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Preface

The importance of computational modeling as a research approach in neuroscience
is recognized today by most researchers in the field. Computational neuroscience is
generally associated with simulations in electrophysiology and neural dynamics.
Recently, an increasing number of  neuroscientists have begun to use computer models
to study and describe neuroanatomy, its subcellular bases, and its relationship with
neuronal activity and function. Other researchers began importing accurate and quanti-
tative descriptions of neuronal structure and connectivity into computer simulations of
neuronal and network physiology. Perhaps owing to the broad range of scales spanned
by these studies, from subcellular structures to very large assemblies of interconnected
neurons, computational neuroanatomy literature is sparse and distributed among the
many technical journals in neuroscience. Nevertheless, a common theme is easily rec-
ognized in all these research projects: the use of computer models, simulations, and
visualizations to gain a deeper understanding of the complexity of nervous system struc-
tures. Neuroanatomy constitutes a central aspect of neuroscience, and the continuous
growth of affordable computer power makes it possible to model and integrate the
enormous complexity of neuroanatomy. It is not surprising that computational neu-
roanatomy research projects are stirring considerable interest in the scientific commu-
nity. Computational Neuroanatomy: Principles and Methods is the first comprehensive
volume discussing the principles and describing the methods of computational
approaches to neuroanatomy.

Computational neuroanatomy is potentially as vast and diverse a field as neuro-
anatomy itself. In an attempt to capture this diversity, each chapter of this book is
contributed by different authors. Each subject is presented and discussed by the experts
who first defined the problems, implemented the methods to solve them, and formu-
lated the principles underlying the solutions (brief biographies of the book’s authors
are provided at the end of the book). Principles and methods of computational neu-
roanatomy are explained through direct examples of recent or ongoing research. All
chapters were peer-reviewed by the editor, by contributors of other chapters, and by
“external” reviewers (who are acknowledged at the end of this Preface).

Most chapters are enhanced by electronic material included in the companion CD-
ROM. Such material includes software packages used in computational neuroanatomy,
step-by-step explanation of the algorithms implemented in such programs, and
examples of data files. In addition, given the important contribution of computer graph-
ics to neuroanatomical models, results reported in the book are further illustrated by
animations and movies in the CD-ROM. While only black and white figures are repro-
duced in print, high-resolution color images are contained in the disk. Finally, the CD
provides links to web sites containing updates and additional information.

Computational Neuroanatomy: Principles and Methods may be used as a back-to-
back text by readers interested in learning the basic strategies, results, and language of
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vi Preface

computational neuroanatomy, or as a unique reference to consult for key material (both
conceptual and technical) in these new areas of investigation. Active researchers and
graduate students should be able to read the chapters as if they were published in a
high-quality scientific journal. Advanced undergraduate students and interested non-
academic thinkers with a background in neuroscience or computer science will also
find this volume highly accessible.

The book was edited with particular attention to the expected diversity in back-
ground of the readership. A natural audience for this publication consists of all neu-
roanatomists interested in novel technology. The use of computers can aid
neuroanatomical investigation and understanding, and the material of this book can be
an inspiring source of research ideas as well as a basic guide to keep up to date with
computational developments. As a rapidly growing field, computational neuroanatomy
is of interest for the neuroscience community in general, and this book provides a
review of many leading research paths. On the other hand, computer scientists and
engineers are turning with ever deeper interest to biological architectures. Nervous
systems are still remarkably superior to digital computers and artificial neural networks
in a variety of computational and cognitive tasks, and a crucial reason is their structure.
This book constitutes an intellectual bridge between information technology and neu-
roanatomy. Finally, the tremendous impact that computer graphics has had and will
continue to have in education makes this material also useful for academic instructors
involved with brain science, including neurologists, psychologists, biologists, and
physicists.

Structural and functional human brain imaging and mapping is contributing enor-
mously to the advancement of neuroscience. Neuroimaging is obviously anatomical in
nature, and it involves a great deal of computational analysis and processing. However,
most of the aspects of computational neuroanatomy described in this book revolve
around the neuron as a fundamental brick of brain structure and function. Readers
interested in the issues of computational neuroanatomy related to brain mapping should
refer to the excellent recent publications specifically dedicated to neuroimaging.

Naturally, different research groups focus on different scales. Consequently, this
book is organized in three main parts. Part One deals with single neurons and their
internal structures, particularly dendritic morphology and its interaction with single-
cell electrophysiology. Part Two discusses neuronal assemblies, axonal connectivity,
and large-scale, anatomically accurate networks. Finally, Part Three tackles the major
issues of integration of the massive knowledge necessary to describe (and generate)
completely accurate neuroanatomical models at the system level. A detailed descrip-
tion of each chapter is beyond the scope of this preface. However, the first introductory
chapter provides a review of several recent developments in computational neu-
roanatomy and introduces the subsequent chapters in this context. In addition, a sum-
mary of the contents is provided by the abstracts of each chapter.
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1
Computing the Brain and the Computing Brain

Giorgio A. Ascoli

ABSTRACT

Computational neuroanatomy is a new emerging field in neuroscience, combining
the vast, data-rich field of neuroanatomy with the computational power of novel hard-
ware, software, and computer graphics. Many research groups are developing scien-
tific strategies to simulate the structure of the nervous system at different scales. This
first chapter reviews several of these strategies and briefly introduces those that are
expanded in the subsequent chapters of the book. The long-term end result of the col-
lective effort by researchers in computational neuroanatomy and neuroscience at large
will be a comprehensive structural and functional model of the brain. Such a model
might have deep implications for scientific understanding as well as technological
development.

1.1. INTRODUCTION

The modern scientific investigation of nervous systems started just over a century
ago with the work of Santiago Ramon y Cajal (1). Cajal’s “neuron doctrine” was revo-
lutionary for two main reasons. On the one hand, it showed that, like all the other
organs in the body, the brain is constituted by cells. On the other hand, it began to
reveal the incredible complexity of the shape of brain cells (glia and, in particular,
neurons) and their potential interconnectivity. These findings inspired the principal
axiom of modern neuroscience: the key substrate for all the functions performed by
nervous systems, from regulation of vital states, reflexes, and motor control, to the
storage and retrieval of memories and appreciation of artistic beauty, lies not in some
“magic” ingredient, but rather in the structure and assembly of neurons. Over the past
hundred years, a series of fundamental discoveries about synaptic transmission, pas-
sive and active electric conductance, neurotrophic factors, structural and functional
plasticity, development, and topographical representations (2) shaped the neurosciences
into a highly interdisciplinary field, overlapping with chemistry, biology, physics,
informatics, pharmacology, neurology, and psychology. Yet, anatomy remains the chief
aspect in the investigation of the brain, embodying and framing the contributions of all
other disciplines to our understanding of nervous systems. The ultimate, and arguably
the hardest, challenge to human knowledge consists of understanding how organic
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matter gives rise to feelings, emotions, and logical thinking. The solution resides in
those millions of millions of neurons and millions of billions of connections.

Understanding how cognition arises from the brain may seem like a hopeless goal, if
by “understanding” a process we mean creating a mental model of its mechanism. In
fact, the incredible complexity of neuroanatomy has so far prevented us from synthe-
sizing the huge amount of collected experimental data into a complete and organic
functional scheme. This grand task, however, might be achieved if we employ power-
ful computers to aid our mental model. In the last decade of the twentieth century,
while the price of home computers has remained approximately constant (between
$1000 and $2000), available personal computers have increased their speed by 100-
fold (from 10 MHz to 1 GHz), their fast memory by 1000-fold (from 1 MB to 1 GB),
their local storage capacity by 400-fold (from 100 MB to 40 GB), and their portable
storage capacity by 1000-fold (from 720 kB to 650 MB) (3). In other words, the evolu-
tion of microprocessors outperformed the 1965 “visionary” prediction by then-Intel
chairman Gordon Moore that computational power would approximately double every
18 mo (3).

It is unlikely that “Moore’s Law” will hold indefinitely, due to chemical and physi-
cal limits of computing matter. However, progress has also been achieved through
novel concepts and applications in computational technology (such as the Internet over
the past 15 yr), and new such innovations are expected in the future. Critics of Moore’s
law predicted that a “plateau” in the development of computer hardware should have
been already visible now (and it is not). On the opposite spectrum of opinions, several
experts hold that the progress of computational power grows with a dual exponential
rate. In other words, its speed of evolution would double at fixed intervals of time (4).
If this is the case, we should face an information “singularity” within a few decades: at
that point, the rhythm of increase of computational speed and capacity will outpace the
time scale of human reasoning (seconds to milliseconds), and the time of progress of
information technology will “collapse”. Whether we reach a plateau or a singularity, in
the next few decades we will witness a historical transition in the evolution of science
and computation.

Whatever the future holds, the present spectacular growing power of computers
appears to be suitable to meet the challenge of a comprehensive description of the
nervous system. The combination of neuroscience and computers has already produced
dramatic results. In experimental research, computers have fostered progress by allow-
ing quicker and more reliable setups and results. We have seen the emergence of a new
field, computational neuroscience, which studies and develops computer-assisted mod-
els of neurobiological processes. Simulations of different neural structures at various
scales, along with quantitative comparisons of model performance to biological data,
have contributed extensively to our understanding of the functional connections
between the system level (accessible by the study of behavior) and the microscopic
level (accessible by molecular and cellular techniques). Examples of recent successful
computational studies include a variety of subjects, such as visual cognition (figure–
ground segregation [5], object recognition [6], attention [7], but also stereopsis [8]),
eye saccadic control (9), memory encoding at the neuron (10) and network (11) levels,
the role of inhibitory interneurons in the relationship among neuronal oscillations (12),
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synchrony, physiological rhythms and pathological states (e.g., epileptic seizures [13]),
and even the mechanism of pain and neurological rehabilitation (14). In all cases, com-
putational modeling plays an integrating role in the study of the structure–function
relationship by combining cellular and subcellular physiology, psychophysics, and
mathematical analysis.

While computational neuroscience has a relatively long history in electrophysiologi-
cal simulations (such as passive and active conductances implemented in “compart-
mental” models of neurons and networks [15,16]), its potential for neuroanatomy has
only recently gained enthusiastic appreciation in the scientific community. Together
with this enthusiasm, the availability of neuroanatomical databases and the most recent
development of computer graphics have resulted in a plethora of high-level research
projects focusing on computational modeling of neuroanatomy. These studies range
from the description of dendritic morphology and the characterization of its relation-
ship with electrophysiology to the analysis of the structural determinants of higher
brain functions via the detailed mechanism of neuronal assembly into functional net-
works. Despite this wide range of scopes and scales, a considerable number of recent
excellent scientific publications shared the common approach of using computational
simulations to investigate neuroanatomy and its influence on neuroscience at large,
thus virtually defining the new field of computational neuroanatomy.

1.2. COMPUTING THE BRAIN

Cajal’s theory put the neuron center stage. Today, we know that neurons are them-
selves complex computational machines. Theories of dendritic, somatic, and axonal
functions have matured well beyond the traditional scheme of “input–integration–out-
put”. Single neurons and their arbors are now considered sophisticated time filters (17),
coincidence detectors (18), internally distributed devices of local memory storage
(10,19), and dynamic metabolic assemblies with high internal spatial specificity
(20,21), just to mention but a few examples (see also [22]). Not surprisingly, neuronal
structure has been characterized as increasingly complex with each major discovery.

If neurons are not the elementary or “atomic” computational units of the brain, which
substructures play this role? For a while, neuroscientists hoped that synapses would be
the key to the mystery of nervous system computation. Further studies indicated that
presynaptic and postsynaptic processes (mostly in the axons and in the dendrites,
respectively) could independently modulate synaptic activity. Moreover, the simple
early distinction between excitatory and inhibitory synapses has been put in a much
broader and more complex perspective by the discovery of a large number of
neuromodulatory neurotransmitters. More recently, much attention has been paid to
the mutual influence between genetic expression in the soma and activity in axons and
dendrites, involving issues of intracellular trafficking and communication. It is doubt-
ful that any single piece of the puzzle will provide a complete answer.

An example of the issues raised by the ultrastructural investigation of neurons is
provided by the characterization of spines, little mushrooms covering the dendritic
surfaces of many neuronal classes in the central nervous system. Hypotheses on the
function of dendritic spines have ranged from plastic loci of synaptic input (for a re-
view, see [23]) to neuroprotection (24). Recently, electron microscopy has allowed an
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in-depth study of spine anatomy, revealing a great variability in size, shape, location,
and clustering (25,26). Further functional clues may derive from the quantitative de-
scription of other related subcellular structures, including actin cytoskeleton (27) and
spine-specific protein complexes (28). The quest for a complete structural (and func-
tional) characterization of neurons must ultimately focus on proteins, their metabo-
lism, regulation, and dynamics. For the time being, however, much still needs to be
discovered about neuronal morphology, and computational studies have, so far, mainly
considered dendrites as the “elementary” structural objects for modeling purposes. For
the scope of this book, dendrites will constitute the first step in the bottom-up path
towards an integrated structural model of the brain.

Neurons can be classified according to a variety of criteria, including location within
the nervous system, main neurotransmitter(s) released, presence of specific protein
markers, dendritic and axonal structure, and interconnectivity with neurons of other
classes. Dendritic morphology is traditionally a fundamental criterion in neuronal clas-
sification, partly because it is immediately captured by optical microscopy under stain-
ing conditions discovered and optimized over a century ago (1). Neurons in different
morphological classes range widely in dendritic size (from a few micrometers to sev-
eral millimeters of spatial extent) and complexity (from a handful to thousands of
bifurcations per tree). This complex variability makes a large number of morphologi-
cal classes easily recognizable by few peculiar characteristics, and the same neuronal
class can be often recognized across species that are philogenetically very distant. Yet
even within a given species and morphological class, no two neurons are ever exactly
alike, and individual cells are remarkably different. This is analogous to different
classes of botanical trees: a person can walk for miles and miles in an oak forest, seeing
thousands of oak trees. These trees vary greatly in size, number of branches, bifurca-
tion angles, etc. Yet each tree is clearly an oak tree and can be immediately recognized
as different from a pine tree or a palm tree.

From a mathematical point of view, the interclass and intraclass variability of den-
dritic (and botanical) morphology can be captured statistically. Let us suppose to char-
acterize trees by three geometrical parameters: the total surface area, the average
amplitude angle at bifurcations, and the average diameter ratio of the two branches
(thicker over thinner) in all bifurcations. In this scheme, every tree can be represented
as a point in 3D, with each Cartesian axis quantifying one of three above measure-
ments. If we analyze various neurons and plot them according to this classification, we
obtain various clouds of points. It is very unlikely that two neurons will have identical
measurements in these three parameters. However, neurons belonging to the same
morphological classes will be closer to each other than to neurons belonging to differ-
ent classes (Fig. 1).

Thus, it appears that neurons can be classified morphologically based on how they
cluster together upon quantitative analysis (29). In general, a much larger number of
parameters is measured for morphological classification (in the example above, we
have used only three parameters for convenience of graphical representation). Cluster
analysis can be carried out precisely and quantitatively (30) and can help define major
morphological classes as well as subclasses (31): in the example above, one can imag-
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ine analyzing many more neurons such that, “zooming in” on each cloud, several
smaller clusters would become apparent.

Starting from the late 1970s, Dean Hillman published a series of influential papers
proposing that a great deal of the intraclass and interclass variability of dendritic mor-
phology could be captured by a restricted number of fundamental parameters of shape
(32,33). Hillman’s description reflected important known or novel biophysical prin-
ciples, and most of his parameters had important subcellular correlates, such as mem-
brane metabolism and microtubules dynamics. Hillman’s most important insight was
that many morphological properties, which so peculiarly characterize different neu-
rons, can in fact emerge from the complex interactions among the fundamental or basic
parameters. Thus, different morphological classes could be characterized by different
sets of statistical distributions describing the basic parameters, as measured from the
experimental data. Within a given morphological class, the diversity of individual neu-
rons would be reflected by the natural variability of the measured basic parameters.

Fig. 1. 3D scatter plot of morphological parameters measured from neurons belonging to
various morphological classes. Measured parameters are the average diameter ratio between
the larger and the smaller branches at bifurcations (height), total surface area (width), and aver-
age amplitude angle at bifurcations (depth). Three examples of each neuronal class are illus-
trated: (clockwise) motoneurons (stars, 4 neurons measured), Purkinje cells (filled circles, 3
neurons measured), CA1 pyramidal cells (empty squares, 5 neurons measured), and Dentate
granule cells (crosses, 6 neurons measured). Surface area of motoneurons has been reduced 10-
fold in the 3D scatterplot. Scale bar: Granule cells and Purkinje cells, 200 µm; motoneurons, 1
mm; pyramidal cells, 300 µm.
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Although we now know that Hillman’s original formulation fails to capture all
aspects of dendritic morphology quantitatively (34–36) (see also Chapter 3), these pio-
neering studies inspired many researchers to further explore, elaborate and refine simi-
lar ideas and principles (35–39). With the advent of personal computers and the
increasing availability of digital morphological data collected by semiautomatic trac-
ing, many of these anatomical descriptions were “translated” into algorithms. The sta-
tistical characterization of neurons was then implemented as stochastic sampling
(Monte Carlo method). Fundamental or basic (and now, algorithmic) parameters could
be measured quantitatively and automatically from digital data. Algorithms would then
sample random numbers within the appropriate statistical distributions describing the data.

Hillman’s description aimed at capturing the statistical morphological properties of
adult neurons and was almost exclusively based on local and intrinsic parameters, such
as branch diameter. Other models focused on the growth process and incorporated envi-
ronmental or global influences (40–44). Most data on dendritic morphology available
in the literature focus on the “dendrogram” properties, i.e., topology (pattern of branch-
ing) and internal geometry (length, diameters, and their combinations). Most of the
models mentioned above aim at reproducing dendrograms. The 3D arrangement of
dendrites in space, however, constitutes a difficult and important problem in the quan-
titative description of dendritic morphology. Few studies even define appropriate
parameters for such a complex characterization (45–47). Only recently have computa-
tional models attempted to incorporate 3D dendritic orientation in simulation designs
(48–50).

The study and parsimonious description of motoneuron morphology by Burke and
coworkers in the early 1990s (36) constituted one of the first successful attempts to
implement an algorithmic representation of dendrograms in a computer simulation.
The same laboratory (which also contributed many important investigations in experi-
mental, computational, and theoretical electrophysiology) was also among the first to
attempt a quantitative description of the 3D architecture of dendrites (45). In Chapter 2
of this book, Burke and Marks review these earlier studies and describe their ongoing
efforts to integrate the description of dendrograms with those of the spatial orientation
of dendritic branches and of packing density in a coherent stochastic formulation.

Recently, the editor’s laboratory implemented several variations of Hillman’s algo-
rithm, as well as Burke’s model, in a software package called L-Neuron (39). L-Neu-
ron “reads” statistical distributions of basic parameters measured from digitized
experimental data and generates “virtual neurons”. These virtual neurons can be quan-
titatively compared to the original real cells by measuring any parameter not used by
the algorithm (“emergent parameters”). Any discrepancies between real and virtual
cells may provide feedback on the anatomical rules underlying the algorithms. Further
rules can be elaborated, implemented, and tested, until a better description is achieved
(Fig. 2). Some of the algorithms implemented in L-Neuron proved satisfactory in the
description of Purkinje cells and motoneuron morphology (35). Chapter 3 presents a
case study in which the first implemented algorithms fall short of an accurate descrip-
tion and shows the strategy illustrated in Figure 2 “in action”. A beta version of L-
Neuron (running under Unix and DOS) is released in the companion CD-ROM. The
program to extract quantitative measurements from digital data (e.g., both basic and
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emergent parameters), called L-Measure (51), is also described in chapter 3 and is
available in the CD-ROM.

Chapter 3 shows how the computer generation of dendritic morphology constitutes
an exercise towards a complete and accurate anatomical description of single neurons.
Although remarkable progress has been achieved since Hillman’s seminal studies, the
problem is still open, and different principles need to be “tried out”. Numerous
examples in the literature suggest that specific biophysical rules could be appropriate
to describe neuritic branching (52–55). In Chapter 4, Cherniak and colleagues review
their studies indicating that some of the fundamental correlations underlying the “opti-
mization” of dendritic structure reflect physical principles, such as energy minimiza-
tion.

Although attempts to model dendritic growth and adult neuronal morphology have
given encouraging results, in nature, anatomy and physiology can never be completely
separated from each other. Neuronal structure and development are affected by the
electrical activity of the growing cell as well as of neighboring neurons. While experi-
mental neuroanatomy is the oldest branch of neuroscience, and computational neu-
roanatomy the newest, the field of electrophysiology has thrived with the parallel
advancements of experiments and computer models. Experimental electrophysiologi-
cal findings are framed within a quantitative model whenever possible, and computer
simulations are most often based on experimentally measured data. Until recently, com-
putational studies in electrophysiology almost entirely disregarded neuroanatomy,
reducing neuronal structures to balls and sticks and concentrating on the biochemical
and biophysical phenomenological aspects. In the last decade, however, investigators
have started paying more attention to the real structures in their electrophysiological
simulations. This has been made possible, in part, by the increasing availability of
digital morphological data. Most importantly, this trend has been facilitated by the

Fig. 2. Summary of the research strategy to simulate dendritic morphology (neurons are
retinal ganglion cells).
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realization that, in order to study the relationship between structure and activity, and
between structure and function, structure, indeed, needs to be taken into consideration.

The leading software packages for electrophysiological simulations, such as Gen-
esis (16), Neuron (56), and, for large-scale parallel simulations, Neosim (57), are nowa-
days fully compatible with a compartmental representation corresponding to real or
realistic anatomy. Even more importantly, anatomy is becoming the representation of
choice in the modeling community for integrating knowledge about compartmental
properties including distribution of active ionic channels, synaptic receptors or meta-
bolic networks, intracellular recording patterns, and calcium dynamics (58). In Chap-
ter 5, the developers of Genesis describe their workspace environment to integrate and
represent information relevant to electrophysiological models.

If the biochemical machinery underlying electrical activity in neurons is selectively
compartmentalized in specific subcellular locations, it should be apparent that anatomy
must be considered when building biologically accurate computational models of neu-
ronal activity. However, how can one study the specific influence of structural differ-
ences among neurons on their firing patterns and their function? Neurons are diverse
both in their morphology and in their biochemical contents, and both sources of vari-
ability affect electrical activity. From the experimental standpoint, studying the struc-
ture–activity relationship in neurons directly is extremely difficult, but computer
simulations constitute a powerful alternative. In classical computational models,
anatomy is simplified or kept “constant”, and the influence of various distributions of
active and passive properties on neuronal firing is assessed. With a complementary
approach, one can keep the biophysical model constant and implement it on different
dendritic structures. In this way, investigators characterized the effect of morphologi-
cal differences among different neuronal classes on their firing patterns (59) and on the
dendritic back- and forward-propagation of action potentials (60). These findings were
recently extended by an analysis of topological influences of firing properties (61) and
by studies of the electrophysiological effect of dendritic variability within the same
morphological class (62,63). In Chapter 6, Krichmar and Nasuto illustrate this strategy
and review the experimental and computational evidence on the relationship between
structure and activity in single neurons.

While an accurate anatomical representation of dendritic structure makes electro-
physiological simulations more biologically plausible, it increases the complexity of
the models. Single neurons can be represented by many thousands of compartments,
and the choice of representation becomes both somewhat arbitrary and crucial for the
outcome of the simulation. A few excellent publications have recently appeared that
discuss technical aspects of compartmental modeling at length (15,16,64). However,
for research projects with a specific focus on neuronal anatomy, several practical issues
should be considered when preparing electrophysiological simulations. Chapter 7 in
this book is specifically dedicated to these aspects. This chapter also describes a series
of software tools for spike train analysis (65) and morphological format conversion for
electrophysiological simulations, several of which are included in the companion
CD-ROM.
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1.3. FROM NEURONS TO NETWORKS

Although individual neurons are extremely complex structures, it is important to
maintain the perspective that the functions and computations carried out in nervous
systems are generally supported by assemblies of neurons rather than by individual
cells. How can we connect the levels of single neurons (and their substructures) with
the level of networks of many neurons? While most aspects of single neuron morphol-
ogy described above are being actively investigated in computational neuroanatomy,
several researchers have started employing computer simulation and visualization tools
to explore the even more complex systems of neuronal assemblies. Part II of this book
is a collection of chapters representing a variety of these approaches.

The spatial location of a neuron in the nervous tissue strongly affects its connectiv-
ity in the network and, thus, the role it plays in the overall function of the system. This
relationship between space and activity underlies the broad concept of brain functional
maps, typically exemplified by the visual receptive fields characterized by Hubel and
Wiesel (66). In the primary visual cortex, neurons appear to be spatially arranged in
columnar structures that are not separated from each other by any physical boundary,
but rather are segregated functionally. Neurons in each column respond to the presence
of lines or bars of a specific orientation and in a specific location of the visual field.
Thus, the information represented in the cortex (“function”) corresponds to (or “is
mapped on”) a specific location in the cortex. Starting from Hubel and Wiesel’s dis-
covery, much work has been focused on elucidating the functional mapping of the
cerebral cortex in rodents and primates alike, using both electrophysiological tech-
niques (as in the original work by Hubel and Wiesel) as well as modern imaging (67).

In trying to connect the level of analysis and explanation considered in the first part
of this book (dendritic morphology) with functional mapping, the question naturally
arises of the relationship between dendritic structure and activity not just in single
cells, but rather within a cell assembly. How do dendritic morphology and the spatial
location of neurons interact in contributing to the system level activity of the nervous
system? Unfortunately, the spatial resolution of functional imaging is far too limited to
allow detailed investigation of dendritic activation in nervous tissues. Even in electro-
physiological investigations, extracellular or somatic recording techniques can provide
only indirect information on dendritic activity, while intradendritic recording is not yet
practical enough to allow coverage of substantial space within the tissue. In any case,
the experimental techniques currently available for the structural investigation accom-
panying electrophysiological studies (typically, staining and reconstruction) fall short
of providing integrated information on both dendritic morphology and multiple neu-
ronal locations.

Recently, Gwen Jacobs’ laboratory used the cricket sensory system as the structure
of choice to investigate the multiple interrelationships among dendritic morphology,
relative spatial location of neurons, electrophysiological activity, and information en-
coding (function) (68,69). The use of an invertebrate model system provided the neces-
sary simplification to analyze in detail and integrate the many aspects underlying the
interplay between structure, activity, and function. Chapter 8 reviews the mixed
experimental and computational approach that allowed Jacobs and collaborators to
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reconstruct the morphology, electrophysiological activity, and spatial relationship of
several cricket sensory neurons. The result is a system of detailed 3D probability maps
representing (and predicting) the multicell patterns of dendritic activation and connec-
tivity that correlate with a given sensory input (“information”).

Vertebrate central nervous systems are too complex to isolate regions in which single
neurons can be precisely mapped in terms of their detailed spatial location, relative
orientation, dendritic morphology, connectivity, and activity. Even probabilistic char-
acterizations usually focus on specific aspects (cell density, regional connectivity, etc.)
without connecting the subcellular and multicellular levels. This is particularly true for
subcortical areas of mammalian brains, where the functional organization of the maps
(if any) is largely unknown. A typical example is provided by the basal forebrain, a
region believed to be involved in a variety of crucial cognitive, emotional, and auto-
nomic functions. The basal forebrain is characterized by an extreme chemical and ana-
tomical heterogeneity at the neuronal level and by a remarkable complexity in the
pattern of projections to the rest of the brain. For several years, the laboratory of Laszlo
Zaborszky has used computational methods to assemble, analyze, and synthesize large
amounts of sparse data on the basal forebrain (70,71). In Chapter 9, they review their
recent efforts, from the reconstruction of electrophysiologically identified neurons to
the assembly of a cell population model.

Another example of the role of computational neuroanatomy in facilitating our
understanding of brain areas whose fundamental organizational principles escape tra-
ditional anatomical approaches is provided by the studies of the brain stem in Jan
Bjaalie’s laboratory (72,73). In parallel investigations of the cat auditory system and
the rat cerebro-cerebellar pathways, Bjaalie and colleagues have adopted a variety of
experimental and computational techniques, including axonal tracing and the use of
specialized computer software to map, reconstruct, and visualize networks at the sys-
tem level, with the goal to render massive anatomical data in 3D space. In Chapter 10,
they describe both the methods and the principles of the analysis that led them to estab-
lish novel principles of sensory map transformation.

The research efforts of Zaborszky and Bjaalie show the great potential of computa-
tional neuroanatomy in the integration of the experimental data in highly complex sys-
tems. This approach is complementary to the attempt to simulate neuronal structure
and activity with computer models constructed bottom-up, described in Part I of this
book. The incompleteness of the data and the complexity of most brain regions makes
a bottom-up approach to the system level not feasible at this stage. However, the fast
(and increasing) rate of data acquisition and sharing in the neuroscience community,
and the ability to integrate and efficiently interpret these data, could soon allow a neu-
roanatomical computer model of an entire brain region at the detailed level of single-
cell morphology. In order to make such a future model functional in terms of
electrophysiological activity, it will be essential to include the generation of suitable
network connectivity and the description of the underlying axonal navigation.

Dendritic morphology and axonal navigation are naturally related to each other, and
the attempts to model them separately are but coarse simplifications. Among the first
researchers to employ computational methods to study neuronal anatomy, van Pelt and
van Ooyen, have developed sophisticated models to simulate both dendritic geometry
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and axonal navigation and connectivity (42,74). One of the main tenets of van Pelt and
van Ooyen’s approach is competition among growing neurites. In their models, den-
drites compete for growth within trees or neurons, and axons compete for dendritic or
somatic targets. This principle reflects the limited resources naturally available and
also allows a population-based implementation, which constitutes an ideal computa-
tional tool to bridge single-neuron and network level neuroanatomical models. In Chap-
ter 11, van Pelt and van Ooyen demonstrate how their simulations accurately capture a
great amount of anatomically properties of real neurons, such as the topology of their
branching patterns and the kinetics of neuritic elongation.

The regulation of dendritic and axonal growth by competition at the level of neu-
ronal populations is implemented in Stephen Senft’s software program ArborVitae
(43,48). In ArborVitae, cell bodies, spatially distributed in nuclei or layers, give rise to
dendrites and axons that can grow according to internal rules as well as to distance-
dependent repulsion or attraction from other structures. The program is flexible and
complex and has been used to generate a variety of anatomically plausible neuronal
networks. Given a specific algorithm for axonal navigation, the exact spatial location
of the source and targets, shape of the tissue, and presence of barriers can drastically
affect the connectivity of the network. For this reason, it is important to integrate the
simulation algorithms with brain atlas data in order to use ArborVitae to develop neu-
roanatomical knowledge, novel hypotheses, and intuitions. In Chapter 12, Senft dis-
cusses the use of experimental 3D maps of the mouse brain gray and white matter as a
substrate to model axonal navigation in a realistic environment, in the context of the
ArborVitae implementation.

Computer simulations of single neuron morphology can be based on parameters
extracted directly from the experimental data, and the generated virtual neurons can be
quantitatively compared with their real counterparts. In future attempts to create ana-
tomically accurate simulations of complete networks, where can the experimental data
on axonal navigation be obtained? General information available from atlases does not
contain enough detail to allow the construction of a single neuron-based bottom-up
model. Single-cell axonal tracing experiments are time consuming, rarely complete,
and usually lack the necessary “panoramic” view of the surrounding tissue regions. A
possible approach is to utilize the maps developed and described by Bjaalie’s group
(Chapter 10). An alternative is provided by a relatively novel imaging technique, diffu-
sion tensor imaging (DTI). In DTI, a magnetic resonance signal is used to track the
diffusion of water molecules in the living tissue. Given the high anisotropy of fiber
tracts in nervous systems, DTI can actually map axonal pathways at a remarkably
detailed level (75,76). In addition, DTI is noninvasive, thus allowing data collection
from living humans under a variety of physiological and pathological conditions. In
Chapter 13, Susumo Mori presents the principles of DTI and its potential applications
to neuroscience and computational neuroanatomy.

1.4. THE COMPUTING BRAIN

The chapters in Part II of this book show the tremendous cellular complexity of
nervous systems at the network-to-regional level. While computer simulations can be
applied directly to investigate the structure–activity relationship at the single-neuron
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level, the same approach at the system level encounters difficult problems of detail and
resolution that require the development of dedicated technical solutions. Biologically
plausible models based on real data are now being developed and implemented for
dendritic morphology, yet the assembly of multineuron networks with the same level
of detail faces the challenge of data acquisition and organization. Current progress
supports the hope that enough information will be collected “top-down” to allow the
generation of a comprehensive bottom-up model of the brain. This model will be an
exceptional tool for the investigation of the real brain and also a potential source of
inspiration for the development of new machines. Will anatomy be an essential part of
such a model? Absolutely. It might be present in a highly abstract form, where “ana-
tomically realistic” shapes and connections are substituted by more compactly
described functionally equivalent units. But the principles of anatomy will have to be
part of a comprehensive model of the brain as long as we hold that structure underlies
activity (and thus function).

The issue of knowledge integration and representation is thus encountered in system
level computational neuroanatomy in at least two related strategic stages. First, a usable
form of knowledge must be made available to the neuroscientist to make sense of the
incredibly complex structural data of the brain and to allow the creation of data-based
computer models at the network level. Second, the functional principles of the ana-
tomical structure must be extracted, quantitatively formulated, and implemented in or-
der to simulate the brain computational processes in a software model. In Part III of
this book, knowledge integration and representation constitute the central focus in the
characterization of the brain and its computing abilities.

If the internal structure of neurons were “modeled away” completely, the brain could
be functionally represented as a gigantic connectivity network. The neuroscience lit-
erature and textbooks are full of examples of coarse connectivity knowledge. Typical
examples are the statements that “retinal ganglion cells project the optic nerve fibers to
the lateral geniculate nucleus of the thalamus,” or that “dentate gyrus granule cells
project the mossy fibers to the CA3 region of the hippocampus proper”. This knowl-
edge is coarse, because it represents a gross oversimplification of reality. The real situ-
ation is more complex, because almost every brain region is anatomically and
functionally divided in a large number of subregions (lateral geniculate nucleus of the
thalamus and the CA3 region of the hippocampus proper being no exceptions). Each of
these subregions is typically heterogeneous with respect to morphological and chemi-
cal classes of the constituting neurons (see e.g., Chapter 9). In any case, even at the
coarse level exemplified above, knowledge about major connectivity projections in the
brain is still incomplete.

Let us assume that, after decades of progress, the knowledge about brain connectiv-
ity is “out there” in the neuroscience literature at whatever level of detail may be needed
to construct a comprehensive functional model. Even in this hypothetical situation, the
complexity of the system would prevent an intuitive understanding or representation.
This fundamental problem in neuroanatomy has been recently approached by several
groups with a computational perspective (77–80). Typically, network connectivity
among and within brain regions can be described and analyzed statistically as a graph
model. Although many brain areas have been recently investigated at this level, the
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primate cortical visual system has become a “test model” for these techniques. In Chap-
ter 14, Hilgetag and colleagues describe the basic mathematical concepts of cluster and
graph analyses and review the main results recently obtained with these approaches. It
is important to note that knowledge about brain connectivity is generally not absolute
and uncontroversial. On the contrary, many hypotheses of brain connectivity are
derived indirectly or are extrapolated from experimental results and may be controver-
sial. A recent knowledge-based computational neuroanatomy project, called
Neuroscholar, is addressing this issue at a variety of scales (81). In Neuroscholar, neu-
roanatomical data is computationally represented to allow the explicit differentiation
among alternative interpretations of the same data, while maintaining the source data-
base of the original literature report and, where possible, links to available raw data.

The relationship between brain connectivity, activity, and functional mapping is still
not well understood, but computational approaches have produced several interesting
results where basic experimental data are available. As mentioned above, the primary
visual cortex is organized in columns with respect to the represented object location
and orientation in the visual field, as well as ocular dominance. These complex maps
are formed during development based on the incoming electrophysiological activity
from the retina via the thalamus. In Chapter 15, Perpinan and Goodhill present some of
the computational principles underlying the formation of these maps. Their model suc-
cessfully explains many of the emergent properties of visual columnar structure and is
well suited to interface region level analysis with lower level principles of axonal navi-
gation (82) (see e.g., Chapter 12). The columnar organization of the cerebral cortex
allowed neuroanatomists to develop a surface-based mapping representation (83,84).
Under the assumption that the “canonical microcircuit” in the column is basically the
same throughout the neocortex, the relationship between function and structure can be
sought with a unique emphasis on location on the surface. In reality, the structure and
function within the canonical column, and their variability throughout the cerebral cor-
tex, are not yet fully understood, although recent experimental and computational
progress have advanced this field rapidly (85,86). The creation of a large-scale ana-
tomically realistic model of the neocortex is, as of yet, premature. However, multiscale
models with at least a plausible anatomical foundation are starting to appear in the
neuroscience literature. The use of data-based knowledge allows, in certain cases,
the connection between neuron level compartmental simulations (see Chapters 5–7)
and function emerging from connectivity schemes and higher level models (87). In
Chapter 16 Rolf Kotter and colleagues present an original working example of a
multiscale simulation of activity propagation in the primate visual cortex, using simpli-
fied compartmental models of neurons within a canonical microcircuit as the building
units to provide network level insights into the functional anatomy of the visual system.

What are the necessary components of a complete neuronal level anatomical model
of a brain region that can be used to simulate network connectivity and (with adequate
computational power and parallel processing [57, 88]) electrophysiological activity?
A first step could be the deployment of a very large number of detailed neuronal mor-
phologies throughout virtual space representing tissue regions and their connectivity
with intrinsic and extrinsic axonal pathways. Recently, a pilot study of this approach
has been attempted for the hippocampus (43). However, for the model to be accurate, it
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is necessary to model or reconstruct the spatial boundaries of the given brain region
from the experimental data (see also Chapter 10). One possibility is to assemble 2D
images from a section atlas into a 3D virtual reality reconstruction. The editor’s labora-
tory has produced such a surface for the granular layer of the dentate gyrus in the
hippocampus (89). Since granule cells are roughly perpendicularly oriented with
respect to this surface, it is possible to computationally distribute reconstructed or simu-
lated neurons in the virtual dentate gyrus in an anatomically accurate fashion (Fig. 3).
The next step is to use reconstructed data of incoming axons from the entorhinal cor-
tex, also digitally available (90), to model the main extrinsic synaptic inputs from the
perforant pathway. Although the sheer mass of data in such a realistic model makes
progress extremely time-consuming, it would appear that this ambitious project can be,
at least in principle, completed.

Surface reconstruction from histological sections is limited by tissue distortion or
loss and by the lack of a systematic and accurate method to align sections (see also
Chapter 12). An alternative is to use microscopic imaging such as ex vivo magnetic

Fig. 3. A system level anatomical model of the rat dentate gyrus. The granular layer surface
is reconstructed in 3D from experimental atlas sections. One million granule cells (20,000 rep-
licas of 50 reconstructed neurons) are stochastically distributed within the layer, with primary
axis oriented perpendicular to the surface. (A) A saggital view of the whole dentate gyrus, from
the medial plane. Only one in a thousand cells is virtually stained (“pseudo-Golgi”). The
canonical “C-shaped” slice of the dentate gyrus is perpendicular to the plane of the page. (B–D)
Progressive zoom-in on the model. A color version of these images, as well as several anima-
tions, are included in the CD-ROM. Based on simulations by Ruggero Scorcioni.
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resonance imaging (microscopic MRI). In this technique, the whole brain of an animal
(typically mouse or rat) is excised and, while maintained alive with perfusion of physi-
ological solutions, extensively recorded for nuclear magnetic resonance signals. The
very long possible exposure (12–24 h) allows resolutions comparable to those avail-
able in stained atlas sections (91,92). This technique can thus be used to obtain “al-
ready reconstructed” 3D surfaces of brain regions whose boundaries are well delineated
by water content contrast. The optical sectioning performed in the MRI scan avoids the
problems of distortion and alignment typical of physically sectioned histological prepa-
rations. Microscopic MRI also has a great potential in the applied field of toxicology
(93): on the one hand, altered water content is a good marker for neuropathological
states, while on the other hand, several drugs contain atoms such as 19F that are not
naturally present in the tissue and can be detected by nuclear magnetic resonance. In
Chapter 17, Lester and colleagues review the computational principles and applica-
tions of microscopic MRI and other related imaging techniques to quantitative
neurotoxicology.

If a comprehensive model of brain anatomy and physiology is to be used for the
investigation of activity underlying information processing and ultimately cognitive
functions, it is legitimate to consider the limitation of any investigation based on
the brain of species other than human. High resolution ex vivo microscopic MRI is
performed on small animals, and it requires their sacrifice. The resolution of
noninvasive imaging techniques typically used on humans, such as positron emission
tomography (PET) and functional or structural MRI, is still far from the neuron-based
level considered in this book (for a recent quantitative comparison among imaging
techniques, see [94]). The resolution of noninvasive imaging might eventually allow
the collection of surface-based data that can be used in the construction of a bottom-up
model of the brain (see also Chapter 13). In such a model, cellular data will most likely
be a hybrid collection from different species. For the time being, neuroscientists are
imaging human and nonhuman brains in parallel in search of a complete explanatory
bridge between cellular structure, function, animal models, and human-level cognition
(67,95). It should be noted here that the human brain imaging community is very active
in computational neuroanatomy research. The emphasis of this book is on bottom-up
models with a strong cellular basis. For an extensive description of imaging-specific
computational neuroanatomy principles and methods, the reader is referred to other
recent publications (e.g., [67]).

An alternative to noninvasive human brain imaging in the structural investigation of
the human brain is provided by the high resolution histological examination of post-
mortem tissue. Nowadays, it is extremely difficult to obtain and destructively analyze
enough human brains to allow for a meaningful statistical analysis of the anatomical
inter-individual variability. However, large human post-mortem histological data sets
collected in the past are available for reanalysis and mining. Using one such database,
Shankle and colleagues have found evidence of continuous increase of the number of
neocortical neurons throughout the first 72 mo of postnatal development (96,97). In
Chapter 18, they review their research results and present strategies to use the available
human neuroanatomical data for computational modeling. Shankle’s approach is
particularly interesting because it involves developmental research. Classical
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neuroanatomical studies generally describe static structures, and computational neu-
roanatomical models fare no better. However, a large part (if not all) of the cognitive
abilities of the human brain are linked to its plasticity. Thus, a truly realistic anatomical
model should be 4D rather than 3D, describing the temporal evolution of the spatial
structure. Multiple time scales should be included to describe and model developmen-
tal changes, as well as the fast morphological adaptation at the dendritic, axonal, and
synaptic level underlying learning and memory.

Half a century ago, based on a novel yet limited understanding of neuronal function,
many scientists and thinkers believed that artificial neural networks constituted an
appropriate model of the brain and could reproduce its computational ability. From the
original McCulloch-Pitts formulation, the “neurons” of neural networks became pro-
gressively more complex (98), but still far less complex than our understanding of real
neurons. Artificial neural networks are still today an active area of research, and they
have provided many solutions for real world applications. However, most neuroscien-
tists do not view artificial neural networks as a plausible model of brain function. There
is something missing in all attempts conducted so far to model the human mind. Many
cognitive modelers hold that neuroanatomical details are not important in the genera-
tion of a brain-based computer model capable of human-level intelligence. We claim
that neuroanatomical details will be the most important aspects of such a model (99).
Certainly, there are elements of the computational ability of a human brain that are
absolutely unmatched by present machines. We largely do not understand how these
abilities arise from the neuronal structures in the brain. By reproducing the relevant
structures in a computer model, we may obtain important insights in the computational
process of the brain and, at the same time, inspire the next generation of artificial intel-
ligence research projects.

A complete and detailed neuroanatomical model of the brain could potentially
incorporate physiological features, thus allowing neuroscientists to test a large number
of hypotheses with “virtual experiments”, which are impossible to perform in real life
(for technical limitations or in principle). In the extreme hypothetical case, if a com-
puter model could reproduce all the aspect of the structure, biochemistry, and connec-
tivity of the brain, down to the neuronal and subneuronal level, that model would also
display brain-like behavior. Such a prospect would certainly boost scientific intuition
and foster education, as well as raise ethical and epistemological issues quite different
from those discussed today in the scientific community. The nineteenth and last chap-
ter of this book discusses the prospect to build such a model and its potential impact on
science.

1.5. CONCLUSIONS

Computational neuroanatomy promises to stir a long-term interest. Like no other
field in neuroscience, neuroanatomy is extremely data rich and theory poor. One hun-
dred years of experiments await interpretation in an organic mental model, and the
computational resources to help build and analyze such a model have just become avail-
able. Computer tools and simulations are now used both to reproduce the structural and
functional properties observed experimentally in nervous systems and to summarize,
integrate, and represent the acquired knowledge. Still in its infancy, computational
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neuroanatomy research has already produced solutions to several outstanding prob-
lems in neuroscience and has also raised new questions in the study of the brain. Our
hope and belief is that these are but the first conceptual and technical steps towards a
comprehensive understanding of the most complex structure in the known universe.
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2
Some Approaches to Quantitative

Dendritic Morphology

Robert E. Burke and William B. Marks

“If ye canna mak a model, then ye dinna understand it.”
(Attributed to Lord Kelvin)

ABSTRACT

The availability of powerful desktop computers and of a large amount of detailed
data about the morphology of a wide variety of neurons has led to the development of
computational approaches that are designed to synthesize such data into biologically
meaningful patterns. The hope is, of course, that the emerging patterns will provide
clues to the factors that control the formation of neuronal dendrites during develop-
ment, as well as their maintenance in the adult animal. One class of approaches to this
problem is to develop quantitative computational models that can reproduce as many
aspects of the original data as possible. The development of such simulations requires
analysis of the original data that is directed by the model requirements, and their rela-
tive success depends on detailed comparisons between model outputs and the original
data sets. Refinement of the models may require not only new experiments, as in other
scientific disciplines, but also new ways of looking at the data already in hand. This
chapter discusses some examples of this process, with emphasis on spinal motoneu-
rons.

2.1. INTRODUCTION

Dendrites are critical to the processing of synaptic information in central nervous
system neurons. Accordingly, there is considerable interest in their structure and func-
tion (1). Striking differences in neuron morphologies have been known for over a cen-
tury (2,3). Such differences must be related to factors that govern the development and
maintenance of their dendritic architectures. Over the past two decades, the develop-
ment of intracellular labeling techniques using horseradish peroxidase (HRP) and bio-
cytin (4,5), combined with computer-assisted methods for quantitative reconstruction
of labeled neurons (6,7), have led to a large output of quantitative data about the mor-
phology of dendrites. We now face the problem of how to reduce the mass of informa-
tion, usually contained in multiple graphs and tables, into patterns that reveal their
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underlying meaning, without losing essential information. Hillman (8) called these
patterns “fundamental parameters of form”, but the underlying factors that produce
them are not obvious upon inspection of the raw data. This chapter considers some
approaches to this problem.

Two issues require some comment before proceeding. First, it has become clear in
recent years that neuronal dendrites are not static structures; rather they can exhibit
dynamic changes that presumably reflect functional changes in the nervous system (9).
Thus, the data about dendritic structure that are obtained by conventional neuroana-
tomical methods represent snapshots that may not be entirely representative. Second,
there are a large number of practical difficulties inherent in gathering quantitative mea-
surements of neuronal dendrites using conventional light microscopy (see [10]). These
include factors such as tissue shrinkage, operator error, and the limited resolution of
the light microscope, which is the only practical approach to reconstructing large neu-
rons from serial sections. These sources of potential error must be kept firmly in mind
when evaluating existing data, particularly when data from different sources are com-
bined. Other options such as confocal microscopy of neurons filled with fluorescent
tracers could, in principle, be more accurate and might even contribute an element of
automation to the reconstruction process. However, technical problems, such as tracer
bleaching, have confined most reconstruction efforts to more permanent forms of trac-
ers, like HRP or biocytin, to be examined with conventional light microscopy.

With regard to data analysis, it is also important to remember that the process of
quantitative reconstruction splits the continuous structure of the dendrite into discrete
pieces, here referred to as “segments”, each with a specified diameter and length. These
discrete cylinders, plus information that identifies their positions within the dendritic
tree, make up the usual computer data files. The position coding systems often vary
between data sources, as does the presence or absence of information about the 3D
location of each cylinder.

2.2. TWO-DIMENSIONAL ANALYSIS OF DENDRITES IN ISOLATED
NEURONS

Quantitative analysis of neuronal dendrites began before the age of computers with
the work of Sholl (11), who plotted dendritic branching patterns of Golgi-stained cor-
tical neurons in terms of distance from the soma. This straightforward approach guided
many subsequent studies that used improved methods for intracellular staining of iden-
tified neurons, resulting in ever larger volumes of quantitative data about branch diam-
eters and lengths, branching orders, and the locations of branching points and
terminations, all considered as functions of distance from the soma (e.g., Fig. 1; see
also [12,13]). An alternative approach, focused on dendritic branching patterns per se,
concentrates on the topological complexity of trees from different types of neurons
(14–16) (see Chapter 11). Neither approach takes account of the 3D tree structures.

Hillman (8,17) proposed that dendritic architecture can provide clues to the biologi-
cal factors that control the multiplicity of neuronal shapes. Hillman’s seven fundamen-
tal parameters that describe the morphology of a dendritic tree are: (i) stem diameter;
(ii) terminal branch diameters; (iii) branch taper; (iv) branch lengths; (v) branch power
(the relation between diameters of the parent branch with those of its two daughters);
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(vi) the ratio of the two daughter branch diameters at each branch point; and (vii) the
spatial orientation of branches. Hillman suggested that the cytoskeleton, particularly
microtubule arrays, is critical to the control of dendritic architecture (17) (but cf [18]).
The interrelations that he described implied that some combination of intrinsic factors
could be used to simulate virtual dendrites that could be compared with real ones. It
seemed possible that some correlation, which may be found among the descriptors,
may arise as epiphenomena that depend on underlying mechanisms (see also [19]).

Building on this idea, we proposed an approach to this problem that began by ana-
lyzing correlations in quantitative data about completely reconstructed dendritic trees
of a sample of cat α-motoneurons, in order to develop algorithms and appropriate data
sets that might be used to construct virtual dendrite simulations (20). We reasoned that
a computational machine (algorithms plus parameters), which can construct virtual
dendrites that reproduce not only the averages but also the variances of data from actual
neurons, must contain all of the essential information inherent in that data set (see also
[21]). There are a large number of correlations to choose from, and several different
approaches were explored. All used a Monte Carlo simulation in order to generate the
stochastic variations found in the observations.

The most successful algorithm was based on the relationship between the starting
diameter and the length of dendritic branches, which are defined as beginning with the

Fig. 1. Some features of cat α-motoneuron dendrites plotted as functions of the somatofugal
distance along dendritic paths (abscissa). The solid and dashed lines show the locations of
branching points and terminations, respectively, as cumulative fractions. The symbols indicate
the average diameters (± one SD) of all branches that end in branching points (parent branches;
solid squares) or terminations (solid triangles) within 100 µm bins of path distance. Data from
6 cat lumbosacral motoneurons reported in (12).
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soma or a branch point and ending either at another branch point or at a termination
(Fig. 2; see also Fig. 5 in [8]). As in most reconstructed neurons, the branches con-
sisted of a sequence of segments, often with different diameters due to dendritic taper.
Despite a great deal of scatter, the lengths of branches that ended at a branching point
(called “parent” branches) varied inversely with their starting diameters, while the
relation was direct in the case of terminating branches. It was also clear that the diam-

Fig. 2. Scatter plots of the lengths (ordinates) of terminating (A) and parent branches (B) in
relation to their starting diameters (abscissae). The correlation between branch length and start-
ing diameter was positive for terminating branches and negative for parents. The inset in panel
A shows a histogram of branch taper, which had a mean of –0.0007 ± 0.0027 µm/µm. Adapted
with permission from Figure 1 in (20).
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eters of most individual branches became smaller in the somatofugal direction (i.e.,
they exhibited negative taper).

In order to simulate the wide scatter in branch lengths, which was as large for indi-
vidual motoneurons as for the pooled data (Fig. 2), we used a stochastic (Monte Carlo)
growth algorithm in which each increment in branch length, ∆l, was controlled by the
probability that it ended in a branching point or in a termination (pbr or ptrm, respec-

Fig. 3. Calculation of the probabilities of branching or termination as functions of local
branch diameter [pbr(d) and ptrm(d), respectively]. (A) Log-log plot of the total length of den-
dritic material [∑l(d); solid line, referred to the right ordinate] and the numbers of branch seg-
ments giving rise to branching points [Nbr(d)] or terminations [Ntrm(d)], as functions of local
diameter (d), binned by 0.25 µm for d ≤ 2.0 µm, 0.5 µm for d > 2.0 to ≤ 4.0 µm, and 1.0 for d >
4.0 µm. Segments with diameters between 0. 8 and 2.2 µm (overlap region) could either branch
or terminate. (B) Semilog plot of the ratios of the numbers of branch points or termination,
divided by ∑l(d), to give pbr(d) and ptrm(d), respectively. In this graph, pbr(d) and ptrm(d) are
multiplied by ∆l of 25 µm, which was the value of ∆l used for simulations. Adapted with
permission from Figure 2 in (20).
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tively). If neither was true, the branch continued to lengthen by ∆l. The observations
suggested that both pbr and ptrm depend in some way on branch diameter. In order to
explore this possibility, we binned all of the branch segments by increments of diam-
eter, d, and summed the total length ∑l(d) in each diameter bin (Fig. 3A). The numbers
of segments in each diameter bin that ended in either a branch point, Nbr(d) or a termi-
nation, Ntr(d), were then divided by ∑l(d) to give pbr(d) and ptrm(d) per unit length as
functions of local segment diameter bins:
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As shown in Fig. 3B, the resulting probabilities [pbr(d) ∆l and ptrm(d) ∆l with ∆l = 25
µm] were well fitted by exponential functions of local diameter, d, with positive expo-
nents for pbr(d) and negative for ptrm(d). Within the range of d where branches either
branched again or terminated (overlap region; d = 0.7 to 2), the slope for pbr(d) was
much steeper and approx the inverse of the slope for ptrm(d) (2.2 vs –2.9, respectively;
see Table 1 in [30]).

To start the simulation process, the diameter of the first segment in the branch and a
step length (∆l) are specified, and the computer compared pbr or ptrm, (multiplied by ∆l
and randomized as to which was tested first in order to eliminate bias) with a uniformly
distributed random number, rnd between zero and 1. If this px < rnd, the branch ended
appropriately. If neither event occurred, the branch extended by ∆l, di+1 changed by a
selected value for taper (∆d/∆l), and the process was iterated until the branch either
terminated or produced a branching point. The value of taper used was the only free
parameter in the system, because it was difficult to specify a single value from the wide
observed distribution (Fig. 2, inset). The algorithm produced parent and terminating
branches with the observed length distributions (Fig. 2) with reasonable fidelity, given
that a single value of taper was used for all branches. The value of taper that produced
the least error in this simulation was –0.00125 µm/µm (Fig. 5 in [20]), which was
comparable with the observed value (Fig. 2A, inset), given that taper is extremely dif-
ficult to measure with any accuracy.

Of course, this was only half of the process required to produce virtual trees; one
must also specify the diameters for the daughter branches that are generated when a
parent branch gives rise to a branching point. In real motoneurons, the average ratio
between the sum of the daughter branch diameters (d1 and d2), raised to the 3/2 power,
divided by the 3/2 power of the parent diameter (dpar), is slightly larger than 1.0 (actu-
ally 1.1), but shows wide variations (see Fig. 7 in [12]). Like most neurons, branch
points in motoneuron dendrites give rise to only two daughter branches, and their
diameters are negatively correlated (Fig. 4A). This relation was independent of both
position in the tree and the end diameter, dpar, of the parent branch.

The distributions of d1 and d2 were Gaussian and exhibited similar means and stan-
dard deviations (SD). One of us (W.B.M.) devised a way to combine their values, using
their observed correlation coefficient β = –0.4, into a single distribution, r, which was
well approximated by a Gaussian with the same mean and SD (Fig. 4B). Drawing two
numbers independently from r, multiplying this pair by the matrix {{1, –.2087},
{–.2087, 1}}, and then by dpar, produced a pair of daughter branch diameters that,
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when repeated, had the same means, SDs, and correlation coefficient as the observed
daughter branch diameters.

A program was written that combined the branch growth algorithm discussed above
with the algorithm for determining daughter branch diameters in order to construct
virtual dendrites with a selected starting diameter, dstem, that matched diameters of
observed dendrites. The experimental database included 64 fully reconstructed den-
drites from 6 α-motoneurons, with dstem ranging from 2 to 18 µm. Each run of the
program generated 64 virtual dendrites, using parameters based on the probabilities
shown in Figure 3B and the algorithm for selecting daughter branch diameters (Fig.
4B). The program automatically calculated a wide variety of statistics about virtual
dendrites that could be compared to their actual counterparts (e.g., Figs. 5 and 6).

Twenty simulations were run for several values of taper and each produced dendrite
sets with different total numbers of terminations, indicative of the overall size of the
simulated trees. There was a direct relation between taper and total termination num-
bers, in that more negative values of taper produced smaller trees. The value of taper
used was adjusted empirically to produce dendrite sets with total termination numbers
near that observed for the real motoneurons (n = 1974). A taper value of –0.0015 pro-
duced the closest approach to this number but individual runs varied rather widely.

This model system, referred to as “Model 1”, produced virtual dendrites that matched
many of the relations found in the actual database, including the distributions of total
surface area and numbers of terminations in relation to dstem for individual trees (see
Fig. 7 in [20]) and the distributions of branch orders and diameters of parent and termi-
nating branches as functions of distance from the soma (Fig. 5A, B, and D). None of

Fig. 4. Database for choosing diameters of daughter branches at simulated branch points.
(A) Scatter plot showing the negative correlation between the diameters, d1 and d2, of the two
daughter branches at 955 branching points, each normalized by the end diameter of the parent
branch. The slope of the linear correlation, β = 0.40, was used to construct a distribution, r, that
preserved the statistical relations between d1 and d2 (see [20]). The value of β was the same
whether or not the data were shuffled. (B) The calculated r distribution (bars) were fit to a
Gaussian function (solid curve) with the same mean and SD. The continuous function was used
for generating virtual dendrites (see [20]). Adapted with permission from Figure 6 in (20).
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these relations were built into the simulation algorithm; rather they are emergent prop-
erties that can serve as features for determination of goodness of fit. Although the path
distance distributions of branch points and terminations were less satisfactory (Fig.
5C), this might be deemed good enough given the relative simplicity of the model.

This model result must be interpreted with caution. Although a growth model was
used for these simulations in order to simulate the statistical variances in real dendrites,
the results are a simulation of existing dendritic structures rather than of the dynamic
processes that may have formed them. The computational machine and the parameters
shown in Figures 3 and 4 should be thought of as a parsimonious description of the
complex morphology of cat motoneuron dendrites that eliminates redundant informa-
tion, rather than a model of how dendrites actually grow. Given this important distinc-
tion, the Model 1 results suggests that local branch diameter is a key factor that
determines whether a given branch can or cannot maintain a branching point rather
than terminating. This is consistent with the idea that the cytoskeleton, specifically the
number of available microtubules (17), controls whether or not a given branch can give
rise to a branching point, as well as how long parent and terminating branches can be.

Fig. 5. Comparison of averaged data extracted from 64 simulated (symbols) and actual (lines)
dendrites with the same set of stem diameters, using Model 1 simulations (see text). Note
branches of order >10 in the simulations (A and B) and major discrepancies in the path distance
locations of branch points and dendritic terminations (C). Adapted with permission from Fig-
ure 8 in (20).
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An alternative model, in which pbr and ptrm were functions of branch order alone rather
than local diameter, produced poor fits to the actual data. Thus, observed correlations
between branch order and dendritic architecture are probably epiphenomena.

2.3. HOW GOOD IS GOOD ENOUGH?

One of the more difficult questions in any computational model study is when to
quit. The failure of Model 1 to completely reproduce the spatial distributions of branch
points and terminations (Fig. 5C) suggested that it lacked some important factor. In
addition, some runs of this model produced trees that were either much smaller or
much larger than expected for the selected value of dstem. The existence of “runaway”
dendrites is evident in Figure 5B, which shows diameters of parent and terminating
branches with branch orders >10 that are not found in real motoneurons. The richness
of the database prompted us to explore other factors that might have accounted for
these discrepancies.

The problem of trees that were too small or too large appeared to be caused by
sequences of daughter branch diameters that, in rare instances, were either very small

Fig. 6. As in Figure 5 but using Model 2 for simulations. Note lack of simulated dendrites
with branch orders >11 (A and B) and much closer agreement between simulated and observed
locations of branching points and terminations as functions of path distance from the soma (C).
Adapted with permission from Figure 12 in (20).



36 Burke and Marks

Fig. 7. Two simple approaches to quantitate the 3D morphology of a motoneuron. (A) Ste-
reoscopic pair representation of the vectors of eight dendrites (labeled A through H) in terms of
the centers of mass (open circles) of the membrane area in each dendrite, illustrating the projec-
tion of each dendrite away from the soma (small filled circles). The large filled circle repre-
sents the membrane area center of mass for the entire neuron. This was the most asymmetrical
motoneuron of six similarly studied cells (26). (B) 2D projection of the locations at which
dendritic branches of the same cell as in panel A penetrate a spherical shell with radius 750 µm,
centered on the soma, Individual branches of the different dendrites are labeled with the den-
drite identification letter. The lines indicate the boundaries of six directional hexants, with the
caudal hexant split in two. The mapping projection assigns approximately equal areas to each
hexant region. Both panels adapted from Figure 6 in (26).
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or very large at successive branch points. This could occur by chance because the model
had no memory of the preceding selections of d1 and d2. When we reexamined the
experimental data, we found a small but significant dependence between the sum of d1

and d2 at a given branch point, normalized by the parent end diameter, dpar, and the
starting diameter of the parent branch, normalized by the end diameter of its parent
branch (i.e., the “grandparent” branch). This suggested the existence of a cytoskeletal
or metabolic constraint on the size of the downstream subtrees. We implemented a
“grandparent correction” based on the observed dependence, and this greatly reduced
the occurrence of runaway trees, but neither this nor several other manipulations
improved the discrepancy noted in Figure 5C (see [20] for details).

Another reexamination of the original data suggested that the values of pbr(d) and/or
ptrm(d) might not be constant throughout the tree. Indeed, we found that both probabili-
ties depended on the path distance, D, from the soma as well as on local diameter. Such
a dependence could represent the metabolic cost of maintaining cytoskeleton at
increasing distances away from the soma where the constituent proteins are generated.
Estimation of this dependence was complicated by the problem of fitting smooth func-
tions to the 3D surface described by the data points, now binned by both local diameter
and path distance (see Fig. 10 in [20]). However, when equations for pbr(d,D) and
ptrm(d,D) that fit the data were incorporated into the model, it produced trees that fit the
observed data very well indeed (Fig. 6). It was necessary to analyze the data for depen-
dence on d and D separately, because local diameters in individual branches were not
strongly correlated with path distance, especially in the more distal parts of the trees
(Fig. 1). These virtual dendrites also had branch topologies that fit those of actual
motoneuron (Burke, Marks, and Ulfhake, unpublished). In this instance, all of the
required parameters were intrinsic to the neuron itself. This may not always be true; in
some cases external factors could be required in order to generate acceptable simula-
tions (e.g., [22]).

The lesson for us in this work was that it is sometimes useful to extend a model that
is reasonably good to one that is better, provided that the additions accurately reflect
features that are in fact present in the original data. Each elaboration of the present
model revealed factors that appear to be biologically relevant. The additional features
were not at all obvious and emerged only after specifically tailored data extraction
methods were employed. Indeed, the utility of quantitative biological models lies pre-
cisely in the fact that they force the investigator to search for relations that are hidden
within the existing data or to guide the experiments that can generate the necessary
new information.

2.4. NEURONS IN THREE DIMENSIONS

2D morphological data are relatively tractable for computational modeling, as exem-
plified by the discussion so far. However, it is considerably more difficult to extend
such approaches to neurons as 3D entities (17). The overall shape of neuronal dendritic
trees have been analyzed by statistical methods, such as principle components (23,24),
and by a Fourier transform technique that can give concise information about the den-
sity of branches distributed in 3D space (25). Cullheim and colleagues (26) introduced
a simpler approach that tabulated the spatial distribution of the dendritic membrane
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area or branch volume within six “hexants”, or subdivisions thereof, within an external
coordinate system centered on the neuron soma and oriented by anatomical axes. These
authors also used a variation of principle component approach to calculate the spatial
locations of the centers of mass (COM) for membrane area or branch volume for indi-
vidual dendrites, as well as for the neuron as a whole (Fig. 7A). On average, cat triceps
surae motoneurons were found to be more or less radially symmetrical, although the
dendrites projecting dorsally and ventrally tended to be slightly smaller than those that
projected in the other directions. All of these methods provide ways to document the
degree to which neuronal trees are polarized, either because of proximity to natural
boundaries or, perhaps, to concentrated sources of synaptic input.

Another approach to the problem of analyzing the 3D spatial organization of den-
drites is to map the spatial positions of their branches as they penetrate 2D spherical
surfaces (“shells”) located at different distances from the soma (Fig. 7B; [26]).
Although such shell maps are on spherical surfaces, they are tractable for quantitation
by spherical trigonometry. Questions such as the size of dendritic territories and how
much they overlap can be approached by conventional nearest-neighbor or tessellation
analyses to examine spatial clustering. Convex hulls (polygons with no internal angle
<180° that encloses the target set of points) are computationally convenient, although
they often include empty regions that properly belong to other dendrites. The disadvan-
tage of such maps is that they do not lead to simplification of the data set or to identifi-
cation of general principles that might be at work.

2.4.1. Building Three-Dimensional Dendrites

 Renewed interest in computational neuroanatomy (21), as well as the appearance of
relevant software tools (27,28), has stimulated the development of new approaches to
quantitate neuronal morphology in 3D space that involve simulation. In an earlier sec-
tion, we adopted the view that the simplest computational machine that can accurately
reproduce a set of complex objects constitutes the most concise description of those
objects. This philosophy predicts that new information may emerge if we can construct
algorithms that can convert 2D dendrograms into statistically accurate 3D trees. At
minimum, such a simulation requires extraction of two sets of data from the original
morphological files: (i) the distributions of angles at which daughter branches emerge
from branching points; and (ii) measurement of the degree to which individual branches
meander (i.e., change in vectorial orientation) in space (8). In principle, these data can
be estimated from cells that have been digitized with sufficient spatial resolution.

As an example, we will consider here some possible approaches to measurement of
daughter branch angles. The first decision is how to define the vectorial directions of
daughter branches away a given branching point. There are at least three possibilities:
(i) use the coordinates of the first digitized segment of each daughter branch (initial
branch direction); (ii) use the coordinates of the point at which the branch ends (final
branch direction); or (iii) use the least-squares fit to each meandering branch, perhaps
weighted by local membrane area or segment volume (average branch direction).
Because we were interested in the global shape of trees, we initially used the final
branch directions.

The next issue is to define the frame of reference for measuring branch angles. An
obvious choice is to calculate angular deviations from the parent branch direction.
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However, a 3D simulation algorithm, based on parent branch vectors, produced simu-
lated trees that often had much larger lateral spread than natural cat motoneuron den-
drites (Burke and Marks, unpublished), because such data has no relation to the shape
of the tree as a whole. In fact, it can be shown that using only the parent branch direc-
tion leads to a 3D random walk. As discussed in the chapter by Ascoli (see also [27,28]),
this can be overcome by introducing a spatial bias, or “tropism”, to constrain tree
growth in specified directions, but the underlying factors that produce such effects are
unclear. We attempted to determine whether such biases are inherent in the statistics of
the spatial disposition of branch points and path terminations in relation to a global
frame of reference for a given tree.

In order to define a central axis for each individual dendrite, we chose to use the
vector from the center of the soma to the COM for membrane area (Fig. 8A; [26]).
The somatofugal COM axis was aligned with vertical (Z) axis of a Cartesian coordinate
system, just as botanical trees are oriented with respect to gravity (29,30). The location
of each branch point (BP) in the tree was then specified by its angular deviation (dBPax)

Fig. 8. Diagram to illustrate possible methods to calculate dendritic branching angles. (A) A
motoneuron dendrite is shown after rotation into a Cartesian coordinate space, aligned in the Z
(vertical) axis by the vector from the soma center to the COM for dendritic membrane area
(filled circle). The direction of each branch point with respect to the COM axis can be specified
by its dBPax away from the COM axis. Its horizontal position is described by an azimuth angle
in the XY plane with respect to a reference direction (e.g., rostral). (B) The orientation of
daughter branches at each branch point can be described by the angle between them
(Interdaughter angle) and the vector midway between them (Sib direction). The Sib vector can
be viewed as the axis of a cone around which the daughter branches can rotate in the perpen-
dicular (azimuth) plane. (C) The direction of the individual daughter branches can be defined
as the angle of deviation away from the branch point direction (dBP) or the direction of the
parent branch (dPar). The most successful 3D simulations were obtained when daughter branch
deviation angles (dV*) were referenced to a vector representing a linear combination of the
branch point and parent directions (Hybrid V*; see text).
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away from the COM axis and its azimuth angle in the XY plane (Fig. 8A). The distribu-
tion of dBPax angles provides a concise measure of the lateral dispersion of the
dendrite’s territory (see Fig. 9B).

We then needed a scheme for specifying the angular deviations of daughter branches
at BPs that could serve as the basis for a simulation algorithm for 3D trees. Such a
system should make maximum use of local frames of reference, as in the 2D models
described above. We found it initially useful to define the direction of branching by
calculating a “Sib” vector midway between the two daughter branches that represents
the axis of a cone around which daughter branches, with any given interdaughter angle,
can rotate into any azimuthal orientation (Fig. 8B). As with the azimuth angles of BPs,
these orientations showed no rotational bias in motoneuron dendrites, so they can be
evenly distributed in simulations. Still open is the question of what vector to use in
measuring the Sib deviation. Using the parent branch direction alone again leads to a
spatial random walk. However, using the direction of the branch point vector (vBP)
defined in relation to the COM axis (Fig. 8A) preserves information about global tree
structure. The azimuth of the Sib about this direction also turned out to be unbiassed.
Thus, two distributions, one for the Sib deviation and the other for interdaughter angle,
provided the basis for a 3D simulation algorithm. Both distributions were well fitted by
∆ functions, each specified by two parameters, that are easily adapted for Monte Carlo
simulations. Of course, the eventual COM axis of a simulated tree is unknown at the
outset of 3D simulation, so we used the Z axis of the Cartesian frame as the reference
vector.

We also explored a simpler algorithm that used only the distribution of deviations of
the individual daughter branch directions (vDau) at each branching point as the basis
for building complete trees. This approach was complicated by the fact that vDau was
correlated with both vBP as well as with the direction of the parent branch (vPar) (Fig.
8C). The distributions of angular deviation between vDau and either vBP or vPar (dBP
and dPar, respectively, in Fig. 8C) were both well-fitted by ∆ distributions. As ex-
pected from the Sib data discussed above, neither vector exhibited any bias in azimuth
orientation. Complete trees for 60 individual dendrites were simulated using either the
dBP or the dPar distributions, based on length and diameter data from 60 real motoneu-
rons. The total root mean square (RMS) error between a variety of angular measures

Fig. 9. (facing page)  Results of simulating the 3D structure of 60 motoneuron dendrites. (A)
Plot of RMS errors in 3D simulations based on using different proportions (P) of the branch
point and parent directions [V* = (1 – P) vBP + P vPar] to calculate dV*. Simulations based
entirely on the observed distribution of dBP (P = 0) produced less error than those based en-
tirely on dPar (P = 1), but minimum error was found with P ~ 0.4. See text for details. (B)
Comparison of the distributions of the angular deviation of branch points away from the COM
axis (dBPax; see Fig. 8A) in 60 actual dendrites (filled circles) and averaged values from 10
repetitions of 3D simulation of the same 60 trees (open squares). Simulations used the distribu-
tion of daughter branch deviations, dV*, from the Hybrid vector, V*, with P = 0.4. The fit
between the two distributions of the emergent property dBPax indicates that the real and simu-
lated dendrites have the same (statistical) lateral spread. (C) As in panel B, but showing the
comparison of real and simulated interdaughter angles. Interdaughter angle is also an emergent
property, because the daughter branch directions are simulated separately and independently.
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for simulated and real trees was smaller in the set of trees constructed using the dBP
distribution (Fig. 9A; error = 3.4% with P = 0) as compared to the set simulated using
the dPar distribution (Fig. 9A; error = 9.9% with P = 1). We then explored using a
hybrid vector (V*) calculated as a linear combination of the branch point and parent
directions (vBP and vPar, respectively)

V* = (1 – P) vBP + P vPar

as the reference vector to calculate the deviation (dV*) for each daughter branch (Fig.
8C.). As with the Sib vector approach above, V* can be viewed as the axis of a cone
that describes the locus of the distribution of daughter branch directions.

With simulations based on the dV* distribution, the overall RMS error for the 3D
tree statistics were minimal with P ~ 0.4 (Fig. 9A). Furthermore, the distribution of
angular deviations of branch points away from the COM axis (dBPax; Fig. 8A), as well
as the interdaughter angles, for the simulated trees matched the observed data quite
well (Fig. 9B and C). The azimuthal angles for daughter branch directions in the XY
plane also matched those of real trees (not shown). These 3D statistical measures are
emergent properties that are not specified by the simulation algorithm, so that the fits
indicate that the simulation accurately reproduced the overall 3D structure of motoneu-
ron dendrites with straight branches. The simulated trees exhibited the same range of
constraint in lateral spread as real dendrites (estimated by dBP; Fig. 9B), and their
overall shapes appeared appropriate to visual inspection. The final 3D algorithm used
only three parameters, two to specify the ∆ function that fits the daughter deviations
from V*, plus the minimum error value of P = 0.4. This result suggests that the spatial
distribution of daughter branches in motoneuron dendrites can be described by factors
related to the central axis of the tree, which could reflect environmental constraints,
and, to a lesser extent, on purely local factors related to the direction of the parent
branch. We are investigating an analogous approach to simulation of the natural mean-
der of individual branches.

A more difficult problem for simulation of dendritic trees in 3D is that multiple
objects cannot occupy the same point in space. There may even be some active avoid-
ance among branches from the same neuron (31). Adjustment of the 3D positions of
simulated dendrite branches would probably best be accomplished after the complete
structure has been constructed. Ideally, such adjustments should be based on data from
real dendrites that give information on the spacing between their components. To our
knowledge, such analyses have not been made with in situ neuronal dendrite data,
although some basic theoretical solutions to the problem have been suggested (32).

In the same vein, simulation of the complete dendritic tree of a single multipolar
neuron will require regional analysis of the positions of all elements, beginning near
the soma. Although it is simple to arrange the COM vectors of simulated trees to project
away from each other, the possibility of unnatural collisions exists after the first branch
points. Any spatial adjustments to a given element made near the soma would propa-
gate outward, presenting a potentially massive computational problem. It is tempting
to sidestep this problem by simply accepting 3D virtual neuron simulations that subjec-
tively appear “natural.” However, it seems important for the field to develop objective
assessments that could reveal important constraints that remain unresolved at present.
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2.4.2. The Problem of Neuronal Packing

Clearly, accurate simulation of the 3D structure of individual neurons is a formi-
dable problem. It is at least as difficult to devise quantitative approaches that can be
used to measure how multiple neurons with overlapping dendritic territories are packed
into the neuropil. The neuropil must provide space not only for somata, dendrites, and
the synaptic boutons associated with them, but also for axons with and without myelin
sheaths, glia, blood vessels, and extracellular space. Stereological methods can provide
estimates of numbers of neurons (33) and the volume fraction occupied by these ele-
ments (34). However, such data do not provide a clear picture of how individual neu-
rons with extensive dendritic trees can share a given volume of neuropil. The
complexity of this problem is illustrated in Figure 10, which shows the intermingled
dendritic trees of just 5 HRP-labeled α-motoneurons that undoubtedly share this vol-
ume with many unlabeled cells.

We have looked at one approach to this problem using existing data to get estimates
of the 3D volume fractions occupied by the dendritic trees of cat motoneurons, plus the
synaptic boutons on them, as functions of radial distance from the soma. These esti-
mates were used to explore the consequences of motoneuron packing density on the
composition of the neuropil between the cells. Lumbosacral motoneurons in the central
part of the ventral horn are, on average, radially symmetrical (3,26), so that the same
volume fraction function can be used for all directions. The average surface area and
volume (expressed as percent) of the dendrites of 7 α- and 11 γ-motoneurons (12,26,35)
were calculated within successive 100-µm-thick spherical shells centered on the soma

Fig. 10. Photomontage from three serial sagittal sections showing the somata and portions
of the proximal dendritic trees of 5 filled α-motoneurons from a cat spinal cord. Note the com-
plex interweaving of the trees from different cells. The somata are about 50 µm in diameter.
Adapted from Figure 18 in (41).
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(Fig. 11). Similarly, we estimated the volume of the associated synaptic boutons in
each shell, based on postsynaptic surface area distributions plus data about synaptic
covering and bouton size data for cat α- (36) and γ-motoneurons (37). The sum of
dendritic and bouton volume, when divided by the total volume in each concentric
shell, gave estimates of the average volume fraction within each radial shell that is
occupied by each type of neuron plus its synaptic boutons (expressed as percent; sym-
bols in Fig. 12A). The solid lines are fits to these data using the following equation:

V
dfr = −





γ β α

1

where α, β, and γ are fitting parameters and d is radial distance from the center of the
soma.

Assuming that a motor nucleus in the ventral horn includes 65% α- and 35%
γ-motoneurons (38), the fitted functions in Figure 12A were combined in those propor-
tions to give the average volume fraction occupied by both types of motoneuron in the
cat ventral horn. Because motoneuron dendrites are so extensive (up to 2000 µm from
the soma), cells located at considerable distances from any given motoneuron can con-
tribute to the neuropil in the center of the ventral horn. In order to evaluate the total
volume fraction contributed by such overlapping dendrites and synaptic boutons, we
assumed (for computational simplicity) that motoneurons are arranged in a cubic matrix
with the separation (S) between somata as a free variable. A program was written in

Fig. 11. 2D drawing of a completely reconstructed cat α-motoneuron superimposed on two
spheres that represent different radial distances from the center of the soma. The volume
between the spheres (“shell volume”) contains elements of the dendritic tree, permitting calcu-
lation of the volume fraction occupied by elements of the neuron. The direction arrows are 500
µm long.
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MatLab® to calculate the average local volume fraction (Vfr) of dendrites plus boutons
within the open cube at the center of the cell matrix. This was done by randomly sam-
pling 100 locations within the central cube for various values of S. The log-log graph in
Figure 12B illustrates how Vfr depends on S, as well as on the size (Dim) of the cell
matrix, where Dim is the number of somata along each side of the cubic matrix.

When Dim was large enough so that the dendrites of cells along the edges could
reach the central cube even with relatively small S (Dim = 26), Vfr (in percent) varied as

Fig. 12. Estimation of volume fraction occupied by motoneurons and associated synaptic
boutons in the cat ventral horn. (A) Semilog graph of the estimated volume fractions (symbols)
occupied by the dendrites and associated synaptic boutons of average α- (filled squares) and
γ-motoneurons (open diamonds), calculated as described in the text. The calculated data were
fitted with the equation given in the text. (B) Log-log graph showing the total volume fraction
(ordinate, in percent) occupied by dendrites and boutons within the open central cube of a cubic
array of ventral horn neurons with a uniform separation distance, S (abscissa), when calculated
with different numbers of cells along each matrix edge (Dim). See text for further explanation.
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S3. With smaller matrix dimensions (Dim = 10), Vfr departed from this power relation
as S decreased, because the array limits were smaller than the dendrite extensions from
the most peripheral cells. Although estimates of Vfr occupied by dendrites and boutons
are not available for the cat ventral horn, such estimates from medial lamina VI in the
rat spinal cord (34) suggest that dendrites and synaptic boutons occupy about 16 – 20%
of the neuropil volume in lamina VI. The dimensions in the actual cat ventral horn are
compatible with Dim between 10 and 26 , so that this analysis suggests that Vfr would
be between 11 and 18% for S = 125 µm (Fig. 12B). From the numbers and positions of
motoneuron somata found in the lumbosacral ventral horn of the cat (Fig. 2 in [38]),
we estimate that their average separation is about 125 µm (see also [39]). The fairly
good agreement from these independent estimates suggests that this approach may be a
valid way to get quantitative estimates of neuropil sharing when the required data are
available. Of course, this calculation assumed an isotropic neuropil and other geom-
etries would require more complex algorithms.

2.5. CONCLUDING COMMENTS

This chapter has dealt with some approaches to the problem of quantifying the mor-
phology of individual neurons and of ensembles of neurons, using data from cat ventral
horn motoneurons. The ability to mimic the statistical properties of cat motoneuron
dendrites, viewed in terms of their 2D dendrograms, using a relatively simple growth
model based on data extracted from the same data set, provides a parsimonious descrip-
tion of the original data, which separates factors that are determinative from those that
are epiphenomena. The result suggests that local branch diameter, which in large mea-
sure depends on cytoskeleton (8,17), is a key factor that maintains the architecture of
mature dendrites. On the other hand, it is much more difficult to design computational
engines that can reproduce the morphology of neuronal dendrites as 3D entities in
ways that can be quantitatively verified. This is largely due to the difficulty of design-
ing analytical tools that can adequately measure how these complex structures occupy
space. One future direction for computational neuroanatomy is to solve this problem
for individual neurons and then to apply the solution to multiple neurons that occupy
the same region. This quest is more than an intellectual exercise, because the ability to
simulate complex systems and to check the results of such simulation against the real
thing has always led to deeper understanding of the biological world (40).
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Generation and Description

 of Neuronal Morphology Using L-Neuron
A Case Study

Duncan E. Donohue, Ruggero Scorcioni,
and Giorgio A. Ascoli

ABSTRACT

L-Neuron is a software package that implements simple local anatomical rules to
“grow” dendrites stochastically in virtual reality. This program can be used to obtain a
compact description of dendritic morphology, to provide the substrates for physiologi-
cal simulations, to aid neuroscience education, and to develop novel hypotheses about
dendritic structure and development. Here, we explore the use of L-Neuron to model
CA1 pyramidal cell morphology based on an archive of 24 real reconstructed rat hip-
pocampal neurons. This chapter also describes the extraction of L-Neuron parameter
distributions from digitized neurons by means of the companion program L-Measure.
The quantitative comparison of virtual and real pyramidal cell dendrograms provides
specific insights into neuronal structure and suggests possible avenues to improve the
algorithm. Finally, we show how a remarkably accurate and complete spatial descrip-
tion of CA1 pyramidal cell dendritic morphology can be obtained from dendrograms
by the addition of a very restricted number of model parameters.

3.1. INTRODUCTION

Historically, computational neuroscience has largely consisted of mathematical mod-
eling of neuronal activity and electrophysiology. In multineuron simulations (or, in the
extreme case, in artificial neural networks), neuroanatomy is typically disregarded
altogether. Even in single-cell studies seeking to characterize and reproduce the natural
physiology of neurons, cellular structure is rarely the focus of the investigation. From
early theoretical studies, modelers have simplified anatomy away, attempting to reduce
neuronal structure to one or few stylized spheres and cylinders representing the soma
and the dendritic processes (for reviews, see [1,2]). However, neuronal shape is
extremely important for neuronal function and activity. Dendritic and axonal structures
underlie network connectivity and determine synapse numbers and positions. Even
considering single neurons, the presence, variety, and complexity of dendritic active
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conductances and ionic dynamics make the reduction of dendritic structure to lumped
equivalent cylinders a very rough, and often incorrect, approximation. The specific
branching patterns of dendrites heavily affect signal integration and firing patterns (3–
6) (see also Chapter 6 in this book). While it is the nature (and often the goal) of mod-
eling to simplify a biological problem, neuronal models that do not take structure into
account are severely limited in their ability to accurately represent biologically plau-
sible neuronal behavior. Starting from the mid-1990s, computational neuroscientists
have increasingly used real neuronal morphologies as the bases for their electrophysi-
ological models (4,7,8).

Anatomically accurate electrophysiological simulations are typically based on digi-
tal reconstructions of intracellularly injected neurons (see also Chapters 6 and 7 in this
text). However, tissue preparation and neuronal tracing are extremely time-consuming
processes: digitizing a single neurons can take several weeks of a skilled operator (for
a discussion on morphological data acquisition, see [9]). Thus, the amount of time
needed to trace enough neurons to build a large-scale anatomically realistic network
model representing even a small brain region is staggering. Even for single-cell mod-
els, neuronal reconstructions only constitute raw experimental data. If the simulation
results are to be correlated to the structural properties of the cells, many neurons must
be used to constitute a representative sample, due to the typically large anatomical
variability even within a given morphological class. Therefore, neuronal morphology
needs to be characterized statistically.

What constitutes an appropriate characterization of dendritic morphology? Typical
reports in the neuroscience literature quantify the geometry and topology of dendritic
trees with a variety of scalar measurements, including the number of bifurcations or
termination, dendritic surface or length, topological asymmetry (10), and maximum
distance from soma to tips. In addition, many of these parameters can be used for cor-
relation measurements, such as the number of bifurcations vs distance from the soma
(Sholl analysis). The number of different geometrical parameters that can be measured
from neuritic trees is infinite, and of course, many such parameters are interdependent.
The situation is further complicated by a lack of standard and by the intrinsic structural
and functional complexity of dendrites. Even for a simple shape, for parameters such
as “dendritic length”, there are many possible measurements. Do we refer to the total
length of the dendrites, or to the average length of a tree, or to the length of an indi-
vidual branch of the tree? If we measure “by the tree”, should we separate trees in
different classes (e.g., apical and basal)? If we measure length by the branch, should
stem, interbifurcation, and terminal branches be considered separately? Where exactly
does the soma end and the stem branches begin? And length is relatively straightfor-
ward when compared with other typical measurements such as branch angles, fractal
dimension, or tree spread.

Both problems of the difficulty to acquire experimental data and of the lack of its
parsimonious characterization can be solved by computational modeling. Let us sup-
pose to find a stochastic algorithm that generates digital dendrites (of a given class),
whose morphology is statistically indistinguishable from that of real neurons (of the
same class). By definition, the set of algorithmic parameters would constitute a com-
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plete characterization of this morphological class. In addition, this algorithm could
generate any number of virtual neurons, thus allowing the creation of large-scale ana-
tomical models. Computational neuroanatomy has achieved considerable progress
towards the creation of such an algorithm (11). Recently, we introduced a software
package called L-Neuron (12). L-Neuron (which is included in the CD-ROM) imple-
ments several existing algorithms for the generation of virtual dendrites, including
variations of the description proposed by Hillman (9,12–15), and the algorithm pro-
posed by Burke and colleagues (see Chapter 2 in this text). The algorithms imple-
mented in L-Neuron are mostly local in nature, i.e., each branch “grows” only based on
its local properties (e.g., its diameter and the diameter and orientation of its parent),
and independent of all others branches. Other algorithms have been proposed that take
into consideration interbranch competition and other global factors based on topologi-
cal or geometrical parameters. Examples of these algorithms are ArborVitae (16,17)
(see also Chapter 11 in this text) and van Pelt’s model, which is reviewed in Chapter 9
in this text.

Perhaps the greatest advantage of creating virtual neurons is in the knowledge and
understanding of real dendritic morphology that is gained from the simulation process
itself. Most of the parameters used in the L-Neuron algorithms (called basic param-
eters) can be measured directly from the real cells and correspond to subcellular struc-
tures and mechanisms (e.g., microtubule dynamics [13]). Virtual cells generated by
L-Neuron can be compared to the real cells from which the basic parameters were
extracted. This comparison is carried out by the statistical analysis of parameter not
used directly in the algorithm (emergent parameters). If an algorithm lacks essential
constraints (i.e., it is too simple), or imposes excessive constraints (it is too restrictive),
or else is based on incorrect hypotheses, some of the emergent parameters measured
from the virtual cells will have different average or variance compared to the real neu-
rons. In this case, the analysis of the differences between real and virtual neurons can
reveal novel biophysical principles or developmental insights (see Discussion and Fig.
2 in Chapter 1 of this book).

L-Neuron has been previously used to generate a variety of neuronal morphologies,
including virtual Purkinje cells and motoneurons (18). Here, we present a “case study”
using L-Neuron to model the dendritic processes of CA1 pyramidal cells. We only
consider one simple algorithm as a working example, but we discuss each step of the
research strategy in depth. This chapter also describes the use of the computer program
L-Measure (19) (also included in the CD-ROM) to extract basic parameters from the
experimental morphology and to measure emergent parameters from both real and vir-
tual neurons. L-Measure can be also used to carry out morphological analyses in stud-
ies correlating neuronal structure and activity (see Chapter 6 in this text). Together,
L-Measure and L-Neuron constitute a powerful tool set for the computational neu-
roanatomist. L-Measure allows the fast and reliable quantitation of a large number of
morphological properties of traced and virtual neurons. L-Neuron uses some of those
measurements to generate an arbitrary number of nonidentical virtual neurons.
Although the final goal of L-Neuron is to create cells that are anatomically indistin-
guishable from the real ones, the most useful outcome at this stage is the intellectual
feedback from the simulation process.
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3.2. METHODS

3.2.1. Experimental Data

Experimentally traced hippocampal neurons were obtained from the Duke-
Southampton cell archive (20). In particular, all of the currently available 24 CA1
pyramidal cells reconstructed in vivo from young rats were used (cells n400 to n423).
Figure 1 shows an example of one such neuron and its dendrograms. Each neuron
consisted of a morphological ASCII file in Duke-Southampton format (.swc) (9,20).
The reconstruction was represented by a series of points, or cylinders. Each cylinder
was encoded as a line in the file. The line contained seven numerical fields correspond-
ing to an identity (sequential integer), a type tag (1 for soma, 2 for axon, 3 for basal
dendrites, 4 for apical dendrites), the X, Y, and Z positions of the cylinder ending point
(in µm), the radius (also in µm), and the identity of the adjacent cylinders in the path to
the soma (the “parent”). Examples of .swc morphological files are included in the
CD-ROM. Several neurons had minor inconsistencies in the representation of one or
more cylinders. Most of these “errors” consisted of an incorrect assignment of the type
tag (for example, a few dendritic cylinders were assigned “basal” tag when they were
located in the apical field, having apical parents and daughters). These problems possi-
bly reflected human error in the semimanual reconstruction process. The appropriate
assignment was generally obvious upon color-coded visualization of the structure, and
files were thus corrected by manual editing. Seventeen of the 24 cells had at least one
such inconsistency. Details about the changes and links to the edited files are available
in the CD-ROM.

Fig. 1. Cell n421 from the Duke-Southampton archive and its dendrograms. Dendrogram to
the left is the single apical tree, the other three are the basal trees. Scale bars are 100 µm. In the
dendrograms, length is shown along the Y axis. The thickness of the lines denotes diameter.
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3.2.2. L-Neuron and the Modified Hillman Algorithm
The L-Neuron program is written in C++ and runs both under DOS and Unix sys-

tems. The CD-ROM contains the DOS executable of L-Neuron 1.07, as well as a link
to the L-Neuron download page (http://www.krasnow.gmu.edu/L-Neuron/index.html),
where Irix and Linux L-Neuron versions can be obtained. Since the program is under
continuous development, the executables will be upgraded frequently. The executable
included in the CD-ROM should be only considered as an example still in ß-release.
Up to date versions should be downloaded from the L-Neuron Web page. The Delphi
graphical user interface previously developed for L-Neuron (12) is no longer supported.
A new Java-based interface is currently under development. The current version of
L-Neuron can be executed with command lines both under Unix and DOS. Examples
of executable DOS batch files (as well as of input and output files) are also included in
the CD-ROM.

Several algorithms to generate virtual neurons are implemented in L-Neuron. These
include Lyndenmayer rewrite rules (11,12,21), several variations based on the original
description by Hillman (12–15), as well as the model by Burke and colleagues (see
Chapter 2 in this text and references therein). The L-Neuron algorithms have been
previously described in detail (18). In this case study, we will only use a single Hillman-
like algorithm, which is briefly described below (Fig. 2). The algorithm uses a set of
basic parameters that are generally expressed as statistical distributions. Currently
implemented distributions are Gaussian, gamma (22), uniform, and delta (constant).
Gaussian and gamma distributions can be further modified by a minimum and maxi-
mum constraint. In addition, linear mixtures of any number of distributions can be used
in L-Neuron. When the algorithm uses a basic parameter, it samples a stochastic value
from the appropriate distribution. The random seed is linked to the processor clock or
set by the user as a simulation option.

Each dendritic tree is generated independently (the number of trees per neuron being
the first basic parameter) and is attached to a spherical soma of given diameter. The
simulation starts with sampling an initial stem diameter, taper rate, and branch length
for each tree. Dendritic growth consists of an iterative process that crucially depends
on branch diameter. Each branch (starting from the stem) bifurcates or terminates
depending on whether or not its ending diameter (which is calculated from its initial
diameter and the taper rate) is greater than a sampled diameter threshold. If the branch
bifurcates, it stems two daughters whose initial diameters are calculated from a daugh-
ter diameter ratio and from the ending diameter of the parent using a modification of
Rall’s equation (2,13): PK × dp

1.5 = d1
1.5 + d2

1.5, where PK is a sampled numerical
param-eter (usually of value between 1 and 2). For each daughter, new values of branch
length and taper rate are sampled, and the algorithm is repeated (twice). If the ending
diameter of a branch is smaller than the sampled threshold, the branch grows by an
additional “terminal” length and stops. The iterative algorithm is, therefore, active until
all trees end in terminal tips, and it stochastically samples new values of branch length,
taper rate, diameter threshold, and daughter diameter ratio and PK (or terminal length)
for every branch. A precise definition of all these basic parameters (and how they are
measured from the experimental data) is provided as additional electronic information
in the CD-ROM.
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The above algorithm actually only determines the topology and internal geometry
(branch lengths, diameter, and connectivity) of the virtual neuron, and it thus generates
a dendrogram rather than a complete neuron. L-Neuron can stochastically specify bifur-
cation angles and dendritic orientation along appropriately fragmented branches. The
case study presented in this chapter, however, is limited to the dendrogram properties
of neuronal morphology, which constitute the necessary and sufficient information used
in anatomically accurate single-cell electrophysiological simulations (see Chapter 7 in
this text). All aspects of the L-Neuron implementation concerning 3D geometry and
dendritic orientation are described elsewhere (9,12,18). The definition of the appropri-

Fig. 2. The L-Neuron “Hillman/PK” algorithm flow chart.



Neuronal Morphology Using L-Neuron 55

ate parameters is included in the companion electronic material. A further discussion
of dendritic orientation is provided at the end of this chapter.

L-Neuron can output simulated morphology in a variety of formats, depending on
simulation options set by the user. Available formats include the Duke-Southampton
format (.swc), identical to the format of the real (reconstructed) neurons, a binary for-
mat (.vol) that can be interactively visualized and explored under DOS with a compan-
ion freeware program called L-Viewer (see Subheading 3.2.5), and various other
graphical formats such as virtual reality markup language (.wrl), AutoCad (.dxf), and
RayDream “persistency of vision” (.pov). A description of these formats is beyond the
scope of the present chapter. The CD-ROM includes a complete list of the available
output formats and appropriate command line instructions.

3.2.3. Extraction of Basic and Emergent Parameters with L-Measure

L-Measure is a software package specifically designed for the automatic extraction
of morphological parameters from neuroanatomical files (19). The current version of
L-Measure (v1.6) runs under Windows and can be executed both from DOS command
line and through a graphical user interface. The program is written in C++ and Java and
is continuously upgraded. As for L-Neuron, the L-Measure executable included in the
CD-ROM should only be considered a ß-release, and updated versions should be down-
loaded through the appropriate Web links.

L-Measure can read input files in a variety of formats (for a discussion of common
morphological formats, see [9]), including Duke-Southampton (.swc), Neurolucida
(.asc; http://www.microbrightfield.com), Eutectic (.txt; http://www.ls.huji.ac.il/~rapp/
labpage.html), Nevins/Claiborne (.dat; http://cascade.utsa.edu/bjclab/), and ArborVitae
(.seg; http://www.krasnow.gmu.edu/L-Neuron/index.html). L-Measure can convert any
of these formats in the Duke-Southampton “standard”. L-Measure recursively visits
every cylinder in the neuron and uses the information (position, diameter, connectiv-
ity) to return a large variety of measurements. These include data regarding the whole
neuron (e.g., total length) or each given branches (interbifurcation length) or individual
point (cylinder length). Measurements can be returned as raw data (list of numbers), or
as statistical summaries consisting of minimum, maximum, mean, and standard devia-
tion calculated on a cell-by-cell basis or for groups of input cells. These options can all
be set through the graphical user interface, as detailed in the electronic documentation.

One of the most useful features of L-Measure is the possibility to precisely specify
dendritic subsets for which the information is required. For example, measurements
could be selectivley taken from terminal apical segments of less than 0.4 µm in diam-
eter. In addition, L-Measure can calculate any parameter distribution with respect to a
second parameter (e.g., Sholl analysis of number of bifurcations vs distance from
soma). In the present version, there are 38 functions that can be arbitrarily combined to
return any measurement commonly used in the neuroanatomical literature, including
lengths, diameters, topological asymmetry, angles, number and patterns of bifurca-
tions, etc.

L-Measure was used to extract all basic parameters that appear in Figure 2 from the
24 real CA1 pyramidal cells taken from the Duke-Southampton archive. Apical and
basal trees were analyzed separately, and axonal information (only available for a few
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neurons) was discarded. All measurements were extracted as raw data and further ana-
lyzed (see Subheading 3.2.4) to determine the appropriate statistical distributions. As
an example of the basic parameter extraction process using L-Measure, we briefly il-
lustrate here the case of interbifurcation path distance. The function branch-pathlength
is chosen from the Function tab. To separate apical and basal dendrites, type is selected
from the Specificity tab, the “=” button is selected, and either 3 or 4 is entered in the
value field (in .swc files, type 3 and 4 correspond to apical and basal dendrites, respec-
tively). In order to limit the measurements to interbifurcation branches, excluding ter-
minal branches, N-tips is also selected from the Specificity tab, the “>” and the “and”
buttons are selected, and 1 is entered in the data field. This will instruct the program to
only return values for branches leading to more than 1 tip, therefore excluding terminal
branches. In the Output tab, the raw data button is selected, and an output file name is
entered. To start the extraction, the go button on the Go tab is selected. Similarly de-
tailed procedures and definitions for all basic parameters are enclosed in the additional
CD-ROM material.

L-Measure was also used to extract emergent parameters from both real and gener-
ated cells. For this case study, emergent parameters included the total number of bifur-
cations, total surface area, and total dendritic length. Finally, L-Measure was used to
explore further morphological correlations in the real neurons (see Discussion).

3.2.4. Data Analysis

The raw measurements of basic parameters extracted from the real cells with
L-Measure were imported in Microsoft Excel to determine the statistical function, or
combination of functions, that best fit each distribution. The mean and standard devia-
tion of the best Gaussian fit to the experimental distributions were calculated using the
Excels solver function (23). Gamma distributions are characterized by three parameters,
α, ß, and γ. Parameters α and ß determine the shape of the distribution and are related
to the mean (µ) and standard deviation (σ) of the data [α = σ2/ß2; ß = σ2/(µ – γ)].
Parameter γ determines the offset of the gamma distribution and was usually zero.
These parameters were also optimized using the Excel solver function. The range of
uniform distribution fitting was simply taken from the minimum and maximum values
of the raw data. A few (two in basal and one in apical) very large PK values of dubious
biological plausibility were not included in the parameter distributions.

In order to quantify the quality of the fit (and to chose among different statistical
functions or their mixtures when the “best fit” was not obvious by visual inspection),
the following method was adopted (24). For each statistical function, a number of points
corresponding to the raw data was generated using the best fitting values of the func-
tion parameters (i.e., mean and standard deviation for Gaussian, α and ß for gamma,
minimum and maximum for uniform). Both the raw data and the generated distribution
were then sorted by increasing order. The two ordered distributions were linearly cor-
related, and the corresponding Pearson’s coefficient was taken as a measure of the fit
quality.
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3.2.5. Visualization of Neuronal Morphology and Dendrograms

Neuronal morphologies in Duke-Southampton formats (.swc) can be visualized with
the freeware Java applet Cvapp (20) (www.compneuro.org). L-Neuron virtual cells
can be generated in the same format (and thus visualized with Cvapp), or in a (more
compact) binary format that can be visualized by L-Viewer (12) (download links
included in the CD-ROM). Both Cvapp and L-Viewer allow users to move, rotate, and
zoom neurons in a pseudo-3D environment. An additional software tool, called
Dendro1, was used to convert morphological files in their dendrograms. Dendro1,
which is also included in the CD-ROM, is written in Java and runs under Dos. Both
input and output files are in .swc format. For all individual trees, Dendro1 reduces each
branch to a single segment while conserving its total length, beginning, and ending
diameter values. These segments are then vertically oriented (branch with greater num-
ber of daughters to the left) and connected with horizontal lines of arbitrary length
(default 10 µm, but can be set by user) to conserve the original topology. The result is
a 2D representation of each tree in the neuron, with all angle information removed (see
Figs. 1 and 5 as examples). Usage documentation is included in the electronic material.

