system of equations for the dependent variable
in each cell. Since the equations are non-linear several iterations of the solution
loop must be performed before a converged solution is obtained. Figure 4 shows an
example of the velocity contours produced by the code.

6 Procedure

Using the mentioned approach we entered the appropriate input values into the code.
These are: the cylinder diameter, fluid density ρ, viscosity μ, a trial value for v∞,
the velocity at infinity and the pressure at infinity p∞ , which is considered to have
the atmospheric value. Several runs were performed changing each time the value
of v∞. Every time that the value for v∞ is changed, we obtained a resultant value
for p, being the latter the point where the wake region ends (see Fig. 2) and thus the
distance d is found. To obtain p we refer the reader to Fig. 5. This figure shows the
dependence of the angular component the soap film velocity along the line passing
through the cylinder center and parallel to the original flow direction (i.e. the x-axis
as defined in Fig. 3). As stated before, the point p—where the flow is no longer
turbulent—corresponds to a null angular velocity. The intersection of the horizontal
and vertical lines shown in Fig. 5, marks point p and it’s x-coordinate minus the
cylinder radius, indicates the value of distance S.
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Fig. 6 Example of a graph of the velocity v∞ versus distance S, for a cylinder of 1 cm diameter

Fig. 7 Snapshot of a small cylinder (1 cm diameter) placed in the soap film. The arrow shows the
distance S

By repeating the same procedure several times for different values of v∞, we get
a set of pairs of values (S and v∞) and with them a graph of d versus v∞ is drawn.
This graph serves as a calibration curve (Fig. 6).

7 Experimental Details

To make the liquid for the soap film, we used different mixtures finding the
optimum—for stability and durability—to be that composed of: 90 % distilled water
and 10 % surfactant. The latter prepared with sodium alkyl sulfate, sodium alkyl
ethoxy sulfate and amine oxide. The measured characteristics of this liquid are: for
its density 8.75 × 10−4 kg/m3 and for its dynamic viscosity 2.56 × 10−3 kg/ms.

Finally, the last step requires taking a photograph of the flow past the cylinder (see
Fig. 7). A comparison of the distance S measured in the photo with the calibration
curve yields the desired value of v∞, i.e. the velocity of the undisturbed soap film.
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To test the consistency of our procedure, we made use of three cylinders (diameters
1, 2 and 2.5 cm.) and the soap solution described above. The cylinders were carefully
inserted through the film one each time, and a snapshot was taken. Then the distance
S was measured for each cylinder and compared to the corresponding velocity in the
v∞ versus S graph.

The values obtained for velocity v∞ in the tests of cylinders of diameters 1, 2 and
2.5 cm, for our experimental set up, were respectively: 5.3, 6.2 and 4.8 cm/s. This
gives an average of 5.4 ± 0.8 cm/s were we have taken the error to be the difference
between the average value and the farthermost experimental value ( 6.2 cm/s in this
case). From this consideration, we estimate that our method can estimate veloci-
ties with an inaccuracy in the order of 15 %. For better results PIV techniques are
recommended.

8 Conclusions

We have presented a simple way of estimating the velocity magnitude of free falling
soap films. Of course in some situations our procedure does not substitute accurate
methods such as PIV measurements. In addition we have presented in this paper,
a summary of the basic design and construct of a soap film tunnel, together with a
brief appraisal of the techniques used to measure the velocity of falling soap films.
Although the soap tunnel visualization is a rather simple technique, its use in low
budget laboratories around the world has a place as a very useful technique in the
study of fluid dynamics and objects in motion.

Acknowledgments Work partially supported by ABACUS, CONACyT grant EDOMEX-2011-
C01-165873.
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Designing Biodegradable Surfactants
and Effective Biomolecules with Dissipative
Particle Dynamics

Armando Gama Goicochea

Abstract The design of a biodegradable, environmentally friendly surfactant is
carried out, taking the structure of a known surfactant that lacks these qualities
as the starting point, using mesoscopic computer simulations. The newly designed
surfactant is found to perform at least as well as its predecessor, without the latter’s
inimical characteristics. In the second part of this work, a comparative study of model
proteins with different amino acid sequence interacting with surfaces is undertaken.
The results show that, all other aspects being equal, this sequence is the key factor
determining the optimal activity of the proteins near surfaces. These conclusions are
found to be in agreement with recent experiments from the literature.

1 Introduction

Amphiphilic molecules such as surfactants, polymers and proteins are very impor-
tant in biological processes such as drug delivery, adsorption on living tissue, and
molecular association (Jönsson et al. 1998). Although the basic interactions between
the various molecules are often well known (van der Waals, electrostatic), the com-
plex interplay that emerges from the many—body manifestations of these forces
with the specific structures of the amphiphilic molecules is not. Detailed knowl-
edge of how these interactions play in complex fluids composed of those molecules,
biological membranes and water is not easily accessible from a theoretical point of
view because it represents a scenario with vastly different length and time scales
(Israelachvili 2011). Fortunately, the recent advances in the speed of microproces-
sors have made it possible to solve computer models of biologically relevant systems
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in reasonable times, thus providing important information to understand, improve
and design new biomolecules tailored to solve specific needs.

The work presented here reports the importance of the structure of biomolecules
in their performance in environments of current interest, by means of mesoscopic,
dissipative particle dynamics (DPD) computer simulations. The first part is devoted to
showing how an environmentally friendly non ionic surfactant was designed starting
from one that was not, without detriment to its performance. The prediction of the
thermodynamic properties of the new surfactant led to the conclusion that they were
at least of equal quality as those of its predecessor, with the structure of the surfactants
playing the major role. In the second part, I show how a model protein with different
amino acid sequence can lead to entirely different thermodynamic conditions when
placed near a lipid membrane, which defines a criterion for choosing the best one
before synthesizing one in laboratory. The underlying thesis of this contribution is
that, all things being equal, the structure of the molecules defines their function in a
complex biological environment.

The rest of this chapter is organized as follows. In Sect. 2 I introduce the basics
of the DPD model and simulation details. The Sect. 3 is devoted to the presentation
of a newly designed, environmentally friendly and biodegradable surfactant and the
comparison of its performance to a commercially available (not environmentally
friendly), similar surfactant. Section 4 is dedicated to the study of the influence that
the amino acid sequence has on the thermodynamic behaviour of model proteins
interacting with biologically relevant surfaces. The conclusions are drawn in Sect. 5.

2 The DPD Model

Atomistically detailed computer simulations (Allen and Tildesley 1987) have proved
to be very successful, but in order to achieve scales comparable to those accessible
to experiments they require considerable computational resources. When modelling
large molecules and long time scales as it is befitting in biological systems, one needs
tools that go beyond the atomistic regime, and DPD (Hoogerbrugge and Koelman
1992) is one of them. The reason relies on the fact that DPD involves short—range,
linearly decaying forces which can be integrated using a time step that is at least
three orders of magnitude larger than that used in microscopic simulations, allowing
the study of phenomena at the mesoscopic scale.

The basic structure of DPD consists of three forces, conservative FC
i j , dissipative

FD
i j and random FR

i j . All forces between particles i and j have simple spatial depen-
dences and vanish beyond a finite cutoff radius RC , which represents the intrinsic
length scale of the DPD model and it is usually chosen as the reduced unit of length,
RC = 1. Their functional expressions are:

FC
i j = ai j

(
1 − ri j/RC

)
êij (1)
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FD
i j = −Ω

(
1 − ri j/RC

)2 [
êij · vij

]
êij (2)

FR
i j = Δ

(
1 − ri j/RC

)
êijπij. (3)

In the expressions above, ri j = ri − r j is the relative position vector, is the unit
vector in the direction of ri j , and vi j = vi − v j is the relative velocity, with ri , vi the
position and velocity of particle i, respectively. The variable πi j is generated randomly
between 0 and 1 with a Gaussian distribution of unit variance; ai j , Ω and Δ are the
strength of the conservative, dissipative and random forces, respectively; all forces
are zero for ri j > RC . All beads are the same size, but the difference between beads
of different chemical nature is defined by the constant ai j , and all thermodynamic
properties are dependent on it. The strengths of the random and dissipative forces
are related as follows:

Δ 2

2Ω
= kB T (4)

which represents the fulfilment of the fluctuation—dissipation theorem for DPD and
it is one of the defining qualities of the method. Another key feature is that the
forces in Eqs. (1–3) are pairwise additive, therefore local and global momentum is
conserved, which in turn means that all hydrodynamic modes present in the fluid shall
be preserved. The conservative force parameter for particles of the same type, aii ,
is given by aii = [(δ−1 Nm − 1)/2γφ]kB T , where Nm is the coarse-graining degree
(number of water molecules grouped in a DPD particle), γ is a numerical constant
equal to 0.101, φ is the DPD number density, δ−1 is the inverse compressibility of
the water at room temperature. I choose a coarse-graining degree equal to 3 water
molecules in a DPD particle and used the dimensionless water compressibility at
standard conditions, δ−1 ≤ 16, so that the parameter above is ai j = 78.3. The
parameter for different types of particles, ai j , is calculated from its Flory-Huggins
coefficient χi j using the relation ai j = aii + 3.27χi j . For further details, see (Groot
and Warren 1997). The DPD method has enjoyed considerable success over a wide
range of applications, including biological systems. Some of the most recent ones
have been reviewed extensively by (Murtola et al. 2009).