3.3. RESULTS

Basic parameters for the variation of the Hillman’s algorithm described in Figure 2
were measured from the 24 CA1 pyramidal cells, keeping basal and apical dendrites
separate. The number of data points varied greatly, from N = 24 for the cell-dependent
parameters (such as the number of trees), to N = 755 and N = 1172, respectively, for the
basal and apical parameters dependent on branches or bifurcations (such as
interbifurcation length and daughter diameter ratio). Most of the measured parameters
were fitted best by gamma curves. For instance, interbifurcation length, initial diam-
eter, and diameter threshold, for both apical and basal dendrites, were all fitted by
gamma curves with correlation of 0.9 or higher. As an example, Figure 3 shows the
gamma fitting of the initial diameter for apical (Fig. 3A) and basal dendrites (Fig. 3B),
together with the plots of the linear correlations between real data and data generated
according to the fitting function.

A few parameters, such as basal and apical taper rate, and the number of basal trees,
were best fitted by a Gaussian rather than gamma curve. Several of the parameters
dealing with diameters showed around half of their measured data points at a single
value. Specifically, many basal and apical bifurcations were symmetric as far as the
diameters of the two daughter branches are concerned (i.e., d1 = d2, and the daughter
diameter ratio equals one). Similarly, many branches were perfectly cylindrical from
bifurcation to bifurcation (or termination), i.e., their initial and ending diameters were
equal (taper rate of zero). Finally, when thin branches bifurcate (especially at high
branching order), it was not uncommon that daughters had the same diameter of the
parent, yielding a value of the constant PK of two. Instead of trying to fit these values
into a gamma or Gaussian curve, these repeated values were treated as a separate con-
stant (delta) distribution and were sampled according to their proportion of occurrence
in the real cells. For example, the daughter diameter ratio had 65% of its basal points
and 43% of its apical points of value 1. Only the remaining points were thus fitted to a
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Fig. 3. Measured stem diameter frequency distribution. Diameter of first compartment of each tree are shown in dotted line. Data generated
using best-fitting gamma distribution are shown in solid line. (A) apical; (B) basal. Inset: linear correlation (with Pearson’s coefficient) between
measured and sampled data.
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Fig. 4. Measured daughter diameter ratio frequency distribution. Measured data at each bifurcation (larger daughter diameter divided by
smaller daughter diameter) are shown in dotted line. Data generated using best fitting gamma distribution are shown in solid line. (A) apical; (B)
basal. Inset: linear correlation (with Pearson’s coefficient) between measured and sampled data.
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Table 1
Basic Parameters (Basal and Apical)

L-Neuron Basal Apical
Parameter Dist % Mean Stdev Min Max Dist % Mean Stdev Min Max

Rall_Power k 1.50 k 1.50
Daughter_Ratio y 0.35 2.30 1.07 1.00 8.70 y 0.57 3.18 2.01 1.00 16.75

k 0.65 1.00 k 0.43 1.00
Ibf_Branch_pahtlength

(µm) y 66.32 77.34 0.00 546.83 y 73.51 86.20 0.00 890.09
Stem_Diameter (µm) y 1.56 0.88 0.48 4.61 y 3.10 1.11 0.48 5.74
Term_Branch_pathlength

(µm) k 61.42 k 50.73
Diam_threshold (µm) y 0.51 0.26 0.18 1.55 y 0.47 0.29 0.16 2.59
Taper_2 g 0.51 0.50 0.20 0.02 0.95 g 0.44 0.53 0.21 0.08 0.95

k 0.49 0.00 k 0.56 0.00
PK y 0.45 1.53 1.57 0.10 9.88 y 0.62 1.35 0.95 0.17 6.49

k 0.55 2.00 k 0.38 2.00
N_stems g 3.00 1.32 6.00 k 0.92 1.00

k 0.08 2.00

Distribution type key: k, constant; g, Gaussian; y, gamma.
While means and standard deviations are given for clarity, distributions marked in y (gamma) were represented in the L-Neuron parameter input file in terms

of α and ß. Means and standard deviation are calculated in this table as µ = αß and σ = ßα1/2.
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gamma distribution. The graphs of these gamma curves and corresponding real points
(all points that were not of value 1) are shown in Figure 4. The graphs and the linear
correlations both indicate the high quality of the gamma fit for these basic parameter data.

The measured number of apical trees corresponded to a simple bimodal distribution:
22 out of the 24 cells had a single apical tree, while the remaining 2 cells had two apical
trees. The corresponding parameter was thus set as a mixture of two constants, one at 1
and one at 2, with the appropriate relative proportions. Terminal path distance (used in
the algorithm as an additional growth on top of the regular interbifurcation length) was
also set at a constant determined by subtracting the mean interbifurcation path distance
from the mean path distance, from bifurcation to termination, measured in terminal
branches. Table 1 summarizes the results of the basic parameter extraction and curve
fitting. The corresponding L-Neuron input files (.prm) are enclosed in the electronic
material. Those files also contain several parameters concerning the spatial orientation
of dendrites, which, though necessary to run L-Neuron, are not discussed here. The
electronic documentation includes the definitions of these additional parameters and
how they were extracted with L-Measure.

Fifty neurons were generated with seeds 1 to 50. Using the unedited data extracted
from the 24 real cells (Table 1), only 3 of those seeds resulted in finished virtual cells.
The remaining 47 simulations created neurons that kept growing beyond the bounds of
the program (in this case set to approximately 3000 bifurcations). In order to limit
infinite growth, the taper distributions used in the algorithm were recomputed disre-
garding the few (4% apical and 6% basal) negative values found in the real data. After
excluding negative taper values from the basic parameter distributions, approximately
10% of the virtual cells still grew over the limit of 3000 bifurcations. In analogy with
previous simulation studies (18), we thus imposed a maximum value of 2 for the PK
distributions. This prevents daughters from being excessively larger than parents at
bifurcation points. With this modified set of parameter distributions, all random seeds
(1–50) resulted in 50 finished virtual cells. Of these, one had an apical tree with 2,735
bifurcations, over 36 standard deviations above the average of 45.14 bifurcations
calculated over the remaining 49 cells. Figure 5 shows the dendrogram of one of these
49 cells.

Several basic and emergent parameters were measured from the basal and apical
trees of real cells as well as of virtual cells generated using the raw parameter distribu-
tions, the distributions excluding negative taper values and PK values over 2, and this
last set without the one extremely large outlier. Measured basic parameter included
interbifurcation and terminal branch length and daughter ratio. Emergent parameters
included bifurcation number, total length, and total surface area. Table 2 summarizes
the data for these cell groups and parameters.

3.4. DISCUSSION

Table 2 indicates that the basic parameters extracted from the real neurons and used
in the simulation are very close to those measured from the virtual neurons, in terms of
both mean and variance. The emergent parameter measurements, however, show sig-
nificant differences between real and generated neurons. When the raw basic param-
eters were used as extracted, most virtual neurons grew indefinitely. The few instances
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of finite growth were clearly biased towards excessively small size. When the statisti-
cal distributions of taper rate and PK were set limited maximum values (of 0 and 2,
respectively), virtual neurons grew to much more plausible sizes. Emergent parameters
measured from basal trees had means very close to those of the real neurons. A similar
match was observed in apical trees once a single “hypertrophic” outlier was removed.
However, even in these cases, the standard deviations of the emergent parameters are
much higher in the simulated dendrites than in the real data. The problem of excessive
variability in the emergent parameters of virtual neurons emphasizes the need for
more constraints in the algorithms. Nevertheless, Figure 5 shows that this algorithm
can produce instances of fairly realistic virtual CA1 dendrograms.

As most algorithms implemented in L-Neuron, the anatomical rules used in this
study to model dendritic morphology are entirely local. This means that the growth of
a branch at any point in the tree does not depend on any other event throughout the rest
of the cell. The use of local rules has the advantage of simplicity, both in the extraction
of parameter (that are measured directly from reconstructed neurons) and in the algo-
rithm design: as the elongation of a branch is being processed, no information is
required from any other structure. By and large, this assumption is also biologically
plausible: there is no evidence that growth cones have detailed information about the
branching of the rest of the cell. However, in nature, the overall size of the growing
neuron is likely to have at least a coarse feedback effect on local branch elongation. In
L-Neuron, such effect is not modeled, occasionally resulting in virtual neurons that are
significantly larger or smaller than generally found in nature.

Fig. 5. Dendrogram of a virtual cell created from distributions disregarding negative tapers
and having a maximum PK of 2 (random seed 34). Dendrogram to the left is the single apical
tree, the two to the right are the basal trees. Scale bar is 100 µm. Virtual cells are included in the
CD-ROM.
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Table 2
Summary of Emergent Parameters

Tree Type Apical Tree Type Basal

Parameter Real Ca1 Unedited Edited No Outlier Parameter Real Ca1 Unedited Edited No Outlier

n = 24 3 50 49 n = 24 3 50 49
Basic Basic
Ibf_Branch_ mean 73.51 74.52 78.48 80.71 Ibf_Branch_ mean 66.32 80.99 73.84 73.89
pathlength (µm) stdev 86.20 50.47 74.94 77.22 pathlength (µm) stdev 77.34 59.75 67.61 67.65
Term_Branch_ mean 124.24 108.40 108.50 110.98 Term_Branch_ mean 127.88 79.62 108.54 108.57
pathlength (µm) stdev 104.84 59.29 77.10 79.99 pahtlength (µm) stdev 90.83 43.48 70.75 70.80
Daughter_Ratio mean 2.25 1.94 2.29 2.29 Daughter_Ratio mean 1.46 1.54 1.50 1.50

stdev 1.87 1.42 1.62 1.60 stdev 0.89 0.67 0.87 0.87
Emergent Emergent
N_Bifs mean 48.42 11.00 98.94 45.14 N_Bifs mean 31.67 7.67 27.16 27.67

stdev 15.61 9.54 387.25 73.24 stdev 9.53 5.51 47.83 48.19
Surface (µm2) mean 18770.62 4318.46 43436.05 18561.08 Surface (µm2) mean 11282.86 3648.81 9850.03 10039.35

stdev 11032.09 4175.34 178516.43 30810.07 stdev 8051.04 2047.92 17026.20 17149.38
Length (µm) mean 10451.52 2427.75 19667.44 9146.38 Length (µm) mean 6866.79 1391.62 5465.35 5568.01

stdev 3898.52 2102.72 75795.59 14653.52 stdev 2804.43 693.44 9082.06 9146.82

Column labeled Real CA1 refers to the 24 traced hippocampal cells obtained from the Duke-Southampton archive. Column labeled Unedited refers to cells
created using the raw extracted data. The Edited column refers to cells created when negative tapers were not included in the data analysis, and maximum PK
value was set at 2. One of these 50 cells was several orders of magnitude larger than the others, and the No Outlier column summarizes the data on the remainder
cells. See Glossary in the online material for descriptions of parameters.
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The results of this case study confirm previous observations that virtual neurons
generated with purely local algorithm tend to excessively vary in size compared to the
real cells (18). However, this study also exposed a potential “instability” of the algo-
rithm that causes cells to grow indefinitely. This happens when the combination of
sampled values for the parameters that control diameter (specifically, taper rate and
PK) causes an initial “explosion” in the number of bifurcations, before the diameter
drops below the threshold causing terminations. Once an excessive number of “grow-
ing” branches is present, it is likely that at least some of these will generate even larger
daughters, causing a practically infinite loop. Our results demonstrate that limiting
taper rate to nonnegative values and PK to values not larger than 2 (thus preventing the
creation of daughters with much larger diameter than their parents) eliminates this
instability. Other authors have also considered taper rate too sensitive a parameter,
making it an (optimized) constant in their models (see e.g., Chapter 2 in this text).
Similarly, previous implementations of the L-Neuron algorithms also limited possible
PK values to 2 or less (18). Why are these constraints necessary, given that basic
parameters are directly measured from the real neurons?

In the current implementation of the algorithm, the values of many parameters are
assumed to be uniformly distributed throughout the cell, but in reality they are not.
This discrepancy between model and reality is, we believe, largely responsible for the
instability of the algorithm that can lead to excessively large cells. Several parameters
tend to depend on either diameter or distance from the soma. Taper rate, for example, is
very large near the soma, where diameter falls off quickly. Distally in the dendrites,
where diameters are small and generally almost constant, taper is mostly 0. If the
statistical distribution of taper fitted from data extracted from the entire cell is used to
sample taper values near the soma (e.g., at the beginning of neuronal growth), the prob-
ability to obtain a rapid initial shrinkage in the simulated dendrite will be significantly
smaller than in real neurons. The top two graphs in Figure 6 demonstrate that a similar
situation occurs for both the major parameters controlling diameter changes (taper rate
and PK). In other words, in real neurons, the conditions (parameter values) leading to a
branch diameters increase (negative taper and PK values greater than 2) are less fre-
quent near the soma that distally. A corresponding tendency can be inferred from the
plots of the average values of these parameters at different branching orders, in both
basal and apical trees (Figs. 6C and D).

In order to address this issue, taper rate and PK could be made explicitly dependent
on branch order or path distance from the soma in the algorithm. Alternatively, since
diameter is generally monotonically decreasing with branch order and path distance
from the soma, taper and PK could be made dependent on diameter itself, which would
provide a useful feedback mechanism while maintaining the purely local approach.
Whether these dependencies and mechanisms are in turn due to specific underlying
developmental or cytoarchitecture properties of this cell class remains an open ques-
tion. Implementation of these variations of the algorithm is currently underway.

The results of the present study can be compared to those obtained with the morpho-
logical simulation of motoneurons and Purkinje cells by using similar algorithms (18).
While the variability of emergent parameters was larger in virtual cells than in real
cells for all the morphological cells, in the motoneuron models, such a difference in the
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Fig. 6. Taper and PK vs Branch Order. Panels A and B show the proportion of values at different branch orders that would lead to a lack of
decrease in diameter (taper values less than or equal to one, and PK values greater than or equal to 2). Panels C and D show the means for these
two parameters by branch order. At an apical branch order greater than 25 and a basal branch order greater than 9, the amount of data drops
drastically. Data from these distal tips is, therefore, not included in these graphs.
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data variability was modest, and averages of all tested emergent parameters in virtual
cells were remarkably accurate as compared to the real neurons. In Purkinje cells, the
difference in data variability between real and virtual neurons was greater. Most emer-
gent parameters were well reproduced, with the exception of the maximum branching
order in Purkinje cells. Morphological analysis had connected that discrepancy with
topological asymmetry, and, ultimately, with the daughter diameter ratio. The issue in
the Purkinje cell case was that the daughter diameter ratio, which is assumed in these
simple algorithms not to depend on the position of the bifurcation in the dendritic tree,
had in fact a somewhat bimodal distribution, with great asymmetry (high daughter
diameter ratio) close to the soma, and almost total symmetry (daughter diameter ratio
close to one) distally (18). A similar situation was encountered in the present case
study with CA1 pyramidal cells. However, in this case, other parameters that crucially
affect local diameter also heavily depended on distance from the soma (or diameter).
Since all L-Neuron algorithms critically depend on local diameter in determining
branching and terminating probabilities, and thus the size of the neuron, this observa-
tion explains the occurrence of “infinite growth” described in the Results section.

A further issue that emerged from this case study is that of stem diameter. The over-
all size of the generated neurons is highly dependent on the starting diameter, but in the
traced neurons, the point where the soma stops and the dendrite starts is largely set
arbitrarily. Since the decrease of taper rate with the distance from the soma is generally
extremely steep in the very proximity of the soma, a possibly robust definition of den-
dritic stem would be linked to discontinuity in the taper rate.

3.5. SPATIAL ORIENTATION

A final item of discussion concerns the issue of the spatial orientation of dendrites.
While dendrograms capture a great deal of morphological properties and are sufficient
to run single-cell electrophysiological simulations, an important component of den-
dritic morphology is the occupation of space in three dimensions. In fact, this is one of
the most important shape characteristics that neuroanatomists intuitively use in mor-
phological classifications. L-Neuron tackles the problem of dendritic orientation at four
levels (12). First, trees stem out of the soma with a given orientation, typically deter-
mined in polar coordinates as elevation and azimuth. Second, each branch (between
two consecutive bifurcations, between a stem and a bifurcation, or between a bifurca-
tion and a termination) is fragmented in smaller segments, and each of these are also
oriented, in polar coordinates, relative to their parent segment. Third, bifurcations are
further characterized by an amplitude angle and a torque angle. As for the other basic
parameters, these angles can be extracted (e.g., with L-Measure) from experimental
morphology (the parameters, with their definitions and measurement procedures, are
included in the L-Neuron files in the CD-ROM). Finally, all dendritic segments in the
neuron can be pushed in one or more particular directions (tropism [9]), such as away
from the soma, towards a plane, or along a fixed axis.

Recently, we introduced a simple model of dendritic orientation for hippocampal
cells, including CA1 pyramidal cells (25). In this model, only two tropic components
were included: (i) a push away from the soma; and (ii) a push along the apparent pref-
erential direction of growth (measured as the average orientation of all dendritic seg-
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ments). Bayesian analysis demonstrated that the tendency to grow away from the soma
is the dominant factor in hippocampal cells. In a further approximation, the two daugh-
ters of each bifurcation were treated as independent segments, so that no additional
constraints were needed to describe bifurcations. Thus, remarkably accurate dendritic
shapes were obtained with just four parameters characterizing spatial orientation: the
azimuth and elevation of the tree stems, the “repulsion” from the soma (expressed
relative to a tendency to grow straight, i.e., in the same direction as the parent seg-
ment), and a “noise” factor, accounting for random deviations (isotropic) in three
dimensions. A complete discussion of this model is beyond the scope of the present
chapter (see [25] for more details). However, it should be mentioned that the model
could be used to “recreate” full neuronal geometry starting from the experimental “den-
drograms” (Fig. 7). Thus, the same model of spatial orientation could be applied to the
dendrograms generated with L-Neuron, such as those shown in Figure 5.

3.6. CONCLUSION

This chapter presented a “case study” of morphological simulation. We limited our
analysis to one morphological class and, most importantly, to one simple entirely local
algorithm. The goal of this study was not to find the perfect algorithm to reproduce all

Fig. 7. Remodeling of a hippocampal pyramidal cell (cell c12866 from Amaral’s collec-
tion). Scale bar is 200 microns for neurons and 400 microns for dendrograms. All angle infor-
mation was eliminated from the experimental morphological file. Dendrograms were then
reoriented according to a simple model that only includes stem direction, tendency to grow
straight, repulsion from the soma, and noise (25).
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aspects of dendritic morphology. Such an algorithm will undoubtedly be fairly com-
plex, as quantitative explanations of neuroscientific phenomena typically are. In con-
trast, the goal of this chapter was to illustrate the key steps of the research strategy
underlying the search of such an algorithm. These include (i) the definition of the
hypotheses (expressed algorithmically, as in Fig. 2); (ii) the measurement of the basic
parameters from the experimental data; (iii) their fitting and representation as combi-
nations of statistical distributions; (iv) the stochastic generation of virtual neurons; (v)
the quantitative comparison of these simulated cells with the real ones by means of
emergent parameters; and (vi) the morphological analysis to quantify the possible
causes of the discrepancies (see examples in Fig. 6). This process can be iterated to
improve the initial set of hypotheses by progressively implementing more refined algo-
rithms (see also Fig. 2 in Chapter 1 of this text).
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Optimal-Wiring Models of Neuroanatomy

Christopher Cherniak, Zekeria Mokhtarzada,
and Uri Nodelman

ABSTRACT

Combinatorial network optimization appears to fit well as a model of brain struc-
ture: connections in the brain are a critically constrained resource, hence their deploy-
ment in a wide range of cases is finely optimized to “save wire”. This review focuses
on minimization of large-scale costs, such as total volume for mammal dendrite and
axon arbors and total wirelength for positioning of connected neural components such
as roundworm ganglia (and also mammal cortex areas). Phenomena of good optimiza-
tion raise questions about mechanisms for their achievement: the examples of opti-
mized neuroanatomy here turn out to include candidates for some of the most complex
biological structures known to be derivable purely from simple physical energy mini-
mization processes. Part of the functional role of such fine-tuned wiring optimization
may be as a compact strategy for generating self-organizing complex neuroanatomical
systems.

4.1. INTRODUCTION

How well can combinatorial network optimization theory predict structure of inver-
tebrate and vertebrate nervous systems? The working hypothesis explored here is that
brain connections are singularly limited, both in volume and in signal–propagation
times; therefore, minimizing costs of required connections strongly drives nervous sys-
tem anatomy. Network optimization theory is the field in computer science that has
developed formalisms of scarcity for expressing and solving problems of “saving wire.”
The question then is, how well do such concepts in fact apply to the brain? The main
technique of these studies is computational experiments, the main hurdle the exponen-
tially exploding computational requirements of optimization searches to evaluate con-
nection-minimization of the neuroanatomy.

Good optimization findings focus attention upon possible biological mechanisms.
Network optimization problems are among the most computationally intractable
known; in general, only an exhaustive search of all possibilities can guarantee exact
solutions. However, some “quick but dirty” probabilistic/approximation procedures
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developed for microcircuit design suggest candidate models for biological mechanisms
of neuroanatomy optimization. In particular, we report positive results for neural opti-
mization via genetic algorithms and via vector mechanical energy-minimization simu-
lations. In fact, the latter models constitute an instance of self-organizing
morphogenesis of highly complex biological structure directly from simple physical
processes.

4.2. CONCEPTUAL BACKGROUND

The theoretical framework of this work grew out of methodological studies of pre-
vailing models of the agent in microeconomic, game, and decision theory (1,2). The
basic finding was that these models typically presupposed agents with unlimited com-
putational capacities, and more realistic bounded-resource models were then devel-
oped. Subsequently, the same approach was applied in computer science, to
connectionist models of massively parallel and interconnected computation that were
intended to be more neurally realistic than conventional von Neumann computational
architecture (cf [3]); again, the models tended to overestimate available resources dras-
tically—here, actual connectivity in the brain. At least initial connectionist models
often tacitly assumed neural connections were virtually infinitely thin wires. In assem-
bling the quantitative neuroanatomy necessary for evaluating neural feasibility of
connectionist models, it became evident that a weaker but still discernible trend toward
overestimation of resources then pervaded even some neuroanatomy (4).

Thus, a bounded-resource philosophical critique of mind-brain science (“We do not
have God’s brain”) focused attention on neural connections as a critically constrained
neurocomputational resource. Through combinatorial network optimization theory, a
positive research program emerged: if actual brain connections are in severely short
supply, is their anatomy correspondingly optimized? The investigation thus falls in a
Pythagorean tradition of seeking simple mathematical patterns in observed natural
forms (e.g., [5]). In fact, minimum wiring interpretations of neuroanatomy can be
traced back at least as far as Cajal’s qualitative “laws of protoplasmic economy” (6,7)
and have continued to receive attention (e.g., [8]).

The human brain is commonly regarded as the most complex physical structure
known in the universe. In the face of such overwhelming intricacy, neuroanatomy tra-
ditionally tended toward “descriptive geography” of the nervous system, i.e., relatively
low-level ad hoc characterization of individual neural structures. The abstractive power
of concepts from computation theory would aid in coping with the unparalleled com-
plexity of the brain. In particular, network optimization theory may provide a source
for a “generative grammar” of the nervous system, some general principles that com-
pactly characterize aspects of neuroanatomy. Of course, connection minimization is
unlikely to be ubiquitous in the nervous system; indeed, given the many other compet-
ing desiderata driving design of a brain, the striking observation is that it should hold in
even some conditions. The question, then, is characterizing where “save wire” does
and does not apply.

For example, in the Caenorhabditis elegans ganglia case sketched below in Sub-
heading 4.4.2., we reduced approximately one thousand pages of published anatomy
diagrams (9a–c) to a 100-page database, which, in turn, was represented as a 10-page
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connectivity matrix (see Fig. 2 in [10]), which we then computationally verified to
conform to connection-minimizing component placement optimization better than any
of the nearly 40 million alternative possible layouts (see Fig. 1). If these types of result
are confirmed, they constitute a predictive success story of recent quantitative
neuroanatomy.

4.3. NETWORK OPTIMIZATION THEORY

The theory of NP-completeness emerged around 1972 (11,11a); the key formal con-
cept of a computational problem being NP-complete (nondeterministic polynomial-
time complete) is strongly conjectured to be linked with a problem being intrinsically
computationally intractable—that is, not generally solvable without exhaustive search
of all possible solutions. Because the number of possibilities combinatorially explodes
as the size of a problem-instance grows, such brute force searches are extremely
computationally costly. For example, a 50 component system would have 50! possible
alternative layouts, which is far more than the number of picoseconds since the Big
Bang 20 billion years ago. Many of the most important real-world network optimiza-
tion problems (e.g., the best known, Traveling Salesman) have been proven to be
NP-complete or worse in computational complexity. Steiner tree and component place-
ment optimization, problems examined here, are of this type, having been proven to be
“NP-hard”.

Steiner tree has been studied in its simplest form at least since the Renaissance
(12,13). The most relevant version of the problem is: given a set of fixed node loci, find
the set of arcs (or branch segments) between those loci that interconnects all loci and
has shortest total length. The resulting network will always constitute a tree. When it is
permitted to have branch junctions only at node sites, it is a minimal spanning tree;
when branch junctions may also occur at sites that are not nodes, it constitutes a Steiner
tree. The total length of the Steiner tree for a set of nodes is equal to or less than the
length of the minimal spanning tree for the nodes. For example, Figures 2A and B
show, respectively, a minimal spanning tree and a Steiner tree for five nodes on a
plane. The Steiner tree is about 4% shorter than the minimal spanning tree.

Since Steiner tree is a member of the class of NP-hard problems, it is not surprising
that the largest unconstrained Steiner tree problems that can currently be solved have
only approx 100 nodes (cf [14]). However, while minimal spanning trees are equal to
or longer than corresponding Steiner trees, they are not at all computationally intrac-
table; exact algorithms for them today perform well for quarter-million node sets. The
basic question of goodness of fit of the Steiner tree concept to actual neuroanatomy is:
do the dendritic and/or axonic arbors of a neuron form optimized Steiner trees inter-
connecting the cell body with a set of synaptic loci? The key idea needed for such
applicability is that for real-world trees, living and nonliving, not all segments are equal:
the concept of an optimal tree had to be extended to include variably weighted branches
and trunks (15).

Component placement optimization (“quadratic assignment problem”), the other
wiring problem focused upon here, has received the most attention in computer science
in connection with design of large scale integrated circuits (16, 16a). The problem can
be defined as: given the connections among a set of components, find the spatial layout
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of components that minimizes total connection costs. The simplest cost-measure is
length of connections (often represented as the sum of squares of the lengths); usually
the possible positions for components are restricted to a matrix of “legal slots”. As a
simple example, Figures 3A and B diagram two of six possible configurations of com-
ponents 1, 2, and 3 in slots A, B, and C; for the connections among the components,
placement 3a requires the most total connection length and 3b the least.

Again, computation costs for the exact solution of component placement optimiza-
tion problems are of a magnitude not encountered in most bioscience computing, out-
side of gene-sequencing, and constitute one of the principal technical impediments of
this research. For n components, the number of alternative possible placements is n!
(Size of this search space is generally unaffected by whether permissible component
positions are located in 3, 2, or 1 dimensions.) Heuristic procedures that yield approx
optimal solutions can be much more feasible, but their performance (e.g., how close to
optimality are they likely to come) is not well understood.

Perhaps the most salient and daunting feature of nontrivial global optimization prob-
lems is the presence of local minima traps on the optimization landscape—that is,
parameter values that yield least costs within a subregion of the search space, but not
across the total space. For example, with regard to vector mechanical force-minimiza-
tion treatments of the above two problems: (i) the dendritic tree of Figure 4C is subop-
timal because of its topology, while Figure 4D shows the minimum cost topology; no
vector mechanical tug of war re-embedding the suboptimal topology can ever trans-
form it into the best topology; and (ii) similarly, Figure 5 shows a vector mechanical

Fig. 1. Distribution of wirecosts (total wirelength) of all possible layouts of ganglia of C.
elegans. A 10,000-bin histogram compiled from exhaustive search of all 39,916,800 alterna-
tive orderings of the 11 ganglia. Least costly and most costly layouts are rarest. In effect, the
search approximates a simulation of the maximal possible history of the evolution of this aspect
of the nervous system. The worm’s actual layout (Fig. 2 in [10]) is in fact the optimal one,
requiring the least total length of connecting fiber of any of the millions of possible layouts. For
comparison, the last-place, “pessimal” layout would require about 4 times as much total con-
nection fiber as the optimal one. (See [7]).
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local minimum trap for the roundworm ganglion component placement problem. The
extensive modeling of cellular structures and processes in terms of compression–ten-
sion “tensegrity” by Ingber (e.g., [17,17a]) does not deal with local minima and, there-
fore, cannot account for such global optimization via evading such traps.
Correspondingly, Van Essen’s tension-based model of cortical folding, in terms of
white matter tensegrity, also does not deal with local minimum traps and, so, will not
suffice for global optimization problems of wiring minimization (18–18b).

4.4. OPTIMIZATION MECHANISMS

From evaluating how well neural structures conform to minimum wiring principles
of economical use of connections, we have gone on to seek biological mechanisms of
the observed extremely fine network optimization. The emerging picture is that, cor-
responding to “Save wire” neuroanatomy optimization results, we have found neu-
roanatomical candidates for some of the most complex biological structures shown to
be derivable purely from simple physical processes (cf [19]). This constitutes a further
stage in developing an understanding of the generative rules that yield the highly com-
plex anatomy of the nervous system.

4.4.1. Large-Scale Optimization of Dendrites and Axons

Some complex neuron arbor structure seems to be self-organizing, with no need of
evolutionary mechanisms for its creation. While the key underlying pattern is network
optimization, “Save wire” (in particular here, minimize total volume), the specific
hypothesis in this case is, neuron arbor morphogenesis behaves like flowing water (see
[20]). The volume minimizing fluid dynamic model yields two confirmed results: (i) it
predicts diameters of branches at junctions; and (ii) from those diameters, branching
angles and junction loci can then be predicted. The major methodological enterprise of
the project centered on developing STRETCH—a package of algorithms for the
computationally intractable (NP-hard) task of generating optimal trees (13) with vari-
able branch-weights—as the gold standard against which to compare observed neu-
roanatomical trees.

Neural fluid mechanics is a simple fluid-dynamical model, for minimized walldrag
of pumped flow through a system of pipes, that will predict branch diameters of some
types of dendrites (e.g., of mammalian retinal ganglion cells) and axons (e.g., in rodent

Fig. 2. Minimal spanning tree (A) and Steiner tree (B) for five nodes on a plane surface. The
Steiner tree is shorter, but much more computationally costly to construct. Adapted from (20).
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thalamus) almost as well as it predicts configuration of nonliving tree structures such
as river drainage networks. For neurons, the fluid dynamics falls in the laminar-flow vs
turbulent regime.

Waterflow in branching networks, in turn, acts like a tree composed of a weights-
pulleys-cords system (non-Hooke’s Law), that is, vector mechanically; so also do the
neuron arbors. As a result, the trees globally minimize their total volume to about 5%
of optimum for interconnecting their terminals (see Fig. 4). One unanticipated moral
that emerges is that, in a sense, “Topology does not matter”, that is, the worst or
“pessimal” connection pattern typically costs only relatively little more than the opti-
mal pattern, compared to the wide corresponding possible range of costs for embed-
ding a given topology. The conclusion here is only that this minimum volume
configuration is the default neuron arbor structure, probably often modified in many
complex ways (cf, e.g., [21]).

4.4.2. C. elegans Ganglion Placement Optimization

We have extended the above results on large-scale optimization of individual neu-
ron arbors to the entire C. elegans nervous system. The basic picture is indeed that
vector mechanics suffices for optimization of placement of the ganglia of C. elegans.
As mentioned earlier, our prior research had found that the actual placement of the
ganglia in the worm was optimal, in that it required the least total length for the animal’s
(approx 1000) interconnections, out of roughly 40 million alternative possible gan-
glion orderings (see Fig. 1). We had also reported a related set of optimization results
for rat, cat, and macaque cortex, in terms of placement of connected Brodmann areas
that conforms to an “Adjacency Rule” (7,10,22,23). (Nonetheless, as we have noted
(22), the majority of connections in the actual worm are not to nearby components;
therefore, merely positioning components so their connections tend to go to nearby
components will not in itself suffice to yield the minimum wirecost layout.) As men-
tioned, if this 1-in-10-million type of result is replicated, it begins to approach some of
the most precise confirmed neuroanatomy predictions (see [24, 24a]); hence, we sought
convergent support by finding feasible mechanisms for such fine-grained optimization.

We have constructed Tensarama, a force-directed placement simulator, in which
each of the worm’s connections behaves like a microweight-and-pulley system (Fig. 5
shows a screendump). Analog hardware devices of this type have been used to solve
simple (noncombinatorial) placement optimization problems for over a century (25,
25a). (Similar “mesh of springs” simulations have become a focus of current modeling

Fig. 3. Component placement optimization: two alternative placements of elements 1, 2, and
3 in positions A, B, and C. For the given interconnections, placement (A) has greater total
connection length than placement (B). Adapted from (7).
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of protein folding of amino acid chains [26].) Over a wide range of initial input con-
figurations of the ganglia, our vector mechanical net outputs the actual layout via tug-
of-war, converging upon equilibrium at the actual minimum wirecost positioning of
the ganglia—without major susceptibility to local minima traps. We have also con-
structed Genalg, a genetic algorithm (cf [27]) package that stably outputs the actual
minimum wirecost placement (see Fig. 5); it is, in effect, a demonstration that evolu-
tionary processes suffice for worm wiring optimality. (A caveat on interpretation of the
vector mechanical models: while actual physical forces appear to drive neuron arbor
optimization, it is likely in the case of nematode ganglion layout that the forces in-
volved should instead be viewed more abstractly as governing natural selection pro-
cesses; neuron somata need not, in fact, move during development of the individual
organism. We have similarly argued (7) concerning the simplest neural component
placement problem, of brain positioning, that the brain’s sensory-motor connections,
of course, do not behave literally vector mechanically over evolutionary history.)

But the bottom line here once more seems to be that, in a sense, “Physics suffices”:
since no genome is required for this self-organization, some interesting limits may
thereby emerge on the Central Dogma of genetics. (Cf also the related picture regard-

Fig. 4. Optimization analysis of a 5-terminal subtree from dendritic arbor of an α ganglion
cell in rabbit retina. (A) A quadrant of the original camera lucida drawing containing the subtree
(after [35]); soma is in upper right corner. “Leaf terminals” of the analysis are boxed (note that
one of them is not a branch termination); “root-terminal” is at soma. (B) Wireframe representa-
tion of actual tree, with branch segments straightened between loci of terminals and internodal
junctions. The labels give diameters assigned to the branch segments via the power law of the
laminar-flow model. (C) Optimal re-embedding of the topology of the actual tree, with respect
to total volume cost, via the STRETCH algorithm; this minimum volume embedding of the
actual topology is 1.06% cheaper than the volume of the actual tree in panel B. (D) Optimal
embedding of the optimal topology for the given terminal loci, with respect to volume-cost. It
can be seen to differ from the actual topology of panels A–C; it is only 2.64% cheaper in
volume than the actual topology in its actual embedding, in panel B. (E) Optimal embedding of
the optimal topology, with respect instead to total tree surface area; actual vs optimal error is
now 27.22%, much greater. (F) Optimal embedding of the optimal topology, with respect to
total tree length; actual vs optimal error is now 60.58%, even greater. Thus, this dendritic arbor
best fits a minimum volume model. Adapted from (20).
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ing prions [28].) A discrete-state process like a genetic algorithm is not needed to
generate highly complex types of biological structure. One rationale for nongenomic
anatomy-generating processes, as well as for such simple generative rules as “Save
Wire,” is apparent in a dilemma that nature confronts: human brain wiring is among the
most complex structures known in the universe, yet its layout information must pass
through the “genomic bottleneck” of very limited DNA information representation ca-
pacity (3,15). The harmony of neuroanatomy and physics suggested here would lower
this hereditary information load by accomplishing network optimization without re-
quired participation of the genome.

Another observation of robustness worth further study is that, for both the global
arbor and ganglion neural optimization problems, random noise injection (e.g., as in
simulated annealing [29]) generally was not needed to evade local minima traps—
unlike for typical network optimization problem instances.

Mapping “chaotic” optimization landscapes: we have found that both a genetic algo-
rithm like GenAlg and a force-directed placement (FDP) algorithm like Tensarama

Fig. 5. GenAlg, a simple genetic algorithm, rapidly and reliably finds the optimal (minimum
wirelength) layout of C. elegans ganglia. The initial population in this run is small, 10 individu-
als, each here with a reverse ganglion ordering of that found in the actual worm; the algorithm
converges upon the minimum total wirecost layout (87,803 µm) in only 130 generations. The
evolution of wirecost shows the usual pattern: a very rapid initial improvement of fitness (about
90% during the first 20 generations), followed by a much longer slower fine-tuning phase to
optimality. Some of the random mutations cause the half-dozen brief “blips” of increased mean
wirecost of the population during the later phase. The robust performance of this genetic algo-
rithm, and also of our force-directed placement algorithm, is further converging support for the
hypothesis that the actual layout of C. elegans is in fact perfectly optimized.
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perform notably well in optimizing ganglion placement for the actual connectivity
matrix (Fig. 2 in [10]) of C. elegans. However, this good performance turns out to be
interestingly narrow-tuned: (i) adding or removing as little as a single connection (of
approx 1,000 total) in some cases can change the actual matrix into a “killer matrix”
input that is highly prone to paralyzing an FDP algorithm in local minima traps; (ii)
similarly, some “killer layout” initial input positionings of the ganglia of the actual
matrix will paralyze the FDP algorithm (Fig. 6). Each of these instances of discontinu-
ous, very sharply tuned performance prima facie suggests chaotic structure (e.g., [30])
and seems worthy of systematic exploration. Each exhibits a Butterfly Effect: some
quite small changes of input conditions, but only in a limited range, yield drastic

Fig. 6. Runscreen for Tensarama, an FDP algorithm for optimizing layout (minimizing total
wirecost) of C. elegans ganglia. This vector mechanical simulation represents each of the
worm’s approx 1,000 connections (cf Fig. 2 in [10]) as a weight-and-pulley (non-Hooke’s
Law) element acting upon the movable ganglia “PH”, “AN”, etc. (Connections do not appear
on the runscreen, nor do fixed components such as sensors and muscles). At each iteration, the
program computes net horizontal force on each ganglion, and correspondingly updates its left/
right position; the cycle is repeated a given number of times. (Ganglion locations are in
“tetrons”, or quarter-microns, to decrease round-off errors.) The most striking feature of
Tensarama performance for the actual worm’s connectivity matrix is its comparatively low
susceptibility to local minima traps—unlike Tensarama performance for minor modifications
of the actual connectivity matrix and unlike FDP algorithms, in general, for circuit design.
However, the above screendump shows the final configuration of the system for an identified
“killer” initial configuration input of the actual matrix: Tensarama has frozen in a local mini-
mum with ganglia in positions (notably, ganglia DR and LU in head, rather than tail) that yield
a final layout wirecost of 88,485.25 µm, about 0.8% more than the actual layout. The fatal
initial layout here (ganglion left edges at 0 tetrons) differs only slightly from a quite innocuous
initial layout (ganglion centers at 0).
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changes in behavior. We need to compare these natural neuroanatomical connection
matrices with some typical benchmark micro circuits (e.g., [31]). Such studies entail
basic mapping of the optimization terrain. For instance, the “neighborhood” around
actual layouts (i.e., the subregion of nearby layouts that differ from the actual one by
only a small number of component swaps) appears to be a particularly good one, which
is richer in lower cost layouts than randomly sampled zones.

4.5. FUNCTIONAL ROLE OF NEURAL OPTIMIZATION

Finally, a larger question: if one takes seriously the above instances of distinctively
fine-grained neural optimization, a larger question emerges: why is such extreme con-
nectivity minimization occurring? Of course, “Save wire” has obvious fitness value as
explained earlier—in reducing volume of a delicate metabolically costly tissue and in
reducing signal propagation delays in a notably slow transmission medium. For
instance, neuron volume minimization directly minimizes the significant metabolic
“pumping” costs of maintaining ion concentrations across cell membranes (32). None-
theless, such optimization nearly to absolute physical limits is only rarely encountered
in biology (for instance, human visual and auditory system amplitude sensitivities under
good conditions and the silk moth olfactory system, which can detect single molecules
of mating pheromones [33–33b]). The usual view (e.g., [34]) is that nature cannot
afford to optimize, but instead, like any finite resource engineer, only satisfices with a
compromise among competing desiderata that is “good enough”. Natural selection al-
most never gets to begin with a clean slate, but instead must design organisms as a
prisoner of prior evolutionary history.

Thus, the type of striking neural optimization we are observing, in itself, needs
explanation regarding its functional role: it could be a clue about basic brain mecha-
nisms that require such extraordinary connectivity minimization, and/or a sign of some
unexpectedly feasible means of attaining such optimization, and/or, as mentioned
above, part of an economical scheme for generation of complex structure. Neuroana-
tomical cases, where such optimization is not present, become as diagnostically sig-
nificant as cases where it is present. “Why”, thus, becomes as important as “how” here.
Attention thereby turns to issues of neural function as well as structure—in any case,
the two really mesh seamlessly. Just as a real brain does not consist of infinitely thin
wires, its connections do not have virtually infinite signal propagation velocity. Hence,
the methodological approach we started with for brain structure volume, and the issue
of stringency of limits upon it, needs in turn to be recapitulated for brain function and
its temporal constraints.
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The Modeler’s Workspace

Making Model-Based Studies
of the Nervous System More Accessible

Michael Hucka, Kavita Shankar, David Beeman,
and James M. Bower

ABSTRACT

A realistic neuronal model represents a modeler’s understanding of the structure and
function of a part of the nervous system. The increasing number of such models repre-
sents a significant accumulation of knowledge about the structural and functional orga-
nization of nervous systems. However, locating appropriate models and interpreting
them becomes increasingly more difficult as the number of online model and experi-
mental databases grows. The central motivation for the Modeler’s Workspace project
is to address these problems.

The Modeler’s Workspace is a collection of software tools being created to enable
users to interact with databases of models and data. It will provide facilities for: search-
ing multiple remote databases for model components based on various criteria; visual-
izing the characteristics of the components retrieved; creating new components, either
from scratch or derived from existing models; combining components into new mod-
els; linking models to experimental data as well as online publications; and interacting
with simulation packages such as GENESIS to simulate the new constructs. It is being
written in Java for portability and extensibility. It is modular in design and uses
pluggable components. To increase the probability that the Modeler’s Workspace will
be compatible with future databases and tools, we are using the XML, the eXtensible
Markup Language, as the interchange format for communicating with databases.

5.1. INTRODUCTION

A structurally realistic neuronal model represents a modeler’s understanding of the
structure and function of a part of the nervous system. As the number of neurobiolo-
gists constructing realistic models continues to grow, and as the models become ever
more sophisticated, they collectively represent a significant accumulation of knowl-
edge about the structural and functional organization of nervous systems. But at the
same time, locating appropriate models and interpreting them becomes increasingly
more difficult as the number of online model and experimental databases grows. This
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is exacerbated by the fact that computational models developed by different research-
ers are often implemented using different software tools.

The central motivation for the Modeler’s Workspace project is to address these prob-
lems (1). Our goal is to develop a free open software environment that provides a
variety of capabilities, including: searching multiple remote databases for model com-
ponents based on various criteria; creating new components; combining model compo-
nents together and translating them into formats suitable for simulation systems such
as GENESIS (2), NEURON (3), XPP (4), or NEOSIM (5); managing personal data-
bases of models and other information; and collaborating interactively with other
researchers to work with models and simulations. The Modeler’s Workspace is being
written in Java (6) for portability and extensibility. It is modular in design and uses
pluggable components. To increase the probability that the Modeler’s Workspace will
be compatible with future databases and tools, we are using the XML, the eXtensible
Markup Language (7) as the interchange format for communicating with databases.

In this chapter, we describe a design for the Modeler’s Workspace user interface,
overerall architecture, model representation scheme, and the motivations behind the
various design decisions. We believe that the Modeler’s Workspace can provide inte-
grated access to a wide variety of model databases and simulation tools. The system’s
modular and extensible design will make it possible for others to write new compo-
nents, for example for handling new forms of model representations or interfacing to
new databases. In fact, it is our hope that by providing a sound, open framework, and a
collection of elements demonstrating its capabilities, others will be encouraged to con-
tribute to its implementation and add new functionality to the environment, rather than
create entirely new software tools or simulator-dependent model representations.

5.2. THE NEED FOR MODEL-BASED APPROACHES

The field of biology has made great advances over the last several decades in our
ability to describe experimentally the organization of biological systems. However,
with these technical advances has come an enormous increase in the amount of avail-
able data, in many cases already exceeding the ability of single investigators to keep up
with what is known. For this reason neuroscience, and biology as a whole, is running
the risk of becoming increasingly fragmented and disorganized.

The stress of information overload and the lack of appropriate conduits for informa-
tion have lead to several national and multinational efforts to develop electronic data-
bases (8). Most of these projects are based on the idea that information in electronic
form is more readily accessible and manipulated than traditional forms of publication.
However, it is our view that in order for these efforts to be successful, they must pro-
vide enhanced functionality over traditional means of distributing information. To take
one example, efforts at providing electronic forms of data delivery need to address the
difficult issue of data validation. Data validation involves not only assessing the likely
accuracy of the information stored, but also providing some measure of the relevance
of the data to the current state of our understanding. In traditional forms of scientific
data reporting, the peer review process provides the means of validating accuracy, while
the discussion sections of published papers provide the opportunity to speculate on the
functional significance of the results. It is not clear that electronic databases in their
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existing forms will provide these functions. Creators of electronic databases seem to
assume that if the databases are available, interested parties will figure out how to use
them appropriately.

5.2.1. The Role of Structurally Realistic Models

We believe that computational models provide a much more sophisticated, flexible,
and powerful base for electronic storage and retrieval of information than do tradi-
tional on-line databases. Our work has, therefore, focused on developing tools for work-
ing with structurally realistic biological models. These are models whose first objective
is to capture what is known about the anatomical structure and physiological character-
istics of a neural system of interest.

In the case of a model of part of the brain, for example, this modeling approach
typically starts with as detailed a description as possible of the relevant neuroanatomy.
At the single-cell level, this usually means a description of the 3D structure of the
neuron and its dendritic tree (9). Most contemporary modeling approaches for realistic
models of neural cells are based on compartmental modeling (10). In each case, the
overall compartmental structure of the model is first established on the basis of neu-
roanatomical details. Information about neuronal morphology used in computational
models typically includes such parameters as soma size, length of interbranch seg-
ments, diameter of branches, bifurcation probabilities, and density and size of dendritic
spines. At the neuronal network level, parameters include some description of the cell
types found in the network and their connectivity (11). The next stage of structurally
realistic model building involves establishing the basic physiological behavior of the
modeled structure, for instance by tuning the model to replicate neuronal responses to
experimentally-derived data (9,12). The final stage of model construction involves
exploring the model’s behavior to novel inputs, using it to generate new ideas about the
neural system’s function, as well as a guide for new experimental investigations.

As a result of their faithfulness to biological anatomy and physiology, structurally
realistic models can be a means of storing anatomical and physiological experimental
information. As model sophistication grows, structural models themselves become a
form of information storage about the biological systems being studied.

5.2.2. Data Evaluation and Functional Assessment

Because of their nature, structurally realistic models also contain precise informa-
tion about the relationships between known facts. For example, neurons display a wide
range of dendritic morphologies, ranging from a single simple dendrite in retinal bipo-
lar cells to compact but highly branched spiny and smooth arborizations of the cerebel-
lar Purkinje cell. Detailed compartmental models of reconstructed neurons have
become important tools for investigating how dendritic morphology and membrane
biophysics interact (13) in integrating synaptic inputs (14) and propagation of action
potentials (15,16), with further implications for development and plasticity (16).

Another issue related to the quality of stored electronic data involves the question of
which data are most relevant and, therefore, useful to our current knowledge of a par-
ticular system. Just because data can be collected does not necessarily mean that this
data will help expand our current understanding of a particular system. Modeling can
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reveal the importance of a particular data point as well as provide an immediate context
for the data once obtained. To take one example, in one effort at modeling Purkinje
cells (9,17), the morphology of the models was based on a detailed light microscopic
reconstruction of horseradish peroxidase-filled guinea pig Purkinje cells (17,18), and
all simulations were usually performed with a model based on the morphology of cell
1. However, when identical channel equations and densities were placed onto two
additional Purkinje cells with morphologies labeled as cell 2 and cell 3 (19), the details
of the firing patterns were quite different for these three morphologies. The firing pat-
tern of cell 3 with current injection was more similar to cell 1, but with a shift in the
frequency-current curve. This turned out to be because of the small soma and short thin
main dendrite, which caused smaller total potassium delayed rectifier and muscarinic
conductances in the model of this cell (9,17). This understanding would be difficult to
achieve without the ability to perform “computer experiments” on structurally realistic
models.

Finally, perhaps the most valuable contribution of a structural model is the way in
which it can help to organize our understanding of the system being studied. In the
large and growing electronic databases of the most common type in use today, it is not
at all clear how the data will contribute to our understanding of function. Models, how-
ever, are specifically constructed to explore the functional implications of the data on
which they are built. Models, thus, can serve not only as the point of entry for data;
they can also serve as dynamic tools that can be used to understand its significance. As
models become more sophisticated, so does the representation of the data. As models
become more capable, they extend our ability to explore the functional significance of
the structure and organization of biological systems. Thus, there is a direct link between
the ultimate objective of acquiring the data and the data acquisition process itself.

5.3. OVERVIEW OF THE MODELER’S WORKSPACE

The Modeler’s Workspace project is an effort to create a software environment that
will make it easier for biologists to develop, use, and share structurally realistic models
and, thereby, gain some of the benefits discussed above. As mentioned in the introduc-
tion, our goal is to provide the following kinds of facilities in the system:

1. Search and retrieval facilities for interacting with multiple databases of models and other
information.

2. Facilities for creating, editing and visualizing models and their components.
3. Facilities for combining model components together and translating them into formats

suitable for simulation systems such as GENESIS and NEURON.
4. Facilities for linking models to experimental data as well as online publications.
5. Facilities for managing a personal database where a user can collect models and other

objects.
6. Collaboration facilities for connecting one or more users together, to allow them to simul-

taneously edit objects in a shared database and communicate with each other using chat
facilities.

There are three main elements in the system: a user interface, a database server, and
a global registry and repository called the Modeler’s Workspace Directory. In this sec-
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tion, we summarize the overall organization and intended operation of the Modeler’s
Workspace from a user’s perspective. In Section 5.4., we turn to the software architec-
ture of the system, describing in more detail its extensible modular structure.

5.3.1. The Modeler’s Workspace User Interface and Workspace Database

The Modeler’s Workspace User Interface is being implemented as a stand-alone
program written in Java that can run either as a separate application or as an applet
from within a Web browser. All user interactions with the Modeler’s Workspace take
place through the User Interface component. The Workspace Database, the database
component of the system, is a separate server program that can act as both a pri-
vate repository for a user’s work (where models, notes, and other objects are stored)
and as a rendezvous point for collaborative activities. The User Interface communi-
cates with the Workspace Database using network protocols.

A Workspace Database contains objects that represent different types of entities,
such as models or bibliographic references. Each database object is structured accord-
ing to a particular template. A template defines the format of an object, including its
attributes and subattributes and the permitted types of data that can be stored in each
attribute. Model attributes potentially can be of any type, including other models. Tem-
plates have names, and different templates are used to define different types of objects.
Some of the basic types of objects predefined by the Modeler’s Workspace are
“Author”, “Reference”, “Data”, “Neuron Model”, and “Ion Channel Model.” We dis-
cuss templates and representation issues in more depth in Subheading 5.5.

The separation of the two components allows the flexibility of connecting to a
Workspace Database from different computers. The User Interface will be available
for downloading from the Modeler’s Workspace Web site and will run on any Java-
enabled computer connected to the Internet. When the User Interface is started, it
prompts for the network address of the Workspace Database, as well as a login name
and password for accessing the database. This approach allows a roaming user to access
his or her models and notes from anywhere on the network, using almost any kind of
computer—from a public-access computer in a library to a laptop connected to the
Internet via a modem.

5.3.2. Elements of the User Interface

There are three central regions in the User Interface: the Build pane, the Search
pane, and the Connect pane. The first pane provides an interface for managing one’s
personal database of objects; the second, for searching other databases; and the third,
for connecting to a specific Workspace Database for the purpose of browsing its con-
tents and (optionally) engaging in collaborative activities with other connected users.

Figure 1 shows a prototype of the Build pane in the User Interface. The upper left
region of the Build pane contains a list of the template types known to the system; the
upper right region provides a listing of the objects in the user’s Workspace Database
that are based on a selected template; and the bottom half of the pane contains a win-
dow to the command line interpreter of a neuronal simulation package (in this example,
GENESIS). The user may select objects in the Workspace Database list in the upper
right and perform actions on them, such as editing them in an inspector window
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(described next) or sending them to the running simulation program. The columns dis-
played in the table can be changed through a dialog box accessed through the “Custom-
ize View” button.

Editing and viewing of objects in the Build pane takes place using graphical inter-
face tools called inspectors. An inspector is simply a user interface module designed to
let a user interact with information in a certain way. The default inspector in the
Modeler’s Workspace is called the Generic Inspector; it displays an object using a tree-
structured table of attribute-value pairs and is used as the default editor/viewer for
those types of objects that do not have their own specialized inspector.

Inspectors are incorporated into the Modeler’s Workspace through a pluggable com-
ponent architecture (with “plugin” software modules), so that new ones can be added
dynamically to support new templates. Specialized inspectors may provide other modes
of interaction besides the form-based approach of the Generic Inspector; for example,
a single-cell inspector would provide a graphical, 3D tree viewer/editor for working
with cell morphologies. A few different inspectors will be provided with the Modeler’s
Workspace. As others become available, they will be made available for downloading
through the Modeler’s Workspace Directory (see Subheading 5.6.).

The Search pane will provide the ability to search multiple databases for objects
having specific characteristics. As shown in the prototype in Figure 2, the pane con-
tains three main regions. The first region provides a pull-down list of known templates
and a form. Once the user selects an object type from the list of templates, in order to
indicate the type of object desired, the form is filled with attribute name-value slots

Fig. 1. A prototype of the Modeler’s Workspace User Interface. It consists of a menu bar, a
tool bar, a large central area, and a status bar at the bottom. This particular prototype shows the
Build pane.
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corresponding to the chosen template. This allows the user to specify the attribute val-
ues on which to search. The form is similar to that presented by the Generic Inspector
mentioned above. The second region in the Search pane displays a list of databases.
This allows the user to select which databases should be used for a search. The third
region in the Search pane contains a table listing the results of the search. The columns
in this table summarize the different attributes of the objects matched by the search. To
obtain more detailed information about a given object, the user can double-click on a
line in the table to view the object in an inspector window. More than one object can be
inspected simultaneously, allowing, for example, multiple models to be examined side-
by-side in separate windows. The user can also import objects from the search results
into their personal Workspace Database.

In addition to searching multiple databases using the Search pane, a user may want
to connect to a single Workspace Database and browse its contents. The Connect pane
provides this one-database-at-a-time connection capability. It resembles the Build pane
in organization, with a line at the top naming the currently connected database and a
central region containing a table listing the contents of the database. As in the Build
pane, the user can double-click on an entry to examine it in detail in an inspector win-
dow. If the user has write access to the Workspace Database, she or he can also edit

Fig. 2. A prototype of the Search pane. The upper left area allows the user to specify the
object characteristics to search for; the upper right area allows the user to specify which data-
bases should be used in a given search; and the bottom half provides a summary of the search
results.
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objects in this way. The Connect pane also provides the basis for engaging in collabo-
rative activities with other Workspace users. Connecting to another user’s Workspace
Database (assuming that the owner has set appropriate permissions) allows one to view
and possibly edit the objects in that database. The Workspace Database server is
designed to allow multiple such simultaneous users to be connected. The User Inter-
face implements a chat facility and a shared desktop viewing capability that allows all
users connected to a particular Workspace Database to communicate with each other
and see what each other sees on her or his computer screen. This is intended to make it
easy for users to interact and work together on developing models.

Fig. 3. Prototype of the Site Browser. This particular example screen displays the Databases
pane, when the user is being asked to select a database for the Connect pane.
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5.3.3. The Site Browser

The need to select from a collection of databases or a collection of users occurs in
several contexts in the Modeler’s Workspace. Since databases and users are geographi-
cally scattered, a map-based interface, the Site Browser, will be presented to the user in
these situations in order to provide cues that may help the user locate and remember the
items involved. The Site Browser contains two tabbed panes, Databases and MW Users.
The first pane displays a map of the world and a table of databases known to be pub-
licly accessible. The map displays the geographic location of each database. In the MW
Users pane, the same map-and-table interface is used, but here, the table contains a list
of the users known to be actively using the Modeler’s Workspace. The map in this case
displays the geographic location of each user. The information in all cases is obtained
by contacting the Modeler’s Workspace Directory. Figure 3 shows a prototype of the
Site Browser.

5.3.4. Access to Neural Simulation Packages

The final component of the Modeler’s Workspace User Interface is the facility for
communicating with simulation software. Interaction with simulators is supported
through a plugin architecture, so that any simulation package can potentially be inter-
faced to the Modeler’s Workspace once someone writes an appropriate plugin module
and it is made generally available. Although this interface will be most useful for simu-
lators such as GENESIS or NEURON, which construct structurally realistic compart-
mental models and can make use of the model representations that we provide, the
programming interface is available for use by any simulator, including more general
purpose ones such as Yorick or MATLAB. Interaction with the package takes place in
the Build pane, which provides a window connected to the command-line interface
of the simulation program (whether the simulator is GENESIS or another). A user can
type commands directly to the simulator, and the output appears in the Build pane’s
interface window or in separate windows created by the simulator itself. The User
Interface can also send model representations to the running simulation program; the
plugin interface for the simulator translates objects from the representation used in the
Modeler’s Workspace to a format understood by the simulator.

5.3.5. An Example Usage Scenario

As an example of how one might use the Modeler’s Workspace, consider the case of
a neuroanatomist who is interested in the effects of dendritic morphology on the behav-
ior of Purkinje cells. For example, this researcher may wonder whether a model with a
simplified morphology might have sufficiently realistic behavior for use in a network
model of part of the cerebellum. (We note that in the case of the Purkinje cell, the
answer is likely to be “no” [20].) The user might begin by using the Search pane in
the Modeler’s Workspace to search for various Purkinje cell models in databases on
the Internet. Figure 2 shows a possible search result that includes a hypothetical model
based on that created by De Schutter and Bower (9), but using a variant morphology
that was generated by the L-Neuron program (21).

The next step might be to use an inspector to examine the particular cell model in
more detail. The user could do this by double-clicking the line containing the model of
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interest in the search results. The CD-ROM for this book contains additional docu-
ments and figures that could not be included in this chapter due to space limitations.
There, the figure for the “Purkinje Cell Inspector” illustrates a mock-up of an inspector
view with information about the geometrical and passive properties of the Purkinje cell
model soma. In order to examine the specific channels used in the model in more detail,
the user would employ a Channel Inspector, as illustrated in the figure “Purkinje Chan-
nel Inspector”, which shows details of the channel dynamics used for the fast sodium
channels in the model. Note that, as with the case of most of the inspectors, it is pos-
sible to see the actual equations that are used when the model is simulated. As well as
providing further details of the model, the availability of these equations may give
reassurance to modelers who distrust software that they did not write themselves.

As discussed in Section 5.4., the various templates used in the Modeler’s Workspace
contain a great deal of descriptive information about the model and the experimental
data on which it is based. However, most information may be obtained if the model is
actually used in a simulation, so that the behavior of different models may be compared
under the same simulation conditions. In this case, users might want to import the
model into the local Workspace Database, so that they can run it in a simulator. Import-
ing a model can be done from the table of search results in the Search pane by high-
lighting the line containing the particular model desired and then clicking on the
“Import” button. Once the model is copied into a user’s Workspace Database, the user
may switch to the Build pane to send the model to a simulator and compare current
clamp simulations under the conditions described in (9). The Build pane and the inspec-
tors could also be used to create additional models, either by starting from and modify-
ing an existing model, or by importing passive morphologies from elsewhere and
populating them with channels taken from a Purkinje cell model database.

5.4. THE UNDERLYING ARCHITECTURE

The previous section makes clear that the Modeler’s Workspace User Interface is
the most essential part of the system. It must provide interfaces not only for interacting
with model components, but also with databases and simulation tools. Because model
representations, databases, and simulation/analysis tools will all change and evolve
over time, the User Interface must itself be easily adapted and extended as the needs of
users change.

We knew from the outset that the success of the project would be contingent on
providing an open framework that could be taken and extended by other software tool
developers. In designing the system, we identified the following characteristics as being
crucial to meeting our needs:

1. Simplicity. The framework must be simple enough that interested developers can use it in
their projects with a minimum amount of effort. The framework should not mandate the
use of complex technologies such as CORBA (22), although it should not prevent devel-
opers from using any particular technology in implementing an extension if they so desire.

2. Extensibility via plugin components. As new tools and methods are developed, it must be
possible to implement them as pluggable modules that can be added to the existing frame-
work without having to modify the framework itself. A plugin may either reimplement
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existing capabilities in new ways (for example, if someone develops an improved version
of an existing module) or implement an entirely new capability.

3. Free distribution. All interested users must be able to obtain the system for free. Any
software that  is incorporated into the system and distributed with it, such as graphical user
interface (GUI) widgets or object libraries, must  itself be free of licensing fees or restric-
tions on redistribution.

4. Portability. Except for the Modeler’s Workspace Directory server, the framework must be
portable to at least Microsoft Windows (Win32) and Linux, with support for other variet-
ies of Unix and MacOS X preferable as well. (The directory server exists only as a global
server or multiple replicated servers, and runs separately from any user environments;
therefore, it does not have the same restrictions on portability.)

We believe we have met these objectives by creating a layered, highly modular
architecture. In the rest of this section, we discuss the high-level design of this architec-
ture.

5.4.1. Layered Framework

We sought to maximize the reusability of the software that we developed for the
Modeler’s Workspace by dividing the Workbench infrastructure into two layers: the
Modeler’s Workspace itself and a lower-level substrate called the Biological Modeling
Framework (BMF). The latter is a general software framework that provides basic scaf-
folding supporting a modular, extensible application architecture, as well as a set of
useful software components (such as GUI tools) that can be used as black boxes in
constructing a system. In fact, BMF is already being used to implement another tool,
the Systems Biology Workbench (23, 23a). Figure 4 depicts the core of BMF as a gray
substrate holding a number of shaded blocks representing the basic plugins provided
with BMF.

The Modeler’s Workspace is a particular collection of application-specific compo-
nents layered on top of BMF. These collectively implement what users experience as

Fig. 4. The BMF Core and Core Plugins together constitute the foundations upon which
applications are constructed. The BMF Core Plugins, shown here as shaded rectangles plugged
into the BMF Core, are a set of essential modules provided with BMF and available to all
applications built with BMF.
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the “Modeler’s Workspace.” Some of these components add functionality needed for
supporting the overall operation of the Workspace, such as the main screen of the User
Interface described in Subheading 5.3.; other components implement the interfaces to
databases and simulators. Figure 5 illustrates the overall organization.

As mentioned previously, the Workspace Database is a separate server program that
can act as both a private repository for a user’s work (where models, notebooks, and
other items are stored) and as a rendezvous point for collaborative activities. The
Modeler’s Workspace system uses an XML-based model description language (dis-
cussed in Subheading 5.5.). The Workspace Database will accept data directly in XML
format (7), making it generic and capable of storing any information that can be encoded
in XML.

5.4.2. Highly Modular, Extensible Architecture

The Biological Modeling Framework layer that underlies the Modeler’s Workspace
is implemented in Java and provides the scaffolding that (i) supports pluggable compo-
nents, and (ii) provides a collection of basic components (such as an XML Schema-
aware parser, file utilities, basic plotting, and graphing utilities, etc.) that are useful
when implementing the rest of the Modeler’s Workspace system.

Compared to many other frameworks, the Biological Modeling Framework is con-
ceptually quite simple. The BMF Core consists of only one primary component, the
Plugin Manager, and its operation is straightforward. Few requirements are placed on
plugins themselves. For example, a plugin merely needs to be packaged in a Java JAR
file, implement one specific interface (though it may implement others in addition),
and obey a few rules governing behavior. There can be any number of plugins in the
system, subject to the usual limitations on computer resources such as memory.

By virtue of the software environment provided by the Java 2 Platform, plugins can
be loaded dynamically, without recompiling or even necessarily restarting a running
application. This can be used to great advantage for a flexible and powerful environ-
ment. For example, the Modeler’s Workspace can be smart about how it handles data

Fig. 5. Application specific plugins are added to the BMF Core and Core Plugins.
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types, loading specialized plugins to allow a user to interact with particular data objects
on an as-needed basis. If the user does not already have a copy of a certain plugin
stored on the local disk, the plugin could be obtained over the Internet, much like cur-
rent-generation Web browsers can load plugins on demand. In this manner, plugins for
tasks such as displaying specific data types or accessing third-party remote databases
could be easily distributed to users.

5.5. REPRESENTATION OF MODELS AND DATA

One of the most difficult conceptual issues has been developing a strategy for
describing models and their components. The Modeler’s Workspace requires a repre-
sentation language that abstracts away specifics of particular simulators, such as GEN-
ESIS, and also provides ways of interacting with existing neuroscience databases on
the Internet.

Devising such a representation is difficult. The thorniest issue has been balancing
the need for specificity in the representation (so that we can develop useful software
tools for manipulating models) against the need for extensibility (so that as people’s
conceptualizations of neuronal characteristics change, the software does not need to be
rewritten). It is not sensible to try to dictate every detail of how models and data are to
be stored in databases. At the same time, some definitions of permissible data struc-
tures and formats must exist, so that we can proceed to develop software.

To begin addressing this problem, we first distinguish between a Modeler’s
Workspace Database, which is the database component of the Modeler’s Workspace
system, and a foreign database, meaning any other kind of database. In order to support
some level of interoperability with foreign databases as well as neural simulators and
allow users and software developers to evolve new representations and tools, we use a
multifaceted approach having the following key aspects:

1. Model templates are organized following a simple object-oriented metaphor, with a base
template  serving as the root of all representations and new templates being derived from
either the base or another existing template. We give users the ability to define new tem-
plates, but only through the addition of attributes; deletions are not allowed. This ensures
that all models have at least a minimum set of common attributes that the Modeler’s
Workspace software can count on.

2. The Modeler’s Workspace comes with a collection of default templates that can be used to
describe the most common types of neuronal structures. These templates are part of a
recently-established effort to produce NeuroML, a common exchange language for com-
putational models in neuroscience (24). We hope that these templates will act as de facto
standards that will coalesce users around them and prevent the proliferation of many simi-
lar-yet-different representations for the most commonly used types of models.

3. Borrowing ideas from Burns (personal communication) and Gardner (25), we require that
the model templates used in a database be explicitly described and communicated by the
database server when a client first contacts it. We also require that the templates used in
publicly-accessible databases be made available separately through the Modeler’s
Workspace Directory (MWD). This permits the User Interface component to determine
the structure of models in any given database by contacting either the MWD or the data-
base in question.
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4. Interfaces to databases as well as simulation packages are mediated through software
plugins. A database plugin for a particular foreign database provides the network interface
and translation needed to interact with the database; a simulator plugin for a particular
simulator handles translating commands and representations between the simulator and
the Modeler’s Workspace system.

5.5.1. Template Hierarchy

As mentioned above, models in NeuroML and the Modeler’s Workspace are repre-
sented using a limited form of object-oriented description, in which each object in a
database is defined according to either a root template called Base, or a template derived
from it. Figure 6 shows the current hierarchy of templates used in the system.

The Base template contains a core set of attributes that are common to all main
objects in the database. The first level of templates derived from Base consists of tem-
plates named Author, Reference, Method, Model, Data, and Site. The particular choice
of first-level templates was taken from the work of Gardner et al. (25). They are generic
and do not contain any attributes that are specific to particular kinds of biological struc-
tures. The additional templates derived from the first-level ones then add specific tem-
plates for representing models of neurons and related structures. The following list
briefly summarizes the templates defined at the time of this writing; the full definitions
are available from the NeuroML web site (http://www.neuroml.org).

Fig. 6. All templates are derived from Base or another existing template. Open arrows indi-
cate inheritance; for example, template Model inherits attributes from Base and adds its own
new attributes. Additional templates derived from the six top-level tempates are shown with
darker shading.
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Base: This is the root of the template hierarchy. This template has only two attributes:
id and version. The former places a unique identifier on every object; the latter
allows the system to track the evolution of data objects.

Author: This template inherits attributes from Base and adds attributes for identifying
a person by name, address, Web home page, and other characteristics. Using sepa-
rate objects for author information allows users to enter into their databases the
information about a given author once, then link to the author information from
other objects (such as models and article references).

Reference: This is used to represent literature references. The attributes provided by
this template are based on BibTeX records (26). Author and editor information is
represented in terms of links to Author objects.

Data: This is used for storing data in a Workspace Database or pointing to data stored
in a remote database. It can record information describing the data, links to authors
and references, and data (or pointers to data) grouped into data sets.

Method: This template is intended to capture information about experimental method-
ologies.

Site: This template is intended to capture information about such things as neuronal
recording sites, brain regions, etc.

Model: This is intended to serve as a common starting point for all model template
definitions. It is a generic structure, not specific to any particular kind of modeling.
Specific kinds of models, such as for neuronal cells and intracellular and trans-
membrane mechanisms, are derived by starting from Model and adding new
attributes.

Neuronal Anatomy: This template specializes the basic Data template to provide a
container for anatomical information about neurons. It is primarily intended to be
used for storing information about cell morphologies.

Imaging/Histology: This is a specialization of the Method template, used to describe
methods of imaging and histology used in neuronal anatomy work.

Neuron: This is the main template for representing models of neurons. It extends the
basic Model template with additional attributes for anatomical information, experi-
mental information, the segmented cable structure of the model neuron, and other
characteristics. It includes pointers to objects based on several other templates, in
particular Neuronal Anatomy, Neuron Part, Transmembrane Mechanism, and
Intracellular Mechanism.

Neuron Part: This exists to provide a way to construct reusable part models for Neuron
objects. Portions of neuron models can be recorded in Neuron Part objects, allow-
ing those portions to be reused in models by linking to them from within Neuron
objects.

Transmembrane Mechanism: This template is intended to serve as a starting point for
definitions of models of cell mechanisms such as ion channels, calcium concentra-
tion pools, etc.

Intracellular Mechanism: This is intended to serve as a common starting point for
defining items such as calcium concentration pools.

Voltage-Gated Channel: As its name implies, this template can be used to represent
models of voltage-gated ion channels. The representation is based in large part on
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that used by GENESIS and can handle channels not only of the common Hodgkin-
Huxley variety, but also a number of variants.

Ligand-Activated Channel: This template can be used to represent models of channels
that are activated by neurotransmitters.

Ionic Pump: This is used to represent various mechanisms for removing ions from a
cell.

Concentration Pool: This template is used for models of intracellular ionic concentra-
tions.

Nernst: This is one of several possible mechanisms for calculating changes in ionic
equilibrium potentials.

The Modeler’s Workspace uses XML Schemas to define templates. XML Schema is
a recently introduced standard (27–29) for specifying the tags allowed in an XML data
stream, how the tags can be organized into a hierarchy, and the data types of attributes
delineated by the tags. The definition of the Base is expressed as a single XML Schema
file. Each derived template (e.g., Model, Neuron, etc.) is similarly expressed using a
separate XML Schema definition, making the organization very modular and easily
extensible.

5.5.2. Advantages of the Approach

The object-oriented style of representation is useful for a variety of reasons. First,
the existence of categorical templates allows the Modeler’s Workspace User Interface
to present the user with intelligent search forms. Specifically, the Modeler’s Workspace
search interface prompts the user to specify the type of object to search for (which is
equivalent to specifying the template), and based on the user’s choice, the system con-
structs a form using knowledge of the attributes defined by the template. The search
form may include graphical elements specialized for the particular category of object
involved. This allows the system to go beyond the usual fill-in-the-blanks search form
and provide something more powerful and user-friendly.

A second reason is that, by choosing the search category appropriately, database
searches can be made more or less specific. Because of the hierarchical relationships, a
user can select a template in the middle levels of the hierarchy, and search operations
can be designed to encompass all objects that are below it in the hierarchy. This means,
for example, that a search using Model will encompass objects created from templates
derived from it, such as Neuron class objects, Transmembrane Mechanism class
objects, etc.

A final reason for the utility of the representational framework presented here is that
software can be made modular and extensible. New software modules can be devel-
oped for the Modeler’s Workspace alongside new templates, customizing the system to
interact with new types of objects without redesigning or restructuring the whole
system. For each representation derived from an existing template, all the software
elements that worked with the parent template will also work with the derived tem-
plates. This is because the derived template can only add attributes, and while the exist-
ing tools will ignore the new attributes, they will continue to work with the attributes
that were inherited from the parent template. Developers can write new software
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modules that interact with the additional fields in the new templates, and these soft-
ware modules can be loaded into the Modeler’s Workspace on demand, extending the
software’s functionality.

5.6. INTERACTING WITH DATABASES

The Modeler’s Workspace design supports the ability for users to interact not only
with theirs and other users’ Workspace Databases, but with databases that were
not designed specifically for the Workspace. In this section, we describe how the
User Interface component of the system interacts with Workspace Databases and for-
eign databases.

5.6.1. Workspace Databases

Separating the Workspace Database from the User Interface, and making the former
be a stand-alone server, is essential for providing the desired functionality in the
Modeler’s Workspace system. Not only does this approach support different access
scenarios (described next), but it also has the advantage that when the user “starts run-
ning the Modeler’s Workspace”, they usually only need to start the User Interface—the
Workspace Database typically will already be running, usually having been started up
at computer boot time and waiting for connections over a network.

One of the access scenarios involves a one-to-one mapping between User Interface
processes and Workspace Database processes. A certain user of a Workspace Database
(typically, the user who establishes and configures it) is designated as its owner. In
many cases, the owner may be an individual who simply wishes to use the Modeler’s
Workspace in private and may remain the sole user of the database. Whenever the user
starts a copy of the Workspace User Interface, she or he only needs to supply the address
of their Workspace Database server, and the User Interface connects over the network
to this database process. The network-based nature of the database allows a user to
roam anywhere on the Internet and still access their home Workspace Database. A user
can connect, disconnect, and reconnect to their database from different computers.

Another access scenario involves multiple users connecting to a single Workspace
Database server and simultaneously interacting with its contents. The owner of a
Workspace Database has the ability to add other users to a list of designated permitted
users—collaborators (possibly running at remote sites) who are allowed to connect to
the Workspace Database and view and (possibly) edit its contents. This is the basis of
the shared workspace facility of the Modeler’s Workspace. The motivation for this
facility is to permit various collaborative activities in the context of developing mod-
els. By allowing users to “meet” online, with the ability to see each other’s Modeler’s
Workspace environments, we hope to encourage users to interact with each other and
with their ongoing modeling work.

5.6.2. Foreign Databases

Foreign databases are those that were created by other groups prior to or without
concern for the Modeler’s Workspace. Because of the differences in interfaces and
model representations, it is generally impossible to provide full interoperability
between the Workspace and foreign databases. Models in such databases may be orga-
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nized along different lines than those in Workspace Databases, and consequently, it
may be impossible to provide more than the ability to search and retrieve models on
the most basic characteristics (perhaps limited only to title, author, and similar fields).
The degree to which a foreign database’s representation can be mapped onto a
Workspace representation must be determined on a case-by-case basis, and the inter-
face must be implemented in the form of a plugin for each specific database.

Interaction with foreign databases occurs when the user performs search operations
in the Search pane of the Modeler’s Workspace User Interface. When the user chooses
to search in selected foreign databases, each database plugin must do the work of trans-
lating the search request into the appropriate forms for the individual foreigns data-
bases. Specifically, the database plugin performs the following functions: (i) engage
the network communications protocol required by a particular foreign database (e.g.,
CORBA/IIOP [22], HTTP, Z39.50 [30]); and (ii) translate back and forth between the
Modeler’s Workspace representation and search language and the corresponding ele-
ments of a foreign database.

A mediator must perform its translations by using the closest appropriate Modeler’s
Workspace templates. For example, a foreign database that stores models of ion chan-
nels would presumably be mapped to a representation based on the Transmembrane
Mechanism template or perhaps even the more specific Voltage-Gated Channel tem-
plate. In some cases, mapping foreign representations may only be possible in a partial
way, with many attributes in the equivalent Workspace representation left blank. The
database plugin must note which fields are missing in a particular model, so that the
search process can distinguish between missing values and blank values. The treatment
of missing attribute values during search can be handled specially and placed under
control of a user preference setting; the user can elect to have the system either perform
partial-matching (where missing fields are treated as “don’t-care”), always-succeed-
matching (where missing fields are treated as if they matched), or always-fail-match-
ing (where missing fields are treated as if they failed to match).

Due to the lack of standardization in existing neuroscience databases, we expect that
a custom mediator will need to be handwritten for each foreign database for which we
want to provide interoperability. Initially, we expect that database plugins will be writ-
ten by the Modeler’s Workspace developers and distributed through the Modeler’s
Workspace Directory. In time we hope that other developers will also write database
plugins for the system.

5.6.3. Template-Driven Search Interface

The existence of templates and the rules for exchanging them serve an important
purpose in addition to structuring model representations: the definitions are used to
construct search forms and inspector interfaces.

The search form in the Search pane (see Fig. 2) is constructed dynamically using the
following approach. First, the names of all known model templates are collected
together and presented in a pull-down list at the top of the Search pane (in the box in
the line “Search for models having the following characteristics”). The user is required
to first select one of the template names or else to select Any. The requirement to select
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a template is necessary to enable the Modeler’s Workspace User Interface to present a
search form that lists the attributes appropriate to that specific model category. The
User Interface creates the search form by reading that class’s XML Schema definition file.

5.6.4. The Modeler’s Workspace Directory Server

The Modeler’s Workspace Directory (MWD) is a global server located at a particu-
lar network URL. It acts as a global registry and repository supporting the community
of users, making it possible for Workspace users all over the Internet to be able to learn
about the databases that are available for public access. The MWD server will fulfill
several roles:

1. It will maintain a list of all databases that are known to be available on the net and with
which the Modeler’s Workspace can interact. For each database, it will list information
describing the contents of the database in terms of the corresponding Modeler’s Workspace
templates. If it is a foreign database, the MWD will include the appropriate mediator plugin
which Modeler’s Workspace clients can download if necessary.

2. It will maintain a list of all users of the Modeler’s Workspace for those users who elect to
be listed in the Directory. The list will be updated in real-time: whenever users start up a
Modeler’s Workspace process, they will be greeted with a request to allow the process to
contact the MWD and register itself in the list of users. The users’ locations can be viewed
on the world map displayed in the MW Users pane of the Site Browser (see Subheading
5.3.).

The existence of a Modeler’s Database Directory is important, not just to enable the
Workspace to find out about available databases. It also means that the Workspace
User Interface component does not need to contact all databases every time it is started.
The alternative, having the Workspace query each known database directly at start-up
time, would introduce a long startup delay. Centralizing the list of databases on a direc-
tory server will shorten startup time.

The MWD will run a simple program to update its contents daily by polling every
database on its list and testing whether it is accessible. The MWD will record the last
time that each database was known to be available, as well as download any new or
changed template definitions from that database.

5.7. CONCLUSION

Structurally realistic neuronal models can serve as devices to collect, evaluate, and
distribute information concerning the functional organization of nervous systems. As
we have described in this chapter, the central goal of the Modeler’s Workspace project
is to provide the neuroscience community with a modular, extensible, and open soft-
ware environment enabling neuroscientists to develop, use, and share structurally real-
istic models. The purpose of this chapter is to describe a design that we are just
beginning to implement and to encourage others to participate in this effort. We hope
that by providing common infrastructure for interfacing to databases and simulation
packages, other software authors will gravitate towards this framework rather than de-
veloping entirely new software tools from scratch. Ultimately, we hope that others will
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be encouraged to contribute to the community new representations for models and new
functionality in the form of plugins.

For the latest information on the status of this project, and the latest design docu-
ments for the the Modeler’s Workspace, please visit the Web sites at (http://
www.bbb.caltech.edu/hbp/) and (http://www.modelersworkspace.org). When working
prototypes of the Modeler’s Workspace become available for download, they will be
announced on these sites. Further information about GENESIS may be obtained from
(http://www.bbb.caltech.edu/GENESIS).
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The Relationship Between Neuronal Shape

and Neuronal Activity

Jeffrey L. Krichmar and Slawomir J. Nasuto

ABSTRACT

It has long been assumed that neuroanatomical variability has an effect on the neu-
ronal response, but not until recently had research groups attempted to quantify these
effects. In electrophysiological studies, the neuroanatomy is seldom quantified, and in
neuroanatomical studies electrophysiological response is rarely measured. Computa-
tional techniques have the potential of bridging the gap between electrophysiology and
anatomy, and testing the “morphology influences physiology” hypothesis. Computa-
tional techniques include modeling of neurophysiology, modeling and measurement of
neuroanatomy, and mining publicly available archives of anatomical and electrophysi-
ological data. In this chapter, we review studies that focused on the importance of
neuronal shape’s effect on neuronal function and describe the computational techniques
and approaches used in these studies. We stress the need for developing a set of metrics
that can quantify morphological shape and electrophysiological response and for
including morphology in both experimental and simulation studies.

6.1. INTRODUCTION

In the preface to Histology of the Nervous System of Man and Vertebrates ([1],
originally published in Spanish in 1899 and 1904), the legendary anatomist Ramon y
Cajal wrote: “…many theories, hypotheses, and simple guesses have been considered
in an attempt to explain the functional role of the histological features associated with
nerve cells and neural centers; we hope this will convince the reader that we are also
attempting to create a conceptual science. In this we have been inspired by the old
masters of anatomy, who believed that the goal of their work was physiology.” In this
age of computers, we are still inspired by the old masters of anatomy to understand
relationship between the form and function of the nervous system. In the present chap-
ter, we review computational approaches to this open area of research.

Neurons have a wide range of responses that may affect the functionality of brain
regions (2). The source of this variability is not obvious, but may involve factors such
as synaptic connectivity, biochemical differences, type and distribution of active con-
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ductances, or morphological diversity. Differences in synaptic input, either in strength
or connectivity, can alter the response of a neuron (3,4). The neuronal response depends,
in part, on the cell’s concentration and distribution of ionic currents along its mem-
brane. Recent studies suggest that cells adjust channel densities to accommodate dif-
ferences in morphology (5–9). This compensation may be the cause for the relative
electrophysiological homogeneity in certain brain regions, such as hippocampal CA3,
despite their diverse morphology (10). In addition to synaptic connectivity and bio-
chemical properties shaping neuronal electrophysiology, anatomical differences influ-
ence firing behavior and neuronal function. In the remainder of this chapter, we review
experimental studies and computational approaches that investigate the effects of mor-
phological variability.

6.2. EXPERIMENTAL STUDIES OF MORPHOLOGICAL VARIABILITY

Despite the difficulties, a few groups have recorded from neurons and accounted for
3D neuroanatomy within the same experimental preparation. Larkman and Mason
investigated the relationship between soma/dendritic morphology and electrophysiol-
ogy of visual cortex pyramidal cells in layer 2/3 and layer 5 (11,12). After intracellular
recording, they injected the cells with horseradish peroxidase (HRP) to obtain the soma
and dendrite morphology. They divided these cells into three classes based on their
qualitative and quantitative morphological differences: (i) layer 2/3; (ii) layer 5 with
thick apical trunks; and (iii) layer 5 with slender apical trunks. The layer 5 pyramidal
cells with thick apical trunks were generally larger than neurons in the other two classes.
Of the three classes, only the layer 5 pyramids with thick apical trunks burst in re-
sponse to current injections. This study showed that cell classes, differentiated by their
morphology, could have different firing properties.

Dendritic branching influences the back propagation of an action potential into the
dendritic tree. Williams and Stuart recorded from both the soma and dendritic tree of
thalamocortical neurons and showed that action potentials initiated near the soma
actively backpropagate into the dendrites and that action potentials attenuate more in a
branched than in an unbranched region of a dendrite (13). Moreover, the signal from
dendrite to soma was more attenuated in highly branched dendritic regions. Thus, the
shape of the dendritic tree could have an influence on synaptic integration.

Morphological studies in the hippocampus, which have been carried out on both a
cellular level and a regional level, show that variations in neuroanatomy impact neu-
ronal firing behavior. One study found bursting pyramidal cells predominantly on the
borders of subfields (i.e., CA1a, CA1c, CA3a, and CA3c), while pyramidal cells in the
medial areas, such as CA1b and CA3b, were predominantly characterized as spiking
neurons (14). In contrast, Bilkey and Schwartzkroin did not find this discrepancy and
argued that firing differences may be more influenced by the cell’s depth in the stratum
pyramidale (15). Cells with somata near the stratum pyramidale/stratum oriens border
were more likely to burst. These firing properties may be influenced by the different
morphology induced by the position in the hippocampal subfields. The depth of the
soma location within the stratum pyramidale can influence how much volume the den-
dritic tree has to grow into before being compressed by a border. Additionally, den-
dritic fields of CA3c pyramidal cells bordering the dentate gyrus granular layer blades
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are more compact than the distal portion of CA3 near CA2 (16). However, it is difficult
to quantify the precise anatomical effect on firing properties experimentally because of
the great morphological, biochemical, and electrophysiological variability, even within
a subfield.

6.3. COMPUTATIONAL STUDIES OF MORPHOLOGICAL VARIABILTY

Computational approaches have the potential to test and quantify the effect morpho-
logical variability has on the firing properties of neurons. The task of neurophysiolo-
gists, who study the function of neurons by injecting current or voltage into a neuron
and measuring the neuron’s response, is painstaking and slow, and the number of neu-
rons that can be measured in a given preparation is restricted. Often, the electrophysi-
ological responses are recorded, but the neuromorphological data is not mapped.
Alternatively, in a neuroanatomical study, the cell architecture is carefully mapped, but
the electrophysiological data is not extensively recorded. The above situation follows
from the difficulty in combining morphological and physiological measurements in a
single preparation and still acquiring enough data points for a quantitative analysis. In
computational neuroscience, modelers of single neurons have focused mostly on the
biochemical details of the cell while ignoring the morphological detail. For example,
Traub and his colleagues developed a biophysically detailed model of a CA3 pyrami-
dal cell, that had either no branching structure (17) or a uniform branching structure
(18). Furthermore, individual cells in detailed network simulations usually have a uni-
form shape (19–25).

In this section, we review computational approaches that have taken into account
neuronal structure. We describe four types of computational tools that can be used for
the neuronal structure–activity analysis: (i) neuronal modeling and simulation; (ii) sets
of morphological metrics that can readily be applied to neuroanatomical data; (iii) elec-
tronic archives of neuronal data; and (iv) the artificial generation of neurons. We fol-
low this discussion with a review of recent work by the authors and their colleagues in
the Computational Neuroanatomy Group at the Krasnow Institute (http://
www.krasnow.gmu.edu/L-Neuron) integrating these techniques.

6.3.1. Neuronal Modeling and Simulation

Neuronal modeling can be divided into two classes: passive models of neurons that
have equations describing the flow of current, but no active currents, and active models
that have equations describing active currents. Both types of models have been used to
investigate the effects of morphology on neural processing.

The functional role of neuronal dendrites was first mathematically characterized by
Wilfred Rall in his cable theory (26,27), see (28) for review. Rall treated the dendritic
tree as a passive (i.e., no active ionic channels) nerve cable. He derived partial differen-
tial equations to describe how current flows and voltage spreads across a dendritic tree
in space and time. These cables had a membrane resistance, Rm, membrane capaci-
tance, Cm, and an internal resistance, Ri. Rall showed that a cable divided up into
smaller RC compartments could yield the same results as a single passive cable, but
allowed for modeling of complex dendritic branching and nonuniformity along the
dendrite. With this theory, Rall showed the functional importance of different spa-
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tiotemporal patterns of synaptic input, the effects of input to a single dendritic branch,
and the effect dendritic branching has on the propagation of a signal.

Recently, London and colleagues compared the voltage transfer between uniform
and nonuniform distributions of membrane conductance on a classic cable, and three
classes (cerebellar Purkinje cell, layer V neocortical pyramidal cell, and hippocampal
CA1 pyramidal cell) of reconstructed cells (29). In the nonuniform case, the membrane
conductance increased linearly with the distance from the soma while keeping the over-
all conductance equivalent to the uniform case. In all the cell models tested, they found
that monotonically increasing conductance increased the voltage response at the soma
and decreased the electrotonic length of the cell. In fact, any membrane heterogeneity
slows the decay of voltage and has important implications for the integration of synap-
tic signals. This study highlighted the importance of understanding the interplay
between passive and active mechanisms in neural processing.

In order to analyze the spread of a signal within a complex dendritic morphology,
Carnevale and colleagues developed a tool set, called the Electrotonic Workbench, and
demonstrated that the electrotonic structure of a neuron is defined by the attenuation of
voltage as it propagates toward or away from a reference point (30). Computing the
attenuation, in both directions along each dendritic branch of the cell, transformed the
cell from anatomic to electrotonic space. The electrotonic distance was defined as the
natural logarithm of voltage attenuation. To use the Electrotonic Workbench, the user
specified a file that contained morphometric data and the biophysical properties of the
cell. A graphical interface depicted how the neuron would look after the electrotonic
transform both for somatafugal (away from the soma) or somatopetal (towards the
soma) signal flow. The attenuation could be calculated with DC and different frequen-
cies of interest. Because of a recursive strategy and operating in the frequency range
instead of the time domain, the attenuation for detailed hippocampal cells was calcu-
lated in less than 2 s. The NEURON simulation environment contains the Electrotonic
Workbench and can be obtained via the World Wide Web (WWW) at (http://
www.neuron.yale.edu) (31).

The Electrotonic Workbench analysis was applied to cells from hippocampal CA1,
CA3, and dentate gyrus (30,32). Based on electrotonic analysis, it was predicted that
cells with a long primary dendrite, such as CA1 or neocortical pyramidal cells, were
more sensitive to a synapse’s location for postsynaptic potential integration than cells
without a long apical dendrite. Integration of postsynaptic potentials in neurons that
lack a long primary dendrite, such as dentate gyrus granule cells, was less sensitive
to synaptic location. In addition, pyramidal basal dendrites and dentate gyrus granule
cells, which had similar dendritic morphology, had the same electrotonic properties
and possibly similar functionality. The soma’s sensitivity to synapse location may also
be influenced by active processes in the dendrite. Recent work by Magee and Cook,
measuring excitatory post-synaptic potentials (EPSPs) in CA1 pyramidal cells, showed
that synaptic conductance increases with distance from the soma and may be respon-
sible for normalizing the amplitudes of individual inputs (33). Clearly, combining tools
such as the Electrotonic Workbench with active processes in dendrites and spines would
help quantify this normalization effect.
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Although passive models have been effective in describing neural processing, they
cannot capture the dynamics of an action potential or a burst of action potentials. Here,
we review modeling studies with active currents that included a description of
neuromorphology.

Pinsky and Rinzel investigated the relationship between dendritic tree size and neu-
ronal firing responses by developing a two-compartment (soma and dendrite) model
reduced from the Traub CA3 pyramidal cell (24). The soma had sodium and fast potas-
sium currents, and the dendrite compartment had synaptic current, calcium current,
after hyperpolarizing potassium current, and calcium activated potassium current. The
morphological characteristics of the cell could be changed by adjusting the coupling
strength between the soma and dendrite or by changing the ratio of the soma to dendrite
surface area. Despite the simplicity of the model, it displayed a wide range of firing
behaviors from regular spiking to bursting. Making the soma appear remote from the
dendrite, by either increasing the soma to dendrite compartment coupling resistance or
the ratio of somatic membrane area to dendritic membrane area, changed the Pinsky-
Rinzel model from a spiking cell to a bursting cell (34). This result was consistent with
the Larkman and Mason cortical results described above.

Variations in dendritic morphology from different cell classes can have a qualitative
effect on firing behavior. Using standard compartmental modeling techniques, Mainen
and Sejnowski distributed identical ionic currents on the reconstructed dendritic mor-
phology of a layer 3 aspiny stellate cell, a layer 4 spiny stellate cell, a layer 3 pyramidal
cell, and a layer 5 pyramidal cell (34). Their simulations showed that, given equal
distributions of conductance parameters, smaller cortical cells (i.e., layer 3 aspiny stel-
late and layer 4 spiny stellate) tended to spike, whereas the larger cells (i.e., layer 3 and
layer 5 pyramidal) tended to burst. In a recent simulation study, in which Vetter and
colleagues examined eight different neuronal types, they found that dendritic branch-
ing patterns had a significant effect on the forward and back propagation of a signal
(35). For example, the distinctive branching found in Purkinje cells limited action
potential backpropagation, whereas the dendritic geometry of dopamine neurons
favored action potential propagation.

In contrast to the approach based on distributing ionic currents homogeneously
across the dendritic tree, Migliore and colleagues changed the distribution of ionic
currents in models of six morphologically varied CA3 pyramidal cells until they
achieved similar electrophysiological behavior (8). By trial and error, they changed the
distribution of channels until all six cells were bursting. This was achieved by altering the
Ca2+-independent K+ conductance within 100 µm of the soma. Although they claim
that it was not difficult to achieve bursting in all the cells tested, they did not quantify
the difference in morphology or its influence on the channel distribution.

6.3.2. Measuring Morphological Data

While it is obvious from the studies above that variations in dendritic structure affect
neuronal function, it is still an open question as to which morphological characteristics
are the most influential on neuronal function and to what degree. Before an investiga-
tion of the “neuromorphology influences neurophysiology” hypothesis can be under-
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taken, a set of morphometric parameters, which can be measured and compared, must
be explored and defined.

Descriptions of the peculiar shape of neuronal arbors date back to the work of such
pioneers as Purkinje (36), Golgi (37), Kölliker (38), and Ramon y Cajal (1). Quantita-
tive descriptions of neuronal anatomy and morphology followed with the work of
Lorente del Nò (39) and particularly Sholl (40). Sholl introduced the use of diagrams
summarizing centrifugal distribution of a variety of quantitative parameters, such as
the distribution of dendritic branch diameters or branch lengths along the radial dis-
tance from the soma.

An important advance in the morphological analysis of neurons was made when
computer technology was applied to reconstruct and render dendritic morphology (41).
Cells studied under the microscope could be acquired as computer files and displayed,
rotated, and zoomed from different viewpoints. More sophisticated characteristics of
dendritic shape could then be appreciated and evaluated. In a computer, dendritic mor-
phology is generally stored as a list of dendritic points, each with 3D coordinates (x, y,
z), a diameter, and a connectivity relationship. The “Cartesian” description of neuronal
shape is suitable to characterize and display every detail of a dendritic tree.

We have identified a set of morphometric parameters, which are parameters useful
in describing and comparing morphological differences between and within cell fami-
lies (42–44).

Scalar morphometrics, which are parameters that can be obtained directly from the
3D neuroanatomical description, include the dendritic size (average diameter, total
length, total area), average path length (the distance from a terminal tip to the soma
along the dendritic path), number of bifurcations, number of terminations, number of
segments (number of branches between two bifurcations or a bifurcation and a terminal
tip), and maximal branch order. Branch partition provides a quantitative measurement
of how equally descendent branches are distributed on the two sides of a bifurcation
(45–47). It is defined for a parent branch as the relative and weighted difference
between the numbers of terminal tips originating from the two child branches. Tree
asymmetry is simply the average partition of all the branches and provides a character-
ization of the dendritic geometry (48). The distribution of branch partitions may also
be a critical morphometric parameter (45,46). The overall tree size (height, width, and
depth) and the interrelationship of these parameters characterizes the tree shape. For
example, Claiborne and colleagues have identified ellipticity (width/depth) as a critical
descriptor of Dentate Gyrus granule cell dendritic trees (49).

Distribution morphometrics, are parameters derived from a histogram of one scalar
morphometric vs a parameter characterizing spatial extent of an arbor, such as den-
dritic path, branch order, or distance from the soma (11,12,43,44). For example, cen-
trifugal distribution of branching points is derived by plotting the number of branch
points vs the distance from the soma (40,50,51). Other examples include the number of
termination points vs branch order, the segment length vs branch order, or diameter
size vs branch order (50–52). Metrics describing the moments (e.g., mean or median,
standard deviation [50]) and shape (e.g., kurtosis, skewness) of the resulting distribu-
tion can be used in the analysis. The program called L-Measure, developed in the Com-
putational Neuroanatomy Group at the Krasnow Institute and described in Chapter 3,
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automated, integrated, and greatly extended the procedures for extraction of various
scalar and distribution parameters. In particular, it enables a high flexibility and preci-
sion of defining distribution parameters. For example, it can extract scalar parameters
at a given branch order, path, and Euclidean distance from soma, separately for basal or
apical trees, or for branches of given topological type (e.g., terminal, internal, etc).
Therefore, it is a very attractive and powerful tool for morphometric studies.

If we are to quantify the effect neuromorphology has on neurophysiology, a series of
physiological measurements describing both spiking and bursting behaviors is also
necessary. Spiking can be characterized by the current given at which the cell transi-
tions from bursting to spiking and by the spike rate (recorded at current levels higher
than the transition current). Bursting can be characterized by parameters such as burst
rate, interburst interval, spike rate during burst, width of burst, burst shape, or burst
variability. The burst shape can be measured by calculating the following ratio:

R
ap ap

ap ib
= > − <

> − <
<  max min >

<  max min >
– –

– –

where <max_ap> is the average maximum voltage of an action potential within a burst,
<min_ap> is the average minimum voltage between spikes within a burst, and
<min_ib> is the minimum average voltage between bursts. R measures the “plateau-
ness” of the cell’s bursts: values of R approach 0 for plateau potentials, in which a train
of action potentials stay above resting potential within a burst; they are close to 1 for
trains of action potentials that return almost to resting potential within the burst. We
devised a set of automatic procedures for extraction of features from the spike train
data in order to speed up analysis and avoid introducing variation due to human fac-
tor (53).

6.3.3. Archives of Neuroanatomy

Experimental data are continuously being accumulated and put into a digital format,
but there are very few archives that are publicly available through the Internet to make
this data readily accessible. One such database is the Southampton Archive of Neu-
ronal Morphology (http://www.cns.soton.ac.uk/~jchad/cellArchive/cellArchive.html).
The archive contains 3D morphological data of 124 hippocampal cells (54,55). The
archive makes available a Java applet, called the CellViewer, that allows a user to view
cells in 3D space with pan, zoom, and tilt options; mark cell sections, such as axons,
soma, or dendrites; and convert the cells into a format of a computational simulator,
such as GENESIS or NEURON. The digitized cell reconstructions are in .swc format,
consisting of a list of ASCII lines, each describing a small neuronal segment or
“compartment” (42,54,55). In this format, a compartment is approximated with a cyl-
inder and described by a compartment number, a type (soma, axon, basal or apical
dendrite), a position of the cylinder’s end point (in x, y, and z Cartesian coordinates), a
radius, and the number of the adjacent compartment in the path to the soma (thus,
specifying the compartment interconnectivity). Anyone who converts their data into
.swc format can store their data in the archive. To date, only Turner’s group has con-
tributed to the archive.
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In contrast to other biological fields, a lack of standards and limited number of
repositories has made data sharing among neuroscientists limited and difficult (56).
However, recent database development may be changing this trend. The NeuroScholar
project’s objective is to build a computational knowledge-based management system
that can be accessed and queried by neuroscientists (http://neuroscholar.usc.edu; see
also 57,58). Currently, NeuroScholar holds neural connectivity data from the rat brain.
The GENESIS group is developing a database in the form of the Modeler’s Workspace
holding objects ranging from ion channels to connectivity (http://www.bbb.caltech.edu/
hbp, see also Chapter 5 in this volume). Additionally, the Virtual NeuroMorphology
Electronic Database (http://www.krasnow.gmu.edu/L-Neuron/database) is a repository
of both real and virtual neurons in .swc format (59).

6.3.4. Artificially Generated Neurons

3D reconstruction of neurons is a painstaking and time-consuming endeavor. There-
fore, there is a scarcity of data available for analysis by computational neuroscientists.
An alternative approach to morphological databases of experimental data is to artifi-
cially generate a population of neurons for a given morphological class based on a set
of fundamental parameters; parameters that are characterized by statistical distribu-
tions obtained from experimental data. The algorithms that generate “virtual neurons”
sample values from these distributions stochastically. As a result, the population of
algorithmically generated neurons will belong to the same morphological class, with
no two virtual neurons being identical (59,60).