3 Modelling of a Biodegradable Surfactant

The ecological impact of surfactants has become increasingly important in most con-
temporary formulations. The rate at which surfactants will biodegrade at some sewer
plant, determines to a large extent the preference for one or another surfactant. Some
of the aspects that are relevant when monitoring surfactants environmental impact are
aquatic toxicity in fish mainly; bioaccumulation resulting from the built up of organic
compounds in fish also, and biodegradability. The latter results typically from a series
of enzymatic reactions that break down the original composition of the surfactant
and turn it into a mix of water, oxides and other products (Jönsson et al. 1998).
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CH3 (CH2CH2)4-C6 H4-O(CH 2 CH2 O)10 H

Fig. 1 Chemical structure of the surfactant modelled in this work. It is a nonylphenol ethoxylate
with 10 moles of ethylene oxide

Table 1 Conservative DPD interaction parameters (ai j ) used in the simulations of adsorption of
NP10. The numbers identify each type of particle in the simulations, starting with water (1), and
the surfactant DPD particles defined in Fig. 2: C (2), D (3), E (4), F (5), G (6) and H (7). The last
column lists the interaction (aiw) of each type of DPD particle with the surfaces, see Eq. 5

ai j 1 2 3 4 5 6 7 aiw

1 78.3 39.15 39.15 39.15 155 171.8 167.5 31.2
2 78.3 79.3 86.3 79 81.3 80.5 31.5
3 78.3 92.9 78.3 78.8 78.6 31.5
4 78.3 91.5 99 97 31.5
5 78.3 79.1 78.8 17.5
6 78.3 78.4 21
7 78.3 21

Among the most frequently used surfactants in modern day applications are
the non ionic, nonylphenol ethoxylates which are used in emulsion polymerization
processes, as detergents and pesticides to name a few. In this section I shall be pri-
marily interested in a particular example of this class of surfactants, whose structure
is shown in Fig. 1.

Surfactants of the type shown in Fig. 1 are useful for many applications but in
recent years their use has been considered somewhat deleterious for the environment
due to the fact that a linear molecule, such as the one shown in Fig. 1, is easily
biodegradable. Under typical circumstances this would be a favourable aspect, except
for the fact that the surfactant shown in the figure above in what follows will be called
NP10 (meaning nonylphenol with 10 moles of ethylene oxide), contains a benzene
ring in its structure. The release of free benzene may lead to the disruption of the
balance of hormones in fish and other organisms (Boogaard and van Sittert (1995)),
although it appears to be a not too strong effect. Nevertheless, this is an aspect that
deserves attention and as such, in this section I shall study the adsorption properties
of NP10 in a model biological environment.

To proceed, the first step is to map the structure of NP10 shown in Fig. 1 to DPD
beads. Then, a model for the adsorbing surfaces must be introduced. Following the
standard procedure (Groot and Warren 1997) for a coarse graining degree equal
to 3 water molecules per DPD bead, one obtains the coarse—graining mapping of
surfactant NP10 as shown in Fig. 2. The matrix of conservative interaction parameters
ai j (see Eq. 1) obtained after applying such procedure is presented in Table 1, where
the interaction parameters of each DPD particle of the NP10 surfactant (shown in
Fig. 2) with a model biological membrane, aiw, are listed as well.

To model a soft biological membrane on which NP10 will adsorb, the following
short range, effective force is added:
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Fig. 2 DPD mapping of the surfactant. Each bead represents a group of atoms. The top part of the
figure shows the specific atomic grouping associated with each DPD bead shown in the bottom part
of this figure

Fiw (zi ) = aiw (1 − zi/RC ) êk. (5)

In Eq. 5, the force between a particle i (either water or the NP10 surfactant) and
the wall representing a smooth biomembrane placed parallel to the XY—plane, at
the ends of the simulation box in the z—direction, is shown to depend only on the
component of such particle’s position along the Z-axis. The wall interaction constant
aiw, whose values for the various DPD particles in the simulation box have been
listed in Table 1, were obtained following the same procedure as that used for the
fluid’s particle—particle interactions. The symbol êk represents the unit vector in the
direction perpendicular to the XY—plane. Equation 5 represent a soft surface, in much
the same spirit as the soft interactions given by Eq. 1, as it is appropriate for example,
for surfaces formed of lipid bilayers (Israelachvili 2011). More sophisticated, self—
consistent DPD surface models are available (Gama Goicochea and Alarcón 2011),
but they are better suited to study harder solid walls, which are not of biological
relevance, within the context of the present study.

For the modeling of the adsorption of NP10 on the membranes the following pro-
cedure is followed. A given concentration of NP10 is chosen and allowed to reach
equilibrium while keeping the chemical potential of the solvent constant. Once equi-
librium has been reached, one determines the amount of NP10 that was adsorbed and
what was left in the supernatant, i.e. not adsorbed, if any. This procedure is followed
for as many surfactant concentrations as one wishes, constructing the adsorption
isotherm from the data collected. Experimental adsorption isotherms are obtained
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following precisely the same method (Kronberg 2001). Monte Carlo (MC) simula-
tions in the Grand Canonical (GC) statistical mechanical ensemble (which fixes the
chemical potential, μ, as well as the volume and temperature) were carried out to
obtain the equilibrium state for each NP10 concentration, using a code hybridized
with DPD, see (Gama Goicochea 2007) for full details, including the integration
algorithm for the equation of motion, with a time step λt = 0.03. Only the number
of solvent particles was allowed to fluctuate, to keep the chemical potential fixed.
The dimensions of the simulation box were fixed at Lx = 7, L y = 7 and Lz = 14
adimensional DPD units. The temperature was fixed at T = 1 by choosing Δ = 3
and Ω = 4.5 (see Eqs. 2 and 3), and the solvent’s chemical potential was chosen as
μ = 37.7, which leads to an average total density φ = 3; by doing so one assures that
the results are invariant under changes of conservative force interaction parameters
(Groot and Warren 1997). For the equilibrium phase, 30 blocks of 104 MC steps
were run, followed by an additional 100 × 104 MC steps for the production phase.
The solvent is modeled as monomeric DPD particles, while the surfactant is made
up of 12 DPD units, with the sequence as shown in Fig. 2, and with the surfactant
beads joined by freely rotating harmonic springs with spring constant k0 = 100 and
equilibrium length r0 = 0.7 (Gama Goicochea 2007).

The NP10 concentration was varied in the range of 4 ∞ [c] ∞ 90 surfactant
molecules in the simulation box, with the number of solvent monomers being ad-
justed by the GCMC ensemble to keep the chemical potential always fixed. At each
concentration the density profile of the monomers that make up NP10, φ(z), was
computed, and the amount of adsorbed NP10, β, was obtained from the equation
(Gama Goicochea 2007):

β =
∫ Lz

0
[φ (z) − φB]dz. (6)

In Eq. 6, φB is the density of NP10 monomers in the bulk, namely those that were not
adsorbed on the confining surfaces. If all NP10 molecules were adsorbed, φB = 0.

Fig. 3 shows typical equilibrium configurations for two NP10 concentrations, [c] = 14
molecules/volume (left image), and [c] = 30 molecules/volume.

As it is evident from Fig. 3, the surfactant is subjected to two competing factors:
on the one hand it has a strong tendency to adsorb at the interfaces (see left image
in this figure), especially at relatively low concentrations. But, as the concentration
is increased some surfactants find it more favorable to form micelles (right image
in Fig. 3) while others are adsorbed. In the particular example shown in Fig. 3, those
NP10 molecules forming the micelle (right image) would be the ones that contribute
to the bulk surfactant density, φB , in Eq. 6, while those adsorbed would be accounted
for in φ(z). It is also of notice that the surfactant appears to adsorb in monolayers, in
much the same way as assumed by the Langmuir adsorption model (Kronberg 2001).