The work in the Computational Neuroanatomy Group concentrated on two types of
computational algorithms for the artificial generation and description of dendritic trees;
namely local and global algorithms. Local algorithms, such as L-Neuron (60), rely
entirely on a set of local rules intercorrelating morphological parameters (such as
branch diameter and length) to let each branch grow independently of the other den-
drites in the tree as well as of its absolute position within the tree (see Chapter 3 in this
volume). These algorithms are simple, intuitive, and their fundamental parameters can
be measured directly from experimental data. Because of the small number of param-
eters, they are well suited to study structure–function relationship and the origin of
emergent properties (i.e., anatomical parameters not explicitly imposed in the algo-
rithm). In global algorithms, such as ArborVitae (61), new dendritic branches are dealt
“from outside” to competing groups of growing segments, also depending on their
position in the tree (e.g., on their distance from the soma). Global algorithms are usu-
ally more flexible, but many of their fundamental parameters must be obtained through
extensive and elaborate parameter searches. Global algorithms can be also extended to
generate populations of interconnected neurons (networks), instead of single neurons
(see Chapter 12 in this volume).

In another global approach, Winslow and colleagues stochastically generated den-
tate gyrus hippocampal granule neurons in order to analyze the response of these cells
to stimulation applied to different perforant paths (62). Their motivation was to inves-
tigate the relationship between cell response variation and neural shape. Winslow’s
approach was similar to global algorithms described earlier, because different tree fea-
tures, such as number of branch points, branching pattern, or branch lengths were dealt
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“from outside” by using empirical probability distributions extracted from real mor-
phological data. However, there were also fundamental differences between Winslow’s
tree generation method and algorithms such as implemented in Arbor Vitae and
L-Neuron. In these local and global algorithms, one can argue that the process of vir-
tual morphology generation mimics to some extent the development of dendrites, where
structures are gradually expanding, meeting respective local and/or competitive con-
straints, until they reach their final form. In contrast, the process of dendritic tree con-
struction used by Winslow and colleagues was very formal, that is, the constraints they
used during dendrite generation, with the exception of the agreement of dendritic fea-
ture distributions with the corresponding empirical probabilities, were a few basic rules
assuring conformity of the resultant structure with the overall properties of trees. In the
algorithm, the number of branch points and their normalized distances along a pre-
defined axis were first selected. Next, the number of primary branch points were
selected and extended to a different proximal branch point. Consequently, every branch
point is connected in the outward direction to the two nearest unconnected branch points
(alternatively, an end point is created if no such branch points exist). The final stages of
the algorithm involved spreading the trees in 3D by scaling their height, longitudinal,
and transverse extent, as well as adding diameters; all using appropriate empirical dis-
tributions. Lastly, a “wiggle” was added to account for the curvature of dendrites.

6.3.5. Testing the “Morphology Influences Physiology” Hypothesis

We have approached the “neuromorphology effects neurophysiology” hypothesis
by mining electronic archives for neuroanatomical data, utilizing computational mod-
eling techniques to simulate neuronal firing behavior, and quantifying the effect by
correlating the morphometrics described above with electrophysiological measure-
ments of simulations. The general method consists of converting morphological mea-
surements from 3D neuroanatomical data into a computational simulator format. In the
simulation, active channels are distributed evenly across the cells so that the electro-
physiological differences observed in the neurons would only be due to morphological
differences. The cell’s morphometrics and the cell’s electrophysiology in response to
current injections are measured and analyzed. In the following sections, we describe
two case studies that analyzed the effects of neuronal shape on neuronal function: (i)
comparing hippocampal CA3 pyramidal cells; and (ii) comparing normal cells with
aged and Alzheimer’s Disease (AD) cells in hippocampal CA1.

In a study to determine the effects of morphological variability on electrophysiology
within a single cell type, 16 CA3 pyramidal cells were obtained from the Southampton
archive (44). The cells were converted to the GENESIS neural simulator format (63)
by using the CellViewer tool from the Southampton archive. Equations for active cur-
rents, taken from the Traub CA3 model (18), were described in GENESIS scripts. The
distribution of the active currents was homogenous across all the 16 cells. In other
words, any difference in the electrophysiological response to an identical stimulation
was due to morphological variation. The stimulus response differences among the simu-
lated neurons were quite dramatic (see Fig. 1). Cells responding to the same somatic
current injection showed qualitatively different spiking patterns; regular spiking (Fig.
1A), regular bursting (Fig. 1B), or bursting with a  plateau  of  action  potentials  (Fig. 1C).
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Fig. 1. Examples of different firing types for simulated CA3 pyramidal cells. (A) Regular
spiking cell. (B) Regular bursting cell. (C) Plateau potential cell. All three simulated cells were
injected with 0.2 nA. The insets to each voltage chart show a tracing of the cells.
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A summary of the different firing responses at different current injections is shown in
Figure 2. An analysis of the correlations between dendritic morphometrics and electro-
physiological response showed that cells with smaller dendritic trees tended to be more
excitable in both bursting and spiking. An analysis of the diameter as a function of path
length showed that cells with a narrow diameter near the soma or cells in which the
diameter decreased rapidly as the path length increased were more apt to be bursting
cells (44). The degree to which the dendritic tree allowed current backpropagation was
crucial in determining the duration and variability of a burst. These results implied that
in addition to dendritic tree size, variations in the size and shape of the dendritic trunk
could have a significant effect on firing behavior.

The above mentioned results are based on the investigation of the between-cell vari-
ability of the first order spike train parameters (features of spike trains in response to a
fixed current injection). A natural question following this study is if the conclusions of
this analysis hold true for different injection currents or if they are current-dependent.
Two possibilities could arise that might limit the implications of this study. Either any
relationship between morphology and first order parameters is injection current-spe-
cific and thus, epiphenomenal, or the relationship has a systematic but rather complex
dependence on the input current.

We tested these possibilities by defining second order physiological parameters. The
second order physiological parameters were defined with relation to the first order
measurements. A second order parameter is a function describing the dependence of a
first order parameter on the injection current. For example, the mean inter-burst-inter-
val measured at a specific input current constitutes a first order spike train parameter.
A function describing how the mean inter-burst-interval changes when the injection
current is increased constitutes a second order parameter. Other examples of second
order parameters include a change of the mean burst duration with the input current or
a standard current–frequency curve. Thus, for a given cell, second order physiological
parameters capture the dependence of the spike train waveform on the injected current.

In order to characterize a general tendency of the first order parameter change with
respect to the level of current injection, we performed linear regressions for the plots of
the first order parameters as a function of applied input current. The coefficients of the
obtained linear trends, i.e., slopes and intercepts, characterized these second order
parameters. These coefficients were subsequently used to investigate the relationship
between morphological and second order electrophysiological parameters, analogous
to earlier analysis using first order parameters. The significant correlations between
morphology and first order physiological parameters were present for the correspond-
ing second order parameters. Moreover, there were no additional significant correla-
tions between second order parameters and morphometrics that would not follow from
the previous analysis. Thus, in these studies the influence of morphology on physiol-
ogy was indeed fully captured by the first order features of the spike train response.

As new metrics and more cells are put in the analysis, the parameter space has the
potential of exploding and making analysis by conventional statistical methods insur-
mountable. For example, in the analysis of the above study, 7 scalar morphometrics
and 1 distribution morphometrics were compared with 8 first order electrophysiologi-
cal parameters for 16 different cells. Therefore, we recently explored visual data min-
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ing techniques to detect structure in the data (43). For our analysis, we used Xgobi
(64), a freely available data exploration package (http://www.research.att.com/areas/
stat/xgobi/) for visual clustering and classification, through a technique called the
brush-tour strategy. The brush-tour refers to a combination of brushing data points
(i.e., graphically highlighting data points of interest) and performing a grand tour (i.e.,
examining the behavior of the highlighted data points as one tours through plots of
different parameters and metrics) on the data. Touring through bivariate scatterplots of
the morphological parameters revealed structure in the data. Cells with relatively small
basal parameters near the soma and short path length from the soma to basal dendritic
terminal tips, tended to burst with a plateau of action potentials (see Fig. 3). Figure 3
also revealed two outliers, cells l18 and cell 160a, which despite having a small diam-
eter and short path length tended to spike. Cells l18 and l60a were brushed, and Xgobi
was then used to investigate, by touring through the different morphometric values,
whether these two cells had any extreme morphometrics. As the scatter plots in Figure
4 show, cells l18 and l60a had values in the upper range for total area and asymmetry.
Although these results were preliminary, and the data set is small, the above example
illustrates the power of exploratory data analysis. As the number of morphometric
parameters and cells increases, so will the need for promising data visualization tech-
niques such as Xgobi.

AD is among the leading causes of death in the United States, with a higher death
rate than that of homicide or acquired immunodeficiency syndrome (AIDS). Most
of the research on observable brain changes related to AD concentrates on how the
accumulation of β-amyloid proteins affects the brain functioning. However, it is also
known that AD involves morphological changes of the brain networks and single neu-
rons (65).

Fig. 2. Firing types at different current injections in nA. Each of the 16 CA3 pyramidal cells
tested is listed by column and ordered from smallest (left) to largest (right) dendritic area. Each
row represents the amount of current injected at the cell’s soma. Each entry in the table denotes
the qualitative response of a particular cell to a level of current injection. Adapted from (44)
with permission.
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In order to investigate systematically the influence of AD-related morphological
alterations on the electrophysiological response of neurons, it would be necessary to
obtain the morphological and electrophysiological measurements from both healthy
and AD affected subjects, and subsequently, to perform contrastive analysis between
the AD and control groups. However, it is very hard to perform such studies using
experimental methods due to the inherent problems in data acquisition. To our knowl-
edge, there are no 3D morphological reconstructions of neurons from AD subjects.
Nevertheless, this problem can be addressed by using corresponding data from an ani-
mal model of AD, e.g., Kainic Acid (KA) lesioned hippocampal neurons of a rodent
(66). Although KA lesions are commonly used in animal models of other disorders
such as epilepsy, they can be used as a model of AD, as it is believed that glutamate
excitotoxicity may contribute to the pathological changes related to this disease (67).
The above mentioned use of KA-based lesions for studies of the brain degenerative
disorders makes our approach potentially interesting also to researchers investigating
diseases other than AD.

Computational modeling is a viable methodology enabling us to address the ques-
tion of a putative influence of AD morphological alterations on cell electrophysiologi-
cal response. We downloaded morphological reconstructions of 18 neurons from CA1
area of rat hippocampus from the Southampton archive. The neurons were divided into
3 equal groups: normal (2 mo old), aged (24 mo old), and KA-lesioned neurons. We
assumed an approach analogous to that described above for analysis of CA3 cells.
Thus, we modified Traub’s model of CA3 cells in order to account for relative differ-
ences in distribution of ion channels between CA3 and CA1 cells, and we kept all the
physiological parameters constant across all the neurons (68). The electrophysiologi-
cal response of cells was characterized simulating current clamp experiments, and the

Fig. 3. Scatter plot of maximum basal path and basal diameter (within a distance of 100 µm
of the soma) for the 16 cells tested. Bursts were brushed with a o, plateaus were brushed with a
�, and spikes were brushed with a +. The scatter plot reveals a relationship between firing type
and the morphometric parameters. However, l18 and l60a appear to be outliers. Adapted from
(43).
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results were used in analysis together with morphological characterization of all
3 groups.

To investigate the effect of AD on neuronal shape, normal, aged, and KA-lesioned
groups of cells were compared with respect to parameters characterizing dendritic shape
of basal and apical trees as well as the total cell morphologies. The most pronounced
differences were observed between normal and aged cells (see Table 1). In general, the
parameters suggested larger arbors in aged neurons than in normals. The size of the
apical dendritic trees and the total dendritic length of basal trees were significantly
larger for the aged than for the normal group. Both the apical and basal trees of the
aged group had larger distal branch diameters than the normal group, as exemplified by
the free term of fitted exponential relationship between the branch diameter and its
distance from soma (diameter vs path length—Free Term). Although, KA-lesioned
cells were less clearly distinguishable from the normal cells than the aged vs normal
comparison, parameters characterizing apical tree size (the apical tree area, the number
of apical branches, and the diameter of distal apical branches) did suggest that the
KA-lesioned cells have larger than normal dendritic trees. This is consistent with
the fact that only one parameter, the length of basal dendritic tree, did suggest a difference
between KA-lesioned and aged cells. Despite the fact that no single parameter could
differentiate all three groups of cells, combinations of parameters suggested differ-
ences between the three groups. Our studies confirmed results on morphological dif-
ferences between normal, aged, and KA-lesioned cells reported in the literature (69,70).

The three groups were compared with respect to first and second order physiological
parameters. The first order parameters were dependent on the level of current injection.

Fig. 4. (A) The outliers from Figure 3, l18 and l60a, were among the largest cells in terms of
dendritic area (A) and the most asymmetric (B). (Symbols are same as in Fig. 3.) Adapted from (43).
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At 0.03 nA, the mean inter-spike-interval during burst (ISI w/i Burst) was longest in
lesioned cells (see Table 2). At 0.05 nA, the bursts were significantly longer in normal
than in KA-lesioned cells (Burst Duration). The second order parameters showed a few
more discernible differences between the groups. The most significant difference was
in the second order parameter describing the relation between the mean inter-spike-
interval during burst (ISI w/i Burst) and the input current. The inspection of the data

Table 1
Differences Between Normal, Aged, and KA-Lesioned Cells with Respect to Scalar
and Distribution Morphological Parameters

Aged vs Normal Normal vs KA Aged vs KA
Parameters mean ±  SD mean ±  SD mean ±  SD

Area (µm2) Total 50842 ± 31431 ±
20986 12618

Apical 37097 ± 21291 ± 21291 ± 32522 ±
18367 10321 10321 16081.5

Basal
Number of Total
Bifurcations Apical 63 ± 35.6 93.8 ± 38.5

Basal
Number of Total
Terminals Apical 64.3 ± 34.8 96.2 ± 38.2

Basal
Branch Order Total 36 ± 3 31.2 ± 7.2

Apical 26.2 ± 1 21.7 ± 6.7 21.7 ± 6.7 27.33 ± 7.3
Basal

Diameter vs Total
path length Apical 0.491 ± 0.171 ± 0.171 ± 0.484 ±
Free Term 0.117  0.247  0.2471 0.256

Basal 0.33 ± 0.15 ±
0.25  0.23

Diameter vs Total
path length Apical 1.07 ± 0.78 ±
Decay Rate  0.36 0.38

Basal 0.94 ± 0.52 ±
0.61  0.41

Dendritic Total 25612 ± 16061 ±
Length (µm) 12572  52171

Apical 17951 ± 10828 ±
10794  5337.8

Basal 7661 ± 5233 ± 7661 ± 5490 ±
 2190  1276  2190  2254

The significant differences in t-tests (p < 0.05) are shown in boldface, and the “trends” (0.05 < p < 0.1)
are shown in italic. None of the parameters differentiates between all three groups of cells. The relationship
between the diameter and the path length was assumed to obey an exponential function. Parameters of the
fitted exponential expression (Decay Rate and Free Term) were used to represent this relationship.



120 Krichmar and Nasuto

suggested that, in all 3 groups, this relationship could best be described by a quadratic
expression of the form A(Iinput)2 + BIinput + C. Subsequently, the coefficients giving the
best fit of this expression to the data were used in analysis. The dependence of the ISI
w/i Burst on the input current for KA-lesioned cells was different than the correspond-
ing relationship for normal cells. This relationship showed differences between normal
and aged cells, and normal and KA-lesioned cells, but did not suggest significant dif-
ferences between KA-lesioned and aged cells (Table 2). A few second order param-
eters showed significant differences between groups in some of their corresponding
coefficients, but none could differentiate between all 3 groups of neurons.

A subsequent analysis confirmed a relationship between morphological shape and
electrophysiological response in the entire population of 18 cells. However, in spite of
this, analysis of morphological and physiological parameters separating the
KA-lesioned from normal and aged cells did not reveal significant correlation between
separation of the groups with respect to morphological and physiological parameters.

The high variability of morphological and electrophysiological data and the small
number of available 3D reconstructions of KA-lesioned cells influenced the outcome
of our analysis. Particularly, lack of clear separation between the groups with respect
to their physiological responses, combined with the small number of cells per group,
contributed to the relatively inconclusive assessment of the initial hypothesis. Larger
cell sample size is needed in order to resolve the issue whether the lack of physiologi-
cal separation observed in this study is an artifact of the sample size. However, the
analysis did suggest the possibility of more complex or nonlinear relationships between
morphology and physiology, and thus, it may be worthwhile to perform a sensitivity
analysis to reveal a nonlinear dependence of physiology on morphological parameters.

The lack of 3D morphological reconstructions constitutes a fundamental problem
for these type of studies. However, it could be overcome if researchers could generate
artificial 3D dendritic trees, which nevertheless would possess all the characteristics
typical of neurons of a given class. Availability of artificially generated models of
normal and AD-lesioned cells could also aid tremendously in the analysis of depen-
dence of parameters in this high-dimensional and complex problem. We hope that the
algorithms for generating artificial biologically accurate neurons, described earlier in
the chapter, will soon be able to successfully fulfill this important role.

6.4. CONCLUSIONS

In this chapter, we reviewed a number of studies that investigated the relationship
between neuronal shape and neuronal function. In all cases, variations in shape, even
within the same cell class, caused variations in neuronal response. Some of these stud-
ies have made an effort to isolate the effect of morphology from variations in physiol-
ogy (29,34,43,44,68), while other studies have done just the opposite and altered the
physiology to overcome differences in morphology (5–8). Now, with the advent of
computational techniques, we have more tools at our disposal to understand the struc-
ture–function relationship. Computational modeling systems allow the user to specify
the complex shape of a neuron in both single-cell and network simulations. Morpho-
metric tools such as L-Measure and the Electrotonic Workbench (30) allow the user to
measure experimental data efficiently. Methods to artificially generate neurons, such
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as L-Neuron (60) and Arbor Vitae (61), are fundamental for understanding the rules
that govern a neuron’s shape, but also have the potential of increasing the data set size
in morphological studies. All of the tools need to be used in concert to fully understand
morphology’s effect on physiology.

In this chapter, we have only dealt with single-cell data. Most models that study the
behavior of biological networks use a homogenous morphology to describe their neu-
ronal elements. It is our belief that the variability in shape of neurons, connectivity
patterns, and borders between regions are important and critical to understanding the
function of the nervous system. Moreover, we believe the nervous system utilizes this
variability, in a way that we do not yet understand, to increase its processing power.
The only way to get at the heart of this problem is to combine experimental work with
computational modeling. The tools and methods outlined in this chapter constitute a
step in this direction.

ACKNOWLEDGMENT
JLK was supported by the Neuroscience Research Foundation which supports the Neuro-

sciences Institute. SJN was supported by the Commonwealth of Virginia’s Alzheimer and
Related Diseases Research Award Fund (Award N. 00–1 to Giorgio Ascoli). The authors would
like to thank the Krasnow Institute for Advanced Study for support of this work.

Table 2
Differences Between Normal, Aged, and KA-Lesioned Cells with Respect to First
and Second Order Physiological Parameters

Aged vs Normal Normal vs KA Aged vs KA
Parameters mean ±  SD mean ±  SD mean ±  SD

ISI within Burst (ms) 35.14 ± 68.77 30.06 ± 68.77 ±
I = 0.03 nA 22.71 ± 47.87 15.33 47.87
ISI w/i Burst (var) 0.34 ± 0.2 ± 0.2 ± 0.29 ±
I = 0.04 nA 0.17 0.03 0.03 0.06
Burst Duration (ms) 17.3 ± 3.66 ±
I = 0.05 nA 16.72 4.54
Burst Duration (var)
I = 0.05 nA 0.058 ± 0.017 ± 0.049 ± 0.017 ±

0.055 0.021 0.034 0.021
ISI w/i Burst (A) –1688 ± 29212 ± 2921.65 ± –249.87 ±

3782 2058 2058 1207
ISI w/i Burst (B) 93.88 ± –242.2 ± –242.2 ± 20.95 ±

139.8 256 256 33.01
ISI w/i Burst (C) 30.48 ± 13.39 ± 27.996 ± 13.39 ±

8.04 9.67 16 3.67

The significant differences in t-tests (p < 0.05) are shown in boldface, and the “trends” (0.05 < p < 0.1)
are shown in italic. The variability of a physiological parameter (var) was defined as a ratio of its mean
value to the standard deviation. Coefficients of the second order parameter quantify the relation between
the mean inter-spike-interval during burst (ISI w/i Burst) and the input current. This relationship was best
fitted with a quadratic expression of the form A(Iinput)2 + BIinput + C.
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Practical Aspects in Anatomically Accurate

Simulations of Neuronal Electrophysiology

Maciej T. Lazarewicz, Sybrand Boer-Iwema,
and Giorgio A. Ascoli

ABSTRACT

When computer simulations are employed to investigate mathematical models of
electrophysiology, the details of the implementation can heavily affect the numerical
solutions and, thus, the outcome of the simulations. In computational studies based on
detailed dendritic morphology, relevant implementation details include, among others,
the discretization of time and space. In particular, the anatomical representation of
complex dendrites into isopotential compartments presents challenging issues (often
overlooked in published reports) in the numerical approximation of the cable equation
and its derivatives. Here, we discuss these issues using examples taken from variations
of a model of CA3 pyramidal cell electrophysiology based on realistic anatomy and
biophysics. In addition, we describe existing and novel procedures to produce model
compartmentalizations that ensure stable numerical solutions, with references to popu-
lar simulation environments such as NEURON. Finally, we provide an overview of
existing computational tools aiding the representation, conversion, and simplification
of dendritic morphology for electrophysiological simulations.

7.1. INTRODUCTION

This chapter discusses some of the practical aspects that should be taken into con-
sideration in computational studies of neuronal activity with detailed dendritic mor-
phology. Only issues specific or related to the influence of the detailed anatomical
representation on the electrophysiological simulation will be examined. For more gen-
eral discussions of practical aspects in computational neuroscience, the reader is
referred to the several excellent books that have recently appeared (e.g. [1–3]).
Although particular attention should be paid to ensure that the complexity of the model
is appropriate for the scientific question being investigated, in this chapter, we will
assume that anatomical details (specifically, dendritic morphology) are important for
the pursued research goal. We will use examples based on popular computational neu-
roscience software packages, such as NEURON (4) and GENESIS (5). However, many
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considerations are applicable to simulations implemented in other environments, such
as Surf-Hippo (6), NEOSIM (7), and Catacomb (8), as well as to simulations written in
MatLab (9) or directly in FORTRAN or C++, possibly using libraries such as the Coni-
cal Library (10).

Most of the aspects examined in this chapter concern the computational implemen-
tation of a neurobiological mathematical model (Fig. 1), i.e., the use of numerical meth-
ods to investigate the properties of the model. Thus, we will not discuss issues specific
to mathematical modeling itself (11,12), such as the construction of the model based on
the experiments, or the general principles underlying the “experiments in computo”
(13). Specifically, we address issues related to the computational implementation of
realistic models, as opposed to demonstration models (14). Realistic models are based
on the actual anatomy and physiology of the nervous system and are designed as tools
to discover new ideas. In contrast, demonstration models do not necessarily attempt to
reproduce the physical reality and are primarily intended to provide support for a par-
ticular preexisting theory.

One aspect of neurobiological models that is particularly relevant in computational
neuroanatomy concerns the dendritic structure. Dendritic morphology, which is of
course continuous in nature, must be discretized in the computer simulation. Typically,
dendrites are represented as interconnected compartments that are assumed to have, at
any time, uniform biophysical properties (membrane voltage, ionic concentrations,
etc.). In the “compartmental” approach (3), compartmentalization of the dendritic struc-
ture is performed at the level of the mathematical model itself: a given model contains
a certain number of compartments, and changing the compartmentalization would
imply a change of model. In contrast, the mathematical model derived from the cable
theory (15,16) maintains the continuity of neuronal structure. In other words, the cable
equation and its derivatives do not assume discretization and isopotential compart-
ments. Compartmentalization is introduced during the implementation of this model as
computer simulations used to approximate the solution by numerical methods (17).
Thus, changing the compartmentalization in cable theory-based models affects the ap-
proximation of the solution, but does not imply a change of the model itself.

Fig. 1. Diagram representing the phases and components of the mathematical modeling pro-
cess.
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A simple example of neurobiological modeling is provided by the following math-
ematical equation describing the passive electrical properties of a cell membrane (2):

C
V t
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+ × −[ ] =( )

( ) [Eq. 1]

where C and gpas are the membrane capacitance and conductance, respectively, V(t) is
the membrane potential at time t, Vrest is the resting potential of the membrane, and Iinj

is the injected current. In this simple case, assuming the initial condition V(0) = Vrest,
we can compute an analytical solution of Equation 1:
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Unfortunately, most realistic neurobiological models consist of complicated sys-
tems of nonlinear partial differential equations, for which analytical solutions are typi-
cally not known. For example, the following extension of the cable equation describes
the voltage of a neuron as a function of position and time (2):
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where V(x,t) is the membrane potential at location x and time t, d(x), Ra(x), Rm(x), and
Cm(x) are the diameter of the neuron, cytoplasmatic resistance, membrane resistance,
and membrane capacitance, respectively, at the location x, and I(x,t) is the membrane
current at location x and time t. This current includes contributions from voltage-gated
and ligand-gated ion channels as well as current injections. The dependency of voltage-
gated channel currents on voltage and time is usually described by systems of differen-
tial equations, such as Hodgkin-Huxley equations (18,19). In more complex models,
some of these current functions can additionally depend on calcium levels or other

Fig. 2. Somatic membrane potential recorded from a CA3 pyramidal cell in response to
somatic injection of a short (5-ms) current pulse (1 nA). Plotted from data in (20).
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factors. In general, the analytical solution of Equation 3 is not known. However, if a solu-
tion exists, it can be approximated by numerical methods using computer simulations.

In the following sections of this chapter, we use examples based on well-known
models of the CA3 pyramidal cell. A characteristic electrophysiological behavior of
this neuron is a train of spikes (“burst”) in response to a short pulse of somatic current
injection (Fig. 2). Such a behavior was fully described by Wong and Prince 20 yr ago
(20), and these experiments have been quoted in over 270 articles since then. A typical
burst lasts about 50 ms, and it consists of 2 to 6 action potentials. Another peculiar
feature is the progressive reduction of spike amplitudes during the burst (21).

In this chapter, we examine several models of CA3 pyramidal cell electrophysiology
deriving from the work of Migliore and colleagues (22). The original model was based
on accurate reconstructions of dendritic morphology, and it includes detailed calcium
dynamics and nine voltage-gated ionic channels. The response of this model to a short
pulse of somatic current injection is in good agreement with experimental data (Fig. 3).

7.2. COMPUTATIONAL IMPLEMENTATION

Although standard digital computers are deterministic devices, computer simula-
tions should not be treated “literarily”. The numerical implementation of mathematical
models implies errors in the approximation of the solution, as well as errors in the very
representation of numbers in the computer. In this section, we discuss some of these
errors, which are intrinsic in numerical methods and computer implementations and
are present in addition to any error inherent in the assumptions on which the math-
ematical model is based. At the end, although realistic simulations may help determine
ranges of parameters underlying neuronal behaviors (e.g., quiescence, regular firing,
or bursting), the occurrence of each spike in the simulation should not be necessarily
considered with a precision of 1 ms.

In general, mathematical model equations (e.g., Equation 3) use continuous func-
tions (and real numbers). Examples of these functions are membrane potential

Fig. 3. Simulated CA3 pyramidal cell response to a 3-ms somatic injection of 1 nA of cur-
rent. Based on a 385 compartment model (22) (see also http://senselab.med.yale.edu/senselab/
ModelDB/).
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(depending on time and location within the neuron), dendritic diameter, passive mem-
brane resistance, and ionic channel densities (all depending on location). In order to
solve these equations numerically with a digital computer, these continuous functions
and real numbers must be represented by bits. The precision of the representation can
vary depending on the type of computer processor, operating system, and simulation
software. Processor and operating system usually produce small discrepancies. Simu-
lation software is more serious. Very often different software enviroments imply a
different implementation of a given mathematical model. In C++ and FORTRAN, it is
possible to implement almost any mathematical model. In contrast to that, high level
software environments are particularly susceptible to portability issues. For example,
NEURON and GENESIS contain several predefined basic strucures and objects. These
elements are differently defined in the two environments, so it is usually necessary to
adapt and change the mathematical model in order to port its implementation from
NEURON to GENESIS or vice versa.

An example of that issue is provided by our attempt to port the GENESIS implemen-
tation of Meschik and Finkel’s model (23) to NEURON. The Menschik model was
built using the same 385 compartment cell of the Migliore model (22) and on similar
active conductances. The structures and mechanisms controlling calcium concentra-
tions and kinetics included four calcium shells and a calcium buffer, and are in prin-
ciple identical in the Menschik and Migliore models. However, the implementation of
calcium pumping in the Menschik model makes use of a GENESIS object specifically
designed to describe the Michaelis-Menten steady state. NEURON does not have a
predefined object for the Michaelis-Menten formalism. When we manually imple-
mented the Michaelis-Menten equation for the Menschik and Migliore models in NEU-
RON, the solution was numerically unstable. Thus, in our NEURON implementation,
we described calcium pump starting from the reaction schemes (as in the original

Fig. 4. Differences between the GENESIS and NEURON implementation of the Menschik
model (23). Somatic responses to somatic current clamp pulse (1 nA, 5 ms).
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Migliore model). Two models had a fairly different behavior although the difference in
the two implementations is minor when considered in the complex context of the whole
model. We found differences between firing frequency in response to somatic (steady
or pulse) current injection, resting potential, subthreshold oscillations, spike shape and
amplitude, and spike variability within bursts (Fig. 4).

Neurobiological models usually contain functions of time (e.g., Equation 3). There-
fore, in anatomically accurate models, these functions depend both on time and spatial
location, and the numerical approximation of the solution depends on the discretization
of both variables. If the model only contains one compartment, Equation 3 can be
reduced to Equation 1, making all functions V(x,t), I(x,t), d(x), Rm(x), Cm(x), Ra(x) con-
stant over all values of x. Equation 1 can be also represented as:

∂
∂

=V

t
f v t( , ) [Eq. 4]

where the function f is typically nonlinear. If the initial condition V(0) = V0 is known,
Equation 4 can be resolved numerically by using the Taylor approximation:
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Equations 4 and 5 can be rearranged as:

V t t V t t f V t( ) ( ) ( , )+ ≈ + ×∆ ∆ [Eq. 6]

In other words, in order to obtain an approximation of the solution of Equation 1, we
divide the time domain into small intervals, or time steps (∆t). The use of an exces-
sively big time step would result in an approximation of the solution so different from
the “true solution”, that it would not be scientifically meaningful. How small should
the time step be? From the mathematical point of view, the smaller the step, the better
the approximation. However, from the numerical implementation point of view, too
small a time step could lead to round off errors, as well as unnecessarily slow execution
of the simulation (3). In general, the step should be considerably smaller then the time
scale for the most rapidly occurring events in the model. For example, if action poten-
tials typically rise to their maximal value in about 1 ms, a conservative choice for the
time step is 0.01 ms. A practical approach to this issue is provided by the “rule of 1/2”:
if halving the time step causes substantial changes in the simulation outcome, the time
step should be reduced until the approximation is “stable”. Conversely, if doubling the
time step results in no significant alteration of the simulation behavior, the time step
should be increased. An example of the error introduced by an excessively large time
step is shown in Figure 5, where the burst of the Migliore model (22) in response to
somatic current injection is transformed in an irregular firing pattern.

The error of the Taylor approximation in Equation 6 is bounded by ∆V (24). There-
fore, in order to efficiently keep the maximum error below a given value, the time step
in the simulation should depend on the neuronal activity itself (e.g., spiking vs quies-
cence): when the time derivative of voltage is bigger, a smaller time step ∆t is required
(Figure 6). Exploiting this relationship, NEURON implements the variable time step
integration method CVODE (24). The integrator dynamically adjusts the time step in
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order to maintain the estimated local error of each state variable below a specified
maximum absolute error. Since different model variables are typically characterized
by different ranges in their units, it is important to specify individual maximum allow-
able errors for each state variable (25). Another issue with variable time step concerns
discontinuous external events. If a current pulse is suddenly injected during a quiescent
period of a simulation, the first time steps after the injection are likely to be too large.
NEURON introduces a special mechanism [at_time()], to specify the occurrence of
such external events (25).

The issue of space discretization, or compartmentalization, in the computational
implementation of anatomically accurate neurobiological models is in principle simi-

Fig. 5. Effect of time step on the simulation of the CA3 model used in Figure 1 (somatic
injection of 1 nA, 3 ms).

Fig. 6. An action potential requires smaller time steps then subthreshold oscillations in order
to maintain the same accuracy in the computation of voltage.
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Fig. 7. (A) Effect of compartmentalization on the simulation of the CA3 model used in
Figure 1 (somatic injection of 1 nA, 3 ms); nseg is the number of compartments in each den-
dritic branch. The CD-ROM contains mpeg animations displaying the variation of the simula-
tion outcome with the number of compartments for various compartmentalizations of this and
similar models. (B) Computer simulations based on the Mainen and Sejnowski model (29) with
a 900 ms somatic current injection of 0.2 nA. The model (available at http://senselab.med.yale.
edu/senselab/ModelDB/) was run with the original compartmentalization and by multiplying
the number of compartments in each branch by 9 (further decrease of compartment size did not
produce any significant difference).
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lar to that of time steps. However, perhaps because neuroanatomy has been generally
disregarded or “simplified away” in electrophysiological simulations until recently,
numerical problems arising from compartmentalization are less known, and good gen-
eral solutions, such as that of variable time step, have not yet been developed for spatial
discretization. Even worse, as we discuss in the next section, the errors introduced in
time and space discretization can interfere with each other in the numerical implemen-
tation, such that the best choice of compartmentalization can in practice prevent the use
of variable time step.

7.3. ANATOMICAL REPRESENTATION

Equation 3 describes the mathematical model of the spatio-temporal distribution of
membrane voltage of a neuron. The numerical approximation of the solution of this
problem requires (in analogy to time discretization) space discretization, i.e., the divi-
sion of the continuous dendritic branches in a finite number of compartments. Each of
the state variables in Equation 3 is assumed constant within any one compartment and
calculated only in the center of each compartment. Thus, for example, voltage and
diameter are assumed to vary over x only between compartments (compartments are
isopotential and cylindrical). The spatial discretization of the model implies that the
accuracy of the approximation depends not only on the size of the time steps, but also
on the “space steps”, i.e., of the compartments.

For nonlinear equations such as Equation 3, it is very hard to assess the exact rela-
tionship between accuracy of a solution and integration steps. Theoretical results only
provide an order of magnitude of the error. For example, in the implicit Crank-
Nicholson integration method (which is the most common for neurobiological simula-
tions) the local truncation error (for one time step) is of the order O[(∆t)3 + (∆t)(∆x)2]
and the global truncation error (cumulative, for the whole simulation) is of the order
O[(∆t)2 + (∆x)2] (26). Similarly to the case of time discretization, if we increase the
number of compartments excessively, the simulation time will be unacceptably long,
and the cumulative round-off error will become bigger then the error introduced by the
discretization itself. The problem of compartmentalization, however, is even more dif-
ficult than that of choosing an appropriate time step, because the 1D cable equation is
only a simplification of the 3D case. Such an approximation is only valid for compart-
ment lengths that are not too small compared to the diameter (2,27). In addition, no
variable discretization algorithm (analogous to that discussed in the previous section
for time steps) is available for the spatial grid.

7.3.1. Rule of 1/3

In section 2 of this chapter, we described the “rule of 1/2” to empirically determine
the appropriate time step for a simulation. A similar approach can be used to determine
the appropriate size of compartments (28). We can call it “rule of 1/3”, since it is based
on the division of each existing compartment into three equal pieces (the use of an odd
number guarantees that a “virtual electrode” in the middle of a compartment does not
need to be repositioned upon the division). If the numerical solution changes signifi-
cantly after this division, each compartment is again divided in three, until a satisfac-
tory stability is reached. Surprisingly, several well-known models recently
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implemented have not been compartmentalized sufficiently. The simulation results
change if each compartment is divided by 3 (see also Table 1). Examples include the
Migliore model of CA3 pyramidal cell burst (Fig. 7A) and the Mainen and Sejnowsky
model of cortical neurons (29) (Fig. 7B).

The rule of 1/3 is a very inefficient compartmentalization criterion, because the num-
ber of compartments grows exponentially with the power of 3. A possible alternative is
the “length rule”, requiring each compartment to be shorter then a given physical length
(for instance, 1 µm), and then to reduce such a maximum length value until the simula-
tion is stable. However, even the length rule falls short of an efficient compartmental-
ization criterion, because it does not take into account anatomical differences
throughout the dendrites. In neurobiological models, time domain has a very simple
topology: it is just an interval. In contrast, neuronal shape is generally characterized by
complex tree architecture. The approximation of the solution of Equation 3 obtained by
spatial discretization depends on the geometrical and electrophysiological properties
of each compartment. As a consequence, a compartmentalization based on these prop-
erties is more effective than a uniform spatial compartmentalization.

For a given time step, the accuracy in computing voltage depends on the temporal
derivative of the voltage (Fig. 6). Similarly, given the size of the compartment, the
accuracy in computing voltage depends on the spatial derivative of voltage, i.e., how
fast the potential is changing with the position along the dendritic axis (Fig. 8A). This
means that an effective spatial discretization could be achieved with nonuniform com-
partment lengths, such that the voltage drop over each compartment is less than a maxi-
mum allowable value. Voltage drop is influenced among other factors by the diameter
of the dendrite, passive properties, density of ion channels, presence of spines, syn-
apses, etc. Transient signals propagating through the neuron, such as action potentials,
further complicate the situation as they constitute spatial derivatives of voltage and
calcium concentrations that are also variable in time (Fig. 8B).

7.3.2. Passive Case

How can we find an effective nonuniform compartmentalization? In the passive (lin-
ear) case, Rall defined a steady-state parameter, called space constant (λDC), represent-
ing the distance at which the voltage would drop to 1/e of its original value in an infinite
cylinder with identical diameter, cytoplasmatic resistance, and specific membrane
resistance of the neurite in question (15,31). Rall demonstrated that

λDC
m

a

R d

R
=

4 [Eq. 7]

where Rm and Ra are the membrane and cytoplasmatic resistances, respectively, and d
is the diameter.

A possible spatial discretization strategy is to use a small fraction (e.g., 5%–10%) of
the DC space constant as the length of the compartments (28). For convenience, length
can be expressed in units of spatial constants (so called electrotonic length):

ELDC = L

DCλ [Eq. 8]
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Fig. 8. (A) Spatial distribution of membrane potential and (B) internal submembrane cal-
cium concentration from computer simulations of CA3 cell based on a modification of the
Migliore model (30). Neuron simulation files are included in the CD-ROM.

Thus a nonuniform compartmentalization algorithm can be implemented by sequen-
tially dividing in 3 any compartment with an electrotonic length greater than a given
threshold. In the passive case, it is even possible to calculate the approximation error
produced by any electrotonic length threshold (32). However, transient signals such as
action potentials are subject to greater distortion and attenuation with distance by vir-
tue of membrane capacitance and cytoplasmatic resistance than by membrane resis-
tance and cytoplasmatic resistance. Thus the concepts of space constant and electrotonic
length must be extended for nonsteady state inputs. For sinusoidal signals the space
constant can be formulated as (28)
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where f is the signal frequency, d is the diameter, Ra is the cytoplasmatic resistance,
and Cm is the membrane capacitance. Accordingly, an alternative compartmentaliza-
tion strategy consists of setting the threshold for the maximum allowed compartmental
length to a fraction of λf

1.

1This is in fact one of the three possible mechanisms to compartmentalize models in Neuron: the NEU-
RON Builder’s command d_lambda sets the number of compartments in each branch, such that their elec-
tronic length for f = 100 Hz is less than a specified value (by default 0.1). Alternatively, one can set the
number of compartments directly with parameter nseg. The third possibility in NEURON is to set the
number of compartments with parameter d_X, which specifies the maximum allowed compartment length
(by default 50 µm).

Fig. 9. Histograms of (A) ELDC and (B) EL100 for the Migliore CA3 model (22).

[Eq. 9]
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Figure 9 shows examples of the electrotonic length distributions for the DC and
sinusoidal case (Equations 7–9) from the Migliore CA3 model. Given the large vari-
ability of space constants through the dendritic tree, the compartmentalization algo-
rithm described in this subsection should be significantly more efficient than uniform
algorithms (based e.g., on the 1/3 rule). This means that the number of compartments
necessary to obtain the same level of accuracy is larger using the uniform algorithm
than using the algorithm based on electrotonic lengths. In other words, given the same
number of compartments, the approximation error introduced by the uniform algo-
rithm is greater than that introduced by the algorithm based on electrotonic lengths.

In any case, it is important to stress that neither λDC nor λf take into account changes
in the membrane conductivity produced by the activation of voltage-dependent chan-
nels, calcium dependent channels, or synapses. Thus, the above compartmentalization
methods are not optimal for simulations involving action potentials.

7.3.3. Active Case

At the beginning of Subheadings 7.2. and 7.3., we have argued that efficient (spatial
or temporal) discretization depend on the (spatial or temporal) derivative of transient
signals. Therefore, the optimal compartmentalization should be based not only on the
morphological characteristics of the model, but also on any other property influencing
electric activity, such as densities and kinetics of ion channels and synapses, calcium
pumping and buffering mechanisms, etc. For example, if a model produces high fre-
quency ripples, its compartments should be very short in order to obtain a stable solu-
tion. In contrast, if the electrophysiological behavior of the model is relatively
quiescent, a greater compartmental length will ensure the same accuracy. Similarly, a
finer compartmentalization is required in the proximity of synapses with fast dynamics.

What is the optimal compartmentalization, given a model and its (expected) electro-
physiological behavior? To the best of our knowledge, this general problem has not yet
been solved theoretically. Based on the above discussion, we constructed the following
empirical compartmentalization algorithm. From an initial compartmentalization of the
model, we calculate the largest voltage drop in each compartment during the simula-
tion. If the drop in any particular compartment is bigger then a given threshold, we
divide that compartment into three compartments and then reapply the same procedure.
This algorithm yields the most efficient spatial discretization of the model (Fig. 10).
However, this strategy requires additional cycles of computationally intensive simula-
tions. From our experience on CA3 pyramidal cell models, we found that the compart-
mentalization obtained with this “voltage drop” algorithm is only moderately more
efficient than that obtained with the algorithm based on the space constant for sinusoi-
dal signals (Equation 9). However, for complex models such as those discussed in this
chapter, it is necessary to set the maximum compartmental length to as little as 0.04
electrotonic lengths (as opposed to the 0.3 electrotonic lengths recommended in the
literature [28]). Such a constraint is fairly severe: the recent update of the Migliore
pyramidal cell model (30) requires nearly 6000 compartments to be stable (compared
to the approx 800 compartments obtained using the 0.3 electrotonic length threshold).
The need for such a finer compartmentalization is due to the complexity of the model
(11 active conductances, complex calcium dynamics) and bursting activity. A simpli-
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fied model only containing a uniform distribution of INa, IK(DR), IK(A), and without cal-
cium dynamics, only requires 500 compartments. In all of these cases, a constant time
step of 25 µs is sufficient to obtain stable solutions.

In order to obtain the proper compartmentalization for an anatomically realistic
model, we recommend using the algorithm based on the space constant λf starting from
a threshold of 0.4 and decreasing this value (depending on the complexity of the model)
until the solution becomes stable. We should also note here that the longitudinal diffu-
sion of calcium (or of any other ion) is described by an equation similar to the cable
Equation (1,2). Thus, the effects of compartmentalization on the solution of the cal-
cium diffusion equation is similar to that on the cable equation. However, the spatial
constant for calcium diffusion is 10 times smaller than the typical value for cable equa-
tion, the introduction of ionic longitudinal diffusion may require a 10-fold increase of
the number of compartments necessary to ensure the same accuracy (2).

Since the optimal compartmentalization depends on neuronal activity, and neuronal
activity is time-dependent, a time-variable compartmentalization should in principle
be more efficient than a “static” algorithm. For electrophysiological simulations based

Table 1
Examples of Recently Published Anatomically Realistic Models

No.
{Number} and Compartments

Distribution of Ion No. Required to
Model Characteristic Channels and Calcium Compartments Obtain Stable

Reference Action Mechanisms Originally Used Solution

Destexhe’s Single spike {3}, ICa distributed 206 206
thalamic relay uniformly through dendrites,

cell (33)  INa and IK only in soma,
calcium pumping

Migliore’s Burst, only {9}, uniformly through 375 500
CA3 in soma dendrites (INa only in

pyramidal and main trunk soma and main trunk),
cell (22) calcium diffusion,

buffering, pumping

Mainen’s Burst, back {5}, uniformly through 479 4500
cortical propagation up dendrites, calcium

cells (29) to dendritic tips pumping

 Lazarewicz’s Burst, back {11}, nonuniformly — 6000
CA3 propagation up hrough dendrites,

pyramidal to dendritic tips,  t calcium diffusion,
cell (30) dendritic  buffering, pumping

generation of
action potentials,

forward
propagation
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on the cable equation, we are not aware of any attempt to implement a dynamical com-
partmentalization depending on transient activity. The only step in this direction con-
sists of a dynamical lumping of axonal trees (34,35). This method consists of lumping
different branches of the tree into larger equivalent cylinders during the simulation
depending on the electric activity in the branches: silent branches are lumped, while
active branches are unfolded. However, this method does not preserve tree morphol-
ogy and has never been applied to complex models containing a variety of active cur-
rents.

7.3.4. Additional Practical Aspects on Compartmentalization

An important aspect of spatial discretization that is seldom taken into account regards
models containing ionic channel densities distributed nonuniformly with respect to path
distance. Since channel densities are discretized during the compartmentalization pro-
cess, we have to consider two different types of approximation: the first one is con-
nected with the numerical solution of the model’s partial differential equations (as
discussed in the previous sections); the second one is the discretization of the very
distributions of the model’s active mechanisms. As an example, let us consider a model
with a dendritic distribution of IK(A) channel density that increases linearly with the
distance from the soma (36). For a dendritic branch containing one compartment, this
density is represented only by one number, i.e., the value taken from the position corre-
sponding to the center of the compartment. If the branch is dividend into three com-
partments, the density distribution in the branch is described by three different numbers,
representing the centers of each compartment. In order to obtain the proper density
distributions in any compartmentalization algorithm, it is, therefore, important to reload
nonuniformly distributed properties after each change of compartmentalization. If the
densities of mechanisms are calculated first, and then the compartments are further
divided without redistributing nonuniform densities, these properties will be (incor-
rectly) constant across the divided compartments. In CA3 pyramidal cell models, we
found that the spatial discretization of nonuniform distributions of mechanisms causes
greater instability than the numerical approximation used to solve the partial differen-
tial equations. Models with uniform distributions require fewer compartments than
models with nonuniform distributions in order to obtain a stable solution.

An extremely important practical note concerns NEURON simulations of complex
anatomically accurate models (22,30). When a very fine compartmentalization is
required to obtain a stable solution (i.e., thousands of compartments for a single neu-
ron), fixed time step should be used instead of variable time step. In several cases, we
found that the effect of variable time step on the approximation of the solution would
prevent simulations from becoming stable even with very fine compartmentalization2,3

(see CD-ROM for specific examples).

2This remark concerns the implicit numerical integration implemented in NEURON and might not
apply to explicit numerical method (John Rinzel, personal comment).

3For simulations with realistic cell morphology using NEURON, we recommend the use of versions
5.0.0 or higher, because of problems connected with compartmentalization in previous releases (sometimes
the area variable became zero after setting the nseg parameter).
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In general, simulations based on realistic morphology are very computationally
intensive. The compartmentalization algorithms described in the sections above, which
should be run before the “real” simulations, may also be fairly time-consuming. Thus,
it is useful to have clues on the (in)stability of the solution without the need to run an
entire simulation. We found that input resistance and impedance are potentially useful
parameters in this regard. Given a neuronal model, different compartmentalization can
influence the numerical simulation so much as to affect the initial depolarization of the
model in response to the same amount of current injection. This difference might only
affect spiking frequency or delay, or it could change the results both quantitatively and
qualitatively (Fig. 7). In the compartmentalization of the model, it is, therefore, conve-
nient to assume the stability of the input resistance and impedance as a necessary pre-
requisite for the stability of the simulation (Fig. 10). Before performing any
time-consuming simulation, an initial minimal number of compartment can be assessed
by calculating the input resistance for different compartmentalizations. This procedure
is particularly convenient in NEURON, where input resistance and impedance can be
calculated directly with appropriate built-in functions.

7.4. FROM MORPHOLOGICAL RECONSTRUCTIONS TO ELECTRO-
PHYSIOLOGICAL COMPARTMENTAL MODELS: TOOLS AND ALGO-
RITHMS

The compartmentalization algorithms described in the previous sections can be used
with any neuronal shape. The process of reconstructing neuronal morphology and digi-
tizing it into a computer representation, however, is far from trivial (37). At the end of
this process dendritic trees are described in three dimensions as weighted graphs, with

Fig. 10. Impedance (at 100 Hz) calculated for the updated CA3 model (30) using four differ-
ent methods of compartmentalization: Voltage drop refers to the algorithm proposed in Section
7.3.3.; in the Uniform algorithm every section is divided into the same number of segments,
ELDC and EL100 refer to the algorithm described in Section 7.3.2., based on the spatial constants
for λDC and for λ100, respectively. Neuron simulation files are included in the CD-ROM.
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labels describing diameters. In other words, the (continuous) branching structure of the
tree is stored digitally as a connected series of cylinders (Fig. 11). The number of cyl-
inders used in the representation depends both on the structural complexity of the neu-
ron and on arbitrary or subjective factors intrinsic to the semimanual reconstruction
system. It is important to point out that this spatial discretization is not related to the
accuracy of the approximation of the solution of Equation 3. Thus, in order to use
experimentally reconstructed neuronal morphology for electrophysiological analysis,
it is necessary to redo the compartmentalization of the given structure, based on the
needed accuracy of the solution approximation of Equation 3.

A considerable amount of reconstructed morphological data is available through the
Internet. Examples of electronic morphological repositories for hippocampal neurons
are the Southampton-Duke archive (38), the Claiborne collection (39), and the Guylas
repository (40). These cells are typically reconstructed from intracellularly filled (and
usually sectioned) preparations with the Neural Tracing System (NTS or “Eutectic”),
which is no longer supported, or the Neurolucida system (41). A recently introduced
plug-in for ImageJ (42), called Neuron_Morpho, allows the semiautomatic reconstruc-
tion of neuronal morphology from stacks of confocal images (43). Alternatively, neu-
rons can be generated stochastically, i.e., the neuronal structure itself can be the product
of computational modeling and simulations (44,45) (see also Chapter 3 in this book).
In general, neurons reconstructed or generated with different software systems may
have different digital formats. In the format adopted by the Southampton-Duke archive
(called SWC), each cylinder is described by a (sequential) identification number, a tag
(distinguishing soma, axons, apical, and basal dendrites, etc.), X, Y, and Z positions, as
well as radius of the ending point, and the identification number of the (unique) adja-

Fig. 11. (A) Computer representation of a CA3 pyramidal cell (22) with details (B) of branch-
ing dendrites. (C) Representation of dendritic branches as a sequence of cylinders. (D) Same
branches from panel C represented in NEURON as three sections produced by the program
swc2hoc (included in the CD-ROM). The first and the third sections are divided into two com-
partments, the second section in five.
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cent cylinder in the path towards the soma. In all cases, a necessary step to perform
electrophysiological simulations is format conversion.

Not all the morphological information of a neuronal reconstruction is used in Equa-
tion 3. The length, diameter, and connectivity of each cylinder, but not its spatial loca-
tion, are relevant for electrophysiological simulations4. Therefore, the morphological
representation can be simplified. For example, consecutive cylinders with the same
diameter, and no intervening bifurcations, could be merged into a single section with
length equal to the sum of the lengths of the original cylinders. Once again, the sections
obtained in this way would have to be subsequently compartmentalized in order to
obtain a stable numerical solution of Equation 3. The simplification of the morphologi-
cal structure could be carried a step further by treating any sequence of cylinders
betweens nodes (stems, branches, and terminations), independent of their diameter, as
a single section (which must be compartmentalized before running the simulation). In
this case, it is possible that a compartment would include in the end two original cylin-
ders with different diameters. The diameter of the joint compartment may be set to
conserve total surface (i.e., as the average of the original diameters weighted by the
respective cylinder’s lengths).

An alternative algorithm to simplify reconstructed morphology for electrophysi-
ological simulations was developed by Borg-Graham (46) and is implemented in the
Surf-Hippo simulation software. This algorithm lumps cylinders together preserving
the topology, area, axial resistance, and the spatial location of the nodes. However, this
algorithm affects dendritic length, volume, and diameter, and, in particular, it may
produce implausibly huge diameters in distal dendrites. This kind of anatomical trans-
formation can introduce artifacts in parameters such as calcium concentration, which
depend on the surface to volume ratio. Moreover, due to the nonconservation of key
geometrical properties, Borg-Graham’s algorithm may cause problems with the local-
ization of synaptic stimulation.

To maximize the anatomical accuracy of electrophysiological simulations, we cre-
ated a novel algorithm that is more conservative (or less “invasive”) than the above
examples. This algorithm converts (experimentally reconstructed or computationally
generated) morphological data files (SWC format) into NEURON simulation files
(.hoc) by using the smallest possible number of sections without destroying informa-
tion from the original morphology. The algorithm is implemented as an AWK script
(called swc2hoc, and included in the CD-ROM) and runs under all UNIX systems.
Two consecutive cylinders are merged if they have the same diameter and are not sepa-
rated by a bifurcation. This method conserves the original diameter values as well as
path length (and, thus, also surface and volume). In addition, when two or more cylin-
ders are merged, swc2hoc stores the information about the original positions of their
ending points as NEURON pt3d structures. This information can thus be used if needed
(e.g. to distribute synaptic contacts accurately according to the appropriate anatomical
3D input patterns). Swc2hoc further creates frustums between consecutive cylinders
with different diameters (and not separated by a bifurcation). This choice is justified by

4This is true only to the first approximation of neuronal behavior modeled in Equation 3. Modeling the
effect of ephaptic interactions among dendrites would obviously require the explicit spatial representation.
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the fact that the digital representation of neuronal morphology is only an approxima-
tion of the original structure (Fig. 11C). For example, consecutive points in the mor-
phological reconstruction have finite diameter differences, whereas the physical reality
is continuous. Ideally, the finest spatial discretization of the model should converge to
the original shape. Thus, we linearly interpolate diameters at the points of discontinuity
with a frustum made of three segments (47). This architecture is designed to optimize
the approximation of both the morphological structure (Fig. 11) and the electrophysi-
ological process (Equation 3). The output of Swc2hoc is a NEURON (.hoc) file con-
taining all the sections constituting the dendritic trees. These sections must be then
compartmentalized using NEURON parameter nseg or any other algorithm described
in the previous sections.

Several software tools are especially useful in anatomically accurate electrophysi-
ological simulations. Cvapp is a visual editor for morphological files originally de-
signed for the Southampton-Duke archive by Robert Cannon. Cvapp can read
Neurolucida and SWC files and convert them to NEURON or GENESIS formats, as
well as converting Neurolucida files into SWC. This program was recently modified
by Steve van Hooser (48) to implement the compartmentalization algorithm based on a
threshold proportional to the space constant λDC for the GENESIS environment. Addi-
tionally, this program can merge together consecutive cylinders depending on whether
their diameter difference is smaller than a given threshold (set by the user).
NeuroMesher is a similar java class tool that can convert Neurolucida and Eutectic
files into GENESIS or NEURON format. NeuroMesher also implements compartmen-
talization mechanisms based on the same parameters as cvapp (49). Finally, NTScable
is another program to convert Eutectic files into NEURON format. Various compart-
mentalization algorithms are implemented in NTScable, based on parameters such as
the minimum number of segments, the maximum absolute segment length, or the maxi-
mum segment length relative to the diameter (50).

Buchs’ Toolbox for Neural Modeling is a set of MatLab/JAVA tools including
NeuroToolBox, NeuroTrace, and NeuroGenerator (51). NeuroToolbox is designed to
provide electrophysiological simulation mechanisms in MatLab. NeuroTrace extracts
3D morphological structures from stack of 2D images, producing either a cylinder rep-
resentation of the neuron, or a smooth PostScript representation. NeuroGenerator inte-
grates the morphological and electrophysiological components and builds the
electrophysiological simulation in MatLab by inserting electrical properties from
NeuroToolbox into morphology from NeuroTrace. In this program, compartmentaliza-
tion is carried out based on λDC.

Dendritica is a useful application in the NEURON environment for relating den-
dritic geometry and signal propagation (52). The software consists of three main com-
ponents: (i) interactive morphological analysis and electrophysiological simulation of
single neurons; (ii) automated batch simulation across a set of morphologies using the
same simulation parameters; and (iii) automated analysis of batch simulation runs.
Examples of the applications include simulations with voltage clamped waveforms
such as somatic action potentials (53), current clamp, synapse stimulation, or auto-
matic calculation of INa density necessary for full back propagation of action potentials
through all the dendritic terminal tips.
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7.5. CONCLUSIONS

Computer simulation is only one of the stages in the process of modeling. Since the
mathematical model is numerically approximated in this stage, precautions need to be
taken to avoid that the errors produced by this approximation exceed the level of accu-
racy of the model itself. In particular, in anatomically accurate electrophysiological
models, simulations require discretization of space and time. For models containing
nonlinear elements, such as voltage-gated channels, there is no established method to
assess the absolute error produced by a particular compartmentalization.

The major conclusion of this chapter is that compartmentalization algorithms should
not be used blindly, but the effect of varying mesh resolutions on the simulation out-
come should be systematically tested to establish the stability of the solution. Among
the compartmentalization algorithms we discussed, uniform algorithms are less effi-
cient than algorithms based on electrotonic length parameters. The algorithm we pro-
posed based on voltage drop in the compartment is most efficient, but the differences
with the algorithms based on electrotonic length are not dramatic.
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Predicting Emergent Properties of Neuronal

Ensembles Using a Database of Individual Neurons

Gwen A. Jacobs and Colin S. Pittendrigh

ABSTRACT

Neurobiologists have known for decades that to understand the computational prop-
erties of a neural system, it is necessary to understand the relationships between the
physiological properties of individual neurons and their anatomical structures. We have
addressed this problem by developing an approach for analyzing the relationships
between structure, function, and computation within a network of neurons. We have
developed a suite of visualization and analysis tools, called NeuroSys (http://
www.cns.montana.edu/projects/NeuroSys), that allows the investigator to reconstruct
the anatomical features of many neurons and store them in a database that preserves
their correct spatial relationships in the nervous system. This ensemble reconstruction
can then be used as a precise anatomical template on which to predict connectivity
patterns and image the functional properties of the network. The visual format of the
database is a probabilistic atlas, which preserves the spatial relationships between all
objects within the nervous system. The database can be queried for information regard-
ing structural, functional, and relational attributes of the objects and be used to predict
functional properties of the neural system. We have used NeuroSys to predict the con-
nectivity relationships between neurons in a model sensory system and to predict the
steady state response patterns of the ensemble of neurons to sensory stimuli. This tech-
nique has been extended to incorporate the dynamic patterns of activity of the sensory
neurons to predict the spatial and temporal aspects of the response patterns.

8.1. INTRODUCTION

A grand challenge in neuroscience is to understand the biological basis of informa-
tion processing at the cellular and network levels. This challenge is being approached
from many fronts, some of which are purely technological in nature. One major tech-
nological front involves the creation of informatics and analysis tools to explore the
structural organization of complex neural circuits and to discover and understand the
emergent properties of neural ensembles. For the last several years, research in our
laboratory has been focused on determining the cellular mechanisms through which
sensory information is represented and decoded by ensembles of neurons. In the course
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of these studies, we have developed a number of experimental approaches that com-
bine anatomical and physiological data with computational and visualization tools. The
goal was to create an interactive problem solving environment for testing ideas and
hypotheses about structure function relationships in the nervous system. In this chap-
ter, we will describe the system we have developed and illustrate how we have used it
to learn more about basic sensory processing mechanisms in a model sensory system:
the cricket cercal sensory system.

Three major challenges face neuroscientists interested in understanding the compu-
tational properties of neural networks: (i) to understand the relationships between
spatio-temporal activity patterns in neural ensembles and the information they convey;
(ii) to understand how the spatio-temporal patterns are decoded by cells at the next
processing stage; and (iii) to understand how computations (e.g., pattern recognition)
are carried out on that decoded information (1). Many studies focus on the algorithms
and biological mechanisms through which spatio-temporal patterns of activity in a
mapped sensory system are decoded by postsynaptic neurons imbedded within the map.
There are now numerous examples of how information represented within these pat-
terns can be decoded by nerve cells by virtue of the shape and/or location of their
dendrites. The postsynaptic target interneurons in a variety of sensory systems derive
their stimulus sensitivities from the global location and the finer-scale shape of their
dendrites within these maps (1–3). For example, within the primary visual cortex, axons
are aligned along the axis of preferred orientation; in the cricket cercal system, the
shape and position of sensory interneuron dendrites are tightly linked to their direc-
tional tuning characteristics, and in the auditory system, the length of an axonal
aborization and its position within the nucleus creates a delay line that affects the rela-
tive timing of inputs to postsynaptic cells. For modalities such as the olfactory system,
where the relevant input features cannot be represented as values within some continu-
ous parameter space, the temporal dynamics of the ensemble response patterns appear
to play a much more significant role in information representation. Within some olfac-
tory systems, the presentation of a particular odor results in a temporal pattern of activ-
ity among an ensemble of cells that changes over time, thus encoding the odor quality
as a temporal pattern of activity (1).

Given the complexity of neuronal interactions at the structural and biophysical lev-
els, the challenge of understanding how neural ensembles represent and encode infor-
mation is a daunting one. One of the most promising techniques involves recording the
activity of large numbers of neurons with multiunit electrode arrays or with optical
imaging techniques. These approaches enable the investigator to analyze the response
properties of many neurons simultaneously and to study how these global activity pat-
terns may encode information about a stimulus or motor output. We have taken a dif-
ferent complimentary experimental approach to study the characteristics of the
ensemble activity. We have developed methods and tools to predict ensemble activity
based on measurements of the response properties recorded from a large sample of
individual neurons. We have collected anatomical and physiological data from a large
sample of individual sensory neurons and interneurons and used it to create a func-
tional atlas of the system. A key aspect of this approach has been the ability to collect
anatomical data from a large number of individual neurons and scale and align this data
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to a common 3D coordinate system, thereby preserving the anatomical relationships
between individual neurons in the network (4,5).

To create the functional atlas, we developed a relational database and a set of com-
putational and visualization tools, which were combined into a single suite of software
tools called “NeuroSys”. Our goals were to meet basic storage and retrieval capabili-
ties for anatomical and physiological data, and to go beyond those capabilities in sev-
eral fundamental respects. First, as well as containing information about the anatomy
and functional attributes of the neurons, the database was structured to manage infor-
mation about measured and hypothetical relations between neurons. The visual format
of the graphical user interface (GUI) includes a 3D atlas, which preserves the spatial
relationships between all objects within the nervous system. Second, software was
developed to enable the formulation of queries on multiple data types (e.g., on the basis
of spatial location of objects within the atlas and by the physiological properties of the
objects calculated from time-series data). The query responses could be returned as
graphical predictions of dynamic ensemble activity patterns that represent both the
spatial and temporal aspects of the patterns. Third, we developed means to integrate
the database environment with a variety of data analysis and simulation tools. Through
the use of these query and analysis tools, it was possible to formulate queries which
predict dynamic activity patterns of large neuronal ensembles across multiple process-
ing stages within the animal’s nervous system.

Another goal of creating the suite of programs in NeuroSys, was to make these pro-
grams accessible to neuroscience researchers with little expertise in computer science
or programming. All interactions with the system take place within the GUI. The user
can query the database for individual neurons based on their anatomical or physiologi-
cal attributes using text based query screens within the GUI. For example, to examine
a group of neurons that are sensitive to similar type of stimulus, the user can make a
query to retrieve the structures of “all neurons with peak sensitivity to stimulus A.” The
data files matching this query are loaded into the GUI, where the user can view the
structures of the neurons in three dimensions. The user can examine their morphology,
the spatial relationships between the neurons, or calculate anatomical overlap between
the cells.

Data collected from both anatomical and physiological experiments was loaded into
the database with user defined data entry screens. These data entry screens allow the
user to pick from a set of attributes (data collection parameters, age of animal, stimulus
parameters, etc.) and link them to the data set he or she wants to store. Users can also
create new experimental attributes to associate with their data. The data and attributes
are then loaded into the database by the database administrator. Our long term goal is
to automate this process, so that the user can add new data directly to the database by
using the data entry screens. The system was designed to accommodate the storage and
retrieval of any physiological property of a neuron, such as transmitter phenotype or
developmental age. Thus, the NeuroSys database and tools can be used to examine
both the structural and functional relationships between different populations of
neurons. In the following sections, we will describe how we have used NeuroSys to
study the cellular mechanisms underlying information processing in the cercal sen-
sory system.
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8.2. A MODEL SENSORY SYSTEM FOR STUDYING ENSEMBLE
ENCODING OF SENSORY INFORMATION

The cercal sensory system of the cricket has emerged as a powerful model system
for studies of neural development, sensory information processing, neural coding, and
computation (6–9). This sensory system provides information about the direction
and dynamics of air current stimuli and is involved in a number of orientation, escape,
and mating behaviors (10–15). It is implemented around a representation of air current
direction and dynamics that demonstrates the essential features of neural maps found
in more complex systems, including mammalian visual and auditory systems (6,16).
As in other mapped sensory systems, primary sensory interneurons in this system derive
their sensitivity for one stimulus parameter (i.e., stimulus direction) from the place-
ment of their dendrites within the neural map (6,8). Stimulus direction is represented as
a pattern of activity within the map, and interneurons are tuned to stimulus direction
via the architecture of their dendritic arbors. Unlike more complex mammalian sys-
tems, the accessibility and relatively small number of cells in this system (2000 recep-
tors, 50 local interneurons, 20 primary projecting interneurons) allow an exhaustive
detailed analysis of the anatomy, physiology, and synaptic interconnectivity of the con-
stituent neurons.

Over the last several years, we have collected anatomical and physiological data
from a large population of sensory neurons and interneurons in the cricket cercal
system. This data is stored in the NeuroSys database and has been used to make predic-
tions about the ensemble activity patterns within the network. In the following sec-
tions, the physiological properties of these cells will be summarized followed by a
description of their anatomical characteristics.

8.2.1 Physiological Characteristics of Neurons in the Cercal System

Sensory receptor neurons. The receptor organs for the cercal system are two antenna-
like appendages called cerci at the rear of the abdomen (Fig. 1A and B). Each cercus is
covered with approximately 1000 filiform mechanosensory hairs, and each hair is
innervated by a single spike-generating mechanosensory receptor neuron. These sen-
sory neurons display directional and dynamical sensitivities that are derived directly
from the mechanical properties of the hairs (17–22). In particular, the amplitude of the
response of each sensory neuron to any air current stimulus depends upon the direction
of that stimulus, and these “directional tuning curves” of the receptor afferents are well
described by cosine functions, as shown in Figure 1C (18). The median frequency of
each sensory neuron’s frequency tuning curve is strongly correlated with the length of
its associated hair. Receptors innervating long mechanoreceptor hairs (>900 µm) are
most sensitive to low frequency air currents (<150 Hz); receptors innervating medium
length hairs (500 – 900 µm) are most sensitive to frequency ranges between 150 to 400
Hz (20–22). Receptors innervating the shortest hairs (50 – 500 µm) respond to frequen-
cies up to 1000 Hz.

Primary sensory interneurons. The sensory neurons synapse with a group of
approximately 30 local interneurons and approximately 20 identified projecting inter-
neurons that send their axons to motor centers in the thorax and integrative centers in
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Fig. 1. Functional organization of the cricket cercal sensory system. (A) Schematic diagram
of the common house cricket, Acheta domestica, showing the location of the abdominal nerve
cord. The cerci are two abdominal appendages projecting from the rear of the animal’s body.
Both cerci are covered with mechanosensory hairs, each of which is innervated with a single
sensory neuron. The axons of the sensory neurons project into the terminal abdominal gan-
glion, located at the caudal end of the abdominal nerve cord. (B) Scanning electron micrograph
of a portion of the cercus showing the filiform sensory hairs. Note the different lengths of the
hairs and the cuticular sockets supporting each hair. (C) Directional tuning curves of three
primary sensory afferents (plotted in solid, dashed, and dotted lines), plotted as relative re-
sponse amplitude vs stimulus direction. The center horizontal line indicates baseline activity
level. Each cell increases or decreases its activity level according to the stimulus direction. The
response curves are approximately sinusoidal and were derived from physiological measure-
ments (18,19).
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the brain. Like the sensory neurons, these interneurons are also sensitive to the
dynamics and the direction of air current stimuli (8,23–26). We have measured stimu-
lus-evoked neural responses in several projecting and local interneurons, using several
different types of air current stimuli (24–26). Each of the interneurons studied so far
has a unique morphology and also a unique set of directional and dynamic response
characteristics.

8.2.2. Anatomical Characteristics of Neurons in the System

The axons of all sensory neurons project in an orderly array into the terminal
abdominal ganglion to specific locations according to their directional tuning charac-
teristics (6,16,28). This projection pattern forms a continuous representation (i.e., neu-
ral map) of the direction of air currents in the central nervous system. The synaptic
terminals from sensory neurons with similar peak directional sensitivities arborize in
adjacent areas, and the spatial segregation between arbors increases as the difference in
their directional tuning increases (16). Interneurons have large complex dendritic arbors
that overlap extensively with a large number of primary sensory neurons. The anatomi-
cal characteristics of both sensory neurons and interneurons are highly conserved from
animal to animal, both in terms of the shapes and sizes of the arborizations and their
location within the nervous system.

3D anatomical reconstructions of neurons in the system. The NeuroSys database
contains over 250 3D reconstructions of individual neurons in the cercal system. These
reconstructions were collected with the use of a computer-aided 3D reconstruction sys-
tem developed in our own laboratory (4). Individual cells were filled with a dye and
traced manually using the reconstruction system. Our system is very similar to com-
mercially available systems such as the Neurolucida System developed by
Microbrightfield Ltd. Each reconstructed cell was represented as an ascii file of points
describing: (i) the x, y, and z coordinate endpoints of each segment of the cell’s branch-
ing structure, and (ii) the diameter of that segment. A set of common fiducial features
were also recorded in every data file. These fiducial features were used for scaling and
aligning the data to a common coordinate system. An image of a reconstructed inter-
neuron and three afferent terminal arbors (indicated with arrows), in their correct spa-
tial relationships, is shown in Figure 2A. This figure is also shown in color in the
accompanying CD-ROM (Figure2_color_image). The cells were collected from dif-
ferent animals, but all were scaled and aligned to one another using the fiducial fea-
tures. Note that commercially available reconstruction systems operate in an equivalent
manner and yield data files that are compatible with our database, analysis tools, and
viewing software.

Probabilistic representations of neural ensembles. The neurons in the NeuroSys
database are a representative sample of a much larger population of neurons. The goals
of our recent experiments involve predicting the response properties of a large popula-
tion of neurons, so we developed a probabilistic representation of this population from
our representative sample. We developed a statistical representation of the arborization
patterns of neurons within their synaptic neuropil areas as probability density clouds
(16). A probability density cloud represents the 3D spatial location and distribution of
membrane surface area for the synaptic varicosities of a sensory neuron. Each density
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Fig. 2. 3D reconstructions of individual neurons. (A) An image from the database, showing
a dorsal view of four different reconstructed neurons. Three of the neurons are primary sensory
neurons whose axonal arborizations overlap extensively with the dendrites of a primary sen-
sory interneuron. The axons of the sensory neurons have been marked with arrow heads. The
large primary sensory interneuron sends an axon anterior to higher centers of the nervous sys-
tem. Note all neurons have been scaled and aligned to the database and are shown in their
correct spatial relationships to each other. (B) Inset shows the four neurons shown in panel A
with an outline of the terminal abdominal ganglion. An image of this figure in color has been
included in the companion CD-ROM (Figure2_color_image). Scale bar, 40 µm.
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cloud represents a statistical mean derived from multiple examples of the same identi-
fied sensory neuron. The density cloud representation has been used to measure the
anatomical overlap between pairs of sensory neurons (16,28), or between a sensory
neuron and an interneuron (28). For an interneuron, a probability density cloud repre-
sents the 3D spatial location and distribution of membrane surface area associated with
its dendrites. This type of representation permits calculations of the spatial relation-
ships between neurons. In the cercal system, the shapes and 3D positions of the termi-
nal arborizations of all cells are highly conserved across animals, allowing the
derivation of reliable statistical estimates of dendritic and axonal terminal arbor loca-
tions within the cercal glomerulus.

A probability density cloud is derived for an sensory neuron arborization as follows.
Each reconstructed afferent arborization contained many varicosities (approx. 500),
which are presumed to be the sites at which the afferents make their presynaptic con-
tacts with target cells. The diameter and specific x, y, z location in space of each vari-
cosity of the afferent was measured. The contribution of each varicosity to that
afferent’s probability density cloud was considered to have three essential characteris-
tics: (i) the magnitude of a varicosity’s contribution to the net density cloud is propor-
tional to its surface area; (ii) each varicosity’s total contribution to the net density cloud
is distributed throughout the local volume of neuropil according to a Gaussian function
centered on the varicosity, rather than being concentrated at any point or surface; and
(iii) the net density at any point in the cloud can be estimated by a linear sum of
the contributions from all varicosities in the local neighborhood. Figure 3 shows a
single sensory neuron terminal arbor in the two different formats: a 3D reconstruction
and the probability density cloud. The magnitude of a sensory neuron’s density cloud
at any given point, therefore, corresponds to the local surface area of neuronal mem-
brane per unit volume surrounding that point.

Fig. 3. Density cloud representation for a primary afferent neuron. The left image shows a
3D reconstruction of a primary afferent in dorsal view. The middle image shows the density
cloud of the synaptic varicosities. The right image shows the density cloud in register with the
neuron.
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Fig. 4. Functional representation of two different stimulus parameters within a neural map.
(A) Combined image of the entire ensemble of sensory afferents which innervate the filiform
mechanoreceptor hairs on the left cercus shown in parasagittal view. Each cloud represents a
population of sensory neurons tuned to a specific air current direction in body coordinates.
Inset: the gray scale wheel corresponds to the peak directional tuning in body coordinates.
White indicates air currents directed at the animal’s head, light gray at 45° indicates the animal’s
upper left. (B) Same population of sensory neurons as shown in panel A, gray scale-coded
according to frequency tuning. Sensory neurons tuned to low frequencies are colored light
gray, and neurons tuned to higher stimulus frequencies are colored dark gray. Note the lack of
anatomical segregation between the two populations of sensory neurons. Scale bar, 40 µm. A
color version of this figure is included in the CD-ROM accompanying this volume
(Figure4_color_image).
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8.3. USING NEUROSYS TO STUDY EMERGENT PROPERTIES
OF NEURONAL ENSEMBLES

The general approach we have used to study emergent properties of the cercal sen-
sory system is to query the database for a set of neurons and their attributes and then to
use the computational and visualization tools in NeuroSys to test predictions about
system function. In all cases, these predictions cannot be made by studying individual
neurons in isolation, but emerge when the attributes of many neurons are studied in
combination. In the following sections, this process will be illustrated, and some of the
scientific results obtained will be described.

8.3.1. Neural Maps of Direction and Frequency in the Cricket Cercal System

In most sensory systems, certain functional parameters of the constituent neurons
are represented as neural maps. For example, the visual cortex contains a retinotoptic
map of the visual field, and the somatosensory cortex contains multiple maps of the
body surface. In the cricket system, sensory neurons are sensitive to two independent
parameters of air currents: direction and frequency. We chose to examine these two
parameters, because they are the most important physiological parameters that define
the functional properties of the system. We used NeuroSys to determine whether both
of these parameters were mapped continuously within the ensemble of sensory affer-
ents. Figure 4 shows the results of these studies. These images are best viewed in color
in the CD-ROM accompanying this volume (Figure4AB_color_image). In the black
and white version of the images, Figure 4A shows density cloud representations of a
large ensemble of sensory cells. Each density cloud, shown in gray scale, represents a
population of neurons. The gray scale level of each cloud represents the peak direc-
tional tuning of that population of sensory neurons. The inset in Figure 4A shows the
gray scale spectrum; white indicates stimulus directions aimed at the animal’s head;
light gray indicates directions aimed at the animals left (e.g., 45°) and darker grays
indicate stimulus directions aimed at the animal’s right (e.g., 315°). The density clouds
overlap extensively forming a continuous 3D contour. The directional tuning of the
sensory neurons changes continuously along the contour, thus creating a continuous
map of air current direction. Note, although these are 3D structures, all images shown
are 2D projections of these 3D structures. The color version of this figure
(Figure4A_color_image) shows the ensemble of density clouds color coded according
to stimulus direction.

Figure 4B shows the same ensemble of sensory neurons, now gray scale-coded
according to the frequency tuning characteristics of the sensory neurons. Neurons sen-
sitive to low frequencies are shown in dark gray, and those sensitive to higher frequen-
cies are shown in light gray. The spatial relationships between these two populations of
neurons can be seen in the color version of the figure where sensory afferents sensitive
to low frequency air currents are shown in red, and those sensitive to higher frequen-
cies are shown in green (Figure4_color_image.). Although there are regions of segre-
gation between these two populations of sensory neurons, there is no consistent pattern
or axis of segregation indicating a continuous representation of stimulus frequency
within the ensemble. The continuous representation of direction is conserved in the
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combined projection pattern of these populations, yet there does not appear to be a
systematic representation of stimulus frequency through any dimension.

8.3.2. Predicting Spatio-Temporal Patterns of Activity within an Ensemble
of Sensory Neurons

Within any mapped sensory system, the response of an ensemble of neurons to a
sensory stimulus will be a spatio-temporal pattern of activity. The characteristics of the
pattern will depend on the anatomical structure of the map and the response properties
of the constituent neurons. In the cricket system, any air current stimulus, regardless of

Fig. 5. Predictions of the spatial patterns of activity that would be elicited within the neural
map by unidirectional steady-state air currents from 4 different directions. This is a dorsal view
showing sensory neurons from both cerci; the relative level of activity within the population is
indicated by a gray scale. The activity level of each afferent in the ensemble will be modulated
up or down from its baseline level, as a function of the stimulus direction, resulting in a unique
activation pattern for each different stimulus angle. The direction of the air current is indicated
in the upper left corner of each image; arrows indicate these directions in the body coordinate
system. The maximum level of activity is indicated as white, baseline activity as mid-gray, and
a decrease below baseline activity is indicated as dark gray to black. The inset shows the gray
scale aligned with a cosine function to represent an afferent directional tuning curve.
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its direction, will deflect all of the mechanosensory hairs on both of the two cerci. The
tuning curves of the sensory neurons are cosine functions spanning the entire 360°
range in the horizontal plane (18,19), therefore, the firing pattern of each neuron will
be modulated up or down as a function of the angle between the air current stimulus
and the peak of the cosine tuning curve (18,19). Depending on the angle of the stimu-
lus, some neurons will increase their firing rate in response to the stimulus, where as
others tuned to opposing directions will decrease their firing rate. As a result of the
continuous mapping of stimulus direction among the population, these differential
firing patterns should result in a different spatial pattern of activity for each stimu-
lus direction.

We tested this hypothesis using NeuroSys by predicting steady state spatial patterns
of activity within the network by combining the anatomical data with the directional
tuning curves of the sensory neurons. A stimulus direction was selected, and the
response of the system was calculated at each voxel in the 3D voxel space. The contri-
bution of a single sensory neuron to each voxel was determined by scaling the mea-
sured physiological response of its associated sensory neuron by the local varicosity
density at that voxel in the coordinate system. The physiological response of the sen-
sory neuron was calculated as the cosine of the difference in angle between the peak
directional tuning of the afferent and the angle of the stimulus with respect to the
animal’s body. The response of the entire system of sensory neurons was then calcu-
lated as the sum of responses from all neurons in the database at each voxel. Note that
these predicted patterns of activity are calculated by combining two independent char-
acteristics of the sensory neurons, their anatomical structures, and their directional tun-
ing characteristics. The patterns represent a prediction of the global activity pattern of
the entire ensemble of neurons synthesized from these two parameters, not a visualiza-
tion of previously stored data.

The predicted response patterns were imaged as changes in the levels of activity in
the neural map relative to the baseline level of activity. A gray scale was used to indicate
relative levels of activity, with white indicating maximum activity and black indicating
minimum activity. The baseline activity level in the sensory neurons was represented
as mid-gray (see Fig. 5, inset). In this manner, images could be generated to predict the
relative response levels throughout the map for any given stimulus.

Figure 5 shows the predicted spatial patterns of activity for four different stimulus
directions. The inset in Figure 5 shows the gray scale next to a tuning curve of a sen-
sory neuron. If the sensory neuron was stimulated maximally by an air current directed
along its peak tuning axis, its activity level would be indicated as white. If the angle of
the wind stimulus is 180° away from the peak tuning of the afferent, the activity in the
sensory neuron would be indicated as black. Thus, each neuron will respond differ-
ently to the stimulus depending on its directional tuning. Each stimulus results in a
unique response pattern, and the patterns vary continuously as a function of the stimu-
lus direction. Note that stimuli that are similar in direction (i.e., less than 90° different)
elicit activity in contiguous regions of the map, whereas stimuli from opposite direc-
tions are represented by patterns that are inverses of each other. Each spatial pattern
has approx the same net amount of excitatory area, and this area changes in shape with
a change in air current direction (2).
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8.3.3. Predicting Spatio-Temporal Patterns of Activity
within Neural Ensembles

Most sensory stimuli are dynamic in nature. The resulting activity patterns within
the nervous system should exhibit both spatial and temporal characteristics. Our previ-
ous work indicates that different stimulus directions will evoke different steady state
spatial patterns of activity within the ensemble of sensory neurons. An oscillating air
current that moves back and forth across the animal’s body should, therefore, evoke a
spatial pattern of activity that changes with the direction of the stimulus. Since the
population of sensory neurons contains cells with different frequency tuning character-
istics, the spatio-temporal pattern may also change as a function of the frequency of the
oscillation (31). Different sensory neurons have very different peak response ampli-
tudes, depending on the lengths and movement axes of their associated hairs. Different
neurons with the same directional sensitivities may be activated as much as 180° out of
phase with one another, depending on the lengths of their associated hairs. As a corol-
lary phenomenon, we predict that there will be frequencies at which sensory neurons of
opposite directional sensitivity will be firing synchronously.

In collaboration with John Miller and Sharon Crook, we are developing a computa-
tional tool called the DynamicAtlas, which is a combined query–computational–visu-
alization tool for studying the dynamic response properties of cell ensembles (32–34).
The DynamicAtlas is part of the suite of computational tools in NeuroSys. It uses the

Fig. 6. Predictions of dynamic patterns of activity within the neural map. This series of
images shows a sequence of activity patterns (from left to right) within the map in response to
a predicted 100 Hz sine wave air current, which alternates direction back and forth across the
animal’s body. The top panel shows the sine wave stimulus with asterisks indicating the time
when each image occurs with respect to the stimulus. The direction of the stimulus is encoded
by two different activity patterns: a horseshoe shaped pattern when the stimulus is directed at
the animal’s left (when the sine wave stimulus is above the baseline) followed by a “C” shaped
pattern when the air current changes direction towards the animal’s right (when the sine wave
stimulus is below the baseline). Each image shows the relative contribution of sensory neurons
tuned to low frequencies (white clouds) and sensory neurons tuned to higher frequencies (black
clouds). Note that, at some phases of the activity pattern, both sets of afferents tuned to the
same directions are activated together (second image from the left), and at other phases cells
tuned to opposite directions are activated together (second image from the right).
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same graphical user interface and displays the dynamic activity patterns within the
viewing environment as animated sequences of images. This tool requires queries on
multiple data types, integration of the database with analysis tools, and display of the
results with dynamic multidimensional visualization tools. The basic approach is as
follows:

1. A subset of neurons to be studied is selected from the database (e.g., “select all afferents
having peak directional sensitivities within 30° of the rear of the animal and median fre-
quency sensitivity of less than 200 Hz”).

2. Computational tools operate on the physiological stimulus–response data stored for those
cells in the database to predict the firing pattern of each individual neuron in the set in
response to a user-defined stimulus waveform.

3. The predicted response patterns of all indicated cells are animated simultaneously, as
dynamic sequences in which amplitude of the response (as a function of time) is used to
set the color or intensity of the density clouds of individual neurons. This creates a global
dynamic predicted activity pattern across the entire ensemble of selected cells.

Note that the dynamic animation created by this procedure is not a model-based
graphical simulation, but rather is a graphical report of the results of a complex query
on multiple data types. Specifically, the stimulus–response properties measured from
real neurons are used to calculate responses to user-defined stimuli, and the calculated
time-series responses are “painted” onto anatomical reconstructions of those neurons.
The only aspect of this process that is not strictly a query on existing data is the calcu-
lation of the predicted activity patterns. In our previous experiments, this has been
carried out through a “white noise analysis” (20,29,35). Specifically, a Wiener kernel
expansion was carried out on stimulus–response data sets stored in the database. A set
of functions, called kernels, were derived from this analysis. The first order kernel is
the first order cross-correlation of the spike train and the stimulus waveform and al-
lows a linear approximation of the cell’s response to any stimulus. The second order
kernel characterizes nonlinear relationships between the stimulus and response and
was combined with the first order kernel to yield a more accurate approximation of the
response. These kernels are used in the DynamicAtlas program to predict the activity
patterns of all cells as a function of time and in response to any specified stimulus
waveforms (34). Figure 6 illustrates these results. The top panel of Figure 6 shows the
sine wave stimulus with an asterisk indicating the time at which a specific spatial pat-
tern of activity would be produced by the ensemble. These spatial patterns are shown
below the stimulus waveform. By inspecting the changing patterns shown in the im-
ages from left to right, the relative contributions of low frequency sensory neurons
(shown in black) and high frequency neurons (shown in white) can be seen. At some
phases of the stimulus, either the low frequency or high frequency afferents are active
in isolation (from the left, images 1, 4, 5, and 7). At all other phases of the stimulus,
both sets of sensory cells are active simultaneously. As the direction of the stimulus
changes, the shape of the activation pattern also changes, e.g., at the peak of the sine
wave (images 1 and 7) vs the trough of the sine wave (image 4). The computational
techniques used to create these images were described in detail in (9). These dynamic
patterns of activity can be viewed as a color animation in the CD-ROM accompanying
this volume (Figure6_color_animation). In this animation, low frequency sensory neurons
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Fig. 7. Prediction of excitatory inputs to an identified interneuron. The images show a pri-
mary sensory interneuron and its spatial relationship to the map of air current direction. In the
top panel, the interneuron has been superimposed over the map, illustrating the spatial location
of its dendrites with respect to specific regions of the neural map. In the bottom image, the
interneuron’s dendrites have been gray scale-coded according to their location within the map
and the distribution of excitatory inputs to the dendrites. The images represent a quantitative
prediction of the spatial distribution of excitatory inputs to the interneuron, gray scale-coded
according to the peak directional tuning of the afferents. A color version of this figure has been
included in the companion CD-ROM to this volume (Figure7_color_image).
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are colored red and high frequency neurons are colored green. By viewing the anima-
tion, the reader can gain an appreciation for the complexity of these patterns of activity
and the relative contributions of the two populations of neurons to the overall pattern.

8.4. TRANSFER OF INFORMATION BETWEEN ENSEMBLES
OF NEURONS

Information contained within these spatial patterns of activity must be extracted and
decoded by postsynaptic interneuron “target” cells at the next processing stage. To
study the anatomical basis for information transfer between these two ensembles of
neurons, we developed methods to map the functional properties in one ensemble of
neurons onto another ensemble. For example, consider a query whose goal is to obtain
a first order prediction of the distribution of excitatory synaptic inputs from an ensemble
of afferent terminal arborizations onto the dendritic branches of a particular interneu-
ron. The process, carried out by another tool in the NeuroSys system called the
Functional_Masker, was as follows. First, the database was queried for a specific neu-
ron and loaded into the graphical user interface. A segment of the interneuron’s den-
drite was selected, and its spatial location within the atlas was identified (as the set of
voxels through which that segment passes.) Second, the net local varicosity surface
density for the selected subset of afferents within those same voxels was retrieved from
the database. Third, the total surface area of the interneuron segment within those voxels
was multiplied by the afferent surface area density within those same voxels. This
yields a value proportional to the probability with which those two sets of objects over-
lap. Fourth, the functional attribute associated with those afferents (e.g., the mean angle
of their peak directional sensitivity or their mean peak frequency sensitivity) was
retrieved. Both values (i.e., the overlap probability and the associated functional
attribute) were stored for return as part of the graphical query response. This 4-step
procedure is repeated for every segment of the interneuron’s dendritic structure. The
image shown in Figure 7 depicts a sensory interneuron with its dendrites shaded in
gray scale according to the peak directional of the primary afferents that provide exci-
tatory synaptic input. This image is best viewed in color, where a color spectrum was
used to indicate peak directional tuning; please see Figure 7 in the accompanying CD-
ROM (Figure7_color_image). Note that this operation is conceptually equivalent to
masking the entire ensemble afferent map structure with a spatial filter in the shape of
an interneuron. The details of the algorithm, and an extensive set of queries using that
algorithm, are presented in detail elsewhere (2).

These tools can be used to predict the levels of synaptic input from the ensemble of
sensory neurons onto individual postsynaptic interneurons. The goal of these calcula-
tions was to correlate predictions of the spatial patterns of activity within the sensory
neuron ensemble with the known physiological response properties of sensory inter-
neurons. One set of predictions is shown in Figure 8. First, the spatial pattern of activ-
ity within the afferent population in response to four specific stimuli was predicted as
shown in the top row of images of Figure 8. The relative level of afferent activity was
then computed for all locations along the dendrite of the interneuron, and a gray scale
value (as described above) was assigned to each dendritic segment (Fig. 8, middle row
set of images). This mapping from the afferent activity pattern onto the interneuron
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Fig. 8. Prediction of the relative level of excitatory input to a primary sensory interneuron in
response to air currents from four orthogonal directions. The top row of panels show predicted
spatial patterns of activity in response to air current from different directions. The middle row
of panels show the interneuron with its dendrites gray scale-coded, according to the predicted
level of excitatory input from the population of afferents. The third row of panels show the
interneuron superimposed over each spatial pattern of activity. For each direction, the spatial
pattern of activity elicited within the map is different, and thus, the activation pattern masked
onto the interneuron’s dendrites appears different. The maximum level of activation occurs for
225°, the minimum level for 180° opposite, at 45°. These directions correspond to the peak and
trough of the cell’s directional tuning curve, respectively. The response amplitude in the cell to
directions 315° and 135° is the same, however the distribution of excitatory input to the cell is
quite different for these two stimulus directions. The cell’s directional tuning curve is pre-
sented in the bottom panel for reference. Note that this cosine shaped curve is truncated at the
x axis to indicate the change from the very low level of baseline activity in the cell.
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dendrites represents a first order prediction of the relative level of excitatory input
to each dendritic region of the interneuron during the activation of that afferent
response pattern.

We predicted that, since each interneuron in the cercal system has a unique arboriza-
tion pattern, each should be sensitive to a specific subset of activity patterns within the
map. Decoding information about air current direction is thus achieved primarily by a
spatial matching function that compares the activity pattern in the afferents to the shapes
of the dendritic arbors of the interneurons. Each interneuron should be sensitive to a
specific range of spatial patterns, specifically those patterns that match the locations of
its dendrites. Just as the spatial pattern of activity in the map changes as a function of
stimulus direction, so does the level of excitatory input to the interneuron’s different
dendritic regions. Figure 8 shows the predictions of the level of excitatory input to a
representative interneuron for 4 orthogonal stimulus directions: 45°, 135°, 225°, and
315°. These images are shown in comparison to the directional tuning curve of the
interneuron. For stimuli at 225°, (the peak of the interneuron’s tuning curve), a large
portion of the dendritic arbor is activated maximally. At the orthogonal direction (45°),
the level of excitation is suppressed below baseline activity over most of the dendritic
tree. At intermediate directions (135° and 315°), the level of excitation is less than at
the peak direction, yet the spatial distribution of that input to the interneuron is unique
for each direction. The relative levels of activity within the dendritic arbor correlate
well with the level of spiking output in the interneuron as measured physiologically
(shown in the tuning curve in Fig. 8, bottom panel). Thus the interneuron was activated
maximally when the spatial pattern of excitatory activity matches the location of its
dendrites, thus providing the greatest amount of excitatory input. Conversely, for
stimuli that do not activate the interneuron, the spatial pattern of excitatory activity
does not overlap with the dendrites of the interneuron (2).

8.5. GENERAL APPLICATIONS OF NEUROSYS

Although the NeuroSys database and tools were developed to investigate mecha-
nisms of sensory information processing in the cricket cercal system, the tools and
general approach can be used in a variety of different systems to address important
questions in neuroscience. The only major requirement is that anatomical data from
different experiments can be registered in a common coordinate system. For example,
one could adapt the system to studying dynamic patterns of gene expression in a devel-
oping embryo, or study the distribution of membrane channels, receptors, and
organelles in a specific neuron type. The NeuroSys environment was designed to allow
the investigator to explore ideas and test hypotheses about system function by studying
the interactions of the constituent elements. Despite the technical challenges involved,
this systems level approach holds great promise for understanding the computational
mechanisms of the brain.
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ABSTRACT

The basal forebrain (BF) is comprised of a neurochemically heterogeneous popula-
tion of neurons, including cholinergic, GABA-ergic, peptidergic, and possibly
glutamatergic neurons, that project to the cerebral cortex, thalamus, amygdala, poste-
rior hypothalamus and brain stem. This multitude of ascending and descending path-
ways participate in a similarly bewildering number of functions, including cognition,
motivation, emotion, and autonomic regulation. Traditional anatomical methods failed
to grasp the basic organizational principles of this brain area and likened it at best to the
organization of the brain stem reticular formation. Our studies, using various computa-
tional methods for analyzing the spatial distribution and numerical relations of differ-
ent chemically and hodologically characterized neuronal populations, as well as fully
reconstructed electrophysiologically identified single neurons, began to unravel the
organizational principles of the BF. According to our model, the different cell types
form large-scale cell sheets that are aligned to each other in a specific manner. Within
each cell system, the neurons display characteristic discontinuous distributions, includ-
ing high density clusters. As a result of nonhomogeneity within individual cell popula-
tions and partial overlapping between different cell types, the space containing
the bulk of cholinergic neurons comprises a mosaic of various size cell clusters. The
composition, dendritic orientation, and input–output relationships of these high den-
sity cell clusters show regional differences. It is proposed that these clusters represent
specific sites (modules) where information processed in separate streams can be
integrated. Via this BF mechanism a topographically organized prefrontal input could
allocate attentional resources to cortical associational areas in a selective self-regula-
tory fashion.

9.1. INTRODUCTION

The term basal forebrain (BF) refers to a heterogeneous collection of structures
located close to the medial and ventral surfaces of the cerebral hemispheres. This highly
complex brain region has been implicated in attention, motivation, and memory as well
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as in a number of neuropsychiatric disorders such as Alzheimer’s disease, Parkinson’s
disease, and schizophrenia (1–3). Part of the difficulty in understanding the functions
of the BF, as well as the aberrant information processing characteristic of these disease
states, lies in the anatomical complexity of the region. BF areas, including the medial
septum, ventral pallidum, diagonal band nuclei, substantia innominata, and peripallidal
regions contain cell types different in transmitter content, morphology, and projection
pattern (4,5). Among these different neuronal populations, the cholinergic corticopetal
neurons have received particular attention in numerous functional and pathological
studies.

Recent interest in BF research was prompted by discoveries showing that a specific
population of neurons in this region, namely those that use acetylcholine as their trans-
mitter and project to the cerebral cortex, are seriously compromised in Alzheimer’s
disease (6–9). However, cholinergic projection neurons represent only a fraction of the
total cell population in these forebrain areas, which also contain GABA-ergic,
peptidergic, and possibly glutamatergic neurons (10,11). According to our unpublished
estimations in one hemisphere of the rat brain, in the cholinergic BF areas, 20,000
cholinergic corticopetal cells are intermingled with other neurons, including about
35,000 calbindin, 26,000 calretinin, and 24,000 parvalbumin-containing neurons. These
calcium-binding proteins are used to characterize different nonoverlapping populations
of non-cholinergic BF neurons.

A quasi 3D representation of the cholinergic cell bodies (Fig. 1A) or the dendritic
arborizations of their neurons (Fig. 1B) does not appear to show any recognizable
architectural features, confirming a classical view in the literature that arousal is sup-
ported by a diffuse reticular activating system, including core brain stem structures, the
BF, and the so-called nonspecific thalamic nuclei (12,13). On the other hand, careful
monitoring of the behavioral effects of lesions in the BF using an immunotoxin selec-
tive for cholinergic neurons, suggests that compartments of the BF, together with their
specific cortical target areas, may participate in different cognitive operations (14).

If the BF participates in different operations, we would expect that this may be
reflected both in the local, as well as in the large-scale structural organization of its
constituent neuronal populations. For example, one would expect that the BF would
be constituted of repetitive building blocks (modules) as found in many other areas of
the central nervous system (CNS), including the cortex, striatum, hypothalamus, brain
stem, or the spinal cord (15-18). The modular structure in various brain regions is the
prerequisite structural basis for parallel, distinct operations (19). Other structural fea-
tures, like anisotropic dendritic orientation or segregation of various afferents and
efferents, can also be taken as evidence for selective information processing (20-26).
In the past several years, we systematically investigated the 3D spatial organization of
the various BF neural populations, including their dendritic organization and input–
output relationship with the aim of uncovering the organizational principles of the BF,
in particular within areas that are most heavily populated by cholinergic corticopetal
neurons. This review is an attempt to summarize how anatomical features may con-
strain information processing in this brain area. The chapter is divided into several
sections, each with subheadings indicating the special methods used. Following the
main body of the text, the reader can find an Appendix with a detailed explanation of
the data acquisition and methods analysis presented.
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Fig. 1. (A) 3D wireframe diagram showing the distribution of cholinergic neurons in the BF.
Cholinergic cells (dots) were mapped from 12 sections, approx 300 µm apart. The contours of
the corpus callosum and the section outlines are marked. (B) Composite map illustrating the
dendritic architecture of the BF cholinergic system. The location of panel B corresponds to the
enclosed box in panel A. Dendrites of approximately 1300 cholinergic neurons were traced
from 7 coronal sections. Diagonal white lines delineate the approximate location of the corre-
sponding major forebrain areas. HDB, horizontal limb of the diagonal band; ic, internal cap-
sule; MS/VDB, medial septum/vertical limb of the diagonal band; SI, substantia innominata.
Scale bar, 1 mm (applies only to panel B). A color version of this figure is enclosed in the
CD-ROM.
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9.2. ASSOCIATION AND SEGREGATION OF DIFFERENT
HODOLOGICALLY IDENTIFIED NEURAL POPULATIONS

9.2.1. Overlap Analysis

Although there is considerable species variation in the precise locations of cholin-
ergic projection neurons in the BF, the efferent projections of these cells follow basic
organizational principles in all vertebrate species studied. Thus in rodents, neurons
within the medial septum and nucleus of the vertical limb of the diagonal band provide
the major cholinergic innervation of the hippocampus; cholinergic cells within the hori-
zontal limb of the diagonal band project to the olfactory bulb, piriform and entorhinal
cortices; cholinergic neurons located in the ventral pallidum, sublenticular substantia
innominata, globus pallidus, internal capsule, and nucleus ansa lenticularis, collectively
termed as nucleus basalis, project to the basolateral amygdala and innervate the entire
neocortex according to a rough mediolateral and anteroposterior topography (27–35).
Similarly, in primates, including humans, corticopetal cholinergic cells are subdivided
according to the topography of their projections (36).

It is unclear, however, what the functional equivalent of this topography is, espe-
cially in light of a study in rat, showing that neighborhood relationships in the BF
projection neurons do not correspond to near neighbors in the representational areas of
sensorimotor cortices, thus arguing against a simple functional organization (37).
Knowing the importance of the cholinergic BF system in modulating cortical activity
(38), we asked whether the organization of the basalocortical system can, in any sense,
be related to the distributed and hierarchical organization of corticocortal connections,
as proposed by Felleman and Van Essen (39). Figures 2 and 3 display cases of overlap-
ping and segregated projection neurons from a study aiming at a comprehensive
reevaluation of the basalocortical projection (Csordas and Zaborszky, in preparation).
Figure 2A is from a case in which two different retrograde tracers were injected into
two cortical areas that were in the same mediolateral topographical register but they
differed in their rostrocaudal location. This 3D image suggests that the two neuron
populations (marked by different symbols1), projecting to two cortical areas, are, at
least in the rostral part of the BF, intermingled. Using an overlap analysis program
described recently (21,25,40), Figure 2C shows that a substantial population of the two
types of projection neurons are, indeed, located in overlapping voxels2 (the method is
briefly described in Appendix 9.9.4.). Figure 2B shows another case in which the two
retrograde tracer injections were in different mediolaterally located cortical areas. As
can be seen from this 3D rendering, there is little overlap in the location of the neurons
projecting to these two cortical target areas. Figure 2D, using the overlap analysis pro-
gram, supports the subjective impression that no overlap exist between these two dis-
tinct cell populations.