From the series of simulations previously described the adsorption isotherm of
the NP10 surfactant in water was obtained, and it is presented in Fig. 4. It is clearly a
Langmuir—type isotherm, from which one can easily obtain the saturation concen-
tration, i. e. the amount of surfactant that has saturated the available adsorption sites
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Fig. 3 Adsorption of NP10 on model biomembranes. Green beads represent DPD beads named
F, G and H (see mapping in upper panel of Fig. 2). Purple beads are hydrophilic surfactant beads,
namely C, D, and E. The solvent beads have been removed for clarity. The left image corresponds to
a NP10 concentration [c] = 14 molecules/volume, while the one on the right is for [c] = 30. Notice
the incipient formation of a micelle in the latter

Fig. 4 Adsorption isotherm of NP10 on model biomembranes. The axes have been normalized
to allow for comparisons with other surfactants. The X-axis is the number of non adsorbed NP10
molecules, normalized by the maximum amount of non adsorbed surfactant, [c]max . The Y-axis
represents the number of adsorbed NP10 molecules for each concentration added to the dispersion,
normalized by the maximum adsorbed amount, at saturation, β0

on the surfaces, so that whatever additional amount of surfactant added to the system
is not likely to be adsorbed. This is an important quantity because it is obtained from
experiments. therefore it represents a basis for comparison.

The curve in Fig. 4 is a typical example of a Langmuir isotherm, whose basic
feature is a rapid raise to the saturation value, followed by an essentially constant
adsorption after it. From the isotherm in Fig. 4 one obtains a saturation adsorption
value equal to β0 = 1.85 g NP10 per gram of membrane. Now, it is instructive to
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Fig. 5 Adsorption of the
surfactant on a Al2O3 sur-
face, and b TiO2 surface.
Arrows indicate the benzene
ring, which is preferentially
adsorbed on both surfaces

(a)

(b)

ask ourselves not only how much surfactant is adsorbed, but also how it adsorbs.
As the following figure will show, the NP10 surfactant adsorbs primarily through
the benzene ring (which corresponds to the DPD bead called F, as clearly indicated
in Fig. 2) on most hydrophobic surfaces. Recalling the arguments expressed above,
about the potential environmental concerns regarding the release of benzene after
the break down of surfactant molecules that include it, such as NP10, it is therefore
of paramount importance to ascertain to what extent is the presence of benzene
indispensable for the performance of the surfactant. This is the key element in the
design of a new, environmentally friendly surfactant undertaken in the present work.

Figure 5 shows images obtained from atomistically detailed, microscopic (namely,
not DPD) computer simulations of NP10 adsorbed on some typical metal oxide
surfaces, carried out using the Materials Studio suite of Accelrys (see http://www.
accelrys.com). It is important to carry out those studies to confirm the hypothesis
that, on entropic or free energy grounds, it is through the benzene ring where NP10
preferentially adsorbs on hydrophobic surfaces, thereby discarding the possibility
that it is the loss of atomistic detail what is responsible for the predicted behavior of
the surfactant.

Based on the microscopic calculations from which Fig. 5 was obtained, as well as
those of Fig. 3, it is logically sound to speculate as to what the thermodynamic prop-
erties of a surfactant such as NP10 without the benzene ring would be. If properties
such as adsorption isotherms of the newly modified surfactant turn out to be entirely

http://www.accelrys.com
http://www.accelrys.com
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Fig. 6 Adsorption of B10 on model biomembranes. Brown beads represent DPD units named
G and H (see mapping in upper panel of Fig. 2). Blue beads are the hydrophilic beads, called C,
D, and E. The solvent beads have been removed for clarity. The left image corresponds to a B10
concentration [c] = 16 molecules/volume, while the one on the right is for [c] = 40

different from those of the proven NP10, then that would be a strong indication that
a new strategy ought to be sought for a new surfactant.

The structure of this newly designed surfactant, which will be called B10 (for
“biodegradable surfactant with 10 moles of ethylene oxide") henceforth, is almost
the same as that of NP10, with the F-bead (benzene ring) replaced by a G-bead
(see Fig. 2). It is made up of 12 beads also, with the sequence of beads as follows:
H-G-G-G-C-D-D-C-D-D-C-E. The interaction parameters, surfactant concentra-
tions, simulation box volume, interaction with the surfaces, and all other simulation
details were chosen exactly as those used in the prediction of the adsorption isotherm
of NP10. Fig. 6 shows two equilibrium configurations obtained for surfactant B10,
one below the micelle formation (left image), and one above it (right image).

By comparing the configurations in Fig. 6 for B10 with those in Fig. 3 for NP10,
it is clear that the same qualitative behaviour is obtained for B10, i.e., the surfactant
is driven by two factors. At low enough concentrations, it adsorbs readily on the
surfaces, forming brushes. As its concentration is increased, it associates with other
B10 molecules, forming micelles, like the one shown on the right in Fig. 6, although
some of the molecules continue to adsorb on the substrates. With this information I
have calculated the adsorption isotherm for B10, which is to be found in Fig. 7.

The adsorption isotherm shown in Fig. 7 is also of the Langmuir type which, as
the images in Fig. 6 show, is the result of the fact that B10 adsorbs in monolayers. It
should be noted that the competition between adsorption and micelle formation starts
before the surfaces have been saturated, and it appears to be driven by the surfactant
concentration. The data obtained from the adsorption isotherm allows us to extract
the saturation value, which turns out to be β0 = 2.46 g B10 per gram of membrane.
It is slightly larger than that for NP10 (1.85 g), but this has a simple explanation.
B10 adsorbs on the surfaces through beads H and G (see Fig. 2 for their atomistic
mapping), while NP10 does mainly through bead F, of which there is only one per
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Fig. 7 Adsorption isotherm of surfactant B10, designed in this work. The axes have been normalized
to allow for comparisons with other surfactants. The X-axis is the number of non adsorbed B10
molecules, normalized by the maximum amount of non adsorbed surfactant, [c]max . The Y-axis
represents the number of adsorbed B10 molecules for each concentration added to the dispersion,
normalized by the maximum adsorbed amount, at saturation, β0. The line is only a guide to the eye

molecule. Other than that, both surfactants have essentially the same thermodynamic
behavior, but the newly designed B10 has the bonus that, when used in formulations
that interact with the environment, it will biodegrade as easily as NP10, but it will not
release benzene freely, because its structure does not include it. It is to be concluded
that B10 is an excellent candidate to substitute NP10, given their similar molecular
structures, which in turn give rise to very similar function and performance.

4 Modelling Protein Activity Through Amino Acid Sequence

The interaction of proteins with biosurfaces is known to be of paramount importance
for an ample range of situations (Israelachvili 2011). More often than not, the specific
amino acid sequence determines the activity of the protein in a given environment,
even for two proteins of the same molecular weight which are otherwise identical,
except for their amino acid sequence. This is a problem that is entirely amenable to be
approached by the techniques described here, as shall be shown in what follows. The
purpose of this section is to determine the effectiveness of model proteins (meaning
that the model does not represent an exact mapping of any given real protein or
amino acid) interacting on soft, model biomembranes as a function only their amino
acid sequence, within the DPD model. The activity of the proteins with the surfaces
is monitored through the calculation of the interfacial tension between them, in an
aqueous environment.
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Fig. 8 Three model amino acid sequences for the biomolecules studied in this section. The dif-
ferently coloured DPD beads are meant to represent different amino acids. The letters on the right
symbolize the sequencing, to shorten the notation. The blue—red dimmers are represented in such
lettering as B; however, it is the red bead that one that interacts more strongly with the surfaces.
Although all molecules are made up of 24 beads, only 12 are shown in each case for simplicity

Let us start by considering model proteins made up of 24 DPD beads each, with
each bead representing a model amino acid. Only three amino acid sequences shall be
studied, for brevity. These are shown schematically in Fig. 8. All beads have the same
size; the molecules are linear, with beads joined by freely rotating harmonic springs
of the same type as those used in the previous section, namely with k0 = 100 and
r0 = 0.7. Soft DPD-like effective surfaces given by Eq. 5 are placed at the ends of the
simulation box in the z-direction. Periodic boundary conditions were implemented
in the x- and y-directions, where the fluid is free, but not in the z- direction since the
walls are impenetrable. The fluid is made up of water monomers and the proteins
only. Simulations are performed using a GCMC algorithm, hybridized with DPD,
the same used in the previous section. The length of the simulations, time step, box
volume, fixed chemical potential, and temperature are exactly the same as used for
the prediction of the adsorption isotherms in the previous section.

Figure 8 shows schematically the three spatial arrangements, or sequences of the
DPD beads; these constitute the only difference between the three cases considered
here. The different colouring of the DPD beads is meant to represent the different
chemical compositions of the amino acids. The interaction with the surfaces is driven
primarily by the red beads as was the case with surfactant NP10 of the previous
section. The number of proteins in the simulation box was varied from [c] = 40−90
molecules per volume. As for the conservative force constants (see Eq. 1), they were
chosen following the same procedure as in the previous section, and they are given
by the matrix shown in Table 2, where the interaction with the walls is listed also.

Once a sequence among those shown in Fig. 8 is chosen, with the appropriate
interaction parameters, displayed in Table 2, one proceeds to carry out MC simula-
tions at fixed chemical potential, volume and temperature, at the end of which the
components of the pressure tensor, Pγβ , are obtained. When equilibrium is reached,
these components are calculated using the virial theorem (Allen and Tildesley 1987).
Then, the interfacial interaction between the proteins and the membranes, Ω , is cal-
culated by means of Eq. 7 (Gama Goicochea et al. 2007):
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Table 2 Conservative DPD interaction parameters (ai j ) used for the beads shown in Fig. 8. The
numbers identify each type of particle in the simulations, starting with water (1), and the protein
DPD beads depicted in Fig. 8: green (2), blue (3), and red (4). The last column lists the interaction
(aiw) of each type of DPD particle with the surfaces, see Eq. 5

ai j 1 2 3 4 aiw

1 78.3 78.3 171.8 155 30.75
2 78.3 81.3 79.1 31.0
3 78.3 79.1 45.0
4 78.3 25.0

Fig. 9 Interaction of model proteins with membranes. The top part shows the final equilibrium
configuration ([c] =90 mol./vol.) for each sequence. The lower is the corresponding schematic of
adsorption. The colour code is the same as in Fig. 8. Water was removed for simplicity

Ω = Lz

[
→Pzz∇ − 1

2

(→Pxx ∇ + →Pyy∇
)]

(7)

where →∇ represents an average over the ensemble, Lz is the length of the simula-
tion box perpendicular to the surfaces, and only the diagonal elements of the pres-
sure tensor are needed. In Fig. 9 one finds the final configurations obtained for each
sequence.

The configurations shown in the top part of Fig. 9 clearly indicate that, although the
number of molecules is same for all three sequences (equal to 90 protein mol./vol.),
and although the number of amino acids is equal in all three cases, as well as all
other input details, the specific structure of the protein determines its thermodynamic
interaction with the surface, and its self association. After proper transformation of
DPD units, the following values of the interfacial tension between the proteins and the
surfaces are obtained: for the sequence called AAABBB, Ω = 44.5±0.8 dyn/cm; for
AABBAA, Ω = 37.5 ± 0.8 dyn/cm. Finally, for BBAABB, Ω = 59.0 ± 0.3 dyn/cm.
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The conclusion to be drawn from these results is that the most favourable sequence
from the thermodynamic point of view between the surfaces and the proteins is
given by the one called AABBAA, which corresponds to the image in the middle of
Fig. 9, with the minimum value of Ω . By contrast, the most unfavourable structure
is given by the one labelled BBAABB, because it is the one that requires the most
energy investment per unit area, i.e., the largest Ω , when interacting with the surface.
From inspection of Fig. 9 one sees that the configuration on the far left (“AAABBB”)
cannot be optimal because it does not cover all the surfaces, which means that the
activity of the protein is diminished. On the other hand, the configuration on the far
right (“BBAABB”) is not the best either, although it appear to adsorb uniformly on
the surfaces, because some proteins self—associate in the bulk of the fluid, forming
a micelle—like structure, which again means a detriment of the protein function,
whose purpose is interacting with the surfaces. The central image in Fig. 9 is the
best one because all proteins are fully interacting with the surfaces through physical
adsorption, with none of them in the bulk fluid, which is why the interfacial tension
was found to be the minimum for this case. It is to be emphasized that these differences
arise purely from a structural difference between the proteins, as laid out by their
amino acid sequence.

As for the physical reason behind the results shown in Fig. 9 and discussed in
the previous paragraph, the caricature adsorption model shown in the lower images
in Fig. 9 gives us some insight. The structure with the minimum interfacial tension
(“AABBAA”) has the particular feature that it groups together as nearest neighbours,
all the amino acids that preferentially adsorb on the surfaces (shown in red in Fig. 8).
This maximises the area covered on the surface by the molecule. If the red amino
acid were surrounded by green or blue ones as nearest neighbours, which do not
adsorb as favourable as red on the surfaces (as is the case for structures AAABBB
and BBAABB) then the energy cost per unit area of the protein—surface interaction
turns out to be more expensive, and it is therefore not preferred by thermodynamics.
These results and their interpretation are in complete agreement with those of recent
experimental studies (Jhon et al. 2009).

5 Conclusions

The present work reports the design and thermodynamic testing of a biodegradable
surfactant and model proteins in aqueous solutions confined by soft surfaces, intended
to model biologically relevant membranes, by means of mesoscopic DPD computer
simulations. In the first part of this report it was shown that a newly designed lin-
ear, non ionic and environmentally friendly surfactant performs at least as well as
its benzene—containing (and therefore, not environmentally friendly) counterpart.
The performance of both surfactants was tested with the calculation of adsorption
isotherms and surface saturation. The new surfactant structure was proposed af-
ter a careful microscopic analysis of the role played by each part of the original
surfactant’s structure. The second part of this research was devoted to the design
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of differently sequenced but otherwise equal model proteins, with the purpose of
determining which one had the optimal activity when interacting with a biologically
important surface. Predictions of their interfacial (protein—surface) tension led to the
conclusion that the proteins that adsorbed uniformly on the surfaces without leaving
any of them in the bulk to form energy—consuming micelles were the ones preferred
on thermodynamic grounds. These conclusions were found to be fully supported by
recent experiments reported in the literature.

The advantages of carrying out coarse—grained, mesoscopic DPD simulations
like the ones reported here are numerous. Not only can one reach length scales of
the order of μm and times scales of ms, but because of the momentum conserving
structure of the DPD forces, one can capture complex mesoscopic hydrodynamic
behaviour that is crucial for the study of the association of biomolecules. Other
advantages include the fact that simulations can be carried out with many chains at
once, and with the solvent included explicitly. The latter is critical to incorporate
excluded volume interactions at short distances.

The two cases studied in this work have a common thread, which can perhaps be
summarized as follows: when comparing the performance of two molecules whose
only difference is their structure, then any difference in their thermodynamic per-
formance must be attributed precisely to their structural dissimilarities. This has
been more eloquently stated by Crick, in his famous dictum “if you want to under-
stand function, study structure” (Crick 1988). These studies can be considered as a
stepping stone toward the construction of more atomistically detailed, albeit more
computationally expensive models.
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Uranyl Transport in the Unsaturated Zone
of the Toluca Valley, State of Mexico

Lázaro Raymundo Reyes-Gutiérrez, Elizabeth Teresita Romero-Guzmán
and Jaime Lázaro Klapp-Escribano

Abstract The aim of this work was to simulate the transport of uranium in the
unsaturated zone of an experimental parcel located in the community of San
Cayetano, State of Mexico. The implanted cultivation is corn, fertilized with granu-
late triple superphosphate. During the transport of fertilizers through the unsaturated
media, the physicochemical processes can produce the exchange of the mass of the
fertilizers among the solid and aqueous phases, for example the sorption for the geo-
logic materials, the precipitation or dissolution and the complexation. The evolution
of the humidity was evaluated using tensiometers and the concentration and uranyl,
[U(VI)] mobility was determined using a cup of porous ceramic. It is important to
indicate that phosphate and nitrogen fertilizers are the most employed in that area
for corn growing, for this the human health risk associated with the presence of
widespread uranium contamination of soils, sediments, and groundwater.

1 Introduction

The unsaturated zone has a great hydrogeological relevance because in it the infiltra-
tion, evaporation, erosion processes, recharge of the underground and attenuation-
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transformation of liquid and gassy contaminants is presented. This zone plays an
important role as source of recharge for the aquifers and for the main processes of
contamination to reach the groundwater, these processes can be understood by means
of the modeling to determine the mechanisms of solute transport predominant in
the soil.

The uranyl ion is an oxycation of uranium in the oxidation state +6, with the
chemical formula [UO2]2+. It has a linear structure with short U-O bonds, indicative
of the presence of multiple bonds between uranium and oxygen. Four or more ligands
are bound to the uranyl ion in an equatorial plane. The uranyl ion forms many
complexes, particularly with ligands that have oxygen donor atoms. Complexes of
the uranyl ion are important in the extraction of uranium from its ores and in nuclear
fuel reprocessing.

One of the main mechanisms is when a contaminant can infiltrate to the ground-
water and to reach an aquifer and to spread affecting areas that in principle were
considered far from influence and sometimes, very complex. In this group the cases
of contaminants transport are included from the surface of the land by the infil-
tration waters (poured on the land, use of fertilizers, etc.) and when an infiltration
exists polluting from superficial waters, rivers, canals, etc. Probably, the cause of the
deterioration of the groundwater quality as consequence of the human action is the
agricultural practice. The contamination caused by these practices is characterized
except in concrete cases, for its diffuse character.