9.2.2. Isodensity Surface Rendering

Figure 3A shows a 3D rendering of the distribution of four BF cell populations that
project to four arbitrarily defined mediolateral sectors of the neocortex reconstructed

1A color version of this and other figures are available in the companion CD-ROM file.
2Voxel is a 3D pixel that is the spatial unit of our analysis. See also Appendix 9.9.4. A mathematical

description of the definition of voxels can be found in (41).
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Fig. 2. (A) Distribution of non-cholinergic neurons projecting to the medial prefrontal cor-
tex (light) and the border region between M1 and M2 region (dark). Note the substantial over-
lap of light and dark cells in the rostral (right hand side of the model) BF. Fluoro-Gold was
injected into two sites in the prefrontal cortex and Fast Blue into the border of the M1/M2
regions (upper left insets). (B) Distribution of cholinergic neurons projecting to the somatosen-
sory (light) and the M1/M2 association region (dark). Note the apparent minimal overlap be-
tween the light and dark symbols in the basal forebrain. (C) Overlap analysis from selected
sections of case shown in panel A. (D) Overlap analysis from the case depicted in B. For panels
C and D, each section was subdivided into 500 × 500 × 50 µm voxels, and the number of cells
from each of the two populations (populations “1” and populations “2”) was counted in each
voxel. Voxels containing at least 3 cells of either population are marked with light gray and
dark gray, respectively; those containing at least 3 of both marker types are marked in white.
Note the substantial overlap in  panel C, as indicated by the white voxels. In panel D, no white
voxels are detected indicating no overlap in this case. Note that the gray scalings (colors in the
companion CD-ROM file) of the voxels here represents population “1” and/or population “2”
and does not correspond to the coding in panels A and B. The corpus callosum is rendered by
double gray/white surfaces around the cingulum bundle in the 3D models. A color version of
this figure is enclosed in the CD-ROM.
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from eight individual experiments. Since the overlap analysis is limited to the simulta-
neous comparison of only two cell populations and only in two dimensions, in order to
appreciate the overall projection pattern in the 3D space, we developed an algorithm
that renders a surface around voxels of similar cell densities (Appendix 9.9.4. and [41]).
Since cells are replaced by densities, and densities are rendered around by surfaces, the
simultaneous 3D visualization of multiple cell populations is feasible. Figure 3B is a
3D composite of the isodensity maps of six different cell populations, suggesting that
the bulk of each cell population projecting to the six cortical targets is separated in the
BF. Unfortunately, when isosurfaces of different cell types are combined, the larger
surface area may have included isosurfaces of other cell types. Therefore, separate
renderings of the individual cell populations and pairwise overlap analysis have to be
considered (41).

Fig. 3. (A) Composite map showing the 3D distribution of cholinergic cells projecting to
four arbitrarily defined mediolateral sectors of the neocortex. In the color version of this figure
(accompanying CD-ROM), cells projecting to different regions are color-coded (medial, red;
intermediary sector, blue and yellow; and lateral parts of the neocortex, green). Note the rela-
tively ordered rostromedial to caudolateral distribution of cells that project to mediolaterally
located cortical areas. Dark (red) symbols in the lower right side of the model are rostral. Medial
is right, lateral is left. (B) Isodensity surface rendering to show the major organizational fea-
tures in the BF. Unit space: 400 × 400 × 50 µm, density threshold ≥2 cell/voxel. For apprecia-
tion of the different cell groups see the color version of this figure where dark blue surface
covers unit spaces that contain cholinergic cells projecting to the posteromedial (M1/M2) cor-
tex; yellow, medial prefrontal cortex; red, barrel cortex; green, posterior insular-perirhinal;
light blue, agranular insular-lateral orbital; magenta, lateral frontal (motor) cortex. The
isorelational rendering of panel B is placed into the wireframe of the section outlines and the
corpus callosum to show their real position in the original brain. Note that the view in panel B
is a mirror image of panel A. Here and at the rest of the 3D representations, the numbers along
the z axis are the layers (sections), and the x and y values correspond to the voxel indices. A
color version of this figure is enclosed in the CD-ROM.
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A detailed overlap analysis of 9 cases, each with paired injections, and some 30
computer-generated combinations of these cases (Csordas and Zaborszky, in prepara-
tion) suggest that corresponding mediolaterally located frontal and posterior cortical
areas receive their input from a partially overlapping area in the BF. On the other hand,
topographically noncorresponding frontal and parieto-insular areas receive their pro-
jections from nonoverlapping areas of the BF. Since the location of overlapping voxels
in the BF is highly specific for the injection sites that represent cortical associational
columns, these data suggest that the BF cholinergic input is transferred via specific
corticocortical nodal points toward hierarchically related frontal cortical areas.

9.3. INHOMOGENEOUS DISTRIBUTION OF CHEMICALLY
IDENTIFIED CELL POPULATIONS

9.3.1. Differential Density 3D Scatter Plot

Figure 4A, using a differential density 3D scatter plot (for a brief description of this
method, see Appendix 9.9.4.) shows that the density of cholinergic cells is not uniform
(see also Fig. 2 in [4]). Cholinergic cells often form clusters consisting of 3–15 tightly
packed cell bodies. The saliency of these clusters, nonetheless, depends on the density
threshold setting. For example, when using a relatively low threshold (d ≥ 5 cells per
250 × 250 × 50 µm voxel size), these clusters seem to be diffusely distributed. In con-
trast, when using a relatively high threshold (d ≥ 15 cells/voxel), the clustering of cho-
linergic cells seems to deviate from a random distribution. Interestingly, in primates, in
comparison to rodents, a proportionally higher percentage of cholinergic cells are
located in clusters (4), suggesting that increasing clustering in the phylogeny of BF cell
populations might be related to the increased specialization of the cortical areas they
project to. Similarly, the location of other cell populations in rat, including calretinin,
calbindin, and parvalbumin-containing neurons, suggests inhomogeneous distributions
(Zaborszky, Buhl, Pobalashingham, Somogyi, Bjaalie, and Nadasdy, in preparation).
Figure 4B shows a similar type of differential density scatter plot of parvalbumin-
containing neurons, where dots represent the cell bodies, and large filled circles repre-
sent high density spots.

 9.3.2. Isorelational Surface Rendering

Since the simulateneous visualization of more than two populations using differen-
tial density scatter plots is difficult, we applied another surface rendering algorithm
that uses both density and spatial relational constrains (Appendix 9.9.4. and [41]). Fig-
ure 4C shows the isorelational surfaces (dark solid) rendered around regions where the
density of both cholinergic and parvalbumin cells met two criteria: (i) density is at least
five for each cell type within the voxel (250 × 250 × 50 µm); and (ii) the ratio of
cholinergic to parvalbumin cell counts is at least 0.5. In other words, the voxels cov-
ered by the dark surface contain at most twice as many parvalbumin as cholinergic
neurons. With the isorelational surface rendering, we introduced double constraints,
density and relational, which led to a further simplification of our model. Comparing
the locations covered by such isorelational surfaces with the scatter plot distribution of
the corresponding two-cell populations clearly shows that these surfaces form a central
core, consisting of high density cells from both cell populations that is flanked on all
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Fig. 4. Differential density scatter plots and isorelational surface mapping. (A and B) repre-
sent the spatial distribution of cholinergic (dots in panel A) and parvalbumin (dots in panel B)
cells from the same brain showed separately. Filled circles mark the high density locations
where the density of cholinergic or parvalbumin cells is higher than 15 cells in the unit space
(250 × 250 × 50 µm). (C) The scatter plots of both cholinergic (red in the color version of this
figure) and parvalbumin (green) cells are superimposed on the isorelational surface (dark solid
area; violet in the CD-ROM file) where the density of both the cholinergic and parvalbumin
cells is >5 and the ratio of cholinergic–parvalbumin cells is at least 0.5 or higher. (D) Merging
the cholinergic–parvalbumin, cholinergic–calbindin, and cholinergic–calretinin isorelational
surfaces (using cell density ≥5 in the unit space) into one scheme reveals that the cholinergic
“column” can be parcellated into clusters of different sizes. Different shading of surfaces cover
the spaces where the relationship of cholinergic cells to parvalbumin (green in the color ver-
sion), calretinin (yellow), and calbindin (blue) neurons is similar (0.5 or higher). A color ver-
sion of this figure is enclosed in the CD-ROM.

sides with single-cell populations of gradually decreasing densities (Fig. 4C). Merging
the three pairwise isorelational surfaces (cholinergic–parvalbumin, cholinergic–
calretinin, and cholinergic–calbindin) into one scheme suggests that the cholinergic
cell “column” can be parcellated into several smaller clusters or larger amalgamations,
in which cholinergic cells are mixed with the other three cell types in a specific fashion
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(Fig. 4D). Using a section-by-section analysis of the overlap, as shown in Figures 2C
and D, one can get a fairly good idea about the composition of the mixed clusters. The
advantage of the combined 3D isorelational surface rendering of Figure 4D is indeed in
the totality of this image. Comparing similar types of renderings from different brains,
a similar global pattern emerges suggesting that the configuration of the isorelational
surfaces is not by chance and that the high density clusters in the individual cell popu-
lations may correspond to the zones where the different cell populations overlap with
each other. The location of these overlapping zones may be determined during ontoge-
nesis.

9.4. CHOLINERGIC CELL GROUPS SHOW REGIONALLY SELECTIVE
DENDRITIC ORIENTATION

9.4.1. Mean 3D Vector of Dendritic Processes

Since the geometry of axons and dendrites imposes constraints on their connections,
in order to understand how information is handled in the BF, it is important to deter-
mine how the shape of the axonal and dendritic arborizations could influence regional
connectivity patterns. Cholinergic cell bodies give rise to 2–5 primary dendrites radiat-
ing in all directions. The relatively straight primary dendrites bifurcate in an iterative
fashion, and the sum of the lengths of the daughter branches is usually larger than that
of the mother branch. The dendrites of adjacent cholinergic neurons often constitute
overlapping fields. The dendrites are freely intermingled with passing myelinated fiber
bundles within which they are embedded. Thus, the dendritic organization of the cho-
linergic BF neurons resembles that of the isodendritic type of neurons of the reticular
formation (42–44) or the so-called interstitial neurons characterized by Das and
Kreutzberg (45). The total length of the dendrites of individual cholinergic neurons in
rats is about 4 mm, arborizing in a box of about 0.1 mm3, filling, however, only a
fraction of its spatial domain. According to our estimation, one cholinergic cell den-
dritic domain might share its space with 50–80 other cholinergic neurons, depending
on its location in the BF. Although a particular orientation of cholinergic dendrites
could be noticed upon inspecting areas where the density of dendrites is low (see Fig. 1
in [46]), it is not possible to appreciate dendritic orientation with certainty in regions
where the cell density is high, as can be judged from Figure 1.

We assumed that the cholinergic cell clusters, beyond their spatial segregation, must
fit into the functional network of their input–output connections. In other words, we
assumed that cholinergic cell clusters develop under the constraints that link together
functionally related output (neocortical) and input (brainstem and telencephalic) path-
ways, and this input selectivity, we reasoned, must be reflected by the anisotropic den-
dritic orientation of the putative cell clusters.

In order to correlate regional differences of dendritic orientation to the spatially
distributed population of neurons, we developed a method of representing the main
dendritic branches of individual neurons with 3-D vectors and embedded them into the
3D coordinate system of the cell bodies. The origin of a vector represents the position
of the neuron, its orientation represents the dominant orientation of the dendritic tree
(for details, see Appendix 9.9.4.), and the length of vector represents the average length
of the dendritic branch. The main orientation vectors of 750 individual cholinergic
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cells, selected from a population of about 15,700 cholinergic cells, are shown in Figure
5A. Rotation and navigation in the 3D plot made it possible to gain insight into the
vector orientation even in the denser cell clusters. Comparison of Figure 5A with the
differential density scatter plot of the same dataset, shown in Figure 5B, suggests a
tendency of iso-orientation of dendrites within a given cholinergic cell cluster.

9.4.2. 2D Dendritic Stick Analysis (Polar Histogram)

To obtain a quick qualitative characterization of the directional distribution of den-
dritic growth projected onto the plane of sectioning, the polar histogram is the method
of choice (Neurolucida® software package; see also Appendix 9.9.4. and [47]). In
essence, using only the x and y coordinates of the traced dendritic segments, where
individual segments are composed of pairs of adjacent points, the algorithm pools
together all the segments around a center but preserves their length. The total range of
angles is then binned to equal sectors, and the program calculates the sum of segments
in each bin. The radial length of a filled sector is proportional to the total length of the
dendritic branches of that specific orientation, thus the contributions of segment lengths
and segment counts of that specific orientation are inseparable. In other words, a few
long segments can add up to the length of many short dendrites. Depending on the
choice of binning interval, the angle discrimination can be finer or broader. Analyzing
BF cholinergic dendritic orientation by polar histograms suggests a regional orienta-
tion preference (Zaborszky, Nadasdy, and Somogyi, in preparation).

In contrast with the polar histogram method, the vector representation preserves the
neuronal identity of dendrites, instead of pooling them together, and still provides an
overall view of orientation of dendrites. The main advantage, however, is that vectors
relate the dendrites to the spatial distribution of the neurons in a simplified and mean-
ingful fashion. To compare the regional dendritic orientation derived from polar histo-
grams with the orientation vectors calculated for individual cells, we selected a
subspace of the septal area where a more detailed analysis of subpopulations of cholin-
ergic neurons was available. The Neurolucida program allows one to outline and select
cell populations from any number of sections in a series and to construct a polar histo-
gram of the dendrites pooled together from the selected cell populations. Figure 6A
represents a portion of the septal area from Figure 5A viewed from a sagittal direction.
Figure 6B displays cholinergic cells whose dendrites were traced from a series of sec-
tions cut in the sagittal plane. The selection areas of the four polar histograms of Figure
6C–F are indicated by boxes of various sizes in the upper right diagram. Comparing the
dendritic orientation obtained from the polar histograms of pooled dendrites with
the mean 3D vector of the dendritic branches indeed suggests that subpopulations of

Fig. 5. (facing page) (A) Mean orientation of dendritic branches. The initial segments of
dendrites are represented by dots. The outlines of the anterior commissure (ac) are indicated by
small dots. (B) Differential density scatter plot of the same database. Dots represent cholinergic
cells (n = 15,700), filled circles mark the high density locations where the density of cells is ≥20
per unit space (250 × 250 × 100 µm). Flakes are due to the section steps along the z axis. Cells
and their dendrites were mapped from 34 consecutive horizontal sections stained for choline
acetyltransferase. The comparison of panels A and B suggests the iso-orientation of dendrites
in the high density cell cluster. A color version of this figure is enclosed in the CD-ROM.
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Fig. 6. Comparison of the dendritic orientation derived from polar histograms with the ori-
entation vectors. (A) Part of the septal area from Figure 5A as viewed from the sagittal direc-
tion. Letters C, D, and E with arrows point to regions that may correspond to the same cell
populations as selected for the polar histograms from sagittal sections of a different brain as
shown in panel B. (B) Cholinergic cells (137) (filled circles) were selected from a stack of
sagittal sections comprising the septal region (n = 2266 cholinergic cells, dots) for dendritic
tracing. Letters C, D, E, and F mark boxes that were used to select dendrites for the orientation
analysis. In both panels A and B, ac indicates the location of the anterior commissure. Despite
slightly different orientation of the sagittal sections, one can recognize the same cell groups as
seen in the 3D rendering. (C–F) Polar histograms representing dendritic orientation from indi-
cated areas. Numbers at upper right indicate the number of dendritic segments in the sample.
Numbers along the circles within the polar histograms mark distances in micrometers from the
origin (see section 9.9. for explanation). A color version of this figure is enclosed in the
CD-ROM.
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cholinergic cells can be delineated based upon their density and main orientation of
their dendritic arbor. Therefore, one of the key features of cluster organization is the
iso-orientation of their dendrites.

9.5. VARIOUS AFFERENTS IN THE BF SHOW REGIONALLY
RESTRICTED LOCALIZATION

Using a double strategy of recording the location of putative contact sites between
identified axons and cholinergic profiles as well as identifying in representative cases
under the electron microscope the presence of synapses, one can get a fairly good idea
about the extent of potential transmitter interactions in the BF (for references, see
[4,38]). Although the noradrenergic and dopaminergic axons contact cholinergic neu-
rons in extensive portions of the BF, the majority of afferents (cortical, amygdaloid,
striatal, peptidergic) appear to have a preferential distribution in the BF; thus a specific
input can contact only a subset of neurons. Figure 7 gives examples of the distribution
of restricted vs more diffuse afferents.

9.6. PROBABILITY OF CONNECTIONS

In many cases examined, labeled terminal varicosities detected in the BF were related
to both cholinergic and noncholinergic postsynaptic elements. In fact, the detectability
of synapses on cholinergic neurons was usually proportional to the density of terminals
present in a given area. Thus, at first approximation, the probability of synapses
between cholinergic neurons and various afferents may depend on the geometry of the
dendritic arbor and axonal ramifications. Since a systematic study comparing the den-
dritic arbor of cholinergic neurons with various afferent orientations would require a
substantial time, we only briefly comment on this issue here, by documenting the case
of calcitonin-gene-related-peptide (CGRP)-containing axons in the internal capsule.
Figure 8A shows cholinergic cells and their traced dendrites at about 1.5 mm posterior
to bregma. Figure 8B is a schematic drawing from an adjacent section that was
immunostained for CGRP and whose axons in the internal capsule were traced at high
magnification. Comparing the polar histograms of cholinergic dendritic trees in the
internal capsule (Fig. 8C) with that of CGRP axons (Fig. 8D), it is obvious that CGRP
axonal ramifications have the same prevailing direction as the dendritic arbor of cho-
linergic neurons. Indeed, electron microscopic studies confirmed abundant presence of
CGRP in axon terminals synapsing with cholinergic neurons in this region (48).

The probability of synaptic connections can be calculated from the overlap of axonal
and dendritic domains (49). The probability of having more than one synapse between
any given presynaptic axon and a postsynaptic cell is maximal in the case when the
terminal axon and the receiving dendrite are running in parallel (“climbing” fiber type
contact). However, only one synapse is possible if the axon runs at right angles to the
dendrite (“crossing over” type of geometry). If the terminal axon is oriented obliquely
to the receiving dendrite, the probability of synaptic contacts is a cosine function of the
angle between the axon and the dendrite (50). Since various afferents show specific
localization, it is likely that cholinergic cells in various BF subdivisions can sample a
unique combination of afferents. It seems that in each major subdivision of the BF
along the axis of the major orientation of the cell bodies, a specific type of axon is
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Fig. 7. Differential distribution of various afferents in the cholinergic forebrain. (A–C,G,I)
Composite maps illustrating putative zones of contacts between afferent fibers and cholinergic
neuronal elements following Phaseolus vulgaris leucoagglutinin (PHA-L) injections into the
(A) far-lateral hypothalamus, (B) midlateral hypothalamus, (C) medial hypothalamus, (I) locus
coeruleus. (G) Shows the distribution of putative contact sites from a material stained for
dopamine-ß-hydroxylase and choline acetyltransferase. (H) PHA-L-labeled terminal varicosi-
ties (arrow) in close apposition to a proximal dendrite of a cholinergic neuron. The grid simu-
lates the ocular reticle used to screen sections for high magnification (63×) light microscopic
analysis. One division of the grid = 16 µm. Cholinergic neurons are represented by dots. Zones
of putative contacts between cholinergic elements and terminal varicosities are depicted as
solid squares (corresponding to 80 × 80 µm areas in the section). (D–F) Location of labeled
cells at the PHA-L injection sites from cases depicted in panels A–C. Panels A–C,H are modi-
fied from Cullinan and Zaborszky (57) with kind permission from Wiley-Liss. Panels G and I
are modified from Zaborszky et al. (51), with permission from Elsevier Science. A color ver-
sion of this figure is enclosed in the CD-ROM.
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maximally aligned with the preferred orientation of cholinergic dendrites of that area.
Different cells, or perhaps different dendrites of the same cell, can sample the same
input differently according to the spatial organization of the dendrites and correspond-
ing axons. For example, the majority of dopamine-ß-hydroxylase positive varicosities
(used to stain noradrenaline and adrenaline containing neurons) establish single syn-
apses with cholinergic dendrites, while a small population of cholinergic neurons (at
most 5%) appears to receive multiple contacts on their dendrites in the form of climb-
ing-type arrangements. Such climbing-type synapses were most often detected in the
substantia innominata (Fig. 3 in [51]), but were also occasionally seen in other BF
regions. It is unclear whether cholinergic neurons with climbing-type inputs are differ-
ent in other respects, however, one can speculate that the noradrenaline released at
these climbing-type synapses must have a more powerful action on these selected neu-
rons as compared to the single synapses at random locations.

Fig. 8. Comparison of the 2D orientation of cholinergic dendritic segments (A) and CGRP-
containing axons (B) in the internal capsule (ic). (C and D) Polar histograms of cholinergic
dendrites (C) and CGRP axonal ramifications (D) from the same general area. Note that the
majority of dendrites and axons occupy the same sector of the polar histograms. Upper right
numbers indicate the number of segments in the analysis. The outer circle of the polar histo-
gram correspond to a 1200-µm diameter around the origin.
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Our earlier assumptions about the randomness of connections (46,52) had to be
modified when we realized that prefrontal axons seem to terminate exclusively on
noncholinergic cells, including parvalbumin-containing GABA-ergic cells, in spite of
the fact that many of these axons arborize in the immediate vicinity of cholinergic
neurons (53). It is expected that the detailed reconstruction of local axon collaterals of
BF neurons may add to the specificity of the connectional scheme in the BF (38).

9.7. MERGING DATAFILES CONTAINING NEURONS OF DIFFERENT
COMPLEXITIES

To understand how individual neurons with complete axonal and dendritic arboriza-
tions fit into the global structure of the BF as outlined in the preceding paragraphs, we
took advantage afforded by the juxtacellular staining of individual neurons (54,55).
This technique can also be combined with extracellular recording, electroencephalo-
gram (EEG) monitoring, and subsequent chemical identification of the filled neurons.
As recorded in anesthesia, neuropeptide Y (NPY) neurons are silent during spontane-
ous or tail pinch-induced cortical desynchronization, but accelerate their activity dur-
ing episodes of cortical delta oscillations. In contrast, the firing of cholinergic neurons
increases during cortical low-voltage fast electrical activity (55). Since NPY-positive
neurons also contain γ-aminobutyric acid (GABA) and have been shown to contact,
with their local axon collaterals, cholinergic corticopetal cells, a hypothetical scenario
can be suggested of how these two cell types may be involved in modulating cortical
activity (38). Obviously, the proper interpretation of these electrophysiological data
would require understanding of the precise input–output relationships of these and other
neuronal populations. Using the Neurolucida program, such fully reconstructed neu-
rons can be “implanted” into a larger database as the one used for the generation of
Figure 4; thus individual electrophysiologically and chemically identified neurons can
virtually be placed into their natural environment. In this way a functional property
such as “content” can be placed into the anatomical maps as “context”. Figure 9C and
D display a locally arborizing NPY neuron and a cortically projecting and also locally
arborizing cholinergic neuron, respectively. Although both of these neurons are lo-
cated (Fig. 9A,B) in the same general BF area (horizontal limb of the diagonal band),
their local axons may contact different postsynaptic target, and similarly, their den-
drites should sample, at least in quantitative terms, different inputs. According to our
estimations, this particular cholinergic neuron gives rise to about 1400 local axonal
varicosities, and in the space defined by its axonal arbor, there are approximately 1500
cells. On the other hand, the NPY neuron presented here distributes about 2900 vari-
cosities in a space that contains 1250 neurons. Whether or not these varicosities repre-
sent synapses and whether or not they address postsynaptic targets selectively, remains
to be investigated.

9.8. CONCLUDING REMARKS

Since the seminal paper of Schwaber et al. (56), who first used computer-aided data
acquisition and 3D reconstruction of BF cholinergic neurons, the progress in under-
standing the organization of the BF has been very slow. It is likely that, in the coming
years, the sophisticated use of multi-electrode recordings in awake behaving animals
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Fig. 9. Distribution of different cell types in the neighborhood of identified NPY (A,C,E)
and cholinergic (B,D,F) neurons. (A and B) Schematic drawings illustrating the location of the
electrophysiologically and chemically identified neurons. (C and D) Coronal view of the iden-
tified neurons embedded into the same general region of the BF derived from a different data-
base that contains four different cell populations. Filled circles, parvalbumin; up triangles,
calretinin; down triangles, calbindin; squares, cholinergic neurons. The approximate number of
cell bodies from each cell population that can be found in the 3D volume of the single-cell
axonal arbor is indicated below. (E and F) Enlarged view of the boxes from panels C and D.
Thicker black indicates dendritic processes, and thinner lines indicate axonal ramifications.
Note that the small varicosities along the axonal collaterals correspond to putative synaptic
boutons. A color version of this figure is enclosed in the CD-ROM.
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and the application of promising new computational tools will define how anatomical
features constrain the extraction of information processed in the BF. For the time being,
we can only speculate on how the BF, in particular the cholinergic neurons, process
specific information despite the apparently diffuse organization of its elements.

The territory of the BF populated by cholinergic corticopetal cells can be viewed as
a large interconnected network where a systematic directional variation of dendritic
clouds and presynaptic axonal clouds permeate each other intimately. In spite of the
lack of internal borders, within this large cholinergic assembly, smaller subassemblies
can be delineated by differential cell densities and dendritic orientations, input–output
features, and numerical relations of the constituent neuronal populations. The cholin-
ergic cell clusters with other local or projection neurons may represent special sites
(modules) where information processed in separate streams can be integrated. The
location and size of these modules may temporarily vary according to the prevalence of
state-related diffuse brainstem modulatory and more specific telencephalic inputs. From
this latter group of afferents, the prefrontal input may function as an external threshold
control, which allocates attentional resources via the BF to distributed cortical pro-
cesses in a selective self-regulatory fashion.

9.9. APPENDIX

9.9.1. Animals and Tissue Processing

The reconstructions and statistical analyses presented in this paper were prepared
from data obtained from adult male Sprague-Dawley rats. All animal procedures were
in compliance with the National Institutes of Health (NIH) Guidelines for the Care and
Use of Animals in Research and approved by the Rutgers University Institutional
Review Board for the Use and Care of Animals. The anesthesia, electrophysiological
recordings, perfusion of animals, and tissue processing have been described earlier
(55,57–58).

9.9.2. Data Acquisition

Immunostained diaminobenzidine-labeled cell bodies were digitalized in BF areas
with the aid of an image-combining computerized microscope system (Zeiss
Axioscope, 20× Plan-NEOFLUAR lens) using the Neurolucida software package (59)
(MicroBrightField, Colchester, VT). Outlines of the sections, contours of structures,
and fiducial markers were drawn with a 5× Plan-NEOFLUAR lens. Dendritic branches
were traced from the cell body by connecting tracing points by straight lines (Plan-
APOCHROMAT 40× (NA = 1.0) or Plan-NEOFLUAR 63× (NA = 1.25) oil immersion
lenses). Sections containing fluorescent-tagged cell bodies were mapped by using the
epifluorescent setup of the Axioscope microscope equipped with appropriate filters.
Fast Blue and Fluor-Gold-labeled projection neurons (exciter/barrier filter set 365/418)
and the fluorescein isothiocyanate (FITC)-labeled (FITC exciter/barrier filter set 450–
490/520) cholinergic cells could be separately visualized in the same section. Labeled
cells were mapped from every 8th sections at a magnification of 20×.

Although the outlines, and contours were drawn flat, disabling z input information,
dendrites were followed in the depth of the sections (50 or 100 µm) by changing the
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focus. Curvilinear dendrites were represented in the computer as a series of short
straight lines giving a close fit to the original shape and length. The Neurolucida hard-
ware system allows a point-to-point discrimination of 0.3 µm in all axes. Neurons traced
from each section were aligned to a common reference, e.g., the lowest midline point
of the corpus callosum. Mapped sections were aligned using up to 99 alignment points
for best-fit matching included in the Neurolucida software program. The data gener-
ated by tracing the neurons using the Neurolucida software are later referred as the
Neurolucida database. The database is composed of a stack of aligned sections.

Neurons in the Neurolucida database were represented by the x, y, and z coordinates
of the cell bodies. In the database, dendritic trees originating from the same neuron at
different sites were represented as separate but adjacent data blocks and were encoded
independently from their cell bodies. Since cell bodies were not traced as 3D objects,
the origin of the primary dendrites did not necessarily match in any dimension. Due to this
independence of cell bodies from their dendrites in the encoding scheme, finding the
common cell body for each dendrite was not obvious. Branching points were marked.
Based on the branching points, first, second, third, and higher order dendritic segments
were identified as stemming from a parent node. The hierarchical encoding system
(introduced by Neurolucida) allowed us to recursively represent the complexity of any
dendritic tree in the database.

9.9.3. Selection of Neurons for Dendritic Tracing

In this paper, dendritic data are derived from three different datafiles. As a prelimi-
nary material, all cholinergic cell bodies with their dendritic processes were traced
from seven coronal sections (50 µm). Approximately 1300 cells were traced in this
material. Figures 1B and 8A are from this datafile. To create a more complete database,
a second brain was cut in horizontal planes into 34 consecutive sections (100 µm thick),
and every cholinergic cell was digitized. Figures 5A and 6A are generated using this
horizontal dataset. Finally, a third brain was cut in the sagittal plane (100 µm thick),
and the data presented in Figure 6B–F are derived from the septal region of this sagittal
dataset. In this latter brain, similarly to the horizontal set, all cholinergic cell bodies
were digitized. From the horizontal and sagittal dataset, about 5% of the total cholin-
ergic neurons were selected for dendritic reconstruction based on a random sampling
of the total population. In order to obtain a sample of neurons representative of the
inhomogenous distribution of the entire population, we used a combination of two dif-
ferent density criteria, one with high and another with low resolution. For both selec-
tions, the space that incorporated all cholinergic cells was subdivided into subspaces of
identical size (voxels or unit spaces), and on these voxels, based on the cell density,
different selection criteria were applied. As for a high density criterion, we selected
cells from voxels of 100 × 100 µm × section thickness (=100 µm). To resolve a larger
scale inhomogeneity, cells were selected from voxels of 500 × 500 µm × section thick-
ness. The larger voxel captured the density differences at a 500 µm resolution. The
100-µm sample size was applied to sample local densities at a 100-µm scale. Next, the
two samples were combined. As a result, the combination of samples reflected both
the global and the local distribution features of the cells. From each voxel, where the
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local cell counts met the density criteria, a neuron was selected on a random basis and
marked for dendritic tracing. The number of cells, s selected for dendritic tracing from
each voxel with both v’ and v” sizes was proportional to the natural logarithm of the
number of cells, n within the given space, vijk, multiplied by a constant, c as follows:

s c n nv ijk v ijk= × +[ ]′ ′′log( ) log( )

For the interpretation of i, j, and k voxel indices, see (41). The purpose of the multipli-
cation factor c was to provide flexibility to scale up or down the number of selected
cells. The value of c was set to 0.5 with 100 µm grids and 0.4 with 500 µm grids. The
edges of the two voxel types v’ and v” were 100 µm and 500 µm, respectively. Techni-
cally, the datafile of traced cell bodies was exported from Neurolucida, parsed for dif-
ferent objects (cell bodies, structure outlines, etc.), and the point coordinates of cell
bodies were extracted. A custom written C++ program performed the partitioning, cell
counting, and selection of target cells for dendritic tracing. With this sampling scheme,
we marked 750 cells from the horizontal dataset (n = 15,776) and 137 from the septal
sagittal dataset (n = 2266). The generated data file with the target cells marked, was
inserted to the original Neurolucida datafile for subsequent dendritic tracing.

9.9.4. Analysis of the Data

For data analysis, as described here, we extracted the x, y, and z coordinates of the
cell bodies from the Neurolucida database and saved them in ASCII format, each cell
type in different data files. Structure outlines were stored separately. The medial, lat-
eral, dorsal, and ventral extremes of the cholinergic cell distribution were taken as a 3D
framework to incorporate the entire database. For expressing regional density changes,
the 3D framework was subdivided into virtual blocks of identical size denoted as
“voxels”. Section thickness served as unit size for the z dimension. If cells of different
types were mapped from different but adjacent sections (plots in Figs. 4 and 9C,D),
then their z coordinates were collapsed into a common 2D plane (master plane) by
removing the within-section depth coordinates, but preserving the x and y coordinate
of the cells. Each different cell type was separately counted in each of these master
plane lattices. For visualization, we used different thresholds. Differences in the voxel
size and thresholding could significantly influence the obtained results. A more detailed
methodological description and discussion is given in a recent publication (41).

Differential density 3D scatter plot. Density differences within or between cell popu-
lations can be represented in 2D isodensity maps (60). The obvious limitations of this
method is the lack of the third dimension. Our method (41) quantifies density differ-
ences first, then plots the density descriptors in a real 3D coordinate system. The input
data is provided as position of cell bodies by their locations as points in the 3D Euclid-
ean space. In this database, each row represents a single cell given by the x, y, and z
coordinates relative to a reference point as the origin. The entire database is placed into
a framework, which is partitioned into boxes of identical size (voxel) as a grid system.
Cells are counted within each voxel. In contrast to the parametric representation of the
space, this provides a 3D volumetric dataset where the dimensions are the x, y, and z
position of the voxel and the local cell count within the voxel space. Voxels of cell
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counts larger than a predefined density are considered and represented by a single
marker randomly selected from the neurons in the corresponding voxel. The distribu-
tion of these markers highlights locations where high density neuronal clusters occur.
Figures 4A,B and 5B represent this type of analysis.

Isodensity surface mapping. The spatial distribution of different cell types may be
very complicated as neuronal populations interdigitate, intersect, or overlap with one
another. Instead of using scatter plots, the spatial organization of density differences is
better visualized by rendering a surface around large density cell groups, especially
when multiple cell types are concerned. Similar to the “differential-density 3D scatter
plot,” a selected set of voxels are visualized. However, instead of representing them by
single points, the algorithm renders a surface around voxels of larger than certain cellu-
lar density. The procedure of subdividing the 3D database into voxels (unit spaces) and
calculating the voxel cell densities is identical to that of the “differential-density scat-
ter plot.” Conversion of the 3D point-coordinate database, where the entries are the
cells, to a density data constructs a volumetric database. In the volumetric data, the
entries are voxels defined by their 3 coordinates and the associated cell densities. Then,
a density threshold is defined, and voxels characterized by larger density than the
threshold are identified. The algorithm renders a 3D skeleton and determines a 2D
manifold on the skeleton that is defined by interconnecting points that separate the
higher density space from a lower density space. The manifold is further partitioned
onto triangles and surface elements are rendered to each of these triangles. These sur-
face elements are then smoothed, and reflectance property as well as light source are
defined. For surface rendering, the C++ program and the 3D visualization toolbox of
Matlab R11® (MathWorks, Inc.) were used. Figure 3B was generated by this method.

Isorelational surface rendering. Similar to the “isorelational scatter plot”, the aim of
this representation is to show the codistributive association between different cell types
or other variables. In contrast to the “isorelational scatter plot”, this plot renders a
surface around the population of cells where certain density ratio is detected. Since the
association of different cell types have a typically complicated spatial configuration,
the scatter plot of neuronal markers does not reveal the true 3D structure. In order to
reduce the complexity, voxels, where a certain density ratio of two cell types is estab-
lished, are rendered with a surface. This surface separates cells where certain density
ratio is higher than a critical value. The unique feature of the “isorelational surface
rendering” method is the visual representation of abstract relationships, which is more
important for understanding functional connections between neurons than exact loca-
tions of cell bodies. Technically, the 3D database of cell bodies is subdivided into unit
spaces for both cell types. Then cell density ratios are calculated within each unit space
(voxel) shared between the two cell types. The density ratios are arranged in a 3D
matrix containing various ratios. Isodensity demarcation lines are calculated and ren-
dered by a surface in such a way that cell bodies with density ratios larger than a spe-
cific number are covered by the surface. Density ratios smaller than the critical one are
located outside of the surface. For visualization purposes, a range of critical density
values must be applied for testing the integrity of clouds and to make sure that there are
no hollow spaces covered. The algorithm of surface rendering is the same as the one
described at the “isodensity surface mapping”. Complex relationships between mul-
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tiple components such as density relations of multiple cell types can be decomposed
into pairwise relations and visualized as merged surfaces. Color coding of surfaces of
different cell types helps to interpret complicated arrangements. The plots in Figure
4C,D were generated according to this method. A more detailed description of the
methods described so far in this section is given elsewhere (41).

Mean 3D vector of dendritic processes. Individual dendritic branches may have a
principal orientation adapted to making contacts with also oriented axons, independent
from the orientation of dendritic mass. To test this, the principal orientation of den-
dritic branches was expressed by the mean branch orientation and approximated by the
average orientation and average length of the dendritic tree. The orientation and length
were combined into a V(P0,P1) vector originating from the point P(x0,y0,z0)i, where the
dendrite stemmed from the cell body and pointing to the P(x1,y1,z1)i point, which repre-
sented the average length and orientation. In this analysis, we first calculate the dxi, dyi,
and dzi vectors as Euclidean distances between adjacent branch points, and the average
of the dxi, dyi, and dzi is used as a single vector to represent the main orientation ten-
dency of the dendrite. Since multiple origins of dendritic processes were possible, the
orientation vector was calculated separately for each main branch resulting in different
vectors per cells originating from nearby points. Parsing of the Neurolucida data files
and computation of vectors was all carried out by custom written C++ codes and com-
piled for Silicon Graphics and Pentium class computers using Irix and Linux operating
systems, respectively. For visualization purposes, vectors were rescaled by a common
multiplicative factor that made it easier to appreciate the main tendency of orientation.
3D aspects of the vector space were constructed by superposition of the vectors on the
structure outlines (such as anterior commissure). Rotation and navigation in the data-
base using Matlab 3D graphical user interface made it possible to gain insights of the
vector orientation in the denser cell clusters. This type of analytical tool was applied to
generate Figures 5A and 6A.

2D orientation of dendritic processes. The algorithm (polar histogram) supplied in
the Neruolucida software package is similar to the analysis described by McMullen et
al. (47). The difference is that in our case, the results are collected by a computerized
system, and the artifacts of that collection process need to be filtered out. The algo-
rithm for polar histogram breaks up the dendritic processes into line segments and
determines the directions that these line segments point to and that of the lengths of
these segments. The sum of the lengths of the small line segments is approx the same as
the length of the original tracing. The direction of the vector is calculated by projecting the
line segment onto the plane of the sectioning. This is accomplished with the arc-cosine
function. The histogram represents the total length by the distance from the origin and
an angle (θ) that the vector makes with the x axis plotted in the radial direction. Each
sector in the polar histogram is the sum of all the dendritic growth in that particular
range of angle. There is a unique value of the polar histogram for each value of the
angle θ. Some information has been lost because the dendrites that are traced in the
sectioning plane are always going to be longer than dendrites in the plane perpendicu-
lar to the sectioning plane. Therefore, this type of analysis is useful primarily to charac-
terize the orientation of dendrites that are roughly coplanar. Neurolucida allowed us to
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outline and select cell populations based on anatomical markers from single sections or
a stack of sections and to construct a polar histogram of the dendrites pooled together
from all the marked neurons.

Comparison of 3D location of labeled cells from different brains. After mapping
labeled cell bodies, the Neurolucida files were transferred to a Silicon Graphics (Oc-
tane) workstation for further analysis and 3D visualization using the Micro3D (Oslo
Research Park) program. In order to compare data from several brains with multiple
retrograde tracer injections, each section was visually aligned to the corresponding
map of a “master” brain with the aid of surface contours and fiducial markers, includ-
ing the corpus callosum, anterior commisure, internal capsule, stria medullaris, stria
terminalis, and the fornix. To create a maximum fit, an interactive procedure was used,
including moving, rotation, and shrinkage corrections along the x, y, and z axes. To
avoid gaps between sections in the visualizations, individual cells were randomized in
a 400 × 400 × 50-µm space (z-spread). Figures 2 A,B and 3A were generated according
to this procedure.

Overlap analysis. The degree of overlap between two neuronal populations was
estimated by subdividing individual sections into an array of 500 × 500 µm voxels and
counting the number of digitized coordinate pairs (cell) per voxel using a custom-made
program similar to the one applied by Alloway et al. (40). To avoid analyzing areas
with low density of cells, only voxels containing 3 or more cells were included. Voxels
containing a defined number of “population 1” or “population 2” cells are dark gray
(red in the color version) or light gray (blue in the color version), respectively, while
voxels containing a similarly defined number or more cells of both categories (at least
3 of each) are labeled white. The number of differently labeled voxels are counted for
each section and also summed across sections and used to estimate the percentage of
overlapping voxels and also the percentage of a given cell population in the overlap-
ping voxels. The charts in Figure 2C,D are from this material.

Merging files containing cells of different complexities. Figure 9 C,D were prepared
merging two different datafiles: one derived from a series of sections containing four
different cell populations in the BF using immunostaining for parvalbumin (PV),
calretinin (CR), calbindin (CB), and choline acetyltransferase (CH) (“four marker”
brain). The other file contained a single electrophysiologically and chemically identi-
fied neuron (NPY or CH) with its axonal ramifications and dendritic trees digitized
from a series (n = 10–100) of 50-µm thick sections.

The cell mapping and anatomical landmarks were extracted from the four marker
brain, in which four series of alternate sections (n = 48) were stained with antibodies
against CH, PV, CR, and CB. The distance between two consecutive sections stained
with identical markers was 300 µm. Adjacent four sections containing markers for PV,
CR, CB, and CH were aligned using standard anatomical landmarks (i.e., corpus
collosum, lateral ventricle, fornix, thalamus, optic chiasm) and collapsed into a single
section by removing the within section depth coordinates, but preserving the x and y
coordinates of the cells, resulting in a 3D series of 2D layers. The distance from bregma
of each of this composed layers was calculated using the average of the original four
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sections. This way, we created a set of 12 layers, each containing four different cell
populations with their original x and y coordinates. The same dataset was the basis for
the analysis documented in Figure 4.

Reconstruction of single identified cells was achieved by routine procedures as
described in the literature (for references, see [61]). Since the tissue sections contain
only one stained neuron, all axonal and denritic processes can be followed through a
series of adjacent sections. After determining the distance from bregma of the single
reconstructed cell body, the corresponding section from the four marker brain was
merged into the section that contained the single identified cell body. The axonal arbor
fields of the single identified cells were outlined, and the number and cell types that
were enclosed were extracted from the Neurolucida database. Data from the cell marker
and fractal analysis of the axon arbor was then used to estimate the approximate num-
bers and types of cells that may be embedded in the axonal ramification space of the
single reconstructed cell and could come into contact with it.
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Architecture of Sensory Map Transformations

Axonal Tracing in Combination with 3D Reconstruction,
Geometric Modeling, and Quantitative Analyses

Trygve B. Leergaard and Jan G. Bjaalie

ABSTRACT

In this chapter, we review recent investigations of sensory-related brain stem maps
in the rat cerebro-cerebellar and cat auditory systems. Sensitive axonal tracing tech-
niques were used to identify specific components of these neural systems, such as the
distribution of pontine terminal fields originating in primary somatosensory cortex,
and the connectivity between different auditory brain stem nuclei. Distribution of
labeled axonal plexuses and cell bodies, and the outlines of brain regions and nuclei,
were recorded with the use of image-combining computerized microscopy and recon-
structed in three dimensions. Local coordinate systems were established to allow com-
parison of data from different experiments and to facilitate data sharing in
neuroinformatics databases. The distribution patterns were investigated with geomet-
ric modeling of the clustered patterns of labeling, density gradient analysis, and analy-
sis of spatial overlap of terminal fields in dual tracing experiments. Further, series of
slices through the 3D reconstructions (sections at chosen angles of orientation) were
used for a more detailed analysis. These computerized methods allowed us to discover
new principles of organization pertaining to sensory map transformations in soma-
tosensory cerebro-cerebellar pathways and ascending auditory pathways.

10.1. INTRODUCTION

The functions of a given brain region are, to a high degree, determined by the archi-
tecture of its afferent and efferent connections (1–6). The major pathways of the mam-
malian brain are characterized by orderly spatial relationships. This orderly
arrangement of afferent and efferent projections among components of the nervous
system is commonly referred to as topographic organization, as opposed to randomized
or chaotic organization (7–11). In the afferent pathways, the orderly representations of
the body surface, the visual field or the tonal frequencies, are generally well preserved.
Thus, the mapping of the sensory periphery onto receiving regions of the central nervous
system is often described as continuous, with an overall point-to-point connectivity.
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Some pathways of the brain, sensory-related and others, contain more complex inter-
digitating or fractured discontinuous patterns (12–16).

To explore topographic patterns at the level of sensory-related brain stem nuclei, we
have used sensitive axonal tracing techniques in combination with electrophysiologi-
cal characterization and computerized 3D reconstruction. In this chapter, we will out-
line basic data acquisition procedures used for digitizing brain regions and the
distribution of retrogradely labeled cells and anterogradely labeled terminal fields of
axons (17). Further, the methods for 3D reconstruction from digitized sections will be
discussed together with new approaches for data presentation in local coordinate sys-
tems, which is important in the context of data sharing and comparison of results from
different experiments and different laboratories (18). Finally, we will describe various
steps of analysis, such as slicing of the reconstructions, surface modeling of labeled
structures, density gradient analysis, stereoimaging, and spatial overlap analysis. We
exemplify the use of these computerized methods for the study of two major brain
pathways: the somatosensory cerebro-cerebellar system and the ascending auditory
pathways. In the cerebro-cerebellar system, we focus on transformations from cortical
2D via brain stem 3D to cerebellar 2D representations (19,20). In the auditory path-
ways, we study changes from straightforward (point-to-point) to more complicated,
interdigitating patterns of tonotopic organization (21,22).

10.2. MAP TRANSFORMATIONS IN CEREBRO-CEREBELLAR
AND AUDITORY SYSTEMS

A variety of anatomic, histologic, immunocytochemical, electrophysiologal, and
tomographic techniques are used to map various levels of organization in the brain
(23,24). In brain pathways, knowledge about topographical order is essential for
understanding basic structural and functional organization. A map of a sensory surface
in a given cortical area may be reproduced or modified in other regions of the brain
receiving inputs from this cortical area. Similarly, projections from a brain stem nucleus
to other brain structures may preserve spatial relationships or introduce new neighbor-
ing relationships among components represented in the projection. Such map transfor-
mations are believed to reflect different computational properties of brain regions
(3,14,16).

Two examples of projection systems will be dealt with here: (i) the cerebro-pontine
projection, which is the first link in one of the largest pathways in the brain, connecting
the cerebral cortex with the cerebellum (for review, see [25]); and (ii) the pathways
through the lemniscal nuclei, which is one of the least understood parts of the auditory
system (for review, see [15]). The data shown will exemplify complicated 3D patterns
of axonal labeling originating within functionally well-defined somatosensory and
auditory brain maps. The labeling patterns preserve topographical order, but introduce
various degrees of new neighboring relationships.

Cerebro-cerebellar projections originate in large parts of the cerebral cortex and
reach almost all regions of the cerebellum (for reviews, see [25–28]). The projections
are synaptically interrupted in the pontine nuclei. The somatosensory representations
in the cerebro-cerebellar pathway have been outlined in detail in both source (cerebral
cortex) and target regions (the cerebellar cortex). Both regions receive primary soma-
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tosensory information. Nevertheless, the patterns of topographic organization are dif-
ferent. The primary somatosensory cortex (SI) contains a relatively continuous map of
the body surface (7,9), (for review, see [29]). By contrast, the tactile responses in the
cerebellar granule cell layer form a highly discontinuous, or fractured, map (12,13,30)
(for review, see [31]). From physiological data, it is evident that the tactile-related
cerebro-cerebellar circuit exhibits precise projection patterns (12). We have studied
the structural nature of the transformation from the continuous cerebral to the frac-
tured cerebellar map (19,20). The basic methods and results are reviewed below.

The nuclei of the lateral lemniscus are intercalated in the ascending auditory path-
ways. The dorsal division is organized in a lamellar fashion, whereas the ventral part of
these nuclei has been reported to contain a complex, widespread, and patchy organiza-
tion (for review, see [15]), analogous to the patchy mosaic organization previously
reported in the pontine nuclei (for review, see [27]). While tonotopic order is main-
tained by point-to-point (frequency-specific) connections between most central ner-
vous components of the auditory system (for review, see [32]), such principles have
not been found in the ventral part of the lemniscal nuclei. Complex tonotopic arrange-
ments have been demonstrated in rats (33), and bats (34,35). In cats, results from physi-
ological and anatomic investigations are incongruent and have failed to demonstrate
clear-cut tonotopic order (36–42). Thus, the question whether there is a frequency-
specific organization within this region of the brain has remained open. One possibility
could be that the presence of a complex clustered organization has hampered the
understanding of tonotopy in this particular auditory nucleus. Alternatively, structural
order might be absent or brought about by some other modality than frequency speci-
ficity. We employed the same methodological tools as used in our investigations of the
cerebro-cerebellar system to search for topographic organization in the nuclei of the
lateral lemniscus (21,22).

10.3. NEURAL TRACING TECHNIQUES

The anatomic organization of connections between brain regions, and between the
periphery and the central nervous system, are currently studied with increasingly sensi-
tive tracing techniques. These techniques allow a high level of precision and detail in
the mapping of topographical patterns (24,43–46) (for a historical review, see [47]). In
our investigations of the cerebro-cerebellar (19,20) and auditory systems (21,22), we
have used the neural tracers wheat germ agglutinin-horsesradish peroxidase (WGA-
HRP; [48]), Phaseolus vulgaris-leucoagglutinin (PHA-L; [49]), biotinylated dextran
amine (BDA; [50,51]), and rhodamine conjugated dextran amine (FluoroRuby, FR;
[52]) to identify the target regions of particular populations of projection neurons
(anterograde tracing; Fig. 1). The tracers were applied either in small amounts, in injec-
tion sites with a diameter of 200 – 400 µm (20), in larger amounts (19,21,22) (Fig. 1),
or with the use of multiple repeated injections into the same functionally defined region
(19). The equally sensitive tracers BDA and FR were used together in a dual-tracer
approach to investigate patterns of segregation and overlap in the projections to the
pontine nuclei from neighboring cerebral locations (20). In the auditory system we
took advantage of the bidirectional axonal transport of dextran amines: BDA first
labeled the cells of origin of afferent projections to the injection site in the inferior
colliculus (retrograde tracing) and was then transported anterogradely from these cells
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to label collateral axons. In this way, we could label cells in the lemniscal nuclei that
project to the inferior colliculus, as well as the collateral projections to the lemniscal
nuclei from other sources of input to the inferior colliculus (21,22).

While these and other available techniques offer new and unique possibilities for
outlining detailed topography, problems related to presentation, and efficient use of
data remain to be solved. In this context, precise data acquisition, collection of data
from complete series of sections, and full 3D reconstruction, represent important steps
towards an improved understanding of structure–function relationships.

10.4. IMAGE-COMBINING MICROSCOPY FOR DATA ACQUISITION

Data entry for the studies reviewed here was made with an image-combining com-
puterized microscope. With this method, data from histological sections, including
labeling patterns, were coded as lines and points. The principle of image-combining
computerized microscopy was first introduced by Glaser and van der Loos (53,54) and
has later been used by numerous investigators (for a review of anatomical data acquisi-
tion methods, see [55]). This system mixes a computer graphical image of digitized
structures with the image of the specimen (Fig. 2). Movement of the microscope stage
(controlled by stepping motors via the computer) is accompanied by a translation of the
graphical image. The user thus obtains direct feedback during the data entry procedure.
The system is optimized for high-resolution recording of numerous x, y (or x, y, and z)

Fig. 1. Anterograde axonal tracing of pontine projections from SI in rats (modified from
[19]). (A) Photomicrograph of a frontal section through the center of a BDA injection site
placed in the right SI trunk representation under electrophysiological guidance. A bundle of
labeled callosal fibers emerge from the injection site. Labeling is also visible in the secondary
somatosensory cortex, SII, and thalamus (asterisk). (B) Line drawing of the SI somatotopic
map (modified with permission from [9]). The black dot indicates the position and size of the
injection site. (C) Photomicrograph of a transverse section through the midpontine level in the
same animal, showing two dense plexuses of BDA-labeled fibers dorsolaterally in the right
pontine nuclei, close to the descending peduncle. (D) Computerized plot of the same section as
shown in panel C. The thick contour line represents the ventral surface of the pons and the thin
contour lines the boundaries of the gray matter. Dots represent the distribution of labeled axons
in the pontine nuclei. Bars, 500 µm. SI, primary somatosensory cortex; SII, secondary soma-
tosensory cortex; ped, peduncle; pn, pontine nuclei.
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coordinates across large brain regions. The precision of the data recording depends on
the quality of the microscope optics, the stepping motors, and the resolution of the
graphic feedback image (54). With our technical configuration (17), recording of posi-
tions over short distances, close to the center of the field of view, were performed
without any detectable error (other than those imposed by the pixel size of the screen).
With a 25× objective lens, we recorded the length of a 2 mm micrometer with a preci-
sion of ±2 µm.

In our investigations of the cerebro-pontine system, we digitized contour lines for a
number of structures (the ventral surface of the pons, the outlines of the pontine gray,
the contours of the corticobulbar and corticospinal fiber tracts, the midline of the brain,
and the outline of the fourth ventricle) as a reference for the alignment of the sections.
The density and distribution of anterogradely labeled axonal plexuses within the pon-
tine nuclei was digitized semiquantitatively as points (19,20,56). In areas with low
density of labeling, point coordinates were placed at regular intervals along the length
of single axons. In areas with dense labeling, a rough correspondence was sought
between the density of labeling and the number of digitized points (Fig. 2). This
approach allowed subsequent analyses of density gradients and overlap patterns.

Fig. 2. The graphical user interface of the data acquisition program MicroTrace: field of
view in the image-combining computer microscope. The specimen is a transverse section
through the right pontine nuclei viewed with fluorescence microscopy (through the Leitz N2.1
rhodamine filter block). Axonal plexuses were anterogradely labeled after injection of
rhodamine-conjugated dextran amine and biotinylated dextran amine in electrophysiologically
defined individual whisker representations in SI (data from [20]). The borders of the pontine
gray substance are digitized as lines, and two categories of symbols are placed above parts of
the labeled regions. The large cross illustrates the computer screen cursor.
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A simplified data entry approach was used for the auditory system investigations
(21,22). Here, series of detailed camera lucida drawings were digitized using essen-
tially the same approach as outlined above. The external lemniscal nuclear borders
were digitized as lines. Labeled neurons were recorded as single points, whereas the
sharply defined patches of labeling within the lemniscal nuclei were surrounded with
contour lines.

10.5. 3D RECONSTRUCTION

The precision of a 3D reconstruction from serial sections depends upon the section
quality, the data acquisition method, and the procedure for section alignment. It is
essential to minimize section distortions and to obtain complete series of sections. In
our experiments, brains were fixed by paraformaldehyde perfusion, cryoprotected with
buffered sucrose, and sectioned at 50 µm on a freezing microtome. To minimize distor-
tions, microtomy was performed carefully at stable temperatures, and cerebellar tissue
(18) was embedded in gelatin prior to sectioning. Series of sections that were incom-
plete or contained damaged sections were not used for reconstruction.

The digitized sections from our investigations were imported into our Open Inven-
tor-based application for 3D reconstruction, visualization, and analyses of brain regions
and neuronal labeling patterns. This application and its predecessors have been used in
more than 20 publications (recent examples include, [18–22,56–61]). The current ver-
sion (Micro3D 2001) runs on Silicon Graphics workstations and PCs equipped with
Red Hat Linux and Open Inventor for Linux (TGS Inc., San Diego, CA) and is made
available through the Oslo Research Park (see also http://www.nesys.uio.no/).

With the use of our application, the digitized sections were aligned interactively on
the computer screen, using multiple anatomic landmarks, and real time rotation of the
reconstruction during alignment (Fig. 3; for an impression of real time rotation, see
e.g., movie sequence 1 on the accompanying CD-ROM). Sections were assigned z
values defined by section thickness and serial numbers, before they were maneuvered
in position, using a handlebox and specific sliders for translocation and rotation of
sections, available in the program Micro3D (Fig. 3A). Examples of anatomic land-
marks used for alignment of sections through the pontine nuclei, include the ventral
surface of the pons, the outlines of the pontine gray, the contours of the corticobulbar
and corticospinal fiber tract, the midline and the floor of the fourth ventricle. To further
aid the inspection of the 3D reconstructions from various angles of view, sections from
control brains cut in section planes orthogonal to the sections from the experimental
animals were digitized and used as templates for alignment. To ensure that the recon-
structions retained natural proportions, sections that had been submitted to histologic
or immuncytochemical processing were measured in the xy plane, and linear size
adjustments were introduced in the final reconstruction to maintain correct in vivo
proportions. Below, we exemplify some of the features of the Micro3D application in
the context of our investigations of the cerebro-pontine and lemniscal nuclei systems.
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10.6. LOCAL COORDINATE SYSTEMS FOR INDIVIDUAL BRAIN STEM
NUCLEI

10.6.1. Comparison of Results

To make efficient use of data from individual neural tracing experiments, it is neces-
sary to compare results from different experiments. 3D computerized reconstructions
are well suited for direct comparison by superimposing data from multiple experiments
into a common 3D space. On the technical side, comparisons of results are typically
hampered by variation in the resolution of drawings or photomicrographs, the plane of

Fig. 3. Assembly and visualization of a 3D reconstruction of the rat brain stem and cerebel-
lum (modified from [18]). (A) Series of digitized transverse brain stem sections are aligned
according to multiple anatomical landmarks. (B) Oblique lateral view of the complete aligned
3D reconstruction. (C and D) Ventral and lateral views of the complete 3D reconstruction. The
outer surface of the brain stem is represented as a transparent surface, and the outer boundaries
of the cerebellum, pontine nuclei, and trigeminal sensory nuclei are represented as solid sur-
faces. The reconstruction of the brain stem is based on a series of transverse sections and is
combined with a series of sagittal sections (cf. [18]). The left half of the cerebellar reconstruc-
tion is a mirror copy of the right half. The program Micro3D was used to visualize the indi-
vidual components of the reconstruction separately or in different combinations. A movie of
a 360° rotation sequence of this reconstruction is available in the companion CD-ROM
(sequence 1).
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Fig. 4. Computer-generated dot maps showing the distribution of pontocerebellar (A–C)
and trigeminocerebellar (E–G) projection neurons labeled after tracer implantation into crusI
and IIa (D) of the rat cerebellum (modified from [18]). Each dot represents one labeled neuron.
The diagrams show the internal coordinate systems for the pontine and the trigeminal nuclei
from three angles of view. Coordinate systems of relative values from 0 to 100% are used. The
halfway (50%) reference lines are shown as dotted lines. Curved solid lines represent nuclear
boundaries. Black dots represent pontine neurons labeled by implantation of FR into the crown
of crusIIa, and gray dots represent pontine neurons labeled by implantation of FE into the
crown of crusI. The size and location of the implantation sites are shown in the line drawing in
panel D. Movies showing rotation sequences of these reconstructions are available on the ac-
companying CD-ROM (sequences 2 and 3). Pontocerebellar projection neurons labeled by
tracer implantations in the left crusIIa are located centrally in the right pontine nuclei, whereas
neurons labeled by tracer implantation in crusI are located more rostrally and caudally.
Trigeminocerebellar projection neurons labeled by tracer into the crown of the left crusIIa are
distributed in two main clusters located dorsally in the left (ipsilateral) trigeminal sensory
nuclei. No trigeminal neurons were labeled after tracer implantation in crusI. Bars, 1 mm.
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sectioning, the use of different section spacing, and dissimilar techniques for data docu-
mentation. These problems are common to most anatomical brain mapping investiga-
tions (24,47,62–66). For our investigations of the rat pontine nuclei, we have therefore
implemented an internal coordinate system suitable for detailed analysis of experimen-
tal labeling patterns and presentation of neural tracing data in standardized diagrams
(Fig. 4A–C) (19). Internal coordinate systems facilitate the comparison of experimen-
tal data from different experiments and allow positional coordinates to be translated to
standard atlas coordinates (e.g., the stereotaxic atlas of Paxinos and Watson [67]). We
are currently implementing internal coordinate systems for several brain stem regions
of the rat (Fig. 4E,F) (18).

The origin of the pontine coordinate system was defined as the crossing of the mid-
line and a line tangential to the rostral end of the pontine nuclei. A rectangular frame of
reference was introduced, oriented perpendicular to the long axis of the brain stem.
Planes, tangential to the pontine gray, defined the caudal and lateral borders of the pon-
tine nuclei. To avoid the interference of inter-individual size variability, relative coor-
dinates (0–100%) were introduced (for details, cf. [18]). Based on this coordinate
system, we made diagrams showing the outlines of the pontine nuclei in standard ven-
tral, lateral, and dorsal angles of view. These diagrams facilitated data presentation
(Figs. 4A-C, 5, and 6) and comparison of results from different animals (19,20).

10.6.2. Databasing

The standardized data presentation scheme described above allows efficient com-
munication of large quantities of experimental neuroanatomic data. By sharing original
data files with the neuroscience community, quality control and alternative interpreta-
tions of data are more readily achieved (68–70). We have made available original data
and additional illustrations from two recent publications (19,20) in a neuroinformatics
knowledge base [(http://www.nesys.uio.no/Database/), see also (http://www.cere-
bellum.org/)]. The aim was to explore the possibilities for Web-based publication of
data, in addition to providing full documentation of our material. The original data
were published simultaneously with the peer-reviewed journal articles (19,20). Stan-
dardized illustrations and more advanced rotation sequences were made available
together with the original data files (ASCII coordinate files). We believe that these data
presentation formats might be developed further to serve database purposes. Examples
of 3D rotation sequences, supplementing ordinary illustrations, are provided on the
accompanying CD-ROM.

10.7. VISUALIZATION AND QUANTITATIVE ANALYSES
OF THE DISTRIBUTION OF LABELED AXONS AND CELLS

10.7.1. Slicing of 3D Reconstructions

Traditional anatomic studies are based on observations made in serial sections. The
plane of sectioning may, however, lead to incomplete interpretations of topographic
organization. In addition to real time rotations of 3D reconstructions and diagrams
showing the total projection patterns from several angles of view (Figs. 3 and 4),
dynamic subdividing of the complete reconstruction into sections (here referred to as
slices) of chosen thickness and orientation add a new dimension to the analysis of brain
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topography. Figure 5 shows two consecutive series of slices, transverse and sagittal,
through a reconstruction of the pontine nuclei. In this experiment, an injection was
placed into a limited part of SI. Depending on the plane of slicing, the distribution and
shape of the labeling in the pontine nuclei appeared different. In the transverse section
plane, which is used in most studies of the pontine nuclei (71–73) (for review, see
[25,27]), the labeling appeared fairly continuous from rostral to caudal (“columnar”).
By contrast, the sagittal series through the same reconstruction revealed two major
separated zones of labeling, rostrally and caudally, in the pontine nuclei (compare Fig.
5D and E). Careful inspection of the reconstructions was, therefore, needed to fully
understand the 3D distribution and shape of the labeling. In our investigations of the
cerebro-pontine system we systematically compared slices of different orientation for

Fig. 5. Computer-generated 3D reconstruction of the rat pontine nuclei subdivided into con-
secutive series of sagittal and transverse slices (modified from (19); see also Fig. 1), showing
the distribution of pontine terminal fields after injection of BDA into the trunk representation
of SI (B). (A) 3D reconstruction of the pontine nuclei, ventral view. The ventral surface of the
pons is represented as a transparent surface, and the dorsally located descending peduncles are
visible as solid surfaces. The dots represent the distribution of BDA-labeled fibers within the
pontine nuclei. Presentation otherwise as in Figure 4A. The rectangular boxes in panel C illus-
trate 200-µm thick transverse and sagittal slices (shown in panels D and E, respectively) from
the computer reconstruction. The numbers assigned to each slice refer to the internal pontine
coordinate system. Depending on the chosen plane of sectioning, the shapes of the terminal
fields appear different. Bar, 500 µm.
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the detailed analyses of the distribution patterns and for inter-individual comparison
(19,20) (see also http://www.nesys.uio.no/Database/).

10.7.2. Surface Modeling of Labeled Structures

Computerized surface modeling is an important tool for visualization of the size,
shape, and extent of labeling patterns, as exemplified in our investigations using sur-
face modeling based on series of manually digitized contour lines surrounding the zones
of labeling (19–22). Three different approaches for surface modeling were used. The
surface modeling of the brain stem and cerebellum in Figure 3 was performed with a
simple triangulation method, as outlined by Toga (74). The surfaces of the brain stem
nuclei in Figures 3, 5, and 6 were resynthesized from contour lines using the software
library SISL (Sintef Spline Library). The latter surfaces are piece-wise polynominal
(spline) approximations to the given data (75). The surfaces of Figures 7 and 8 were
modeled using the program Nuages (Prisme, INRIA, [76]).

In the rat pontine nuclei, surfaces were used to demonstrate the shape and distribu-
tion of the terminal fields (anterogradely labeled) originating in electrophysiologically
defined parts of SI (19,20) (Fig. 6). To determine the localization of the contour lines
used for surface modeling, density gradient analysis (see below) was used to exclude
regions containing the lowest density levels of labeling. With this approach, we dem-
onstrated that the terminal fields of fibers were distributed in an inside-out shell-like
fashion, and that neighboring relationships in source (SI) were largely preserved in the
target region (pontine nuclei) (19) (Fig. 6; these findings are illustrated to advantage in

Fig. 6. 3D reconstruction showing the topography of pontine terminal fields arising in the
rat SI whisker barrel field (modified from [20]). The anterograde tracers BDA (gray) and FR
(black) were injected into electrophysiologically defined individual whisker representations in
SI (shown in the upper left inset), and the distribution of labeling was computer-reconstructed
in 3D (lower left inset). (A) Computer-generated dot map showing the distribution of BDA
(gray)- and FR (black)-labeled fibers within the ipsilateral pontine nuclei. The clusters of black
dots surround the clusters of gray dots externally. (B) The outer boundaries of labeled clusters
are demonstrated by solid surfaces. The labeled clusters arising from the same row of SI barrels
are located in dual lamellae that are shifted from internal to external. Movie sequences of this
reconstruction are available on the accompanying CD-ROM. Sequence 4 corresponds to panel
A (labeling rendered as dots), and sequence 5 corresponds to panel B (labeling shown as solid
surfaces).
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Fig. 7. Computerized 3D reconstructions of the ventral part of the lemniscal nuclei in cat,
showing the tonotopic distribution of axonal clusters and neurons labeled after injections of
BDA into high-frequency (A–D) or low-frequency (D–G) areas of the inferior colliculus (modi-
fied from [21]). (A,C,D,F) Computer-generated 3D dot maps showing the distribution of la-
beled fibers and cells in a view from caudal (A and D) and dorsal (C and F). Labeled fibers are
shown as gray dots, retrogradely labeled cells as black (larger) dots, and the external surface of
this nuclear region as contour lines. (B,E) The external nuclear boundary is represented as a
transparent surface, and the outer boundaries of the clusters containing labeling are visualized
as solid surfaces. (D,G) Density gradient maps of labeling projected along the long axis of the
lemniscal nuclei (dorsal view). The gray scale gradient shows the highest densities in white and
the lowest in dark gray. Densities lower than 5% of the maximum value are not shown. The
maps reveal a tendency for a banded distribution, and the majority of high-frequency represen-
tations are located laterally, whereas the low-frequency representations are located more medi-
ally. Scale bar, 500 µm.
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sequence 4 and 5 on the accompanying CD-ROM). We also demonstrated spatial order
at the level of projections from individual whisker barrels (20). In the cat lemniscal
nuclei, surfaces were used to demonstrate the shape and distribution of the regions
containing terminal fields of axons (Figs. 7 and 8), following tracer injection into fre-
quency-specific parts of the inferior colliculus (21,22). In the ventral part of these
nuclei, we demonstrated complicated 3D mosaic patterns, presumably representing dis-
continuous frequency band compartments (21), as a counterpart to the continuous lami-
nar compartments found in remaining auditory nuclei (15,22). Surface modeling of
tracer-labeled internal fiber plexuses was useful for showing the 3D shape of the sharply
defined frequency band laminae in the inferior colliculus (57). The outer boundaries of
these sharply defined clusters of labeling in the inferior colliculus were determined
automatically, using a procedure based on triangulation of the convex hull of the point
data set (representing the labeling), followed by removal of triangles along the bound-
ary (75).

10.7.3. Density Gradient Analysis

The surface modeling approach outlined above demonstrates overall distribution
and shape of individual clusters of labeling. Other approaches are required to extract
more quantitative information about the labeling. Stereological methods are efficient
for estimating the numbers of labeled structure within defined regions (77,78). Nadasdy
and Zaborszky (79) used density values to selectively visualize subsets of 3D recon-

Fig. 8. Computer-generated stereo pairs showing the 3D distribution of low-frequency rep-
resentations within the cat lemniscal nuclei in a view from lateral (data from [21,22]). The
external boundaries of the nuclei are represented as transparent surfaces and labeling as solid
surfaces. In the dorsal division (top), labeling is distributed in a continuous lamina. In the
ventral division (bottom), labeling is distributed in multiple clusters of various shapes. Note
differences in shape of clusters from dorsal to ventral (top to bottom). To see a 3D image, the
viewer must cross the eye axis to let the pair of images merge.
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structed neuronal populations, either by representing isodensity regions with a marker
or by rendering surfaces around isodensity volumes. A less sophisticated but useful
tool is density gradient analysis as employed in our investigations of pontine nuclei
and lemniscal nuclei organization (19,21). This analysis is based on the 2D “collapsed”
projection of a 3D point data set (representing labeling). The analysis may be repeated
for different 2D projections (angles of view). A square grid was superimposed on the
2D map, and each square was assigned a gray or color level corresponding to the den-
sity of points within a user-defined radius centered on the square. Thereby, a gray scale
(or color)-coded density map is constructed (Fig. 7). With the use of small grid size and
short radius, it is possible to demonstrate changes in densities across short distances.
An example of the use of such density gradient analysis is shown in Figure 7D,G. By
selectively visualizing regions of high and low density, we were able to recognize a
horizontal frequency gradient in the ventral part of the lemniscal nuclei, not previously
identified (21). We also used this method to demonstrate the nonuniform distribution
of labeling in the complete SI projection to the pontine nuclei (19) and to compare the
average distribution of retrogradely labeled cerebro-pontine neurons among
cytoarchitectonically defined areas in SI cortex of the monkey (61).

10.7.4. Stereoimaging

The traditional journal format is not suited for visualization of 3D reconstructions.
Perception of depth is, however, offered by stereoimages. The stereoscopic effect is
mimicked by image pairs that have approximately 8° different vertical rotation. To see
a 3D image, the viewer must cross the eye axis to let the pair of images merge. Figure
8 demonstrates the 3D spatial organization of the clustered high and low-frequency
representations within the cat lemniscal nuclei (21,22). Stereoscopic illustrations are
readily made from 3D reconstructions and have been helpful tools in several investiga-
tions (18,20,57,80,81).

10.7.5. Analysis of Spatial Overlap

Single axonal tracing is useful for the mapping of large-scale topographic patterns,
as exemplified in our studies of the overall projections from SI to the pontine nuclei
(19) and our investigations of the lemniscal nuclei system (21,22). High-precision
investigation of segregated and overlapping projection patterns requires a dual tracing
approach, with two equally efficient axonal tracers producing clearly different labeling
products in the same sections. We used BDA in combination with FR to outline the
detailed spatial relationships between projections to the pontine nuclei originating in
different SI whisker barrels (20) (see also [82,83]). Spatial overlap and segregation of
the differently labeled axonal clusters was readily seen in the sections (Fig. 3) and
in the dot map representations (Fig. 6). Estimates of the amount of overlap were based
on the data files (with point coordinates representing the distribution and density of
terminal fields of labeling) and were performed by subdividing each section into an
array of bins of a chosen size. The numbers of digitized points were counted for each
bin, summed across sections, and used to estimate an index of total overlap. Overlap
was defined as co-location of points of both categories in one bin. The overlap estimate
was highly influenced by bin size and threshold criteria. If small bins (e.g., 5 µm2) and
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high thresholds (e.g., >10 points per bin) were used, the amount of overlap is minimal,
whereas by comparison, large bin and low thresholds resulted in higher overlap indexes.
Similar solutions were used previously by others (83–85).

Analysis of spatial overlap of terminal fields in the pontine nuclei, labeled after
injection of two sensitive axonal tracers into individual whisker representations in SI,
revealed a statistically significant decrease of overlap index with increasing distance
separating the two injection sites (20) (see also [82]). The use of high magnification
plotting of individual fibers of labeling was important for revealing overlapping pro-
jections, which may not have been detected with more automated image acquisition
followed by segmentation of terminal fields of labeling.

10.8. CONCLUSIONS

We have developed customized computerized tools for reconstruction, visualiza-
tion, and analysis of neuronal populations and terminal fields of fibers within defined
brain regions. We have used these tools to investigate complex 3D distribution patterns
and to provide new insights into map transformations in sensory-related brain stem
nuclei. By combined use of neuronal tract-tracing and 3D reconstruction techniques,
we have demonstrated topographic distribution gradients in the cerebro-pontine pro-
jection. Clustered terminal fields are arranged inside-out within lamellar subspaces in
the pontine nuclei, and linear shifts in the location of cortical sites of origin correspond
to predictable smooth shifts in the location of terminal fields. Employing a similar
experimental and analytic approach, we demonstrated a novel mosaic topography in
the cat VCLL. Thus, the cat VCLL contains a complex tonotopic organization with
frequency-specific representations distributed with a clustered mosaic pattern.

While the essentially 2D cortical maps are possible to investigate as surface maps
(8–10,12,13), a 3D reconstruction approach has been a prerequisite for our anatomic
investigations of 3D brain stem maps. The computerized approach introduces new flex-
ibility in the analysis of data, and facilitates more efficient use (and reuse) of data
collected with high-resolution axonal tracing technology. It is our belief that the com-
bination of experimental anatomical methods, computerized data acquisition and analy-
sis, and structural modeling of the ensuing results will open new avenues for studying
structure–function relationships in the brain.
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Competition in Neuronal Morphogenesis and the

Development of Nerve Connections

Arjen van Ooyen and Jaap van Pelt

ABSTRACT

During the development of the nervous system, neurons form their characteristic
morphologies and become assembled into synaptically connected networks. In many
of the developmental phases that can be distinguished, e.g., axonal differentiation, neu-
rite elongation and branching, and synapse rearrangement, competition plays an important
role. Focusing on competition, we review model studies on neuronal morphogenesis and
the development of nerve connections.

11.1. INTRODUCTION

During development, neurons become assembled into functional networks by grow-
ing out axons and dendrites (collectively called neurites), which connect synaptically
to other neurons. A number of developmental phases can be distinguished.

Early dendritic and axonal morphogenesis. The neurons begin to grow by project-
ing many broad, sheet-like extensions, called lamellipodia, which subsequently con-
dense into a number of small undifferentiated neurites of approximately equal length
(1). Eventually, one of the neurites (usually the longest) increases its growth rate—
while at the same time the growth rate of the remaining neurites is reduced—and dif-
ferentiates into an axon. The remaining neurites become later differentiated as dendrites
and form characteristic branching patterns. The development of dendritic morphology
proceeds by way of the dynamic behavior of growth cones, which are specialized struc-
tures at the terminal ends of outgrowing neurites and which mediate neurite elongation
and branching (2). Among the many intra- and extracellular mechanisms involved in
growth cone behavior are intracellular calcium levels, signal transduction cascades and
cytoskeletal changes (3).

Axon guidance and synapse formation. The axons need to migrate to their targets,
and one of the mechanisms by which  this is achieved is by the diffusion of
chemoattractant molecules from the target through the extracellular space (4). This
creates a gradient of increasing concentration, which the growth cone at the tip of a
migrating axon can sense and follow (5). Axons are also repelled by diffusible mol-
ecules that are secreted by tissues the axons need to grow away from. In addition
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to diffusible molecules, axons are also attracted and repelled by surface-bound mol-
ecules on other cells, and in the extracellular matrix (4). Once the axons have arrived at
their targets, they form synaptic connections by transforming their growth cones
into synapses.

Synapse rearrangement. The phase of synapse formation is followed by a phase of
refinement, including both the formation of new synapses and the elimination of exist-
ing synapses (6,7). This process often involves withdrawal of some axons and, thus, a
reduction in the number of axons innervating an individual target cell. In some cases,
withdrawal of axons continues until the target is innervated by just a single axon,
whereas in most other cases several innervating axons remain (8–10) (see also Sub-
heading 11.4.).

Competition plays an important role in many of the above described developmental
phases. In axonal differentiation, all the neurites have the potential to develop into the
axon (11,12).  In experiments in which the axon is transected at various distances from
the soma, the longest neurite remaining after transection usually becomes the axon,
regardless of whether it was previously an axon or a dendrite (12). Thus, axonal differ-
entiation appears to be a competitive process in which the growth rate of the longest
neurite is accelerated at the expense of all the other neurites, whose growth become
inhibited (1,13) (see also [14]).

Some form of competition is also operative in the formation of dendritic trees: the
branching probability of an individual growth cone (i.e., terminal segment) appears to
decrease with the number of other growth cones in the tree. Such a dependence turns
out to be necessary for reducing the proliferating effect of the increasing number of
growth cones (see Subheading 11.2.). Competitive effects between neurites are ex-
pected to occur also in the elongation of neurites: the proteins upon which elongation
depend (namely, tubulin and microtubule-associated proteins) are produced in the soma
and need to be divided among all the growing neurites of a neuron (15). Competition
for tubulin could explain the observation that sometimes only one of the daughter
growth cones propagate after branching, while the other stays dormant for a long time
(see Subheading 11.3.1.).

Competition between innervating axons for target-derived neurotrophic factors is
thought to be involved in the withdrawal of axons (10,16). The cells that act as targets
for the innervating axons release limited amounts of neurotrophic factors, which are
taken up by the axons via specific receptors at their terminals and which affect the
growth and branching of the axons (17,18).

To gain a real understanding of nervous system development and function, experi-
mental work needs to be complemented by theoretical analysis and computer simula-
tion. Even for biological systems in which all the components are known, computational
models are necessary to explore and understand how the components interact to make
the system work and how phenomena at different levels of organization or description
are linked. In this chapter, we discuss (i) models of the development of dendritic mor-
phology, focusing on competitive phenomena (Subheadings 11.2. and 11.3.); and (ii)
models of competition between innervating axons in the refinement of connections
(subheading 11.4.). For a model on the role of competition in axonal differentiation,
see (14). For models of axon guidance and fasciculation, see (19).
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For all models we present, the various components of the model are relatively
uncontroversial biologically, and the aim is to explore and understand quantitatively
the consequences of the interactions between these components, in terms of the phe-
nomena and data the model can generate. This provides hypotheses and predictions
about these phenomena and data at a lower level of organization or description. For
example, neuronal morphology is linked to the actions of growth cones (Subheading
11.2.); the phenomenon of dormant growth cones is linked to competition, at the mo-
lecular level, for tubulin (Subheading 11.3.1.); and axonal competition is linked to the
actions and biochemistry of neurotrophins (Subheading 11.4.2.).

11.2. DEVELOPMENT OF DENDRITIC MORPHOLOGY:
A STOCHASTIC MODEL

Dendritic branching patterns emerge from a developmental process of neurite elon-
gation and branching. This process is mediated by growth cones, which, under the
influence of intracellular and extracellular mechanisms, show highly dynamic behav-
ior, such as advance, reorientation, splitting, shape and speed changes, retraction, and
even complete disappearance. Outgrowth is, therefore, not a regular process of contin-
ued elongation and branching; nevertheless, it eventually results in dendritic branching
patterns that are typical for the type of neurons under consideration.

Modeling dendritic branching patterns from a developmental point of view raises
the question at which level of detail the growth process should be described. In our
modeling approach, we assume that at a sufficiently coarse time scale the averaged
outcome of all the underlying growth processes can be described as a sustained sto-
chastic process of elongation and branching. The stochasticity assumption is warranted
because of the multitude of mechanisms that determine the behavior of growth cones.

In our dendritic growth model (recently reviewed in [20,21]), a distinction is made
between topological and metrical properties of dendritic trees. Topological properties
emerge from the branching process as segments increase in number and develop a
particular connectivity pattern. Metrical properties emerge from both the branching
and the elongation process. The dendritic growth model has first been developed and
validated for the branching process. Later, elongation was included; this has the advan-
tage that the optimization of the metrical properties can be built upon an already opti-
mized branching process.

Modeling the dendritic branching process. To describe the branching process, the
total developmental period T is divided into a series of N time bins. In each time bin i,
a terminal segment (growth cone) may branch with a probability given by:

p n Dn Ci i i
E S

i( , )γ γ= ×− −2 [Eq. 1]

Parameter D determines the basic branching probability, which is taken equal to D =
B/N, with B denoting the expected number of branching events of an isolated segment
during the full period T. With the term ni

–E, the branching probability is made depen-
dent on the number ni of terminal segments (this may be thought of as representing
some form of competition; see below). The strength of this dependence is determined
by parameter E. With the term 2–SγCi, the branching probability is made dependent on
the centrifugal order γ of the terminal segment (see Fig. 1), thus allowing a modulation
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of the branching probabilities over the different terminal segments in the dendritic tree.
The strength of this modulation is determined by parameter S. The normalization con-

stant C ni i

S

j
n ji=

−
=∑/ 21

γ
 ensures that this modulation does not change the mean branch-

ing probability Dni
E− ,  averaged over all terminal segments in the tree. Thus, the term

controls the rate of increase of the number of segments, while the topological structure
is under control of the modulation 2–SγCi. The number N of time bins can be chosen
arbitrarily, but such that the branching probability per time bin remains much smaller
than one, thus making the probability of more than one branching event per time bin
negligibly small.

During outgrowth, an increasing number of terminal segments is participating in the
branching process, and this proliferation strongly determines the rate with which the
number of terminal segments increases. In the model, this proliferation is kept under
control by making the branching probability dependent on the total number of seg-
ments, via parameter E. Figure 2A illustrates how fast the number of terminal segments
increases for the unrestricted case E = 0, i.e., when the branching probability per time
bin remains constant (Fig. 2D). For E = 1, in contrast, the branching probability is
inversely proportional to the total number of terminal segments in the tree (Fig. 2F),
resulting in a linearly increasing number of branch points up to the value of parameter
B (Fig. 2C). (Note that a binary tree with 3 branch points has 4 terminal segments.) The
branching parameters B and E determine the growth rate not only of the mean number
of terminal segments but also of the standard deviation of the terminal segment number
distribution, as is shown in Figure 2. This is expressed also in the shape of this distribu-
tion, with smaller means and standard deviations (SDs) for increasing values of E (Fig.
3). Figure 4 shows how the mean and SD depend on the parameters B and E. For a
given value of B, the mean number of terminal segments decreases with increasing

Fig. 1. Example of a rooted binary topological tree in which are distinguished a root, inter-
mediate and terminal segments, root point, branch point, and terminal tip. Segments are labeled
by a centrifugal ordering scheme.
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Fig. 2. (A–C) Growth curves of the mean and the SD of the number of terminal segments
and (D–F) the course of the branching probability of a terminal segment per time bin, plotted vs
a time bin scale with 500 time bins. The curves are calculated for B = 3, and for three values of
E with E = 0 (A,D), E = 0.5 (B,E), and E = 1 (C,F). The figures illustrate how parameter E
influences the growth curves and the course of the branching probability. Panels (G–L) are
obtained by a nonlinear (exponential with exponent 3) mapping of the time bin scale with 500
time bins onto a continuous time scale with an arbitrary duration of 3 wk. Panels (J–L) display
the time course of the branching probability of a terminal segment per hour. These panels
illustrate that the shape of the growth curves is changed by the mapping but that the relation
between mean and SD is maintained.
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Fig. 3. Frequency distributions of the number of terminal segments per dendritic tree as
produced for B = 3 and different values of the branching parameter E.

Fig. 4. Map of the number of terminal segments per dendritic tree vs the branching param-
eter E, for different values of the branching parameter B. The figure shows how the number of
terminal segments, for a given B, decreases with increasing values of E. The figure also shows
that a given number of terminal segments (say 10) can be produced by different combinations
of parameters B and E, but that for these combinations the standard deviation decreases for
increasing values of E. Finally, the figure shows that for E = 1, the mean number of branch
points in a tree equals the branching parameter B. Note that for binary trees the number of
terminal segments is equal to the number of branch points plus one.
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values of E. This reducing effect of parameter E on the growth of the total number of
terminal segments may represent some kind of competition between growth cones for
branching. Trees of a given size can be produced by many combinations of the param-
eters B and E, where higher values of E, resulting in a lower growth rate, should be
accompanied by higher values of B. However, higher E values also result in lower
values of the SD, as indicated in Figure 4, where the horizontal line at, for instance,
degree 10 crosses (dotted) curves of lower SD value for increasing E. Matching to
observed SD values finally determines which E and B values most optimally predict
the observed mean and SD values. The optimized B and E values tend to show cluster-
ing for different cell types, as was shown in (22) and is illustrated in Figure 5. Espe-
cially the pyramidal cell group shows significantly higher E values than the other cell
groups, suggesting that these dendrites develop under stronger competitive conditions.
The clustering suggests also a differentiation in B values between the other cell groups.
Although the statistics are still poor, one may conclude from these findings that the
branching parameters B and E indeed represent cell type-specific characteristics of
dendritic branching patterns.

Fig. 5. Scattergram of optimized values of the branching parameters B and E to data sets of
observed dendritic trees. The figure is a combination of an earlier data compilation (22) includ-
ing the references to the data sources and later results. The numbered data points are obtained
from (1) (21), (2) (25), and (3) (24); see these references for the number of neurons each data
point represent. The data points are grouped according to their cell types and refer to dendrites
from (a) rat cortical pyramidal neurons, (b) rat cortical multipolar nonpyramidal neurons, (c)
rat motoneurons, (d) human dentate granule cells, (e) cultured cholinergic interneurons, (f) cat
motoneurons, (g) frog motoneurons, and (h) cat deep layer superior colliculus neurons. The
data points show a clear clustering per cell type. The pyramidal cell group (a) differs from the
other groups in their E values, while the other groups tend to differ in their B values.
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Modeling the dendritic branching process in continuous time. To describe the
branching process in continuous time, the time bin scale needs to be mapped onto a real
time scale. The equation for the branching probability per time bin then transforms into
a branching probability per unit of time:

p n D t n Ct t t
E S

i( , ) ( )γ γ= − −2 [Eq. 2]

with parameter D(t) denoting the basic branching rate per unit of time. Time bins will
obtain equal durations in a linear mapping, but may have different durations in a non-
linear mapping. An example is given in Figure 2G–L, which illustrates how the growth
curves and the probability curves change when the time bin scale (with 500 bins) is
exponentially mapped onto a continuous time scale of 504 h (3 wk). Note that the
relation between mean and SD is maintained, being independent of the type of mapping.

Modeling the elongation process. Once the branching process has been optimized to
the observed data set, the metrical properties can be modeled. To this end, newly formed
daughter segments at a branching event are given an initial length and an elongation
rate for the period of time up to the moment they branch again. Both the initial lengths
and the elongation rates are randomly drawn from gamma distributions, with mean and
SD values of lin lin

, , , ,σ ν σνand  respectively.
Results of the dendritic growth model. The model has been applied to dendritic data

sets of a variety of cell types, including rat large layer 5 pyramidal neurons (20), small
layer 5 pyramidal neurons (23), layer 2/3 pyramidal neurons (21), guinea pig cerebellar
Purkinje cells (21), cat deep layer superior colliculus neurons (24), and rat cortical
multipolar nonpyramidal neurons (25). In all these examples, the dendritic shape prop-
erties were well approximated up to the very details of their distributions.

11.3. NEURITE ELONGATION AND BRANCHING: CELL BIOLOGICAL
MECHANISMS

Most models of the development of dendritic morphology describe neurite elonga-
tion and branching in a stochastic manner. Although these models are very successful
at generating the observed variation in dendritic branching patterns (see Subheading
11.2.), they do not clarify how the biological mechanisms underlying neurite outgrowth
are involved, namely, the dynamics of the tubulin and actin cytoskeleton. In this sec-
tion, we present models that study the role of tubulin dynamics in neurite outgrowth.

11.3.1. Neurite Elongation as a Result of Tubulin Polymerization

The length of a neurite is determined by its microtubules, which are long polymers
of tubulin present throughout the entire neurite. Tubulin monomers are produced in the
cell body and are transported down the neurite to the growth cone. Polymerization of
tubulin, which occurs mainly in the growth cone, elongates the microtubules and thus
the neurite.The rates of tubulin assembly and disassembly are influenced by the actin
cytoskeleton in the growth cone, by microtubule-associated proteins (MAPs), and by
(activity-dependent) changes in the intracellular calcium concentration (26–30).

In (31) and (15), the consequences of the interactions between tubulin transport and
tubulin (dis)assembly are explored. The model in (31) is based on the model in (15) and
describes neurite elongation and retraction as the result of tubulin assembly and disas-
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sembly. A simple compartmental model of a single neuron with n different neurites is
considered (Fig. 6). There is one compartment for the cell body and one compartment
for the growth cone of each neurite i (i = 1,...,n). The time-dependent changes of the
neurite length Li, the concentration C0 of tubulin in the cell body, and the concentra-
tions Ci of tubulin in the growth cones are modeled. Tubulin is produced in the cell
body, at rate s, and is transported into the growth cones of the different neurites by
diffusion and active transport, with diffusion constant D and rate constant f, respec-
tively. At the growth cones, concentration-dependent assembly of tubulin into micro-
tubules takes place, which elongates the trailing neurite. Disassembly of microtubules
into tubulin causes the neurite to retract. The rate constants ai and bi for, respectively,
assembly and disassembly are taken slightly different in different neurites. Differences
in rate constants between neurites can arise as a result of differences between neurites
in electrical activity (which affects the concentration of intracellular calcium), in the
actin cytoskeleton of the growth cones, or in the state or concentration of MAPs. Fi-
nally, tubulin is also subjected to degradation, with rate constant g, both in the cell
body and in the growth cone. Thus, the rates of change of Li, Ci, and C0 become:

dL

dt
a C bi

i i i= − [Eq. 3]
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dt
b a C
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Fig. 6. The compartmental model of a single neuron with two neurites. See further section
11.3.1. From (31) with permission.
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where k is the distance between the centres of the cell body and growth cone compart-
ment when Li = 0. In (15), there is no degradation of tubulin, which is biologically not
plausible and which makes the mathematical analysis more difficult, and no active
transport of tubulin.

The analysis of the model shows that small differences between neurites in their rate
constants for assembly and/or disassembly (e.g., as a result of differences between
neurites in intracellular calcium concentration) lead to competition between growing
neurites of the same neuron (also reported in [15]). This competition emerges as a
result of the interactions between tubulin-mediated neurite elongation and transport of
tubulin. If one of the neurites has a higher rate constant for tubulin assembly and/or a
lower rate of disassembly, it can slow down (Fig. 7A) or even prevent (Fig. 7B) the
outgrowth of the other neurites for a considerable period of time (i.e., they are “dor-
mant”), by using up all the tubulin produced in the soma. Only after the fastest growing
neurite has reached a certain length (the longer the neurite, the smaller the amount of
tubulin that is transported by diffusion per unit time) can the tubulin concentration in
the growth cones of the other neurites increase, causing them to grow out. The smaller
the rate of production of tubulin in the cell body, the bigger this period of dormancy.

In (31), it was shown that stopping the outgrowth of the fastest growing neurite (e.g.,
representing the physiological situation that a neurite has reached its target) can
“awaken” the dormant growth cones, which then, after a characteristic delay, start grow-
ing out (Fig. 7C). The length of the delay is determined by the time it takes for the
tubulin concentration to build up to the value where the rate of assembly (aiCi) is big-
ger than the rate of disassembly (bi).

Preliminary results show that the higher the relative contribution of the active com-
ponent (parameter f) to the transport process, the smaller the competitive effects. In
more detailed compartmental models (32), in which each neurite is divided into many
compartments, we found very similar results as those reported here.

Fig. 7. Results of the compartmental model of a single neuron with two neurites. Neurite 1
has a higher rate constant for tubulin assembly. As a result, neurite 1 can slow down (A) or even
prevent (B) the growth of the other neurite. Stopping the growth of neurite 1 triggers, after a
time delay, the growth of the other neurite (C). Parameters (all units arbitrary): b1 = b2 = 0.01,
D = 0.5, g = 0.1, s = 0.07, f = 0, and k = 1. In (A), a1 = 0.09 and a2 = 0.06. In (B) and (C), a1 =
0.3 and a2 = 0.05. From (31) with permission.
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The model can account for the occurrence of “dormant growth cones” (33)—the
observation that, after branching, only one of the daughter growth cones propagates.
The prediction of the model that there should be competition between growing neurites
of the same neuron has recently been confirmed experimentally (G.J.A. Ramakers,
unpublished results). These findings show that (i) when one neurite stops growing out,
other neurites (after a certain delay, as in the model) start growing out; and (ii) when
more neurites are growing out at the same time, the rate of outgrowth is smaller than
when only a single neurite is growing out. To test whether this is indeed due to compe-
tition for tubulin, as our model suggests, the concentration of tubulin in growth cones
should be monitored during outgrowth. The model predicts that the concentration of
tubulin in growth cones that are not growing out should be below the critical value [the
concentration of tubulin at which assembly (aiCi) just equals disassembly (bi)].

11.3.2. The Role of Microtubule-Associated Proteins in Neurite Elongation
and Branching

The tubulin dynamics is influenced by many modulators, among which the MAPs
play a prominent role (34). They regulate not only assembly and disassembly, but also
the bundling and spacing of microtubules. The phosphorylation state of MAPs affects
their function (28,29). When MAPs are dephosphorylated, they promote tubu-
lin assembly and microtubule bundling and so promote neurite elongation (35). When
MAPs are phosphorylated, they inhibit assembly and bundling; the spacing between
microtubule bundles increases, which favors dendritic branching (36). It has been pro-
posed that the rates of elongation and branching are determined by the relative concen-
trations of phosphorylated and dephosphorylated MAPs (37,38). This is itself
dependent on the concentration of intracellular calcium, which regulate both phospho-
rylation and dephosphorylation through the actions of calmodulin-dependent protein
kinase 2 and calcineurin (28,29,39,40). Using a compartmental model for elongation
and branching, Hely et al. (38) studied what the implications are of the interactions
between the calcium dynamics (influx of calcium along, and diffusion within, the whole
dendritic tree) and the effects of calcium on MAP (de)phosphorylation. In the model,
the ratio of the concentrations of phosporylated and dephosporylated MAPs at the tip
of a terminal segment (i.e., the growth cone) determines the branching probability and
the rate of elongation. MAPs are produced in the soma and are transported to the growth
cone by diffusion and active transport. One sigmoidal function is used to describe how
the rate of MAP phosphorylation depends on the concentration of calcium in the growth
cone; another sigmoidal function is used to describe how dephosphorylation depends
on calcium. One result of the model is that the relative position of these two functions,
together with the calcium dynamics, determines what dendritic structure will develop.
As the tree grows, the calcium concentration in the terminal segments increases. The
concentration is highest in the terminal segments and lowest in the soma (because of
the higher surface-to-volume ratio in the thin terminal segments). As the tree grows,
the terminal segments become farther away from the soma, which acts as a sink for
calcium, so that the calcium concentration in the terminal segments increases. Depend-
ing on the relative position of the two sigmoidal functions, this increased calcium con-
centration leads either to a lower branching probability (producing trees in which the
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terminal segments are longer than the proximal segments, e.g., as in the basal dendrites
of pyramidal neurons [41]) or to a lower branching probability (producing trees in
which the terminal segments are shorter than the proximal segments, e.g., as in cul-
tured hippocampal neurons [42]). Thus, given a particular branching pattern, the model
predicts how the functions relating calcium with phosphorylation and dephosphoryla-
tion should be in order to produce this.

11.4. COMPETITION BETWEEN AXONS IN THE REFINEMENT
OF NEURAL CIRCUITS

During development, the refinement of neural circuits involves both the formation
of new connections and the elimination of existing connections (6,7). Neurons, and
other cell types, often are initially innervated by more axons than ultimately maintain
into adulthood (7,43). This initial hyperinnervation followed by elimination occurs, for
example, in the development of connections between motor neurons and muscle fibers
(8,9), where elimination of axons continues until each muscle fiber is innervated by
just a single axon, and in the formation of ocular dominance columns in the visual
cortex (44,45). Although there is a reduction in the number of axons that an individual
target receives, the total number of synapses onto a target often increases (both in the
visual and in the neuromuscular system), because of further arborization of the remain-
ing axons (46–48).

The process that reduces the number of axons innervating a postsynaptic cell is often
referred to as axonal or synaptic competition. In particular, it is believed that axons
compete for neurotrophic factors, survival- or growth-promoting substances, released
by the postsynaptic cells upon which the axons innervate (10,16). During an earlier
stage of development, when initial synaptic contacts are made, these neurotrophic fac-
tors have a well-established role in the regulation of neuronal survival (49,50). But
many studies now indicate that neurotrophic factors may also be involved in the later
stages of development, when there is further growth and elimination of innervation (for
a critical review, see [51]). For example, neurotrophic factors have been shown to
regulate the degree of arborization of axons (e.g., see [52]; for more references, see
Subheading 11.4.2.).

Although the notion of competition is commonly used in neurobiology, the process
is not well understood, and only a few formal models exist (for an extensive review,
see [48]).

11.4.1. Competition Through Synaptic Normalization and Modified Hebbian
Learning Rules

Most computational models of the development of nerve connections, especially
models of the formation of ocular dominance columns, typically enforce competition
rather than model its putative underlying mechanisms explicitly (for a review, see [53]).
To see how competition between input connections can be enforced, consider n inputs,
with synaptic strengths wi(t) (i = 1,...,n), impinging on a given postsynaptic cell at time
t. Simple Hebbian rules for the change ∆wi(t) in synaptic strength in time interval ∆t
state that the synaptic strength should grow in proportion to the product of the postsyn-
aptic activity level y(t) and the presynaptic activity level xi(t) of the ith input. Thus:
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∆wi(t) ∝ y(t)xi(t)∆t [Eq. 6]

If two inputs (e.g., two eyes) innervate a common target and if the activity level in both
inputs is sufficient to achieve potentiation, then this rule causes both pathways to be
strongly potentiated, and no segregation (ocular dominance) occurs. What is required
is that when the synaptic strength of one input grows, the strengths of the other one
shrinks. This can be achieved by imposing the constraint that i

n
iw∑ should be kept

constant (synaptic normalization). At each time interval ∆t, following a phase of
Hebbian learning, in which wi(t + ∆t) = wi(t) + ∆wi(t), the new synaptic strengths are
forced to satisfy the normalization constraint.

Another approach for achieving competition is to modify equation 6. With Equation
6, only increases in synaptic strength can take place; decreases in synaptic strength are
brought about by enforcing synaptic normalization afterwards. Both increases in syn-
aptic strength (long term potentiation, or LTP) and decreases in synaptic strength (long
term depression, or LTD) can be obtained if we assume that the postsynaptic activity
level y(t) must be above some threshold θy to achieve LTP and otherwise yield LTD;
for the presynaptic activity level xi(t), a similar possibility can be assumed (53). Thus:

∆wi(t) ∝ [y(t) – θy][xi(t) – θx]∆t [Eq. 7]

A stable mechanism for ensuring that when some synaptic strengths increase, others
must correspondingly decrease (i.e., competition) is to make one of the thresholds vari-
able. If the threshold θ x

i  increases sufficiently as the postsynaptic activity y(t) or syn-
aptic strength wi(t) (or both) increases, conservation of synaptic strength can be
achieved (53). Similarly, if the threshold θy increases faster than linearly with the aver-
age postsynaptic activity, then the synaptic strengths will adjust to keep the postsynap-
tic activity near a set point value (54).

Yet another mechanism that can balance synaptic strengths is based on a form of
(experimentally observed) long-term synaptic plasticity that depends on the relative
timing of pre- and postsynaptic actions potentials (spike timing-dependent plasticity,
or STDP) (55). Presynaptic action potentials that precede postsynaptic spikes
strengthen a synapse, whereas presynaptic action potentials that follow postsynaptic
spikes weaken it. STDP has the effect of keeping the total synaptic input to the neuron
roughly constant, independent of the presynaptic firing rates (56).