The risk of increase of salinity grows, logically, for: (a) increase of phosphates
and nitrates in the surface water, soil water and groundwater in agricultural areas
(Vighi et al. 1991; Hall 1992; Eghball et al. 1996), (b) eutrophication of water bodies
(He et al. 1995), and (c) increment in the uranium concentration in land and water
resulting from the use of phosphated fertilizers (Barisic et al. 1992; Zielinski et al.
1997). Phosphate fertilizers are made of soluble phosphate complexes that contain
uranium, ranging between 50 and 200 mg kg−1 (Romero et al. 1995, 2006). These
values are high compared with the average uranium content in the earth’s crust, which
is of 1.8 mg kg−1 (Taylor and McClennan 1985). The uranium is deposited in the
soil together with the phosphates during the fertilization period. In time, the uranium
and phosphorus are dispersed in the soil and can be moved, either by the runoff
reaching the water bodies (rivers, lakes, reservoirs) or by soil water until they reach
the groundwater; this plays an important role in the migration and redistribution of
uranium in nature.

The inadequate use of phosphate fertilizers in watering areas with permeable
soil and unsaturated aquifers, could have adverse effects in the readiness of some
minor elements and to be a source of contamination of the soil and groundwater, at
high phosphorus loading rates and repeated applications of fertilizer, together with
manure applications under favorable conditions (Eghball et al. 1996), or when the
soil fixation capacity has been completely saturated (Gerritsen 1993).

Uranium is a trace constituent of many phosphate bearing fertilizers. The increase
in their concentration found in most of the profiles of fertilized soil has been doc-
umented for decades (Rothbaum et al. 1979); this is also the case for superficial
water (runoff) or drainage coming from agricultural lands (Barisic et al. 1992;
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Zielinski et al. 1997). Uranium is recognized by the World Health Organization
World Health Organization and OMS (1993) as a potentially harmful constituent of
drinking water; the U.S. Environmental Protection Agency, USEPA (1996) proposed
the implementation of a 20µg L−1uranium drinking water quality standard; likewise,
the Mexican government established 1.44 mg L−1 as the standard in the official reg-
ulations (DOF 1989). The migration of uranium in systems is largely controlled by
uranium solution-mineral equilibria and sorption reactions. Uranyl complexes con-
taining hydroxide, carbonate, fluoride, sulfate, nitrate or phosphate can exist and
even predominate under conditions depending on water and soil properties (Romero
et al. 1995). The mobility of the uranium in oxic groundwater is generally controlled
by the adsorption, and it is regulated by the solution chemistry, the surface properties
and predominant phases of the minerals.

The aim of the work was to simulate the transport of uranium in the unsaturated
zone of an experimental parcel located in the community of San Cayetano, State of
Mexico. A brief description of the main physical-chemical processes that operate in
the unsaturated zone and how they affect the distribution and transport of solutes is
presented. The main focuses are described to approach the quantification of these
processes and the solution of the equations.

2 The Experimental Setup

2.1 Site Description

The Toluca Valley is located in the highlands of Central Mexico at an average altitude
of 2,600 msnm and at some 60 km of Mexico City (Fig. 1); the Lerma River (upper
course of the Lerma River) runs through it. The study site is located to the west, in the
outskirts at 5 km of the town of Tlachaloya, 15 km to the north of the city of Toluca
(Capital of the State of Mexico), among the latitude Y = 2,142,500 m UTM and X =
422,600 m UTM. It is inside the meridian master 14Q, covering an area of 0.4 has.
The sampling site is confined to the portion of the drainage area for the Tejalpa and
the San Cayetano rivers, natural influents of the Lerma River. The average rainfall is
of about 920 mm year−1 with a peak in July, and there is a dry season from October to
April. The mean annual temperature is 15–18 ◦C. The topography of the area is that
of a flat land; the main crop is corn, which is grown on 90 % of the arable land. This
experimental site was chosen for the study given its accessibility, the long history of
agricultural development, the effective drainage toward the river, besides having the
typical crop and soil of the Valley. Agriculture in the Valley of Toluca is seasonal,
benefiting from the raining period for the cultivation of crops. Sometimes surface
water coming from rivers and water reservoirs, sometimes groundwater obtained
from wells and/or springs is used for irrigation from March to November.
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Fig. 1 Localization of the study area

2.2 Field Methodology

Documental information of the study area was obtained including government
reports, of scientific articles to have a hydrogeological description of the study area. It
was carried out later to program the measurement of the parameters in field including
geologic recognition to describe the means, as well as the measure of the hydraulic
conductivity of field with permeameter type Guelph, and was made to model con-
ceptual hydrogeologic of the study area that constitutes the bases for the model of
numeric simulation of the flow and transport in the unsaturated zone.

Jet-filled tensiometers manufactured by Soilmoisture Equipment Corporation
Model 2725 (Soilmoisture 1997) were installed at study area where changes in soil
water matric potential indicate water and/or contaminant movement during the annual
hydrologic cycle. Recharge events could indicate a high potential for contaminant
migration to deep depths. Tensiometers and samplers of porous cups were installed
in shallow soils to different depths of 30, 60, 90, 120, 150 and 180 cm (placed within
T15, T30, T60, T90, T120, T150 and T180 cm of the soil surface) to determine the
layers moisture and collect the interstitial water, at the same levels of the tensiome-
ters and to determines the composition of chemical parameters and the concentration
of U(VI).
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2.3 Hydrogeological Characterization

The hydraulic conductivity was determined especially by means of a permeameter
type Guelph, this is an important physical property of the soil, for modeling of the
water flow and solute transport in the soil, for the irrigation design and drainage,
modeling of the groundwater and other agricultural processes: engineering and envi-
ronmental.

2.4 Transport and Flow Simulation of Uranium Through
Unsaturated Zone

The characterization of the unsaturated zone includes, to measure key parameters
such as the moisture content, the pressure potential, the matric potential, the saturated
hydraulic conductivity of field and solute concentrations. The knowledge of these
variables is important to understand the processes that are presented in the unsaturated
zone and to feed the numeric models of simulation (Gee et al. 1994). These parameters
are related with such meteorological variables as the precipitation, evapotranspiration
and infiltration; it is possible to have a better understanding of the dynamics of the
flow in the unsaturated zone.

2.5 The Mathematical Model

The simulations and subsequent analysis were carried out for a vertical section to field
scale and a one-dimensional model (1D). The reactions of superficial complexation of
uranium were instantaneous reactions and the supposition was made that alone they
are presented inside the interstitial porosity. The simulations of flow and transport
were made with the simulator HYDRUS (Simunek et al. 1998), developed by the
Department of Environmental Sciences, University of California Riverside, USA,
imposing the initial and boundary conditions in the unsaturated zone. The water flow
in an unsaturated medium is described traditionally with the equation of Richards
(1931) that only keeps in mind the suction gradients and of elevation, expressing the
saturated hydraulic conductivity of field, Ks, like a function of the volumetric soil
water content, θ , Eq. 1:

∂

∂z

(
D(θ)

∂θ

∂z
− K (θ)

)
= ∂θ

∂t
(1)

where D(θ) is the function of the diffusivity of the soil water (Guymon 1994).
The fundamental mechanisms of transport are the advection, the molecular diffu-

sion and dispersion. The equation of the transport of mass in the used program is Eq. 2:
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αiρb[ fi KdC − Si ] (2)

∂Si

∂t
= αi ( fi KdC − Si ) (3)

where C is the solute concentration [mL−3]; D is the tensor of hydrodynamic disper-
sion [L2T−1]; it is the vector of flow velocity [LT−1] and (3) is a source/sink term
for transport [mL−3T − 1].

3 Results and Analysis

When moisture is added to the soil, the reverse process takes place. Moisture from
the soil moves back into the tensiometer through the porous cup until the vacuum
level is reduced to a value corresponding with the lower soil suction value. Then,
the water flow stops. If enough water is added to the soil until complete saturation,
the gauge reading on the tensiometer will drop to zero. As the water can flow in and
out of the tube through the pores in the porous ceramic cups, the gauge reading is
always in “balance” with the soil suction (Cassel and Klute 1986).

Tensiometers gave readings of 0–10 and 10–26 centibars (cb) for 15 cm of depth,
of 0–4 for 30 cm, of 0–4 for 60 cm, of 0–8 to 90 cm, of 4–10 to 120 cm and of
12–20 for 180 cm (Fig. 2). A gauge reading of zero cb means the surrounding soil
is completely saturated with water, regardless of the type of soil. A persistent zero
reading after irrigation or rain indicates poor drainage conditions which should be
investigated and corrected. Gauge readings in the range of 0–10 cb indicated a surplus
of water for plant growth. Water held by the soil in this range drains off within a few
days. Gauge readings in the range of 10–20 cb indicate that there is ample moisture
and also air in the soil for healthy plant growth in all types of soils. This range is
often referred to as the “field capacity” range for soils, which means that the soil
has reached its “capacity” and cannot hold any more water for future plant growth.
When soils are at “field capacity”, any additional water that is added drains out of the
root zone within a day or two before it can be used by the growing plant. If irrigation
has been in process, it should be stopped when gauge drops to this level, since any
further additional water will be quickly drained from the root zone and wasted,
carrying with it valuable fertilizer. These soils, however, have a very limited water
storage capacity and therefore soil suction values increase very rapidly as moisture
is removed by the plant after soil suction values reach 15–20 cb. If water-sensitive
plants, such as potatoes, are planted in coarse, sandy soils, irrigation may need to be
started between 15–20 cb to allow time to apply the irrigation water before damaging
stress conditions develop.

As shown in Fig. 2, the measured suctions from each tensiometer significantly vary
with time, and the tensiometer embedded at a depth of 60 cm recorded a suction of
zero. It is acknowledged that the decrease of suction recorded by the deep instruments
could be attributed to a downward redistribution of the infiltrated water. However, the
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Fig. 2 Tensiometer readings with the elapsed time

significant decrease of suction recorded by the shallow equipments indicated there
was a bypass water flow through the gap between the tensiometer tube and the wall
of the installation hole.

The concentrations of phosphates and uranium were measures in unsaturated zone
where clay, silt and sand samples were collected to different depths, Fig. 3.

Figure 4 shows the profiles of humidity and the concentrations of chlorides, mea-
sured along the vertical, which corresponds to the first sampling the day 23 of July
of 1997. In the profile, the volumetric content of humidity increases from 0.14 near
the surface to 0.28–1.8 m of depth. The depth of the phreatic level is ignored. The
profile of the chlorides content present high values measured in interstitial water with
an average of 14.8 mg/L, regarding the values measured in superficial water (rivers,
preys, borders) and underground water (wells) with values average of 10.13 mg/L,
4.34 mg/L. The rain water values were measured between 1.2 and 3.1 mg/L with an
average value of 2.15 mg/L. The pursuit and the balance of chlorides for the study
date, of 7 months, the recharge supposes 8 % of the rain registered in this period. For
an average precipitation between 550 and 600 mm/year, the balance of ion chloride
leads to an annual recharge between 44 and 86 mm. It is worth mentioning that in
the study area the data of the rain water is very scarce and variable and due to that it
is necessary to have a sufficiently long series to define the average value. The high
contents of Cl− observed in the unsaturated area could be attributed to the contribu-
tion of present Cl− in areas of geologic media, not very accessible to water flow or
to the dissolution of accumulated salts, in clay lens, like it can be observed in Fig. 4
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Fig. 3 Distribution of the concentration of phosphates and uranium in mg/kg, organic matter (OM),
pH and the CE in the geologic materials to different depths

Fig. 4 Profile of moisture content (%) and concentrations of chlorides (mg/L)
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Fig. 5 Cross section of distribution chlorides, nitrates, phosphates and uranyl. Contours of equal
concentration (mg/L).

from the 60 to 150 cm of depth. This indicates that in the dilution process present
salts can be dissolved in the accustomed to solid phase.

The evolution of phosphates and uranium in the unsaturated zone measured along
the vertical in six dates, the first which it corresponds to the first sampling the day
23 of July of 1997 (Romero et al. 1995).

Figure 5 shows cross section of distribution of chemicals measures in the unsatu-
rated zone. If a chemical sorbs to the aquifer media then its residence time is increased
and it is retarded with respect to water. Nitrate is negatively charged and generally
does not adsorbed to soil and unsaturated zone which usually has a negative charge as
well. If allophane or similar minerals, which can have variable charges (sometimes
positive) charge, are present in the profile then nitrate can be retarded with respect
to water movement. However, these minerals are generally found in association with
volcanic soils. In the study area, nitrate can be expected to move with the transporting
water, although it can still diffuse with the water into zones of immobile water and
exhibit non-equilibrium transport behaviour. If nitrogen is applied to the soil surface
as urea, as ammonia fertilizer, then transformation from urea to ammonia to nitrate
needs to occur before the leaching of nitrate takes place.

Phosphorous (P) is strongly sorbed to clay minerals and therefore is usually
retarded. The P can also sorb to colloidal sized particles and be transported via
macropores. Some soils have very low P-retention and significant P loss can occur
through soil macropores, predominately co-transported with mobile colloids. If sig-
nificant P transport occurs through the unsaturated zone, it is to be associated with
sorption to colloids and will occur via macropores under saturated flow conditions.
Under these conditions P transport could be rapid. Otherwise P transport times will
be large.

Cultivation of corn begins in March applying a fertilizer in the proportion 18-40-00
of nitrogen-phosphate-potassium kg/ha. The watering begins when the soil is dry,
after the rain time. Soil profile, contains a clay lens at 60 cm which accumulates the
uranium, because it is added with the phosphate fertilizer, a proportional concentra-
tion of phosphates exists. Therefore, the decrease of uranium is due to the decreasing
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Fig. 6 a Pressure head, b Water content, c Hydraulic conductivity and d Relative concentration to
t = 0, 30, 60, 90, 120 and 150 days

of phosphates to more depths, for the type of geologic material that prevails. In
general, lateral spreading of the U(VI)-plume shown significant vertical spreading.
U(VI) is transported downward within the unsaturated zone as it is released from the
contaminated sediments during the relatively wet season. Generally, total U concen-
trations were at low detection (<10−9 mg/L) in the size fraction ranging from 2.0 to
75 mm.

3.1 Solute Transport

The model HYDRUS is applied to simulate the processes of transfer of water and
solute in the soil in a medium one-dimensional (1D) of 120 cm of depth. The profile
of the simulated soil was considered an equivalent single layer of a porous medium.
The solute transport is simulated under the consideration that the uranium does not
suffer phenomena of adsorption in the soil. It is solved as formulate Simunek et al.
(1998) and, for it, takes the value of the coefficient of molecular diffusion (Dw) of
the 37.2 cm2/year and the value of the longitudinal dispersivity (DL) to 1.55 cm.

The soil hydraulic parameters of the porous domain were taken as: θr = 0.0, θs =
0.200, α1 = 0.041 cm−1, n = 1.964, K s = 0.000255 cm s−1. Initial conditions were
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set equal to a pressure head of –150 cm. For simplicity we considered only convective
solute mass transfer between the two pore regions (i.e. no diffusive transfer), with the
dispersivity again fixed at 1.55 cm. Pressure head measurements using tensiometers
are, on the other hand, often dominated by the macropore presence that reaches
equilibrium relatively quickly. The application of a dual-porosity model can explain
nonequilibrium between pressure heads and water contents.

Figure 6 shows computed water and solute (uranium) distributions during infil-
tration obtained with the model HYDRUS.

The simulations were made for 150 days. Figure 6a shows the distribution of the
pressure head, it is observed that it diminishes with depth and with water content. The
water content depends, mainly, of the water retained in the porous medium that non
percolate for gravity (Fig. 6b). This way, the superior levels of the medium presents
a high saturation degree concerning the inferior. The drop saturation of the inferior
levels indicates that they are capable of draining with enough speed the water coming
from the superior layers. The Fig. 6d shows the front of advance of the concentration
of uranium and also this in function of the hydraulic conductivity of the medium.

4 Conclusions

A brief review of uranium contamination in corn field cultivation has been presented
in this work. The results of applying the model HYDRUS in a one-dimensional
medium, have allowed establishing a first step to know the implications that presents
the lixiviation process with superficial irrigation. The present work should be sup-
plemented with a study but detailed considering different strata that constitute the
porous means until a depth of 2.0 m. It is considered convenient to simulate the
interactions of the soil, plant and atmosphere and their influence on the flow of water
and transport of uranyl during a watering campaign.
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Aromatics Extraction in Hydrocarbon
Mixtures

Miguel Ángel Balderas Altamirano, Blanca E. García
and Arturo Trejo

Abstract This work is devoted to the study of liquid-liquid equilibrium of systems
of industrial interest, particularly the purification of oil and gas in the oil refining
industry. We present experimental results on the solubility of aromatics in the liquid-
liquid equilibrium obtained by gas - liquid chromatography at different temperatures.
We used a mixture of solvents to improve the characteristics of selectivity and aro-
matics extraction. The solvent is a binary mixture of N-methyl 2-pyrrolidone (NMP)
and diethylene glycol (DEG). The results presented are for two mixtures consist-
ing of 90 % NMP+10 % DEG, and 70 % NMP+30 % DEG. Heptane was used as
hydrocarbon solvent and toluene as aromatic compound. Furthermore, we applied
the equation of state NRTL (Non Random Two Liquids) and UNIQUAC (Universal
Quasi Chemical) for coexistence curves and the critical point.