11.4.2. Competition Through Dependence on Shared Target-Derived
Resources

Keeping the total synaptic strength onto a postsynaptic cell constant (synaptic nor-
malization) is a biologically unrealistic way of modeling competition. In both the neu-
romuscular and the visual system, the total number of synapses onto a postsynaptic cell
increases during competition, as the winning axons elaborate their branches and the
losing axons retract branches. Synaptic normalization is too rigid a constraint com-
pared with the plasticity of the developing nervous system, and models based on this
constraint may, therefore, become too restricted in the range of phenomena they can
produce (57,58). If Hebbian learning rules are modified only to enforce competition
and not to represent a possible physiological mechanism, this is equally unsatisfactory.
Modeling the actual mechanism of competition can give the models more flexibility
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and potentially a larger explanatory and predictive power. It will also be easier to inter-
pret and extend these models, because its variables and parameters are more directly
linked to biological processes and mechanisms.

If the dependence of axons on the same target-derived neurotrophic factor is mod-
eled, competition between input connections does not have to be enforced, but comes
about naturally. In most existing models of competition for target-derived neurotrophic
factor, there is a fixed amount of neurotrophin that becomes partitioned among the
individual synapses or axons; i.e., there is no production, decay, and consumption of
the neurotrophin (48). This assumption is biologically not realistic. The model by Van
Ooyen and Willshaw (59) considers the production and consumption of neurotrophin
and incorporates the dynamics of neurotrophic signaling (such as release of
neurotrophin, binding kinetics of neurotrophin to receptor, and degradation processes)
and the effects of neurotrophins on axonal growth and branching. The model can also
incorporate the effects of electrical activity: postsynaptic activity can influence the
release of neurotrophin, while presynaptic activity can influence the number of
neurotrophin receptors (see the section below describing the model). The approach by
Van Ooyen and Willshaw has similarities to that by Elliott and Shadbolt (60) and
Jeanprêtre et al. (61), although Elliott and Shadbolt (60) does not model all the pro-
cesses involved in a dynamic fashion, and Jeanprêtre et al. (61) has to assume a priori
thresholds, as well as to postulate a positive feedback rather than derive it from the
underlying biological mechanisms (see further below).

The model by Van Ooyen and Willshaw (59). Important variables in the model are
the total number of neurotrophin receptors that each axon has and the concentration of
neurotrophin in the extracellular space. In the model, there is a positive feedback loop
between the axon’s number of receptors and amount of bound neurotrophin. Unlike in
the work by Jeanprêtre et al. (61), this positive feedback, which enables one or more
axons to outcompete the others, was derived directly from underlying biological mecha-
nisms. Following binding to receptor, neurotrophins can increase the terminal arboriza-
tion of an axon (52,62–70) and, therefore, the axon’s number of synapses. Because
neurotrophin receptors are located on synapses, increasing the number of synapses
means increasing the axon’s total number of receptors. Thus, the more receptors an
axon has, the more neurotrophin it will bind, which further increases its number of
receptors, so that it can bind even more neurotrophin, at the expense of the other axons.

Instead of increasing the terminal arborization of an axon, neurotrophins might
increase the axon’s total number of receptors by increasing the size of synapses (71) or
by up-regulating the density of receptors (72).

Description of the model. The simplest situation in which we can study axonal com-
petition is a single target at which there are n innervating axons, each from a different
neuron. Each axon has a number of terminals, on which the neurotrophin receptors are
located (see Fig. 8A). Neurotrophin is released by the target into the extracellular space,
at rate σ, and is removed by degradation, with rate constant δ. In addition, at each axon
i, neurotrophin is bound to receptors, with association and dissociation constants ka,i
and kd,i, respectively. Bound neurotrophin (the neurotrophin–receptor complex) is also
degraded, with rate constant Ρi. Degradation of the neurotrophin–receptor complex
also removes receptor molecules; therefore, new unoccupied receptors need to be in-
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serted (at rate φi) into the axon terminals. In addition, there is turnover of unoccupied
receptors, with rate constant γi. Thus, the rates of change of the total number Ri of
unoccupied receptors on axon i, the total number Ci of neurotrophin–receptor com-
plexes on axon i, and the extracellular concentration L of neurotrophin are:

dC

dt
k LR k C Ci

a i i d i i i i= − −( ), , ρ [Eq. 8]

dR

dt
R k LR k Ci

i i i a i i d i i= − − −φ γ ( ), , [Eq. 9]

dL

dt
L k LR k Ca i i d i i

i

n
= − − −

=
∑σ δ ν( ) /, ,

1
[Eq. 10]

where v is the volume of the extracellular space. The term (ka,iLRi – kd,iCi) represents
the net amount of neurotrophin that is being bound to receptor. Equations 8 and 9 are
similar to the ones used in experimental studies for analyzing the cellular binding,
internalization, and degradation of polypeptide ligands such as neurotrophins (73).

The biological effects of neurotrophins (all of which, as explained above, can lead to
an axon getting a higher total number of receptors) are triggered by a signaling cascade
that is activated upon binding of neurotrophin to receptor (17). In order for the total
number of receptors to increase in response to neurotrophin, the rate φi of insertion of
receptors must be an increasing function, fi (called growth function), of Ci. To take into
account that axonal growth is relatively slow, φi lags behind fi(Ci) with a lag given by:

τ φ φd

dt
f Ci
i i i= −( ) [Eq. 11]

where the time constant τ for growth is of the order of days. Setting immediately φi =
fi(Ci) does not change the main results. Different classes of growth functions were
studied, all derived from the general growth function:

f C
C

K Ci i
i i

m

t
m

i
m( ) =

+
α

[Eq. 12]

Depending on the values of m and K, the growth function is a linear function (Class I:
m = 1 and Ki >> Ci), a Michaelis-Menten function (Class II: m = 1 and Ki >>/  Ci), or a
Hill function (Class III: m = 2). Within each class, the specific values of the parameters
αi and Ki, as well as those of the other parameters, will typically differ between the
innervating axons, e.g., as a result of differences in activity or other differences. For
example, increased presynaptic electrical activity can increase the axon’s total number
of receptors (e.g., by up-regulation [74,75] or by stimulating axonal branching [26])
which implies that, for example, αi is increased or γi is decreased.

The whole model thus consists of three differential equations for each axon i (Equa-
tions 8, 9, and 11) and one equation for the neurotrophin concentration (Equation 10).
By means of numerical simulations and mathematical analysis, we can examine the
outcome of the competitive process. Axons that at the end of the competitive process
have no neurotrophin (Ci = 0, equivalent to φi = 0) are assumed to have withdrawn or
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Fig. 8. The model by Van Ooyen and Willshaw (59) (see Subheading 11.4.). (A) Target cell
with three innervating axons, each with a different degree of branching. The target releases
neurotrophin, which binds to neurotrophin receptors at the axon terminals.

For three different classes of growth functions, (B–D) show the development of innervation
for a system of five innervating axons, where each axon has a different competitive strength, ßi
(defined in Subheading 11.4.) The values of Ci are in number of molecules. Panels (E–G) show



Neuronal Morphogenesis and Nerve Connections 235

died, while axons that do have neurotrophin (Ci > 0, equivalent to φi > 0) are regarded
as having survived.

All parameters in the model have a clear biological interpretation. For the numerical
simulations, the parameter values were taken from the data available for nerve growth
factor (NGF) (see also [59]). Mathematical analysis (59) shows that the results do not
depend on specific choices for the parameters and are, therefore, also relevant for other
neurotrophic factors.

Results of the model. For class I, starting with any number of axons, elimination of
axons takes place until a single axon remains (single innervation) (Fig. 8B,E). The
axon that survives is the one with the highest value of the quantity βi ≡ [ka,i(αi/Ki – ρi)]/
[γi(kd,i + ρi)] which is interpreted as the axon’s competitive strength. For class I, the
number of surviving axons cannot be increased by increasing the rate σ of release of
neurotrophin: the higher amount of neurotrophin results in further growth of the win-
ning axon and thus more uptake of neurotrophin, so again not enough neurotrophin is
left to sustain the other axons. This shows that the  widely held belief that competition
is a consequence of resources being produced in limited amounts is too simplistic. If
the growth function is a saturating function (classes II and III), then more axons may
survive if the rate σ of release of neurotrophin is increased (Fig. 8C,D,F,G).  A saturat-
ing growth function means that the “size” of an axon (in terms of number of
neurotrophin receptors) is bounded, so that when an axon is at its maximum, a higher
amount of neurotrophin does not result in further growth and more uptake, so that other
axons can profit.

For classes I and II, there is, for a given choice of the parameter values, only one
stable innervation pattern (either single or multiple innervation). For class III, in con-
trast, stable equilibria of single and multiple innervation can coexist, and which of
these will be reached in any specific situation depends on the initial conditions
(Fig. 8D,G).

Fig. 8. (continued) the nullcline pictures for a system of two innervating axons [the variables
Ri, Ci, i = 1,2  and L are set at quasisteady state; in (E) and (F), ß1 > ß2; in (G), ß1 = ß2]. In (E–
G), the bold lines are the nullclines of φ1, and the light lines are the nullclines of φ2 (the x- and
y-axes are also nullclines of φ2 and φ1, respectively). Intersection points of these lines are the
equilibrium points of the system. A filled square indicates a stable equilibrium point; an open
square indicates an unstable equilibrium point. Vectors indicate direction of change. (B) Class
I. Elimination of axons takes place until a single axon remains. The axon with the highest value
of the competitive strength, ßi, survives. (C) Class II. For the parameter settings used, several
axons survive. (D) Class III. Dependence on initial conditions; although axon one has the high-
est value of the competitive strength, axon two survives because its initial value of φi is suffi-
ciently higher than that of axon one. (E) Class I. The nullclines do not intersect at a point where
both axons coexist. (F) Class II. The nullclines intersect at a point where both axons coexist.
For a sufficiently lower rate of release of neurotrophin, for example, the nullclines would not
intersect, and only one axon would survive. (G) Class III. There is a stable equilibrium point
where both axons coexist, as well as stable equilibrium points where either axon is present [the
stable equilibrium point at (φ1 = 0, φ2 = 0) is not indicated, because it is too close to another
unstable point]. For a sufficiently higher value of Ki, for example, the stable equilibrium point
where both axons coexist would disappear. From (48) with permission.
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For all classes, axons with a high competitive strength βi survive, and the activity
dependence of βi (e.g., via αi) means that these are the most active ones, provided that
the variation due to other factors does not predominate.

The coexistence of several stable equilibria for class III implies that an axon that is
removed from a multiply innervated target may not necessarily survive (“regenerate”)
when replaced with a low number of neurotrophin receptors (Fig. 9A,B). To enhance
the possibility that a damaged axon can return and survive on its former target, the
model suggest that it is more efficient to increase the number of receptors on the regen-
erating axons than to increase the amount of neurotrophin (which also makes the al-
ready existing axons on the target “stronger”).

Comparison with empirical data. The model can account for the development of
both single and multiple innervation following a stage of hyperinnervation. Examples
of single innervation are the innervation of skeletal muscle fibers (9), autonomic gan-
glion cells with few dendrites (76), and the climbing fiber innervation of cerebellar
Purkinje cells (77). Although undergoing a reduction in innervation, most other cell
types remain multiply innervated. In agreement with the model, increasing the amount
of target-derived neurotrophin delays the development of single innervation (class I)
(78) or increases the number of surviving axons (classes II and III) (e.g., in epider-
mis [79]).

The model can also explain the coexistence of stable states of single and multiple
innervation (class III) in skeletal muscle. Persistent multiple innervation is found in
denervation experiments after reinnervation and recovery from prolonged nerve con-
duction block (80). In terms of the model, conduction block changes the sizes of the
basins of attraction of the equilibria (via changes in the competitive strength βi or in the
rate σ of release of neurotrophin), so that the system can go to an equilibrium of mul-
tiple innervation, while under normal conditions single innervation develops. Once the
conduction block is removed, the system will remain in the basin of attraction of the
multiple innervation equilibrium (Fig. 9C,D).

For competition to occur, it is not necessary that there is presynaptic or postsynaptic
activity or that there is activity-dependent release of neurotrophin (cf. [51]). Differ-
ences in competitive strength (βi) between axons can arise also as a result of differ-
ences in other factors than presynaptic activity, such as intrinsic differences in
neurotrophic signaling (e.g., insertion or degradation of neurotrophin receptors). Thus,
both presynaptic and postsynaptic activity may be influential but are not decisive
(81,82). This is in agreement with recent findings in the neuromuscular system, which
show that activity is not necessary for competitive synapse elimination (82); silent
synapses can displace other silent synapses.

The model can be, and is (Ribchester, R.R., personal communication), tested experi-
mentally. The model predicts that the axons that are being eliminated will have a small
number of neurotrophin receptors. The shape of the growth function, which determines
what innervation can develop, can be determined experimentally in vitro by measur-
ing, for different concentrations of neurotrophin in the medium, the total number of
terminals of an axon or, better, the axon’s total number of neurotrophin receptors that it
has over all its terminals. In relating axon survival to neurotrophin concentration, the
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Fig. 9. The implications of the coexistence of stable states of single and multiple innervation
for class III in the model by Van Ooyen and Willshaw (59) (see subheading 11.4.). In (A and
B), removal of an axon from a multiply innervated target and subsequent replacement, for (A)
class II and (B) class III. At t = 504h, axon 1 (bold line) is removed by setting α1 = 0. At t =
756h, axon 1 is replaced by setting α1 back to its original value, with initial conditions φ1 = 30,
R1 = φ1/γ, and C1 = 0. Only for class II the replaced axon can survive. For class III, in order for
the replaced axon to survive, a much higher initial value of φ1 would be required. From (59)
with permission. The phase-space plots of (C and D) illustrate how, for class III, persistent
multiple innervation can arise after recovery from nerve conduction block, in a system of two
innervating axons. For explanation of nullclines and symbols, see Figure 8 (for clarity, the
unstable equilibria are not indicated). The triangles mark the starting points of trajectories (bold
lines). As shown in (C), under normal conditions, with electrically active axons that have a
different level of activity (represented by α1 = 400 and α2 = 300; other parameter values as in
Fig. 8G) and a low initial number of receptors (i.e., φi is low: φ1 = φ2 = 0.25), single innervation
develop. When activity is blocked (values of αi lower and the same: e.g., α1 = 250 and α2 =
250), as in (D), the same initial conditions lead to multiple innervation. Subsequent restoration
of activity means that the nullclines are again as in (C), but now the starting values of φi are
those reached as in (D), i.e., in the basin of attraction of the polyneuronal equilibrium point.
The system goes to this equilibrium and will remain there forever, i.e., persistent polyneuronal
innervation. Another way in which persistent multiple innervation can arise following nerve
conduction block is through altering the rate of release of neurotrophin, σ, which also changes
the sizes of the basins of attraction of the equilibria. From (48) with permission.
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model predicts, for example, that the smaller the value of Ki of the growth function, the
lower the concentration of neurotrophin needed to rescue more axons.

Further extensions of the model. In the model as described above, it is assumed that
the concentration of neurotrophin is uniform across the extracellular space, so that all
axons “sense” the same concentration.  This is a good assumption if all the axons are
close together on the target structure, as, for example, at the endplate on muscle fibers
(83). However, if the target structure is large (e.g., a large dendritic tree), the spatial
dimension of the extracellular space should be taken into account. Modeling local
release of neurotrophin along the target and diffusion of neurotrophin in the extracelluar
space, Van Ooyen and Willshaw (84) showed that distance between axons mitigates
competition, so that if the axons are sufficiently far apart on the target, they can coexist
(i.e., even under conditions, e.g., a class I growth function, where they cannot coexist
with a uniform extracellular space). This can explain that (i) when coexisting axons are
found on mature muscle cells, they are physically separated (85–87); and (ii) a positive
correlation exists between the size of the dendritic tree and the number of innervating
axons surviving into adulthood (46,76,88). In the ciliary ganglion of adult rabbits, for
example, neurons that lack dendrites are innervated by a single axon, whereas neurons
with many dendrites are innervated by the largest number of axons. In newborn ani-
mals, in contrast, all neurons are innervated by approximately the same number of
axons.

In another extension of the model, Van Ooyen and Willshaw (84) considered a single
target that releases two types of  neurotrophin (89–91) and at which there are two types
of innervating axons. Each axon type can respond to both neurotrophin types, but with
different affinities (e.g., each axon type may have a different type of neurotrophin
receptor, with each receptor type binding to both types of neurotrophin, but with a
different affinity). The results show that different types of axons can coexist (i.e., even
under conditions, e.g., a class I growth function, where they cannot coexist with a
single type of neurotrophin) if they respond to the neurotrophins with sufficiently dif-
ferent affinities. By having axons respond with different affinities to more than one
type of neurotrophin, the model can account for competitive exclusion among axons of
one type while at the same time there is coexistence with axons of another type inner-
vating the same target. This occurs, for example, on Purkinje cells (77), where climb-
ing fibers compete with each other during development until only a single one remains,
which coexists with parallel fibers innervating the same Purkinje cell.

11.5. DISCUSSION

Stochastic dendritic growth models appear to be successful in describing the shapes
of dendritic branching patterns, as shown in section 11.2. and by other authors (92–94).
The parameter values, obtained after a process of optimization, are assumed to reflect
basic characteristics of the branching process. Emphasis has been given to competitive
phenomena as becoming apparant by the size-dependent branching probabilities. We
have shown that the “competition parameter” E significantly differentiates between
different cell types. Competitive interactions were also suggested by Nowakowski et al.
(92) as underlying a suppression of further branching immediately after a branching event.
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Other successful approaches for reconstructing dendritic complexity are based on
stochastic algorithms, in which segment lengths and diameters are obtained by sam-
pling the observed distributions of shape characteristics directly (95,95). These
approaches do not include a phase of parameter optimization.

For a further interpretation of the results of stochastic models in terms of underlying
mechanisms, one needs to model elongation and branching at more detailed levels (such
as in Subheading 11.3.). In Subheading 11.3.2., we have introduced a model that
explicitly includes some of the cellular mechanisms involved in elongation and branch-
ing. In the model, we have studied the consequences of the interactions between the
calcium dynamics in dendritic trees and the effects of calcium on MAP (de)phos-
phorylation (which influences elongation and branching). With respect to producing
the variability in dendritic morphologies, the model compares well with the stochastic
model (Subheading 11.2.) Reproducing the data (particularly the terminal length data)
using the stochastic model required separate phases of elongation–branching and elon-
gation only, with different rates of elongation in each phase. These phases emerge
automatically in the MAP model, in which both elongation and branching are gener-
ated from the same intrinsic mechanism and need not be manipulated independently.

In Subheading 11.3.1., we have shown that competition between growing neurites
can emerge as a result of the interactions between the transport of tubulin and the tubu-
lin-mediated elongation of neurites. The model can account for “dormant growth cones”
and for recent experimental findings in tissue culture (G.J.A. Ramakers, unpublished
results) that show that when one neurite stops growing out, other neurites, after a delay,
start growing out. These results are also relevant for understanding the formation of
nerve connections, because it shows that changes in the growth of a subset of a neuron’s
neurites (e.g., as a result of changes in electrical activity, or as a result of neurites
finding their targets) can affect the growth of the neuron’s other neurites (see also [97]).

At their target, axons from different neurons compete for target-derived resources.
Our model of axonal competition suggests that the regulation of axonal growth by
neurotrophins is crucial to the competitive process in the development, maintenance,
and regeneration of nerve connections. Among the many axonal features that change
during growth in response to neurotrophin (degree of arborization and, consequently,
number of axon terminals; size of terminals; and density of receptors), the consequent
change in the axon’s total number of neurotrophin receptors, thus changing its capacity
for removing neurotrophin, is what drives the competition. The form of the dose–
response curve between neurotrophin and axonal arborization (or better, the total
amount of neurotrophin receptors) determines what patterns of innervation can develop
and what the capacity for axon regeneration will be.
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12
Axonal Navigation Through Voxel Substrates

A Strategy for Reconstructing Brain Circuitry

Stephen L. Senft

ABSTRACT

Recent advances in obtaining and analyzing 3D volumetric scans of entire brains
and in algorithmic generation of neuron-like tree structures now make possible the
representation of simulated brain networks having both large-scale anatomical fidelity
and submicron specification. The present work illustrates a strategy for embedding
detailed compartmental models of brain circuitry within voxel-based anatomical
Atlases. Groups of simulated neuronal somata are given coordinates corresponding to
brain nuclei segmented from the Atlas data. Other cellular details (soma number and
size and statistical dendritic form) can be derived from published studies of these nu-
clei. Simulated axons are then made to navigate from these sources into specified tar-
get regions, with their paths being guided by tracts detected in the 3D scans. Although
the actual substrates traversed by living axons involve evanescent chemical markings
that are not captured by the voxel data, enough boundaries remain to usefully constrain
the axons, and a rough scaffolding of brain circuitry may be constructed. Terminal
arborization and synapsis with target cells is achieved via cell-biologically-motivated
growth algorithms. One can activate segmental compartments in the resulting structure
to emulate signals propagating in 3D through the synthetic networks. This new combi-
nation of methods should allow one to generate plausible visualizations of brain struc-
ture and activity that are obtainable by no other means and which can be improved as
scans and algorithms are refined. Such networks could serve to relate visually micro-
scopic and macroscopic brain anatomy. The simulated behavior of these circuits, while
still far from precisely replicating in vivo dynamics, nevertheless, by being mapped
onto realistic pathways, may suggest novel patterns of activity flow through the central
nervous system (CNS).

12.1. INTRODUCTION

12.1.1. Volume Data

Volumetric anatomical data is becoming increasingly prevalent. These 3D raster
formats provide plenary views of tissue organization wherein attributes assigned to
every surface and interior voxel can be inspected and measured. Natural objects,
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including brains, are routinely converted into voxel format by a number of scientific
scanning methods, such as computerized X-ray tomography (CT), magnetic resonance
imaging (MRI), and confocal microscopy. The now routine exchange of scientific
information in this data format has been facilitated by a growing variety of 3D ren-
dering tools that permit sophisticated and reproducible visualization and analysis of
the scanned objects (e.g., VoxelView [1], and Analyze [2]).

However, in comparison with what is desired by the research biologist, the degree of
structural detail in presently available voxel representations of tissue is severely lim-
ited. Pertinent levels of comprehensive analysis ideally should extend to the cell bio-
logical level of channel densities, local ion dynamics, and subcellular regulation of
genes and gene-products and should extend to all cells contained in the full span of the
organs studied.

Currently, 3D subcellular detail can be achieved only for small regions (e.g., using
polarizing or confocal microscopes [3–5]). But even then, such data represents the
transduced signals only of a tiny fraction of the ongoing biochemistry encompassed by
the scan. For certain tissues, whose organization varies little with position and whose
capacity scales with mass (such as liver or lung), sampling such relatively restricted
volumes may suffice for evaluating the microscopic causes of macroscopically
observed changes. But this is not true of the central nervous system (CNS). The most
salient (and still very imperfectly understood) feature of the nervous system is the net-
work: spatially extended skeins of connected cell ensembles. Here, because of highly
specific axonal projections, activity at long distances has profound local importance.
In principle, decisive information can be transported into a remote region even by single
slender fibers. Even more pervasively consequential may be the local integration of
multiple subthreshold inputs from distant sources.

The present publication addresses this resolution constraint as it pertains to brain
scans. It introduces a methodological strategy whereby information about axonal con-
nectivity can be integrated with volumetric data to produce flexible representations of
distributed 3D brain networks having subcellular resolution.

12.1.2. Network Data

Network features currently are captured by volumetric data in very sketchy form. It
is true that the confocal microscope can digitize tissue in 3D at resolutions high enough
to identify sites of synaptic contact with reasonable confidence, particularly when they
are augmented with multicellular electrophysiological recordings (5,6). But this
achievement is restricted to composited vignettes little larger than the working dis-
tance and field-of view of a high numeric aperture objective (less than a cubic millime-
ter). Moreover, it requires painstaking tissue preparation. Extensive manual tracing or
image analysis also is needed to extract even a single neuron’s dendritic arbor, and it
becomes dauntingly difficult to acquire the geometry of an extensive multicellular ax-
onal network, at the requisite better than 1 µm resolution. Reconstructions from elec-
tron micrographs are even more constrained in the spatial extents achievable, although
they do represent the gold standard for verifying connectivity (7,8). At the other spatial
extreme, the water content of very large (100 mm) areas can be surveyed with ease
using magnetic resonance imaging (MRI). Using tensor analysis (9–11), one can now
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begin to highlight the brain’s major (50–500 µm scale) fiber pathways, perhaps even
during development (12,13). Even though MRI technology under some conditions (14)
can detect individual cells, even then it does not define their branches or synapses, and
thus in general, this method of data collection also does not provide sufficiently detailed
representations of network connectivity.

While no practical method currently is able to document the detailed connectivity of
networks throughout the brain, there may be a practical optimum in the presently
achievable compromise between resolution and extent of coverage. Recently, Atlas
information has become available ([15]; and see Subheading 12.2.1) having a level of
voxel resolution (approx 10 µm) intermediate between MRI and confocal. This data,
carefully reconstructed from histologically-stained physical sections, contains rela-
tively high resolution cellular and pathway information throughout the entire adult
mouse brain. Similar atlases are available for the rat and other strains and ages of mouse
(16–18). Because they are based on optical image formation and on specific staining
methods (as yet unavailable to MRI) these sources of data can provide information on
the relatively smaller nuclei and tracts throughout the brain, which is important for the
work presented here. However, like MRI data, these Atlases do not resolve cell-to-cell
contacts.

12.1.3. Histochemical Data

There is, in addition to voxel data, a vast corpus of cell biological information that
catalogs brain network components. This body of work represents the combined efforts
of generations of anatomists and biochemists, using an extreme variety of approaches.
As a result, highly detailed and diverse types of data are available on cells local to
virtually any nameable region in the CNS and for a large variety of species (e.g., mouse,
rat, rabbit, monkey, man). One can learn, for almost any given region and stage of
development, the numbers and types and densities of cells, and often their biochemical
attributes, such as transmitter and channel and control protein information. Because of
Golgi stains, intracellular dye injections, and most recently, genetic labeling methods
(e.g., [19]), cell arborization characteristics often are known as well, having been
acquired by visual observation and by camera lucida tracing (increasingly in comput-
erized and even confocal format).

Classically, this variety of cell biological information reposes, piecemeal, in the
printed literature, not amenable to rapid review but obtainable only through laborious
manual library search. More recently, this original literature is becoming available elec-
tronically, and for certain of these computerized data (20,21), compendia are progres-
sively being compiled. For neuroanatomy in particular, the on-line availability of arbor
data (22,23) is particularly encouraging, although in comparison to the trillions of cells
in even a single brain, the several hundred or so electronically traced cells represent a
very small sample. Fortunately, this trend towards electronically-based biological
information is accelerating.

12.1.4. Integrative Aims

Neuroscientists have a wish to recombine this multifaceted information into coher-
ently functioning quantitative systems. Until that is better achieved, functional
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parcellation and integration can be assessed for the CNS only in a very approximate
sense. For, while an astonishing number of facts are known about the brain and its
components, one can at present rarely (if at all) predict accurately the consequences for
local neurite activation of network properties operating at a distance (the essence of
brain activity). Such predictive insights require densities of parameter measurement
and levels of consistency among the resulting quantitative or statistical data that are
generally unattained at present.

Ideally, we are interested in coherently representing rich networks of neurites hav-
ing forms like those seen through the microscope, but without the constraints of scale
or extent that are imposed by the practical limits of optical technology. However, we
remain far from having any techniques that will allow us to systematically record volu-
metric anatomy (much less dynamic physiology) at enough resolution to view the
network organization of the CNS with such accuracy. Until technological break-
throughs of large magnitude provide this (predictable at this point in time for neither
MRI, nor Atlases, nor confocal methods), we must look for other means of obtaining
such views. One possibility is that this can be done through computer simulation and
3D image synthesis.

As a contribution to this integrative effort, the present work describes a method for
generating detailed 3D views of arborized neuronal networks, embedded in and con-
strained by voxel-based substrates, and informed by observations from cell biology.
Construction of such models (which can explicitly contain very many consistently
framed parameters) could lead towards a representation of region-wide physiology
operating at the synaptic level.

12.2. METHOD AND RESULTS

Two principal components are newly linked in this work: (i) voxel-based Atlases of
the mouse brain (15); and (ii) a system for creating networks of compartment-based
neuronal models made of branched tubules (ArborVitae, [24]). This work also relies
on 3D visualizations and analyses provided by additional software packages (Vital
Images’ VoxelView and VoxelMath, the latter written in large part by the author).
VoxelView allows one to view 3D voxel data sets from arbitrary vantage points (in-
cluding interior views) and to highlight portions of the data based on intensity differ-
ences and on coherency of structural regions. VoxelMath adds a suite of 2D and 3D
image-processing routines, which in this project were used to help to align sections and
to extract brain regions on the basis of location, intensity, and texture. The Atlas data is
used as a 3D matrix within which simulated CNS networks are grown.

12.2.1. Mouse Atlas

Dr. Richard Sidman and colleagues at Harvard University generated the voxel data
used in this work. The data consist of two interleaved series of sections cut at 20 µm
from a single mouse brain, and processed alternately with Nissl and myelin stains.
These sections were among those originally published as an Atlas in 1971 (25). In
1998, the original slides were rescanned in 24-bit color at 10 µm lateral resolution
using a Leaf Lumina camera. They were reduced to gray scale (for ease of manipulation
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Fig. 1. Nissl and myelin slice data: frontal. These 8-bit raw cropped sections extracted from
the Sidman mouse Atlas show the degree of anatomical voxel detail underlying this simulation.
The thalamus, thalamic radiations, and portions of the target cortex are prominent. The dark
cluster of cells in the lower middle of the upper Nissl-stained panel is the thalamus, and includes
the VB on its right. The region with dark lines through it (in myelin stain, lower panel) is the
thalamic radiation. Cerebral cortex is along the top (truncated) and at the far right. The hippoc-
ampus in the upper panel has its classical appearance showing the V-shaped dentate gyrus and,
in the lower panel, lies under a dark myelinated band (the white matter) running along the
under surface of the cortex. An electronic version of this figure is available in the companion
CD-ROM.
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Fig. 2. Myelin slice data: sagittal and horizontal. This figure shows the myelin voxel data
viewed along the two other canonical axes. The cerebral cortex runs along the top (truncated) in
the upper, sagittal, view. The hippocampus is the light gray oblate structure at the upper middle.
The thalamic radiations are at the right, containing dark obliquely-running myelinated line
segments (which are continuous in 3D, but truncated in this plane). The thalamus itself is in the
lower center. The bright region in the middle of the upper image is ventricle, bisected by a band
of choroid plexus. The lower panel shows a horizontal view. Anterior of the brain is to the right.
Hippocampus is at the far left, thalamic radiations are to its right, cerebral cortex is above both
of these structures, and VB is the large circular region in the lower center of the picture. Verti-
cal banding is from differential staining of the original sections, which is seen on the edge in
these views. Some alignment errors remain, in part due to differential shrinkage of adjacent
sections during histological processing. An electronic version of this figure is available in the
companion CD-ROM.
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with the then available computers and software) and assembled into two series (Nissl
and myelin), each 281 sections in number.

For the present purpose it is important that voxel data be well aligned in order to
minimize nonbiological boundary artifacts that might interfere with simulated axon
navigation. Atlas sections were aligned approximately, by eye, during the scanning
procedure, then more carefully matched using interactive and semiautomatic methods
in VoxelMath. This intermediate process did not apply rotational alignment, in order to
maintain image sharpness, which generally becomes degraded with multiple rotations.
It also repaired a few out-of-order sequences. Next the data were aligned more pre-
cisely using both offset and rotation in Bitplane’s AutoAligner. By comparing the final
result with orthogonal views in the printed Atlas, one can observe a small residual drift
in 3D down the central axis of the brain, which is not eliminated by these alignment
steps. Alignment instead primarily optimized the match between adjacent images, and
the accuracy in matching was limited by differential shrinkage of the sections.

The results of this work are two coherent 100 MB (768 × 496 × 281 × 8-bit) data sets
that are in approximate alignment with each other. In one can be seen clearly the cellu-
lar distributions of numerous brain nuclei and in the other the myelinated pathways
interconnecting them. As one aspect of this Atlas, a number of CNS structures have
been segmented into adjoining 3D regions. The raw and segmented voxel data can be
paged through, in any of the three canonical orthogonal axes, or on any oblique axis,
and can be very effectively perused in 3D using the large variety of rendering options
in VoxelView. A selected portion of the Atlas series is shown here in Figures 1 and 2.

These Atlas visualizations do not show the cellular connectivity of the mouse brain
because, even at 10 µm and with these stains, that information is not recorded in the
voxels. Future plans are to improve the resolution of such Atlases to approx 2 µm
(Sidman, personal communication). This would much better capture the topologies of
myelinated pathways and the textural details within brain nuclei, but it still would be
insufficient to follow arbor branches. Nevertheless, this intermediate resolution data
can be very useful in providing a realistic 3D template to constrain a higher resolution,
algorithmically reconstructed, anatomy.

12.2.2. ArborVitae

The compartmental modeling program ArborVitae uses algorithmic procedures to
grow dendrites on clusters of source cells and to extend simulated axonal arbors from
those cells so that they come close to, and arborize near, clusters of target cells. Axons
can crawl along the target cells to synapse selectively on the somata or dendrites. The
program can mingle many such sources and targets and emulates simple forms of sig-
nal propagation through the networks, which result from connecting these cell groups.
The cell structures produced also can be exported to additional simulation packages,
such as Neuron (26). ArborVitae permits free 3D navigation through a network, with
the ability to zoom into regions of interest to view features such as varicosities, spines,
or synaptic contacts. In addition, the program can recapitulate, as a 3D movie, the
developmental trajectory taken during the ontogeny of the network. In brief, ArborVitae
enables the creation of a 3D library of neuronal cell morphology and provides a detailed
anatomical framework in which to emulate localized neuronal physiology. In this
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framework, the internal state of any compartment can be sensitive to distant events in
an extended circuit, because the program tracks both the afferent trajectories and their
internal activity.

In an earlier instantiation of the program, the emulated cells and neurites grew in
free space, as it were, and the distributions of cells were specified using simple statis-
tical constraints. For many of the named brain nuclei, data exist that could permit one,
in this statistical way, to establish cell locations in a common 3D coordinate system.
The groups of cells thus simulated (see [24]) appeared as globular clusters or laminate
structures (or as germinal zones, from whence cells could migrate to a final position).
Without any additional constraints, the tracts interconnecting such cell groups were
relatively straight, but while this may be a biological design goal (to conserve material
and maximize signal transmission speed), this is only sometimes observed in the CNS.
Instead, the meander of tracts brings much of the interesting morphology to the brain.
However, it is difficult even to approximately define the peculiar cell group and tract
geometries observed in the CNS, such as in the hippocampus (27), by analytical means.
Now this important geometrical aspect of simulated brain reconstruction is greatly sim-
plified because one can use, as 3D templates, anatomical shapes segmented from voxel
data. Two important improvements result: the location of cell bodies can be more accu-
rately modeled and more natural constraints on axonal projection can be applied.

12.2.3. In Voxo Tissue Culture

To merge simulated cellular detail with voxel intensity data, solid regions contain-
ing source and target cells are extracted from the voxel data by a combination of manual
and automatic segmentation procedures (15) and saved as data files containing those
voxel locations and intensities. The data files are resampled to provide 3D coordinates
for the generated source and target cells. Simulated networks then are elaborated among
these cell populations by ArborVitae, which in addition applies constraints derived
from cell biology. These show up as statistical parameters governing cell size and
branching and in the design of algorithms emulating general mechanisms of neurite
outgrowth (24).

A shared memory data structure is used to provide the outgrowth algorithms with
access to the 3D voxel intensities (which can be viewed and manipulated simulta-
neously with VoxelView and VoxelMath) in the regions being traversed by the emerg-
ing arbors. The resulting neuronal geometries can be shown as vectors or rendered
tubules in 3D and can be reinserted into the underlying voxels by modifying those
memory locations that contain (have the same world coordinates as) the geometry.

As a test case, a portion of the mouse somatosensory thalamocortical afferent (TCA)
pathway was chosen (in part because it represents a nontrivial projection and in part
because the author’s PhD thesis (28) focused on the development of such afferents in
this region of the mouse brain). First, the ventrobasal complex (VB) and somatosen-
sory layer IV cortex were delimited (Fig. 3). To define them precisely would have
involved considerable manual intervention. However, for expediency, their boundaries
were roughly hewn by hand tracing and region-growing procedures (for instance, the
pial surface was eroded inward to provide superior and inferior margins for layer IV, but
the resulting region strictly also encompasses much of layer V). Numerous individual
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Fig. 3. Slice data: outlined regions and embedded fibers. The top panel indicates (in overlay)
the approximate location of the source (VB, lower center) and target (Layer IV, upper right)
regions used in these simulations. VB was carved out of the raw data by drawing a boundary in
one section and propagating the contour to all sections containing the nucleus. Layer IV was
defined by eroding the brain surface (in 3D) to two levels, roughly defining the top and bottom
of layer IV (but also including some of layer V), and then restricting the cortical region to that
sector lying directly above the radiations. The bottom panel shows portions of the paths (cross-
ing this section) taken by simulated axons, en route between these two regions, as they cross
the plane of this section. For the most part, axons travel along the dark channels in the radia-
tions. Some errant fibers cross the dark fimbria of the hippocampus. Fragments of these axons’
terminal arbors (intact in 3D) are visible in the cortical target zone. An electronic version of this
figure is available in the companion CD-ROM.
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Fig. 4. Rendered data: embedded pathways. This figure shows a number of thalamic projec-
tion cells with dendritic arbors in the thalamus (see also Fig. 7), sending their axons through the
thalamic radiations and into the cerebral cortex. Each cell is given a different hue. The axonal
tracks run to the upper right, past the voxels containing the hippocampus and ventricular chor-
oid plexus (bright region at top left), but in a plane tilted towards the viewer. The bottom panel
shows the fiber paths taken by cells projecting from the cortex back to VB (in this simulation
no attempt was made to give their dendrites pyramidal form, as in 24). Color version of this
figure is available in the companion CD-ROM.
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synthetic axons then were made to navigate, starting from the dorsal thalamus, through
channels which represent the thalamic radiations in the myelin-stained voxel data and
into the cerebral cortex, where, in the vicinity of nominal layer IV, they arborize (Fig. 4).

12.2.4. Navigation

The elements of afferent navigation in this system include a dispersal of tropic
(growth directing) factor, outward from targets, plus hill-climbing behavior for axons
(up concentration gradients of tropic factor) modified by the 3D texture of the voxel
terrain that they pass through. Tropic dispersal is modeled as a (1/r^3) drop in steady
state concentration with 3D distance, integrated from all source cells (which can vary
in the amount of factor that they emit, based on cell size or activity).

Using a 3 × 3 × 3 cubic neighborhood, axonal “growth cones” advance towards their
targets, traversing one voxel at a time. Each axon tip selects, as the “most appropriate”
path, that voxel containing the highest (darkest) local myelin signal, from any of the 26
neighbor voxels that also contain an increased concentration of tropic factor. “Bound-
ary” (high image intensity) voxels, such as found at ventricular and pial surfaces, are
not crossed and can cause an axon tip to stop growing. Many classes of fiber popula-
tions can be navigating through the same region, towards differing targets if the grids
are made multivalued. Each class of axon also can have a specified maximum allowed
bend angle, or “stiffness”, so that in general, they do not readily double back on their
paths in regions having low gradients of tropism or myelin. Lastly, so that every axonal
path is unique, the specific coordinates used are randomized within each voxel selected
by the growing tip. Best results (i.e., more precise travel within the myelin channels)
were obtained when the asymmetric (10 × 10 × 40 µm) raw voxel data was interpolated
in shared memory to contain isotropic 10 µm cubic voxels.

Once within the target tissue (defined as any low resolution grid point that contains
one or more factor-releasing cells), this axonal navigation method is augmented by a
“homing-in” mechanism. This feature orients the growth cone towards specific nearby
simulated target somata or dendrites, and mediates the process of synapsis onto speci-
fiable regions of the target cells.

These sets of constraints allow simulated axons to navigate with biologically plau-
sible pathways through voxel data (see Figs. 4 and 5). In this test case, they converged
from VB and funneled into the thalamic radiations, then splayed apart as they entered
into the cortex. The simulated thalamocortical afferents generally refrained from tak-
ing wildly errant paths (e.g., caudally, down the cerebral peduncle), because of the
requirement to climb up a specific tropic gradient, in this case, derived from layer IV
cortex. But, as observed in real preparations, some of the simulated fibers did meander
out of the predominant route and corrected their paths later, to arrive at their target
nonetheless. In nature, multiple classes of projection fiber can use the same primary
conduit (e.g., the medial forebrain bundle [29]) and sort themselves out at its destina-
tion. Similar behavior could occur here if each afferent system is made sensitive to its
own tropic compound.

12.2.5. Arborization

In nature, TCAs have stereotypic paths and branching patterns en route to and within
the cortex (see Discussion). They rarely branch in the thalamic radiations after they
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pass through and synapse with the thalamic reticular nucleus, but they emit collaterals
repeatedly (and usually at right angles) as they travel in the white matter beneath cor-
tex, and they arborize in layer VI and, most profusely, in layer IV (30). While the
precise causes of TCA branching are not fully understood, this pathway exemplifies
the phenomenon of axonal growth towards tissues that emit attractants (31,32), as well
as target-specific elicitation of collaterals (33,34).

In ArborVitae, arborization is governed by both intrinsic and extrinsic mechanisms.
Simulated axons are given fundamental branching repertoires that they would express
in free space and in the absence of any target. These consists of a finite set of (concep-

Fig. 5. Rendered data: brain context (orthogonal). This figure shows the same TCA fibers as
in Fig. 4, employing more translucent and 3D settings in VoxelView. Hippocampus is below, at
right, radiations are at top center, cortex is to the right, and brain midline is on the left. Fibers
exit the thalamus (center left), pass through the thalamic radiations, and terminate near a band
of target cells in the cerebral cortex. Color version of this figure is available in the companion
CD-ROM.
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tually, genetically instanced) states. For each state the branch number, frequency, and
angle are constrained by a different set of statistics (e.g., mean and standard deviation)
(35). Growth states can play out sequentially (free space), or they can be selected by
voxel-based inhibitory or excitatory (environmental) influences. For instance, travel in
fiber bundles might inhibit bifurcation, passage adjacent and into the more permissive
cortex might elicit collateralization and sporadic branching, whereas entrance into a
target region might trigger a “terminal” mode of arborization.

Many of these morphologically distinct growth phases appear to be conserved among
differing types of axon (see also [36]). However, detailed experimental evidence for
this state formalism is not yet available. It may prove tedious to collect (or to estimate
iteratively) statistics for each candidate growth epoch. For instance, in some cases, it
may be difficult to distinguish shifts among multiple endogenous states vs the effect
which entry into the sphere of influence of a new target might have on a single state.
Hence, measurements from nature might reflect an entanglement of state parameters
with environmental modulations. (For means of deriving such statistics from measured
data, see [23].) Regardless of its biological validity, the state transition construct pro-

Fig. 6. Simulated data: thalamocortical pathway. This figure shows the same simulated
thalamocortical pathway data, represented in ArborVitae using geometrical primitives rather
than voxels. The ventrobasal complex is at the lower left. Some of the cells have elaborated
dendrites and have sent axons running obliquely up to the cerebral cortex (upper right). As a
simplification, the cortex consists of a reduced number of layers, one of which has target cells
that likewise have elaborated some dendrites. The TCAs meet these cells and arborize, pre-
dominantly along the closest among the band of cells in the layer. Each cell is given a separate
hue. Color version of this figure is available in the companion CD-ROM.



258 Senft

vides a flexible empirical tool for recreating numerous hierarchical classes of complex
arbors, and it can coexist with other mechanisms.

This formalism in ArborVitae can permit one to piecewise approximate the observed
TCA behavior by quantitatively specifying statistics to match the differing angles and
frequencies of axon branching in the radiations, white matter, and various layers of
cortex. Axons could be configured to shift state based on detection of all of these bound-
ary landmarks along their projection path. But, for the purposes of introducing this
method, TCA branching behavior is further simplified. It omits an explicit
collateralization phase in the subcortical matter and, instead, has two intrinsic states of
branching (low frequency before reaching cortex and moderate frequency within cor-
tex), plus a terminal mode triggered by entry into layer IV. These behaviors provide a
basic mechanism whereby a TCA can invade and colonize a small region of cortex
(Fig. 6). The omitted collaterals, while important, may primarily provide the spatial
variance needed for effective arbor refinement by competition (see [37]), which also is
not modeled at present. The dendritic arbors of the thalamic projecting neurons (Fig. 7)
were created using algorithms presented previously in (23), but were not tuned to par-
ticular morphometry data available for these cells (see [38]).

Fig. 7. Simulated data: thalamus. This is a close up of the ventrobasal complex in Figure 6,
showing the (spiny) dendritic branching pattern of the projection cells, and the initial portions of
their axons, decorated with varicosities. The dendritic branching patterns have not been tuned
to morphometry data, which, however, is available in the literature. The pale rounded struc-
tures are VB somata that have not been given dendrites or axons, but merely indicate the extent
of this brain nucleus. Color version of this figure is available in the companion CD-ROM.
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Up to and within the target zone, three general means were used by simulated axons
to regulate their growth: (i) the sign of the slope of local tropic factor concentration; (ii)
state-dependent branching; and (iii) contact with nearby target cells.

The gradient of tropic factor is a helpful cue for leading axons up to layer IV, but, if
used alone, would bar afferents from the upper part of that layer. (Assuming simple
diffusion, concentration will be maximal in the middle of a target.) Procedurally, there-
fore, it helped to attenuate the axons’ sensitivity to attractant (i.e., emulating a form of
“saturation”) when within the target. This made axons meander in and through layer IV
more uniformly (Fig. 8), rather than building up at its center (or lower edge; depending
on parameters, explosive branching can occur just as a target is reached).

A threshold of some sort is needed for the target to trigger a change of growth
(branching) state. It can be modeled as a level of exterior concentration experienced
only near to the target, or as a level of tropic factor internally accumulated (and
dynamically degraded) en route to the target. Both methods appeared to work in spe-
cific instances. Thresholds based on extracellular concentration more consistently sig-
naled the boundary of layer IV, but effective rate constants also were occasionally
found when testing metabolizing models (and, while these rates might be hard for us to
set, one can imagine much evolutionary time for nature’s fine-tuning of them). None-
theless, it was difficult to configure terminal arborization thresholds, of either sort,
which remained adaptable over a wide range of conditions. Thus, both methods were

Fig. 8. Simulated data: cortex. This figure is a close-up of the cerebral cortex. Incoming
TCAs, singly and in bundles, enter in the inferior margin of layer IV cortex and arborize among
the target cells (various hues). The cells without dendrites (pseudo-Nissl-stained) depict addi-
tional nontarget cells. Color version of this figure is available in the companion CD-ROM.
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supplanted by a more reliable means (using global variables), which identified as
“within target” those axon tips entering any grid point (see below) containing tropism-
releasing cells.

Once triggered, ArborVitae’s terminal arborization behavior (Fig. 9) can free run, or
it can be an aspect of “homing-in” behavior. In the former mode, intrinsic state param-
eters govern the frequency of bifurcation and eventually will stop elongation and
branching by randomly terminating the growing tips. The latter mode is more interest-
ing, as it tends to produce a more uniformly innervated target. When homing-in, if a
terminal mode growth cone fails to detect a target cell within a given radius and within
a given forward-facing acceptance angle, it branches using terminal mode angle statis-
tics. This increases the likelihood of future contact. Conversely, contact with a target
cell increases the probability that that portion of the afferent will terminate. But if an
afferent ending does not terminate, it disengages from (become insensitive to) its cur-
rent target and resumes searching.

The number of synapses made by each afferent currently is not tightly regulated, but
instead is set for the TCA population as a whole. The number per axon can be affected,

Fig. 9. Simulated data: cortex (detail). This shows an additional close-up from a region
nearby (but not identical to) that of Figure 8. The Nissl-stained somata have been rendered
invisible to better show the relationship of the incoming afferents to their target cells. Each
afferent and each cortical cell has had all of its segments set to the same uniform hue, to help
visually to disentangle the network, which, however, is better appreciated with a 3D display
than in a 2D image. Note that some of the afferents branch before they reach the layer of target
cells, and that some target cells (e.g., at the far right) receive fewer or no afferent inputs (see
Discussion). Color version of this figure is available in the companion CD-ROM.
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however, by the size of the afferent’s parent cell body, by how many targets are
encountered, and by what type of morphological and physiological synapse is speci-
fied for each type of target (39). Afferents can crawl to specifiable portions of the
target neuron depending on whether the input is making axosomatic or axodendritic
synapses (Fig. 10). Note that those cells which release long-range tropic attractant need
not be the same ones preferentially synapsed upon, although in this simulation, the
stellate cells of granular cortex play both roles.

This method for constructing ingrowing afferents provides a workable approxima-
tion (Figs. 4–10) to the arbors seen in nature (40), although collaterals in the white
matter were rarer here, as expected (since a distinct process for collateralization was
not explicitly modeled). However, the simulated terminal arbors often varied among
axons much more in size than anticipated, due to preponderant branching (see also
[23]) by the earliest afferents to invade the target (this increases the numbers of tips
that are candidates for subsequent branching). Such imbalances even out somewhat by
scaling up the simulation by a factor of 10 to have more target cells (100–1000) and
more incoming axons (25–250). However, that raised a broader issue: with additional

Fig. 10. Simulated data: cortex (high power). This figure is at a higher magnification than
Figure 9, to show the manner in which the afferents “home-in” onto and cluster around the
dendrites and somata of some target cells. The tiny spots (arrows) on the target cells’ somata
and dendrites are ArborVitae’s representations for synapses. An axon entering the field in the
lower left walks up the nearby dendrite, making contacts (1–5) on it at regular intervals, until it
reaches the soma. Some postsynaptic cells have spines (visible, for instance) on the large den-
drites in the upper center of the image. Color version of this figure is available in the compan-
ion CD-ROM.
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target cells (and in the absence of any regulation of factor production or catabolism)
more tropic factor is released. Thus, any behavior tied in the simulation to thresholds in
the concentration or in the gradient of such a molecule (as seen naturally, e.g., with
sonic hedgehog in the spinal cord [41], can be altered, perhaps dramatically). Conse-
quently, one may unintentionally get varying behaviors simply due to scaling the simu-
lation. It is not clear whether this, in general, is a quirk only of the simulation or also a
concern in nature.

12.2.6. Approximations

While having the advantage of filling space, the representational flexibility of voxels
is not itself sufficient to depict intricate networks of branched neurons at currently
practicable scales. One would require over a terabyte of voxel data merely to store a
gray scale representation of the mouse’s brain sampled to 0.5 µm. Even the thalamo-
cortical slab simulated here (Fig. 4), would take about 50 GB at that resolution. More-
over, one would need efficient methods for acquiring, importing, and processing that
information. In particular, one would need ways to link together those voxels that com-
prised each neuron. Consequently, the current simulation is performed using a sparser
geometric method based on tubule primitives (each containing numerous physiological
variables). Depending on cell number, it uses approx 50–250 MB of memory to repre-
sent the TCA pathway and runs on an SGI Indigo-2 with 384 MB. Yet, implemented in
floating point, it far exceeds its underlying voxel substrate in useable resolution. To
conserve computational time, no attempt was made to avoid tubule superposition or
collision (although ArborVitae can be set to test for this).

Our current understanding of cell biology rules out action-at-a-distance as an expla-
nation for interneuronal behavior. We instead posit that, were all of the pertinent bio-
chemistry known to us, axonal outgrowth decisions would be explicable in purely local
terms. Therefore, if an axon is to reach a distant target it must repeatedly sample its
local environment (within a filopodial reach of approx 50 µm). In nature, the axon’s
milieu is largely conditioned by compounds that have diffused from distant sources.
Natural diffusion takes place in parallel at very fine spatial scales and proceeds at bio-
chemical clock speed. To mimic this effect on a computer obviously requires some
approximations.

For the simulation, we restrict the growth cone to 26 possible changes of direction,
each associated with information about the local environment in one neighboring voxel
(here, 10 µm on each side). The decision of where to orient next (and whether to advance
or retreat) is a function of that information plus historical data internal to the growth
cone. Simulated axonal growth cones therefore need to know the tropic “concentra-
tion” for each of its neighboring voxels. One might emulate diffusion by finite element
computation carried out at the voxel level, using a large auxiliary 3D array. Instead, an
even lower resolution grid was used for calculating dispersal of tropic factors (using an
inverse-distance-cubed rule), and an effective diffusion value was interpolated at the
finer voxel level only when a previously unvisited voxel was encountered. This was
efficient, since relatively few of the Atlas voxels were traversed by the TCA pathway.
Interestingly, axonal navigational accuracy was degraded when this intermediate grid
was made too detailed.



Axonal Navigation 263

Grids and voxels, thereby, constitute effective intermediates for converting action-
at-a-distance into local interaction. Of necessity, it involves some less than ideal
approximations. One example, alluded to above, is in the determination of when an axon
is within a target that is emitting tropic molecules. This method (based on the cell count
within each grid) will work consistently in this framework for any set of axons and
targets. But it leaves unspecified a cellular-based rationale for how an axon could know
how near it is to a target (when still out of filopodial range). Hence, a more biologically
plausible general solution for this part of the navigation problem is needed, in which
the concentrations, diffusion, and metabolism of tropic factors are more precisely de-
fined. Similarly, competition for growth factor clearly is in operation in the biological
setting, and in the computational setting is potentially stabilizing. However, it involves
additional metabolic parameters that have not yet been modeled.

12.3. DISCUSSION

This paper presents a general method for specifying simulated axonal pathways so
that they bear a close correspondence to tracts seen in the brain, yet can be manipulated
logically. The primary intent of this modeling is to use voxel data as a blueprint upon
which to erect a scaffolding of plausible connections. It will be an advance if even the
most prominent projection pathways can be visualized with this level of detail. It is
desirable, but not essential, that the means used for wiring up the system mimic the
biological. It is not claimed that these constructed pathways are the actual paths taken,
but that they represent a significant step in that direction. Models created in this way
have didactic utility, and, because propagation of activity can be emulated, they could
play the role of a dynamic 3D breadboard for hypothesizing about brain function.

If one aims further to recapitulate pathway development, then one must bear in mind
that many biological cues are not captured as voxel data, and that numerous embryo-
logical structural elements, such as radial glia, are removed from the brain itself during
the course of ontogeny. Surfaces relied on by navigating axons may no longer exist,
and short open spaces crossed easily in the embryo may have grown too large to traverse
in the adult. Pathways, including the thalamocortical, also may be established mutually
by more than one outgrowing population (42) or by transient markers (43,44). Brain
tissue also can undergo regional torsion, which may drag axons passively into new
positions (e.g., medial geniculate, 7th nerve). Thus, even if there is an extent to which
these constraints and algorithms eventually do model the underlying biological strate-
gies, such earlier developmental features will not be addressed unless one obtains high
resolution scans of appropriately labeled developing embryos (e.g., [12,13]).

A more direct relevance might be to better understand regeneration or the behavior
of stem cells (e.g., [45]) when introduced into brain regions that have preexisting path-
ways. Depending on their degree of differentiation, stem cells could possess, or could
acquire, sensitivity to target tropic factors and, thereby, be selective in their patterns of
projection. In principle, descendents of this kind of a simulator could help to predict
the behavior of implanted cells. But if so, such a program would have to address many
additional biological features.
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12.3.1. Biological Navigation

In nature, axons grow out, during or shortly after migration of the cell body from its
site of origin, by polarizing so that one of its emerging neurites becomes the axon (46).
To get to and recognize their targets, axons use multiple categories of molecular cues.
These include long-range diffusible chemoattractants, such as netrin (47), and
chemorepellants, such as semaphorins ([48], but see also [49]), as well as contact
adherents (eph, [50]) and contact repellants collapsin and cadherin (see [51]).

Axons often tend to travel on interfaces, or at least don’t cross boundaries unless
given overarching reasons (optic tract, perforant path, massa intermedia). They prefer
to follow preexisting pathways formed by substrate markers (52), blood vessels, or
other axons, with which they selectively fasciculate and defasciculate. They can avoid
nonpermissive tissue altogether (53), and can be selectively sensitive to molecular
boundary markers, such as roundabout, found at midline tissue (51). Large families of
such markers help to specify cortical areas (54) so that axonal access can be regulated
regionally. Axons can carry and respond to molecular gradients, such as repulsive axon
guidance signal (RAGS) (55) and Elf1 (56), and this enables afferent populations to
developmentally transmit sensory maps into the CNS.

The balancing of these many molecular classes of influence is mediated, within ax-
onal growth cones, by elaborate and sensitive regulation systems (e.g., rac/rho,
[48,57]), linked both to receptors and to the subcellular machinery responsible for neu-
rite advance and retraction (e.g., [58]).

12.3.2. Biological Branching

Axons have additional molecular transport machinery for depositing and removing
biochemical components from their growing tips. It conveys samples of the environ-
ment centripetally to the nucleus and exports genomic instructions centrifugally to the
growing arbor. An important class of sampled compounds includes the neurotrophins
(brain-derived neurothrophic factor [BDNF], NT-3, NT-4/5, nerve growth factor
[NGF]), whose bioavailability can regulate cell survival as well as neurite complexity
(36,59). Many other control points are coming to light at the nuclear level, including
the wnt genes, which regulate neurite branching in cerebellum (60) and elsewhere.

Trophic effects on axon growth can extend to single collaterals and even in laminar-
specific ways (61). For instance, foxb1 has been shown to regulate specific
collateralization in the mammillothalamic tract (62), and the pons elicits collaterals
from the corticospinal tract using a diffusible signal, even after its initial phase of pro-
jection (33).

Time-lapse microscopy demonstrates highly dynamic branching behaviors of navi-
gating axons (63–66), including transitions between lamellate and compact growth cone
shapes at apparent choice points. When growth cones reach their target zones, there is
additional and profuse branching (e.g., [67]), and an intricate mutual and simultaneous
remodeling of axons and dendrites (68).

12.3.3. Growth Algorithms

The ArborVitae program currently can emulate, and in simplistic form, only a por-
tion of this list (migration of somata, axonal attractants, fasciculation, boundary behav-
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ior, contact termination, simple synapsis). More extensive and quantitative algorithms
are needed, therefore, to match the variety and subtlety of observed axonal and den-
dritic outgrowth behavior.

It is dramatically clear, though (even from the features briefly alluded to above), that
there is a wealth of pertinent biochemical information that could be brought to bear to
inform this kind of a growth model, and to fine-tune it, as needed, for a number of
specific pathways. Even for the TCA pathway, numerous factors are known to affect
tract formation: chondroitin (69), polysialic acid (32), membrane-bound (67), and dif-
fusible (31) tropic compounds, and the wnt transcription factor pax6 (70).

However, the many entities implicated thus far do not yet constitute a coherent
molecular explanation of navigation through tissue. There is an increasing variety of
interacting biochemical components known to affect brain wiring, yet an absence of a
currently applicable comprehensive theory of biochemical control of outgrowth. It will
be a challenge to keep models manageable (and computable) and still account qualita-
tively for the extraordinary diversity in observed axonal branching patterns. Such wide
diversity makes it probable that any generally conserved mechanism controlling axonal
growth and branching will be exquisitely sensitive to perturbation. But two design cri-
teria must be balanced: one requires stable control similarities across pathways in order
to simplify models of outgrowth (many thousands of axons will have to be simulated),
and one wishes to be able to generate numerous variations. It is not yet clear whether
this is achieved in nature by multiple genomic instructions or by high reactivity.

One potentially useful point of view is to consider that, whatever the complexity of
the underlying biochemical machinery, axonal behavior can be expressed using a small
“vocabulary” of final common growth states that form the neurite’s geometry: elonga-
tion, shortening, change of diameter, change of angle, bifurcation, and anchoring.
Filopodial evaluation of potential targets will modulate these underlying variables, but
the overall sensorimotor transfer function of the growth cone (its “language”) might be
emulated effectively by state transition models informed by statistics (as has been help-
ful in other fields, such as linguistics, e.g., [71]). Hopefully, combinatorial differences
in marking afferents and their selected targets (72,73) additionally will account com-
pactly for much of the apparent diversity in behavior. It is unknown though (either
biologically or heuristically) how many distinct tropic factors would be needed to es-
tablish all of the recognized major tract systems. (It seems like a 3D biochemical ana-
logue of the 4-color mapping problem, which additionally allows for inductive changes
over time). Multiple diffusing signals, attractive and repulsive, can operate within
ArborVitae, but thus far they have been used only sequentially, not in parallel.

Consonant with an expectation of high sensitivity in the branching process, while a
variety of reasonably approximate TCAs were made (e.g., Figs. 4,6, and 9), it proved
difficult to configure an interaction of these simulated axons with their targets so that
they would mimic the branching patterns seen and traced in biological tissue
(39,40,66,74,75). The afferent population often failed to uniformly innervate the
entirety of the emulated layer IV target, and it was common to see a few axons over-
arborize at the expense of their companions. This is not surprising, given our limited
quantitative knowledge of the control of axon branching, the ensuing large parameter
space, and the lack thus far of simulating either the reticular nucleus, subplate cells
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(76), layer VI, or control mechanisms internal to the growth cone, such as rac and rho
(57,77) or competition for neurotrophin, or activity-based neurite remodeling. Many of
these phenomena are becoming well enough understood that they can, and should, be
added. Prototypes for some of these autoregulatory outgrowth processes exist (e.g.,
microtubule dynamics [78] and neurotrophin metabolism [79]).

12.3.4. Future Directions

This is a new technique, and it is not yet clear how much spatial resolution in voxels
is needed, or if the high contrast given by the Loyez myelin stain is required. But
similar results (not shown) were obtained after down sampling this thalamocortical
voxel data by a factor of two, and any intensity difference above the noise should
suffice for evaluating which neighboring voxel to select. Clearly, though, very small
pathways will require higher resolution voxel data or better heuristics.

While the thalamocortical pathway has been used to illustrate this method, prelimi-
nary tests have been made using other large projection systems with encouraging results
(corticothalamic, lower panel in Fig. 4, and lateral olfactory tract, not shown). It is
possible, however, that structural features peculiar to the TCA pathway are fortuitously
favorable for this method, or that subtle details in the navigation algorithm lead it to
work well only in certain contexts. On the other hand, the quality of contrast used to
inform TCA growth is widespread through the Atlas, and analogous data from a variety
of sources can be expected to become equally, or more, distinct as scanning and recon-
struction methodologies mature. Too, the navigation algorithm accommodates a con-
siderable amount of tract meandering. Hence, this method should be applicable to a
wide range of anatomical pathways, for which auxiliary data also are being generated
and systematically compiled (e.g., [80,81]).

Even without recapitulating precise arborization patterns, by incorporating the above
cell biological subtleties, it may be possible with this type of program (and larger com-
puters) to relatively rapidly create an approximate yet functionally interconnected rep-
resentation of the primary tracts in the mouse CNS. If only as a preliminary scaffolding,
such a progressively tunable construct will have utility in organizing our collective
thinking about the plainly complex process of brain wiring.

It will be a challenging longer-term goal to add interneurons (as well as glia and
blood vessels), for which voxel-based tract information will of necessity be lacking
(there being low coherence to their projections). However the attempt should be
rewarding given a scaffolding constructed from the emulation of major pathways, based
on geometry derived from Nissl-stained volumetric data and augmented with local cir-
cuit connectivity data obtained by multicellular physiological recording (6,82,83). In-
terestingly, as the simulated networks are made more lifelike, progressively more
powerful visualization and analysis techniques will be required merely to inspect the
fine details of the resulting synthetic tissue.
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Principle and Applications of Diffusion Tensor

Imaging
A New MRI Technique for Neuroanatomical Studies

Susumu Mori

ABSTRACT

Diffusion tensor imaging (DTI) is an emerging magnetic resonance imaging (MRI)
technology. Using this technique, we can characterize the way water diffuses inside
imaging objects. For example, water molecules inside a cup can diffuse freely in all
directions (“free diffusion” or “isotropic diffusion”). On the other hand, water mol-
ecules inside living systems often experience numerous “obstacles”, such as protein
fibers, membrane, and organelles. If the water diffusion is restricted by these structures
it is called “restricted diffusion.” If water molecules are in an environment with highly
ordered (or aligned) structure, they tend to diffuse along the structure, resulting in
so-called “anisotropic diffusion.” In other words, the water diffusion has “directional-
ity”. The water diffusion, thus, carries a wealth of information on the micro-architec-
ture of the imaging object. Using the DTI, we can characterize the water diffusion
process. DTI can answer questions about diffusion like, “is it free or restricted?” or “is
it isotropic or anisotropic?” Using the DTI technique, the water diffusion process can
be characterized on a pixel-by-pixel basis. Application of the DTI to the brain has
revealed that the water diffusion in the brain white matter is highly anisotropic, which
is attributed to the highly ordered axonal tracts. The characterization of the anisotropic
diffusion can provide detailed information on the white matter architectures, which
cannot be obtained by any other radiological tools. In this chapter, we discuss the theory
and history of DTI and introduce the state-of-the-art application studies.

13.1 BACKGROUND ON DIFFUSION TENSOR IMAGING

13.1.1. Conventional Magnetic Resonance Imaging and Diffusion Tensor
Imaging

It is widely accepted that magnetic resonance imaging (MRI) is one of the most
versatile radiological techniques to study the human brain noninvasively. A reason for
its versatility stems from its capability to create many different patterns of contrast in
the brain, which depend on the data acquisition techniques employed. Each contrast
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mechanism is based on different physical and chemical properties of water molecules
and, thus, each pattern often reflects different physiological and/or anatomical proper-
ties of the brain. In Figure 1, four images with different contrasting (weighting) meth-
ods are compared. Image intensity of the proton density image (Fig. 1A) is proportional
to the tissue water content. Image intensities in the T1- and T2-weighted images (Fig.
1B,C) reflect relaxation properties of water molecules inside each pixel. Differences in
T1 and T2 relaxation in different brain regions, such as gray and white matter, is be-
lieved to reflect differences in the physical and chemical environment of water mol-
ecules, such as viscosity, susceptibility, and proton exchange with macromolecules. In
late 1980s, a new weighting scheme called, “diffusion weighting” was introduced (1,2).
An example of a diffusion-weighted image is shown in Figure 1D.

As will be discussed later, the intensity of this image is weighted by translational
motion (diffusion) of water molecules. The faster the diffusion process is, the darker
the image becomes. In practice, the contrast created in diffusion-weighted images is
more complicated. First of all, the absolute image intensity of diffusion-weighted
images is determined not only by the extent of diffusion, but also by proton density, T1
and T2, depending on the data acquisition techniques (very often, so-called diffusion-
weighted images are also T2-weighted). Second, inside biological systems, translational
molecular motion often has directionality (3,4). In other words, whether water mol-
ecules are moving fast or slow depends on their directions. This orientation effect can
be seen in Figure 2. These three images are diffusion weighted along three different
orientations. It can be seen that the contrasts in these images are very different, although
they were acquired with exactly the same image parameters except for the orientation
of diffusion weighting.

13.1.2. Diffusion Process

Before starting to describe diffusion imaging, the translational motion of water mol-
ecules should be defined. Inside living systems, there are many factors that affect the
movement of water molecules. The motion can be classified into two categories; one is
coherent and the other is incoherent motion. An example of the coherent motion is
blood flow, in which water molecules move unidirectionally along a certain axis. Bulk
tissue motion, such as pulsation and respiration, also causes a large-scale coherent
motion of water molecules (they move along with tissues). Thermal motion (Brownian

Fig. 1. Comparison of proton density (A), T1- (B), T2- (C), and diffusion-weighted (D)
images of a human brain.
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motion) is an example of incoherent motion, in which the probability of water move-
ment along any arbitrary axis is always gaussian (the probability to go to the right or
left along an axis is identical). The distinction between the two may not always be
clear. For example, if there are many capillary blood vessels within a pixel, water move-
ment as a whole may look incoherent (random). Water molecules can also be moved by
active transport across membranes or along protein filaments. Water motion is further
complicated by the existence of barriers and obstacles such as membranes and macro-
molecules. The results of diffusion imaging (diffusion-weighted images) are influenced
by all the factors that affect water movement. In order to understand how these factors
affect the diffusion image, I would like to introduce four parameters that describe water
movement; these are “shift”, “size”, “shape”, and “orientation” as shown in Figure 3.
Suppose ink is dropped on an object, and how it spreads is observed. After a while, the
initially concentrated ink will form more a diluted cloud of ink due to water movement.
If the center of the cloud is shifted from the initial location (shift in Fig. 3), this indi-
cates the existence of coherent motion (or flow). If the center of the cloud does not move,
the water motion is incoherent (called diffusion, hereafter). The extent of the motion is
represented by the size of the cloud (size in Fig. 3). As mentioned above, the shape of
the cloud, which is supposed to be a sphere for free diffusion, can be an ellipse in 2D,
or “ellipsoid” in a 3D space (called diffusion ellipsoid) in living systems (shape in Fig.
3). In other words, if a sample consists of homogeneously ordered structure (e.g., actine-
myocin filaments in muscle, neuronal filaments in axon), water tends to diffuse along
such an ordered structure and, as a consequence, the extent of the diffusion has direc-
tionality. Unless the sample consists of multiple populations of fibers with different
orientations, or the fibers have significant curvature, the way water diffuses in such an
ordered environment is known to be the ellipsoid. This mode of diffusion is called
anisotropic diffusion as opposed to isotropic diffusion for the spherical case. If the

Fig. 2. Images that are diffusion-weighted along different axes. In diffusion-weighted
images, brain regions where water molecules diffuse faster have lower intensities. This diffu-
sion weighting can be applied along any desired axis (the weighting orientations are shown by
arrows) and as can be seen in these three images, the image contrast depends heavily on the
orientation of the diffusion weighting (panel C is perpendicular to the plane). For example,
white arrowheads indicate the corpus callosum that seems to have high diffusion when the
diffusion weighting is applied along the left-right axis (A), but seems to have low diffusion
along the superior-inferior (B) or anterior-posterior axes (C).
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diffusion is anisotropic, the orientation of diffusion becomes an important issue (orien-
tation in Fig. 3). One interesting fact is that the coherent motion (shift), in principle,
does not have an effect on diffusion-weighted images, and, thus, size, shape, and orien-
tation of diffusion are of central interest in the diffusion imaging.

If water molecules are in an environment where they can diffuse freely, they do not
have directionality (isotropic); they diffuse in all directions with the same amount of
movement. However, inside fibrous systems such as brain white matter, water diffu-
sion tends to have directionality (Fig. 4) and the “shape” of the diffusion becomes
ellipsoid (anisotropic) as mentioned above. This diffusion ellipsoid can be fully
described by 6 parameters involving length and orientation (Fig. 5). There are three
parameters to define the length of the longest, middle, and shortest axes (called λ1, λ2,
and λ3), which are orthogonal to each other, and the orientations of these three axes
(unit vectors called v1, v2, and v3). In other words, the λ1, λ2, and λ3 define the shape,
and the v1, v2, and v3 define the orientation of the ellipsoid. Only one parameter is
needed if the diffusion ellipsoid is spherical (1 parameter for its size [diameter] and no
need for shape and orientation parameters).

13.1.3. Importance of Studying the Water Diffusion Process in the Brain

Conventional imaging contrasts such as T1, T2, and magnetization transfer are based
on differences in chemical compositions of the brain tissue. On the other hand, con-
trasts obtained from the diffusion tensor imaging (DTI) technique are unique because
they are based on the existence and orientation of ordered structures. Parameters we

Fig. 3. Four modes of water movement; shift, size, shape, and orientation. Small black dots
indicate locations where ink is dropped and shaded areas indicate how it spreads.

Fig. 4. Schematic view of water diffusion in an environment with strongly aligned fibers (A)
and its expression as a diffusion ellipsoid (B). In (A), a trajectory of a solid sphere shows an
example of water diffusion that is restricted by fibers depicted by bars. In this environment the
diffusion properties can be expressed by an ellipsoid (B). Three orthogonal axes that align to
the longest (λ1), shortest (λ2), and middle (λ3) axes are called principal axes.



Diffusion Tensor Imaging 275

can investigate from the DTI are the size, shape, and orientation of water diffusion
processes, and each parameter provides us with unique information on the physiology
and anatomy of the brain.

First, the extent of water diffusion (size of the diffusion sphere–ellipsoid) is known
to decrease when ischemia occurs. This is one of the most sensitive and specific mark-
ers of ischemic tissue at its early phase and has proven to be an important diagnostic
tool for stroke patients (see Subheadings 13.3.1. and 13.3.2.).

Second, the anisotropy (shape) tells us where densely packed axonal fibers are
located (not surprisingly, white matter has higher anisotropy than gray matter). It is
expected that the anisotropy will be a good marker to study the integrity of axonal
tracts in the white matter. This will be discussed in more detail in Subheading 13.3.3.
Third, the orientation information of white matter tracts provides us with detailed white
matter anatomy. In conventional MRI, the white matter often looks homogeneous.
However, the white matter is far from homogeneous in terms of the axonal orientation.
Using the orientation information, the white matter can be parcelled into different white
matter tracts, which might in the future allow us to examine effects of brain diseases on
individual tract systems (see Subheading 13.3.4.).

Finally, by extending the fiber orientation information into a 3D space, it has been
demonstrated that 3D trajectories of white matter tracts can be reconstructed (5–14).
Because neuronal connectivity provides such important information to understand brain
anatomy and function, and because there have been no noninvasive techniques that
allow us to investigate the neuronal connectivity in humans, the development of DTI-
based tract reconstruction techniques and applications to in vivo human brains are being
received with much enthusiasm. This topic is covered in Subheading 13.4.

13.2. MEASUREMENT AND CALCULATION

The diffusion MRI technique can measure water diffusion along any desired direc-
tion in each pixel of the images. The diffusion is measured using the so-called “mag-
netic field gradient” (called “gradient” hereafter) (15–17). MRI scanners are equipped
with three units of the gradient devices in x, y, and z directions. By using one of these
gradient axes, or by combining them, it is possible to “sensitize” or “diffusion-weight”
images. Figure 6 shows an example of application of such a gradient in a simple spin-

Fig. 5. Six parameters to represent an ellipsoid. Three are needed to describe the shape (A);
the lengths of the three principal axes. Other three are needed for orientation (B); unit vectors
that describes the orientation of the principal axes in the measurement coordinates. In our case,
the measurement coordinates are defined by the orientation of the magnet as described below.
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echo sequence. A detailed explanation of the exact mechanism of the diffusion mea-
surement is available in our recent review (6). Examples of such diffusion-weighted
images using various axes of gradients are shown in Figure 7. The left most image in
the top row is the so-called nondiffusion weighted image, which is acquired without
the gradient (T2-weighted image). The second image on the top row is acquired with
the x-gradient (Gx in Fig. 6). Namely, the image is diffusion weighted along the x axis
(indicated by arrow). By combining the gradients, such as x and y, diffusion along
oblique angles can also be measured as shown in the right most image in the top row. It
can be seen that signal intensities decrease by applying the diffusion weighting. The
amount of this signal loss obeys Equation 1, assuming isotropic diffusion (17):
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where S and S0 are signal intensities with and without the diffusion weighting, γ is a
constant (gyromagnetic ratio), G and δ are gradient strength and length, and λ is the
separation between a pair of gradient pulses (see Fig. 6 for the symbol definition).
Because these parameters are all known, including the amount of signal decrease
(S/S0), diffusion constants (D) at each pixel can be obtained, which is shown in the
second row of Figure 7. These calculated diffusion constant maps are called “apparent
diffusion constant (ADC)” maps. From the images in Figure 7, it can be seen that
cerebrospinal fluid (CSF) regions where water diffuses freely have a large amount of
signal loss in the diffusion-weighted images (upper row) and high values in the ADC
maps (second row), which is logical.

There are two important points that should be realized from Figure 7. First, in this
so-called diffusion MRI technique, a diffusion process along any desired axis, which is
defined by the applied gradient axis, can be measured. Second, as can be seen in the
second row of Figure 7, the ADC maps obtained using different gradient axes have
markedly different contrasts. In other words, water diffusion inside the brain has direc-
tionality, and the amount of diffusion depends on the direction, which is called “diffu-
sion anisotropy” (3,4,18,19). This dependence on the direction of the diffusion
measurement indicates that the water diffusion property cannot be expressed by a single

Fig. 6. An example of a diffusion MRI sequence. Diffusion weighting gradient pulses (Gx,
Gy, and Gz) are applied around a 180 RF pulse. Narrow and wide solid boxes are 90 and 180
radio frequency (RF) pulses.
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number. To fully characterize this diffusion anisotropy, the shape and orientation of
the diffusion ellipsoid, introduced in Figure 5, have to be determined. It is known that
such a system can be described by a 3 × 3 tensor (called diffusion tensor D ), which
consists of nine elements (19–23):

D =
















D D D

D D D
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xx xy xz

yx yy yz
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[Eq. 2]

Fig. 7. Examples of diffusion-weighted images using various axes of gradients (upper row).
Arrows indicate the directions of diffusion measurements, where the z axis is perpendicular to
the plane. From changes in intensities between nonweighted and diffusion-weighted images,
ADC at each pixel are calculated (the second row). By acquiring at least 7 diffusion-weighted
images, six ADC maps can be obtained. Then, the diffusion ellipsoid at each pixel can be fully
characterized as shown in the bottom row. (The image at the bottom row was reproduced from
Pierpaoli et al. [24] with permission)



278 Mori

Although this tensor D  has 9 elements, it is a symmetry tensor (i.e., Dxy = Dyx, Dxz =
Dzx, and Dyz = Dzy) and, thus, it has 6 independent variables (3 diagonal and 3 off-
diagonal terms). This makes sense because, as shown in Figure 5, 6 parameters are
needed to fully characterize the diffusion ellipsoid (3 for dimension and 3 for orienta-
tion). In this way, the diffusion tensor, D , contains all the necessary information about
the diffusion ellipsoid.

We have discussed how the diffusion ellipsoid can be characterized by 6 parameters
that are mathematically represented by a 3 × 3 symmetric tensor (Equation 2). It has
also been demonstrated that we can measure an apparent diffusion constant along any
desired axis (Equation 1). In order to link these diffusion measurements (Equation 1)
and the tensor representation (Equation 2), Equation 1 has to be rewritten in a more
rigorous form (19):
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where G  is a gradient vector (orientation of diffusion measurement). To solve this
equation, we need S0 that corresponds to the image intensity without diffusion weight-
ing (the left most image in the upper row of Fig. 7) and at least six images (S) with
different G  (diffusion weighted images in Fig. 7). This can be more easily understood
from the visual presentation in Figure 8. The radius of a diffusion ellipsoid along a
particular axis represents the extent of diffusion (ADC) along its axis. Therefore, if we
measure the ADC along numerous axes, the shape of the ellipsoid can be delineated.
The question here is, what is the minimum number of the measurements required to
mathematically calculate the shape and orientation of the ellipsoid or, in other words,
to determine 6 unknown elements of the diffusion tensor? The answer is, not surpris-
ingly, 6 diffusion measurements as also shown in Figure 7. In practice, a total 7 images
(one S0 and six S) are needed to obtain 6 ADCs and to solve Equation 3. Once 6 ele-
ments of the diffusion tensor are obtained from Equation 3, the 6 parameters of the
diffusion ellipsoid, λ1–3 and v1–3, can be calculated by using the so-called diagonaliza-
tion process. This process is repeated for each pixel. The end product of this imaging
technique, called DTI, is an image with a fully characterized diffusion ellipsoid at each
pixel (Fig. 7, bottom row) (24). To summarize up to this point, diffusion-weighted
images are “raw” images that we can obtain from scanners. From two diffusion-

Fig. 8. From diffusion measurements along 6 independent axes, a diffusion ellipsoid can be
fully characterized, which includes 3 values to describe its shape (λ1–3) and 3 vectors (v1–3) for
its orientation.
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weighted images, an ADC map can be calculated, in which an apparent diffusion con-
stant along one predetermined axis is measured. From at least 6 ADC maps, a diffusion
tensor image can be calculated.

The DTI is unique in the sense that each pixel of the image contains 6 parameters,
which requires unique presentation methods. The most intuitive way to present the
result is to visualize the diffusion ellipsoid at each pixel as shown in the bottom row of
Figure 7 (24). From this image, it can be seen that the water diffusion in the gray matter
and CSF is spherical, indicating the lack of coherent fiber structures. On the other
hand, the white matter has high anisotropy (the diffusion ellipsoid is elongated), as
expected. However, this presentation technique produces rather complex images and it
is not always easy to perceive differences in the size, shape, and orientation of the
diffusion ellipsoids. To overcome these issues, many presentation and analysis tech-
niques are postulated. In the following section, I would like to introduce 2D and 3D
visualization techniques and their applications.

13.3. 2D DTI DATA ANALYSIS AND VISUALIZATION TECHNIQUES
AND THEIR APPLICATION IN BRAIN STUDIES

In Figures 2 and 7, it can be seen that neither the individual diffusion-weighted
image nor the ADC map is informative, because their contrast depends on the orienta-
tion of diffusion weighting or orientation of the brain with respect to the magnet. These
images are called orientation-dependent images. It is highly preferable to obtain orien-
tation-independent images, so that the images are independent of the orientation of the
brain, and imaging parameters and the images can be compared between different
patients and different research sites. In this section, orientation-independent images for
the size and shape of the diffusion ellipsoid will be introduced.

13.3.1. Trace Image: An Orientation-Independent Visualization Technique for
the Size of the Diffusion Ellipsoid

If diffusion is isotropic (spherical), the size of the diffusion (Fig. 3) can be easily
represented by its diameter. However, when diffusion is anisotropic, how can the size
be compared among brain regions with different shapes of diffusion ellipsoids? The
most widely used orientation-independent parameter that represents the size of the
ellipsoid is called “trace”(21,25,26). Trace can be obtained by summing the diagonal
terms of the diffusion tensor (= Dxx + Dyy + Dzz). In practice, the diagonal term Dxx can
be directly obtained by measuring ADC using the x-gradient, Dyy using the y-gradient,
and Dzz using the z-gradient. Therefore, unlike the full tensor calculation, which
requires 6 ADC measurements, the trace can be obtained from just 3 ADC measure-
ments. An example is shown in Figure 9. From this figure, it can be seen that the trace
is quite homogeneous throughout the brain, indicating that regardless of various shapes
and orientations of diffusion ellipsoids, their size is uniform (21,24).

13.3.2 Application of Trace Image: Stroke Studies

In 1989, Moseley and coworkers found that the diffusion constant of water decreases
drastically during the acute phase of stroke (27,28). At present, the exact mechanism of
the decrease is not completely understood, but it is believed to be related to the break-
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down of membrane potential and subsequent cell swelling. This phenomenon can be
described as the reduction of the size of the diffusion ellipsoids. An example is shown
in Figure 10, in which an ADC map along the x axis and a trace map are compared. As
can be seen from this figure, the trace image is free of unwanted contrast, which is
caused by the anisotropy effect that interferes with the detection of the stroke regions.
Diffusion imaging is the only radiological technique that can detect the physiological
change in brain parenchyma at the acute stroke phase when the parenchyma is still
alive and the lesion is possibly still reversible. There is no doubt that it is now an
indispensable tool for stroke research using animal models, and it is also becoming a
promising diagnostic tool in clinical situations.

13.3.3. Anisotropy Map: An Orientation-Independent Visualization
Technique for Anisotropy

There are many ways to characterize the shape of diffusion ellipsoids, which are
orientation-independent and are also not affected by the size. The simplest and most

Fig. 9. Examples of ADC maps measured using x (A), y (B), and z (C) gradients. A trace
map can be obtained by adding these three ADC maps, which is shown in (D). The trace image
(D) is very uniform throughout the brain.

Fig. 10. An example of stroke study using diffusion imaging. An ADC map along the y (left-
right) axis (A) and a trace image (B) of a stroke patient are compared. Image (A) contains
contrast due to the orientation effect, which was removed in the trace image (B). The low
diffusion constant caused by the stroke remains in (B), indicating that a reduction in the size of
diffusion ellipsoids occurred. The trace image is far superior to specifically delineate the stroke
affected region. Images are reproduced from Ulug et al. Stroke 1997; 28:483, with permission.
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intuitive method is to calculate the ratio of the length of the longest and shortest axes.
This method, however, has several unwanted properties. For example, the range of its
value is 1 (sphere) – infinity, which is difficult to visualize, and the length of the short-
est axis (thus the ratio) is very susceptible to noise. It is preferable to use a parameter
that ranges 0 (isotropy) – 1 (anisotropy) for the visualization purpose. For example:
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has the preferable property. Namely, it becomes 0 when λ1 = λ2 = λ3 (isotropic) and the
maximum is λ when λ1 >> λ2, λ3 (extreme anisotropy). The most widely used param-
eters are (19,22–24,29):
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Here FA = fractional anisotropy, RA = relative anisotropy, and VR = volume ratio.
These parameters all have 0 – 1 range. Information provided by these parameters is
essentially the same. They all indicate how elongated the diffusion ellipsoid is. How-
ever, the contrasts they provide are not the same. Among these parameters probably the
FA is most widely used. An example of the FA map is shown in Figure 11. It can be
seen that the white matter has high FA values, which makes sense because it consists of
densely packed axonal fibers. Segmentation of the white matter and gray matter can
also be achieved with conventional T1- and T2-weighted images. T1- and T2-weighted
images are widely used contrast mechanisms in MRI, and they are used to differentiate
white and gray matter. Anisotropy, which also shows a very high contrast between
white and gray matter, is based on a completely different contrasting mechanism; the
directionality of water diffusion given by axonal fibers. Unlike T1- and T2-based con-
trasts, which are related to molecular tumbling rates and exchange processes, the anisot-
ropy is a more direct indicator of highly packed axonal fibers, a hallmark of white
matter. The comparison shown in Figure 11 clearly illustrates more detailed structures
within the white matter when anisotropy is used.

The exact mechanism underlying the anisotropy map is not completely understood
(30). What is known is that the anisotropy increases during early development (31–37),
and its time course is different from other conventional MRI parameters, such as T1/T2
relaxation properties (32–34,38–40). The changes during development may suggest
involvement of the myelin sheath. However, anisotropy has been reported in axonal
fibers without myelin sheaths (35,38,41), implying that the increased anisotropy dur-
ing development may be due to increased fiber density. In any case, it is apparent that
the anisotropy provides a new contrasting mechanism that was formally inaccessible
and, thus, it is worth pursuing its clinical possibilities as a new diagnostic tool.
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13.3.4. Color Map: Visualization Technique for Orientation

The last parameter that can be obtained from the DTI is the orientation of diffusion
ellipsoids. The most intuitive way to show the orientation is the vector presentation, in
which small lines (vectors) indicate the orientations of the longest axis of diffusion
ellipsoids. An example is shown in Figure 11C. However, unless a small region is
magnified, the vector orientation is often difficult to see. To overcome this problem, a
color-coded scheme was postulated (42–44) (for the color image, please refer to MORI-
fig11 in the companion CD-ROM). An example is also shown in Figure 11. In the color
map, three orthogonal axes (e.g., right-left, superior-inferior, and anterior-posterior)
are assigned to three principal colors (red, green, and blue), with which every orienta-
tion can be represented by color. A detailed discussion about the techniques to assign
colors to orientation can be found in a paper by Pajevic and Pierpaoli (44).

In Figure 12, a postmortem anatomical preparation is compared to a T1-weighted
image and a color map (for the color image, please refer to MORI-fig12 in a compan-
ion CD-ROM). The brain white matter consists of bundles of neuronal fibers connect-
ing different parts of brain functional centers. The sizes and directions of these fiber
bundles vary considerably. However, in conventional MR images, the white matter
looks rather homogeneous as can be seen in Figure 12B. This is understandable, be-
cause MRI relaxation parameters, such as T1 and T2 are sensitive to the chemical com-
position of the environment, which is rather homogeneous in the brain white matter.
However, it is fiber direction that makes the structure of the white matter so complex as
seen in Figure 12A. The beauty of the DTI technique is that it can reveal the white
matter architecture much more clearly, as seen in Figure 12C. From what has been
shown so far, it is clear that one of the most important and unique functions of DTI is
the parcellation of the white matter into multiple white matter tracts (44,45). White
matter tracts that can be discretely identified are annotated in Figure 13 (for the color
image, please refer to MORI-fig13 in the companion CD-ROM).

Clinical application of the anisotropy and color maps is still mostly in a research
phase. The most extensively researched area involves white matter diseases such as
multiple sclerosis (46–48), in which loss of white matter integrity is expected to lead to

Fig. 11. Example of T2-weighted image (A), FA (B), vector (C) and color map (D). In the
vector map, a small line at each pixel represents the average orientation of fibers (lines perpen-
dicular to the plane look like small dots). In the color map, red represents tracts running left-
right, green superior-inferior, and blue anterior-posterior directions (the color figure is available
in the companion CD-ROM).
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decrease in anisotropy. Other reports include amyotrophic lateral sclerosis (ALS)
(49,50), stroke (51), schizophrenia (52), and reading disability (53).

13.4. 3D-BASED DTI TECHNIQUES AND THEIR APPLICATIONS

Knowledge of neuronal connections by axonal projections is of critical importance
for understanding brain function and its abnormalities. In conventional white matter
tract-tracing methods, axonal projections have been traced in experimental animals.
With these methods, it is possible to observe neuronal degeneration following care-
fully placed experimental brain lesions or by injecting and subsequently localizing
radioisotopes or other chemicals that are taken up by nerve cells and actively trans-

Fig. 12. Comparison of a postmortem anatomical preparation (A), T1-weighted image (B),
and the DTI-based color map (C). In the anatomical preparation, the gray matter was removed
to reveal the structural details of the white matter. In the color map, blue pixels have fibers
running horizontally (anterior-posterior), green vertically (superior-inferior), and red perpen-
dicular to the plane (left-right) (the color figure is available in the companion CD-ROM). The
fiber directions based on the DTI measurement agree very well with the anatomical preparation
(A), which can not be appreciated in the conventional MRI (B). (The postmortem image was
reproduced from Williams et al. [67] with permission).

Fig. 13. Parcellation of the white matter by the DTI-based color maps (the color figure is
available in the companion CD-ROM). Homogeneous-looking brain white matter can be
parcellated into different tract systems depending on their orientations (colors). The left image
shows a color map of a coronal slice, and the right image shows an axial slice at the location
shown by a pink box. Abbreviations are: slf, superior longitudinal fasciculus; ilf, inferior longi-
tudinal fasciculus; cg, cingulum; cc, corpus callosum; cst, corticospinal tract; scp, superior
cerebellar peduncle; mcp, middle cerebellar peduncle; icp, inferior cerebellar peduncle; and
ml, medial lemniscus.
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ported along their axons. Comparable human data are much more limited because they
can only be obtained from postmortem examinations of patients with naturally occur-
ring lesions such as injuries or infarcts. One cannot control the size, the position, or the
timing of these lesions. As has been demonstrated, DTI can provide the orientation of
axonal fibers at each pixel. By extending this information to 3D space, it is possible to
reconstruct a trajectory of a tract of interest (5,7–12,54).

An example of a 2D vector map is shown in Figure 11. It is straightforward to extend
the DTI measurement to 3D and obtain a 3D vector field, from which information on
3D tract trajectories can be extracted. In this step, there are two important issues to be
considered.

First, the raw data, which is a vector field, is discrete information from which we
have to reconstruct continuous trajectory coordinates. Second, each vector carries lin-
ear information, while trajectories of interest have curvature. This situation is shown in
Figure 14A using a 2D example. Suppose a tracking is initiated from a pixel coordinate
(1,1). The most intuitive way to reconstruct a trajectory is to connect pixels from the
initiation pixel. However, the first problem we encounter in this approach is to judge
which pixel to connect, because the vectors usually are not pointing to the center of
neighboring pixels. In other words, there are only 8 surrounding pixels (26 for 3D), and
by selecting one of them, the information of the vector direction cannot be fully ob-
tained. In this case, pixels above and below the initiating pixel are chosen (shaded
pixels), but they do not correctly reflect the vector angles of the involved pixels.

In order to solve this problem, which stems from the discreteness of vector informa-
tion, tracking must be made in a continuous number field. An example of this is shown
in Figure 14B. In this case, tracking is initiated from the center of a pixel (1, 1 in the
discrete coordinate) at the coordinate (1.5, 1.5) in the continuous coordinate. Then a
line is propagated in the continuous coordinate along the direction of the vector of the
pixel. Now the line exits the initiating pixel at the coordinate of, e.g., (1.8, 2.0), and
enters the next pixel (2, 2 in the discrete coordinate), in which the tracking starts to
observe the vector direction of the new pixel. We called this approach FACT (fiber
assignment using continuous fiber tracking), in which vector information is propagated
linearly within a pixel (6,8). The tracking line can be smoothed out to obtain a curva-

Fig. 14. Examples of fiber tracking. Double head arrows indicate the orientation of tracts at
each pixel, which are obtained from the DTI measurement. Since the DTI study, which is based
on water movement, and because one cannot judge effluent and affluent, tracking has to be
made in both orthograde and retrograde directions.
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ture by using an interpolation technique, such as distant-weighted vector averaging or
so-called Runge-Kutta methods (6,9,10). This can reduce an error that may accumulate
in the simple linear propagation technique, especially when there are large angle tran-
sitions from a pixel to a pixel.

One of the pitfalls of these types of “propagation techniques” is the accumulation of
noise errors along the tract. In order to minimize this problem, techniques that are
based on energy minimization are also proposed (11). The diffusion tensor theory
introduced in an earlier section assumes that there is only one population of tracts that
have the same orientation, which is not always the case due to partial volume effects or
interdigitating (or crossing) tracts in certain brain areas. It should be remembered that
the tracking technique might have systematic errors in such regions. Recently, a new
DTI technique called the “diffusion spectrum” method was introduced to analyze pix-
els with more than one population of tracts, in which water diffusion is measured along
many axes (54). This type of new pixel-by-pixel analyzing technique, combined with a
tract reconstruction technique, may improve the quality of the reconstruction in the
future.

In the line propagation technique, the process starts by identifying an anatomical
landmark and drawing a region of interest (ROI). An example is shown in Figure 15. In
this example, the genu of the corpus callosum was delineated, which included 21 pix-
els. Then tracking was performed from each pixel, resulting in 21 lines propagated

Fig. 15. Comparison between two approaches for the fiber tracking. In this example, an ROI
delineated the genu of the corpus callosum, which included 21 pixels. In (A), tracking was
initiated from the 21 pixels, resulting in 21 lines to reveal the callosal connections between the
frontal lobes. In (B), tracking was initiated from all pixels in the brain, and tracking results that
penetrated the ROI were searched. This approach resulted in identifying 1880 pixels that were
connected to the ROI, thus, revealing more comprehensive structure of the callosal connec-
tions. A color version of this figure is included in the CD-ROM.
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from the ROI (Fig. 15A). A problem that may be encountered in this approach is the
branching. Whenever the tracking meets a bifurcation, it can delineate only one of
them. In other words, this technique cannot delineate more than 21 tracts. It turns out
that this problem can be addressed rather easily. Instead of initiating tracking from
pixels in the ROI, tracking can be initiated from all pixels in the brain and tracking
results that penetrate the ROI are searched (Fig. 15B) (9). This approach leads to track-
ing results initiated from 1880 pixels in the frontal lobe that penetrate the ROI, thus
revealing more comprehensive branching patterns of the tract.

Examples of tract reconstruction of prominent white matter tracts in the cerebral
hemispheres are shown in \h Figure 16. In this figure, results of multiple tracking results
are assigned different colors and superimposed on co-registered 3D anatomical data
(for the color image, please refer to MORI-fig16 in a companion CD-ROM). For
example, the corpus callosum was identified, and an ROI was defined at the midsagit-
tal level. For the anterior thalamic radiation, the anterior limb of the internal capsule
was defined as an ROI. The overall structures of these tracts agree well with what has
been established in anatomical studies.

Currently, 3D tract reconstruction techniques are in a phase of validation and reli-
ability examination. While these two issues, validation and reliability, are of critical
importance to establish this technique as a research and/or clinical tool, it is also
important to have a clear idea about what can be done and what cannot be done with
this technique. First of all, the DTI-based tracking technique, which is based on water
movement, cannot distinguish affluent and effluent directions of axonal tracts. Second,
the image resolution of a typical human DTI study is on the order of 1 – 5 mm. Once an
axon of interest enters into a pixel of this size and is mixed with other axons with

Fig. 16. Examples of 3D brain fiber reconstruction (color figures are available in the com-
panion CD-ROM). In (A) white matter tracts that form corona radiata are shown: corpus callo-
sum (yellow), anterior thalamic radiation (red), corticobalbar–corticospinal tract (green), optic
radiation (blue). In (B), association fibers and tracts in the limbic system are shown: cingulum
(green), fimbria (red), superior (pink) and inferior (yellow) longitudinal fasciculus, uncinate
fasciculus (light blue), and inferior fronto-occipital fasciculus (blue). The images were pro-
duced by Meiyappan Soleiyappan, Johns Hopkins University School of Medicine, Department
of Radiology.
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different destinations, information about cellular level connectivity degenerates. There-
fore, cellular level connectivity cannot be addressed with this technique.

So what can we study with the DTI-based tract reconstruction techniques? We
believe that DTI can reveal macroscopic architectures of the white matter, such as
those that can be identified in Figure 12A. In experimental animal models, cellular
level connectivity can be directly studied using an invasive technique. However, study
of entire brain tract structure by such cellular level techniques is practically impos-
sible, simply because of the vast number of neurons inside the brain. Therefore, the
DTI technique is a complementary technique that can characterize entire brain tract
structures rapidly in a 3D electronic format. In human studies, it is a great advantage
that macroscopic white matter anatomy can be obtained noninvasively. In the future,
we expect that this technique will play an important role in identifying the involvement
of specific tract systems in various neurological diseases such as neurodegenerative
diseases, tumors, and developmental defects.

13.5. FUTURE DIRECTIONS AND SUMMARY

In this article, I introduced the concept of diffusion tensor imaging and its applica-
tions. The study of the white matter architecture using the color map and 3D recon-
struction techniques is especially exciting because there have not been noninvasive
techniques that can provide equivalent information. Comparison studies between the
DTI-based white matter anatomical studies and histology-based classical anatomical
knowledge have been showing encouraging correlations (5,7–11,24,44,45,55). While
the imaging resolution that the DTI technique can achieve is far inferior to that of
histology, its noninvasive nature and capability of 3D data analyses give it a distinctive
advantage for macroscopic characterization of white matter organization of living
humans.

At present, the DTI technique is still very new and has not been established as a
diagnostic tool for particular brain diseases. This is partly due to the fact that we do not
have tools to analyze the vast amount of information that the DTI can provide. For
example, the color map can visualize that a part of the white matter consists of several
tracts with different orientations. However, how we can quantify this information? How
we can detect abnormality? White matter tracts are 3D entities. How we can parameter-
ize it and compare between normals and patients? Another important factor that limits
application studies of the DTI is its poor resolution and long scanning time. Because
the DTI requires at least 7 images for the tensor calculation, it is not only a slow imag-
ing technique, but also prone to errors during image co-registration. The technique is
inherently sensitive to motion artifacts, which further reduces it practicality. However,
promising new hardware and data acquisition schemes are being developed, and these
limitations are quickly diminishing. For example, signal-to-noise ratio can be improved
by higher field magnets and stronger gradients. It has been shown that partially parallel
acquisition schemes such as SENSE and SMASH drastically reduce the scanning time
(56–59). Various data sampling schemes have been postulated that are less motion
sensitive (60–66). 3D data analysis techniques are also being actively studied as men-
tioned in Subheading 13.4. In the near future, the DTI technique will most likely be a
powerful investigational and diagnostic tool for studying brain anatomy and diseases.
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ABSTRACT

The body of knowledge about the connectivity of brain networks on different struc-
tural scales is growing rapidly. This information is considered highly valuable for
determining the neural organization underlying brain function, yet connectivity data
are too extensive and too complex to be understood intuitively. Computational analysis
is required to evaluate them. Here we review mathematical, statistical, and computa-
tional methods that have been used by ourselves and other investigators to assess the
organization of brain connectivity networks.

Many available analysis approaches are based on a description of connectivity net-
works as simple or directed graphs. Given adjustments for specific neural properties,
this description can unify analysis techniques across many dimensions of brain con-
nectivity. It also makes available a great arsenal of analytical tools that have been
developed previously for the graph theoretical evaluation of networks.

Generally, computational approaches to connectivity analysis may be grouped into
two categories. On the one hand, statistical data exploration reveals local as well as
extreme or average network properties and allows visualization of the global topologi-
cal organization of the investigated networks. Useful routines for the exploration of
networks by, for instance, similarity or cluster analyses, can be found in many general
statistical packages. On the other hand, specialized computational techniques have been
developed recently that allow testing of specific hypotheses about the organization of
neural connectivity. These approaches have been based on optimization techniques
that are employing cost measures to assess the structural or functional connectivity of
networks.