1 Introduction

Oil is a source of energy in the modern world and a non-renewable resource. It
is a liquid that is below the surface of the earth embedded in rock cavities, also a
complex mixture of hydrocarbons (alkanes, cycloalkanes, aromatics) and is mainly
composed of oxygen, sulfur and nitrogen atoms, (Erij et al. 1988). The colour of the
oil depends on its content of hydrocarbon structures. Known oils are black, clear or
colorless and are lighter and more viscous than water. The origin of petroleum is not
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well established and is one of the most debated problems of modern science. Once
extracted, oil must be refined in order to use its individual components. The process
used to separate the constituents of oil is called distillation. Both atmospheric and
vacuum distillation are used to refine oil. In the first distillation, the most volatile
fractions are obtained: 180 ≤C gasoline, kerosene from 180 to 240 ≤C and diesel
fraction at 350 ≤C. The residue from atmospheric distillation is distilled under vacuum
and the fractions taken are 350 to 420 ≤C for lighter distillate oils, 420 to 500 ≤C for
heavy distillate oils. The residue in this process, depending on their viscosity is called
tar or semi tar. Tar feedstock has been used to obtain highly viscous lubricating oils
and bitumens. The composition of distillate fractions is a way of distinguishing the
types of oil.

The fraction in which gasoline distillates is composed mainly of three classes of
hydrocarbons: alkanes, cycloalkanes and aromatics. The fractions of kerosene and
diesel contain most of the bi- and tri-cyclic hydrocarbons. The distillate fraction,
with molecular weights less than 305 g/mol and which are distilled to temperatures
close to 350 ≤C containing alkanes, alkenes, cycloalkanes, bicycloalkanes, bicyclic
aromatic, etc. The chemical composition of the distillate fraction above the 350 ≤C
is poorly studied. This part contains macromolecular structures and in practice, is
the fraction of oil, lubricants and tar. The molecular mass of these fractions slays
between 300 and 1000 g/mol. This hydrocarbon mixture is composed of alkanes,
cycloalkanes with mono and polycyclic alkane chains, asphaltenes, resins, etc. The
next steps for the use of oil are intended to improve distillate fractions. Thus, there are
dearomatization, dewaxing, etc., which are used to produce components or mixtures
with fewer impurities.

Dearomatization process (Kirk et al. 1961) involves adding one or more polar
solvents to a mixture containing alkanes and aromatics compounds. In the first stage
the system is agitated and then allowed to stand until equilibrium is reached. In this
state the system is separated into two liquid phases, one rich in solvent the other rich
in alkanes. The aromatic compounds are distributed in the two phases. The solvent
should extract as much of the aromatics as possible. Aromatics are subsequently
purified for use in other applications. Gasoline is mainly composed by benzene,
toluene and xylenes. In the case of lubricants the aromatic molecular structure is
more complex.

Solvents such as NMP, N-formylmorpholine (NFM), glycols and sulfolanes (Saha
et al. 1998; Taysser et al. 1990; Baird and Henson 1991; Nagpal and Rawat 1981) are
used in multi component hydrocarbon mixtures due to its extraction capabilities, and
must have, besides high selectivity towards aromatics, high distribution coefficient,
fast separation of phases (high density and low viscosity), good thermal stability,
to be non-corrosive and non-reactive. An alternative to using the pure solvent is
the use of mixtures of solvents to improve the extraction of aromatics and decrease
energy and solvent consumption. On the other hand, analyzing multi component
hydrocarbon oil directly from the plant has several disadvantages: it is expensive, its
molecular composition and the structure of each component are not well known, the
boiling point is high and solubility is difficult to analyze. But some studies have been
reported using such mixtures (De Lucas et al. 1993). To make a quantitative analysis
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Fig. 1 Liquid-liquid equilibrium between two phases. Phase I contains a mixture of hydrocarbons,
paraffinic and aromatic compounds. Phase II is a polar solvent. The left side shows the initial
mixture and the right when they have reached thermodynamic equilibrium

of the solubility of a component in a mixture, it is convenient to use a mixture model
in order to control the variables that determine the liquid-liquid equilibrium, and then
extrapolate the results to problems of industrial interest.

In a model system we can perform a systematic study of the solubility and con-
trol the effect of temperature, pressure, solvent concentration, hydrocarbon molec-
ular structure, etc. The results obtained at laboratory level can be used to extrapo-
late the behavior in industrial hydrocarbon mixtures. Examples of results obtained
in this way are reported in references (Letcher and Naicker 1998; Bernabe et al.
1988; Romero-Martínez and Trejo 1995). Figure 1 describes the extraction process.
Phase I initially contains hydrocarbons and aromatics while Phase II contains only
polar solvent. The aromatic is soluble in both the hydrocarbon and the solvent, there-
fore, when the system reaches equilibrium, the concentration of aromatic in phase I
will be less than the initial, i.e., there will be a selective separation of the mixture of
aromatics hydrocarbons.

The purpose of this work is to determine the thermodynamic conditions to remove
as much of aromatics using polar solvents. The rest of the work is divided into three
sections: first we describe the methodology used, second the results section and
finally conclusions drawn from the results.

2 Methodology

As an initial step, the purity of the compounds used was examined in the laboratory
with the aid of a gas chromatograph, Varian model 3400. The chromatogram reported
in all cases areas greater than 99.8 % and the purity reported by the manufacturer
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was greater than 99 % in all cases. In all reagents we added 4A diameter molecular
sieves to remove traces of moisture in the solvent. Before chromatographic analysis
it is necessary to find the best operating conditions to obtain the best chromatograms,
they should show high and well defined peaks for each substance without any over-
lapping between them. The temperature range which was more consistent with these
conditions was from 40 to 160 ≤C for mixing n-heptane-toluene-NMP in a DB-5
column, and n-heptane-toluene-NMP-DEG was 100 to 280 ≤C in a SE-30 column,
both with a flow of helium gas of 12 cm3/min as the carrier gas. To eliminate possible
chromatographic signal fluctuations, benzene was used as the internal standard for
each analysis.

The next step is obtained from a calibration curve (concentration vs. area under
the curve) at 25 ≤C for each system component, so we prepared mixtures of the three
components making sure that the mixture is in the homogeneous region of the phase
diagram. The mass of each component and its concentration in the mixture is known.
To these mixtures the internal standard (benzene) was added and the concentration
is obtained using the chromatograph, with a calibration curve constructed for each
component. Once the calibration curve for each component is done, it is necessary to
study multi component mixtures. The first is a ternary system, the second and third
are mixtures of solvents; the first with a percentage of 90 % NMP+10 % of DEG and
second with 70 % DEG+30 % NMP. Two equilibria were analyzed at three different
temperatures, 15, 25 and 40 ≤C.

Each mixture was deposited in a cell designed for the IMP (Instituto Mexicano
del Petróleo, Mexico) where the separation of the system into two liquid phases can
be visually assessed. The cell allows the passage of water, similar to the mechanism
of a coolant to control the temperature of the experiment. The system is stirred for
at least 4 h with a Teflon-coated magnetic stirrer, the stirring is stopped and allowed
to stand until equilibrium; this requires at least 4 h. When the phases have separated
and reached equilibrium, each phase is extracted with hypodermic syringes (one for
each phase) and transferred in a separate vial (container) containing 0.2 g of benzene
as internal standard. Finally the chromatograms for each phase are obtained and
the calibration curve of each component is used to determine its concentration. The
same procedure is carried out in mixtures of various concentrations to generate the
coexistence curve at a single temperature. In this paper the coexistence curves were
obtained for three different temperatures. The experimental systems studied in this
work can be summarized as follows:

(a) Heptane + Toluene + solvent I at 25 ≤C
(b) Heptane + Toluene + solvent II at 15, 25 and 40 ≤C
(c) Heptane + Toluene + solvent III at 15, 25 and 40 ≤C

Solvent concentration: I = 100 % solvent NMP, solvent II 90 %, NMP + 10 % DEG
and solvent III 70 % NMP+30 % DEG.

The experimental data were correlated using NRTL and UNIQUAC models.
(Sorensen et al. 1986) Several versions of these models can be found in the lit-
erature with different expressions to describe the temperature dependency of the
binary interaction parameters. The ones used here are outlined below. The excess
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Gibbs free energy (gE ) for the NRTL model (Renon and Prausnitz 1968) is given
by:

gE

RT
=

c∑
j=1

xi

(
c∑

j=1
τ j i G ji x j

)

(
c∑

k=1
Gki xk

) (1)

where xi is the mole fraction of component i, τi j is the interaction parameter, G ji is
the interaction energy, R the gas constant and T the temperature. For a binary mixture,
the NRTL model contains five parameters, two binary interaction parameters for each
component and the non randomness parameter for the binary mixture. The excess
Gibbs energy for the UNIQUAC model (Abrams and Prausnitz 1975) is given by
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where gE and gR are the combinatorial and the residual contributions.
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where qi are the pure component surface area parameter, τi j is the interaction
parameter, Φi the segment fraction and the area fraction θi . The parameters in both
models were found by minimizing the objective function, where N is the number of
experimental points.

F =
N∑

k=i

2∑
j=1

3∑
i=1

(
x ∞

i jk − xi jk

)2
(5)

where x ∞
i jk y xi jk are the molar fraction calculated by the program and experimentally,

respectively. The sums take into account the experimental data k, the phases j and
the components i. The computer program used in this work was done at the IMP
(García-Sánchez et al. 1996).