We illustrate different methods of connectivity analyses with the well-known
example of neuroanatomical connectivity of the primate cortical visual system and
indicate how the identification of structural organization may shed light on functional
aspects of brain networks. The methods reviewed here may be general enough to also
prove useful for unraveling the structure of other large-scale and complex networks,
such as metabolic, traffic, communication, or social networks.
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14.1. INTRODUCTION

Connectivity defines the role of individual nerve cells, or of distinct neuronal sys-
tems, within the global context of neural networks and the brain. Afferents determine
the input into a cell or system, and output projections relay the processed information
onto selected targets. Perhaps the most intuitive image of the nervous system is that of
a network, and many models of information processing in the brain are based upon
selected features of neural connectivity, e.g., (1-3). However, the connectivity networks
of mammalian brains are stunningly and intriguingly complex biological objects. Even
at their simplest recognizable structural level, they resemble a quilt of many dozens of
specialized elements (areas of the cortex and subcortical nuclei), which are interwoven
with an intricate network of hundreds or thousands of fibers. Specialized regions in the
cat cortex, for instance, possess on average 56 afferent and efferent connections with
other cortical or thalamic structures. Considering only the connections within one
cortical hemisphere of the cat brain, a given area connects, on average, with 32 other
areas (4).

How are these networks organized? Are connections distributed randomly between
the different regions, or do they follow specific patterns? Does the distribution corre-
late with spatial or functional subdivisions of the brain? Does the organization of the
neural networks hold clues about developmental factors or on structural features that
might influence information processing in the nervous system? The intricacy of net-
works with such a high number of connections per node makes it very difficult to give
reliable answers to these questions just by unaided intuition—computational analysis
is needed.

An increasing range of measures is now becoming available that describe aspects of
functional correlations between neural structures, allowing conclusions about func-
tional and effective connectivity, e.g., (5). Here, we concentrate on what, to many,
appears to be a simpler problem, the understanding of structural neural connectivity.
However, we indicate functional implications where they suggest themselves from our
explorations. In this review, we mainly consider the analysis of large-scale neural con-
nectivity at the systems level, an area where several theoretical studies have been car-
ried out previously, and where fairly extensive sets of formalized data are already
available. Without restricting generality, many of the approaches described here may
also be applicable on other dimensional scales of organization.

Throughout this review, we use the example of one widely studied set of established
neural systems connectivity data, corticocortical anatomical connectivity for the visual
system of the macaque monkey as compiled by Felleman and Van Essen (6) and ana-
lyzed by themselves, Young (3), Young et al. (7), Hilgetag et al. (8–10), Jouve et al.
(11), Sporns et al. (12,13), and Kötter et al. (Ch. 16, this volume) among others.

In the following, we first summarize how neural connectivity is established experi-
mentally and how it can be represented in more formal computational or mathematical
terms. Then we review in greater detail one established avenue of network analysis, the
graph theoretical analysis of connectivity. Following, we survey a number of readily
available statistical methods that can be used to explore the hodology, that is, the
essential global organization, of neural networks. We subsequently present some recent
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computational approaches that have been specifically developed to test hypotheses
about the organization of neural connectivity. Finally, we give our conclusions and
review how the different presented analysis techniques contribute to an understanding
of the connectional organization of the example data for primate visual cortical con-
nectivity.

14.2. DESCRIPTION OF NEURAL CONNECTIVITY

14.2.1. Experimental Identification of Connectivity

The traditional way of experimentally identifying structural connectivity is by tract-
tracing. Typically, a tracer substance (e.g., a dye, marker particle or virus) is injected
into the living nervous system, taken up by neurons, and actively transported along
neural fibers by metabolic processing or other transport mechanisms of the living cell.
After a well-timed interval that allows complete labeling of the injected cells, or of an
intended sequence of cells down the postsynaptic chain, the brain is sectioned and
chemically treated in order to reveal the extent of the labeling. One generally distin-
guishes between anterograde labeling (i.e., the tracer is taken up by the cell body and
its dendrites and is transported towards the axonal terminals) and retrograde labeling
(in which case the tracer is transported toward the cell body); specific experimental
techniques allow either one or both of these approaches to be implemented. For com-
prehensive reviews of frequently used experimental methods, see (14–16). Due to the
nature of the utilized biological mechanisms, these approaches have only been
employed in nonhuman experimental animals, and the species-specific connectivity of
the human brain remains very much a mystery (17). Recent developments in magnetic
resonance imaging techniques may, however, soon lead to some improvements of this
situation (18,19). Naturally, the intended complete and unambiguous identification of
all afferent and efferent projections of a specific neural system is an ideal state that, in
the practical neuroanatomical experiment, may be hampered by underlabeling,
overlabeling, mislabeling, and so on. These problems are compounded by the difficul-
ties of precisely delineating distinct brain regions, e.g., (20), or by the absence of uni-
fied parcellation schemes across different experiments. While there remains a large
scope for subjective judgments and errors, neuroinformatic approaches have been
developed recently that take such difficulties into account (21–23). Further problems
arise in determining the anatomical strength of the projections, in addition to identify-
ing the connectivity patterns. For practical reasons, much of the available neuroana-
tomical literature describes connection strength only in qualitative categories, such as
weak, intermediate, or strong. Recently however, some groups have undertaken the
arduous task of determining connection strengths quantitatively, e.g., (24–27), and
these efforts will likely lead to an improved understanding of factors shaping connec-
tivity (28) and allow the design of more reliable quantitative models of the brain (29).

14.2.2. Computational Treatment of Experimental Data

Neuroanatomical tract-tracing experiments produce a large amount of intricate 2D
or 3D imaging data that form the basis of conclusions about the existence or absence of
connections between different cells, circuits, or systems. To date, only a small fraction
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of the original data has been selectively made available as images or verbal descrip-
tions in journal publications, while the majority of the data is buried in histological
archives in many different laboratories. There is, however, a rapidly growing number
of approaches that attempt to make neural connectivity information more widely avail-
able in electronic format, both at the level of the original experimental data, for instance
in form of computational atlases, and at more abstract levels of representation. The
computational description and storage generally takes the form of databases, employ-
ing various commercially available and purpose-designed systems. A list of neural
databases and models that also includes structural connectivity compilations in dif-
ferent species and on different scales of organization is maintained at
(www.hirnforschung.net/cneuro/). As a more specific example, a comprehensive and
well-documented database with the goal of collating all systems level structural con-
nectivity for the brain of the macaque monkey is described at (www.cocomac.org) (22).

Many of these approaches face substantial difficulties in trying to formalize experi-
mental connectivity data in such a way that the information can be reliably compared
across different studies (30). Some of these issues, which are outside the scope of this
chapter, are addressed in (23). For our purposes, it is important that databases of con-
nectivity data can be used to derive a condensed and abstract representation of neural
networks, often in the shape of a connectivity matrix, that provides the starting point
for connectivity analyses proper. We now turn to a more detailed description of con-
nectivity representation at this level.

14.2.3. Formal Description

One way to conceptualize neuronal networks is by use of graphs, in particular one
class of graphs referred to as directed graphs or digraphs. Graph theory, which is intro-
duced in several textbooks and monographs, e.g., (31), provides a number of connec-
tivity measures and a wealth of mathematically grounded insights into local and global
network attributes that can be utilized for the purpose of characterizing neuroanatomi-
cal connectivity patterns. Graph theory has been successfully applied in a variety of
fields that deal with networks of different kinds, including social networks, economic
networks, chemical and biochemical networks, as well as the Internet. Although graph
theoretical methods present a very general tool set, their relevance for the specific
networks under study may differ depending upon the specific structural and functional
constraints that come into play. Here, we focus on some aspects of graph theory that
might be of particular interest to the computational analysis of brain networks.

The distinction between nondirected graphs and digraphs is significant. Social net-
works (e.g., networks of acquaintances) are usually characterized as nondirected
graphs, while synaptic connections linking neurons and brain areas are generally polar-
ized, that is, directed. At the elementary structural level, any neural network may there-
fore be described as a digraph. In graph theoretical terms, a digraph Gnk is composed of
n vertices (nodes, units) and k edges (connections), with k ranging between 0 (null
graph) and n2-n (complete or fully connected graph; self-connections are excluded).
The graph’s adjacency matrix A(G) is composed of binary entries aij, with aij = 1 indi-
cating the presence, and aij = 0 the absence of a connection between vertex j (source)
and vertex i (target). The diagonal of A(G) is zero. Connection weights cij may be
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assigned to nonzero entries of A(G) for studies that incorporate information on the relative
strength or density of connections or functional interactions (see Subheading 14.5.2.).

In order to approach the analysis of brain connectivity from a graph theoretical per-
spective, we need to define characteristics of such networks that are motivated and
based in neurobiology. Concepts from graph theory, including adjacency matrices, have
been used previously as tools to describe neuroanatomical patterns, e.g., (11,32).
Depending on the scale, nodes might represent single-cell bodies, cell assemblies such
as circuits, columns or layers, or neural systems, that is, whole brain regions that are
distinguished from others in terms of unique combinations of architecture and func-
tions (20). The higher levels of abstraction naturally ignore that projections are formed
by nerve cells that represent both the connection and parts of the two connected sys-
tems. Notwithstanding, several investigators have used connection matrices (essen-
tially equivalent to adjacency matrices of graphs) to display comprehensive anatomical
datasets. Examples include the pathways linking visual cortical areas ([6] and see Fig.
1), as well as other cortical stations (33) in the macaque monkey, interconnections of
cortical areas (34), and thalamic nuclei (4) in the cat, as well as connection matrices of
the rodent hippocampus (35,36). Often, these matrices have included (qualitative)
information on connection densities of pathways or their patterns of origin or termina-
tion. Additionally, information may be included that allows one to distinguish between
previously unexplored and explicitly absent projections. The latter information is also
worthwhile for informing on the hodology of connectivity networks, as demonstrated
in our discussion of connectivity cluster analyses in Section 14.5. of this chapter. In
addition to being a descriptive tool, graph theoretical analyses have also been used to
generate predictions about the presence or absence of previously unobserved connec-
tion pathways, e.g., (11). This aspect is linked to the problem of representing less reli-
able data in connectivity matrices and in their corresponding graphs. One possible
approach, which is to represent such data as special weights and treat them specifically
during the analyses, is also mentioned in Subheading 14.5.

The outlined aspects of complex neural connectivity data are exemplified by the
dataset originally presented by Felleman and Van Essen (6), Figure 1, which we use
throughout this review to illustrate the introduced analyses. The dataset demonstrates
that neural connectivity data are frequently incomplete, partly unreliable, partly con-
tradictory (as for the differing indications of hierarchical relation in some pairs of
reciprocal connections), and are, in any case, difficult to assess by intuition alone.

14.3. GRAPH THEORETICAL ANALYSIS

In what follows, we introduce a number of graph theoretical measures of increasing
complexity. We briefly discuss potential neural correlates for each of these measures
and indicate how their evaluation may aid in characterizing patterns of anatomical con-
nectivity.

14.3.1. Average Degree of Connectivity

A rather crude estimate of the connectivity of a digraph is its average degree of
connectivity, that is, the total number of connections present, divided by the total num-
ber of connections possible among the nodes. For a digraph containing n vertices (and
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excluding self-connections) there are n2-n possible connections. The average degree of
connectivity provides a measure of the overall sparsity of the graph; values near 1
indicate graphs that are nearly completely connected, while values close to 0 indicate
graphs with very sparse connections.

The average degree of connectivity for most brain networks appears to be rather
low. For the human cerebral cortex as a whole, Murre and Sturdy (37) estimated the
total number of neurons to be 8.3 × 109, with an estimated 6.6 × 1013 synapses between

Fig. 1. Connectivity data for the cortical visual system of the macaque monkey, rearranged
from Felleman and Van Essen (1991) (6). Different colors and symbols in this table represent
different types of structural links that connect these 30 cortical areas with each other. The
table’s information is meant to be read: source area in the left column has (...) connectional
relation with target area in the top row. Ø signs stand for links that have been explored experi-
mentally, but were found to be absent; x signs and light grey shading indicate existing connec-
tions for which no further qualifying information was available; < and > signs stand for
feedforward and feedback connections, respectively; = denote lateral connections; ≤ and ≥
signs show “mixed” feedforward/lateral or feedback/lateral links, respectively. For easier rec-
ognition, connections of a feedforward type are additionally indicated by blue shading, feed-
back connections by yellow, and lateral by green shading. This classification of types relates to
patterns of connections between different cortical layers as explained in more detail in Sub-
heading 14.5.2. Question marks and lighter colors point out information that has been classi-
fied as less reliable by Felleman and Van Essen (6);  finally, empty slots indicate experimental
information not yet available in this compilation. Areas MIP and MDP have been excluded,
because of the limited information available for them. For area abbreviations refer to (6). Re-
produced with permission from (91). A color version of this figure is included in the CD-ROM.
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them. Thus, the degree of connectivity (or “connectivity factor”) is exceedingly small,
approximately 9.6 × 10–7. However, this extremely low value is somewhat misleading,
as it only holds for the entire cortex viewed as a homogeneous random network. Due to
the fact that throughout the brain most neural connections are made with other neurons
that are located nearby, average degrees of connectivity are much higher in a given
local neighborhood. A physiological study of rat visual cortex revealed that two corti-
cal neurons located within a distance of 300 µm are directly connected with a probabil-
ity of around 0.09 (38). Another estimate (39) puts the fraction of neurons (within a
square millimeter of cortex) that a given pyramidal cell is connected to at 3%. These
largely consistent estimates translate into an average connection density of around 0.1
to 0.03 for pyramidal neurons within local neighborhoods of approximately columnar
size. While these connection densities may still be considered relatively sparse, they do
allow effective communication between neurons within columns and are likely con-
tributing to similarities in receptive field properties within columns as well as to locally
coherent neuronal activity. The highest levels of connection density are found at the
level of cortical areas and the pathways interconnecting them. At this level of scale,
connection matrices are found to have connection densities of around 0.36 (for the data
from the macaque monkey visual cortex shown in Fig. 1; 30 areas, 315 pathways) or
0.27 (cat cortex; 65 areas, 1136 pathways, after [12]; for more detailed numbers see
[10]). It should be noted that these values are derived from binary adjacency matrices
and do not take into account relative densities of pathways.

14.3.2. Local Connectivity Indices

At a very basic level, local coefficients can be employed that describe properties of
the individual network nodes such as their degree of connectedness with the rest of the
network or ratios of the number of afferent and efferent connections (the in-degree and
out-degree, in graph theoretical terminology). Similar ratios can be calculated for
feedforward and feedback connections as defined by laminar origin and termination
patterns. Nicolelis et al. (32), for instance, suggested relative afferent and efferent indi-
ces (normalized by the total number of interconnections between the given structures)
for brain regions involved in the control of cardiovascular functions. This study also
described an index adding the former two parameters as well as a “power index”, which
was formed by the product of the former two indices with each other and with the total
number of connections in the network. Based on these measures, the study inferred the
existence of “pathway attractors”, that is, a small number of heavily connected struc-
tures.

Even such simple measures may have a bearing on understanding the functional
roles that individual nodes play within the global network. See, for instance, Young et
al. (40) for a detailed discussion of how the varying degree of connectedness of neural
structures affects the functional impact of network lesions and how this simple prop-
erty influences an observer’s ability to infer the function of individual structures from
lesion-induced performance changes. Other local measures, such as input–output ratios,
are also open to functional interpretation. If a neural structure only sends projections, it
may exert influence over other structures, but is not influenced by the others in turn. An
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area that only receives projections, but does not have any output, on the other hand,
would present the opposite extreme. In terms of control theory, such structures may be
likened to controllers or receivers, respectively, and the general function carried out by
them can be thought of as “transmission”. For an application of this concept to prefron-
tal cortical connectivity, see (41). For the visual system connectivity data shown in
Figure 1, the average ratio of the areas’ afferents to efferents is close to 1, with a stan-
dard error of 0.4. This confirms that, at least in the primate visual system, no brain
region is just a recipient or originator of signals (42). Such symmetry may characterize
a cooperative (“give-and-take”) mode of information processing, whereas asymmetry
would imply information relay from the set of afferent areas to the set of target areas.

Fig. 2. Pattern similarity indices for primate visual areas based on their afferent and efferent
connectivity patterns as given in Figure 1. The entries indicate the relative similarity (in grey
scale-coded patterns from 0 to 1) of the connection patterns for each pair of cortical areas. As
the index accounts for both afferent and efferent area connections, the entries of this triangular
matrix denote symmetrical similarity relations between the areas. This matrix was reordered to
facilitate the recognition of groups of areas with similar connectivity patterns. Apparent are
two main distinct groups that share a high similarity in their connectional patterns, mainly
peripheral visual areas (e.g., V1, V2, V3, V5, VP) on the one hand and polysensory regions of
the superior temporal sulcus (STPp, STPa) and inferior temporal visual areas (PIT, CIT, AIT)
on the other.
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Further global graph theoretical indices, such as the cluster index discussed below,
can also be expressed as properties of individual network nodes. These local indices
are of particular interest in the context of neural systems networks that are made up
from heterogeneous network components (e.g., nuclei or cortical areas and columns).
In this case, one can compare the extrinsic, or connectional, characteristics with intrin-
sic (e.g., cytoarchitectonic) features, e.g., (43,44).

Expanding local indices to pairwise comparisons, a matching index can be defined
that describes the proportion of identical efferent and/or afferent connections of two
different nodes i, j; normalized by the total of connections belonging to the two nodes
(45). Figure 2 shows the index applied to the data from Figure 1. This measure numeri-
cally describes the relative connectional similarity of the nodes, and according to the
concepts underlying systems neuroscience, one might expect two very similar nodes to
also share functional properties. For example, primate visual area FST has been only
poorly characterized electrophysiologically in the past, but the entries in Figure 2 indi-
cate that its connectivity overlaps with that of area MSTd by 71%. Thus, one might
expect that the visual stimulus preferences of cells in the two areas are rather similar.
This is indeed what one of the few available electrophysiological studies (46) has sug-
gested.

14.3.3. Paths and Cycles

Within a digraph, a path is defined as any ordered sequence of distinct vertices and
edges, linking a source vertex j to a target vertex i (see Fig. 3A,B). The length of a path
is equal to the number of edges it contains. Importantly, no edges or vertices can be
visited twice along a given path. The only exception occurs if i = j, in which case the
resulting path is called a cycle. The shortest possible cycle (a path of length 2) consists
of two vertices that are reciprocally linked by two edges. Clearly, if no path exists from
j to i, j cannot act on i by means of structural connectivity. If no path exists from j to i
and no path exists from i to j, i and j cannot interact. Thus, the presence or absence of
paths places hard constraints on the functioning of a given network. In general, we
must assume that signals sent from j to i along a given path have higher functional
impact on i, in terms of information processing, the shorter the path. Similarly, the
dynamic self-reinforcing tendency of excitatory cycles can be assumed to be a decreas-
ing function of the cycle length, with short cycles producing the strongest effects. The
fraction of reciprocally linked pairs of vertices may provide a good estimate for the
prevalence of dynamic coupling within a network. Most cortical connection matrices
exhibit abundant reciprocal coupling (a fraction on the order of 0.7 to 0.8, compared to
0.3 for equivalent random graphs). For the dataset shown in Figure 1, this fraction is
0.77. Although these reciprocal pathways may not link cells in a one-to-one fashion
between areas, they have been invoked in generating reverberating, persistent, or syn-
chronized activity (47,48). The measure of cycle probability pcyc(q), introduced by
Sporns et al. (12), generalizes the concept of cyclic paths. The index, which can be
computed on the basis of all non-zero shortest path lengths that connect network nodes
back onto themselves, describes the likelihood of cycles of length q occurring in a
given network. For q = 2, the index is equivalent to the fraction of reciprocal pathways.
For the connection matrix of the macaque visual cortex, cycle probabilities for cycles
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of length 2 (reciprocal connections), 3, 4, and 5 [pcyc(2) = 0.77; pcyc(3) = 0.50; pcyc(4) =
0.43; and pcyc(5) = 0.41] are significantly above values expected for an equivalent ran-
dom network [random pcyc(2,3,4,5)≈ 0.31]. High cycle probabilities for short cycles are
indicative of a clustered architecture (see also cluster index below).

14.3.4. Reachability Matrix and Connectedness

If at least one path (of arbitrary length) exists between every ordered pair of vertices
in the graph, the graph is connected. This condition is more easily satisfied for
nondirected than for directed graphs, as in the latter, each path needs to be composed of
correctly oriented edges; and the situation can arise that paths exist from nodes i to j in
a digraph, while the path of opposite direction, j to i, is absent. The binary entries rij of
the reachability matrix R(G) record the presence or absence of all such paths, i.e., rij =
1 if vertex i is reachable from vertex j (rij = 0 otherwise). If all entries rij are ones, the
graph consists of only one component and is strongly connected. A graph consists of
multiple components if there are nonoverlapping subsets of vertices with no paths
between them.

As discussed above, the absence of paths implies that no functional interaction can
take place between components of a graph. Obviously, the existence of separate com-
ponents in any biological network, including the brain, indicates their complete func-

Fig. 3. An example of a directed graph and some graph theoretical measures. (A) A graph
with n = 9 vertices and k = 16 edges is shown, vertices are numbered, edges are indicated as
arrows. (B) Two examples of paths and one example of a cycle are shown. Paths link vertex 1
to 8 and 1 to 4, respectively. Both paths are of length 2. The cycle connecting vertices 1, 3, and
9 is of length 3. (C) An example for the calculation of the cluster index fclust (modified after
[51]) for vertex 1, marked as a black dot. Vertices that are direct neighbors of vertex 1 are
shown as gray dots (vertices 2, 3, 7, 9), and other vertices are indicated as gray circles (4, 5, 6,
8). Edges linking the neighbors of vertex 1 are indicated by thick black arrows. The cluster
index of vertex 1 is computed as the ratio of actually existing connections between the neigh-
bors of vertex 1 and the maximal number of such connections possible. Given that vertex 1 has
4 neighbors, maximally 12 connections are possible between them. Thus, fclust(1) = 6/12 = 0.5.
The cluster index of the graph is the mean of the cluster indices for each individual vertex.
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tional isolation. It is, at present, unknown whether all neurons of the brain, or at least
the cerebral cortex, form a single giant component, in the sense that every neuron can
influence every other neuron through at least one finite path. At the level of cortical
systems, connection matrices that have been studied in detail are composed of a single
giant component. For example, there are paths linking all cortical areas of the primate
visual cortex as well as the cat cortex (12). Although essential data is still missing, it
seems likely that extended cortical systems (apart from lesioned or split brains) form
single giant components in which interaction may occur between any pair of vertices
(that is, areas).

14.3.5. Distance Matrix and Diameter

The entries of the distance matrix D(G) give the distance from vertex j to vertex i
(31,49). The distance is defined as the shortest (directed) path between the two vertices
(if no path exists between two vertices, their distance is infinite). Shortest paths can be
determined in a straightforward way using Floyd’s algorithm (50). A review of differ-
ent serial and parallel algorithms for computing shortest pathlengths can be found at
(www.mcs.anl.gov/dbpp/text/node35.html). The diameter of a digraph is the global
maximum of the distance matrix. The average of all the entries of the distance matrix
has been called the “characteristic path length” ([51], and see below).

Clearly, the distance between two neuronal units or areas can provide information
about the degree or the strength of their functional relationship. As discussed above,
two areas that are connected by a short path (perhaps as short as a single edge) may be
exchanging signals in a more direct or efficient manner than areas that are connected
by a long path (with several intervening waystations). Note that while the distance
matrix has exactly one entry for each pair of vertices, multiple distinct paths of the
same length may exist. The distance matrix for the visual system connectivity data of
Fig. 1. is shown in Fig. 4.

In graphs, distance does not refer to any kind of metric space within which the ver-
tices and edges are embedded. It only refers to the minimum number of distinct edges
linking vertex i and j. Obviously, the physical location of neuronal units and the length
of their connections play a crucial role in constraining possible connection patterns,
through conservation of wiring volume, e.g., (52), or issues related to conduction
velocity (53,96). Clearly, a purely graph-based (nonmetric) analysis of neuronal con-
nectivity matrices would be incomplete without an appropriate consideration of physi-
cal constraints imposed by evolution, development, and adult function (54,55).

14.3.6. Disjoint Paths, Edge, and Vertex Connectivity

Given two vertices i and j, two directed paths from j to i are edge-disjoint, if they
have no edges in common. Similarly, two such paths are vertex-disjoint, if they have
no vertices (other than i and j) in common. One of the most important theorems of
graph theory (usually quoted as it applies to undirected graphs), Menger’s theorem,
states that the minimum number of vertices that need to be removed in order to discon-
nect two vertices i and j equals the maximum number of vertex-disjoint paths between
them, e.g., (49). For directed graphs, if three vertex-disjoint paths exist linking node j
to node i, then at least three nodes need to be removed in order to cut all paths from j to i.
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In the brain, the removal of vertices or edges (in graph theoretical terms) is equiva-
lent to making a lesion. Lesions may result in the functional disconnection of brain
areas that are themselves not part of the lesion. In a graph, disconnection may only
involve the elimination of direct (short) paths between vertices, or may result in the
formation of separate components (see above). Graph theoretical methods allow the
identification of vertices or sets of vertices (or edges or sets of edges) whose removal
produces (functional) disconnection. For each graph, there is a minimal number κv of
vertices (or κe of edges) whose removal results in a disconnected graph, that is, a graph
that contains multiple components; this number is also called the graph’s vertex or
edge connectivity. For a computational application of this concept to the connectivity
of large-scale networks see (56).

14.3.7. Random Graphs

A large and important body of classical results in graph theory has been obtained by
studying nondirected graphs with random adjacency matrices, e.g., (57). Random
graphs are generated by choosing k edges among a set of n vertices, such that all pos-
sible choices of edges are equiprobable (and no edge is chosen twice). A major charac-
teristic of random graphs is their degree of connectivity, and they are usually taken to
be of large (infinite) size. Interesting and perhaps unexpected phenomena emerge as
the degree of connectivity of nondirected random graphs is varied in a systematic man-

Fig. 4. Distance matrix for the example data set shown in Figure 1. Darker shading indicates
shorter pathlengths. The diameter of this data set is 4 (equal to the singular longest path in the
set, from area AITd to area VOT in the bottom row), the characteristic pathlength (average of
all pairwise shortest nonzero paths in the set) is 1.64. This means that most areas in the visual
cortex can communicate with each other either directly or via only one intermediate area, and
this communication is not symmetrical.
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ner (“graph evolution”, [58,59]). Consider a very large (potentially infinite) graph Gn,k

with k = nα evolving from α = 0 to α = 2. As edges are added to Gn,k up to α = 1/2, Gn,k

contains mostly isolated edges. As α gets closer and closer to 1, more and more graphs
appear that are connected but acyclic, called trees. Suddenly, as α passes through the
value 1, the probability of cycles of all lengths in Gn,k jumps from 0 to 1. Thus, the
evolution of random graphs proceeds through a series of stages that can be character-
ized by threshold functions defining the sudden appearance of specific structural motifs.

Although brain networks are not random, and conceptualizing them as random
graphs would be, for the most part, a futile and misleading exercise, the investigation
of random graph evolution illustrates an important concept. Adding graph components
such as edges, for example in the course of a developmental process, can produce sud-
den and unexpected changes, similar to phase transitions, in local or global network
attributes. Threshold functions like those found in random graphs have been implied in
the emergence of specific dynamical properties of chemical networks in the course of
prebiotic evolution, e.g., (60). One might envision a similar role in shifting between
dynamical regimes during evolutionary or developmental processes involving neuronal
networks (61).

14.3.8. Small-World Attributes: Characteristic Path Length
and Cluster Index

In the 1960s, studies of social networks produced a remarkable and counter-intuitive
finding (62). In many cases, any two individuals belonging to very large social net-
works are likely to be connected through a short sequence of intermediate acquaintan-
ces. This so-called small-world phenomenon has given rise to the popular notion of
“six degrees of separation”, the linking of individuals through surprisingly short
sequences of intermediates that bridge significant geographical or social boundaries.
Analyses by Watts and Strogatz (51) as well as Watts and Duncan (63) have demon-
strated that the small-world phenomenon is not limited to social networks, but is perva-
sive in other kinds of networks as well. In a paradigmatic example, they studied
networks that varied between perfect (local or lattice-like) order (i.e., networks with
connections between nearest neighbors only) and randomness (i.e., networks in which
all connections are assigned at random). As the study pointed out, most networks of
real interest have intermediate structural characteristics. Such networks contain local
(nearest neighbor) connections with a few additional connections added between ran-
domly selected vertices. Watts and Strogatz defined two measures, the characteristic
path length lpath (equivalent to the global average of the distance matrix; see Subhead-
ing 14.3.5.) and the cluster index fclust. The cluster index for a given vertex in the graph
measures how many connections exist between the vertex’s neighbors (i.e., all the ver-
tices that can be reached within one step), out of all possible such connections (Fig.
3C). In a sense, the cluster index expresses the “cliquishness” of a network, i.e., the
tendency of each vertex’s neighbors to “talk among themselves”. This measure is
closely related to the index introduced by (11), which assesses the proportion of ‘indi-
rect connections’, that is the ratio of all paths of length two, (i,k) and (k,j), connecting
i and j via any intermediate vertex k. Figure 5 shows examples of graphs generated
using a paradigm similar to Watts and Strogatz (51). In Figure 5A, graphs are system-



308 Hilgetag et al.

atically varied between “nearest-neighbor” (i.e., completely ordered) and “random”.
The cluster index is high for graphs that contain mostly short-range connections, while
the characteristic path length is relatively low. This effect is even more pronounced for
graphs that are varied between “clustered” and “random” (Fig. 5B).

Analysis of cortical connection matrices in terms of these measures reveals a dis-
tinctive “small-world architecture” (10,12). For example, the connection matrix of the
macaque visual cortex shown in Figure 1 has a small characteristic path length lpath =
1.64 (average characteristic pathlengths of randomized networks is 1.60, standard
deviation [SD] = 0.01, nrandom = 20) and a high value for the cluster index fclust = 0.57,
much larger than expected for a random network of equivalent n and k (fclust near aver-

Fig. 5. Small world digraphs. (A) Analogous to the examples presented by Watts and
Strogatz, 1998 (51), graphs are varied between totally regular (case a, nearest neighbor) through
intermediate cases (case b) to totally random (case c). A total of 256 connections are made
between 32 vertices. Vertices are arranged in a circle (small blue circles) with red lines indicat-
ing bidirectional connections (edges) and green lines indicating unidirectional edges. A scatter
plot of characteristic path length (lpath) and cluster index (fclust) is shown on the right. Numerous
graphs exist for which the value of fclust is high, while the value of lpath is low. (B) Here, graphs
are varied between clustered (case a) and totally random (case c). Compared to panel A, higher
cluster index values result for case a, as well as numerous intermediate cases. Note that, in both
panels A and B, characteristic path lengths are relatively short for almost all cases. This is due
to the relatively high degree of connectivity (0.26) chosen to approximate that of cortical con-
nection matrices. In Watts and Strogatz’ original work (51), the degree of connectivity for
typical small world examples was set to about 0.04 (n = 1000, k = 10 per vertex). A color
version of this figure is included in the CD-ROM.
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age degree of connectivity, i.e., 0.36, SD = 0.01, nrandom = 20). Similarly, the analysis
of functional interactions between areas of the entire cerebral cortex also demonstrated
small-world characteristics (lpath = 2.17, fclust = 0.38) not found in equivalent random
networks (lrandom: mean = 2.15, SD = 0.02; frandom: mean = 0.16, SD = 0.01; nrandom =
20) (64). The high values for the cluster index indicate that local connectivity among
neighboring (i.e., directly connected) areas is approximately twice as high as would be
expected if connections were made at random. This confirms and quantifies the exist-
ence of densely clustered sets of areas. Small-world measures alone, however, do not
allow the unbiased determination of the size, number, and membership of these clusters.
Purpose-designed clustering techniques have been used to identify such clusters from
anatomical matrices (10). Other techniques can be brought to bear on functional con-
nectivity matrices obtained after “running” anatomical matrices as dynamical systems
(12,64a). These approaches are discussed in more detail in Section 14.5 of this review.

14.3.9. Scale-Free Attributes

For a number of large self-organizing networks, including the World Wide Web, as
well as scientific citation networks, it has been shown that the probability P(k) that a
vertex in the network interacts with k other vertices decays following a power law, i.e.,
P(k) ~ k-γ (65). This scale-free property [in a double logarithmic plot the probability
P(k) scales linearly across all dimensions of the number k of connected vertices] is a
result of the growth characteristics of such networks. These networks expand continu-
ously by adding more and more vertices (i.e., Web pages or authors), while new verti-
ces have a tendency to attach themselves to other vertices that are already well
connected. Recently, scale-free attributes have been claimed to exist in biological net-
works as well, specifically in the network of metabolic pathways (66). Are brain net-
works also scale-free? This property is more difficult to test reliably for neural
connectivity, which spans only few levels of scale, than for networks such as the World
Wide Web, and preliminary analysis of cortical connection matrices at the level of
areas and pathways does not reveal the presence of a P(k) power-law distribution
(Sporns, unpublished observations). This may not be too surprising as there are strin-
gent constraints on the development of corticocortical connectivity, including limits on
the number of pathways a given area can maintain (67). While scale-free attributes may
be absent at the level of cortical systems, their existence at the level of individual cor-
tical neurons or circuits has not yet been investigated and cannot be ruled out.

14.3.10. Conclusions and Perspectives

All of the above measures and analysis tools may be brought to bear on neuroana-
tomical datasets. For most of the measures, real connection matrices (at a given level of
anatomical organization) will take on characteristic values. For example, it appears
that cortical systems from a variety of species exhibit “small-world” attributes. It is
very likely that other classes of connection patterns exist in other regions of the brain,
or at other levels of organization (i.e., within local cortical circuits, or within subre-
gions of the hippocampus). We expect a major area of interest to focus on how ana-
tomical patterns give rise to patterns of functional connectivity, the time-varying pattern
of temporal correlations between neuronal units. Even more importantly, it will be a
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challenge to clarify how, in a given system, anatomical connectivity constrains the
temporal evolution of effective connectivity, that is, how the connectional organization
constrains the causal functional influence dynamically exerted by one system element
upon another of the system. As the interest in characterizing functional and effective
connectivity patterns increases, due to mounting evidence for their involvement in gen-
erating distinct perceptual and cognitive states, it becomes imperative to quantitatively
characterize underlying anatomical patterns as well.

14.4. STATISTICAL EXPLORATION OF CONNECTIVITY

14.4.1. General Considerations

Despite the power of graph theoretical approaches to network analysis, additional
computational tools are needed to provide an intuitive overview over the global struc-
ture of networks under investigation. Such a perspective can be gained with the help of
multivariate statistical approaches such as cluster or similarity analyses. Most of the
statistical methods reviewed in this section are exploratory tools designed to visually
detect consistent patterns or systematic relationships between variables in extensive and
complex data sets. The techniques often employ dimensional reduction, to make the
organization of the data accessible in 2D or 3D space. Generally, most of these proce-
dures follow the spirit of “data mining” and are better suited to preliminarily analysis,
suggesting potential organizational patterns in the data than to actually providing tests
for confirming hodological concepts. Therefore, these data explorations should be fol-
lowed by subsequent stages of rigorous data analyses designed to test the preliminary
findings. Some analyses that might be used for this purpose are discussed in more
detail in Section 14.5.

A common denominator of many exploratory statistical techniques is that they help
to identify the structure of similarities between different items (here neural units or
systems), using a variety of distance measures to evaluate relative similarity or dis-
similarity. Naturally, similarity detection is a rather general approach not specifically
adapted to connectivity data, and so difficulties may arise in interpreting the analysis
results in terms of network topology. In the case of connectivity analyses, the similar-
ity between neural units is assessed on the basis of the units’ connectivity patterns,
which are often only available as binary data (existing or absent connections) or pat-
terns defined in a number of qualitative classes (such as weak or dense connections).
When selecting analysis techniques and options, it is important to bear in mind that
these data represent nominal or ordinal levels of measurement, rather than metric
(interval or ratio) measurements. This commonly narrows the range, and in some cases
also the power, of suitable data analyses techniques.

In the following, we briefly review nonmetric multidimensional scaling (NMDS),
factor analysis/principal components analysis (PCA), multiple correspondence analy-
sis (MCA), and different types of cluster analyses, which are provided, often with a
large number of parameter and methods options, in general purpose statistics packages
such as SYSTAT and SPSS (SPSS, Inc.), SAS (The SAS Institute, Inc.), or
STATISTICA (StatSoft, Inc.). Further statistical approaches suitable for network analy-
sis are related to graph layout techniques (e.g., De Leeuw and Michailidis
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[citeseer.nj.nec.com/316591.html] and linked articles). We begin with the description
of one very general technique, NMDS.

14.4.2. Nonmetric Multidimensional Scaling (NMDS)

Method. Multidimensional scaling (MDS) comprises several related methods for
estimating the coordinates of a set of objects in a chosen low-dimensional space from
data measuring the high-dimensional distances (or dissimilarities and similarities)
between pairs of objects, e.g., (68,69). MDS provides routines for rearranging objects
in, typically, 2D or 3D, so that the resultant configuration best matches the original
high-dimensional distances between the objects. Most MDS algorithms attempt to
reproduce the general rank-ordering of the original distances between the objects, rather
than the distances’ actual proportions; hence the nonmetric nature of the technique.
This strategy makes the technique suitable for the analysis of metric as well as ordinal
data, such a connectivity patterns. NMDS routines use a function minimization algo-
rithm, which evaluates different low-dimensional configurations with the goal of maxi-
mizing the goodness-of-fit to the high-dimensional configuration. A commonly used
measure for evaluating how well a particular configuration reproduces the ranks or
proportions of the original distance matrix is the stress measure. The raw stress value,
Φ, of a scaled configuration is defined by:

Φ = ∑ [dij – f(δij)]2

In this formula, dij stands for the distances reproduced in low-dimensional space,
and δij stands for the distances present in the original data. The expression f(δij) indi-
cates a nonmetric, monotonic transformation of the observed input distances
(STATISTICA manual). There are several further related transformation measures that
are commonly used; however, most of them also amount to the computation of the sum
of squared deviations of observed distances (or some monotonic transformation of those
distances) from the reproduced distances. Thus, the smaller the stress value, the better
the fit of the reproduced distance matrix to the observed distance matrix.

In the case of connectivity analyses, distances between the neural structures may be
specified directly through their connectivity patterns. The strength of a connection
between two structures can be taken to reflect the structures’ “similarity” (strongly
connected structures are more similar than unconnected structures), and distance
between structures can be expressed by their relative dissimilarity. Intuitively, struc-
tures are closer to each other if they are more strongly connected and hence highly
similar, and structures are more widely separated if they are unconnected. Alterna-
tively, secondary distance and distance-like measures can be derived from the connec-
tivity patterns, such as correlation measures or the similarity index described in
Subheading 14.3.2. Although a common application of NMDS analyses is for  sym-
metrical square distance matrices, the technique can also be applied to rectangular
matrices, for instance, if there are more target than originating structures. As a rule, the
fit of the data structure in lower dimensions improves with the number of different
categories that the data contain (e.g., connectivity patterns typically contain only two
data categories: existing and absent links); and if good fit is to be achieved, it is advis-
able to transform the raw data in such a way as to characterize each unit with a large
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number of different categories. This can be realized through a variety of conditioning
methods, which may be custom-designed (7) or can be found as standard options in
statistical packages. The MDS procedure in SPSS, for example, contains a variety of
options to derive (dis)similarity distances from binary raw data, quite similar to the
pattern similarity index described above. In the case of metric data, one simple way of
transforming them into similarities is through Pearson’s correlation. Recently,
Tenenbaum and colleagues presented a powerful variant of MDS called Isomap that
generalizes such data conditioning approaches by expressing all input data as local
neighborhood measures (70); a similar technique termed locally linear embedding
(LLE) was introduced by Roweis and Saul (71). A drawback of any data conditioning
is, however, that the data structure apparent in the MDS output is determined through
secondary measures and is, hence, less directly related to the raw connectivity data. As
a consequence, careful consideration needs to be given to the organizational features
actually represented, and straightforward interpretation of the analysis results may be
made more difficult (cf. discussion in [44]).

In addition to the various measures expressing distances and similarities between
the connected structures, there exist a number of models that can be used to evaluate
the correspondence between the high-dimensional distances and the resulting low-
dimensional configuration of the scaled data. Among the large number of parameter
and method combinations for performing NMDS, no single best way of performing a
scaling analysis exists, and analysis results may vary for different parameter settings.
One approach to this problem is to derive solutions in different low dimensions under
all available parameter settings and to evaluate their consistent features by subsequent
stages of analysis, such as through cluster analysis (36). This approach does, however,
result in a loss of detail and interpretability. More detailed discussion of method options
and data treatment in the application of MDS to neural connectivity is provided in
(7,72–74). These references also evaluate the potential limitations of NMDS in the
analysis of neural connectivity data.

Interpretation. Relative proximity in a NMDS diagram conveys strong interconnec-
tions or high relative similarity in the high-dimensional connectional features of the
linked structures. The configurations resulting from NMDS can be interpreted in terms
of alignment along distinctive axes, sequences, clusters, and so on, apparent in the data
arrangement. The NMDS result shown in Figure 6, for instance, provides examples for
alignment along preferred axes (mainly from the bottom to the top of the diagram), as
well as sequential and clustered organization. As the proximity in the diagram repre-
sents the relative similarity between structures, the actual orientation of axes in the
MDS solution is arbitrary and can be rotated or reflected to facilitate interpretation. In
addition to meaningful data dimensions, the scaling solution may show further peculiar
configurations, such as circles, manifolds, and so on. For a detailed discussion of how
to interpret the outcome of scaling analyses see (75,76).

The agreement of the resultant low-dimensional configuration with the represented
original high-dimensional data can be assessed by plotting the reproduced distances for
a particular number of dimensions against the original (observed) input distances. This
scatterplot is known as a Shephard diagram, and an example is provided in Figure 7. In
an ideal low-dimensional representation of the original data structure, the rank-order-
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ing of the original data would be perfectly reproduced by the scaled distances. Con-
versely, overlap in the reproduced distances indicates lack of fit. Another way of as-
sessing how well the low-dimensional configuration approximates the original topology
of the data is by plotting the stress value against different numbers of spatial dimen-
sions on the x-axis. The idea behind this so-called scree plot is to find the value on the
x-axis for which the smooth decrease of stress values appears to level off (indicating
the minimal number of dimensions that should be used in order to represent the high-
dimensional topology with a tolerable amount of stress) (77).

Example. An example NMDS analysis was performed with the connectivity data
shown in Figure 1. The table was transformed into a matrix only containing informa-
tion about existing connections (“1”) or absent and unknown pathways (“0”), and then
reflected across the leading diagonal, so that entries in the resulting symmetrical matrix
reflected reciprocal (“2”) and unilateral connections (“1”) or absent and unknown con-
nections (“0”). This matrix, which can be interpreted as a similarity matrix, was trans-
formed into a dissimilarity or distance matrix by inversion of its entries (“2”→“0”;
“1”→“1”; “0” →“2”) and submitted to the MDS (ALSCAL) routine in SPSS, defining
the data as ordinal distances and specifying a Euclidean distance metric and the “tied”
approach for the scaling algorithm. The resulting 2D configuration, with existing con-
nections drawn between the areas, is shown in Figure 6. The solution clearly indicates
the separation of visual cortical connectivity into at least two different groups of corti-
cal areas that are more closely interconnected with each other than with the rest of the
visual cortex. Also apparent are the segregation of occipital and more “peripheral”
visual cortical areas (e.g., V1, V2, V3, which are synaptically closer to the retina),
from parietal and more “internal” visual stations; as well as the sequential organization
of connectivity between visual cortical areas. This configuration supports the com-
monly assumed separation of the primate visual system into two broad processing
“streams” (3,78). For an in-depth exploration of primate visual cortical topology on the
basis of MDS analyses see (3,7).

The stress and squared correlation of distances (RSQ) values of the low-dimensional
arrangement suggest a moderate goodness of fit. This view is supported by the Shepard
plot shown in Figure 7, which demonstrates considerable overlap between the distances
in two dimensions representing the original connectional categories. The lack of fit is
likely due to the low number (only three) of different categories in the analyzed data. A
better fit could be achieved by data preconditioning or by representation of the scaled
configuration in a higher number of dimensions. A representation in five dimensions,
for instance, increases the RSQ from 0.48 for the shown arrangement to 0.63, and
reduces the stress value of the configuration from 0.31 to 0.15.

14.4.3. Factor Analysis/Principal Components Analysis

Factor analysis, and one of its major variants, PCA, is a frequently used tool in the
exploration of high-dimensional data structures. This type of analysis attempts to iden-
tify the factors underlying the correlation patterns of a set of variables. In a comple-
mentary way, it is also used to detect a small set of features that explains most of the
variability in a larger set of variables, a strategy that can be employed for reducing the
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number of variables for subsequent stages of analysis such as clustering or regression
approaches.

The output of factor analysis methods appears superficially similar to that of NMDS,
and PCA has been employed in a similar way as NMDS in the analysis of neural con-
nectivity (11). Depending on the implementation, the relationship between MDS and
PCA may be more than superficial. For example, there are variants of MDS that are

Fig. 6. NMDS representation of the dataset from Figure 1. Green lines indicate unidirec-
tional connections between the areas, and red lines indicate reciprocal connections between the
areas. For details of the analysis see main text. Starting with V1, the diagram shows the separa-
tion of the primate visual system into two main streams that are more connected internally than
between each other. The ventral stream of mainly temporal areas is situated towards the left
side, and the dorsal stream of occipital and occipitoparietal areas is situated towards the right
side The arrangement hints that the streams might reconverge in prefrontal (e.g., A46) and
polymodal (STP) cortical regions of the diagram. Also apparent is the intermediate position
held by area V4, based on its interconnections with both the peripheral dorsal stream and the
ventral stream, which also has been born out by another topological analysis of this system
(10). Additionally, the bottom to top arrangement of visual areas in this diagram broadly agrees
with the arrangement from peripheral to more internal areas in the brain. For a detailed inter-
pretation of NMDS analyses of primate visual connectivity, refer to (3,7). The stress value for
the shown diagram is 0.31, and the variance of the high-dimensional topology explained by the
low-dimensional configuration (as represented by the configuration’s squared correlation in
distances) is 0.48, indicating a moderate fit. A color version of this figure is included in the
CD-ROM.
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based on a decomposition of the covariance matrix of the original data into eigenvec-
tors, and these eigenvectors are equivalent to the principal axes of the original data set
as obtained by PCA (79,80).

It should, however, be kept in mind that most factor analysis techniques are based on
multivariate methods for detecting linear or near-linear relationships among sets of
quantitative variables. This means that these techniques are suitable only for the analy-
sis of metric connectivity data, or for secondary metric measures, such as correlations,
derived from the raw connectivity patterns. Additionally, the assumption that there are
linear relationships among the connectivity patterns might be overly specific and,
hence, not generally meaningful. On the other hand, specific methods among the vari-
ous factor analysis approaches, such as nonlinear PCA are also capable of accepting
ordinal input data and investigating nonlinear relationships between them. Unless, how-
ever, the specific goal of the analysis is data reduction, a more general type of similar-
ity analysis such as NMDS appears more useful, since it imposes none of the restrictions
applying to factor analysis approaches and is capable of detecting a large variety of
possible relationships among variables. Moreover, in terms of resulting data represen-
tation, factor analysis tends to extract more factors or dimensions than NMDS; and the

Fig. 7. Shepard scatterplot corresponding to Figure 6, for the scaled distances in 2D space
(on the y-axis) versus the original dissimilarity distances (on x-axis). While there is a trend for
smaller original distances to be represented by smaller reproduced distances, the scaled dis-
tances that reproduce the original three data categories overlap widely, indicating an only mod-
erate fit between the original and the scaled configuration.
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smaller number of factors suggested by NMDS may be more easily and readily inter-
pretable.

14.4.4. Multiple Correspondence Analysis

Correspondence analysis is an exploratory technique designed to analyze two-way
and multiway tables containing some measure of association between the rows and the
columns. Correspondence analysis of more than two variables/cases is called MCA or
homogeneity analysis (81). Interestingly, the number of rows and columns in a corre-
spondence table does not have to be identical. The analysis results provide informa-
tion, which is similar in nature to that produced by factor analysis techniques. In
contrast to factor analyses, however, correspondence analysis allows input data to be at
nominal level of measurement, and it describes the relationships between the variables
(for instance, neural structures represented in the columns of a connectivity matrix) as
well as between the cases of each variable (the same or a different set of structures
represented in the matrix rows). Therefore, correspondence analysis may be a valuable
technique for analyzing connectivity between two different sets of structures or of con-
nection matrices, in which the origins and targets of connections are described in dif-
ferent parcellation schemes.

MCA is also capable of analyzing data sets when linear relationships between the
variables may not hold. Moreover, output interpretation is more straightforward in
MCA than in other categorical techniques, such as cross-tabulation tables and log-
linear modeling. The goal of the analysis is to express the data in terms of the distances
between individual rows and/or columns in a low-dimensional space. To this end, each
row and column are represented as a point in Euclidean space, standing for the inertia
(that is, chi-square value divided by total number of observations) of the variables and
cases, as determined from cell frequencies. In the graphical representation of this analy-
sis the axes are orthogonal, and variables that are similar to each other appear close
together in the graph, in an analogous way to NMDS configurations. Additionally, the
distances between category points belonging to each variable in an MCA plot reflect
the relationships between the categories, with similar cases plotted close to each other.
While there appear to exist no worked examples of MCA in the analysis of neural
connectivity, one previous application of this procedure in the structural investigation
of cerebral cortex was the demonstration of similarities between laminar patterns of
cells during development (82).

14.4.5. Cluster Analysis

Method. Cluster analysis produces a grouping of objects based on data that represent
the distances between the objects. In its basic strategy, this approach is similar to the
one of MDS, though it is more specifically geared towards detecting significant group-
ings of objects. By varying the analysis parameters, one can gradually increase or
decrease the size of the resultant clusters, and control their composition, from just one
all-inclusive cluster at the one extreme to separate individual objects at the other. A
hierarchical tree diagram can be used to show the linking up of separate components to
larger clusters. This kind of taxonomy informs on the relative similarity among differ-
ent individual objects and the clusters formed by them. The horizontal axis of the clus-
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ter tree (see example shown in Fig. 8) denotes the linkage distance. If the data contain
a clear organization in terms of clusters of objects that are similar to each other, then
this structure should be reflected in the hierarchical cluster tree as distinct branches
with a large internode distance.

Cluster analyses that are available in general statistics packages encompass a variety
of different classification algorithms. Various measures for calculating distances or
(dis)similarities between individual data points or clusters are possible, and there exist
many different linkage methods for combining these measures. Standard options are to
compute the distances between data items by normal Euclidean metric or higher order
Minkowski metrics, city-block distances, percent disagreements, or 1-Pearson’s or
alternative correlation measures. Attention needs to be paid to whether the routines
expect coordinates or distances as standard input. In the first case, the software will
provide method measures and metrics to compute the distances between the object
coordinates; in the second case, the distances are directly supplied by the user, afford-
ing even greater flexibility in the treatment of the data. The latter option is, for instance,
provided in clustering procedures in SAS and STATISTICA.

In addition to the different distance measures, most packages offer a variety of meth-
ods for joining separate clusters or linking individual objects into clusters. Such link-
age rules might, for instance, consider the distance of clusters elements to their nearest
neighbor outside of the cluster (“single linkage”), compute distance between different
clusters by the average of all pairwise distances between the constituent cluster mem-
bers (“average linkage”), or determine distances between clusters based on the clus-
ters’ weighted or unweighted mass centers (“centroid linkage”). These different
parameter settings shape number and composition of the resulting clusters as well as
the shape of the linked cluster tree. Although some of these settings are specifically
adapted to the data’s scale of measurement (e.g., matching similarities distances are
mainly useful for ordinal data and centroid linkage may only be meaningful for metric
distances), no definite general guidance can be given on the best choice of method
options and parameters. Different combinations of settings may prove useful for differ-
ent kinds of datasets and for the intended interpretation of the resulting cluster struc-
ture.

It is worth bearing in mind that most standard clustering methods are biased toward
finding clusters possessing certain characteristics with regard to size (that is, number
of members), shape, or dispersion. Many clustering methods, for instance, tend to pro-
duce compact, roughly hyperspherical clusters and are incapable of detecting clusters
with highly elongated or irregular shapes. On the other hand, cluster analyses employ-
ing nonparametric density estimation, which for instance are available through the
MODECLUS procedure in the SAS software, can produce clusters of unequal size and
dispersion or irregular shapes, since they do not need to make specific assumptions
about the form of the true density function for the given variables. Nonparametric meth-
ods may obtain good results for compact clusters of equal size and dispersion as well,
but they tend to require larger sample sizes for a good recovery of such clusters, than
will clustering methods that are already biased toward finding “typical” clusters.

Another noteworthy point for this type of analysis approach is that cluster analyses
are really only meaningful if the investigated data do indeed possess a clustered orga-
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nization. Cluster analysis will always suggest some kind of grouping, even if the data
are dispersed homogeneously or are structured in another nonclustered way. More-
over, most clustering procedures do not allow testing the significance of the resulting
cluster arrangement (limited significance testing is available in the SAS MODECLUS
procedure). It is, therefore, a good idea to verify the clustered nature of the network at
the outset of the analyses, for instance by computing the cluster index fclust (51). Alter-
natively, NMDS can be initially performed to assess the general organization of the
data. In the case of cluster analyses of neural connectivity, the distances between neu-
ral structures may again be specified directly as the similarity indicated by their
pairwise connections (with existing connections indicating high similarity and small
distances) or through secondary distance or similarity measures computed from the
raw connectivity patterns.

Interpretation. Membership in clusters and cluster linkages inform on the family
relationships between the investigated variables. The global tree structure of the clus-
ters may also be meaningful in their own right; repeated joining of individual elements
to an existing cluster, for instance, might indicate a more sequential arrangement of
objects. However, the appearance of such configurations can also be reinforced or cre-
ated by the chosen analysis options. Some linkage rules, for instance, may produce
more stringy cluster trees than others. Generally, internode distance is a measure for
the relative similarity of clusters or cluster constituents. Two clusters are more dissimi-
lar, the longer the distance is until branches of two different clusters are joined in the
cluster tree diagram.

Example. Cluster analysis was applied to the connectivity data of Figure 1, using the
joining (tree clustering) cluster analysis procedure of STATISTICA. The connectivity
data were analyzed as dissimilarity distances on the basis of the reflected connectivity
matrix, as outlined for the NMDS analysis above. Clusters were linked by unweighted
pair-group average, that is, by the average distance for all pairs of areas in two different
clusters. This option produced compact cluster shapes, and the results of the analysis
can be seen in the hierarchical cluster tree depicted in Figure 8.

At the lowest level (left-hand side of the diagram) clusters are formed by directly
and reciprocally linked areas. These smaller clusters join up to form larger groups
towards the right-hand side of the diagram. Two main clusters are apparent, consisting
of occipitoparietal areas (top of the diagram) and inferior temporal areas (bottom),
respectively, as well as two “outliers”, areas VOT and PITd (see Fig. 8). The former
cluster further separates into occipital visual areas on the one hand and parietal areas
on the other (which agrees with the groupings apparent in the NMDS configuration of
Fig. 6), whereas the latter cluster segregates into groups of inferotemporal and
parahippocampal–polymodal areas. An equal rank of the principal clusters is indicated
by their separation from the stem of the cluster tree at approximately the same point.

14.4.6. Combined Approaches

Several combinations of the outlined statistical analyses are possible. For instance,
connectivity patterns may be translated into metric similarity distances by pattern
matching algorithms or canonical correlations; and NMDS can be used to transform
high-dimensional connectional patterns into low-dimensional (2D to 5D) Euclidean
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coordinates, whose grouping may then be further investigated by cluster analysis. See
Burns and Young (36) for an example of the latter approach. A simple example for a
combined analysis is given in the following.

For the data set depicted in Figure 1, the pattern similarity matrix (shown in Fig. 2)
was computed, interpreted as a dissimilarity or distance matrix [by transforming the
entries as dij(dissim): = 1–dij(sim)], and subsequently used in a hierarchical cluster
analysis. The metric dissimilarity matrix was submitted as a distance matrix to
STATISTICA’s joining (tree clustering) procedure, and linkage was set to unweighted
pair-group average, as for the example analysis in Subheading 14.4.5. The resulting
cluster tree is shown in Figure 9. It is interesting to compare this diagram, which de-
rives a family tree of cortical visual areas by the similarities in their global connectivity
patterns, with Figure 8, which groups areas on the basis of their direct connections. In
line with the principal connectional clusters expressed in Figure 8, Figure 9 also indi-
cates two main groups of areas, which share similar connectivity patterns. This similar-
ity is likely based on the numerous interconnections of areas within their respective

Fig. 8. Hierarchical cluster tree for direct connectivity between primate visual cortical areas.
Pairwise connections between primate visual cortical areas as shown in Figure 1 were inter-
preted as dissimilarity distances and grouped by the average distance between all pairs of ele-
ments in different clusters. The results of this analysis demonstrate groupings of visual areas
broadly similar to those apparent in the NMDS diagram of Figure 6. Most importantly, the
cluster tree also indicates a separation of the primate visual system into two main groups (or
streams) of areas. While both diagrams essentially indicate the same composition of the global
data structure, there are minor differences in the grouped structure at the detailed level. One
such incidence is the isolated position of area CITd in this cluster tree compared to the area’s
more integrated position in the NMDS diagram.
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clusters, producing similar intracluster connectivity patterns. Moreover, both analyses
point out area VOT as an outlier. There are, however, some differences between the
diagrams on a more detailed level. For instance, Figure 9 does not replicate the separa-
tion of occipitoparietal areas into more peripheral and more internal stations that is
apparent in Figure 8; instead it shows that the connectivity patterns for this group of
areas form an inhomogeneous cluster, in which smaller groups of areas gradually link
up to the main branch. This may indicate that areas in the occipitoparietal (or “dorsal”)
cluster, despite belonging to two distinct and strongly intraconnected subcomponents,
generally follow a gradual shift in their global connectional patterns. This might be a
sign of a partly sequential topology and would be in line with the connotation of a
“stream” of visual areas. The other principal cluster of mainly temporal areas, by com-
parison, is relatively compact in both cluster diagrams, even though there are also sev-
eral differences between the areas’ patterns of direct interconnections and their global
connectivity patterns.

14.5. CONCEPTUAL HYPOTHESIS TESTING

Purpose-designed computational approaches have been developed recently to test
specific hypotheses about the organization of brain connectivity. Such approaches have

Fig. 9. Hierarchical cluster tree for global connectivity patterns of primate visual cortical
areas. The binary connectivity matrix shown in Figure 1 was transformed into a metric distance
matrix indicating the relative dissimilarity of the areas’ global connectivity patterns; see main
text for details. This distance matrix was analyzed in an analogous way to the cluster analysis
for Figure 8, using pair-group averaging as linkage option to group clusters. The resulting
cluster tree of connectional similarities shows broad similarities, but also some differences, to
the clusters expressed in Figure 8; see main text for interpretation.
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allowed to frame hypotheses about connectional topology of neural networks more
precisely than using the general-purpose statistical analyses discussed above. A shared
property of many of these investigations is that they use optimization techniques to
evaluate the fit of hypotheses about the hodology of networks against the background
of randomly wired networks with the same number of nodes and connections. Con-
cepts that have been tested include rules for the prediction of connections existing
between neural structures, the potential minimization of wiring length between neural
stations, the complex organization of neural connectivity as an adaptation to a complex
environment, as well as the clustered and hierarchical organization of neural system
networks. These ideas are briefly reviewed in the following, together with methods
suggested to test these concepts.

14.5.1. Wiring Principles

Many researchers have been intrigued by the complex yet orderly arrangement of
neural fibers in the brain and have attempted to identify general principles that shape
the organization of these intricate neural networks. The understanding of such general
rules might also allow predicting the existence or absence of currently unknown con-
nectivity. One intensely debated issue is the suggestion that brain connectivity may be
arranged in such a way as to minimize wiring length between neural structures (52,83–
85), Cherniak et al. (Chapter 4 of this text). There is indeed evidence for a correlation
between topographic neighborhood relationships in the brain and a higher likelihood of
connectivity among the neighboring stations compared to more spatially distant struc-
tures. For instance, Cherniak (85) suggested, on the basis of an exhaustive permutation
analysis, that the adjacency placement of ganglions in the nematode Caenorhabditis
elegans was an optimal arrangement for the minimization of connections between them.
Similarly, Young (3) and Scannell (86) tested modeled connectivity networks with
different types of neighborhood wiring (neighbors being defined by the sharing of areal
borders or by being contained in the same gyrus) against the known anatomical con-
nectivity data. They found partial agreement between the real connectivity and mod-
eled networks, in which connections only existed between immediate neighbors, or
next-neighbors-but-one, or among areas within the same gyri. Such correlations may
be due to biomechanical constraints on the developing neural structures and their inter-
connections (55). On the other hand, developmental and metabolic benefits derived
from wiring optimization have to be seen in the context of the large number of simulta-
neously acting evolutionary, developmental, and thermodynamical constraints (54),
and they probably do not represent the overriding goal of connectional organization. In
any case, topographic neighborhood relations may allow some prediction of connectiv-
ity within specific brain regions (e.g., “if cortical areas are bordering neighbors, then
they are likely to be connected” [54]). Such wiring predictions have also been derived
from other structural aspects of cortical organization. For instance, Barbas (87)
suggested that cortical areas with similar structural architecture are more likely to be
connected, and Jouve et al. (11) used graph extrapolation to predict connections be-
tween primate visual cortical areas on the basis of existing indirect connections between
these areas.
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14.5.2. Optimization Analyses

Optimal selection of networks using statistical measures of network dynamics. As
described above, networks or graphs can be analyzed for their structural organization
using graph theoretical and other tools. However, what really matters, from a neurobio-
logical perspective, is the functional dynamics exhibited by the systems, in other words
what the networks “do” while their components are active and exchanging signals along
their connections. The term functional connectivity has been defined as the set of tem-
poral correlations or deviations from statistical independence between the nodes of a
network, e.g., (5). An important area of investigation is concerned with the relationship
between classes of structural patterns and patterns of functional connectivity that result
due to the network’s functional dynamics.

Naturally, for almost any realistic system, it is impossible to map this relationship
exhaustively by generating all possible connectivities and testing them as dynamical
systems. However, the problem becomes tractable if only certain “classes” of struc-
tural or functional connectivity are considered. In a series of studies (88–90), a set of
global statistical measures (based on statistical information theory) was developed that
captures particular aspects of a given pattern of functional connectivity. Entropy, for
example, captures the overall degree of statistical independence that exists within a
network. Integration, on the other hand, captures the extent to which the network as a
whole exhibits activity that is characterized by statistical dependence between its units.
Complexity expresses how much a system is both functionally integrated (statistically
dependent) at larger scales and functionally segregated (statistically independent) at
smaller scales. At the system level, cortical networks seem to incorporate both of these
features. They are composed of functionally segregated areas that are globally inter-
connected and functionally integrated in perception, cognition, and action. Complexity
captures these dual tendencies and, therefore, can be expected to be high for modes of
organization resembling the cerebral cortex.

Sporns et al. (12,13) have used an evolutionary search algorithm to look for connec-
tivity patterns that produce functional connectivity characterized by high entropy, inte-
gration, or complexity (see Fig. 10). For each of these global measures and over wide
ranges of structural and dynamic parameters, specific connection patterns emerge. Most
interestingly, connection patterns that produce activity of high complexity closely
resemble cortical connection matrices in their principal structural features. These net-
works with highly complex functional connectivity patterns are characterized by a clus-
tered architecture with distinct sets of nodes that correspond to structural and functional
subdivisions of the network. After MDS is applied to a complex network’s covariance
matrix, these sets of nodes form distinct clusters linked by relatively few connections
(“bridges”) (Fig. 10C). Other measures than the ones used here may be devised and
used in similar search algorithms. In general, these search techniques allow the system-
atic exploration of small subregions of graph space under the guidance of a specific
functional hypothesis (incorporated as a cost function based on functional connectivity
or covariance matrices).

The CANTOR network processor. The preceding section already demonstrates the
value of optimization approaches to the analysis of complex connectivity. In the fol-
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lowing, we describe another computational approach based on the CANTOR system,
which has been specifically designed for representing, rearranging and analyzing com-
plex connectional data. We outline two example applications of this system in testing
clustered and hierarchical organization of neural connectivity.

CANTOR, a software processor for the evaluation of complex sets of related objects,
is built around a computational environment that supports stable, distributed, and per-
sistent processing, as is required for performing computationally demanding tasks (91).
The system itself provides a number of analysis tools, such as an evolutionary optimi-
zation algorithm that can be combined with various multiparameter cost functions.
CANTOR employs cost functions with categorical (nominal or ordinal) or metric com-
ponents to evaluate the current organization of a network and to explore alternative
rearrangements. For instance, the strength of interactions between nodes of a neural
network may be described either metrically (e.g., for quantitatively determined struc-

Fig. 10. Examples of graphs obtained after selection for entropy (A), integration (B), and
complexity (C), using a variant of the graph selection algorithm of (12). Connection matrices
are shown on the left, and covariance matrices are shown in the middle. Displays on the right
show the graphs after MDS, with vertices indicated as blue circles, and red and green lines
indicating bidirectional and unidirectional edges, respectively. See text for more details. A
color version of this figure is included in the CD-ROM.
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tural connectivity or functional correlations between brain regions) or categorically
(e.g., to qualitatively describe different classes of anatomical interconnections). Both
ways can be represented and analyzed in CANTOR. The cluster analyses described
previously (10) give examples for either type of cost function.

The values derived in cost functions can be used by CANTOR’s optimization engine
to initiate rearrangements of the data set. Because of the potential complexities of the
data, the engine uses stochastic optimization based on an evolutionary algorithm.
Briefly, the optimization starts with one or several randomly chosen initial network
configurations, which are gradually improved in evolutionary epochs, according to the
given cost function. Rearrangement of the network proceeds through “step mutations”,
which create minimal structural changes in the network’s configuration. The efficiency
of the optimization is increased by looking ahead two subsequent generations of candi-
date networks, and local minima are avoided by allowing intermediate generations with
a slightly higher cost than that of their parent generation. The algorithm attempts to
collect all optimal solutions within an optimal cost range, which is defined through the
cost of the best solution found in all previous epochs. Therefore, all candidate network
solutions have to be compared to the cost and structure of already existing solutions.
This operation presents the limiting step of the algorithm for highly degenerate optimi-
zation problems, cf. (9). The ability of the CANTOR system to collect a set of optimal
or near-optimal solutions represents an advantage over most optimization techniques
implemented in commercially available statistic packages (as described in Section
14.4.), which only deliver singular optimal solutions.

Combinations of different costs can be optimized, by default as the sum of the indi-
vidual costs, although various methods of cost combination are possible. Attributes of
the analyzed networks, such as connection weights, as well as the different cost com-
ponents can be weighted selectively, incorporating, for instance subjective measures of
reliability (9,30). A list of CANTOR functions, parameter settings, as well as more
detailed manual pages are available at (www.pups.org.uk).

Structural cluster analyses. Cluster analyses of connectivity have already been dis-
cussed in an earlier section of this chapter. With the help of general statistical tools
such as hierarchical cluster analysis, connectivity patterns are interpreted as
(dis)similarity distances, normally of a metric nature. These distances are inspected
and linked into clusters, thus providing an indirect assessment of the connectivity clus-
ter organization. Here, we return to the subject of cluster analysis, using a more direct
approach. In a straightforward way, the task of finding connectivity clusters translates
into identifying the groups of neural structures that share more anatomical connections
or functional relationships among each other than with other neural structures. This
simple concept can be expressed as a cost function in the CANTOR system and can so
be used to test the cluster organization of neural networks. Previously published analy-
ses (10,41,64,92) have referred to this type of cluster analysis within the CANTOR
framework as optimal set analysis (OSA).

The suggested cluster cost function closely follows an intuitive concept for defining
connectivity clusters (7). Considering that a global optimal cluster grouping of a whole
network would have as few as possible links between the different clusters, as well as
a minimal number of absent connections within the clusters, a cluster cost is defined as
the sum of two components: (i) the number of all connections between all clusters; and
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(ii) the number of absent connections with all clusters. The total combined cost has to
be minimized.

Where the available data explicitly distinguish between absent and unknown data
(as in the example set shown in Fig. 1), only the connections explicitly known to be
absent are considered in the analysis. For less detailed datasets, both absent and
unknown connections have to be treated as one category. In some cases, connectivity
data compilations also contain additional information about the strength of existing
connections. This information can be used to weight the strength of the connections in
the cost function, using different approaches depending on the level of measurement at
which the density information is available. In the metric approach, the connection
density is used as a direct multiplication factor for the respective connections. In the
nonmetric approach, on the other hand, ordinal density categories (weak, moderate,
etc.) are used to determine the cluster organization of connectivity networks in a staged
way, first taking into account all densest connections, then intermediate ones, and so on.

In the default approach, optimal cluster groupings are evolved in epochs starting
from 50 different randomly chosen cluster arrangements of the structures in the con-
nectivity network. Each epoch, by default, can yield 50 solutions within 1% of the cost
of the best solution; and it was verified with the help of simple test cases that these
default settings produce an exhaustive round-up of optimal configurations.

For a situation with multiple optimal solutions, a scheme can be devised that repre-
sents a summary of all solutions, by plotting the relative frequency with which two
structures appear in the same cluster throughout all solutions. Figure 11 presents such
a summary for the three optimal cluster arrangements found when analyzing the
example data set shown in Figure 1.

The cluster structure of primate visual cortex shown supports the organization out-
lined by Figures 6 and 8. Once more, it indicates that visual cortical connectivity is
arranged into two principal clusters of mainly occipitoparietal areas (top cluster in Fig.
11) and temporal areas (bottom cluster in Fig. 11). It also shows the dissimilarity of
primary visual cortex (V1) and of area VOT, which has been previously indicated as an
outlier (cf. Figs. 6 and 8). As the cluster arrangement of these data is significantly more
pronounced than that of randomly arranged networks with the same size and degree of
connectivity, there evidently exists a strong connectional dichotomy in the primate
visual system. For a more detailed discussion of these results see Hilgetag et al. (10).

One common problem in traditional cluster analyses is to determine the number of
clusters to be detected in a given dataset. This number and, consequently, also the
composition of clusters often depends indirectly on the parameter settings of the analy-
sis, such as parameters for cluster diameters or specific neighborhood relationships.
Frequently, no good strategy exists for choosing these values, and sometimes they can-
not even be specified through user input. A typical approach pursued in standard clus-
ter analyses, hence, is to vary these parameters systematically and represent the
resulting grouping of objects as a hierarchical cluster tree. The cluster analysis pre-
sented here circumvents this problem, as CANTOR detects optimal cluster arrange-
ments across all possible cluster sizes. In other words, the evolutionary algorithm
determines the optimal number and optimal composition of clusters simultaneously,
and the resultant structure depends directly on the explicit cluster cost function
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described above. Nevertheless, cluster sizes in the configuration can be controlled via
selective weighting of cost components (10). This feature, and the possibility of com-
bining various metric or categorical cost components, ensure the flexibility of
CANTOR’s cluster algorithm and potentially make it suitable for the analysis of many
different types of tangled networks, for instance traffic networks, relationship, and simi-
larity networks (as in the evaluation of nucleic acid motifs).

Functional cluster analyses. An alternative clustering method, termed functional
clustering, has been devised by Tononi et al. (90), which utilizes the functional connec-
tivity (covariance matrix) of a neural system. Based on information–theoretical con-
siderations, these authors defined a so-called functional cluster index, which for each
given set of units or areas expresses the ratio between total statistical dependence (inte-

Fig. 11. Summary plot of 3 optimal cluster arrangements for the connectivity data shown in
Figure 1. The shading indicates the relative frequency by which the cortical areas appeared
together in the same cluster. For instance, area VOT grouped with the cluster at the bottom in 2/
3 of all solutions and with the one at the top in the remaining 1/3. The analyses used the simple
cluster cost function described in the text, without density- or reliability-weighting of indi-
vidual connections. The shown solutions were obtained by assuming an equal weighting of the
two cost components, which equates to giving equal importance to existing and absent connec-
tions between the areas. Solutions were also computed for systematic variations in the weight-
ing of the two cost components, producing optimal cluster groupings varying from just one
cluster to many small irreducible dense clusters. In the shown arrangements, the number of
connections between clusters ranged between 73 and 89, while the number of absent links
within the clusters varied between 58 and 42, respectively, leading to a total cost of 131. This
cost is significantly smaller than the average cost for randomly organized networks with
the same number of vertices and edges. See Hilgetag et al. (10) for a detailed description of
clusters detected in macaque monkey and cat cortical connectivity. Reproduced with permis-
sion from (91).
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gration) within the set and the amount of mutual information between the set and the
rest of the system. The cluster index is high if the components of a set are highly inter-
active and, at the same time, do not interact much with other components of the system
that are not part of the set. While this measure is entirely based on the functional
dynamics of the system (expressed as the system’s covariance matrix), it has a certain
degree of similarity with the set of two-component cost function described above, in
that the measure compares the amount of within-set interaction (e.g., due to within-set
connectivity) to the amount of between-set interaction (e.g., due to between-set con-
nectivity). Sporns et al. (12) developed an evolutionary algorithm to efficiently evalu-
ate large sets of functional clusters of varying sizes and derive estimates for their
statistical significance (compared to a null hypothesis of a homogeneous system).
Essentially, the algorithm searched for sets of units (of all sizes) that would show maxi-
mal functional clustering. When applied to the macaque monkey visual cortex (Fig. 1),
a set of maximally significant clusters of different sizes is obtained (12). One of the
most significant cluster configurations is displayed in Figure 12, both as an optimally
reordered functional connectivity matrix (Fig. 12B), as well as the corresponding ana-
tomical connectivity matrix (Fig. 12A). The resulting cluster structure is strikingly
similar to that shown in Figure 11, obtained using a clustering procedure based on
anatomical, not functional, connectivity, suggesting that functional connectivity is
strongly determined by underlying anatomical connectivity.

Hierarchical analyses. An established approach in the analysis of cortical connec-
tivity is hierarchical analysis, e.g., (6). Anatomical criteria have been suggested for the

Fig. 12. Result of functional cluster analysis applied to the connectivity data set shown in
Figure 1. Panel A shows the connection matrix and panel B shows the correlation (covariance)
matrix of the macaque monkey visual cortex, which are displayed after reordering of rows and
columns using the ranking of components of a functional cluster of high statistical significance.
The cluster boundary is marked by a gray line and segregates two sets of areas largely homolo-
gous to the dorsal or occipitoparietal (upper left) and ventral or occipitotemporal (lower right)
streams. Note that areas MIP and MDP are included in this analysis, and, after clustering, are
positioned right between the two dominant clusters. Modified and reproduced with permission
from (13). A color version of this figure is included in the CD-ROM.
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classification of corticocortical projections as feedforward, feedback, or lateral, on the
basis of the projections’ patterns of origin and termination across the cortical layers.
The matrix in Figure 1 shows a large number of long-range cortical projections within
the macaque monkey cortical visual system, which were classified as hierarchical rela-
tionships based on the data presented in Felleman and Van Essen (6), Table 5 (also in
[6]), and using the Felleman and Van Essen classification scheme. These hierarchical
rules can be used to arrange cortical areas into global hierarchies that violate as few as
possible of the individual rule constraints, e.g., (6,9,93).

Hierarchical analysis can be automated with the help of the CANTOR system. For
this purpose, a categorical cost function is defined that counts the number of hierarchi-
cal constraints violated by any given candidate hierarchical arrangement. When this
cost was applied to optimize the data in Figure 1 hierarchically, solutions were obtained
that violated 11 of the individual hierarchical constraints. This number is significantly
smaller than the violation cost for optimal arrangements of the randomly redistributed
data, indicating strict hierarchical regularities in the data. However, the solution space
for this optimization problem proved to be highly degenerate, in the sense that a very
large number of optimal solutions with the same low cost were found for the used
categorical cost function. Within 1000 randomly started epochs, each of which maxi-
mally collected 30 solutions, the algorithm computed 6828 optimal hierarchies for the
shown constraints, and the sustained high rate of solutions found per epoch suggested
that this did not yet constitute an exhaustive set of optimal solutions for these con-
straints. For a slightly different, frequently referred to set of constraints (see Table 7 in
[6]), where the number of optimal hierarchies found was even larger, with the algo-
rithm yielding almost 200,000 visual hierarchies that all possessed a lower cost than
solutions derived in previous manual analyses (8,9). The degeneracy of the solution
space is caused by features of the system’s organization of the primate visual cortex
(9), as well as by the use of a simple categorical cost function in traditional hierarchical
analyses. Ultimately, approaches will have to be employed that use quantitative con-
straints for determining sequential connectivity patterns in the brain (9,27,94).

The hierarchical solutions found by CANTOR also showed several organizational
features not revealed by previous manually derived schemes of the same system, such
as a larger number of hierarchical stages (between 12 and 18 levels) or a different
composition of constraint violations. Under this general approach, it is also possible to
weight reliable and less reliable constraints (as indicated in Fig. 1) differently (9). This
strategy did not, however, significantly alter the resulting hierarchical arrangements.

In addition, using the CANTOR system in hierarchical analysis permits to
computationally test hypotheses about the basis of the few remaining constraint viola-
tions in global visual hierarchies. Simulations of this kind suggested that one of the
cortical visual areas, FST, might possess distinct subcomponents, and the approach
also predicted some of the subcomponents’ connectivity with other cortical structures
(www.psychology.ncl.ac.uk/predictions.html) (9).

14.6. CONCLUSIONS

We start by summarizing the knowledge that the presented connectivity analysis
techniques revealed about the example data set of Figure 1. Subsequently, we present
our general conclusions.
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Simple statistical evaluation indicated that individual nodes of the primate visual corti-
cal network possess different degrees of connectedness with the rest of the network.
This picture, however, may also be due to the varying extent of knowledge gathered
about the different cortical stations, cf. (6). A current database project (www.
cocomac.org) (22) is making efforts to improve this situation. Most visual cortical
nodes also seem to maintain a roughly symmetrical balance between the number of
input and output connections, bearing in mind that the analyzed patterns do not contain
information about the strength of connections. However, there is some imbalance for
ratios of nodes receiving and sending feedforward or feedback projections (as defined
by laminar origin or termination patterns). Primary visual area V1, for instance, is send-
ing a large number of connections of the feedforward type, while itself only receiving
feedforward input from the thalamus. A better understanding of this imbalance will
depend on gaining a better idea about the functional correlate of laminar cortical pro-
jection patterns.

The pattern similarity index introduced in Subheading 14.3.2. indicated the exist-
ence of two large groups of visual areas with similar connectivity patterns (see Figs. 2
and 9). The concepts of systems neuroscience suggest that similarly connected struc-
tures fulfill similar functional roles, which would imply that the primate cortical sys-
tem is organized in such as way as to carry out at least two distinct principal tasks. The
characteristic pathlength, that is, the average shortest path, in the cortical visual system
was found to be not much longer than in a randomly wired network with the same
number of nodes and connections. The latter type of network structure normally pos-
sesses the shortest characteristic pathlength, cf. (51). Maximum distance within the
example set was 4 intermediate connections, and most cortical stations can communi-
cate with each other either directly or via one intermediate area. These short distances
imply a highly efficient mode of cross-communication in the visual system.

Such efficiency is also related to the clustered, yet integrated, connectional organi-
zation of the system suggested by several different analysis approaches presented here.
The existence of clusters was first established through the local cluster index fclust, as
well as through the local measure of cycle probability. Subsequent global exploration
of the example network by NMDS and cluster analyses supported this view and helped
to identify the components of the main clusters. The cluster composition was in agree-
ment with the familiar two-stream picture of the primate visual system, e.g., (3,78,95).
The concept of clustered connectivity in the visual system was then tested and con-
firmed more explicitly using the OSA approach provided by the CANTOR optimiza-
tion software.

The term streams also suggests another aspect of the organization of connections
between visual cortical areas, which is a sequential arrangement of visual areas trans-
mitting information from the sensory periphery to more internal cortical stations (3).
While this concept was not explored in great detail here, such sequences became appar-
ent in the NMDS analysis of the example data in section 14.4. as well as in an analysis
approach combining the computation of a connectivity pattern similarity index with
hierarchical clustering (Subheading 14.4.6.). It might be a worthwhile task for the fu-
ture to investigate this aspect of connectivity more closely, in a way akin to the pre-
sented analysis approaches. Similar to the network indices defined previously
(11,12,51), one could also define an index to measure the degree of sequential connec-
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tivity with a network. A suitable measure might be the proportion of shortest paths
between the neighbors i and j of a network node k that pass through k, since this propor-
tion is the larger the more linear and sequential a network is. The actual order of struc-
tures in the sequences could be identified in two stages. 1D NMDS, or correspondence
analysis, would allow a straightforward visualization of candidate sequences, while a
specific seriation cost function could be used in the CANTOR network processor to
obtain all optimal arrangements of sequentially connected structures.

Finally, a specialized analysis approach investigating the hierarchical organization
of the example data suggested a striking regularity of laminar connectivity patterns in
the primate visual system. This result is also born out by recent quantitative approaches
(27,43). However, an understanding of the potential functional correlates for these
intriguing regularities has only just begun (96–99).

All presented methods provided interesting facets of information about the analyzed
system. Several independent approaches indicated the clustered connectivity structure
of the network (e.g., local cluster indices, NMDS, cluster analysis, OSA), while others
provide alternative perspectives (shortest paths informing on efficiency of signal trans-
mission, NMDS suggesting sequential organization) or focused on particular aspects
of the system’s organization (hierarchical analysis using CANTOR, verification of
complex dynamics using graph selection). The outcome of the example analyses sug-
gests that there is no single best method for analyzing neural connectivity. All avail-
able statistical methods help to explore the organization of connectivity data, while
new computational methods are being designed to assess specific aspects of the neural
connectivity, such as similarity of patterns, clustered organization, and sequences of
interconnected systems. Methods specifically designed for the analysis of connectiv-
ity, however, allow a more straightforward interpretation of the results.

The increasing availability of connectivity data in electronic format will make it
more feasible for the individual researcher to consider new neuroantomical data in the
context of global connectivity networks, and future structural connectivity studies
might address issues such as network stability and the structural and functional toler-
ance of different neural networks to lesions (56,100). Moreover, the growing power of
approaches that link the structural connectivity of neural systems to their functional
properties predicts a significant expansion of this field in the future. This will be par-
ticularly important in functional imaging approaches for computing effective connec-
tivity between neural structures from time series data (e.g., by structural equation
modeling [101–103]) and for models describing the relation between neural activity
and the blood oxygen level dependent (BOLD) signal in functional magnetic reso-
nance imaging (fMRI), e.g., (104). Finally, techniques for connectivity analysis repre-
sent valuable transferable knowledge in an age that is characterized by rapidly growing
worldwide webs of information, traffic, and disease (105).
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15
Development of Columnar Structures

in Visual Cortex

Miguel Á. Carreira-Perpiñán and Geoffrey J. Goodhill

ABSTRACT

Many features of visual scenes are represented in the visual cortex in the form of
maps. The best studied of these are the maps of features such as ocular dominance and
orientation in primary visual cortex (V1). The beautifully regular structure of these
maps and their dependence on patterns of neural activity have inspired several differ-
ent computational models. In this chapter, we focus on what can be explained by mod-
els based on the idea of optimizing a trade-off between coverage and continuity, in
particular, the elastic net (EN).

15.1. INTRODUCTION

Visual cortical map development is a well-studied area of computational neu-
roanatomy, characterized by an abundance of both experimental data and successful
models. Starting with the classic experiments of Hubel and Wiesel in the 1970s, the
characterization of both the adult structure of the primary visual cortex (V1) and how
that structure arises developmentally have become continuously more precise and
detailed as experimental techniques have improved. Current methodologies include
single- and multielectrode physiology, 2-deoxyglucose and cytochrome oxidase stain-
ing, optical imaging based on both intrinsic signals and voltage-sensitive dyes, and
anatomical tract-tracing techniques. In parallel, several different types of theoretical
models have developed, some of which are very well understood analytically. To com-
prehensively review the full range of both experimental data and theoretical models
relevant to map formation in visual cortex would require far more space than is avail-
able in this chapter. We, therefore, restrict ourselves to only briefly reviewing recent
experimental data regarding map structure and map development and, then, focusing
on one particular class of low-dimensional models, which attempt to optimize a trade-
off between coverage and continuity.  We further restrict ourselves to issues regarding
maps overall, rather than details of the receptive fields of the individual neurons from
which these maps are made. Broader reviews of models can be found in (1,2).
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15.2. STRUCTURE OF ADULT MAPS

Receptive fields of V1 neurons are highly selective along a number of feature dimen-
sions of the stimulus. These feature dimensions include position in the visual field, eye
of origin (ocular dominance), orientation, direction of movement, spatial frequency of
a grating, and disparity. Neurons lying along a line or column orthogonal to the surface
of V1 respond in approximately the same way to visual stimuli. However, responses
vary in an organized way in the tangential direction, parallel to the surface. As is com-
mon in this field, we will, therefore, discuss only the 2D structure of the visual cortex.
Such 2D organization of preferred responses to a particular stimulus feature is termed
a map  (e.g., ocular dominance map, orientation map, and so on), and several such
maps coexist on the same neural substrate. The map of preferred location in the visual
field is topographic on a large scale (i.e., moving systematically across the visual field
roughly corresponds to moving systematically across the cortex), though more convo-
luted on a fine scale (3). The ocular dominance map consists of alternating stripes or
blobs with a regular periodicity, with neurons in each stripe/blob responding preferen-
tially to stimuli in one eye (4). The orientation map is also striped with an overall
periodicity (5), but is characterized by point singularities or pinwheels, around which a
circular path meets once all orientations from 0° to 180° (6). The structure of the spatial
frequency map is somewhat controversial (7), with competing claims for both a binary
(8,9) and a more continuous representation (10).

Different maps are not independent from each other: the stripes of ocular dominance
and orientation tend to run locally orthogonal to each other and orientation singularities
tend to lie in the center of ocular dominance stripes (9,11,12). Besides this local struc-
ture, some global structure is also apparent: in monkeys ocular dominance columns
tend to run parallel to the shorter axis of V1, orthogonal to V1 boundaries, and are
more irregular in the foveal region (13,14). Maps of two individual animals of the same
species are qualitatively similar, but maps of two individual animals of different spe-
cies differ in the amount of columnar segregation and its type (stripes, blobs), periodic-
ity, pinwheel density, and other structural characteristics. A problem which several
theoretical researchers have become engaged in is to find effective ways to quantita-
tively characterize map structure (e.g., [15–18]).

15.3. MAP DEVELOPMENT: ROLE OF ACTIVITY

The view of development of V1 (layer IV) that has been universally accepted until
recently can be summarized as follows (see e.g., [19–21]): (i) during early stages of
circuit development, genetically specified molecular signals guide axonal outgrowth
and targeting. These early connections are typically diffuse and imprecise; and (ii)
these connections are then refined, and some are eliminated in response to visual activ-
ity, giving rise to the adult pattern of connectivity.

In particular, ocular dominance column formation requires a prolonged activity-
dependent segregation process (lasting several weeks in cats and ferrets). This starts
from an initial state in which lateral geniculate nucleus (LGN) afferents representing
both eyes overlap extensively, and ends in a mature state in which eye-specific affer-
ents occupy stripes. The hypothesis that column formation is activity-dependent is
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based on a large number of experiments dating back to the 1960s. When tetrodotoxin
(TTX) is injected into both eyes of the cat during the critical period (the period when
visual experience affects column formation), thus blocking all retinal activity, ocular
dominance columns are not seen either anatomically or physiologically (22). When
one eye is occluded or sewn shut during the critical period, thus causing an imbalance
in the amount of activity from the two eyes, it is found that (i) a higher proportion of
cortical cells than normal are completely monocular; (ii) substantially more of the cells
in layer IV can be driven by the normal eye as compared to the deprived eye; and (iii)
ocular dominance stripes are now of different thicknesses for the two eyes. The stripes
receiving input from the normal eye expand at the expense of the stripes from the
deprived eye (19,23,24). When an occluded eye competes with an eye injected with
TTX, there is a shift towards the occluded eye (25). The cortical imbalance in the
representation of the two eyes is greater when an occluded eye competes with a normal
eye than when a TTX-injected eye competes with a normal eye (26). When strabismus
is induced during the critical period, thus preventing image registration in the two reti-
nae and decreasing the strength of between-eye correlations, all cells become entirely
monocular, and the pattern of stripes becomes correspondingly sharper (27). It was
originally thought that overall column periodicity was left unchanged; recent data has
suggested otherwise in the cat (28) though this is controversial (29).

The data regarding the effect of activity on orientation map development is more
complex and controversial; see section 15.6. and Swindale (2) for review.

15.4.THEORETICAL MODELS: COVERAGE AND CONTINUITY

The role of activity in shaping cortical maps has usually been modeled via Hebbian
learning rules. Such rules can often be interpreted as implementing gradient ascent/
descent in some objective function, so that the effect of the developmental process is to
optimize (at least to some extent) that function. A particularly useful class of objective
functions implements a trade-off between two competing tendencies, coverage unifor-
mity (or completeness) and continuity (or similarity). However, even though several
mathematical definitions of coverage uniformity and continuity have been given, the
principles of coverage uniformity and continuity remain conceptually vague. For
example, coverage uniformity and completeness are strictly different: the former means
that each combination of stimuli values (e.g., any orientation in any visual field loca-
tion of either eye) has equal representation in the cortex, while the latter means that any
combination of stimuli values is represented somewhere in cortex. Thus, coverage uni-
formity implies completeness (disregarding the trivial case of a cortex uniformly non-
responsive to stimuli), but not vice versa, since it is possible to have over- and
underrepresented stimuli values. Besides, it is not possible to represent all values of a
continuous, higher-dimensional stimulus space with a 2D cortex1. A practically useful
middle ground is to consider that the set of stimulus values represented by the cortex be
roughly uniformly scattered in stimulus space—whatever that set is. Continuity is even

1We should say practically not possible, since from set theory we know that the cardinal of ℜD is equal
to the cardinal of ℜ ∀D ≥ 1: there exists a continuous one-to-one mapping from ℜD to ℜ.
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less well defined than coverage uniformity. Loosely, we can say continuity means that
neurons which are physically close in cortex tend to have similar stimulus preferences
or (nonequivalently) that similar features are represented nearby in the cortex. This can
be motivated in terms of economy of cortical wiring (30).

The striped structure of several of the maps can be understood to represent a com-
promise between coverage and continuity. An early idea based on these principles is
the icecube model of Hubel and Wiesel (4), in which stripes of ocular dominance run
orthogonally to stripes of orientation and all combinations of eye and orientation pref-
erence are represented within a cortical region smaller than a cortical point image (the
collection of neurons whose receptive fields contain a given visual field location).

These general optimization principles of coverage and continuity do not in them-
selves support any specific development rule, since there may be different ways in
which they can be optimized. However, heuristic rules that obtain local optima are
rather more plausible than a global search, where the best of all possible configurations
is found. It is appealing from both biological and computational perspectives to con-
sider that visual cortical structure is the result of small developmental changes driven
by neural activity. It is then plausible to think that such principles (abstractions based
on physical and biological constraints and on adaptation to the environment) have a
strong influence on the cortical structure, but with the following caveats: that they
probably are not the only principles at work; and that they are only partly optimized in
real organisms.

Particularly successful examples of such heuristic rules are the elastic net (EN) (30–32)
and the self-organising map (SOM) (33,34). In these models, the competition can be
explained in a dimension reduction framework, where a 2D cortical sheet twists in a
higher-dimensional stimulus space to cover it as uniformly as possible while minimiz-
ing some measure of discontinuity. These models differ in their explicit mathematical
definitions, but produce maps that are similar and display a quantitatively good match
to the observed phenomenology of cortical maps (1,35). This includes: (i) the striped
structure of ocular dominance and orientation columns with appropriately related
periodicities and, for orientation, the existence of singularities (pinwheels); (ii) the
interrelations between different maps, such as the tendency of orientation and ocular
dominance stripes to be locally orthogonal and of the pinwheels to lie on the center of
ocular dominance stripes; and (iii) the effect on the maps of various abnormal condi-
tions during development, such as strabismus or monocular deprivation. Shortly, we
discuss specific details of the EN and its application to cortical mapping problems.
First however, we discuss coverage and continuity from a more general mathematical
perspective, which helps to illustrate how the EN fits into the broader picture.

15.4.1. Mathematical Formulation of Coverage Uniformity and Continuity

Given a representation M of a cortical map, a mathematically convenient way of
writing the trade-off between the goals of attaining uniform coverage and respecting
the constraints of cortical wiring is to assume that cortical maps maximize an objective
function:

F C R( ) ( (M M) + M)
def λ [Eq. 1]
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where C is a measure of the uniformity of coverage, R is a measure of the continuity,
and λ > 0 specifies the relative weight of R with respect to C. This formulation is
formally akin to regularization theory (36). We assume that maximizing either C or R
separately does not lead to a maximum of F and, therefore, that maxima of F imply
compromise values of C and C. By quantitatively defining C and R in terms of the
map representation M, it is in principle possible to perform a numerical optimization of
F to generate a map. We examine several possibilities next.

Model-based formulation. For a model, the map representation M is the set of model
parameters, such as synapse strengths, tuning widths, mapping parameters, receptive
field centers, etc. Such parameters uniquely determine the values of orientation, etc., at
any point in the model cortical sheet. For the EN (which is discussed in more detail in
Subheading 15.5.), the parameters are the locations in stimulus space of the reference
vectors and the width k. From Equation 9, we can define:

C R({ } , ) log (|| || , ) ({ } , ) || ||y y y y yi i
N

i j
i j i i

N
j j

j
k k x k k= = +∑ ∑ ∑− − −1 1 1

2def defΦ [Eq. 2]

where { }xi i
N
=1 is the sample of stimulus values, Φ is defined in Equation 8, and λ β

α
def

2
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Note that the standard EN algorithm minimizes –αF instead of maximizing F and also
anneals k rather than optimizing over it, but the expectation-maximization (EM) algo-
rithm version does optimize over k and the reference vectors jointly. In the probabilis-
tic interpretation of the EN, the C function is simply the log-likelihood of the parameters

{ }yi i
N
=1 and k for the data sample { }xi i

N
=1  i.e., the probability density that an EN density

model with those parameter values generated the sample. The R function is a negative
“length” of the net (it would be exactly the Euclidean length of the elastic net from y1
to yN if the terms were not squared). It attains its maximal value at 0 for a point-like net
where y1 = . . . = yN: the more stretched the net is, the less “continuous” it is. This has
been motivated in terms of economy of cortical wiring [the cost of setting up a given
neural connectivity pattern; (30)].

Unlike the EN, the SOM learning rule cannot be integrated to give an objective
function (37). However, slight variations of its rule, leading to basically the same
behavior, can be integrated and give an objective function very similar to that of the
EN. For example, in the probabilistic variation of SOMs of Utsugi (38):
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[Eq. 3]

where D is a discretized differential operator, e.g., first order gives (Dy)j = yj + 1 – yj,
second order yj + 1 – 2yj + yj – 1, and so on. Similarly generalized regularization terms
could also be used in the EN (39).

Model-free formulation. A model-free resolution-dependent representation of a map
can be defined as a 2D array (not necessarily rectangular) of vector values of the stimu-
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lus variables of interest. Each position (i,j) in the array represents an ideal cortical cell.
Let us call C the set of all such cortical positions (e.g., C = {1, . . . , M} × {1, . . . , N}
represents an M × N rectangular array). There is a vector of stimulus values µij associ-
ated to each cortical position (i,j). Stimulus variables of interest include the retinotopic
position (or receptive field center in the visual field) (x,y) in degrees, the preferred
orientation θ ∈ [0°,180°]), the ocular dominance n (–1, left eye; +1, right eye), and the
spatial frequency m ∈ {–1,1}. Therefore, µij

def  = (nij, mij, θij, xij, yij) for (i,j) ∈ C can be
considered a generalized receptive field center; a receptive field could then be defined
by a function sitting on the receptive field center and monotonically decreasing away
from it. The collection M

def
 = {µij}(i,j)∈C  of such receptive field centers, together with

the 2D ordering of cortical positions in C, defines the cortical map. This representation
is applicable to maps measured empirically, for example with optical recording tech-
niques.

Swindale (40) (see also [41]) introduced the following mathematical definition of
coverage, which is applicable to this representation independently of any model. Given
an arbitrary stimulus v, the total amount of cortical activity that it produces is defined
as:

A f ij
i j

( ( )
( , )

v) v
def −

∈
∑ µ

C
[Eq. 4]

where f is the (generalized) receptive field of cortical location (i,j), assumed transla-
tionally invariant (so it depends only on the difference of stimulus and generalized
receptive field center values); f is taken as a product of functions: Gaussian for orienta-
tion and retinotopic position (with widths derived from biological estimates of tuning
curves) and delta for ocular dominance and spatial frequency. A is calculated for a
regular grid in stimulus space, which is assumed to be a representative set of stimulus
values. The measure of coverage uniformity is finally obtained as:

′c
A

A
def stdev{

mean

}

{ } [Eq. 5]

that is, the magnitude of the (normalized) dispersion of the total activity A in the stimu-
lus space. Intuitively, c′  will be large when A takes different values for different stimuli
and zero if A has a positive value independent of the stimulus. Thus, it is a measure of
lack of coverage uniformity, and we could define C

def − ′c .
Note that the function A can be seen as a kernel density estimate (42) for the sample

{µij}(ij)∈C with smoothing parameter given by the width of the kernel function f. In fact,
its spirit is the same as that of the probabilistic interpretation of the EN and SOM. This
is because the latter are vector quantization methods, where the dimension reduction
mapping is implicitly defined by the reference vectors in stimulus space. If the map-
ping was defined explicitly via parameters, as e.g., in the generative topographic map-
ping (GTM) model (43), the resulting C and R functions would be quite different.

More difficult is to define R, because the cortical wiring constraints are largely un-
known and possibly result from the combined effect of several factors. At an abstract
level, we can define R as a similarity measure where the preferred stimuli of nearby
cortical neurons are similar, as in the expression (44):
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µµ µµ

In fact, many models of cortical development implicitly or explicitly implement such a
definition of continuity for specific choices of the similarity measures F and G, like the
EN, often with a flavor of wire length or local similarity of neural responses (e.g., [45];
see Goodhill [46] for discussion). However, this implies introducing model assump-
tions. At present, continuity is too vaguely defined to be quantitatively characterized
for a model-free map representation.

15.5. THE ELASTIC NET ALGORITHM

The elastic net algorithm (31) was originally developed as an approximate method
for the Traveling Salesman Problem (TSP), a well-known NP-complete combinatorial
optimization problem. Here, the objective is to find the shortest distance a salesman
can travel to visit a set of N cities in a plane and return to where he started. The key idea
is that this problem is analogous to the problem of forming topographic maps in the
nervous system, where cities represent input or feature points, and the tour represents
the ordering of these points onto the target structure—though generally in the nervous
system there is no “return to where you started” constraint. The TSP problem has been
extensively discussed in the combinatorial optimization literature, being both easy to

state and hard to solve. For N cities there are 
( )!N − 1

2
 possible routes: for large N, it is

impossible to search them all to find the optimal tour. Therefore, many heuristic algo-
rithms have been investigated, which aim to provide good solutions in reasonable time
(for review, see Lawler et al. [47]). The set of valid tours for a TSP of size N can be
represented as the vertices of an N-dimensional hypercube, and most techniques aim to
provide good ways of stepping from one vertex to another to gradually improve the
quality of the solution. However, an alternative method used by the EN is for the search
to proceed through the continuous space inside the body of the hypercube, only con-
verging to a valid solution in the final state.