3 Results

The data generated for ternary systems are best depicted in a triangular diagram
as shown in Fig. 2 for the system heptane-toluene-NMP. Once equilibrium concen-
trations are obtained from our system, we can draw using these data the triangular
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Fig. 2 Ternary diagram for the system heptane toluene NMP. The squares represent the values of
Ferreira et al. (1984a,b) filled circles are the values obtained in this work. These data correspond to
measurements made at 25C

diagram or phase diagram. For this case seven experiments were made at constant
temperature and varying concentrations of aromatic. Heptane-NMP binary system
is in the base of the triangle, the left side is the phase rich in heptane and the right in
NMP. Heptane mixtures with concentrations greater than 86 % and lower than 16 %
are in a liquid phase. States below the symbols correspond to the two-phase region in
the liquid-liquid equilibrium. States outside this region correspond to a liquid phase
where the three components are present. Mixtures with toluene concentration greater
than 15 % are in a single stage, this is the critical region. Near the critical point it is
difficult to measure the concentration due to large density fluctuations in the phases.
In this system, with NMP as a solvent, the size of the curve is small. We want to
find the way to increase this curve and improve the extraction of aromatics. There
is evidence to show that a mixture of solvents could extend this region, for more
details see works reported in (Nagpal and Rawat 1981; Naidoo et al. 2001). These
results were compared with those reported by (Ferreira et al. 1984a,b) to validate
the experimental technique and verify the proper operation of the equipment. To
study the effect of a solvent mixture in the aromatic extraction we decide to vary
the amount of DEG. For practical purposes, decided these systems were treated as
ternary systems, where the extractant mixture NMP - DEG was considered a single
component; a system like this is known as a pseudo-ternary system. In what follows
in all triangular diagrams the legend 90 % NMP+10 % DEG or 70 % NMP+30 %
DEG means that the solvent NMP was prepared with X mass % DEG, not to be



Aromatics Extraction in Hydrocarbon Mixtures 467

Fig. 3 Effect of DEG concentration in the solvent. The line parallel to heptane axis shows the area
where we can find homogeneous equilibrium. In the case of the mixture with 30 % DEG, the line
shows the region where we can find two liquid phases. The experiments were done at 25C. The
continuum line was obtained with the NRTL model. The circles are experimental data

confused with the concentration of the solvent in equilibrium expressed as a molar
fraction.

(i) Effect of concentration of DEG in the solvent

Figure 3 shows the results at 25 ≤C and various concentrations of DEG. Immiscibility
region increases with the addition of DEG. The maximum amount of the aromatic
compound can participate as the liquid-liquid equilibrium narrows the top of the
region of insolubility (top of the curve). In this study the limit was 0.15, 0.30 and
0.45 (molar fraction of toluene) for solvent mixtures with 0, 10 and 30 % of DEG,
respectively. The points on the curve divide the region in which we can find the liquid
- liquid equilibrium, above the curve it will have total miscibility and under it partial
miscibility. Application of the NRTL model allows one to obtain the continuous line
in Fig. 3 for each of the three sets of data. UNIQUAC model results are similar to
those of NRTL and are not reported here.

(ii) Effect of temperature on the extractant mixture

The effects of temperature on the mixture with 10 % of DEG are shown in Fig. 4,
and at 30 % of DEG in Fig. 5. The increased temperature promotes the solubility of
the components and the bimodal curve is smaller. In the system with 10 % DEG, the
bimodal curve size is different; it shows a greater displacement to the left side. While
the system with 30 % DEG, cornering bimodal separation is larger in the middle part,
but decays into points very close to the equilibrium binary line.
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Fig. 4 Temperature effect on the mixture 10 % of DEG in NMP. The curves were obtained with
the NRTL correlation model. The circles are experimental data

Fig. 5 Temperature effect on the mixture 30 % of DEG in NMP. The curves were obtained with
the NRTL correlation model. The circles are experimental data

(iii) Distribution coefficient

A parameter to consider is the distribution coefficient K, (Ferreira et al. 1984a,b)
which is defined for the particular case of the aromatic content as follows.



Aromatics Extraction in Hydrocarbon Mixtures 469

Fig. 6 Distribution curves at 25C. The experimental data are indicated by symbols and the contin-
uum lines correspond to results obtained by the NRTL model

K = x I I
A

x I
A

(6)

x I I
A and x I

A are the molar fractions of the phase I aromatic (hydrocarbon) and phase II
(solvent), respectively. The distribution coefficients show the distribution of aromatic
in both phases, see Fig. 6.

The line of reference indicates that the aromatic is distributed in the same propor-
tion in phases I and II. A value above the reference line points out to higher extraction
capacity and a value below it indicates that the greatest amount of aromatic remained
in phase I. In the systems studied in this work, the mixture with 0 % DEG extracted at
slightly higher concentration of aromatic, mixture with 10 % DEG separates slightly
less than that of the pure solvent, while the mixture with 30 % DEG obtained fewer
aromatic. The results of the distribution coefficient plotted in Fig. 6 show that the
increase of the immiscible region reduces the aromatic distribution in the mixture.
The Aromatic concentration is greater in Phase II with 10 % DEG compared with
30 % DEG system. By increasing the bimodal curve a greater amount of aromatic
hydrocarbon mixtures may be involved in the extraction process. The K distribu-
tion coefficient in 0 and 10 % of DEG mixtures, for all practical purposes are equal
and their use as extracting solvent is indistinct, but because the mixture with 10 %
DEG has a higher insoluble region, it can be considered that it is better solvent for
extraction systems.

(iv) Selectivity (selectivity factor)

Another criterion for evaluating a solvent Selectivity is defined as:

β = Y I

X I
(7)
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Fig. 7 Graphic selectivity distribution of 25C at different concentrations of DEG. Symbols are
experimental data and trend lines were obtained with the NRTL model

Fig. 8 Graphic distribution of selectivities at different temperatures for the system heptane
+ toluene + 90 % NMP+10 % DEG. Symbols are experimental data and trend lines were ob-
tained by the NRTL model

where XI and YI are defined as:

X I = x I
A(

x I
A + x I

H

) , Y I = x I I
A(

x I I
A + x I I

H

) , (8)

where xA and xH are the mole fractions of aromatic and hydrocarbon, respectively.
Superscripts I and II refer to the hydrocarbon rich phase and solvent respectively.
Selectivity is defined as the measure of the ability of the solvent to separate the
aromatic compound with a mixture of alkane.
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Fig. 9 Graphic distribution of selectivities at different temperatures for the system heptane
+ toluene + 70 % NMP+30 % DEG. Symbols are experimental data and trend lines were ob-
tained by the NRTL model

For each of the systems obtained in this work, we made a selectivity diagram.
Selectivities are shown in Figs. 7, 8 and 9; they indicate that our solvents are highly
selective. The solvent is more selective towards the toluene if we added DEG.
Selectivity is shown in an ascendant way, the combination of solvent mixture: 100 %
NMP+0 % DEG < 90 % NMP+10 % DEG <70 % NMP+30 % DEG; that is, the
mixture with the highest selectivity curve was the 70 % DEG+30 % NMP mixture.
The selectivity is reduced by increasing temperature for both systems studied, at
10 % DEG and 30 % DEG. However, its effect is rather small. The solid lines in each
figure were obtained using the correlation data obtained by NRTL for each experi-
mental system. The curves obtained by the UNIQUAC model are almost the same,
and therefore are not reported in this work.

4 Conclusions

The effect of adding DEG to the solvent (NMP) is to increase the region of
immiscibility, and decrease the solubility of the aromatic compound. Temperature
increase has little effect in the solubility of the aromatic compound. The distribution
coefficient increases as the selectivity decreases and vice versa. The solvent with
70 % NMP+30 % DEG is the most selective and 90 % NMP+10 % DEG which
had a higher extraction capacity (distribution coefficient with a high value). The dis-
tribution coefficient, in mixtures with 10 and 0 % DEG, is similar; selectivity and
immiscibility regions are greater in the first case, so that the mixture with 10 % DEG
is more useful for extraction of aromatics. Analysis of the region of immiscibility,
selectivity and distribution coefficient is insufficient to decide, from the mixtures
at 0 and 30 % DEG, which may be used in the extraction of aromatics. To make
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a better choice we should consider other properties such as viscosity, degree of
corrosion, thermal stability, toxicity, vapor pressure, etc. Interaction parameters used
in the NRTL and UNIQUAC equations fit well the experimental values and the criti-
cal point. This is an ongoing research (Balderas Altamirano 2003), so one would have
to continue mixing solvents in order to look for the best mixture that can result in the
best selectivity (β) with the best distribution constant (K). This research is important
for those interested in the separation processes or in purification of compounds.
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