The dynamics of the EN algorithm are closely related to those of the Kohonen algo-
rithm. Both algorithms grew out of earlier models of retinotectal map formation
(Kohonen: Willshaw and von der Malsburg [48]; EN: Willshaw and von der Malsburg
[49]). The basic framework is an array of cortical cells that receive weighted connec-
tions from points in an input space. In the so-called low-dimensional version of both
algorithms, input points represent features—such as a line segment of a particular ori-
entation located at a particular point in the image—rather than individual image pixels.
Generally, each feature is represented by an orthogonal dimension: one for x position,
one for y position, one for ocularity (degree of left or right eye dominance), one for
orientation, one for direction, and so on. The weight vectors of cortical cells can be
represented as points in the input space. The input space is densely populated with
input points, so that all appropriate feature combinations are represented. In the
Kohonen algorithm, inputs are presented in turn. The initial activity of each cortical
cell is the sum of pixel values times weights. This activation rule is equivalent to calcu-
lating the distance between the input vector and each weight vector (see e.g., Kohonen
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[34] for mathematical details). In Willshaw and von der Malsburg (48), there was an
explicit pattern of lateral cortical connections, consisting of short-range excitation and
longer-range inhibition, and the activity of cortical cells was iterated until the cortical
activity pattern stabilized. The most strongly responding cortical cells then had their
weights updated according to a Hebbian learning rule (see Willshaw and von der
Malsburg [48] for mathematical details). Kohonen’s insight was that the end result of
this process is usually (though not always) a blob of activity centered on the cortical
cell that initially received the largest input. He therefore proposed an algorithmic short-
cut, whereby it is assumed from the outset that the only cortical cells that should have
their weights updated are those close to the unit that initially responded most strongly,
which is the unit whose weight vector was closest to the input vector. The EN works in
a similar way to this, with two important differences. Firstly, whereas Kohonen uses
hard competition between cortical units, the EN uses soft competition. This means that
in the EN, all cortical units are updated in proportion to how strongly they respond to
each input pattern, rather than in the Kohonen algorithm, where just the most strongly
responding are updated. Secondly, the EN algorithm usually operates in batch mode:
all input points are considered simultaneously for updating usually cortical cells, rather
than presenting them one at a time as in Kohonen’s algorithm. The biologically appeal-
ing interpretation that input points are being seen one at a time and that the cortex is
responding to each in turn is now lost; however, this modification makes little differ-
ence from a mathematical perspective and allows a useful statistical interpretation as
described below.

Refer to the positions of points in the input (feature) space as xi and the positions of
the weight vectors of cortical cells in the input space as yj. The change in the position
∆yj of each cortical unit at each time step is given by:

∆y x y y yj ij i j
i

j
j j

jw k= − + −∑ ∑ ′
′∈

α β( ) ( )
( )N

[Eq. 6]

The first term is a matching term that represents the “pull” of feature points for cortical
units, which is traded off with ratio α/βk against a regularization term representing a
“tension” in the cortical sheet, i.e., a desire for neighboring cortical cells to represent
neighboring points in the feature space (short-range excitation between cortical cells).
The sum over all input points i indicates that the algorithm operates in batch mode. N(j)
refers to the set of cells in the cortical sheet that are neighboring to j. The wijs (rather
confusingly termed “weights” by Durbin and Willshaw [31]) say how much cortical
cell j is activated by input i as a function of the difference between xi and yj:
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The sum over all cortical cells in the denominator of Equation 7 is a normalization term
that says that each input produces the same overall amount of activity in the cortical
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sheet: the wijs give the distribution of that activity. k is a scale parameter that deter-
mines the spread of this overall activity: if k is large, then many cortical cells are roughly
equally activated by an input, whereas if k is small, then only those cortical cells whose
weight vectors are closest to the input vector are significantly updated. Over the course
of a simulation, the scale parameter k is gradually reduced, so that the matching term
comes to dominate the regularization term. Equation 6 implements Hebbian learning in
the sense that the degree to which a cortical cell is updated by a particular input de-
pends on the degree of similarity between the input pattern and the weight vector of
that cortical cell, i.e., the extent to which the activity of a cortical cell is correlated with
that pattern of input activity.

Equation 6 can be integrated to produce an energy function E, which is such that

∆y
yj

j

k
E= − ∂

∂

Fig. 1. Stages of development of the EN for the 1D ocular dominance problem (32). Each
retina is represented by a row of points in a feature space where distances are taken to represent
correlations. The mapping to the cortex is represented by an elastic rope, where points on the
rope represent cells in the cortex. The position of each cortical cell in this abstract space is
updated iteratively, so as to simultaneously match cortical cells to retinal locations and keep the
distance between neighboring cortical cells as small as possible (i.e., maximize the degree to
which neighboring cortical cells receive highly correlated inputs). (A) Cortical cells are ini-
tially positioned randomly in the feature space, except for a crude initial topographic bias. (B)
As development proceeds, the cortical mapping assumes an ordered topography. Cortical cells
lie roughly equidistant between the two retinae, signifying a completely binocular mapping.
(C) Eventually, cortical cells become committed to particular retinal locations, and a periodic
pattern emerges (at this stage, cortical points lie on top of retinal points: for clarity in the
picture, their positions have been slightly offset vertically). (D) Moving the two rows of retinal
points further apart (increasing l in the terminology of the diagram) causes wider columns to be
formed. For a striped solution, it is straightforward to calculate that the optimal width is n = 2l/d.
For simplicity, the same number of cortical cells as retinal points have been drawn.
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As explained in section 15.4.1., this function realizes the competition between cover-
age uniformity and continuity. The first term (coverage uniformity) simply tries to
produce a one-to-one match between input features and cortical cells. The second term
(continuity) says that only the similarity between neighboring cortical cells is consid-
ered and that dissimilarity in the input space is given by squared distance (the distances
are squared for computational convenience). Carefully chosen versions can be inter-
preted as corresponding to particular patterns of lateral connections in the cortex (39).
This rather abstract version of Hebbian learning has the advantage of an elegant statis-
tical interpretation (50). Consider each unit on the elastic sheet as a Gaussian generator
of data in the feature space. Each Gaussian has the same variance, determined by k. At
each value of k, the optimization of the first term in the energy function corresponds to
finding the positions of points on the sheet where they are most likely to have gener-
ated the data: a maximum likelihood model. The second term acts as a prior on the
model that favours solutions with short distances between Gaussian centers: alterna-
tive forms for this term, therefore, correspond to different priors. The algorithm imple-
ments a form of graduated nonconvexity or deterministic annealing (51). At large values
of k, the energy function has a unique minimum. As k is reduced, the energy function
bifurcates to produce several local minima, and the algorithm tracks one of these. This
process continues as k is further reduced. In common with all heuristic optimization
methods, the algorithm is not guaranteed to find the global minimum. Durbin et al. (50)
analyzed the application of this algorithm to the TSP, where cortical units form a 1D
loop of points on the tour, and feature points are cities in a plane. By calculating the
first and second derivatives of the energy function with respect to the positions of
cortical points, they showed that the center of gravity of the feature points (i.e., the

Fig. 2. Ocular dominance maps produced by the EN in two dimensions. Cortical points are
colored white or black depending on the eye to which they are committed. The two retinal
sheets were hexagonal grids with a circular boundary, and the cortical sheet has a hexagonal
grid with an elliptical boundary. (A) Normal development. (B) Strabismic development
(reduced correlation between the eyes). (C and D) Effects of monocular deprivation. (C)
Activity in the deprived eye reduced by 25%. (D) Activity in the deprived eye reduced by 50%.
The same initial conditions were used in each case.
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configuration where all cortical receptive fields are coincident at this point) is always
an extremum of the energy function. They calculated the value of k for which the center
ceases to be a stable minimum, i.e., the energy function bifurcates, to be k ≈ λ , where
λ is the principal eigenvalue of the covariance matrix of the feature points. At this
stage, the cortical cells form a line (or sheet) along the principal axis of the covariance
matrix of the feature points. By varying the structure of the covariance matrix of the
feature points, it is, therefore, possible to vary the order in which different maps (e.g.,
orientation, ocular dominance) develop. We return to this issue later.

Ocular dominance. The behavior of the EN for the ocular dominance column map-
ping in one dimension is shown in Figure 1, and equivalent results in two dimensions
are illustrated in Figure 2 (32,52). In both figures, it can be seen that column periodic-
ity depends on the degree of correlation between the eyes. This can be understood
theoretically as follows. The EN tries to find a mapping that maximizes the degree to
which neighboring cells in the cortex receive inputs that are highly correlated. In the
abstract representation shown in Figure 1, this is equivalent to minimizing the length of
the path that joins all input points (in fact, for reasons of computational efficiency, the
elastic net minimizes the sum of squares of distances). Refer to the distance (in corre-
lation space) between neighboring points in the same eye as d, and the distance between
corresponding points in the two eyes as l (see Fig. 1D). It is easy to show that the
optimal width n of a striped solution2 is n = 2l/d (32,52). As l increases, the correlation
between the two eyes decreases (54), and the stripe width increases. An experimental
prediction following from this result is that kittens raised with divergent strabismus
should have wider ocular dominance columns than normal kittens (52,55). Evidence in
favor of this prediction was found by Löwel (28) (for further discussion, see Goodhill
and Löwel [56]), though this is controversial (29). The effect of reduced activity in one
eye (23,24) can be modeled with the EN by reducing the effective pull that points in
one eye exert on cortical cells relative to points in the other eye (57). This corresponds
to reducing the parameter α. Illustrative results are shown in Figure 2C and D.

In the macaque, besides local structure, ocular dominance stripes are also character-
ized by an overall orientation that varies with position in V1: ocular dominance stripes
are less parallel in the foveal region, tend to be orthogonal to the borders of the neigh-
boring visual cortical area, and decrease in width from the fovea to the periphery.
Goodhill et al. (58) attempted to model this global structure using the EN. They identi-
fied three factors with an influence on the global structure of cortical maps and imple-
mented them with the EN as summarized in Table 1. Thus, they concluded that (i) the
widening of the columns in the foveal region results from stronger correlations (de-
creased spacing of retinal points); and (ii) the increased disorder in the foveal represen-
tation results from two competing effects: an elliptical cortex, which causes column

2For l > d, the solution that traverses the complete length of the left eye followed by the complete length
of the right eye is, in fact, more optimal than any striped solution. In this case, n = 2l/d is a local, rather than
a global, minimum. However, in practice, the EN always finds a striped solution, since the dynamics of the
algorithm always establish initial topography with the two ends of the cortex of opposite ends of the two
retinae for sufficiently large values of the annealing parameter. Biologically, a biased initial topography is
established by activity-independent molecular cues: see e.g., Goodhill and Richards (53).
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alignment parallel to the short axis, and anisotropic input correlations, which cause
column alignment parallel to the long axis. This model predicts that in a strongly aniso-
tropic visual environment (e.g., kittens raised with cylindrical lenses), columns should
tend to line up parallel to the direction of the weaker correlations.

Orientation. The EN was first applied to the formation of orientation maps by Durbin
and Mitchison (30). A standard trick in these types of models to capture the intrinsic
periodicity of the orientation dimension is to wrap it around into a cylinder, so that
orientation is now represented by a circular manifold in two dimensions rather than as
just a line in one dimension. An equivalent periodicity analysis to that described earlier
for ocular dominance can be performed to yield an expected periodicity of orientation
columns of 2πr/d (see Fig. 3), which is in good agreement with simulation results (59).
A quantitative comparison of several different models of column formation (35) found
that the EN and Kohonen algorithms actually produced the best match to real orienta-
tion and joint orientation–ocular dominance maps.

Two aspects of the EN applied to the joint formation of ocular dominance and orien-
tation columns were examined by Goodhill and Cimponeriu (59), namely, which model
parameters control the order of development of the two sets of columns and how this
ordering affects the final patterns of columns produced. Applying the bifurcation analy-
sis of Durbin et al. (50) discussed earlier, Goodhill and Cimponeriu (59) derived

Table 1
Factors Influencing Global Structure of Cortical Maps in the Model
of Goodhill et al. (58)

Reason Elastic Net Elastic
Factor Proposed Implementation  Net Result

Spatially nonuniform The increase in Foveal region of in- Columns are wider and
correlational structure retinal ganglion cell creased density of more disordered in the
of activity in the density proceeding retinal points cortical representation
retina. from peripheral (smaller spacing), of the fovea.

to central retina. representing stronger
correlations between
neighboring retinal
ganglion cells in the
fovea.

Spatially anisotropic The asymmetric By squashing the two Columns tend to line up
correlational struc- way in which the retinal sheets (in the orthogonal to the direc
ture of activity in the retina develops. training set) so that tion of stronger correla-
retina. the spacing between tions.

points is less in one
direction than the other.

Elongated cortical Circular retina and Columns line up paral-
shape. elliptical cortex. lel to the short axis of

the cortical sheet.
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expressions for the critical values of k for expansion along each of the visual space,
orientation, and ocular dominance dimensions in terms of the parameters d, l, and r of
the feature space (see also [60,61]). Combining these expressions with those quoted
earlier for the expected ocular dominance and orientation periodicities, it is possible to
relate the ratio of critical k values to the ratio of final periodicities without any refer-
ence to the parameters d, l, and r. Approximately, if the orientation wavelength is
greater than the ocular dominance wavelength, then orientation columns developed
first, otherwise ocular dominance columns developed first. The model, then, predicts
that in normal macaque monkeys ocular dominance develops first, in normal cats ori-
entation develops first, but in strabismic cats ocular dominance develops first. Whether
this is true has not yet been experimentally determined.

An intriguing property of a particular version of the EN was discovered by Wolf and
Geisel (62). They carried out a symmetry-based theoretical analysis of the dynamics of
pinwheels during visual development, assuming only a very general class of activity-
dependent learning rules. They showed that these symmetry properties, together with
some general assumptions of Gaussian statistics and homogeneous correlations, imply
that, if starting from a random unselective initial state, a minimal expected spatial den-

sity of pinwheels ρ emerges when orientation selectivity is first established: ρ π<
Λ2

where Λ is the typical spacing of the orientation stripes. Therefore, if pinwheels are

found in adult animals at a density ρ π<
Λ2 , then there must have been motion and anni-

hilation of pinwheel pairs of opposite sign (as is also observed in the physics of de-
fects). This result is robust to variations in the particular details of the developmental
rule employed and depends only on its intrinsic symmetries. The EN falls within this
general class and displays this tendency for pinwheels to move and annihilate during
development, if it is run in the nonannealed regime. In this version, k is kept fixed
during a simulation at a value below all relevant critical values, so that expansion occurs
along all dimensions simultaneously. Pinwheel annihilation leads to growing regions

Fig. 3. One possible type of mapping between a cylindrical feature space representing orien-
tation and one spatial dimension, and a 1D EN (solid circles, feature points; dashed line, EN;
solid lines to aid visualization). Here, the net forms iso-orientation domains of smoothly vary-
ing orientation, each of which traverses n units in the spatial dimension.
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of stripe-like iso-orientation domains, which locally resemble a plane wave. Using dif-
ferent sets of stimuli tuned to attain a variable degree of ocular dominance, the pres-
ence of ocular dominance columns slows down or even stops pinwheel annihilation, in
proportion to the degree of ocular dominance segregation; thus, pronounced ocular
dominance is associated to high-scaled density of pinwheels. As yet, no theoretical
justification has been given for this. In the annealed version, the orientation map even-
tually stabilizes; whether annihilation occurs to any significant extent depends on how
slow the rate of annealing is.

15.6. DISCUSSION

As we have seen above, the EN (and related models such as the SOM) can accu-
rately reproduce a large amount of the observed phenomenology of ocular dominance
and orientation maps. In addition, these models make several interesting and often
surprising predictions about the outcomes of certain experiments. These include pre-
dictions of an increase in overall ocular dominance column periodicity with strabis-
mus, a difference in the order of development between normal and strabismic cats, and
pinwheel annihilation during development. While these claims are experimentally
somewhat controversial, the generation of such clear and testable predictions has helped
ferment an active and productive dialog between theoretical and experimental research-
ers. However, it is also appropriate to focus on some issues raised by recent data that
these models do not account for.

15.6.1. Retinotopy Distortions

The retinotopic map of V1, given by the receptive field centers in visual space of
every cortical neuron, is roughly uniform and has received far less attention than the
ocular dominance and orientation maps. However, it contains both local and global
distortions. Global distortions result from the fact that the magnification factor and
receptive field size change monotonically from the fovea to the periphery. The
retinotopic map has been approximately described by a complex logarithm (63). It is
not hard to produce global distortions with the EN and SOM, simply by systematically
changing the density of feature points across the input space (e.g., [64]). More trou-
bling are the local distortions, different from the scatter3 of receptive fields, which
result from discontinuities of the retinotopic map and are matched with the
discontinuities (or pinwheels) of the orientation map (3). That is, along a tangential
penetration the receptive field center varies relatively smoothly from neuron to neuron,
and neighboring receptive fields overlap considerably; but receptive fields of cells ly-
ing on opposite sides of a pinwheel do not overlap. Das and Gilbert (3) also found that
the rates of variation of receptive field center (normalized by receptive field size) and
of orientation preference were positively correlated. These two findings pose prob-
lems, so far unsolved, for cortical development models. On the one hand, some types of
models, such as correlational models (45), have relied so far on a perfect retinotopy
and have not addressed topography distortions. On the other hand, dimension reduc-

3Quantitative estimates of this scatter vary, but recent results place its standard deviation between 0.1
and 0.5 times the receptive field size (e.g., [3,65]).
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tion models, such as the EN and SOM, do not assume a perfect retinotopy, but simula-
tions result precisely in anticorrelations rather than positive correlations: when one
stimulus variable varies, the others tend to remain constant (30). Why this is so is
unknown: it is possible to have a rich behavior in the joint variation of stimulus vari-
ables (e.g., all variables varying at the same cortical location), while still satisfying
coverage and continuity. Thus, the likely reason must lie in the specific formulation of
the objective function or the training algorithm, that tends to single out solutions with
anticorrelations. One factor could be the discrete character of the EN and SOM, both
being vector quantization methods, which limits the different gradient values that may
arise in a local optimum.

The results obtained by Das and Gilbert (3) used a coarse sample, since neighboring
cells were recorded at approximately intervals of 50 µm for tangential penetrations and
of 400 µm for a 2D grid. Ideally, the correlations and discontinuities should be obtained
from a 2D sample on a wide area of the cortex at a much finer cortical separation in
order to obtain meaningful gradients as a function of the cortical location. This would
also show the distribution over cortex of the effects of discontinuity matching and
positive correlation, which may not be uniform in view of the global distortions men-
tioned above. Unfortunately, such area-wide measurements, which have advanced our
knowledge of the orientation and ocular dominance maps considerably, are not cur-
rently possible for the retinotopic map. Das and Gilbert (3) claim that their results are
robust against scatter, because the latter is very small. However, the scatter could affect
their results in a different way: while the retinotopic map obtained from measurements
of a collection of cells at roughly the same cortical depth is noisy due to the inherent
scatter of cell receptive fields, a more homogeneous map might be obtained as the
aggregate receptive field resulting from cells in the same column. However, our inabil-
ity to make spatial and volumetric measurements of this kind currently prevents
experimental investigation of this issue.

15.6.2. Activity-Independent Mechanisms in Column Development

Earlier, we briefly reviewed the large body of evidence for a role for neural activity
(both visually-evoked and spontaneous) in visual cortical map formation and plastic-
ity. However, in the past few years, a number of pieces of experimental data have
appeared, which challenge, to varying extents, the hypothesis that initial column devel-
opment is activity-dependent. One reason for the rise of interest in activity-indepen-
dent explanations for map formation in the cortex is the dramatic increase in our
understanding of activity-independent mechanisms of axonal targeting. Since 1994,
several large families of molecules, many previously unknown, have been identified to
play crucial roles in the development of neuronal connections. These include the
netrins, semaphorins, slits, and ephrins (reviewed in [66,67]). Molecules which may
be particularly relevant to understanding map development in visual cortex are the
ephrins, signaling through receptors of the Eph family. Low anterior to high posterior
gradients of ephrins exist in the optic tectum and its mammalian homologue, the supe-
rior colliculus, while low nasal to high temporal gradients of Eph receptors exist in the
retina ([68,69]; reviewed in [53]). Extensive evidence suggests that these gradients
play a crucial role in guiding retinal ganglion cell axons to their targets (e.g., [70,71];
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other data reviewed in [72]). However, although ephrins have also been found in the
LGN (73) and in somatosensory cortex (74), as yet, there is no direct evidence that they
play a role in guiding axons to appropriate targets in primary visual cortex. In particu-
lar, in order to control column formation, one would expect to find ephrins in an ini-
tially patchy distribution in visual cortex, and this has not so far been observed.

Ocular dominance maps. To reexamine the issue of whether the retinae or retinal
activity are required for the establishment of ocular dominance columns, Crowley and
Katz (75) enucleated ferrets4 very early in life and let them develop. To visualize pat-
terns of LGN axons in maturity, to determine whether ocular dominance segregation
occurs, they used anterograde LGN injections (i.e., injection of a tracer into eye-specific
cells in the LGN) and retrograde cortical injections. They found that, with or without
information derived from the retina, geniculocortical axons organized into discrete
ocular dominance stripes. Crowley and Katz (76) further found that columns are not
present at birth, but appear as early as 16 d later (equivalent to a wk before birth in
cats). Therefore, Crowley and Katz (75) removed the eyes before columns form. In
addition, when they removed just one eye at an age when LGN axons have innervated
the cortex, but before columns have formed, normal-looking ocular dominance col-
umns still resulted (with the same periodicity: neither shrunk nor expanded). These
results suggest that the establishment of ocular dominance columns and the plasticity
of ocular dominance columns are two temporally different phases of visual cortex
development.

Orientation maps. Using optical imaging of intrinsic signals and single-unit micro-
electrode penetrations in both eyes at postnatal d 15 (P15) or younger, Crair et al. (77)
found that the orientation map forms before P14 in both normal and binocularly-
deprived (BD) (by bilateral lid suture) cats. The similarity between the orientation maps
of each eye for normal and BD cats varied with age. From P0 to around P21: the simi-
larity increases monotonically in the same way for both normal and BD cats. From
around P21: maps remain identical for normal cats, but progressively dissimilar for BD
cats. They thus concluded that patterned visual experience is required for the mainte-
nance of orientation selectivity rather than for the initial development of the orientation
map, and the deterioration of maps coincides with the critical period. Orientation col-
umns emerge independently of patterned visual experience during the second postnatal
week, and patches of ipsilateral eye responses appear early in the third week. Experi-
ence then makes responses to become stronger, more selective, and nearly equal for
both eyes by the beginning of the fourth wk; with continued BD, ipsilateral eye
responses never become very strong or selective.

In another experiment, Gödecke and Bonhoeffer (78) investigated the influence of
activity on the fact that orientation maps are precisely matched for both eyes (at least
for binocularly-driven neurons), which is essential for disparity detection and also for
stereoscopic vision. They raised kittens with reverse suturing, so that both eyes were
never able to see at the same time. They found that the orientation maps in area 18 for

4Ferrets are ideal for experiments for two reasons: (i) they have robust ocular dominance columns and
well-defined critical periods (like cats); and (ii) their nervous systems at birth are not yet developed (e.g., 3
wk less developed than those in cats, in which ocular dominance columns from before birth). This allows
the detection of earlier developmental events.
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both eyes were identical, as in normal kittens (except for minor differences such as a
slight shift of some pinwheels that they imputed to technical limitations). They argued
that this effect cannot be due to spontaneous retinal activity, since this would have to
be synchronized between both eyes.  They thus deduced that correlated visual input is
not required for the alignment of orientation maps.

However, Wolf et al. (79) showed that it is possible to replicate the results of
Gödecke and Bonhoeffer (78) in simulations with SOMs by using a cortex with a spe-
cific shape: a narrow elongated cortex results in matched orientation maps, while a
square cortex results in unmatched orientation maps. Wolf et al. (79) explain this in
terms of symmetry-breaking and pattern formation in physical systems, in which the
qualitative behavior depends generally on the ratio between system size and character-
istic wavelength of the emerging structure.

In another experiment, Weliky and Katz (80) examined the effect of perturbed pat-
terns of neural activity on orientation maps in ferret V1. They implanted a stimulating
cuff around the optic nerve from one eye (the other eye was removed) and stimulated it
for about 2 s every 20 s from around P16 to P42. While they found effects on the
receptive field structure of individual neurons, the overall structure of the orientation
map looked apparently normal. Although this could be interpreted as evidence that
overall orientation map structure is not activity-dependent, it is important to note that
the aberrant stimulation occurred for only a small proportion of the total time (see
Goodhill [81] for further discussion).

These studies and others suggest that the role of activity in columnar development is
less determining than originally thought. However, it is important to note that even
though the eyes are deprived or removed, spontaneous activity is still likely to be
present in both LGN and cortex. In the LGN, spontaneous activity emerges from mul-
tiple mechanisms, including endogenous network oscillations and feedback connec-
tions (82). Thus, the LGN does not simply relay patterns of retinal activity to the cortex,
but rather this activity is reshaped and transformed by corticothalamic interactions.

Models Incorporating Neuronal Activity, Molecular Guidance Cues, and Gene
Expression. Models such as the EN and the SOM have been very successful at account-
ing for much of the observed phenomenology of visual cortical maps. Although they
are conventionally thought of as implementing activity-dependent learning rules, it is
important to remember that the EN was originally derived from a mapping model based
entirely on activity-independent molecular mechanisms (49). Nevertheless, it seems
reasonable to conclude that the early stages of cortical map formation are driven by a
combination of molecular guidance cues and patterned gene expression, in addition to
neural activity, and that a different type of model explicitly including all three factors
may be necessary to account for map formation. One such kind of models are gene
networks (83). A gene network is a cluster of genes in which (i) the expression of the
genes in the cluster is affected by specific stimuli, such as exposure to a hormone or
neurotransmitter; and (ii) the protein products of some members of the cluster act as
transcription factors that regulate, positively or negatively, the expression of other
members. The total array of genetic regulation in neurons and other cells is a gene
network with a large number (of the order of thousands) of interactions. Current models
of gene networks describe the rates of change of the concentrations of gene products
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(mRNAs and proteins) with ordinary differential equations, as a function of the levels
of transcription factors or other effector molecules and can incorporate stochastic fluc-
tuations in molecule numbers. Logical networks, where the expression of each gene in
the network is assumed to be either ON or OFF, have also been proposed. These mod-
els give rise to a rich variety of qualitative nonlinear behaviors, including multistability
and oscillations. However, gene network models present some difficulties. Modeling
differential equations requires short time steps and so a high computational cost, which
may make them impractical for large gene networks or lengthy processes, such as
development of tissues or organisms. Models of specific gene networks need to be
based, insofar as possible, on values of biochemical parameters measured in vivo, which
is difficult. Hence, new methods for gathering detailed data are necessary. Finally, so
far, gene network models mostly do not take into account the spatial organization of
gene expression, which is essential to explain biological pattern formation and, in par-
ticular, cortical map formation. Models for the Drosophila segmentation problem, such
as those of Sharp and Reinitz (84) and von Dassow et al. (85), are a promising step in
this direction.
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ABSTRACT

While quantitative neuroanatomy produces increasingly detailed descriptions of
the nervous system at all levels of organization, it remains a major challenge to inte-
grate the information from cell, population, and systems levels in a mutually informa-
tive way. Computer simulation is a powerful tool for exploring links between structure
and function of cells, tissues, and organs. It is based on mathematical models that cap-
ture the essence of anatomical, physiological, and behavioral observations, and rely on
accurate quantitative descriptions. Previous computer models, including much of our
own work, have focused on relating structural and functional data at nearby descriptive
levels. Here, we discuss concepts in linking cell, population, and systems level models
of the cerebral cortex. We propose a strategy for building multilevel computer models
that integrate elements from compartmental neuron models, microcircuit representa-
tions of neuronal populations, and activity propagation in large-scale neuronal
networks. As a working example, we simulate activity propagation in the primate
visual cortex, with the aim of relating neuronal activity to cortical activation patterns
and onset response latencies to the structure of the underlying anatomical network.
This computational approach provides new insights into the functional anatomy of the
visual cortex.

16.1. INTRODUCTION

Computational neuroanatomy is concerned with the mathematical formulation of
structure–function relationships at the levels of neurons, neuronal populations, and
brain systems, with the aim to gain systematic and comprehensive insights into the
mechanisms governing brain functions. During the second half of the 20th century,
more and more refined morphological and electrophysiological investigations have
provided us with a wealth of insights into cellular and synaptic mechanisms of single
neurons. Extant examples of resulting concepts are the cable theory of passive den-
drites (1), the Hodgkin-Huxley formulation of the relationship between action poten-
tial, ionic conductances and membrane particles (2), and the compartmental modeling
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approach to complex branched neurons (3). We are now capable of simulating the
detailed electrophysiological behavior of single neurons based on full morphological
reconstructions and realistic distributions of a dozen of different membrane conduc-
tances (e.g., [4]). Computational models of neuronal morphology provide insights into
the physiological consequences of neuronal size differences as they occur in ontogeny
(5) and phylogeny (6). Models of intracellular processes address the flow of calcium
and other ions as they affect the release of transmitters, the modulation of currents, or
the activity of complex signaling pathways (7–10). By contrast, large-scale network
models have most commonly addressed the principal computations and dynamics of
comparatively simple networks with regular or random connectivity, e.g., (11–13) or
the implementation of high-level cognitive functions in abstract neural architecture
(14,15). They tend to ignore, however, the specific anatomy of cortical networks, which
is neither uniform nor random (16), and which puts constraints on global activation
patterns and information processing in this complex structure (16,17).

Despite this dichotomy of bottom-up and top-down approaches, neuronal, systems
and mental phenomena are inextricably intertwined. Thus, we need to explore the brain
mechanisms that relate between detailed anatomy and global functions. It was not
before the 1990s, however, that systematic and comprehensive collations of real brain
wiring, combined with multivariate statistical approaches, raised a fresh interest in the
global anatomical organization of the brain and the functional constraints revealed by
its architecture. Based on anatomical connectivity data such investigations have dem-
onstrated, for example: (i) the hierarchical organization of the visual system (18,19);
(ii) its global division into a parietal stream concerned with spatial orientation and a
temporal stream specialized in object recognition (20,21), and the differentiation of
prefrontal cortex into orbitomedial and lateral areas (22,23); (iii) the “small world con-
nectivity” properties of anatomical and functional cortical networks (21,24); and (iv)
the predictive value of inter-area connectivity for activity propagation in cortical net-
works (17). The disentangling of the brain’s wiring and the functional annotation of its
circuit diagrams may turn out to be of similar importance as the sequencing and anno-
tation of the human genome to molecular biologists, or the wiring diagram of a man-
made machine to a service technician (25). Functionally annotated wiring diagrams
will be required at several levels of detail; patients, clinicians, and neuroscientists with
their different view points and questions require information on brain mechanisms that
range from a global sketch of interactions between major brain systems (26) via the
task- and time-dependent activation within distributed networks (27) to the detailed
mechanisms of interacting processing steps (28). As a specific example, functional
brain imaging studies have shown spatially distinct activation patterns under different
task conditions; to predict and influence such activation patterns, however, we need to
know the functional impact of anatomical connections, the relative contribution of
excitation and inhibition, the role of background and anticipatory activity, the sequence
of information processing, and the learning of regularities, etc. (see, e.g., [29–31]).

This brings us back to the issue of the relationships between different levels of orga-
nization ranging from the molecular and cellular to ensemble, area, and systems. Main-
stream thinking in neuroscience tends to classify scientists and their work according to
the organizational level that they predominantly address. Thus, the categories of
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molecular, cellular, systems, and behavioral approaches dominate the division into sec-
tions of learned societies, job descriptions, conference presentations, and publications
in general neuroscience journals. Although it is recognized that these categories do not
define independent domains, it requires a substantial departure from predominant hab-
its to target their conceptual integration and to address the question of how one level
constrains or informs another. Furthermore, the tendency to categorization and focus-
ing on a single level of organization is not unique to experimental approaches, where it
could be argued that it results from the dependence on specialized and expensive equip-
ment. Counterintuitively, this categorization is also noticeable in theoretical and com-
putational approaches that combine relatively homogeneous components in mainstream
approaches with a certain conceptual consensus (32). Thus, there are different compu-
tational tools for molecular, cellular, network modeling, or statistical analyses, which
reinforce the formation of communities that make use of only one subset. The Hodgkin-
Huxley formalism is an exceptional example of a multilevel concept that provides an
explanation of how the properties of membrane components determine the electrical
behavior of entire neurons. A similarly integrative concept is required that would link
neuronal activities within a spatially distributed network to functional interactions and
global activation patterns in the brain

Cross-level integration is not a simple task: as far as the relationships between phe-
nomena at different levels are known, they are nonlinear and highly complex as, for
example, the relationship between neuronal activity and tissue perfusion. Thus, it may
be difficult to express them in mathematical terms that are simultaneously simple and
comprehensive. A first step towards the specification of such relationships is the
detailed investigation of the influence that parameters at one level have on variables at
another. Here, the problem is that many crucial variables can only be studied to a lim-
ited extent or are not amenable to experimental observation due to technical or ethical
limitations. Computational approaches have the advantage that the parameters can be
freely manipulated and that all variables of the model are open to inspection. In addi-
tion, computational models are, in principle, fully reproducible and can be reanalyzed
at later times in the light of further insights. What is needed, then, are computational
tools that support and thereby foster multilevel investigations. Ideally, such tools would
allow flexible implementation of any kind of mathematical description and, simulta-
neously, be intuitive and specific enough to represent the keystones of neuroscientific
concepts. This twofold ideal is to some extent contradictory as reflected by the division
of simulation tools into general-purpose numerical integrators (such as XPP) and dedi-
cated biochemical (GEPASI) or neural simulation systems (such as NEURON or GEN-
ESIS; for a comprehensive list see http://www.hirnforschung.net/cneuro/). In fact, there
are important considerations of model complexity, temporal resolution, and conceptual
compatibility that complicate an integration of models, but which are not insurmount-
able obstacles. From a technical point of view, the development of flexible object-
oriented simulation environments implementing a unified description language for
neuroscience objects are desirable (33). In addition, the conceptual issues of multilevel
integration have to be addressed. In a previous paper (9), we provided a framework and
examples of an integration of biochemical and biophysical modeling using both gen-
eral-purpose and dedicated simulation environments. Here, we advance the integration
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of detailed neuronal models with more abstract area and network models for investiga-
tion of brain mechanisms underlying activation patterns in the cerebral cortex.

16.2. MODELS OF NEURONS AND NEURONAL POPULATIONS

16.2.1. Neuron Models

Neurons have highly complex morphological, electrophysiological, and biochemi-
cal properties as reflected in the many morphological cell types, the repertoire of activ-
ity patterns, or the multiple intracellular signaling pathways. Out of these complex
phenomena, neuron models represent an extract of features that are thought to be of
particular significance. What exactly are the most significant features is a matter of
debate. Perhaps the most fundamental distinction in neuronal modeling relates to the
divergent intentions of reconstructing their full behavior vs distilling their computa-
tional principles. This distinction has produced two different approaches in the history
of neuronal modeling: biophysical models and formal (computational) models (34).
Further reasons for using different models and different software implementations
include detail of available data, ease of implementation, run-time efficiency, and avail-
ability of supporting software modules for input, output, and analysis. Clearly, no single
implementation is ideal in all respects so that there is scope for variety.

Biophysical models are models of the physical reality in the usual sense. One promi-
nent biophysical model has already been mentioned, the quantitative description of
membrane currents and its application to excitable processes in neurons by Hodgkin
and Huxley (35). With growing computational resources and increasing amounts of
empirical data over the last decades, biophysical neuron models have become more
and more complex. Some neuronal models retain the degree of morphological detail
obtained with 3D reconstruction techniques following intracellular dye filling (4), or
attempt to extract parameters that allow a full realistic reconstruction of the type of
neuron (36). Most biophysical neuron models focus on electrophysiological features,
which they capture in various forms and in more or less detail (37,38). In our own
work, we have built a variety of biophysical neuron models from simplified representa-
tions of voltage fluctuations at the soma (39) via realistic dendritic trees and spatially
distributed conductances (6) to interacting biochemical pathways in a single dendritic
spine (9,40).

Dedicated simulation software tools, such as GENESIS and NEURON, are well-
established means of implementing biophysical neuron models. Standard implementa-
tions using such software consist of one or more neuronal compartments representing
soma and dendritic segments. Each compartment has passive membrane properties
expressed by the compartment’s conductance, transmembrane resistance, and axial
resistance connecting it with any proximal and distant compartments. In addition, active
membrane properties can be added, usually modeled as voltage-dependent ionic con-
ductances. These use variations on the original formulations by Hodgkin and Huxley
(35) and Connor and Stevens (41), although other formulations are available (38). The
axon is for most purposes regarded as a simple delay-line and, therefore, not repre-
sented explicitly.

Formal models of neurons and neuronal networks are based on the computational
paradigm in neuroscience. This states that the function of the brain and the nervous
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system is information processing, which can be described by mathematical algorithms.
Formal models address the question of how a particular algorithm is implemented in
neuronal biophysics. On the level of single neurons, it has been asked how information
is coded and processed (42–44). The viewpoint of formal modeling also led to
extremely abstract neuron models. In their seminal work, McCulloch and Pitts (11)
made the most extreme sketch of a neuron by reducing it to a simple threshold gate.
Between this extreme and the sophisticated versions of biophysical neuron models,
various compromises have been proposed. Examples are the reduction of real neurons
to “the simplest type ... that can represent a given neuron in computational form“: the
“canonical“ neuron model (45); the two-compartment model of Pinsky and Rinzel (46),
or the leaky integrate-and-fire (I&F) unit (34,38).

In extension of their original purpose, the neuronal simulation tools mentioned above
can also be used to implement simpler neuron models. For example, a neuron can be
represented as a single passive membrane compartment affected by synaptic input to
excitatory and inhibitory synapses. Instead of using active conductance models for
simulating action potentials, a simple threshold detector may be used to generate events
that would be relayed to the postsynaptic cells with the appropriate conduction delays.
Even post-spike polarization of the membrane potential can be modeled by feeding
back the action potential event to a synapse on the neuron itself. Such an implementa-
tion approximates the I&F unit within the framework of standard neuronal simulator
software. The question, of course, arises whether such a simplified compartment model
should still refer to the units of real membrane voltage, synaptic conductance, etc., or
use some other convenient scale, such as voltage above resting level or graded mem-
brane activation between zero and one.

16.2.2. Neuronal Population and Area Models

Models of neuronal cell populations rely on simplifications to make large networks
of neurons amenable to mathematical treatment or to numerical simulation within a
reasonable amount of real time. One common approach of neuronal population model-
ing sketches the single cell by a simplified neuron model. Such models can be justified
by the universality hypothesis, a common assumption of statistical physics theories
and confirmed in many fields of physics (for example, phase transitions in solid state
physics). It states that under certain conditions, the collective behavior of many par-
ticle systems (the neurons are considered as the particles) is insensitive to the details of
the single particle model. From the variety of studies, we only pick a few examples: as
a biophysical model for the collective behavior of cells in hippocampal slices, complex
cable models have been proposed that are able to reproduce, for example, collective
bursting, oscillations, and synchronization (47). By manipulation of the model, one
can single out mechanisms underlying the collective behavior. Over the last 20 years,
computational modeling studies proposed a variety of algorithms that can be imple-
mented in neural substrate. Perhaps the first study of this kind was the one by
McCulloch and Pitts (11), who used their binary neuron model to show at an abstract
level that the nervous system is capable of implementing a Turing machine. Networks
of similar binary neurons have been shown to perform associative computational func-
tions, as originally proposed by Hebb (48). These simple neural associative memories
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could even be treated analytically (49–52). Synchronization of periodic firing in neu-
ronal networks has been proposed as a coding mechanism for information process-
ing (53).

Another common way of coping with large networks of neurons is to lump together
the properties of a set of neurons into a single component. In this kind of model, a unit
represents not a single cell, but a microcircuit, a cortical column, or even a cortical
area. An extreme example is the biophysical model for propagation of epileptiform
activity in cortical networks (17). The network model was built from a systematic col-
lation of experimental tracing data and represented cortical areas as simple binary
threshold units. Lansner and Fransen (54) proposed cortical memory models using the
full connectivity of Hopfield networks. Full connectivity is unrealistic if the units are
identified with single cells, but becomes plausible if they represent cortical columns as
in their model.

All network models mentioned above treat network connectivity as if it was static.
This view assumes that the timescale of synaptic plasticity is much slower than that of
the neuronal dynamics. Under this assumption the neuronal and synaptic dynamics
decouple, in other words: neuronal behavior can be studied in a frozen synaptic struc-
ture. This traditional view of neural computation, motivated by the postulate that syn-
aptic plasticity is relevant to long-term memory, is a prerequisite for the analytical
treatment of neuronal population dynamics (49). Of course, the dynamics depend on
the properties of the fixed synaptic connectivity structure. If the synaptic matrix is
symmetric, i.e., if each synaptic contact is reciprocated with a synapse of the same
strength, then the dynamics has only fixed point attractors, and all network states con-
verge to stable patterns. In asymmetric networks, dynamical states can also converge
to periodic attractors, which are pattern sequences similar to the synfire chains
described by Abeles (55).

Synaptic connectivity can be altered by learning processes. For associative memory,
Hebb (48) proposed a plausible and, as it turned out later, very efficient synaptic learn-
ing rule. It prescribes an increase of synaptic strength if pre- and postsynaptic activities
coincide (see [51] or a discussion of local learning rules). Hebb’s learning rule had
considerable impact in computational approaches, but it took decades until its exist-
ence was confirmed experimentally (56). In fully connected networks and networks
with symmetrically diluted synaptic contacts, the original Hebb rule leads to symmet-
ric synaptic connectivity. Modified Hebbian rules have been proposed where not coin-
cidence, but a certain delay between pre- and postsynaptic activity during learning
causes optimal synaptic increase (57). These rules result in asymmetric connectivity
and can be used for learning of pattern sequences.

Recent investigations suggest that synaptic plasticity is not limited to long-term pro-
cesses. Neuronal connections also show short-term plasticity, both as depression and
as facilitation (see for instance [58]). Modeling studies have demonstrated that the
coupling of fast synaptic and neuronal dynamics can enrich the repertoire of computa-
tions in visual cortex, for example by band-pass filtering and phase shifting (59). How-
ever, it is still justified to study the decoupled neuronal dynamics when only influences
of synaptic contact structure and long-term plasticity are concerned.
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16.2.3. Interfacing Different Models

An important assessment, whether or not a particular model simplification can be
justified, is to compare and to link together models with different simplifications, or
with different degrees of simplification. Here, we give some examples for such an
interfacing of models.

When implementing synchronized network oscillations in a formal model, it is
important to know to what extent one may simplify the model. Wennekers et al. (60)
found that in a random network, the collective oscillatory behavior disappears if the
spike mechanism in I&F units is further simplified, for instance, to a spike rate model.
Also, finite size effects were found to be important, suggesting that analytical results
calculated for an infinite network size do not necessarily apply to small networks. The
biophysical model of hippocampal slices by Traub et al. (47) consisted of complex
cable model neurons with 18 compartments. Pinsky and Rinzel (46) derived a model of
two-compartment point neurons that reproduced all the relevant biophysical proper-
ties, i.e., spiking, bursting, and time-locked γ activity by AMPA receptor-mediated
synaptic coupling. The reduced biophysically constrained Pinsky and Rinzel neuron
model was suitable to formal modeling exploring cortical synaptic memory under more
realistic conditions (61).

Linking simplified neuron and population models introduces further assumptions.
For example, reduced dendritic complexity may affect the location, impact, and inter-
actions of dendritic synapses. When reducing the number of neurons in a population
model, one has to be aware of a potential increase in behavioral uniformity, which may
affect the conclusions on network dynamics. For this reason, large-scale realistic simu-
lations may be required (62). Productivity and insights would be greatly enhanced in
the long run, if previous implementations could be reused and be interfaced with others
and if the components of a network model could be substituted individually in a modu-
lar manner (see [33]). For example, Lansner and Fransen refined their original model
replacing the single-unit model of a cortical column (54) by a circuit of Hodgkin–
Huxley type models (63). Clearly, such modularity facilitates the evaluation of effects
incurred by more detailed, more simplified, or alternative models for the respective
components, and it will help to refine our concepts of brain function.

16.3. MULTILEVEL MODELING OF VISUAL CORTEX

As a practical example of the considerations above, we consider a model for explor-
ing activity propagation in the visual cortex. In particular, we were interested in the
mechanisms that determine the onset response latencies in the areas of the visual corti-
cal network to a flash of light as studied experimentally by Schmolesky et al. (64). We
realized that for this we had to combine detailed information on spike timing with
simplified models of cortical microcircuitry and with large-scale networks defined by
anatomical connectivity. These components reflect very different types of data and are
difficult to reconcile, both in terms of concepts and implementation. For example, we
do not have sufficient information and capacity to implement each visual area in ana-
tomical and physiological detail; on the other hand, we need detailed mechanisms that
respond to a set of spike times from single neuron recordings in the thalamus. In our



366 Kötter et al.

multilevel approach, we combined a biophysical microcircuit model (neurons with
Hodgkin–Huxley mechanisms) of primary visual cortex (V1) with a computational
model (I&F units) of the remaining visual cortical network.

Altogether, our model represented 15 visual system components based on some
morphological and electrophysiological properties of the cells, layers, areas, and their
interconnections (see Fig. 1). Areas were represented in GENESIS at different levels
of detail: the simplest representation was the I&F unit for areas PEp (caudal and medial
superior) and PG (caudal inferior) of the parietal lobule. These were modeled as a

Fig. 1. Schematic drawing of the simulated visual network. Activity propagated from the
retina via the thalamic LGN to V1. Area V1 was modeled as a microcircuit consisting of three
interconnected neuronal populations indicated in the block diagram: V1–L2P, population of
excitatory pyramidal and spiny stellate cells in layers 2–4 of area V1; V1–L2S, population of
smooth inhibitory cells in V1; V1–L5P, population of layer 5–6 pyramidal cells in V1. Filled
circles represent excitatory synapses, open circles inhibitory synapses. The remaining visual
areas are indicated by squares with arrowheads for excitatory inter-area synapses. The laminar
specificity is indicated only when terminating on a layer 4 unit (feedforward and lateral inter-
connections between MT and V4) by the ↑ arrowhead. Interlaminar excitatory and self-inhibi-
tory actions of the cortical units are not shown. V2, V3, V4, visual areas 2, 3, and 4, respectively;
MT, middle temporal area (= V5); MST, medial superior temporal area; STP, superior tempo-
ral polysensory area; PEp, caudal and medial superior parietal lobule; PG, caudal inferior pari-
etal lobule; AIT, CIT, PIT, anterior, central, and posterior inferotemporal areas, respectively;
FEF, frontal eye field.
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single passive compartment, but extended with an inhibitory autapse (synapse onto
itself) for resetting its membrane potential to a low value after suprathreshold activation. A
more detailed area model comprised three such I&F units, representing supragranular,
granular and infragranular layers of the visual areas 2, 3, and 4 (V2, V3, V4, respec-
tively), middle temporal area (MT), medial superior temporal area (MST), superior
temporal polysensory area (STP), anterior, central, and posterior inferotemporal areas
(AIT, CIT, and PIT, respectively), and frontal eye field (FEF). A “canonical” microcircuit
model represented three excitatory and inhibitory neuronal populations within primary
visual area V1. This microcircuit implementation received its input from the model of
a cell in the magnocellular part of the thalamic lateral geniculate nucleus (LGN), which
in turn responded to pulse input thought to originate in the retina in response to a visual
stimulus. Delay lines and excitatory and inhibitory synapse objects transmitted infor-
mation between the models of areas, layers, and cells. The connectivity between the
units was taken from systematical collations of experimental tracing studies in the
macaque monkey brain ([18] through the CoCoMac database [www.cocomac.org]).
The following sections describe the components of the model in detail.

16.3.1. Stimulus Representation
In accordance with the experimental paradigm of Schmolesky et al. (64), we approx-

imated the retinal response to onset and offset of a light flash of 500 ms duration by two
40-ms pulses generating depolarizing current injections into the model of a visual tha-
lamic neuron. The latter was derived from the implementation of a fast spiking cell in
area V1 with Na+ and K+ conductances (see V1–L25; Subheading 16.3.2.), whose char-
acteristics provided a good starting point for tuning. Additional background activity
was approximated by uniformly random 50 Hz synaptic input to the proximal dendritic
compartment. Altogether, the input parameters were tuned such that the average firing
rate of the thalamic model (see Fig. 2; LGN) matched histograms from experimental
single-unit recordings in the magnocellular (M) layers of the LGN of anesthetized
monkeys as shown in Figure 1A of Schmolesky et al. (64). The omission of the
parvocellular stream seems justified by our focus on onset response latencies, which
are mediated by the magnocellular stream under most circumstances (64–66).

16.3.2. Microcircuit Representation of Primary Visual Cortex
V1 was represented by a canonical microcircuit model, which Douglas and Martin

(67) proposed as the basic building block of (neo)cortical microcircuitry. This model
consisted of three interconnected multicompartmental neuron models, each taken as
representative of one or more cell populations: infragranular pyramidal cells (V1-L5P),
inhibitory interneurons (V1-L2S), and a combination of supragranular pyramidal cells
and layer IV spiny stellate cells (V1-L2P). The dimensions of the compartments repre-
senting each cell were taken from Figure 14 in the paper by Douglas and Martin (67)
(see Table 1).

For all cells, the following passive parameters were used: ra = 2.0 Ohm•m (68), rm
= 1.0 Ω•m2 (67), cm = 0.02 F•m–2 (68), Vm = –0.05 V (67), with the exception of the
fast spiking cell, where cm = 0.01 Farad•m–2. In addition, each compartment was fur-
nished with the described voltage-gated (68) and synaptic conductances (67,69). Since
the voltage-gated conductances were reported as being similar to those of Traub et al.
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(47), we used the already existing GENESIS implementation of the channels from this
study. The pyramidal cells had a fast sodium conductance (NaF), a delayed rectifier
potassium conductance (KDR), a transient potassium conductance (KA), a calcium-
dependent potassium conductance (KAHP), and a high-threshold calcium conductance
(Ca). To model the interactions between the Ca and KAHP conductances, calcium con-
centrations were simulated in a shell of 0.2 µm diameter beneath the somatic cell mem-
brane. These concentrations were then utilized as a parameter for the gating of the
KAHP-conductance. The inhibitory interneurons were modeled as possessing only the
NaF and KDR voltage-gated conductances. The conductance densities for calculating
the maximum conductance values are given in Table 2.

The three cells of the microcircuit model were connected as shown in the block
representing V1 in Figure 1. Since each cell model effectively represented an entire
cell population, the interactions within a population were modeled by feedback con-
nections of the cell model to itself. This approach ignores the intrinsic and connec-

Table 1
Dimensions of Compartments in Cells of the Microcircuit Model (67)

Compartment Dimension V1-L5P V1-L2P V1-L2S

Soma diameter 27.3 18.2 25.0
length 27.3 18.2 25.0

Proximal dendrite diameter 52.3 15.9 13.6
length 183.3 144.4 144.4

Medial dendrite diameter 25.0 4.5 —
length 127.8 100.0 —

Distal dendrite diameter 4.6 1.8 4.5
length 1133.2 100.0 150.0

All units are µm.

Table 2
Conductance Densities in S•m–2 of Voltage-Gated and Synaptic Channels
in the Cells of the Microcircuit Model (67,68)

Conductance V1-L5P V1-L2P V1-L2S

NaF (soma) 4000 4000 7000
KDR (soma) 800 800 4000
KA (soma) 20 20 —
KAHP (soma) 150 150 —
Ca (soma) 5 5 —
GABAA (soma) 10 5 5
GABAA (prox. dend.) 10 5 5
GABAB (prox. dend.) 5 5 5
ex_syn (prox. dend.) 5 10 10
AMPA (prox. dend.) 80 80 80
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tional heterogeneity of the neuronal populations, but it can be easily extended to account
for additional features (see [69]).

Inhibitory synaptic input originating from the inhibitory interneurons was mediated
by γ-aminobutyric acid (GABA)A (soma and proximal dendrite) and GABAB (proxi-
mal dendrite) synapse models in all cells, whereas the excitatory input from both
superficial excitatory neurons and deep pyramidal cells were mediated by AMPA-type
glutamate synapse objects attached to the proximal dendrites. The effective conduc-
tance resulting from a synaptic input was calculated as the product of the time-depen-
dent conductance and the synaptic weight for each connection as given in Table 3.

The excitatory synaptic input from sources outside of area V1 (LGN and nonprimary
visual cortical areas in the network model) was mediated by the ex_syn synapse mod-
els located on the proximal dendrites of all microcircuit cells with a total synaptic
weight of 1.

All synaptic conductances were modeled as dual-exponential functions describing
the evolution of the conductance in time after activation (70). Their time constants and
reversal potentials are shown in Table 4.

When the membrane potential in the somatic compartment of a cell crossed the
threshold of 0 mV, a spike generator object triggered synaptic activation of the postsyn-
aptic neurons with the appropriate delay. Synaptic delays of all axonal connections
between cells in V1 were set to 2 ms as specified in the original publication (68).

16.3.3. Network Implementation

Further visual areas were implemented by three I&F units representing
supragranular, granular, and infragranular layers of areas within the visual cortical net-
work described by Felleman and Van Essen (18). In distinction to their map of visual

Table 3
Weights of Synapses Connecting Source Cells (1st Column)
to Target Cells (1st Row)

Source\Target V1-L5P V1-L2P V1-L2S

V1-L5P 0.5 0.5 0.5
V1-L2P 0.5 0.5 0.5
V1-L2S 1 1 1

Table 4
Synaptic Parameters of the Microcircuit Model According to Douglas and Martin
(67) and Suarez et al. (69)

Synaptic Erev (V) τ1 (ms) τ2 (ms)

Conductance
GABAA –0.06 10.0 10.0
GABAB –0.08 80.0 40.0
AMPA 0.0 4.5 1.8
ex_syn 0.0 4.5 1.8
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cortex, we did not differentiate between dorsal and ventral parts of inferotemporal areas.
In addition, two areas peripheral to the visual cortex, PG and PEp of the parietal cortex,
were represented by single I&F units.

Each I&F unit consisted of a single passive compartment model of unitary dimen-
sions with a resting membrane potential (Em) of 0.0 V, a membrane capacitance (Cm)
of 0.5 nF, and a membrane resistance (Rm) of 40 MΩ. In contrast to the cells in the
microcircuit model, action potentials were not modeled explicitly in the I&F units. The
compartment sent continuous membrane potential output to a spike generator with a
threshold for spike generation of 0.5 V and an absolute refractory period of 3 ms. Each
compartment was targeted by an excitatory and an inhibitory synapse. In the current
model, all the projections between layers or areas were excitatory, since they generally
originate from pyramidal neurons. The excitatory synapse models represented fast
AMPA-mediated activation approximated by the following parameters: Erev = 1.0 V,
gmax = 0.8 µS, τ1 = 2.3 ms, and τ2 = 0.1 ms. The inhibitory synapse model implemented
slow self-inhibition of an area and thus used the parameters of the GABAB synapse
models in the microcircuit model (Erev = 0.0 V, gmax = 1.0 µS, τ1 = 40 ms, and τ2 = 80
ms, delay = 0.0 s, weight = 1.0). Thereby, the membrane potential of the unit was
suppressed to a low value following its suprathreshold activation.

The connectivity within the visual cortex model was derived from several sources.
Connections between the layers of the three-tiered areas adopted the basic scheme
described by Callaway (71): the granular layer 4 unit projected to the units representing
supragranular layers 2/3 and infragranular layers 5/6. The supragranular unit, in turn,
projected to the infragranular unit, as well as back to the granular unit. Similarly, the
infragranular unit connected to the supragranular unit and to the granular layer 4 unit.
Information on inter-area projections, including laminar information, was obtained
from (18) as collated in the CoCoMac database (www.cocomac.org). Connection
strengths were normalized such that the sum of all excitatory inputs to a unit equaled a
weight of one, with equal contributions by all its intrinsic and extrinsic afferents. The
delays between layers and/or areas were simplified using the same fixed value of 15
ms, which roughly approximates experimental observations (72) (see, however,
[56,73]). Since the network was quite large and complicated, we implemented tools
within GENESIS that generated the units and their interconnections automatically from
CoCoMac output.

The simulation time step for numerical integration using the standard exponential
Euler algorithm was 10 µs. Total simulated time was 1.5 s. This comprised a 0.5-s
period preceding the visual stimulus for dissipation of artifacts resulting from initial-
ization of objects and parameters (omitted from the displays). Visual stimulation was
taken to start at time t = 0 and to last for 0.5 s as in the experiments of Schmolesky et al.
(64). Due to appropriate tuning of its input, the LGN model showed corresponding
onset and offset responses for propagation to the visual cortical network.

16.4. RESULTS

The simulated network showed stimulus-correlated propagation of activity from
LGN to V1 and all other areas. Histograms, of spike time distributions over 100 runs
with random background activity of the LGN model (Fig. 2), confirmed that the firing
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Fig. 2. Histograms of temporal distributions of simulated action potentials in LGN and all units of the 13 cortical areas to visual stimuli
lasting from 0–0.5 s (abscissa shows time in s). Acronyms L23, L4, and L56 refer to supragranular, granular, and infragranular layers, respec-
tively. Responses were averaged in bins of 10 ms width over 100 simulations with random seeds. The distribution in LGN was optimized to fit
experimentally recorded average frequencies observed in the magnocellular layers of LGN to a corresponding visual stimulus (see Fig. 1 in [64]).
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Fig. 3. Sample of simulated voltage traces of the three microcircuit cells in V1, and of the
three I&F units (layers) in visual areas V2 and CIT to a visual stimulus lasting from 0–0.5 s.
Abscissa shows time in s, ordinate gives membrane potential in V. The hashed horizontal lines
indicate the action potential detection threshold. Note that V1 components display realistic
membrane potentials, whereas the area models have activation levels in the range of 0–1 and no
action potentials. For explanation of abbreviations see legends to Figures 1 and 2.
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pattern of the thalamic unit corresponded to the single unit recordings from the
magnocellular part of the LGN (64). Subsequently, all cells in the V1 microcircuit
responded with activity that had characteristics of both magno- and parvocellular
stream neurons when compared to Fig. 1C,D in 64. The remaining layers and areas of
the network showed a considerable variation in the latencies and distributions of their
responses. The peaks in the histograms of layer 4 responses occurred before those in
the supra- and infragranular layers, with the exception of inferotemporal areas and
FEF, where they were nearly simultaneous. Units with direct input from the V1 micro-
circuit showed activity preceding this peak triggered by ongoing activity in V1, which
was not strictly stimulus-coupled.

More detailed inspection of a single run of the simulation showed realistic mem-
brane potential fluctuations in the cells of the V1 microcircuit. Irregular excitatory
postsynaptic potentials (PSPs) occasionally summed up and triggered action potentials
(Fig. 3). Slow inhibitory PSPs caused by GABAB synaptic activation resulted in hyper-
polarized periods. The inhibitory population unit (V1-L2S) typically repolarized very
quickly and fired more frequently. Supra- and infragranular pyramidal population units
(V1-L2P and V1-L5P, respectively) showed broader membrane potential depolariza-
tions with decremental fluctuations that led to occasional bursts in the former and single
action potentials in the latter. The difference between these two types of cells was
explained by the smaller size and higher input resistance, as well as the smaller con-
ductance of the GABAA inhibitory input of the supragranular model neuron. Altogether,
these features were compatible with the observations by Douglas and Martin (67) con-
cerned with the first response in V1 neurons to stimulation of thalamocortical afferents.

The I&F units had simplified membrane potential fluctuations, which were fewer,
broader, and did not produce action potentials in accordance with the built-in proper-
ties of these units (Fig. 3, V2 and CIT). Note that these units did not always respond to
the on period of the simulated visual stimulus (0–0.5 s) as shown in this sample of CIT
potentials.

Computational modeling allows investigation of variables beyond those that would
be simultaneously amenable to experimental investigation. Figure 4 juxtaposes spike
events, as well as excitatory and inhibitory synaptic currents and conductances from
the same run in the I&F unit representing the granular layer of area V2. Although only
two spike doublets occurred during stimulus presentation, the slow self-inhibitory con-
ductance still led to large inhibitory currents when the unit was depolarized by subse-
quent excitatory events. In this example, the second spike doublet thereby effectively
cancelled a stimulus offset response in V2-L4. This plot also gives an impression of
differential occurrence and time course of somatic action potentials and excitatory and
inhibitory synaptic events.

As a crude marker of activity propagation in this visual network, we measured onset
response latencies defined as the period between stimulus onset (t = 0.0 s) and the first
subsequent spike in the respective unit (see Fig. 5). The sequence of latencies showed
a general feedforward pattern of activity propagation. Median onset response latencies
were compatible with a division of visual areas into four groups: (i) LGN and V1; (ii)
the granular layers of V2, V3, V4, MT, and MST, i.e., laminar units directly activated
from V1; (iii) PEp, STP, and extragranular layers of areas in the second group, except
V4; and (iv) inferotemporal areas, PG, and extragranular layers of area V4. Particularly
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Fig. 4. Sample of simulated spike times, excitatory and self-inhibitory synaptic currents and
conductances in layer 4 of area V2 to a visual stimulus lasting from 0–0.5 s. Abscissa shows
time in s, ordinates are in Ampere for currents, and Siemens for conductances. Excitatory and
inhibitory currents are drawn as positive and negative values, respectively. Excitatory and
inhibitory conductances are indicated by full and hashed lines, respectively.

intriguing were the simultaneity of responses across all layers of inferotemporal areas
and the huge discrepancy in area V4 between onset latencies of granular and
extragranular layers.

The absolute latency values covaried, of course, with the interunit delays (not
shown). The sequence of activation among the areas, by contrast, was relatively inde-
pendent of the interunit delays. What we noted, however, was that the sequence of
laminar activation within an area was sensitive to variations of interunit delays. To
investigate this issue more thoroughly, we defined a formal index, which we refer to as
the “Hierarchical Activation Index” (HAI):

HAI
lat L

lat L lat L
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∧

∧
( )

( ) ( )

4

4 4

where lat(L4) is the mean latency of the first layer 4 spike, and lat L( )4
∧

 is the mean of
the onset latencies in the supra- and infragranular layers of a given area. A HAI value >
0.5 corresponds to activation of layer 4 before the extragranular layers, which is a
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feedforward activation pattern. Conversely, a feedback pattern of activation with longer
latencies in layer 4 than in the extragranular layers would result in an HAI < 0.5. Figure
6 shows that the interunit delay of 15 ms resulted almost unanimously in feedforward
patterns of area activation. This pattern was most prominent in areas V4, MST, and
MT, whereas inferotemporal areas AIT and PIT, as well as FEF, responded almost
simultaneously with all layers. With varying interunit delays, we obtained some re-
markable alterations in the laminar activation sequences: decreasing interunit delays
diminished and reversed the feedforward activation sequence of V4; the opposite oc-
curred in FEF. While the HAI of some areas (V2, V3, MT) varied in a complicated
manner, the simultaneous activation of inferotemporal areas was largely unaffected by
the interunit delays.

Fig. 5. Distribution of onset response latencies in the simulated visual network in 100 runs
with random background activity in LGN. Abscissa shows latencies in s; crosses indicate 10,
50, and 90 percentiles. Delays between I&F units representing layers or areas were set uni-
formly to 15 ms. Note that the sequence of activation in layered areas generally had feedforward
characteristics. Exceptions were the posterior inferotemporal area showing near simultaneous
activation of all layers, and the frontal eye field, where the sequence of median latencies indi-
cated feedback activation.
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16.5. DISCUSSION

We have integrated several types of cell, layer, and area representations into a func-
tioning network model of the visual system for exploration of patterns of activity propa-
gation induced by visual input. A rich repertoire of responses was obtained that raises
hypotheses in need of further investigation.

1. The microcircuit implementation was originally developed to represent the first response
of cells in the cat V1 to afferent stimulation (67). In our more extended simulations, the
cells show voltage fluctuation that capture elementary features of inhibitory smooth and
excitatory pyramidal neurons in the cerebral cortex. Nevertheless, this implementation is
too simplified to represent the variety of known cortical cell types (e.g., regular spiking vs

Fig. 6. Distribution of hierarchical activation indices of the 10 three-tiered cortical area
models in simulations with five different delays between I&F units (both layers and areas). The
HAI scores average onset latencies in extragranular layers over the sum of average onset laten-
cies in granular and extragranular layers. Activation of granular layer 4 before extragranular
layers leads to HAI values larger than 0.5, thus indicating feedforward activation. Correspond-
ingly, HAI values smaller than 0.5 indicate feedback activation where the activation of
extragranular layers precedes activation of granular layer 4. The values for an interunit delay of
15 ms correspond to histograms in Figure 2 and to median (instead of mean) latencies shown in
Figure 5. Note that varying delays had differential effects on the activation characteristics, in
particular of areas V4, FEF, and inferotemporal areas. ❑ = V2; ◊ = V3; + = MT; × = MST;
✰ = STP; ∇ = V4; ∆ = AIT;  ∆ = PIT; ∆ = CIT; Ο = FEF.∇

∇
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intrinsically bursting cells) or the intricate microcircuitry of are V1 in primates. Thus, it is
useful to recognize that the canonical microcircuit concept is an abstract basic scheme that
has to be adapted and cast into concrete implementations, which will vary with the precise
situation modeled. This view is supported by the various versions of the canonical micro-
circuit and their sketchy descriptions in the literature (67–69,74). The present study shows
that a microcircuit implementation can be integrated as a module within a formal network
model. It helps to analyze mechanisms of onset response latencies, and it could be a start-
ing point for more realistic representations of information processing in V1.

2. Typically, visual cortical areas were activated in a sequence that roughly corresponded to
the number of stations from LGN as shown in a previous network simulation (75). The
number of stations through which a signal has to pass to reach a particular station was
referred to as the hodology of the system (76). Hodology explains near simultaneous onset
of activity in areas V2, V3, MT, and MST as shown in (75) and in Figure 5. Here, we
demonstrate that relative onset latencies can be reproduced by a much simpler network
model than described previously (75), where each cortical area was implemented as six
layers, each with 100 inhibitory and 100 excitatory I&F units. The experimental observa-
tions of similar onset latencies in FEF and longer ones in V4 require additional explana-
tions. In this context, it is remarkable that the longer latencies of V4, as well as the more
subtle latency differences between areas V3, MST, and V2 (64,77) were very well cap-
tured by the onset latencies of extragranular layers in our simulation (Fig. 5). This raises
the question to what extent the experimental sampling procedure influenced previously
reported onset latencies. Some clues as to differential laminar activation have been pro-
vided by systematic recordings throughout the depth of visual cortical areas (see
[65,77,78]). The latency values in our network were obtained using a single
(magnocellular) thalamic input. Nevertheless, they displayed some characteristics of both
the magnocellular and the parvocellular streams (64). This points to the possibility that
differential latency values in the two streams are not simply a consequence of sequential
arrival of the separate thalamocortical inputs, but that the latency values in the different
areas are substantially shaped by the layout of the cortical network with specific diverging
and converging pathways.

3. The visual cortex is hierarchically organized (18), but nevertheless its exact hierarchical
structure is indeterminate (19). Our simulations indicate that this anatomical indetermi-
nacy may have a functional counterpart. Not only did we find that the latency differences
between granular and extragranular layers varied enormously among areas V2, V3, and
V4 despite the same number of processing steps; in addition, the laminar activation
sequence switched between feedforward and feedback activation characteristics as a func-
tion of varying interunit delays. Since every area may be activated by different routes with
different laminar preferences, it can be predicted that the sequence of laminar activation
within an area depends on several factors including laminar pre-activation, the functional
impact of various afferents, the relative speed of processing in the afferent pathways, and
the stimulus statistics (luminance, chromatic contrast, movement, coherence). Thus, not
only is the anatomical hierarchy of the visual system indeterminate, but so is its functional
hierarchy, i.e., the sequence of areas ordered by their HAI values of relative granular and
extragranular activation, dependent on the fine structure of the activity propagation in the
entire network.

4. Although several studies reported data on onset response latencies in the visual system
(64,72,77,78), the factors that influence them could be scrutinized more thoroughly by
adequate experiments. There are two contrasting philosophies, which are both necessary
for a comprehensive systems analysis: to measure response latencies throughout the visual
system (i) using different stimuli optimized for the stimulus preferences (e.g., size, con-
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trast, color, movement) of the respective areas (e.g., [64]); and (ii) using exactly the same
stimuli for all areas despite the probability that some areas may not respond very well
(e.g., [77]). It will be interesting to see whether different stimuli lead to different func-
tional hierarchies as we obtained through variation of interunit delays. It will also be
important to compare recordings of field potentials, multi- and single-unit activity, as well
as synaptic and metabolic activity through functional imaging. Such experiments will pro-
vide information on the relationships between the various processes (29–31), reveal the
functional organization of information processing in the visual system (75), and identify
the temporal limitations of cognitive processes (see [79]). Such data would help to refine
models of visual processing, in particular as these start to combine features of cognitive
performance, network mechanisms, and neuronal processing.

It is well to keep in mind that a model, be it informal, biophysical, or computational,
is always a model of a certain aspect, but never a model of every aspect of the original.
Any known model removes the largest part of the complexity of the phenomenon that
it intends to model. While this may seem to be a fundamental shortcoming, it is indeed
the essence of modeling to extract only those features that are relevant to a certain
context or question. The focusing on the essential mechanisms (as opposed to indis-
criminate simplification) facilitates an understanding of the phenomenon, which may
be cast into mathematical terms and be used for predictions. Whether or not the model
still applies in a different context than the original one, however, needs to be investi-
gated with recourse to the original data. In a domain of complex phenomena, such as
neuroscience, models focusing on certain aspects are inevitable and not just first steps
toward one unified theory. Nevertheless, there is a relationship between the empirical
phenomenon that one intends to describe and the complexity of useful models: if the
model is too simple, then it fails to describe the phenomenon under investigation; if it
is too complicated, then it does not help our understanding. A good model falls be-
tween the two extremes and is embedded in sufficient empirical data to constrain its
free parameters. After more than a century of quantitative neuroscience and with mod-
ern techniques of data production and collation, multilevel models become more and
more relevant to this field.
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Quantitative Neurotoxicity

David S. Lester, Joseph P. Hanig, and P. Scott Pine

ABSTRACT

Conventional neurotoxicity assessment requires selected behavioral testing and his-
tological analysis. While behavior has been shown to identify 80–90% of adverse neu-
ronal effects, it does not provide positive data regarding mechanism and site of action.
Histology has its limitations, in that it is laborious, destroys the intrinsic tissue integ-
rity, and relies on appropriate stain selection. Attempts to quantitate histology have
been limited. Some biomedical imaging procedures have the potential of identifying
regions of change due to neuronal insult. Technologies such as magnetic resonance
imaging, positron emission tomography, and various microscopy applications all
are capably of identifying affected regions under specific circumstances. They provide
data in 2D and 3D digitized formats, which provide ease in analysis of collected data.
Some of these approaches are capable of identifying intrinsic biochemical components,
avoiding the potential for artifacts using histology. For clinical purposes, automated
analysis is commercially available. This chapter will address the application of some of
these imaging modalities to the topic of neurotoxicity and discuss quantitative analysis
that are being developed for uniplanar and volumetric analyses of tissue specimens.
Limitations, such as sensitivity, spatial resolution, etc., will be discussed in terms of
interpretation of the data.

17.1. INTRODUCTION

Neurotoxicity generally refers to the induction of a toxic event in the nervous sys-
tem. This can occur in either the central or the peripheral nervous system. Neurotoxic-
ity is usually considered to be associated with cell death. However, it is much more
complex than toxicity responses in other organ systems. When is something neuro-
toxic? What is the threshold of response that defines neurotoxicity? These issues are
difficult to define and will not be attempted in this chapter. However, we would like to
present a number of scenarios for the reader’s consideration. If a drug causes a reduc-
tion of 20% in total serotonin, is this a neurotoxic response or simply exemplifies the
pharmacological effect? If 10% of a particular neuronal cell type is destroyed, yet there
is no measurable behavioral change, is this effect considered neurotoxic? What is a
more convincing indicator of neurotoxicity, a change in behavior or a histopathologic
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effect? These complex questions do not have straightforward answers and have been
argued by neurotoxicologists for many years. It should be noted that in the pharmaceu-
tical industry and drug regulatory arena, neuronal cell death is considered to represent
neurotoxicity and can have a significant impact on the drug development and regula-
tory process (1). However, an effect such as cell death of specific neuronal types may
not be as drastic as the effect of disorder. It has been shown using imaging technologies
that stroke can cause massive damage to the brain (2). The loss of some neuronal cells
due to the neuroprotective pharmacotherapy (3), may not be as significant as the dam-
age caused by the stroke. These issues demonstrate that classical procedures for detec-
tion of neurotoxicity may not provide adequate answers for both the basic and the
applied neuroscientist.

The initial approach for detecting neurotoxicity is by monitoring behavioral changes
in the treated specimen. Tests for activities such as locomotor, startle responses, and
the more sophisticated cognitive tests are routinely used (4). In addition, easily applied
neurological tests such as gait, righting reflex, and front paw extension are used as part
of the cage-side observation (5). A standardized functional observational behavioral
battery (FOB) is used for environmental agents (6). In addition, there are proposed
FOBs for drugs and toxins (7,8). This comprehensive screen analyzes a number of
fundamental behavioral phenomena. It does not deal with cognitive changes. Cage-
side observations, sometimes called Tier 1 testing, are easy to apply and can often
provide significant information (9). The limitation of the more behavioral changes
detected using more sophisticated tests is that they take extended periods of time and
require large numbers of animals in order to obtain statistical significance. Also, the
appropriate behavioral tests must be selected (7,8). Responses can often be correlated
with specific regions of the central nervous system. Upon identification of a behavioral
change considered to be indicative of an adverse effect, additional studies are needed
to determine structural or functional changes that contribute to the defect.

In the basic research arena, neurotoxicity can be determined by a number of what
could be referred to as “biomarkers”. These are endpoints that fall into a variety of
categories. The diversity of biomarkers that have been used for detecting neurotoxicity
demonstrates the complexity of neurotoxicity (10,11). All of these various endpoints
have their limitations, however, and some of the markers or approaches are more
accepted. An example is the glial fibrillary acidic protein, GFAP. Increased synthesis
of this protein, or even increased messenger RNA, is considered to be a strong indica-
tor of neurotoxicity. In the case of GFAP, its activation is correlated with activation of
glial cells. When there is some toxic insult to neurons, this is usually associated with
activation of the associated glial cells. The order and timing of the process is not fully
understood. GFAP is usually detected using immunohistochemical procedures (12).
Several stains have been shown to demonstrate neurotoxicity. There are numerous well-
documented problems relating to use of stains (13,14). Since the process includes fixa-
tion, sectioning, and staining, each of these procedures can lead to artifacts. The fixation
procedure can change the conformation of the intrinsic components of the section in
question. Often, dehydration is required, and thus, the cellular integrity is significantly
modified. Sectioning is usually limited to one of three planes, sagittal, horizontal, or
coronal. In all cases, the integrity of the tissue or sample structure is destroyed. There-
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fore, the appropriate orientation of the tissue must be chosen in advance in order to
recognize and identify the potential lesion sites. If the site of action of the neurotoxin is
unknown, then a detailed histological analysis requires sectioning and subsequent
analysis of every slide. In addition, the appropriate stain must be selected. This often
requires prior knowledge of the nature of the neurotoxic insult. If the site of action of
the neurotoxin is unknown, a detailed histological analysis requires sectioning and sub-
sequent analysis of every slide from the entire sample.

In addition, there are fluorescence indicators for physiological activities such as cal-
cium influx and efflux (15). A sustained increase in intracellular neuronal calcium is
considered to be indicative of neurotoxicity. Rapidly induced dendritic outgrowths from
neurons have been cited as a structural marker that has been shown to correlate with
neurotoxicity (16). These markers are not conclusive. The two examples cited here
might also be indicators of a physiological process, since neuronal dendritic outgrowths
form upon differentiation of neurons (16). There may also be increased levels of intra-
cellular calcium for extended periods that relate to a physiological process, for example,
long term potentiation (17).

In general, it is difficult to distinguish between pharmacological and pathological
responses, although reversibility of the effect is often used as a criterion. As discussed
previously, neuronal cell death is considered to be indicative of neurotoxicity, but care
must be taken in preparation of tissue for analyses using histological approaches.

17.2. IMAGING

The difficulties in determining neurotoxicity using conventional methods are exten-
sive and not easily solved. One approach would be to increase the number of animals
and/or analytical approaches. However, in the present research climate of animal wel-
fare, it is desirable to reduce the number of animals used in testing. Toxicity tests such
as the LD50 are hardly if ever used anymore. Also, the increase in numbers of research
platforms means more animals and more time. This translates into significantly
increased costs, an often undesirable requirement. An approach that will be discussed
in the remainder of this chapter involves employing imaging technologies.

Biomedical imaging has had an enormous impact on the clinical sciences. Terms
such as magnetic resonance imaging (MRI) and computer-assisted tomographic scan
(CTscan) have become part of our everyday language. In 1998, over 7 million MRI
scans were performed in the U.S., which is a remarkable accomplishment considering
that the technology was developed and first used in the early 1980s. The driving force
for development of imaging technology has been its clinical applications for disease
diagnosis and progression. Hence, the technology has advanced in conjunction with
therapy in human use. In recent years, it has been recognized that these technologies
could also prove useful in animal research (18,19). Subsequently, academic institu-
tions have begun establishing animal imaging facilities for research studies that employ
these technologies. Numerous MRI scanners are commercially available directed
towards animal use. More recently, a commercially available positron emission tomog-
raphy (PET) system has become available. The need for development of scanners spe-
cifically for animal studies has been due to the lack of spatial resolution of scanners
used for humans.
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Interestingly, while pharmacological applications of biomedical imaging have been
quite extensive, there has been very limited use of these technologies in toxicology
research. Although the potential applications in imaging methodologies to toxicology
research are numerous, the transition from clinical to preclinical has been slow. One of
the major reasons for development of human imaging approaches was the need to be
able to visualize the brain in a noninvasive manner. Thus, it is surprising that imaging
has not yet been widely applied to preclinical neurotoxicology. While there have been
some applications at the macroscopic level examining such phenomenon as stroke, the
application for the type of data that is required for toxicological evaluation in the drug
development process is limited.

Considering the cost of imaging systems, why would someone want to use this tech-
nology? One of the most powerful features of imaging is that multiple parameters can
be obtained from the same animal or patient in a noninvasive manner over extended
periods of time. MRI has a number of extensions that allow the measurement of numer-
ous parameters, for example, traditional MRI measures the distribution of protons in a
sample. As water is the predominant proton source in all living things, MRI tends to
measure the distribution of water concentration in various biological environments.
This provides an image of the structural detail (20). Using an extension of MRI, such as
functional MRI (fMRI), one monitors blood oxygen levels in response to some func-
tional or behavioral challenge. Thus, the functional activation of the brain can be mea-
sured or characterized, and this is then superimposed over the structural data (21).
Another example is that of proton MRI in conjunction with PET of a labeled radiotracer
(e.g., fluorodeoxyglucose, a tracer for glucose metabolism), which can be imaged
simultaneously, supplying structural and functional data (22).

Imaging provides unique information. Utilizing different imaging modalities, data
can be obtained relating to anatomy, physiology, genetics, metabolism, as well as func-
tional activity, all in a noninvasive manner. A number of these modalities can be moni-
tored simultaneously.

As all the data is obtained digitally, it is possible to do quantitative analyses of the
acquired data. One of the most convincing examples is the ability of PET to measure
distribution and localized concentrations of radiolabeled drugs in the brain. This per-
mits an estimation of the rate and total accumulation of drugs in the brain (23). There is
no other way of doing this in clinical trials. Using this approach, it has been shown that
blood concentration levels of a drug are not representative of concentrations of the
drug in the brain (24). PET provides real-time pharmacodynamic and pharmacokinetic
information on the intact animal or patient (25). Recently, there has been an increased
interest in the ability to do volumetric analysis of tissues in vivo. An example is the
change in size of the hippocampus during the progression of Alzheimer’s dementia
(26). This has been considered to be a potential clinical endpoint. Some examples of
this type of approach in neurotoxicity will be discussed in this chapter.

A very powerful application of imaging involves the ability to establish a test proto-
col in animals and then apply a similar protocol to monitor structural and/or functional
changes in clinical trials or diagnostics. This provides the opportunity to evaluate the
worth of animal models. Clinical neurological measures are difficult to capture in ani-
mal studies. How can we determine whether a rat has a headache or is feeling nausea?
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Using imaging, it may be possible to develop approaches such that changes in function
can be correlated between animals and humans. Many of these applications of imag-
ing may facilitate the development of biomarkers. The ability to do multiparametric
analysis noninvasively provides the opportunity for identifying a much broader num-
ber of biomarkers, in which their relevance to the intact organ can be realized. Imaging
approaches are very important in the diagnosis of disease states and its progression.
With suitable validation, it may be possible to develop imaging data for these surrogate
markers to a level better than the available clinical endpoint. The example of multiple
sclerosis (MS) will be discussed in this chapter.

17.3. IMAGING AND TOXICOLOGY

When referring to the use of imaging in toxicology, there are not many examples.
This is surprising considering the impact of imaging on the clinical sciences. Much of
the concern is that the data obtained using innovative technologies may not be easily
interpretable. For example, if there is a change in the grey scale contrast in a specific
region of the image, what does this signify? This issue can be correlated with the diffi-
culties in interpretation of classical histological analyses. As was described earlier in
this chapter, the interpretation of a neurotoxic insult is complex and often not clearly
understood. This concern relating to the significance of some change in the image is
not unique to biomedical imaging technologies. Even using traditional histopathologi-
cal techniques, there is often misinterpretation and sometimes there may be incorrect
conclusions relating to some difference in “shading” of the stained section (14). We
will deal with the various imaging modalities and give examples of how they can or
have been used for neurotoxicity and their potential for quantitative assessment.

17.3.1. Magnetic Resonance Imaging

MRI has significant advantages as an imaging modality. It can be used to visualize
soft tissue noninvasively. The image contrast obtained as a result of biochemical and
biophysical distributions of biochemical entities is entirely intrinsic. The signal may
come from a number of intrinsic sources; however, the proton signal is the optimal
choice. As opposed to traditional videomicroscopy where the data is collected as pixels
(2D), in MRI, it is 3D. The technology is continually improving, such that faster and
more sensitive instruments are being developed. MRI instruments are expensive; yet,
with appropriate applications, the savings in time and the ability to reduce the number
of experimental samples will ultimately make MRI an economical tool for research.

MRI was developed in order to investigate changes in brain structure due to some
diseased or pathological state. The signal for proton MRI of the brain is water, which
constitutes the major biochemical component of all biological tissue. Considering the
relative lack of sensitivity of the MRI technique (usually mM concentrations
are needed), it is not surprising that proton MRI is the most applied mode for MRI
image acquisition (20). In addition, changes in water content can reflect profound
alterations in the molecular, cellular, and tissue components detectable using MRI.
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17.3.2. MRI as a Tool for Preclinical Neurotoxicology

The shortcomings of conventional neurohistological procedures have been previ-
ously described. During the last decade, the potential of MRI as a tool for analysis of
animal anatomy and physiology has been a topic of research. While MRI has been
developed primarily as a clinical tool, its potential in the preclinical arena has not
received equal attention. This is in part due to the limited resolution of clinical MRI.
Resolution (1–3 mm) is not useful for analysis of the rat or mouse brain. A modifica-
tion of MRI, MR microscopy (MRM) or micro MRI (µMRI) or high-resolution MRI,
has been investigated for its potential as an analytical tool for exploring animal histo-
pathology (27). This methodology differs from classical MRI in that high magnetic
field strengths and strong gradients are utilized in the acquisition of data (28). These
conditions could not be used in a clinical scanner due to technological issues and safety
concerns in humans, but their utilization for excised tissue or even immobilized living
animals provides great potential. We have used this approach in collaboration with the
Center for In Vivo Microscopy at Duke University Medical Center in order to assess its
potential as a tool for neurohistopathology.

Fig. 1. Computer-generated virtual coronal sections of a rat brain. A 3D volumetric MRM
image dataset of a rat brain hemisphere was acquired. Sections were computer-generated along
the coronal plane in order to demonstrate the 3D nature of the technology and its ability to
rapidly do macrohistological analyses of the sample in a nondestructive manner. A photographic
image of the intact image is shown demonstrating the sites of sectioning. Voxel resolution is 47
µm. Details of the scanning procedure are provided in (29). A color version of this figure is
available in the CD-ROM.
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Domoic acid. The initial study performed involved the analysis of the action of a
known excitotoxin, domoic acid, or the “red tide toxin.” Excised rat brains were
extracted, and hemispheres were scanned for extended periods of time (8 h), and 3D
data sets were obtained. This toxin was a most appropriate initial treatment to study, as
the resulting pathology of this toxin, as is the case for other glutamatergic excitotoxin,
is difficult to ascertain. The same dose in two different rats may or may not induce
convulsions or measurable histopathological effects. In addition, the locus or loci of
histopathology is not consistent. Certainly, the main target is the amygdalla, however,
there have been reports of lesions in a variety of regions of the cortex and the hippoc-
ampus, as well as a number of other brain regions. Hence, traditional histology is
tedious and requires analysis of a large number of sections from brain specimens. In
contrast, MRM provides the complete 3D data set which can then be examined by
preparing “virtual” or computer-generated histological sections (Fig. 1). An additional
advantage is that due to the 3D nature of the sample, virtual sections can be generated
in all 3 planes (29,30). The MRM data set is then analyzed by inspection, much in the
same way as standard pathology. High-resolution detail, as obtained using optical
microscopy, was not possible with MRM, however, regions of potential histopathol-
ogy were readily identifiable (29,30). When a MRM-identified region with different
contrast was identified, 1 to 2 sequential virtual sections before and after the identified
lesion were examined to see if the lesion had a volume. Generally, if the contrast differ-
ence was localized in one slice (47 µm) only, it was dismissed as an imaging artifact.
Using MRM, numerous lesions were identified in a number of distinct rat brain regions
(30). These fixed scanned brains were then sectioned in the region of the MRM-identi-
fied lesion and subsequently stained for identification and verification that the contrast
change was truly a pathological lesion (two of the lesions are shown in Fig. 2). In order
to identify all of the lesions selected from the MRM scans, a total of 7 different stains
were required (not presented here). Some of these were not traditional stains. Thus,
considering the time required for sectioning, staining, and analysis, the 8-h MRM scan
as an alternative is not that unreasonable.

Interestingly, while the spatial resolution (pixel size) of the MRM technique was
greater than 45 µm, cell bodies in rat brain are significantly smaller in diameter, yet the
neuronal cell layers were visible. It is proposed that the MRM cannot detect these
single cells, but rather it visualizes layers of cell bodies and their surrounding microen-
vironment. It is assumed that when a cell changes its physiological state, it is not an
isolated event. Rather, the microenvironment surrounding the cell is also affected. Thus,
the MRM data was convincing beyond expectations and demonstrated outstanding util-
ity and versatility.

Unilateral 6-hydroxydopamine injection. A second system, considered as an animal
model that has shown promise as a model for Parkinson’s disease, was analyzed in
order to develop some quantitative analytical approaches. The reagent inducing the
neurotoxic response, 6-hydropxydopamine (6-OHDOPA), is injected using a fine
needle (31-gauge) directly into the substantia nigra of one hemisphere of the sedated
rat. The advantage of this system is that the animal serves as its own control, that is,
one hemisphere is treated, and the other is the control. This treatment is known to
destroy dopaminergic terminals and tracts emanating from this brain region, thereby
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resulting in a Parkinsonian’s type of response in the animal. It is generally considered
that the fine 31-gauge needle causes relatively little structural damage to the brain. An
MRM image of the injected brain shows the relatively small site of injection (Fig. 3A).
Using image analysis, the brain can be made opaque such that the complete needle tract
can be seen in comparison with the 3D image of the brain (Fig. 3B). The severity of the
physical damage caused by the needle is realized in the coronal and sagittal computer-
generated sections of the brain (Fig. 3C,D, respectively). There is considerable needle
damage to the hippocampus. In addition, it provides an indication of the accuracy of
the needle injection at the desired site, the substantia nigra. An important advantage of
MRM can be seen in Figure 3C and D, where the brain dataset can be oriented such that
the virtual sections provide a single slice view of the needle tract. The scanning param-
eters are listed in detail in the relevant publication (29). This would be very difficult to
do using histological approaches.

Quantitative measures were made of the 6-OHDOPA brains. The two hemispheres
served as a control side and an experimental (injected) side, respectively. The process

Fig. 2. Standard histological stains verify potential lesion sites identified in MRM scanned
rat brain hemisphere. A rat brain from an animal 48 h post-domoic acid injection is scanned
using MRM. A slice with potential lesions is identified. This is compared to a section from a
control rat in a similar region of the brain. Sections are cut from the scanned brain around the
identified site and then stained using conventional histological stains. These stains verify that
there is significant neuronal loss in the amygdala, typical for domoic acid treatment. A total of
7 stains were required to identify all of the potential lesion sites observed in the MRM scans. In
this figure, two lesions are identifiable, in the cortex and the cortical cell layer of the amygdalla.
The stains necessary to identify these pathologies are included. A color version of this figure is
available in the CD-ROM.
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of quantitative analysis that allows the comparison of the volume of one hemisphere to
the other is described in the following image analytical procedure sequence:

1. Fast spin echo (FSE) MRM scans of rat brains were made at Duke University Center of In
Vivo Microscopy.

2. 3D datasets were read into the image analysis program, Alice v4.4 (Parexel International,
Corp.).

3. The 3D datasets were reoriented to provide symmetrical views of the left and right hemi-
spheres and digitally resectioned to create a series of 343 (~) slices.

4. Within each slice, the exterior boundaries of left and right hemispheres were determined
using the program’s shrink function, an edge detection algorithm. Shrinking is a process
by which a defined region of interest can be decreased or increased in area or volume
while maintaining the original shape of the defined region. This is done in order to “fit”
one section or volume to another.

5. The area within each hemisphere corresponding to low signal (i.e., “empty space”) was
determined using the range function for pixels having a value between 0 and 2000 relative
units. These ventricles were filled with the solution in which the sample was immersed, a
fixation mixture that has no signal.

6. For each slice, the areas of low signal within left and right hemispheres were subtracted
from the original area, and the results were expressed as the percentage of change for the
left or the right (Figs. 4 and 5).

7. Finally, the relative changes for each hemisphere were compared for each slice and plotted
as a function of slice number (Fig. 5).

8. Two regions varied by more than 2%. In the first region, slices 61–65, the differences were
due to convolutions in the surface of the brain being seen as surface in one hemisphere and
enclosed space in the other. The second region included the needle tract.

Fig. 3. MRM scanned rat brain with unilateral injection of 6-OHDOPA. A rat receives a
unilateral injection with 6-hydroxydopamine in the substantia nigra of one hemisphere. The
intact brain is scanned using MRM. The site of injection is visualized (top,left), and the needle
tract can be identified in relation to the intact brain (top,right). Coronal (bottom,left) and sagit-
tal (bottom,right) virtual sections are computer generated demonstrating the path of the needle
tract and the significant structural damage caused by this treatment. A color version of this
figure is available in the CD-ROM.
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These analyses provide insights that have previously not been available. The diver-
sity of structural defects that can be monitored includes cellular changes due to necro-
sis or gliosis as well as volumetric alterations. Using MRI procedures, it is possible to
quantitate and provide volumetric data.

Volumetric analyses of the relative differences in contrast intensity between the
treated and untreated hemisphere provides insight into structural changes that are
caused by the treatment (Fig. 6C). This graphical visualization of the action of

Fig. 4. Differential image processing of MRM rat brain scan. (A) MRM image of slice
number 165 (see Fig. 3C). (B) Area occupied by the right and left hemispheres, light grey and
medium grey, respectively. (C) Area occupied by right and left hemispheres after low-contrast
pixels are subtracted.
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the toxic insult demonstrates the “global” biochemical changes that occur, as expressed
and measured by the changes in distribution and concentration of water molecules.
This is one of the strengths of MRI, that it is particularly sensitive to changes in water
properties, which is an excellent indicator of macroscopic changes in neuronal func-
tioning.

These brains were sectioned, and subsequent sections were stained using Nissl
reagent, a standard neurohistological stain, as well as tyrosine hydroxylase (Fig. 6A,B,
respectively) (31). The tyrosine hydroxylase stain demonstrates the destruction of the
dompaminergic terminals in the injected hemisphere. Quantitative evaluation of MRM
contrast is not unlike the qualitative evaluation of the various histochemical stains. It
should be noted that digital images of stained histological sections can be obtained, and
commercial software is capable of certain quantititative analyses. There are distinct
differences in intensity between the injected and control hemispheres (Fig. 6C). The

Fig. 5. Relative change in brain hemisphere area per axial slice due to pixel exclusion based
on intensity range. The percentage of the original area of the hemisphere that remains after
excluding pixels from the low range of MRM contrast (right hemisphere, medium grey; left
hemisphere, light grey). The relative difference in the percentage of change between right and
left hemispheres per axial slice (black line).

Fig. 6. Comparison of conventional histological staining to MRM imaging for the detection
of 6-OHDOPA-induced neurotoxicity in rat brain. A section has been selected that demon-
strates the damage caused by the treatment with the toxin. Sections were cut from this region of
the brain. The conventional Nissl-stained section from this region does not show significant
differences at this level of magnification (left). A second section from this region has been
stained with tyrosine hydroxylase, which is an established marker for dopaminergic neurons.
As can be seen, there is a significant depletion of staining in the substantia nigra in the treated
hemisphere (center). The MRM section has been pseudocolored in order to visualize subtle
contrast differences (right). The left and right hemispheres have diffuse regions of contrast
differences indicating that the unilateral treatment has significant effects. A color version of
this figure is available in the CD-ROM.
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regions are not clearly defined in the MRM section which would suggest that there may
be more global effects of the 6-OHDOPA injection affecting more diffuse regions of
the brain than is detected using standard histological stains. In order to quantitate these
volumes, it is necessary to develop appropriate standards and procedures, such that
potential artifacts can be identified and discarded. Appropriate software programs are
being developed by a number of groups.

While these studies are all done in ex vivo fixed animal brains, the technology is
developing such that similar studies will be possible in living animals. There are sig-
nificant technical difficulties that need to be overcome for this type of research. For
example, imaging scan times cannot be as lengthy as for fixed tissue, which will reduce
image quality and resolution. The present application of ex vivo imaging is very prac-
tical and can provide considerable insights into the potential sites of neurotoxicity.
With the described approach above, it provides examples that demonstrate how much
more informative and insightful imaging is when compared to existing approaches.

17.3.3. MRI as a Tool for Detecting Multiple Sclerosis

Axonal loss is considered to be a large component of the pathological substrate for
MS. There is a general reduction in the central white matter, which correlates with the
progression of MS (32). Up until approximately 10 yr ago, MS was diagnosed using a
variety of neurological tests. This approach proved to be inadequate for the field of
drug development. Using MRI, this structural change, specifically, the characteristic
loss of axons, can be visualized as distinct lesions occurring in a number of different
brain regions, as well as in the spinal cord (33). MRI provides the ability to
noninvasively estimate the volume of these lesions and their progression over time.
Many physicians consider these lesions to be representative of the progression of MS.
A correlative study with conventional MRI, histopathology and clinical phenotyping
of the spinal cord of MS patients was performed (34). There was a strong correlation
between areas scored by the neuropathologist and lesions identified using low-field
MRI. High-field MRIs of postmortem spinal cord tissue demonstrated a strong correla-
tion to the subsequently performed histopathological analyses, in particular areas of
demyelination. The authors concluded that MRI revealed a great range of abnormali-
ties in spinal cord MS, which related to disease course during life. This study clearly
demonstrated the correlation between the lesions in the spinal cord as identified by
MRI and the classical histopathology.

Neurological evaluations include ambulation/leg function, arm/hand function and
cognition (34). MRI volumetric evaluation of identified lesions shows that there is a
significant correlation between these neurological measures and the total volume of
these lesions (35). The lesions identified are asymmetrical in the central nervous sys-
tem and the periphery (limbs) due to the diffuse axonal injury (36). These lesions are
considered to be associated with inflammatory disease such as acute disseminated
encephalomyelitis. These lesions increase in volume and size over time. Another volu-
metric approach is simply to measure changes in the volume of the brain with the
progression of the disease (37). With the progression of the disease, there is a reduction
in the brain volume, due in large part to the decrease in parenchyma. Measuring the
total parenchymal (grey matter) volume and comparing it to brain volume is a powerful
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method of monitoring the progress of the disease. Short-term ventricular changes have
also been shown to be a good indicator of the progress of MS. There is a decrease in
ventricular volume with the progression of the disease that can be easily determined
using serial MRI (33).

Thus, there is significant evidence that MRI is a useful procedure for monitoring
structural changes in neuronal tissue that are associated with the progression of MS
(38). Unfortunately, the therapies for MS that have been developed using these
approaches have not proven too successful (36,37). This raises the issue that the MS
lesions identified by MRI are not necessarily indicative of the disease itself, but may
correlate with the disease progress or be a particular endpoint. These lesions are con-
sidered to be a result of some inflammatory response, not necessarily representative of
the actual disease factors (36,37). An additional MR approach that may help in the
monitoring of MS progression is MR spectroscopy (MRS) (39). MRS imaging pro-
vides spectral information in a noninvasive manner, which is indicative of many of the
biochemical activities in the brain. It has the ability of monitoring the biochemical
changes caused by a number of brain pathologies related to MS, including inflamma-
tion (increase of choline), recent demyelination (increase in lipids and choline), axonal
dysfunction (decrease of N-acetyl-aspartate), and gliosis (increase of myoinositol) (40).
Some of these biomarkers may detect early onset of the lesions, as well as some of the
activities occurring leading up to lesion development. It may be that the combination
of MRS imaging and MRI will eventually provide a better way of quantitatively moni-
toring the disease pathology of MS.

17.3.4. Midinfrared Spectral Imaging of Brain Sections

Infrared (IR) spectroscopy is used in the industrial setting more than any other spec-
troscopic technique. However, the impact of this technology in biological and bio-
medical sciences is relatively limited. The technique measures the properties of
vibrational functional groups of intrinsic molecules. Most of the biochemical compo-
nents making up a cell have some specific vibrational properties which can be mea-
sured. Some have multiple vibrational properties, for example, phospholipids may have
the phosphate head group, and the CH3 and CH2 portions of the fatty acid chain (40).
A limitation of IR spectroscopy of biological components is that many of these intrin-
sic components cannot be identified or quantitated in complex mixtures. Often, mul-
tiple principal component analyses are necessary to such a degree that the significance
of the data is questionable. Another disadvantage is that, when mixtures are analyzed
using spectroscopy, many changes may be “averaged” out and therefore not quantifi-
able. There has been a considerable body of work published on the mid-IR (1200–5000
nm) properties of lipids and proteins (40) describing the specific wavenumber corre-
sponding to a vibrational property. Using this information, it is possible to develop
spectral fingerprints for the component of interest. Over the past 5 yr, an innovative
approach to IR spectroscopy has provided a potential tool for biological and biomedi-
cal issues. The work of Lewis, Levin, and Treado and colleagues has led to the devel-
opment of an instrument that makes IR spectroscopic imaging possible (41). This has
often been called chemical imaging. This procedure uses an array to capture the data,
and each pixel records an IR spectrum for the sample contained within the pixel. This
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approach has been coupled to a microscope such that high-resolution images of IR
components can be visualized (see [41] for details). Some of the work that has been
described using this technique has been done using brain specimens. Thin (8–10 µm)
frozen sections are cut on a cryostat and layered on calcium or barium chloride disks
and air-dried. The samples must be free of water, as this has a very strong absorption
band in the mid-IR. Sections are not subjected to any further processing. One of these
studies examined the action of an antineoplastic agent, cytarabine, which is known to
have neurotoxic effects. This drug causes the loss of Purkinje cells in the cerebellum.
Using chemical imaging, it has been shown that the subsequent spaces (“holes”) left by
the macrophage removal of dead Purkinje cells can be visualized without any histo-
logical stains (42). In addition, the data can be analyzed using a variety of quantitative
approaches. The spectral data can be graphed as changes in peak frequency of specific
biochemical or biophysical components, such as lipid CH2 symmetric stretching. The
data can be graphed as variability in biochemical composition over the sample. Statis-
tical analysis can be made as well and provide unique insights (43). For example, scat-
ter plots can be prepared, in which intensities of both lipid and protein absorbance
bands from all pixels are represented in what is typically called “feature space.” These
are populations with common protein and lipid intensities that define specific regions
in the brain tissue sample. Each of the feature space populations can then be mapped
back to “image space”, where these intensities can be visualized in relation to the image.
This allows identification of specific regions in the image with higher or lower intensi-
ties. Using this approach, it was shown that the stoichiometry of lipids and protein in
specific cerebellar cells, the Purkinje cells, differ in animals treated with an antine-
oplastic that is known to have neurotoxic effects. This provides a rapid, quantitative
approach for identifying necrotic cells.

There are a variety of ways of presenting the data in terms of visualization. We used
a 3D imaging software, Voxel View (Vital Images), to examine a data set of a section
of the mouse cerebellum (43). While each image is 2D, if we incorporate the spectral
information, this provides a third dimension (Fig. 7A). By altering contrast, it is pos-
sible to highlight specific brain components (Fig. 7B). We have selected wavenumbers
specific for protein (3350 cm–1) and lipid (2927 cm–1) signals (Fig. 7C). As can be
seen, the regions of highest protein density are distinct from those of highest lipid
density. This technique has been used to compare sections from a wild-type mouse
brain, and that of a mutant mouse brain which is known to have a lipid disorder. It is
possible to visualize the differences in distribution of these products in the absence of
any histological stain. In fact, the spectra obtained, depending on the array detector
used, is capable of detecting over 30 different peaks of biochemical components in the
mid-IR signal, each attributable to a specific biochemical and or biophysical property.
Thus, a single IR spectroscopic array scan can provide more than 30 different stains of
the same section. Of course, the ability to obtain an image for that component depends
on the intensity of the signal. Many of these components cannot be distinguished in the
healthy specimen. However, comparison to a pathological or intoxicated specimen,
using the mathematical approaches available, may confer the capability of identifying
specific components that are altered. This could lead to the development of specific
biomarkers. While the studies described here are using transmission microscopy, this
technique is being developed for performance in the reflectance mode for in vivo use.
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17.4. CONCLUSIONS

Traditional approaches to neurotoxicity screening are relatively successful. Approxi-
mately, 80 to 90% of neuronal adverse effects are identified in preclinical studies using
behavioral and histopathological approaches. However, this information is not readily
transferred to clinical trials due to the reasons discussed in this chapter. Imaging pro-
vides the ability of identifying neurological changes in animal studies and then trans-
ferring these observations such that appropriate measurements can be made in the clinic.
In addition, as the image data is intrinsically digital, quantitative analyses are readily
performed. However, imaging does not necessarily solve many of the difficulties in
determining neurotoxicity described earlier in this manuscript. There is still the diffi-
culty in distinguishing between pharmacological and toxicological changes. Further
controlled studies are necessary in order to further elucidate this difficulty.
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How the Brain Develops and How It Functions

Application of Neuroanatomical Data of the Developing Human
Cerebral Cortex to Computational Models

William Rodman Shankle, Junko Hara, James H. Fallon,
and Benjamin Harrison Landing

ABSTRACT

For many models of the cerebral cortex, particularly developmental ones, knowl-
edge of cortical structure is essential to a proper understanding of its functional capaci-
ties. We have studied the microscopic neuroanatomic changes of the postnatal human
cerebral cortex during its development from birth to 72 mo. The microscopic structural
changes we have identified to date are complex, yet well organized, and mathemati-
cally describable. The discoveries to date arising from analyses of the Conel data
include:

1. That the total number of cortical neurons increases by 1/3 from term birth to 3 mo, then
decreases back to the birth value by 15 mo, then increases by approximately 70% above
the birth value from 15 to 72 mo.

2. Based on 35 cortical areas, the mean number of neurons under 1 mm2 of cortical surface
extending the depth of the cortex decreases by 50% from term birth to 15 mo, then from 15
to 72 mo, increases by 70% above the value at 15 mo. Both of the previous findings pro-
vided the first evidence for postnatal mammalian (human) neocortical neurogenesis. These
findings have received subsequent support from studies demonstrating cortical
neurogenesis in adult macaque monkeys.

3. That changes in total cortical neuron number from birth to 72 mo inversely correlate
strongly (ρ = –0.73) with the number of new behaviors acquired during this time. The
correlation appears strongest when there is a time delay, suggesting that changes in corti-
cal neuron number precede the appearance of newly acquired behaviors.

4. That each of 35 cortical areas analyzed show characteristic increases and decreases in
neuron number in a wave-like fashion from birth to 72 mo, suggesting local regulatory
control of both neuronal cell death and neurogenesis. The changes in neuron number appear
to follow gradients that correspond to functional cortical systems, including frontal (motor,
dorsolateral prefrontal, and orbitofrontal, separately), visual (ventral and dorsal streams,
separately), and auditory systems.

5. That within any given cortical area from birth to 72 mo, there are functionally related
shifts in the relative numbers of neurons in the six cortical layers. Since each of the six
cortical layers has a specific function with specific communication to other layers, the
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neocortex can create 720 variations (6!) in its function just by changing the relative power
of the six cortical layers in all possible permutations. The data clearly show that only a few
of these permutations are actually used. It appears that the function of secondary associa-
tion neocortical areas or higher are most developed when layers III and VI have the most
neurons, and that the function of primary sensory, 1st order association, or transitional
(i.e., cingulate) neocortical areas are most developed when layers III and IV have the most
neurons. Layer III is primarily responsible for long distance cortico-cortical communica-
tion; layer IV is primarily responsible for receiving thalamic sensory information from the
environment plus feedforward cortico-cortical communication; and layer VI is primarily
responsible for sending cortical information back to the thalamus and receiving feedback
cortico-cortical information.

In this chapter, we present the data and studies that formed the basis for the above
discoveries in postnatal human cerebral cortex from birth to 72 mo. These data have
particular relevance to those interested in building computational models of cortical
development and provide a basis for concomitant cortical electrophysiological and
behavioral developmental changes. Computational models incorporating such knowl-
edge may provide a mechanistic understanding of how the brain develops and how it
functions.

18.1. INTRODUCTION: THE CONEL DATA

From 1939 to 1967, J.L. Conel published eight volumes, one for each age point of
the postnatal development of the human cerebral cortex from birth to 72 mo (1–8).
Each volume reported the microscopic neuroanatomic data derived from measurements
made on 5 to 9 brains. To produce these volumes, Conel made more than 4 million
individual measurements of the microscopic neuroanatomic features of the developing
postnatal human cerebral cortex. Table 1 summarizes the cases Conel studied.

Conel reported these data in three ways. First, he described the state of development
of each feature of each layer of each cytoarchitectonic area analyzed. Second, he
reported the data in tables, in which each datum represented the mean value of 30 inde-
pendent measurements per microscopic neuroanatomic feature per cortical layer per
cytoarchitectonic area per brain per age point (150 to 270 measurements per datum).
Third, he produced photomicrographs for each staining method used in each cytoarchi-
tectonic area studied. He also produced camera lucida drawings of the Golgi-stained
material for each cytoarchitectonic area studied. Table 2 summarizes the number of
cytoarchitectonic areas Conel studied for each microscopic neuroanatomic feature
reported in Conel’s data tables.

18.1.1. The Microscopic Neuroanatomic Features

The six microscopic, neuroanatomic features Conel measured were as follows:

1. Layer width: cortical layer thickness (in mm) for left hemisphere gyri.
2. Neuron packing density: numbers of neurons per unit of cortical volume (0.001 mm3).
3. Somal width: midrange cell width (in µm).
4. Somal height: midrange cell height (in µm).
5. Large fiber density: numbers of Cajal or Golgi-Cox stain-positive large fibers (mostly



How the Brain Develops and Functions 403

large proximal dendrites, but may include some large diameter axons) per unit area (0.005
mm2) in microscopic fields of the left hemisphere.

6. Myelinated fiber density: number of Weigert stain-positive large myelinated axons per
unit area (0.005 mm2) in microscopic fields of the right hemisphere.

18.1.3. Cortical Layers and Fiber Systems

Conel made measurements of the microscopic neuroanatomic features in each of the
six cortical layers and for two fiber systems (subcortical and vertical exogenous). Conel
described the subcortical fibers as “subcortical arcuate or short association fibers con-
necting adjacent gyri”. He described the vertical exogenous fibers as, “those nerve
fibers (axons and dendrites) in the (microscopic) field which have arisen from cells
located in other more or less distant parts of the brain … In the core of the gyrus, they
are rather uniformly distributed, but immediately under the cortex, they radiate, ending
mostly in layers V and VI. Some continue into layer III, and a few extend as far as
II” (1).

18.1.4. Cytoarchitectonic Regions

Depending upon the microscopic neuroanatomic feature measured, Conel made
layer-specific measurements in 39 to 43 Von Economo-classified cytoarchitectonic
areas. These cytoarchitectonic areas comprise about 73% of the entire surface of the
human cerebral cortex. Conel did not measure values for some of the cytoarchitectonic
areas found in orbitofrontal, anterior cingulate, and infralimbic regions (14 Von
Economo areas: FG, FH, FI, FJ, FK, FL, FM, FN, TD, TH, PA, PC, LB, and LF). Table
3 provides a mapping of the Von Economo and Brodmann classifications of the cytoar-

Table 1
Description of the Brains Studied by Conel with Adult Brain Weight for Reference

Age No.
Age Range, No. of (fraction) Mean Brain Brain Wt. W2

(mo) +/- mo. Brains of Males Wt. (g) (std4) W1 (g) W3

0 0.25 6 4 (0.67) 356 10 0.26 – –
1 0.25 5 ? 413 ? 0.31 57 0.16
3 0.5 6 4 (0.67) 575 98 0.43 162 0.39
6 0.5 7 6 (0.86) 761 101 0.56 86 0.15

15 3.0 9 6 (0.67) 950 113 0.70 189 0.25
24 2.75 7 4 (0.57) 1013 99 0.75 63 0.07
48 11.0 8 3 (0.38) 1151 94 0.85 138 0.14
72 8.5 6 4 (0.67) 1248 45 0.92 97 0.08

2165 – – – 1350 1.0 102 0.08

1W: Fraction of adult weight for brain weight at the stated age.
2W: Brain weight change in grams from previous age point.
3W: Fractional change in brain weight relative to brain weight at previous age point.
4std, Standard deviation.
5Accepted brain weights for 18-year-old humans (Blinkov and Glezer, 1968), but not part of the Conel

study.
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chitectonic areas of the cerebral cortex. Figure 1 illustrates graphically the cytoarchi-
tectonic areas measured by Conel.

18.2. ANALYSES OF DEVELOPMENTAL CHANGES: BIRTH
TO 72 MONTHS

18.2.1. Global Analysis of Microscopic Neuroanatomic Changes

Method. Correspondence analysis (CA) is a powerful analytical method that allows
one to ask questions about the similarity of development of different cortical areas. We
used CA to analyze Conel’s original uncorrected data, to determine whether there were
similarities among the development of the microscopic features, the layers, the cortical
areas, and the developmental stages (age points). The methods and results are fully
described elsewhere (9), but will be summarized here.

CA is a technique that allows one to obtain a multidimensional representation, in
Euclidean space, of the similarities among the rows and columns of a data matrix. In
the Euclidean space, rows (and columns) that are more similar to each other are placed
closer together than rows (and columns) that are less similar. The Conel data consist of
a matrix with 1727 rows and 8 columns. Each row is a profile of the values of a specific
microscopic feature, layer, and cortical area at each of the 8 age points for which Conel
provided data. Data were available from 39 to 43 cortical (cytoarchitectonic) areas

Table 2
Number of Cytoarchitectonic Areas Studied by Microscopic Neuroanatomic
Feature and by Cortical Layer or Fiber System

Cortical Layer or Fiber System

Feature I II III IV V VI S1 V2 Total

Layer
Width 43 43 41 43 41 41 — — 252
Neuron
dns3 46 44 44 46 43 43 — — 266
Somal
Width — 43 43 43 43 43 — — 215
Somal
Height — 43 43 43 43 43 — — 215
Cajal
dns4 49 48 49 49 49 49 48 49 390
Weight
dns5 49 48 48 48 49 49 49 49 389

Total 187 269 268 272 268 268 97 98 1727

1Subcortical arcuate or short association fibers.
2Vertical projection fibers coming from the central white matter cores of gyri.
3Neuron packing density.
4Large fiber density (Cajal stain), which are mostly large proximal dendrites and some axons.
5Myelinated fiber density (Weigert stain), which are all axons.
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Table 3
Mapping of Von Economo to Brodmann Area Classification of Cytoarchitectonic
Areas of the Cerebral Cortex1

Von Economo Brodmann Cortex Type2

Von Economo Area Abbreviation Area  T P U H S

FAy head, hand, FAgc, Fagh,
par lob, trunk FAgl, FAgp,

FAgt 4 X X
FB GFM post FBFM 6, 8, 9 X X X
FB GFS post FBFS 6 X
FC Bm GFI post FCFI 44 X
FC GFS mid FCFS 8 X X
FDR GFI ant, mid FDFIa, FDFIm 45 X
FDdelta GFM ant FDFMa 46 X
FDdelta GFM mid FDFMm 8, 9 X X X
FDm GFS ant FDFS 9 X X
Frontal pole FEPF 10 X
Frontal orbital FFGO 11 X
Insula precentralis IA 14 X
Insular postcentral IB 13 X
Cingulate ant agranular LA 24 X X
Cingulate post granular LC 23, 31 X
Retrosplen granular LD 30 X
Retrosplen agranular LE 29 X
Occip peristriate OA 19 X
Occip parastriate OB 18 X
Occip Striate, OC OC 17 X
Postcentral oralis, PB, PBc, PBh, 3 X
head, hand, leg, trunk PBl, PBt
Postcentral intermed,
head, hand, leg, trunk PC, PCc, PCh,

PCl, PCt 1 X
Parietal sup lobule PE 7 X X
Parietal inf ant PF 40 X X
Parietal inf post PG 39 X
Occip temp intermed PH 37 X
Temporal superior TA 22 X X
Temp transv ant post TB 42 X
Temporal transv int TC 41 X
Temporal mid and inf TE 21 X
Fusiform gyrus TF 36 X
Temporal pole TG 38 X

1T, Transitional neocortex; P, primary motor or sensory neocortex; U, unimodal association cortex; H,
heteromodal association cortex; S, supramodal association cortex. 2Terminology from Benson, 1994, (19).
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depending upon the microscopic feature studied. The columns represent the develop-
mental stages (age points of the data).

The steps of the CA are as follows. First, the raw 1727 row by 8 column data matrix,
A, with cell entries, aij, is normalized by computing a new matrix, H, with the ijth cell
entry given by hij = aij / √ (ai. a.j), where aij is the original cell frequency, ai. is the total
sum for row i, and a.j is the total sum for column j. Second, the normalized matrix is
analyzed by singular value decomposition into its triple product, UDVT, where U con-
tains row scores, VT contains column scores, and D is a diagonal matrix of singular
values. Third, the singular vectors of the U and VT matrices are used to compute maxi-
mally discriminating scores (i.e., optimal scores, canonical scores, variates) for
the rows and columns of A. The rescaling formulae for the optimal scores are: Xi =
Ui√(a../ai.) and Yj = Vj√(a../a.j).

Since correspondence analysis scales the profiles solely in terms of overall shape
similarity, the resulting row scores remain invariant under multiplication of the data of
a given profile by a constant. Thus, two profiles that have the same “shape” will be
scaled as identical regardless of how much they differ in absolute magnitude. For this
reason, it did not matter whether we used Conel’s uncorrected values or values that

Fig. 1. Map of the cytoarchitectonic areas (Brodman classification) of the postnatal human
cerebral cortex studied by Conel. Conel studied 39 to 43 cytoarchitectonic areas depending
upon the microscopic neuroanatomic feature measured. The areas not studied by Conel are
stippled. A color version of this figure is included in the CD-ROM.
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Fig. 2A. Ninety-nine confidence ellipses of the first two correspondence analysis factors for
all data within each layer or fiber system. For each cortical layer or fiber system, its confidence
ellipse circumscribes the area in which 99% of the values of the first and second correspon-
dence analysis factors, F1 and F2, reside. The extremely small sizes of these ellipses indicate a
high degree of similarity among the relative changes of the microscopic features in the different
BA within each ellipse. The strong overlap of the ellipses for the six cortical layers also indi-
cates a high degree of similarity among the relative changes in the microscopic features within
the different BA across the six cortical layers. The separation of the vertical and subcortical
fiber system ellipses from the cortical layer ellipses indicates that different relative changes are
occurring during development within these fiber systems.

Fig. 2B. Ninety-nine confidence ellipses of the first two correspondence analysis factors for
all data within each microscopic neuroanatomic feature. For each microscopic neuroanatomic
feature, its confidence ellipse circumscribes the area in which 99% of the values of the first and
second correspondence analysis factors, F1 and F2, reside. The extremely small sizes of these
ellipses (except that for myelinated fiber density) indicate a high degree of similarity among
the relative changes of a given microscopic feature across the cortical layers and cytoarchitec-
tonic areas studied. The strong overlap of the ellipses for somal height, somal width, and corti-
cal layer width indicates that these features are highly similar in their relative developmental
changes. The larger confidence ellipse for myelinated fiber density indicates that either cortical
layer or cytoarchitectonic area or both has some influence on the relative changes in human
cortical myelination.
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were corrected for shrinkage and stereologic error. In addition to scaling the profiles in
terms of similarity, correspondence analysis scales the eight developmental stages, pro-
viding a representation of the relative similarity of the age-specific data among them
that will quantify the amount of change from one stage to another.

To examine for structural influences on postnatal human cortical development, we
first grouped the factor scores produced by CA for each profile according to cytoarchi-
tectonic area, cortical layer, and microscopic neuroanatomic feature. Next, we com-
puted the 99% confidence ellipses of the mean values of the first two CA factors for
each of the three structural groupings.

Finding: CA factor score summary data. The first 2 CA factors explained 71.3%
(56.7% and 14.6%, respectively) of the variance of the entire Conel data (representing
4 million measures). Contrary to a belief by some that the Conel data are of poor qual-
ity (10), this analysis provides mathematical proof that these data have very little noise
and are of very high quality.

Finding: 99% confidence ellipses by cortical layer/fiber system. Figure 2A shows
the 99% confidence ellipses of the first two CA factors for the data within each cortical
layer or fiber system. The confidence ellipses of all the cortical layers almost entirely
overlap, indicating that their relative developmental changes are essentially the same.
Their very small 99% confidence ellipses mean that neither cytoarchitectonic area nor
microscopic neuroanatomic feature has any effect on the relative developmental
changes that occur within each cortical layer. The 99% confidence ellipses for the two
fiber systems do not overlap those of the cortical layers. Their complete separation,
from each other as well, indicates that the relative changes in the subcortical or short
association (usually U fibers) and vertical projection fiber systems develop in different
ways from each other as well as differently from the cortical layers.

Finding: 99% confidence ellipses by microscopic neuroanatomic feature. Figure 2B
shows the 99% confidence ellipses of the means of the first two CA factors for the data
within each microscopic neuroanatomic feature. The data for each confidence ellipse
are the relative developmental changes of the given microscopic feature within the
cortical layers and cytoarchitectonic areas studied. The ellipses for cortical layer thick-
ness and neuronal somal dimensions strongly overlap, while those for neuron packing
density, myelinated axon density, and proximal dendrite density are fully separated.
This means that the relative developmental changes in the data for each microscopic
neuroanatomic feature provide independent information about cortical development.
Because the ellipses for cortical layer thickness and somal dimensions overlap, they
appear to be similar in terms of their relative change from birth to 72 mo.

Except for myelinated fiber density, the very small 99% confidence ellipses mean
that the data within them are all very similar. Since the data within each ellipse consist
of the relative developmental changes of the given microscopic feature for all cortical
layers and cytoarchitectonic areas studied, neither cortical layer nor cytoarchitectonic
area significantly influences the relative changes in these microscopic neuroanatomic
features. The only exception is myelinated fiber density, whose larger confidence
ellipse indicates that either cytoarchitectonic area or cortical layer or both have some
effect on the relative changes in postnatal human cortical myelination.
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Finding: 99% confidence ellipses by cytoarchitectonic area. Figure 2C shows the
99% confidence ellipses of the means of the first two CA factors for the data within
each cytoarchitectonic area. The data within each confidence ellipse consist of the rela-
tive developmental changes of the microscopic features within each of the cortical
layers for a given cytoarchitectonic area. The results are striking. The ellipses for all
neocortical areas (those with six cortical layers) strongly overlap, indicating that there
is very little effect of the specific neocortical area on the relative developmental changes
in its microscopic neuroanatomic features across its cortical layers.

However, the sizes of the confidence ellipses for each cytoarchitectonic area are
much larger than those for either the cortical layer or the microscopic neuroanatomic
feature (compare Fig. 2A,B,C). This means that the relative developmental changes of
either the different microscopic neuroanatomic features or the different cortical layers
or both, introduce greater variability in the relative developmental changes within each
cytoarchitectonic area. Inspection of Figure 2A and B suggests that the larger confi-
dence ellipse sizes of the cytoarchitectonic areas in Figure 2C is largely due to the
greater differences in the relative developmental changes of the microscopic
neuroanatomic features studied (they occupy different parts of the plot space of F1
and F2).

Fig. 2C. Ninety-nine percent confidence ellipses of the first two correspondence analysis
factors for all data within each of 43 cytoarchitectonic areas (Brodmann). The two outlying
ellipses both come from the hippocampal formation; the remaining 41 cytoarchitectonic areas
are neocortical. For each cytoarchitectonic area, its confidence ellipse circumscribes the area in
which 99% of the values of the first and second correspondence analysis factors, F1 and F2,
reside. The relatively larger sizes of these ellipses, compared to those in Figures 2a and 2b,
indicate that the relative developmental changes in the microscopic features within the cortical
layers of each area are more variable. Inspection of Figure 2a and b suggests that this greater
variability is largely due to the microscopic features since they occupy different parts of the
plot of F1 vs F2. The strong degree of overlap for all 41 neocortical areas studied indicates
there is no specific influence of any given neocortical area on the relative developmental
changes in its microscopic features within its layers. However, the ellipses for two areas within
the hippocampal formation (presubiculum and perirhinal cortex), a more primitive three-
layered cytoarchitectonic area shows a clear separation from those of the neocortical areas.
This separation indicates that the microscopic structural development of archicortex is funda-
mentally different from that of neocortex.
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The only two cytoarchitectonic areas whose confidence ellipses did not overlap with
the rest were non-neocortical. They were the presubiculum (Von Economo area HC,
Brodmann areas [BA] 27 and 35) and perirhinal cortex (Von Economo area HD, BA 27
and 34). These two periarchicortical areas are both part of the hippocampal formation,
have only several cortical layers, and are evolutionarily more primitive than neocortex.

In conclusion, models of a particular cytoarchitectonic area should include param-
eters reflecting effects of cortical layer and/or microscopic, neuroanatomic feature on
relative cortical development.

18.2.2. Numbers of Neurons per 1 mm2 Column per Cytoarchitectonic Area

Method. The numbers of neurons in columns of 1 mm2 cross-sectional area (neurons
per mm2 column) extending the full depth of the cortex were computed for each of 35
cytoarchitectonic areas at each age point of the Conel data from 0 to 72 mo. The data
were corrected for shrinkage due to tissue preparation and for stereologic counting
errors using methods fully described elsewhere (11).

Figure 3 shows that the corrected data agree with those of contemporary authors
who looked at comparable cytoarchitectonic areas (12–14).

Finding: local control of proliferation and pruning of human postnatal cortical neu-
ron number. Figure 4 presents the corrected mean values for the pyramidal,

Fig. 3. Comparison of data from Conel vs data from more contemporary authors on the
numbers of neurons under 1 mm2 of cortical surface extending the full depth of the cortex. All
data are corrected for shrinkage due to the methods of tissue preparation as well as for stereo-
logical error when necessary (11). Comparable data were available for five Brodmann cytoar-
chitectonic areas (4, 5, 7, 9, 17, and 22). Except for BA 17, primary visual cortex, the values
derived from Conel’s data are highly similar to those obtained by authors using more contem-
porary methods of estimating neuron numbers. For BA 17, the data of Conel and Hendry are
highly similar while the data of Rockel and O’Kusky give higher values. This most likely
represents a sampling bias in BA 17, where some parts of BA 17 have very high numbers of
neurons in the granule cell layer. Conel’s data for BA 17 neuron number per 1 mm2 column are
about twice the values for other cortical areas he measured, which is generally agreed to be the
case. This is one of the pieces of evidence supporting the high quality of Conel’s data.
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nonpyramidal, and total numbers of neurons per mm2 column from birth to 72 mo. The
data show a 54% decline from the value at birth to 15 mo, followed by a 70% increase
from the value at 15 mo to 72 mo. Given the 1.3-fold increase in human cortical surface
from 15 to 72 mo (15), total cortical neuron number at 72 mo would be estimated by
this method to be 2.2 times the value at 15 mo. The age at which the smallest (nadir)
number of neurons per mm2 column occurs varies for different cytoarchitectonic areas
and ranges from 6–24 mo (mean nadir age = 15.8 mos). Ninety-five percent of the
decline to the nadir neuron number per mm2 column can be explained by the concomi-
tant 2.1-fold increase in cortical surface (15). This means that neuronal death can only
account for about 5% of the observed changes in neuron numbers per mm2 column.
However, neuron death may be more prevalent if there is concomitant neurogenesis to
minimize net reduction in neuron number per mm2 column.

Figure 5A and B show the absolute and normalized (by the area’s birth value) num-
bers of neurons per mm2 column for each of 35 cytoarchitectonic areas. Figure 5B
shows that, prior to the nadir neuron number per mm2 column, no cytoarchitectonic
area rises above 120% of its birth value. At the nadir, no cytoarchitectonic area drops
below 30% of its birth value. After the nadir, no cytoarchitectonic area rises above
107% of its birth value. Thus, there appears to be an envelope limiting the maximum
increase and decrease in neuron number. That the mechanism(s) limiting unconstrained
neurogenesis and neuronal death probably operate over a limited distance is suggested
by the data of Table 4.

Table 4 shows that, for the 35 cytoarchitectonic areas studied, 15 patterns of increase
and decrease in neuron number per mm2 column occur from birth to 72 mo. With so
many wave-like patterns, a global control of neurogenesis and neuronal death seems

Fig. 4. Mean neuron number per 1 mm2 column for pyramidal cell vs non-pyramidal cell
neuronal layers. Layers III and V are almost entirely comprised of pyramidal neurons while
layers I, II, IV and VI have varying proportions of non-pyramidal neurons. The purpose of this
figure is to show that both pyramidal and non-pyramidal neurons have the same mean patterns
of increases and decreases. Within the limits of resolution of the present data, it appears that all
classes of neurons participate in postnatal neurogenesis, not just granule cell neurons. Because
these data are based on 150 to 270 repeated measures per data point, and the standard error of
the mean values presented is proportional to 1/√N, the error bars will be within 6 to 9% of the
mean values.
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Fig. 5B. Same data as Figure 5A, except that the values of each of the 35 cytoarchitectonic
areas are normalized by their birth values. This normalized changes in neuron number per 1
mm2 column more clearly show the variability in the patterns of increases and decreases in
neuron numbers across different cytoarchitectonic areas. The majority of areas still reach their
nadir values at 15 mo. Note also that all areas increase their numbers of neurons from 15 to 72
mo. A color version of this figure is included in the CD-ROM.

Fig. 5A. Neuron number per 1 mm2 column for 35 areas of the human cerebral cortex. These
data were corrected for shrinkage due to the methods of tissue preparation used by Conel as
well as for stereological error (11). One can see a common pattern of rises and falls in neuron
number, with most cortical areas having a nadir value at 15 mo. However, detailed analysis of
these data identified 15 patterns of increases and decreases among the 35 cortical areas. A color
version of this figure is included in the CD-ROM.

unlikely. One mechanism for constraining neurogenesis and neuronal death over a lim-
ited distance would be to have the neuronal fate-determining factors be released from
cells involved in either neurogenesis or neuronal death. Concentration gradients of
these factors would fall off sharply with distance, thus allowing for the observed vari-
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ety of wave-like patterns of changes in neuron numbers. If the activities of the
neurogenesis and neuronal death factors are inversely related, they would also permit
the observed envelopes limiting maximal changes in neuron number.

18.2.3. Numbers of Neurons per Cytoarchitectonic Area

Methods. The methods to compute the number of neurons for each of 35 cytoarchi-
tectonic areas included those used to derive neuron number per mm2 column (11) plus
those used to derive each of their cortical surface areas for each of the 8 age points (15).
These data were also corrected for shrinkage and stereological error.

Finding: pruning and proliferation are coordinated within functional cortical sys-
tems. Figure 6A and B shows the absolute and normalized (by each area’s birth value)
numbers of neurons per cytoarchitectonic area from birth to 72 mo. Similar to the find-

Table 4
Cytoarchitectonic Areas with Similar Patterns of Change in Neuron Number
per mm2 Column from Birth to 72 mo

Cytoarchitectonic Areas Postnatal age periods of change (months)

No. of 0-1-3 1-3-6 3-6-15 6-15-24 15-24-48 24-48-72
Brodmann Von Economo changes

23; 31; 40; LC; PF; FAGh 1 ∨

8; 45; 42; 41; FCFS; FDFIa; TB; 1 ∨
38; 24; 29 TC; TG; LA; LE
6; 8; 9; 6; 44; FBFM; FBFS; FCFI; 2 ∧ ∨
45; 8; 9; 10; 7 FDFIm; FDFm; ;

FEPFPE
39 PG 2 ∧ ∨
17 OC 2 ∧ ∨
19 OA 2 ∨ ∧
9;22 FDFS; TA 2 ∨ ∧
46 FDFMa 2 ∧ ∨
4; 4; 4; 11; 37 FAGp; FAGl; 3 ∨ ∧ ∨

FAGc; FFGO; PH
4 FAGt 3 ∨ ∧ ∨
21; 14 TE; IA 3 ∧ ∨ ∧

13 IB 4 ∨ ∧ ∨ ∧

36 TF 4 ∧ ∨ ∧ ∨

30 LD 4 ∧ ∨ ∧ ∨

18 OB 4 ∨ ∧ ∨ ∧

∨, Neuron number per mm2 column first decreases then increases.
∧, Neuron number per mm2 column first increases then decreases.
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Fig. 6A. Numbers of neurons in each of 35 cytoarchitectonic areas (Von Economo classifi-
cation). These data were corrected for shrinkage due to the methods of tissue preparation used
by Conel as well as for stereological error (11). They are based on measurements taken from
the left hemisphere. Estimates of cortical surface area are described in (15). The number of
neurons in each cytoarchitectonic area was computed by multiplying the age-specific values of
its cortical surface area by its number of neurons per 1 mm2 column. The much greater spread
of these data compared to those of Figure 5 are partly due to cytoarchitectonic differences in
their cortical surface areas. A color version of this figure is included in the CD-ROM

Fig. 6B. Same data as in Figure 6A but the values of each cytoarchitectonic area are normal-
ized by their birth value. The largest postnatal increase in cortical neuron number for all areas
is 350% of the birth value for area FDFMa (BA 46). All cortical areas show a postnatal increase
in neuron number. A color version of this figure is included in the CD-ROM.
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ings in neuron number per mm2 column, all cytoarchitectonic areas show a series of
increases and decreases in cortical neuron number from birth to 72 mo. Also, all corti-
cal areas increase their neuron number to at least 1.5 times their nadir value, with a
mean postnadir increase of 2.5 times the mean nadir value.

Figure 7 displays these changes on lateral and medial surface maps of the cerebral
cortex for each age point from birth to 72 mo. The color/grey scale represents the
number of cortical neurons per cytoarchitectonic area. Adjacent cytoarchitectonic areas
show more similar patterns of change in neuron number than nonadjacent ones. Also,
gradients of change in neuron number occur according to functional cortical systems,
including frontal (motor, dorsolateral prefrontal and orbitofrontal, separately), visual
(ventral and dorsal streams, separately), and auditory systems.

18.2.4. Total Numbers of Neurons in the Cerebral Cortex

Methods. Total postnatal human cortical neuron numbers for each of the 8 age points
were derived using two estimation methods fully described elsewhere (15). One method
(averaging method) used total cortical surface multiplied by mean neuron number per
mm2 column at each age point. The other method (summing method) summed, for each
age point, the neuron numbers of the 35 cytoarchitectonic areas and divided this value

Fig. 7. Lateral and medial views to help visualize the developmental changes in cortical
neuron number for each of the 35 Von Economo areas studied. A grey scale represents the
lowest numbers of neurons in light cross-hatch and the highest numbers of neurons in black.
Lobar patterns of similar developmental changes in cortical neuron numbers are clearly seen.
Gradients of neuron number from lateral to medial do not appear to be striking, while frontal,
temporal, and cingulate lobes have generally lower numbers of neurons than the parietal and
occipital lobes. Note that supplementary motor area is the frontal area with the highest neuron
number (gray stipple), and that the posterior superior parietal lobule has the most neurons of all
areas (black). A color version of this figure is included in the CD-ROM.
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by the fraction of the total cortical surface area they occupied. The two methods of
estimating total cortical neuron number per age point showed close agreement (Fig. 8).

Finding: approximate doubling of total cortical neuron number from 15 to 72 mo.
What was not seen with the data on neuron number per mm2 column is the approximate
33% increase in total cortical neuron number from birth to 3 mo. This occurs in spite of
a decrease in neuron number per mm2 column from birth to 3 mo, because it is out-
weighed by such a large concomitant increase in cortical surface area that the total
cortical neuron number increases.

Using methods similar to Conel, Rabinowicz found that from gestational age 32 wk
to term birth, there is an approximate 70% decline in neuron number for the five cyto-
architectonic areas studied (16). This means that total cortical neuron number at 32 wk
gestation is approximately equal to that at 72 mo. Since total cortical neuron number at
72 mo is 10% or more below that of reported adult values (17), there appear to be at
least two full cycles of increases and decreases in total cortical neuron number from 32
wk gestation to adulthood (finer-grained age point data may reveal additional cycles).

Although not shown here, inspection of the camera lucida drawings of the Golgi-
stained material of any cytoarchitectonic area Conel studied from birth to 72 mo show
a characteristic pruning and proliferation of neuronal dendritic arbors (1–8). The present
data on neuron numbers indicate that one must also add proliferation and pruning of
neuron numbers to this concept.

Fig. 8. Total postnatal human cortical neuron numbers for each of the 8 age points were
derived using two independent estimation methods fully described elsewhere (15). One method
(averaging method) used total cortical surface multiplied by mean neuron number per mm2

column at each age point. The other method (summing method) summed, for each age point,
the neuron numbers of the 35 cytoarchitectonic areas and divided this value by the fraction of
the total cortical surface area they occupied. The two methods of estimating total cortical neu-
ron number per age point showed close agreement. The striking conclusion is that there are at
least two waves of postnatal neurogenesis from birth to 72 mo. From birth to 3 mo, there is an
approximate 1/3 increase, and from 24 to 72 mo there is an approximate 3/4 increase in total
cortical neuron number.
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18.2.5. Relationship of Total Cortical Neuron Numbers to Acquiring New
Behaviors

Methods. Data on over 400 human behaviors acquired at specific ages were obtained
from a 10-yr review of the pediatric literature (18). We then plotted total cortical neu-
ron number vs the number of new age-specific behaviors at each of the 8 age points
from birth to 72 mo and computed their correlation coefficient (Fig. 9).

Finding: changes in cortical neuron number probably precede acquiring new
behaviors. Figure 9 shows a strong inverse correlation (ρ = –0.59) between total corti-
cal neuron number and the number of newly acquired behaviors at corresponding age
points. However, this correlation increases even further to between –0.73 and –0.82
when the data on age-specific behaviors are shifted by one age point (i.e., the number
of newly acquired behaviors at 0, 1, 3, 6, 15, 24, 48, and 72 mo are shifted to corre-
spond to 1, 3, 6, 15, 24, 48, 72, and 100 mo. The total cortical neuron number values
used at 100 mo represented the largest and smallest reported values from contemporary

Fig. 9. Inverse relation between total cortical neuron number and number of newly acquired
age-specific behaviors. Data on the mean age of acquisition of over 400 behaviors were used to
compute the number of such behaviors acquired near the 8 age points Conel studied. The corre-
lation coefficient was –0.59. However, when the behavioral data were shifted one age-point to
the right (i.e., the number of newly acquired behaviors at 0 mo was shifted to 1 mo, and the
same was done for 1->3, 3->6, 6->15, 15->24, 24->48, 48->72, and 72->100 mo), the correla-
tion coefficient increased to between –0.73 to –0.82, depending upon the total cortical neuron
number value used at 100 mo (the minimum and maximum reported values from the contempo-
rary literature were used (12,17). This higher correlation suggests the hypothesis that a delay is
required before changes in neuron number can be translated into production of new behavioral
abilities. The logistic growth of the brain (faster growth early and greatly reduced growth later)
may compensate for the relatively larger shifts in the number of months between the age points
of 6, 15, 24, 48, and 72 mos.
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Table 5
Number of Neurons per Layer per Cytoarchitectonic Areaa

aColor version is included in the CD-ROM. Color coding of the two layers with the largest numbers of
neurons per 1 mm2 column for each cytoarchitectonic area at each age-point. The following color key is
used:

“?” = cells in which the data for all six layers were not available.
“Red” = cells in which layers III and VI have the most neurons.
“Green” = cells in which layers II and IV have the most neurons.
“Violet” = cells in which layers IV and VI have the most neurons.
“Magenta” = cells in which layers II and VI have the most neurons.
“Light Blue” = cells in which layers III and IV have the most neurons.
“Dark Blue” = cells in which layers II and III have the most neurons.
“Yellow” = cells in which layers I and II have the most neurons.
Of the 15 possible ways of combining any two of the six layers (without regard to order), only 7 ways

are used at all, and of these 7, only 4 are used frequently. Layers III and VI (red), layers II and IV (green),
and layers III and IV (light blue) are the dominant permutations. The interpretation of these data presume
that, for a given cortical area, the number of neurons in a layer is a rough measure of its overall computa-
tional power relative to the numbers of neurons in the other layers.

From this perspective, one can see that early on, primary motor cortex emphasizes the processing of
long cortico-cortical (layer III), cortico-cortical feedback and cortico-thalamic (layer VI) information. Such
integration would be useful in coordinating the survival of essential movements of the newborn child. As
another example, one can see that temporal and parietal association cortical areas emphasize the processing
of short cortico-cortical (layer II), cortico-cortical feedforward and thalamo-cortical (layer IV) informa-
tion, but at 15 months or later, shift to emphasizing the processing of long cortico-cortical (layer III),
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authors for adult human cortex [12,17]). Even though shifting the data on the number
of new behaviors one age point to the right shifts each data point by a different number
of months, the logistic growth of the human brain, with very rapid development early
on and much slower development later, suggests that such a shift may not be unreason-
able (e.g., the natural logarithms of 1, 3, 6, 15, 24, 48, 72, and 100 mo give relatively
uniformly separated values of 0, 1.1, 1.8, 2.7, 3.2, 3.9, 4.3, and 4.6, respectively). The
relatively higher inverse correlation by right-shifting the number of newly acquired
age-specific behaviors suggests that changes in cortical neuron number precede the
appearance of new behaviors. The strength of this structural–behavioral correlation
suggests that models of cortical cytoarchitectonic areas need to incorporate a param-
eter reflecting the influence of its neuron number to better understand how the func-
tions of these cortical circuits change over development.

18.2.6. Numbers of Neurons per Layer per Cytoarchitectonic Area

Methods. The numbers of neurons per layer per mm2 column per cytoarchitectonic
area from birth to 72 mo were computed using the methods previously described (11).
Sufficient data were available for 35 cytoarchitectonic areas. For each cytoarchitec-
tonic area at each age point, the layers were rank ordered from the highest to lowest
neuron number per layer per mm2 column. Table 5 shows the rank ordered data, color/
grey scale-coded according to the two layers with the most neurons at each cytoarchi-
tectonic area and age point.

Finding: layer II. At birth, layer II has the largest or second largest number of neu-
rons in 14 of 35 areas, most notably all temporal and parietal association cortices,
posterior granular cingulate, and insular cortices (BA 31, 13), the truncal part of pri-
mary motor cortex (BA 4), the superior part of the frontal eye fields (BA 8), and the
anterior part of BA 46.

In contrast, by 72 mo, layer II ranks in the top two in only one cytoarchitectonic area
(posterior granular insula, BA 13). This change in relative neuron number in layer II
represents a marked de-emphasis of local (short distance) corticocortical signal pro-
cessing as the postnatal cortex develops.

Finding: layer IV. At birth, layer IV has the largest or second largest number of
neurons in in 24 of 35 areas. The exceptions include: primary motor cortex (except leg
area), medial supplementary area (BA 6), superior frontal eye fields (BA 8), anterior
agranular insula (BA 14), and cingulate cortex (BA 29, 30, 31).

Table 5 (continued) cortico-cortical feedback and cortico-thalamic (layer VI) information (similar to what
primary motor and other cortical areas do as development proceeds from birth to 72 months). In general,
primary sensory cortices emphasize layers long cortico-cortical (layer III), cortico-cortical feedforward
and thalamo-cortical (layer IV) information processing, which is sensible considering their importance in
receiving sensory information from the outside world to layer IV.

Because each cortical layer has a specific function, these data suggest that the function of each cortical
area relates to the relative number of processing units (neurons) it has in each of the cortical layers. Since
these relative numbers change in each cortical area during postnatal development, the function of these
cortical areas presumably also changes accordingly.
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In contrast, by 72 mo, layer IV ranks in the top two in only 6 of 35 areas. This
change in relative neuron number in layer IV represents a marked de-emphasis of
thalamocortical signal processing (environmental inputs) as the postnatal cortex develops.

Finding: layer III. At birth, layer III has the largest or second largest number of
neurons in 14 or 15 of 35 cytoarchitectonic areas, particularly those associated with
primary or secondary sensory, primary motor, or limbic processing (BA 17, 22, 14, 4,
6, 44, and 31). Layer III is not in the top two ranks for most association cortices at birth.

In contrast, by 72 mo, layer III ranks in the top two in all but three areas (it ranks 3rd

in BA 17, anterior 45, and 21). This marked change in relative neuron number in layer
III indicates an increasing emphasis on long distance corticocortical signal processing
as the postnatal brain develops. Such emphasis would allow different sensory, motor,
and other modalities of information to interact to produce richer more complex cortical
functions (behaviors).

Finding: layer VI. At birth, layer VI has the largest or second largest number of
neurons in 13 to 16 of 35 cytoarchitectonic areas, particularly those of the frontal lobe
(all prefrontal and orbitofrontal association cortices, plus some primary, supplemen-
tary, and frontal eye field motor areas).

In contrast, by 72 mo, layer VI ranks in the top two in all but 7 cytoarchitectonic
areas (BA 18, 19, 37, 40, 41, 42, and 13). This change in relative neuron number in
layer VI indicates an increasing emphasis on corticothalamic signal processing as the
postnatal brain develops. Such an emphasis may allow the cortex to influence environ-
mental sensory inputs as they reach the thalamus before they are sent to the cortex.

Finding: motor cortex (BA 4, 6, 8, and 44). At birth, layer III neuron numbers are
largest or second largest in all motor cortical areas except BA 8 (its layers II and VI
occupy the top two ranks). Along with BA 14 (insular agranular cortex), motor cortex
is the earliest area of the cerebral cortex to have layers III and VI with the most neu-
rons. Some motor areas achieve this pattern by birth (BA 4 (head and lobulus parietalis
parts) and medial 6). The majority of the frontal, cingulate, insular, temporal, and pari-
etal association cortical areas also develop this pattern of layers III and VI having the
most neurons, but at a later postnatal age (typically 15 to 24 mo) than the motor cortical
areas.

The early appearance of layers III and VI having the most neurons in motor cortical
areas suggests that the motor system must achieve complex functions early for the
human organism to survive the postnatal environment. From this perspective, the asso-
ciation cortices provide additional refinements that come in at later ages (at about the
age of the terrible twos!).

Finding: frontal association cortex. At birth, layers IV and VI have the most neu-
rons in all frontal association cortices except the anterior part of BA 46, in which layers
II and IV have the most neurons.

In contrast, usually by 24 mo and always by 72 mo, layers III and VI have the most
neurons in all but one frontal association cortex (anterior part of BA 45, in which layers
IV and VI have the most neurons). This shift in relative neuron number from layers IV
and VI to layers III and VI in frontal association cortex by 24 mo indicates increasing
emphasis on long corticocortical association signal processing, which provides the op-
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portunity for cortical circuits to integrate more complicated (multimodal) types of in-
formation.

Finding: temporal and parietal association cortex. At birth, with the exception of
temporopolar cortex (BA 38) and auditory belt association cortex (BA 22), all other
temporal and parietal association cortices have layers II and IV with the most neurons.

In contrast, by 15 mo, no temporal or parietal cytoarchitectonic area has layers II
and IV in the top two ranks. Instead, these areas develop such that layer III occupies
one of the top two ranks along with either layer IV or VI. The only exception is BA 21,
in which layers IV and VI occupy the top two ranks. When layers III and IV occupy the
top two ranks, the cytoarchitectonic area has a primary sensory function (i.e., BA 41,
42) or is an intermediate association cortex between two lobes (i.e., BA 37, 40). This
marked change in relative neuron number from layers II and IV to layers III and IV
indicates an increasing emphasis of long corticocortical processing by 15 mo. The shift
from layers II and IV to layers III and VI by 15 mo indicates that cortical interaction
with thalamic input is also increasingly important as the temporal–parietal association
cortex matures and produces functions that are more complex.

Finding: primary sensory, occipital, and transitional cortices (BA 41, 42, 17, 18,
19, 37, and 40). These cytoarchitectonic areas deviate from the motor and association
cortical pattern of layers III and VI, ultimately developing the most neurons. Instead,
they preserve the number of layer IV neurons in one of the top two ranks from birth to
72 mo, reflecting a continued emphasis on thalamic sensory input for these cortical areas.

Summary. The observed shifts in the relative laminar numbers of neurons in the
different cytoarchitectonic areas from birth to 72 mo appear to have functional signifi-
cance in terms of our current understanding of the functions of the different cortical
layers. In general, development of higher order association cortices (those which inte-
grate different types of sensory information) coincide with an increasing emphasis on
layers III and VI signal processing from birth to 72 mo. Such increasing emphasis
serves to integrate more disparate types of cortical information and to interact with
thalamic input before it comes to the cortex. Other types of cortex, such as primary
sensory, some unimodal association cortex (i.e., occipital cortex, which integrates only
visual features), and transitional cortex (i.e., cortical areas lying between two or more
lobes of the brain, whose architecture is designed to integrate their different types of
information), deviate from this pattern by preserving a relatively large number of layer
IV neurons from birth to 72 mo at least, presumably reflecting continued emphasis on
signal processing of environmental (thalamic) input.

18.3. CONCLUSIONS

We have presented microscopic neuroanatomic data of the majority of cytoarchitec-
tonic areas of the postnatal human cerebral cortex from birth to 72 mo. For each mea-
sure analyzed, there are consistent findings, indicating underlying rules governing the
structuring of the developing human cerebral cortex. The tabular data we have put
together can be used to construct computational models at a laminar level of detail of
the development and/or function of virtually any cytoarchitectonic area in the human
cerebral cortex. Furthermore, we have shown that even at a very coarse level (total
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cortical neuron number from birth to 72 mo), there is a strong correlation of the number
of neurons with acquisition of new behaviors. Such a finding is consonant with the
view that neuron number is quite relevant to cortical function.

At a finer level (relative laminar numbers of neurons per cytoarchitectonic area per
age point), the data show a sensible developmental pattern to first permit structuring of
simple cortical functions to be followed later by more complex ones. In particular, for
the association cortical areas, from birth to 6 mo, layers that integrate relatively more
homogeneous or unprocessed information have the most neurons (i.e., layers II and
IV). From 15 to 72 mo, layers that integrate relatively more heterogeneous and more
processed information develop the most neurons (i.e., layers III and VI). Such a finding
is consonant with the view that cortical laminar ratios of the numbers of neurons in
each cytoarchitectonic area and possibly between cytoarchitectonic areas help govern
the functional capacities of cortical areas and the circuits they participate in.
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ABSTRACT

In this chapter, we argue that computers are potentially capable of human-level cog-
nition, including experiences involving emotions, creativity, fantasy, humor, etc. In
addition, we maintain that computational neuroanatomy will play a key role towards
the computer generation of minds by investigating the roots of the structure–activity–
function relationships in the nervous system. Using the hippocampus as a working
example, we outline a long-term strategy to (i) implement an anatomically and bio-
physically accurate “bottom-up” model reproducing the known neurobiological activ-
ity; (ii) use the model to investigate and implement simple functional properties such
as spatial mapping and path-finding; and (iii) insert a higher level “top-down” cogni-
tive capacity to instantiate the concept of agency in the context of a generalized memory
indexing theory. Finally, we briefly discuss the potential consequences of the computer
generation of functionally complete virtual brains for neuroscience research, informa-
tion technology, and human society.

19.1. A BRIEF HISTORY OF COMPUTERS

What will the twentieth century be remembered for in a thousand years from now?
Here is a guess: the emergence of computers1. Apparently, the impact of computers on
our society was underestimated at the very beginning. At their birth, computers (liter-
ally meaning “calculators”) were designated for calculating ballistic trajectories in ar-
tillery. Here are several definitions of a computer borrowed from modern online
dictionaries:

1. A machine for performing calculations automatically (WordNet® 1.6, © 1997 Princeton
University).

2. A device that computes (The American Heritage® Dictionary of the English Language,
Third EditionCopyright © 1996, 1992 by Houghton Mifflin Co.).

3. A machine that stores a set of instructions (a program) for processing data and then
executes those instructions when requested (American Concise Encyclopedia © 1994–
1996 by Zane Publishing, Inc. and CLEARVUE/eav, Inc.).

1No doubt, in such a long perspective as the next millennium, the language will undergo substantial
changes, and the word “computer” might not even be appropriate to use at that time in connection with
future descendants.
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4. A machine that can be programmed to manipulate symbols (The Free On-line Dictionary
of Computing, © 1993–2001 Denis Howe).

The idea of using tools for storing and/or processing information encoded symboli-
cally is probably as ancient as the human civilization itself (e.g., the abacus is roughly
7000 years old); however, the concept of information was not understood mathemati-
cally before the work of Claude Shannon (1). Similarly, foundations of logic go back to
the times of Plato (427–347 B.C.) and Aristotle (384–322 B.C.), but it was only in
1847–1859 A.D. that George Boole developed logic into a mathematical discipline (2).
The first blueprint of a general-purpose universal mechanical computer was designed
by Charles Babbage in 1834 (the computer was nearly built in 1871). Only in 1936 did
Alan Turing turn the idea of a universal general-purpose computer into a precise math-
ematical concept (3).

Electronic computers emerged as a physical reality in late 1930s–early 1940s, fol-
lowing the onset of the electronic communication age. Here are some of the mile-
stones. In 1906, Lee de Forest invented a vacuum triode by modifying the Edison’s
lamp patented in 1880. In 1940, Alan Turing’s team built a computer on electrome-
chanical relays. Konrad Zuse in 1941 and John Von Neumann in 1942 created the first
programmable computers. In 1942, John Atanasoff and Clifford Berry constructed the
first electronic calculator. In 1946, Presper Eckert and John Mauchly created ENIAC,
the first general-purpose all-electronic computer. In 1947, John Bardeen and Walter
Brattain discovered the transistor effect. In 1952, Nathaniel Rochester created IBM
701. FORTRAN has been used since 1956, and LISP since 1958. In 1958, Jack Kilby
built a silicon-integrated circuit. In 1960, transistors began to be used in computers,
replacing tubes. In 1971, the Intel Corporation introduced a microprocessor.

Now, we live in a world that is impossible to imagine without PCs, Internet, com-
pact discs, and cellular phones. It seems obvious to us that the foregoing historical
steps were inevitable, and from this point of view, it is not very essential who and when
was the first. However, for some reason all of this did not happen before the last cen-
tury. It is during the last 25 years that computer hardware underwent a multithousand-
times, if not multimillion-times leap, virtually in its every parameter, including the size
and the cost of the elements, the speed, the capacity of random access memory (RAM)
and of permanent storage devices, the total number of computers in the world, and the
scale of their integration into networks (4). This process of exponential growth still
shows no sign of slowing down (5).

At present, at least half of our daily activity depends on information technologies
and, eventually, on computers. Computer industry alone accounts for about 10% of the
gross national product of the United States. Computers gradually invade all ecological
niches in the infrastructure of human civilization, with only a negligible fraction of all
computer resources being used for computation per se. Nevertheless, the future impact
of computers is still underestimated, because the estimates are based on what comput-
ers are capable of, not on what they are potentially capable of. The origin of human
blindness lies in the nature of the principal barrier in further computer evolution. This
barrier has moved from the “hardware problem” to the “software problem.” Stated
simply, we just do not know all that computers can be used for, and therefore, we
cannot imagine the consequences.
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19.2. THE GREAT CHALLENGE

In 1955, John McCarthy, Marvin Minsky, Nathaniel Rochester, and Claude Shan-
non wrote a proposal for a project that addressed questions of how to formalize com-
mon sense and how to base computers on the principles of the human brain (6). The
proposed goals were to discover the principles that would allow computers to use natu-
ral language, form abstractions and concepts, solve any problems that humans can
solve, improve themselves, and eventually become potentially as intelligent as humans
are. The proposal coined the term “artificial intelligence” (AI) in its title and was in-
tended for a 2 month 10 person study to be carried out during the summer of 1956 at
Dartmouth College. This proposal by McCarthy et al. probably presents the greatest
challenge left to us from the last century.

From a dialectic point of view, every progress is at the same time a regress. Since
computers started using standard programming languages, constraints and rules were
continuously introduced that disciplined programmers’ thinking. As the programming
languages developed, these constraints became more and more complicated, in order to
satisfy programmer needs. On the one hand, software developers’ tools grew more
powerful, inevitably adopting principles of human cognition (e.g., object-oriented pro-
gramming). On the other hand, similarly to a tight cage, they restrained the human
mind, thus making each new methodological breakthrough harder and harder. During
this process, breaking one cage resulted in a necessity to create and move to another,
more hardened cage. The initial ultimate freedom and cluelessness in programming a
Turing machine was traded for powerful and practically effective chains and ball2.
People created more and more sophisticated software tools trying to meet their needs;
however, instead of gaining freedom from exploiting computers, they only multiplied
user needs and discovered that they themselves had turned into computer slaves, to the
extent that at some point in the future this circumstance could force them to return back
to 1955 and to rethink the entire paradigm from scratch.

Several attempts of this sort have actually been made, among which are artificial
neural networks and evolutionary computation; however, none of these approaches
resulted in a good general solution to the problem of turning computers into “intelli-
gent” devices. Today computer scientists and engineers entertain the idea of creating
conscious virtual agents, but nobody seems to understands precisely what this would
mean, or, more generally, what consciousness is. This is not surprising, as many other
concepts are similarly not yet precisely understood: for instance, the concepts of exist-
ence, compassion, humor, pretend play, voluntary intention, the concept of Self, and
even the idea of concepts in general. These issues will inevitably become relevant to
computer science, if computers are to learn about common sense. Present computers
require humans serving them at every step, because they (computers) lack their own
common sense initiative. This in turn seems to be due primarily to their “computer
autism”; the lack of the ability to represent and use basic human concepts of the types
listed above. Something very fundamental is missing in all computer designs and
dynamics, while being present in the human brain.

2Although each modern general-purpose computer in principle could be operated as a Turing machine,
this would be an extremely counterproductive way of using it.
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What is the “special” ingredient that is so crucial for human cognition, yet still absent
from artificial computational processes? And how could it be implemented in comput-
ers? In order to find the answers, we need to understand how our mind works. A pos-
sible “top-down” approach would be to use introspection in order to study human mind
and then to copy all of its properties into a computer. Early in the twentieth century,
however, behaviorists dismissed introspection as a scientific method due to its subjec-
tivity. Behaviorist paradigm, although consistent with contemporary cybernetics,
brought nothing good in return relative to the understanding of human mind. Thus, a
cognitive revolution was necessary in the middle of the century in order to change the
dominant paradigm of scientific psychological thinking from behaviorism to cognitive
psychology grounded in neuroscience, thus selecting a “bottom-up” approach.

19.3. IMPLEMENTING THE BRAIN

In essence, the cognitive psychological paradigm can be characterized as focusing
on information processing in the brain. Methods of analysis involve connectionist and
other computer modeling of brain structures and functions. This approach became ex-
tremely productive in the second half of the century, when both new brain imaging
techniques and new computational tools became available. As a result, brains are now
viewed as giant information-processing machines. From this point of view, a thinking
machine could be conceived and, in principle, created by understanding the basic
information processing functions of the brain, and then transferring them from a pro-
tein-and-ion-based computer into another, silicon or GaAs-based computer. In this sce-
nario, the straightforward bottom-up approach to artificial cognition would be to
analyze the structure and fundamental dynamics of the brain, to copy them step-by-
step into a computer, and to watch higher cognitive functions “emerge”.

The key problem of bottom-up modeling strategies is that of defining the appropri-
ate level of detail in the model. What aspects of real brain anatomy and physiology
should be reproduced in virtual brains? Are subneuronal dynamics (such as protein
regulation) necessary to capture the computing ability of single neurons? Or, should
neurons themselves be considered the elementary computing blocks of the brain? Or
else, should virtual brains be based not on realistic neurons at all, but rather on blocks
representing cell assemblies? The task at hand is thus (i) to understand what “bottom
level” details are essential for providing the right functionality at the top, and (ii) to
simplify these details up to a maximal extent, while maintaining the upper-level func-
tionality.

As an initial assumption, we consider neurons as the starting point of a sound bot-
tom-up strategy. This choice is based on the conviction that the action potentials
exchanged among neurons are, at present, the best candidates for information carrying
signals in the nervous system. However, this initial choice can be modified in the future
by the addition of lower level details or by the simplification of neuronal level dynam-
ics into larger components. Thus, assuming that the spiking dynamics of neurons are
relevant to cognitive functionality, the first step is to design a statistical model of a
neuron capturing the geometrical and electrophysiological characteristics that shape its
activity. Much of the current work in computational neuroscience is focusing precisely
on this goal (see also part I of this book).
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At the network level, we assume that information is processed and carried out by a
spatiotemporal pattern of activation of the constituting neurons. Until a less conserva-
tive principle or set of principles linking information processing to network activity is
discovered, the second step of the bottom-up strategy should, thus, consist of under-
standing and reproducing the key elements of network composition, connectivity, and
spatial arrangement affecting the spatiotemporal activity patters of the network. Unfor-
tunately, however, the precise spatiotemporal activation of a region of the brain cannot
be currently recorded at the level of single neurons. Thus, the construction of a model
reproducing such an activity must be guided by indirect verification, i.e., by attempting
to reproduce related network characteristics that can be measured routinely. Several
theories and empirical evidence link cognitive functionality to the presence of rhyth-
mic activity (7). Thus, a reasonable strategy is to attempt the analysis and synthesis of
the network properties underlying the emergence of observed rhythms. In this attempt,
it should be kept in mind that the reproduction of the rhythms is not the direct goal. The
solution should be compatible with the constraints developed in the first step, i.e.,
using neuronal models whose morphology and physiology result in realistic spiking
behavior.

An example of this strategy is the generation of an anatomically and physiologically
realistic hippocampal model. Such a model would be based on neurons with accurate
shape and biochemical machinery in order to reproduce known single-cell electrophysi-
ology. The neurons should be interconnected based on the available neuroanatomical
knowledge. This knowledge (e.g., average number and position of synapses for each
morphological class) is far from complete, but the model would be additionally con-
strained by the attempt to reproduce the emergence of intrinsic oscillations in the hip-
pocampus, specifically those believed to be functionally relevant (8). In this exercise,
neuroanatomy plays a fundamental role, because much of the available experimental
data can only be interpreted in a precise neuroanatomical framework. For example, the
hippocampal model should reproduce characteristic rhythmic activities as a whole, but
also upon “virtual slicing” in different planes and under different bathing conditions.

The amount of electrophysiological and anatomical data available for the rodent
hippocampus and the great complexity of the system are such that, if a model could
reproduce all of the observed properties and behaviors of the natural network, one
could assume that some of the properties that are not known would be reproduced as
well. Obviously, there would be no guarantee or “mathematical proof”, but the con-
tinuous accumulation of data and the comparison of experimental and modeled behav-
ior would provide additional support or necessary corrections.

A working model of this sort could allow neuroscientists to test a large number of
hypotheses with “virtual experiments”, which are impossible to perform in real life,
either in principle or, because of technical limitations, for ethical reasons. Intracellular
activity could be continuously recorded from every neuron during the propagation of
spatiotemporal patterns. Although a complete analysis of such a huge amount of data
would certainly require new computational and statistical tools, even the partial exami-
nation of the simulation results could foster intuition and facilitate the development of
new hypotheses. The same experiment could be repeated multiple times under com-
pletely controlled conditions to characterize the influence of every single parameter on
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the neuronal patterns. The effect of hypothetical drugs (blocking or enhancing specific
elements or properties of the network) could be tested, and only the most promising
candidates would be commissioned for wet experiments.

19.4. FROM STRUCTURE TO FUNCTION

In order to use an anatomically and biophysically accurate model of a brain region
for the study and implementation of cognitive functionality, it is first necessary to un-
derstand the principles of neural representation in the real brain structure as well as in
the model. In the case of the hippocampus, a relatively well characterized cognitive
function is that of supporting spatial navigation (9–11). The neural code underlying
hippocampal involvement in spatial navigation is based on the activity of place cells,
which are neurons that fire when the animal is in a specific location of the environment
(9,12). Although much is known about hippocampal anatomy and physiology and its
relationship with the representation of space, the hippocampus cannot be considered an
autonomous computational unit. Hippocampal functionality in navigational tasks is
intimately related to that of other areas, including the visual system (13), thalamus
(14), subiculum (15), septum (10,16), retrosplenial (15,17), and parietal (18,19) corti-
ces, just to mention a few.

The development of a realistic and detailed anatomical and physiological model of
the whole brain is going to take many decades. However, the realistic hippocampal
models could be interfaced with “black box” components representing functionally
related areas. These components would be based not on detailed neurobiological knowl-
edge, but on existing AI models of computer vision, natural language parsing, associa-
tive memory, automated reasoning and planning, proprioception and motion control,
etc. For the detailed hippocampal network model, the system of black-box AI compo-
nents would represent the “external world”, providing both input and output of infor-
mation. The whole “brain” could then be embodied in a (real or simulated) robot to
interact with the (real or simulated) environment (20,21). The advantage of using a
purely virtual embodiment is that all simulation parameters would be perfectly con-
trolled, thus allowing an exhaustive and deterministic behavioral analysis. The use of a
physically embodied robot, on the other hand, would allow the more faithful and com-
plete reproduction of real-world experience, which includes too many “noisy” details
to be simulated. A comprehensive approach would pursue both real and simulated
embodiment in parallel to exploit the complementary advantages of both strategies.

The hybrid implementation of an embodied functional “skeleton” of the brain, to-
gether with a single initial component, which includes a realistic level of anatomical
and physiological details, would be an invaluable research tool to connect the model
parameters (electrophysiology and network connectivity) with the emergent character-
istics (behavioral and cognitive functions). To investigate hippocampal function in spa-
tial navigation, the robot could be allowed to navigate and explore mazes similar to
those used in rodent behavioral experiments or more complicated human-level mazes,
such as metropolitan street maps. During the exploration of the environment, the hip-
pocampal network would receive visual and proprioreceptive input from the appropri-
ate brain modules (13–15). The implementation of Hebbian and nonHebbian plasticity
mechanisms (22,23) would allow the emergence of realistic place cells in the hippoc-
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ampal network upon interaction with the environment. With the aid of information on
the current “goal” (e.g., the memorized location of a reward), from subcortical nuclei
and the hypothalamic value system (24,25), place cells should naturally acquire the
functionality of spatial navigation support and directional representation.

Needless to say, there is a multitude of mechanisms that could underlie each of these
functional processes. Each combination of mechanisms would have to be tested, com-
paring the network activity with known properties of the real hippocampus. The model
could eventually bridge ongoing neurobiological research, which employs multicellu-
lar recording to partially characterize the neuronal activity on rats exploring simple
environments, with machine learning theories, which have extensively characterized
the properties of different algorithms that solve spatial navigation tasks.

19.5. IMPLEMENTING THE MIND

The strategy outlined above might be difficult to extend to those “highest” levels of
cognition for which current AI models seem to be missing some “special ingredient”.
The materialist position holds that, once all the aspects of brain anatomy and physiol-
ogy are correctly implemented, there is nothing “left out” and no additional “special
ingredient” to be added (26). Whether or not such an implemented model would itself
feel conscious is a question beyond the boundaries of science. What matters is that, if
the model reproduces all the structural and functional aspects of the brain, it would
have to reproduce all of the observable behavior as well. The problem is, however, that
we cannot develop such a “complete” model without an initial knowledge of the cogni-
tive functionality the model is supposed to reproduce. In contrast to the above example
of spatial navigation, the semantics of neural representation (i.e., the mapping between
the spatiotemporal activity patterns and the cognitive function) in higher brain areas,
such as the prefrontal and orbitofrontal cortices, the amygdala, the cerebellum, and the
hippocampus itself, for a variety of higher cognitive functions, are largely unknown.
The very cognitive functions carried out by these brain regions appear hard to define
precisely.

Specific outstanding problems in this context concern autobiographical episodic
memory, metacognition (higher-order thoughts), representation of others’ minds
(“theory of mind”), selected neurological disorders, including schizophrenia, multiple
personality, autism, and the “forbidden” topic3 : consciousness. Remarkably, all these
topics have one element in common: they all involve the concept of an agent (27).
There is no doubt that much human brain information processing deals with abstract
representations of agents, such as instances of the self and others (as opposed to repre-
sentations of physical bodies of these agents and other things). This sort of representa-
tion and information processing could be the key building block missing at all levels of
the structure of cognitive neuropsychology. This could be the answer to the question
regarding the principal difference between brains and computers as we know them
today. If so, then implementing the right sense of agency (based on a human-like theory

3Scientists learned to substitute words “conscious–unconscious” by all possible means, because each of
the substitutes very soon became a “bad word” on its own: “explicit-implicit”, “aware–unaware”, “at-
tended–unattended”, “supraliminal–subliminal”, “nocuous–innocuous”, and “volatile–nonvolatile”.
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of mind) in a computer might be the next major historical step in the progress of
humanity.

How is theory of mind implemented in the human brain, and how can it be imple-
mented in a computer model? One possibility is that representations of others’ minds
exist as a system of general concepts instantiated in the brain, so that they can be used
by an individual for analysis of behavior of the Self and other agents. Alternatively, or
additionally, humans could use mechanisms of their own first-person-experience (in
other words, perform mental simulations) in order to understand other minds. What is
the rule used to assign appropriate representations to various instances of agents, and
which brain areas are involved in this representation and assignment? Several lines of
evidence suggest that, together with other higher areas, the hippocampal formation
could play an important role in this context.

In rodents, the hippocampus is implicated in representing the animal self-location in
space (12). However, the rodent hippocampus can also distinguish between behavioral
paradigms and other generalized contexts. For example, an observed place field pattern
can be momentarily altered by switching from a random search task to a directed search
task in the same environment (28). In primates, hippocampal activity patterns could
represent the current focus of attention (detected by eye position) rather than the cur-
rent location of the animal’s body (9). In humans, the semantics of the hippocampal
activity patterns is even more complicated; in addition to spatial correlates, hippocam-
pal cell firing is related to recent and remote episodic memory retrieval (29), percep-
tion of time, natural language processing, and many other elements of cognition.
Although such a broad spectrum of cognitive functionality seems to be difficult to
encompass with a single clear definition of hippocampal function, a possibly unifying
idea is to view the human hippocampus as a generalized context indexing device (30).
According to this theory, episodic memories are labeled by their generalized contexts.
Among the parameters that together constitute a “generalized context” of an episode
are the time, the spatial location, and the gist of the event, as well as the subject to
whom the experience is attributed (the mental perspective). How does the hippocam-
pus index episodes? Each experienced generalized context could be represented by a
pattern of activity stored in the hippocampus. This activity pattern would be associated
with the details of the experience, which are stored in the neocortex.

The number of life experiences and the richness and similarity of different general-
ized contexts could pose a problem of storage capacity, if each context had to be repre-
sented by a unique pattern of neuronal activity. However, to move mentally from one
context to another similar one, following remembered context relations, could be much
easier than to recall a specified context from scratch. Therefore, remembering a refer-
ence to a particular episode might amount to the ability to relate the context of that
episode to contexts of other remembered episodes, as well as of currently ongoing
events. In other words, retrieving a memory would consist of finding a “path” from one
context to another. Individual steps of this path involve dropping or accepting various
assumptions, beliefs, rules, conditions, etc., that apply to the entire state of mind repre-
senting a given episode. If the hippocampus relates generalized contexts to particular
episodic memories, then the problem of memory retrieval becomes naturally related to
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the problem of navigation in a graph of all previously experienced contexts. This could
explain the unification of the spatial and memory functions in the hippocampus.

We can now further expand the concept of generalized contexts into the hypothesis
that human hippocampal activity patterns encode various instances of the Self as an
agent, e.g., instances associated with different spatial locations and, generally speak-
ing, different generalized contexts. This hypothesis can be illustrated with a particular
model in which various instances of the Self, such as “I-Now”, “I-Past”, “I-Imagined”,
“I-Pretend-Play”, “He-Now”, etc., are encoded by patterns of activity in two areas: the
hippocampus and the prefrontal cortex (31). In this model, the hippocampal represen-
tations are “allocentric”, i.e., a given event (and the corresponding instance of the Self)
are always associated with one and the same pattern of hippocampal activity, in the
same way as “September 11, 2001” always stands for one and the same historical day.
In contrast, prefrontal representations are “egocentric”, in the sense that, e.g., “I-Now”
is always encoded by one and the same pattern, regardless of the moment of time
referred to as “now”. Other instances of “I” are assigned patterns in the prefrontal
cortex based on their current relations to “I-Now”. In this model, an experience labeled
“I-Now” cannot be forgotten and subsequently retrieved as “I-Past” without the help of
the hippocampus, because of a “context shifting” problem. In order to initiate this
retrieval process from the prefrontal cortex, one needs to activate a representation of
the desired “I-Past” there and to “synchronize” it with the hippocampal activity. Reac-
tivation of the hippocampal pattern then results in retrieval of the remembered experi-
ence in a new context.

This model requires that the space underlying various instances of the Self (i.e., the
space of generalized contexts, which reduces to a 2D map of an environment in the
rodent navigation case) be represented outside of the hippocampus. Similarly, particu-
lar associations between general facts and locations in this space (the semantic knowl-
edge), as well as details of experience, are also stored outside of the hippocampus
proper, presumably in various parts of the neocortex. The exclusive role of the hippoc-
ampus would be to bind experience by the sense of agency, which is semantically
reduced to its simplest form: a pattern labeling a specific instance of the Self or “I”
(32). Therefore, hippocampal loss or damage should disrupt autobiographical memo-
ries without affecting the semantic memory system, which is consistent with cases of
human hippocampal amnesia (29). A direct test of this model would consist of the
reactivation of specific hippocampal patterns to elicit the associated behavioral and
introspective correlates.

19.6. CONCLUDING REMARKS

Our main points can be summarized as the following: (i) in order to build functional
virtual brains, we need to know neuroanatomy and neurophysiology as much as we
need to know cognitive science; (ii) in order to understand the architectural principles
underlying cognitive functions in the brain, it is necessary to generate virtual neuronal
networks with the right structure, connectivity, and dynamics, using computational
neuroanatomy; (iii) a key step in the construction of virtual brains, as well as smart
computers of the future, will be the understanding and implementation of human-like
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representations of agency; and (iv) A practical strategy to advance towards virtual
brains is based on a “hybrid” neuroanatomical and algorithmic approach, in which a
realistic neural network is placed in a context of simplified AI brain modules.

The availability of a complete model of brain anatomy and physiology would be of
tremendous value to develop scientific intuitions and ideas and to foster education in
neuroscience and cognitive psychology. The incremental development of the model
would boost our understanding of the relationship between brain composition and con-
nectivity, the spatiotemporal pattern of electrical activity, and the resulting cognitive
functionality. This is basically the application of the standard scientific search for struc-
tural–functional relationships to the brain–mind problem.

Finally, a great obstacle on the way towards the computer generation of functionally
and structurally realistic virtual brains is represented by the dynamic process of devel-
opment. At birth, the human brain possesses only coarse neuroanatomical features of
the adult brain, and its cognitive functionality is minimal. Throughout postnatal devel-
opment, the structural complexity of the brain, particularly in higher areas such as the
cortex (33), undergoes an explosive increase, which is dependent on the interaction
with the environment. Higher cognitive functions, such as episodic memory and con-
sciousness, develop in parallel upon continuous sensory and motor experience in the
real world (34). In order to create a virtual brain that truly reproduces the function of
the mammalian nervous system, it will be necessary to model its structure not in three
but in four dimensions (space and time). The development of neuroanatomy in the
model will have to rely upon interactions with the environment, thus requiring (virtual
and/or real) embodiment even during the process of ontogeny. The optimal mixture of
initial structural elements and growth rules in the developing virtual brain will have to
be simple enough to maximize the role of self-organization, yet complex enough to
produce the capacity to learn from its own experience and from the interaction with
other (real or virtual) agents.

Once the architectural and developmental principles of brain anatomy that are suffi-
cient and necessary to implement cognitive functionality were understood, the model
could be progressively simplified by reducing its bottom level statistical complexity,
while preserving higher cognitive functions. The exact location and shape of neurons
or their intracellular machinery might be essential for some purposes but not for others.
The level of viable simplification will thus depend on what aspects of the functionality
are to be reproduced and on whether the implementation is limited to specific subre-
gions of the brain. In the end, this level of understanding and its implementation in
“virtual brains” will lead to new computational paradigms and to the next generation of
computing machines. The details of neuroanatomy might not be implemented in these
final functional models, but the neuroanatomical principles will be. At the present stage,
neuroanatomical details must be included in the model, because we do not yet have a
complete understanding of the neuroanatomical principles.

The future implementation of virtual brains is going to raise ethical and epistemo-
logical issues quite different from those discussed today in the scientific community.
Should the machines implementing the models, or even the models themselves, be
given rights? Should direct interfaces between machine-implemented virtual brains and
real human brains be encouraged or discouraged? How about “cognitive augmenta-
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tion” by the addition of nonhuman-based computational modules performing tasks in
which machines already outperform us? These questions, which touch the very defini-
tion of human being, will derive directly from today’s neuroscience, computer science,
and cognitive psychology research.
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Dynamic pattern prediction

neural map, 163f

E

Eckert, Presper, 426
Edge, 305–306
Edge-disjoint

directed paths, 305–306
Efferent connectivity patterns, 302f
Elastic net (EN), 340

algorithm
visual cortex columnar structures,

343–350
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cylindrical feature
one spatial dimension, 349f

developmental stages, 345f
ocular dominance, 347–348

maps, 346f
orientation, 348–350

Electrode physiology, 337
Electrophysiological simulations, 5

anatomically accurate, 50
software packages, 10

Electrotonic Workbench
web site, 108

Elliott and Shadbolt model, 232
Ellipsoid

parameters, 275f
Elongation process

modeling, 226
Emergent parameters

apical and basal, 63t
EN. See Elastic net (EN)
ENIAC, 426
Eph family, 351
Epileptic seizures, 5
Epileptiform activity, 364
EPSPs, 108
Errors

computer implementations, 130
Eutectic, 55, 143
Excitatory inputs

prediction, 165f
primary sensory interneuron

prediction, 167f
Excitatory post-synaptic potentials

(EPSPs), 108
Excitatory synaptic currents, 373
EXtensible Markup Language (XML), 84
Extreme anisotropy, 281
Eye saccadic control, 4

F

Factor analysis, 313–316
Fast spin echo (FSE)

MRM, 391
FDP algorithm, 78–80
Ferret

neural activity perturbed patterns, 353

Fiber orientation
water diffusion, 275

Fiber systems
Conel data, 403

Fiber tracking
approaches, 285f
examples, 284f

Figure-ground segregation, 4
Finkels model, 131
Firing types

different current injections, 116f
examples, 114f

Floyd’s algorithm, 305
Fluid-dynamical model, 75
FOB, 384
Force-directed placement (FDP)

algorithm, 78–80, 79f
Forebrain. See Basal forebrain
Foreign databases, 99–100
Formal description

neuronal networks, 298–299
Formal models, 363
FORTRAN, 426
Fractional anisotropy, 281
Frontal association cortex, 420–421
Front paw extension, 384
FSE

MRM, 391
Functional cluster analyses, 326–327

result, 327f
Functional mapping

brain connectivity, 15
Functional observational behavioral

battery (FOB), 384
Fundamental parameters of form, 28

G

GABA, 369
Gait, 384
Gamma-aminobutyric acid (GABA), 369
Ganglion placement optimization

Caenorhabditis elegans, 76–80
Gaussian centers, 346
GenAlg, 78–79, 78f
Gene expression models, 353–354
Gene network, 353–354
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General-purpose numerical
integrators, 361

GENESIS, 10, 84, 95, 111, 127, 362, 368
Menschik model, 130–132, 130f
neural simulator format, 113
web site, 102

Genetic algorithm, 78f
Geometry

crossing over, 183
GFAP, 384
Glial fibrillary acidic protein (GFAP), 384
Global connectivity patterns

hierarchical cluster tree, 320f
Global distortions, 350–351
Goodhill model

cortical maps
global structure, 348f

Gradient, 275–283
examples, 277f

Graph. See also Digraph
directed

example, 304f
examples, 323f
nondirected, 298
random, 306–307
theoretical analysis, 299–310
theoretical measures

example, 304f
theoretical perspective

brain connectivity, 299
Graphical formats

L-Neuron, 55
Graphical user interface (GUI), 153
Growth algorithms

axons, 264–266
GUI, 153

H

Hebbian learning rules, 230–232, 339,
346

modified, 231–232
Hierarchical activation indices

distribution, 376f
Hierarchical analyses, 327–328
Hierarchical cluster tree

direct connectivity, 319f
global connectivity patterns, 320f

High-resolution MRI, 388–390
Hillman, Dean, 7–9
Hillman algorithm

modified
L-Neuron, 53–55

Hillman’s seven fundamental
parameters, 28

Hippocampal model, 429
Hippocampal pyramidal cell

remodeling, 67f
Hippocampus

function, 430–431
needle damage, 390
self-location in space, 432
structure, 430–431

Histochemical data
brain, 247

Histology
definition, 97

Hodgkin-Huxley formulation, 361, 365
multi-level network modeling,

359–360
Hodologically identified neural

populations, 174–177
isodensity surface rendering, 174–176
overlap analysis, 174

Hopefield networks, 364
Horseradish peroxidase (HRP), 27
HRP, 27
HTTP, 100
6-hydroxydopamine (6-OHDOPA)

MRM, 391f
MRM vs. conventional histological

staining, 393f
quantitative measures, 389–394

I

Image-combining microscopy
sensory map transformations, 202–204

Imaging
toxicology, 387–397

Imaging/histology
definition, 97

Imaging technique, 13, 385–387
Implementation

ArborVitae, 13
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Information
top-down, 14

Ingrowing afferents
construction method, 261–262

Inhibitory interneurons
role, 4

Inhibitory synaptic currents, 373
Innervating axons

competition, 220
Innervation

coexistence of stable states, 237f
Input-integration-output, 5
Integration method CVODE, 132–133
Integrative aims

neuroscientists, 247–248
Interdaughter angle, 41
Interfacing models, 365
Interstitial neurons, 179
Intracellular calcium levels, 219
Intracellular mechanisms

definition, 97
Intracellular processes

models, 360
In voxo tissue culture, 252–255
Ionic pump

definition, 98
Ischemia

water diffusion, 275
Isodensity surface mapping, 191
Isodensity surface rendering

hodologically identified neural
populations, 174–176

Isomap, 312
Isorelational surface rendering, 191–192

chemically identified cell
inhomogeneous distribution,
177–178

Iterative algorithm, 53

J

Jacobs, Gwen, 11
Java applet, 111–112

Cvapp, 57, 145

K

Kainic acid (KA)
lesioned cells, 117–120

differences, 119t, 121t
Kilby, Jack, 426
Knowledge-based computational

neuroanatomy project, 15
Knowledge integration

issue, 14
Kohonen algorithm, 343–344

L

Labeling techniques, 27
Lamellipodia, 219
Large-scale optimization

dendrites and axons, 75–76
Lateral geniculate nucleus (LGN),

338, 352
Layered framework

modeler’s workspace, 93
Leaky integrate-and-fire unit, 363
Learning processes, 364
Lemniscal nuclei

3D reconstruction, 210f, 211f
pathways, 200–201

LGN, 338, 352
Ligand-activated channel

definition, 98
LLE, 312
L-Measure, 9, 51, 110
L-Neuron, 8–9

algorithms, 53–55
description, 49
Duke-Southampton format (.swc),

52–57
generation and description, 49–68
graphical formats, 55
modified Hillman algorithm, 53–55
parameter

basal parameters, 60t
persistency of vision (.pov), 55
Ray Dream, 55
virtual reality markup language

(.wrl), 55
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L-Neuron Hillman/PK algorithm flow
chart, 54f

Local connectivity indices, 301–303
Local distortions, 350–351
Locally linear embedding (LLE), 312
Locomotor responses

tests, 384
Loyez myelin stain

future directions, 266
Lumbosacral motoneurons, 43–44
L-Viewer, 55, 57
Lyndenmayer rewrite rules, 53–55

M

Macaque
ocular dominance stripes, 347

Magnetic field gradient, 275–283
Magnetic resonance imaging

modification (MRM), 388, 390f
differential image processing, 392f

Magnetic resonance imaging (MRI), 17,
385–388

brain fiber pathways, 246–247
diffusion sequence

example, 276f
diffusion technique

measurement and calculation,
275–283

and DTI, 271–272
MS, 394–395
neuroanatomical studies, 271–287
preclinical neurotoxicology, 388–390
toxicology, 387–388
vs. videomicroscopy, 387

Magnetic resonance spectroscopy
(MRS), 394–395

Map development
visual cortex columnar structures,

338–339
Mapping chaotic optimization

landscapes, 78–79
Mathematical formulation

continuity, 341–343
coverage uniformity, 341–343

Mathematical modeling process
diagram, 128f

MatLab, 128
MatLab R11, 191
Mauchly, John, 426
McCarthy, John, 427
MDS, 311
Mean 3D vector

dendritic processes, 192
Membrane capacitance, 370
Membrane potential

spatial distribution, 137f
Memory, 171
Memory encoding, 4
Menschik model, 130–132

GENESIS, 130–132
NEURON, 130–132, 130f

Mental phenomena, 360
Method

definition, 97
Michaelis-Menten function, 233
Michaelis-Menten steady state, 131
Microcircuit cells

voltage traces, 372f
Microcircuit implementation, 376
Microcircuit model

compartment dimensions, 368t
conductance densities, 368t
synaptic parameters, 369t

Microcircuit representation
primary visual cortex (V1), 367–368

Micro3D program, 193
Micro MRI, 388–390
Microprocessor

introduction, 426
Microscopic neuroanatomic features

Conel data, 402–403
MicroTrace

GUI, 203f
Microtubule-associated proteins,

229–230
Midinfrared spectral imaging

brain sections, 395–396
Migliore model, 132, 137f

histogram, 138f
Miller, John, 163–164
Mind

implementing, 431–433



448 Index

Mind-brain science, 72
Minimal spanning tree

illustration, 75f
Minsky, Marvin, 427
MODECLUS procedure, 317
Model

definition, 97
Model-based approaches

need for, 84–86
Model-based formulation, 341
Modeler’s workspace, 83–102

default templates, 95–96
elements, 86–92
example, 91–92
representation language, 95–99
user interface, 87

prototype, 88f
underlying architecture, 92–95

web site, 102
workspace database, 87

Modeler’s workspace directory (MWD),
88, 101

Model-free formulation, 341–342
Model sensory system

for studying ensemble encoding,
154–159

Modified Hebbian learning rules,
230–232

Modified Hillman algorithm
L-Neuron, 53–55

Modified MRI, 388–390
Molecular approach, 360–361
Molecular guidance cue models,

353–354
Monte Carlo growth algorithm, 31–32
Monte Carlo method, 8, 29
Moore’s Law, 4
Morphological data

measuring, 109–111
Morphologically distinct growth

phases, 257
Morphological parameters

3D scatter plot, 7f
Morphological simulation

case study, 51–68

Morphological variability
computational studies, 107–120
experimental studies, 106–107

Morphology
influences physiology hypothesis

testing, 113–120
motoneuron

parsimonious description, 8
Motivation, 171
Motoneuron

dendrites
2D drawing, 44f
3D structure, 41f
features, 29

estimation of volume fraction, 45f
morphology

parsimonious description, 8
quantitate 3D morphology, 36f
virtual, 51–68

Motor cortex, 420
Mouse atlas, 248–251
MRI. See Magnetic resonance imaging

(MRI)
MRM, 388–392
MR microscopy (MRM), 388–390
MRS, 394–395
MS

MRI, 394–395
MRS, 394–395

Multidimensional scaling (MDS), 311
Multilevel modeling

visual cortex, 365–370
Multi-level neuron modeling

computational neuroanatomy,
359–378

Multiple correspondence analysis, 316
Multiple Sclerosis (MS)

MRI, 394–395
MRS, 394–395

MWD, 88, 101
Myelin slice data, 249f

sagittal and horizontal, 250f
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N

Navigation, 255
NEOSIM, 84, 128
Nernst

definition, 98
Nerve connections

development, 219–239
Nervous system

descriptive geography, 72
development and function

computer simulation, 220–221
generative grammar, 72
key substrate, 3
model-based studies, 83–102

Network data
volumetric data, 246–247

Network dynamics
statistical measures, 322

Network implementation, 369–370
Network levels, 4
Network optimization theory, 73–75
Neural circuits

refinement, 230–238
Neural computation

traditional view, 364
Neural connectivity

description, 297–299
Neural databases and models

web site, 298
Neural ensembles

probabilistic representations, 156–158
Neural fluid mechanics, 75
Neural maps

cricket cercal system, 160–161
dynamic pattern prediction, 163f
predictions of spatial patterns, 161f
stimulus parameters

functional representation, 159f
Neural optimization

functional role, 80
Neural oscillations, 4
Neural simulation packages, 91
Neural Tracing System (NTS), 143
Neurite branching, 229–230
Neurite elongation, 226–230

Neuroanatomical model
brain, 18

Neuroanatomical variability, 105
Neuroanatomy

archives, 111–112
optimal-wiring models, 71–80
potential, 5

Neurobiological models, 132
aspect, 128

NeuroGenerator, 145
Neuroinformatic knowledge base

web site, 207
Neurological rehabilitation, 5
Neurological tests, 384
Neurolucida, 55, 188–189, 193

software, 181
system, 143

NeuroML, 96
Neuromorphology

influences neurophysiology
hypothesis, 109–110

NEURON, 10, 84, 108, 111, 127, 362
Menschik model, 130–132, 130f

Neuron
anatomical characteristics, 156–158
classified, 6–7
compartmental model, 227f

results, 228f
3D anatomical reconstruction, 156
definition, 97
dendritic orientation

regional differences, 179–180
dendritic tracing selection, 189–190
3D reconstruction, 157f
ensembles

transfer of information, 166–168
internal structure, 14
mapped, 12
to networks, 11–13
part

definition, 97
three dimensions, 37–46
ultrastructural investigation, 5–6
virtual

creating, 51
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Neuronal activity
computational studies, 127–146
models, 353–354
vs. neuronal shape, 105–121

Neuronal anatomy
definition, 97

Neuronal electrophysiology
anatomically accurate simulations

practical aspects, 127–146
Neuronal ensembles

predicting emergent properties,
151–168

Neuronal models, 362–363
and simulation, 107–109

Neuronal morphogenesis
competition, 219–239

Neuronal morphology
computational models, 360
generation and description, 49–68
visualization, 57

Neuronal networks
challenges, 152

Neuronal population models, 363–365
Neuronal response, 105
Neuronal shape, 49

vs. neuronal activity, 105–121
Neuronal simulation tools, 363
Neuronal structure-activity analysis

computational tools, 107–120
Neuronal tracing, 50
Neuron_Morpho, 143
Neuropeptide Y (NPY)

neurons, 186
distribution, 187f

Neuropil, 43
Neuroscholar, 15
Neuroscience

key substrate, 3
Neuroscientists

challenges, 152
NEUROSYS, 153

general applications, 168
to study emergent properties, 160–166
web site, 151

NeuroToolBox, 145

Neurotoxicity
detection, 384

NeuroTrace, 145
Nevins/Claiborne, 55
New behaviors

cortical neuron numbers, 417–419
Nissl, 249f, 393f

stained volumetric data
future directions, 266

NMDS, 311–314
Nondeterministic polynomial-time

complete (NP-complete), 73
combinatorial optimization

problem, 343
theory, 73

Nondeterministic polynomial-time hard
(NP-hard), 73, 75

Nondirected graphs, 298
Noninvasive imaging techniques

resolution, 17
Nonmetric multidimensional scaling

(NMDS), 311–314
analysis

example, 313
representation

of dataset, 314f
NP-complete, 73

combinatorial optimization
problem, 343

theory, 73
NP-hard, 73, 75
NPY

neurons, 186
distribution, 187f

NTS, 143
Numbers of neurons

stereological methods, 43

O

Object-oriented style
advantages, 98–99

Object recognition, 4
Occipital cortex, 421
Ocular dominance

EN, 347–348
orientation maps, 350
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Ocular dominance column formation, 338
Ocular dominance maps, 352

EN, 346f
6-OHDOPA

quantitative measures, 389–394
Onset response latencies, 373, 377

distribution, 375f
Optical imaging, 337
Optic nerve

stimulating cuff, 353
Optimal cluster arrangements

connectivity data, 326f
Optimal-wiring models

neuroanatomy, 71–80
Optimization analyses, 322–328
Optimization mechanisms, 75–80
Organizational level, 360–361
Orientation

EN, 348–350
independent visualization

technique, 279
anisotropy, 280–282

maps, 352–353
ocular dominance, 350

water movement, 273–274, 274f
Outliers, 117f, 118f
Overlap analysis, 193

hodologically identified neural
populations, 174

P

Pain
mechanism, 5

Parent branches
scatter plots, 30f

Parietal association cortex, 421
Parkinson’s disease, 172
Parsimonious description

motoneuron morphology, 8
Parvalbumin, 193
Passive models

neuronal modeling, 107–109
Path distance distributions

model, 34
Pathological states, 5

Paths and cycles
digraph, 303–304

Pathway development, 263
Patterns

afferent connectivity, 302f
dendritic branching, 221
dynamic prediction

neural map, 163f
efferent connectivity, 302f
global connectivity

hierarchical cluster tree, 320f
neural activity perturbed

ferret, 353
predictions of spatial

neural map, 161f
similarity indices

primate visual areas, 302f
spatio-temporal

activity ensemble of sensory
neurons, 161–163

activity within neural ensembles,
163–166

PCA, 313–316
Pearson’s correlation, 312
Persistency of vision (.pov)

L-Neuron, 55
PET, 17, 385–387
PHA-L, 201
Phaseolus vulgaris-leucoagglutinin

(PHA-L), 201
Physiological rhythms, 5
Pinksy and Rinzel

two-compartment model, 363, 365
PK. See Terminal length (PK)
Plateau potential cell, 114f
Plato, 426
Polar histogram

regionally selective dendritic
orientation, 181–182

vs. vector representation, 181, 182f
Pontine projections

anterograde axonal tracing, 202f
Pontocerebellar projection neurons

distribution, 206f
Positron emission tomography (PET),

17, 385–387
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Postsynaptic cell, 230
Postsynaptic potentials (PSPs), 373
Potassium conductance, 368
pov (persistency of vision)

L-Neuron, 55
Preclinical neurotoxicology

MRI, 388–390
Predicting spatio-temporal patterns

of activity
within neural ensembles, 163–166

Primary afferent neuron
density cloud representation, 158f

Primary dendrites
cholinergic cells, 179

Primary sensory cortex, 421
Primary sensory interneuron, 154–156

excitatory input
prediction, 167f

spatial relationship, 165f
Primary visual cortex (V1), 337

microcircuit representation, 367–368
Primate visual areas

pattern similarity indices, 302f
Principal components analysis (PCA),

313–316
Probability density cloud, 158
Programmed cell death, 383
Propagation techniques, 285
Proton density

human brain, 272f
Proximal dendritic trees

photomontage, 43f
PSPs, 373
Purkinje Cell Inspector, 92
Purkinje cells

cerebellum, 396
virtual, 51–68

Pyramidal cells
case study, 51–68
computer representation, 143f
examples, 114f
vs. non-pyramidal cell

neuron numbers, 411f

Q

Quadratic assignment problem, 73
Quantitative dendritic morphology

approaches, 27–46
Quantitative neurotoxicity, 383–397

R

Rabbit retina
optimization analysis, 77f

Rall’s equation, 53
Random

vs. clustered, 308–309
Random graphs, 306–307
Randomized organization, 199
Ray Dream

L-Neuron, 55
Reachability matrix, 304–305
Red tide toxin, 389
Reference

definition, 97
Regionally selective dendritic orientation,

179–183
2D dendritic stick analysis, 181–182
mean 3D vector, 179–183

Relative anisotropy, 281
Restricted diffusion, 271
Retina

optimization analysis, 77f
Retinotectal map formation, 343
Retinotopy distortions, 350–351
Righting reflex, 384
Robustness

observation, 78
Rochester, Nathaniel, 427
Rooted binary topological tree

example, 222f
Root mean square (RMS) error

angular measures, 41–42
Rule of 1/2, 132
Rule of 1/3, 135–139
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S

SAS software, 317
Save wire, 80
Save wire neuroanatomy optimization, 75
Scalar morphometrics, 110
Scale-free attributes, 309
Schizophrenia, 172
Search pane, 87–90
Search pane

prototype, 89f
Self-inhibitory synaptic currents

spike times, 374f
Self-organizing map (SOM), 340
Sensory information

model, 154–159
Sensory map transformations

architecture, 199–213
auditory systems, 200–201
brain stem nuclei

local coordinate systems, 205–207
cerebro-cerebellar systems, 200–201
3D reconstruction, 204–205
image-combining microscopy, 202–204
labeled axons and cells distribution,

207–213
density gradient analysis, 211–212
3D reconstructions slicing,

207–208, 208f, 209f
spatial overlap, 212–213
stereoimaging, 212
surface modeling, 209–211

neural tracing techniques, 201–202
Sensory receptor neurons, 154
Shannon, Claude, 426, 427
Shape

water movement, 273–274, 274f
Shared target-derived resources, 231–232
Shepard scatterplot, 315f
Shift

water movement, 273–274, 274f
Sholl analysis, 50, 55
Sib deviation, 41
Sib vector

calculating, 41
Signaling pathways, 360
Silicon-integrated circuit, 426

Simulated action potentials
temporal distributions

histograms, 371f
Simulated CA3 pyramidal cell

response, 130f
Simulated visual network

schematic drawing, 366f
Simulation tools, 361

web site, 361
Single neuron morphology

computer simulations, 13
Site

definition, 97
Site browser

description, 91
prototype, 90f

Six degrees of separation, 307
6-hydroxydopamine (6-OHDOPA)

MRM, 391f
MRM vs. conventional histological

staining, 393f
quantitative measures, 389–394

Size
water movement, 273–274, 274f

Slicing
virtual, 429

Small-world attributes, 307–309
Small world digraphs, 308f
SOM, 340
Somatic functions, 5
Somatic membrane potential, 129f
Somatofugal COM axis, 39–41
Spatial distribution

membrane potential, 137f
Spatial orientation

dendrites, 66–67
Spatial patterns

predictions
neural map, 161f

Spatio-temporal patterns
activity

ensemble of sensory neurons,
161–163

predicting
of activity

within neural ensembles, 163–166
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Spike events, 373
Spiking, 111
Spiking cell

examples, 114f
Sprague-Dawley rats, 188
Startle responses

tests, 384
STATISTICA, 317

manual, 311
Statistical exploration

connectivity, 310–320
Steiner tree, 73

illustration, 75f
Stem diameter frequency distribution, 58f
Stereological methods

numbers of neurons, 43
Stereopsis, 4
Stimulus representation, 367
Stochastic algorithm

digital dendrites, 50–51
Stochastic model, 221–226
Stochastic sampling, 8
STRETCH, 75

algorithm, 77f
Stroke studies

example, 280f
trace image, 279–280

Structural cluster analyses, 324–326
Structurally realistic models

data evaluation, 85–86
functional assessment, 85–86
role, 85

Structurally realistic neuronal model, 83
Substantia innominata, 185
Surf-Hippo, 128

simulation software, 144
swc (Duke-Southampton format)

L-Neuron, 52–57
Synapse

axodendritic, 261
axosomatic, 261
climbing type, 185
formation, 219–220
rearrangement, 220
weights

connecting source cells to target
cells, 369t

Synaptic boutons
estimation of volume fraction, 45f

Synaptic information
dendrites, 27

Synaptic normalization, 230–232
Systems approach, 360–361

T

Taper rate and PK, 61–65
vs. branch order, 65f

Target-derived neurotrophic factor, 232
Taylor approximation, 132–133
TCA, 252–262, 266
Template-driven search interface,

100–101
Template hierarchy

modeler’s workspace, 96–98
Temporal cortex, 421
Tensarama, 76, 78–79, 79f
Tensegrity, 75
Tensor analysis

brain fiber pathways, 246–247
Terminal arborization behavior

ArborVitae, 260
Terminal length (PK), 53–54

branch order
vs. taper rate PK, 65f

L-Neuron Hillman/PK algorithm flow
chart, 54f

taper rate and PK, 61–65
taper rate PK

vs. branch order, 65f
Terminal segments

frequency distribution, 224f
map, 224f

Terminating
scatter plots, 30f

Tetrodotoxin (TTX), 339
Thalamic projection cells, 254
Thalamocortical afferent (TCA),

252–262
pathway

future directions, 266
Thalamocortical pathway

simulated data, 257f
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Thalamus
simulated data, 258f

Theory of mind, 431
Thermal motion (Brownian motion),

272–273
3D anatomical reconstruction

neurons, 156
3D-based DTI techniques

and applications, 283–287
3D brain fiber reconstruction

examples, 286f
3D dendrites

building, 38–42
3D reconstruction

sensory map transformations, 204–205
3D subcellular detail, 246
3D volumetric scans

brains, 245
Tissue preparation, 50
Top-down

information, 14
Topographic organization, 199
Toxicology

imaging, 387–397
Toxins

FOBs, 384
Trace image, 279

stroke studies, 279–280
Tract reconstruction

examples, 286
Transistors, 426
Transitional cortex, 421
Translational motion (diffusion)

water molecules, 272
Transmembrane mechanisms

definition, 97
Transmembrane Mechanism template, 100
Traub’s model, 117
Traveling Salesman Problem (TSP), 343
Tree type parameters

apical, 63t
basal, 63t

Trigeminocerebellar projection neurons
distribution, 206f

TSP, 343
Tubulin decay, 227f

Tubulin dynamics, 229–230
Tubulin polymerization, 226–229
Turing, Alan, 426
Turing machine, 363
T1-weighted image

postmortem anatomical
preparation, 283f

T2-weighted image
example, 282f

Two-compartment model
Pinksy and Rinzel, 363, 365

2D dendritic stick analysis
regionally selective dendritic

orientation, 181–182
2D DTI data analysis

brain study application, 279–283
2-deoxyglucose, 337
2D orientation

dendritic processes, 192
Tyrosine hydroxylase, 393f

U

Ultrastructural investigation
neurons, 5–6

Unilateral 6-hydroxydopamine
(6-OHDOPA)

injection, 389–394
User interface

elements, 87–90
modeler’s workspace, 87

V

Vacuum triode
invention, 426

Van Essen’s tension-based model
cortical folding, 75

Van Ooyen and Willshaw model,
232–238

description, 232–233
empirical data, 236–238
extension, 238
illustrated, 234f
results, 235–236

Van Pelt’s model, 51
VB, 252–255
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Vector representation
vs. polar histogram, 181, 182f

Ventrobasal complex (VB), 252–255
slice data, 253f

Vertex connectivity, 305–306
Vertex-disjoint

directed paths, 305–306
Videomicroscopy

vs. MRI, 387
Virtual brains, 425–435
Virtual cell

dendrogram, 62f
Virtual experiments, 429
Virtual motoneurons, 51–68
Virtual NeuroMorphology Electronic

Database
web site, 112

Virtual neurons
creating, 51

Virtual Purkinje cells, 51–68
Virtual reality markup language (.wrl)

L-Neuron, 55
Virtual slicing, 429
Visual cognition, 4
Visual cortex

columnar structures, 337–354
adult maps, 338
elastic net algorithm, 343–350
map development, 338–339
theoretical models, 339–343

hierarchically organized, 377
multilevel modeling, 365–370

Visual cortical areas
activation, 377

Visual cortical map development, 337
Visualization techniques

brain study application, 279–283
for orientation, 282

vol (binary format)
L-Neuron, 55

Voltage-gated channel
definition, 97–98
template, 100

Voltage-sensitive dyes, 337
Volumetric anatomic data, 245–246

Von Economo areas
neuron number, 415f

Von Neumann, John, 426
Von Neumann computational

architecture, 72
Voxel, 190

based atlases
mouse brain, 248

future directions, 266
representational flexibility, 262
substrates

axonal navigation, 245–266
VoxelMath, 248, 252
VoxelView, 248, 252, 396

W

Water diffusion
process

brain, 274–275
schematic view, 274f

Waterflow
branching networks, 76

Water movement
modes, 273–274, 274f

Wheat germ agglutinin-horseradish
peroxidase (WGA-HRP), 201

Willshaw model. See Van Ooyen
and Willshaw model

Wirecosts
distribution, 74f

Wiring principles, 321
Workspace database, 99

modeler’s workspace, 87
Wrl (virtual reality markup language)

L-Neuron, 55

X

Xgobi
web site, 116

XML, 84
XPP, 84

Z

Zaborszky, Laszlo, 12
Zeiss Axioscope, 188
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